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Abstract—Behavior-based detection approaches commonly address the threat of statically obfuscated malware. Such approaches
often use graphs to represent process or system behavior and typically employ frequency-based graph mining techniques to extract
characteristic patterns from collections of malware graphs. Recent studies in the molecule mining domain suggest that
frequency-based graph mining algorithms often perform sub-optimally in finding highly discriminating patterns. We propose a novel
malware detection approach that uses so-called compression-based mining on quantitative data flow graphs to derive highly accurate
detection models. Our evaluation on a large and diverse malware set shows that our approach outperforms frequency-based detection

models in terms of detection effectiveness by more than 600%.
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1 INTRODUCTION

Malware remains one of the largest IT security threats with
thousands of new variants appearing on a daily basis,
causing yearly losses of billions of dollars. As malware
development has become a lucrative business model [4],
[16], today’s malware landscape is highly sophisticated and
makes use of a diverse portfolio of advanced obfuscation
and anti-analysis techniques [2], [41]. This challenges tradi-
tional signature-based detection because polymorphic mal-
ware often autonomously creates obfuscated siblings with
completely differently looking binaries.

As a countermeasure, behavior-based malware detection
has gained considerable momentum in the past decade. Un-
like static detection, behavior-based detection approaches
do not use the binary of a malware sample for profiling
and detection but rather detect malware by learning and
later detecting typical malicious behavior. One prevalent
type of behavior models uses graphs to represent system
calls [6], [7], [12], [18], [20], [24], [31], or resource dependen-
cies [23], [36]. The most common way of leveraging such
graph-based behavior models for malware detection is to
scan unknown graphs for characteristic malware behavior
patterns (i.e. sub-graphs'). Repositories of such patterns are
either manually specified or extracted from sets of known
malware graphs by graph mining.

The core idea of graph mining is to determine discrim-
inating patterns shared by many graphs in a training set:
patterns that are useful to accurately separate graphs of
known malicious and benign samples. Most malware detec-
tion approaches that use graph mining determine the utility
of a pattern from a frequency point of view [5]-[7], [18],
[20], [24], [26], [31]. This means that the utility of a pattern
is determined depending on how often it appears in the
analyzed malware samples, irrespective of other properties
of the pattern. As a consequence, graph mining for behavior-

1. For the sake of brevity we will use the terms pattern and sub-graph,
as well as the terms system call and Windows API call interchangeably.

based malware detection is usually done using popular
frequency-based algorithms like AGM [17], gFSG [22], or
GSpan [40].

Recent results from the molecule (graph) mining domain
indicate that frequency-based mining often yields signifi-
cantly less interesting and thus less discriminating patterns
than so-called compression-based mining approaches [21].
Unlike frequency-based mining approaches, compression-
based mining approaches do consider the structural com-
plexity of a pattern candidate to determine its utility. They
do so by accounting for the capability of a pattern to
“shrink” the graphs of the mining set. That is, a pattern that
compresses, i.e. covers, a large portion of most graphs in the
mining set, but that occurs less frequently than another less
complex pattern with more limited compression capabili-
ties, might still be more discriminating than a less complex
but more frequent pattern. (To avoid confusion, please note
that “compression” is to be understood in an intuitive rather
than an information-theoretic way: the “compressions” we
consider usually are lossy:.)

To our knowledge, the utility of compression-based
graph mining for malware detection has not yet been
investigated. We see good reason to believe that the in-
sights gained in the molecule mining domain carry over
to malware detection. This assumption is substantiated by
the results we obtained from a preliminary study where
we applied a state-of-the-art frequency-based mining ap-
proach [40] on data flow graphs obtained from a large body
of malware samples. The resulting patterns, although in
principle discriminating and useful for malware detection,
almost entirely referred to rather simplistic behavior like
reading certain system libraries or writing specific registry
keys. Using such simple patterns for malware detection
is problematic because they likely are a) very sensitive to
changes in the behavior of the profiled malware families, b)
for the same reason comparably easy to circumvent [1], and
finally c¢) might miss important and more complex malware-
specific behavioral patterns like e.g. self-replication.
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We hence propose to use a compression-based graph min-
ing approach for behavior pattern extraction. Adopting a
behavior-based detection model from the literature [36]
that represents malware behavior as Quantitative Data
Flow Graphs (QDFGs), we show that patterns mined with
the compression-based algorithm outperform patterns that
were mined with the purely frequency-based approach in
terms of malware detection accuracy. We further show that
considering quantitative data flows, encoded in QDFGs, for
determining graph compression levels yields better results
than using graph structure properties for computing com-
pression factors.

Problem: We address the problem of finding interesting
patterns in malware behavior graphs that are sufficiently
discriminating to provide high detection accuracy at rea-
sonable mining costs. In particular, we aim at a notion of
pattern utility that leads to better detection results than
simply considering pattern frequency as utility metric, as
usually done in related work.

Solution: To mine discriminating malware behavior pat-
terns we adapt and modify a well-known compression-
based graph mining algorithm for QDFGs. QDFGs model
malware behavior as aggregations of quantified data flows
between system entities and are induced by executed system
calls. Matching the obtained patterns on QDFGs of known
malware and benign software we train a supervised ma-
chine learning classifier that we use for classifying unknown
malware samples.

Contribution: To our best knowledge we are i) the first
to use compression-based graph mining for behavior-based
malware detection using quantitative data flow information
and ii) we show that patterns obtained using compression-
based mining lead to 600% more accurate detection results
than patterns obtained with a commonly-used frequency-
based mining algorithm.

Organization: After recapping the concept of graph mining
and introducing a quantitative data flow model that under-
lies our approach in §2, we introduce its steps in §3. We
discuss its evaluation in §4, put our work into context in §5,
and conclude in §6.

2 PRELIMINARIES

In the following we recap an abstract system model from
the literature that represents low-level behavior as QDFGs,
which we use to model malware behavior. We also briefly
recap the concept of graph mining.

2.1 Quantitative Data Flow Graphs

Approaches that directly leverage raw system calls for
detection have been shown to be sensitive to behavior
obfuscation [1]. We therefore use a more abstract model to
capture system call traces as QDFGs.

QDEFGs represent a system'’s behavior during a defined
period of time as aggregated (quantifiable) data flows be-
tween system entities like processes, files, registry entries,
or network sockets [36]. QDFGs are generated by interpret-
ing traces of intercepted system calls as quantitative data
flows between pairs of system entities. Executing a ReadFile
Windows API call, for instance, yields a flow of a certain

quantity of bytes from the read file to the process that issued
the call. Conversely, a WriteFile Windows API call yields a
flow of data from the calling process to the file to be written.

Nodes in a QDFG are system entities. Edges model the
data exchange that happened between entities (nodes) as a
result of system call executions. Formally, a QDFG is a graph
G=(N,E, AN e€G=NxExAx(NUE)x A —
ValueA), where N models the set of all possible QDFG
nodes; E C N x N the set of possible edges between
nodes; and a set of labeling functions ((N U E) x A) —

Value® maps attributes (4) of nodes or edges to their

respective values (ValueA). Labeling functions annotate
nodes and edges with additional information like node
type (type € {PROCESS,FILE, SOCKET, REGISTRY, URL}),
or aggregated amounts of transferred data (size € N).
System calls with obvious data flow semantics, i.e.,
when executed lead to a flow between system entities,
are modeled by the set £ C FE. A data flow event
(sre, dst, size, time, ) € & represents the transfer of size €
N units of data at time time from a source src € N to
a destination node dst € N with a labeling function A
for timestamping and associating additional information on
the corresponding flows. As we do not need to reconstruct
individual flows later but rather want lean and aggregated
models, we simplify our model by summing up the size
attribute of all data flows between pairs of nodes instead of

creating one distinct edge per event.

QDEGs are generated and continuously updated by in-
tercepting relevant system events, i.e. system or API calls, by
reference monitors [38] and interpreting them according to
their data flow semantics. We need some auxiliary notation
before formally defining the graph update function that
creates or updates graph nodes or edges in correspondence
to detected data flow events: For (z,a) € (NUE) x A, we
define the attribute update function A[(z, a) < v] = X as

otherwise.

For updating multiple attributes, we use the notation
AM(z1,a1) + v (Tk,ak) — ve] = (.. (M[(z1,01) «
v1]) ... )[(@k, ar) < vg]. Additionally, the composition of two
labeling functions is defined by:

A1 o X2 = M[(z1,a1) + vi;...; (2K, ax) < vg] where v; =
Aa(x,a;) and (z;, a;) € dom(Ag).

To simplify access to QDFG components, i.e. nodes,
edges, attributes, and labeling functions, we furthermore
introduce a tuple selector notation: G. N, for instance, yields
the set of nodes N of the QDFG G = (N, E, A, \).

The graph update function update : G x £ — G is then
formalized by equation (2) defined below.

To operationalize the generic QDFG model in a Windows
malware detection context, we map abstract QDFG nodes to
concrete Windows resources like processes, files, sockets, or
registry entries. Furthermore, we instantiate the set of data
flow events by modeling all Windows API functions that,
upon execution, potentially lead to a data flow between
system entities. This includes file system access functions
like ReadFile and WriteFile, networking functions like the
Winsock recv and send functions, memory access functions
like ReadProcessMemory and WriteProcessMemory, or registry
manipulations like RegQueryValue and RegSetValue.
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update(G, (src,dst, s, t,\')) = @
N,
E,
AUdom()\),
{(e7 size) < A(e, size) + s; ] o N
(e, time) < (A(e, time) U {t})

if eecFE

N U {src, dst},
EU{e},
AUdom()\'),
(e, size) + s; ,
|:(e, time) < {1} °
where e = (src,dst) and G = (N, E, A, \)

otherwise

We give an intuition of how functions are formalized
in this model for two sample functions only. A more com-
prehensive list of event formalizations is described else-
where [36]:

« Using function ReadFile, a process reads a specified amount
of bytes from a file to its memory. Relevant Parameters: Calling
Process (Pc), Source File (Fs), ToReadBytes (Sg), time t.
Mapping: update(G, (Fs, Pc, Sg, t,0)).

« Using function WriteFile, a process writes a specific number
of bytes to a file. Relevant Parameters: Calling Process (Pc),
Destination File (Fp), ToWriteBytes (Sw), time t. Mapping:
update(G, (Pc, Fp, Sw, t,0)).

2.2 Graph Mining

Graph mining specializes the more general concept of data
mining. Traditionally, data mining focused on extracting
rules and patterns from unstructured or semi-structured
data [35]. Structuring data in the form of graphs is very
common in computer science and very naturally applies to
problems in chemistry, biology, and medicine. Extending the
concept of data mining to extract patterns from structured
graph data recently received considerable attention.

Graph mining algorithms can be either lazy or exhaus-
tive, and frequency- or compression-based. Exhaustive graph
mining algorithms evaluate all possible sub-graphs that can
be built from a set of graphs to isolate the most descrip-
tive ones. This usually involves computing isomorphisms
between each pattern candidate and each graph of the set.
Because this boils down to the NP-complete [11] sub-graph
isomorphism problem, exhaustive graph mining algorithms
suffer from bad scalability and are expensive to run on
huge data sets. On the upside, by construction they yield
optimally discriminating patterns.

Lazy graph mining algorithms do not evaluate all pos-
sible sub-graphs. Instead, they incorporate domain knowl-
edge or structural heuristics into the search process to
quickly prune those parts of the search space that are un-
likely to yield interesting patterns. Lazy algorithms usually
are faster than exhaustive ones but miss potentially discrim-
inating patterns from parts of the pruned search space.

Frequency-based graph mining algorithms like
GSpan [40] or AGM [17] define the level of utility of
a pattern exclusively by how often it occurs within the

training data, also called the the frequency, or support, of a
pattern. The complexity or other properties of the pattern
are usually not considered.

Compression-based mining approaches like Subdue [21]
or GBI [27] typically also consider pattern frequency. In
addition, they account for the structural complexity of a
pattern. This is usually done by evaluating the degree of
graph compression that can be achieved when compressing
(“shrinking”) all sub-graphs in the training set that are
isomorphic to the pattern to a single node. The shrinking
factor, defined as the ratio between the complexity of the
uncompressed and the compressed graphs, then determines
its utility. As a consequence, a compression-based graph
mining algorithm might sometimes favor a less-frequent but
highly compressing pattern over a more frequent one. Re-
cent work in the domain of molecule mining indicates that
patterns obtained via compression can perform better than
those extracted with purely frequency-based methods [21].

We consider our approach to be compression-based as
we employ a lazy compression-based graph mining algo-
rithm [21]. We expect it to provide a good trade-off be-
tween effectiveness and efficiency by incorporating domain
knowledge and advanced candidate selection techniques to
aggressively prune the pattern search space.

3 APPROACH

Our approach follows a classical data mining rationale. As
for most behavior-based malware detection approaches, our
core assumption is that we can detect new malware based
on its behavioral similarities with already known malware
samples. We aim at extracting characteristic behavior pat-
terns from known malware samples to define detection
models that discriminate malware from benign software
with high accuracy. As we represent system behavior as
QDEFGs, a natural choice for extracting such behavioral
patterns is a graph mining algorithm.
Our approach consists of the following steps:

3.1) Data Retrieval: To generate the raw data input to the
mining step we employ a dynamic malware analysis
infrastructure from the literature [36]. Using this infras-
tructure we generate system call traces for each sample
that we obtain when executing it in the infrastructure’s
malware sandbox. We generate QDFGs for those traces
by translating each system call into the induced (quan-
titative) data flow, as discussed in §2.1. This yields the
training set for subsequent learning steps.

3.2) Pattern Mining: Using a compression-based graph
miner, we extract characteristic patterns, i.e. sub-
graphs, from the generated malicious QDFGs. This
yields a repository of graph patterns that capture the
essence of the behavior of known malware. Following
our baseline assumption, we expect these patterns to
also appear in unknown malware with high likelihood.

3.3) Pattern Matching (3.3.1) and Classifier Training (3.3.2):
Individual patterns in themselves likely are not suf-
ficiently discriminating to accurately differentiate be-
tween benign software and malware. This leads us to
introduce a second learning step. We again match the
mined patterns on the training set and record which
patterns matched which malware and which benign
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Fig. 1: High-level architecture.

software. Using this information we train a supervised
classifier to learn complex relationships between dif-
ferent combinations of mined patterns and their occur-
rence in known malware and benign software graphs.

3.4) Detection: The classification of unknown samples is
done by matching the mined patterns against the un-
known sample’s graph and then passing the obtained
matching information to the trained classifier. Based
on the similarity of the unknown sample’s matching
profile with matching profiles of the known benign
software and malware samples from the training set,
the classifier suggests the unknown sample to more
likely be malicious or benign.

Figure 1 depicts a high-level overview of our approach
with the conceptual components that realize the aforemen-
tioned training and detection steps. The solid arrows in
the figure mark activities that exclusively relate to training.
Dotted arrows refer to activities those that are only relevant
for detection. Finally, the semi-dotted lines denote activities
that are relevant for training and detection. In the following
we elaborate on the above steps.

3.1 Data Retrieval

To obtain the raw data needed for subsequent mining and
detection activities we used a dynamic malware analysis
infrastructure from the literature [36]. This infrastructure is
an extension of a popular Malware Analysis Sandbox (Compo-
nent A) [30] that outputs QDFGs that capture the behavior
of samples executed in the sandbox and monitored for a
defined period of time.

After submitting a sample to the infrastructure it is
executed in one of the sandbox’s virtual machines. From that
moment onward, a user-mode Windows API monitor [38],
that is deployed within each virtual machine, records all
Windows API calls issued by all processes running in the
system, including the process the executed sample was
loaded into. This monitor records name and parameters
of each issued Windows API call, along with additional
information such as the size of buffers referred to by certain
call parameters.

After a pre-defined period of time the monitoring is
stopped; recorded API calls are written to a log; and the log
is sent to the Event Parser (Component B). The Event Parser

interprets each received API call according to its data flow
semantics (see Section 2.1), yielding sequences of data flow
events that are then fed into the QDFG Builder (Component
C) to finally generate the corresponding QDFGs.

These QDFGs build the data basis for all subsequent
mining, training, and detection steps.

3.2 Pattern Mining

Learning is done on a large set of QDFGs that capture
the behavior of known malicious and benign samples. An
overview of the complete learning procedure is depicted in
Figure 2 and consists of a Pattern Mining, a Pattern Matching
or Feature Generation, and a Classifier Training phase.

The first learning phase extracts interesting patterns
from the generated malware QDFGs. As we want to use
these patterns to later detect unknown malware, “interest-
ing” here refers to how malware-specific a pattern is in
the sense of more likely capturing characteristic malware
behavior than benign activities. This “being interesting” will
be related to pattern utility. We will later concretize this
notion of pattern utility when we introduce our mining
approach. As we abstract from low-level behavior using
QDEFGs, a natural way of obtaining highly characteristic
patterns is to employ some sort of supervised graph mining
algorithm on the labeled training data that we obtained in
the previous step.

Most related malware detection and classification ap-
proaches that leverage graph mining on behavior models
emphasize pattern frequency [5]-[7], [18], [20], [24], [26],
[31]. The idea is to determine the utility of a pattern by
how frequently it appears in the training malware set.
Properties of the pattern itself, e.g. its structural complexity,
in most cases are either ignored or only play a subordinate
role. While occurrence frequency is a useful property to
determine the utility of a pattern, we argue that considering
the structural aspects of the patterns as well might lead to
more strongly discriminating patterns. This is backed by
results of experiments conducted in the context of molecule
mining [21] that indicate that a few slightly less frequent
but more complex patterns might be more interesting than
many very frequently occurring but less complex ones.

We hypothesize that this also holds for graph patterns
in the context of malware detection. If we recall the basic
operation principle of frequency-based mining algorithms
and consider that most malware for instance loads similar
libraries or manipulates the same registry keys to e.g. en-
sure persistent execution, it becomes likely that employing
a frequency-based mining approach on malware behavior
graphs probably yields very simple behavior patterns.

Favoring small numbers of complex patterns over larger
collections of simple patterns has two advantages. First,
as we will later see, there is some correlation between
pattern complexity and discriminating capabilities. This is
because a complex pattern carries more information than
a less complex one. However, this also poses the problem
of finding a trade-off between being too specific and thus
not generalizing well, and being too generic and thus often
accidentally also matching benign graphs.

Second, the number and complexity of patterns directly
impact the overall efficiency of the detection phase. As we
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Fig. 2: High-level overview on complete training procedure.

will later see, for classifying a new sample we need to test all
patterns on its behavior graph. In the worst case we need to
find all isomorphisms between each pattern and all possible
sub-graphs of the corresponding sample QDFG. The overall
computational effort of evaluating the containment of all
patterns in a given graph is thus linear in the amount of the
patterns in the worst case.

Furthermore, pattern complexity intuitively impacts the
computational effort needed to perform all possible iso-
morphism checks on QDFG sub-graphs. Consider the ex-
ample of Figure 3. The pattern P2 consists of one black
and two white nodes, connected by three edges. Looking
at all possible sub-graphs of QG4 we see that there exists
only one 3-node sub-graph that has the same number of
nodes of the required type as the pattern P2, which is
a necessary pre-condition for node-induced colored sub-
graph isomorphism. In this case we thus only need one
isomorphism check to be sure whether and how often P2 is
contained in QG4. If P2 were less complex and for instance
consisted of one black and one white node connected by one
edge, there would be at least 6 sub-graphs of QG4 with the
same node count and type as P2 that thus potentially could
match P2. In this case we would thus need to perform six
isomorphism checks instead of one.

Although this example does not generalize to all pos-
sible matching scenarios, it shows that compression-based
mining algorithms that consider frequency and complexity
for determining the utility of a pattern might be useful for
mining malware behavior. The Pattern Miner (Component
D) therefore implements a compression-based instead of a
frequency-based graph mining algorithm. More precisely,
we implemented a variant of the Subdue graph mining

QG4 QG4|P2

Fig. 3: Example: Graph QG4 compressed by pattern P2.

algorithm proposed in [10] which we customized to our
needs and which we will describe in the following.

Subdue is a lazy algorithm that only considers those
parts of the pattern search space that are likely to yield inter-
esting patterns. By construction, lazy algorithms usually are
faster than exhaustive ones but might miss some patterns.
Choosing a lazy rather than an exhaustive algorithm thus
imposes a certain effectiveness-efficiency tradeoff. However,
as we will later see in the evaluation section (§4.1), this
choice is justified as it yields superior efficiency with very
competitive effectiveness.

For brevity’s sake we will use the terms positive examples
(T'") to refer to the malware QDFGs in our training data
set, and negative examples (1) to refer to training QDFGs
obtained from benign software. In the following we describe
the details of the mining process as well as the scoring
functions used for assessing pattern utility, following the
algorithm sketched in Listing 1.

3.2.1 Pattern Identification and Application

To determine discriminating patterns in our training set
we first define the root nodes of the prospective sub-graph
candidates. Recall that in QDFGs process nodes refer to the
monitored processes of a system, including the processes
that loaded the executed malicious binaries together with
their descendants. As these process nodes refer to the only
active entities in a system, it is reasonable to initialize
sub-graph candidates with process nodes as root nodes.
Furthermore, we consider the direct proximity of the process
nodes that loaded the malicious binaries. In other words, we

Algorithm 1 Abstracted Subdue Mining Algorithm

procedure MINEPATTERNS
PCo + U,ers L(({n € g.N : g A(n,init)}, 0,9.4,g.) ,0)}
140
while 7 < k do
PC7;+1 < PCZ
for each p in PC; do
p’ + extend(p)
PCiy1 + PCipa U {(p/a S(p/))}
PCit1 « bestscoring(PCit 1)
i 1+1
return Py




IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, ZZ 0000 6

restrict the set of initial pattern nodes to the set of all initial
processes in the entire training set, i.e. all nodes that corre-
spond to the main processes of the executed and analyzed
binary samples. In our training data set we respectively
mark all process nodes 7 that loaded the analyzed malicious
binaries with a special A\(n, init) property.

3.21.1 Pattern initialization: We determine the ini-
tial set of pattern candidates PCy C G x R by creating
one singleton pattern containing an initial process node in
the set of all malicious training QDFGs T". We index the
pattern candidate sets PC, to denote the iteration of the
algorithm that generated it. As each pattern in the candidate
set will later be assessed regarding its discriminating utility,
each element of a set PC, is a pair of a pattern and its
utility score. The initial one-node patterns contain too little
information to be useful for graph discrimination. Their
initial utility is therefore estimated by summing the data
flows of all neighboring edges (set to 0 in the listing for
simplicity’s sake). Moreover, since the expansion process
(see below) starts with the initial nodes, we discard all nodes
from the graph that are not reachable from these initial
nodes.

Now that we have established an initial population,
with each isomorphic instance of the candidate containing
exactly one node and no edges yet, we are set to enter the
pattern evaluation and evolution loop.

As the time required to extend and evaluate all possible
initial substructures turned out to be prohibitive (especially
two-node structures can have hundreds of isomorphic sub-
graphs), we decided to only consider a fraction of the best-
performing instances in PC, for further processing steps. We
have empirically determined that the optimal efficiency vs.
effectiveness tradeoff is achieved when considering 1% of
the initial pattern instances for further extension.

3.2.1.2 Pattern extension: For pattern extension
(function extend), the n,; best isomorphic pattern instances
are extended in each possible direction by adding an addi-
tional node and an additional edge from its neighborhood
in the QDFG. This yields a new set of pattern candidates
that together form the scored pattern candidate set PC; of
iteration ¢. At this point duplicates are filtered, isomorphic
instances are grouped into one pattern, and additional pat-
terns which we dub reduced sub-graphs are added. These
latter patterns are obtained by removing the initial node
from each mined pattern.

At this point, we consider a pattern candidate’s struc-
ture. A purely frequency-based mining algorithm would
now determine the value of a pattern only based on how
often it appears in the positive training graphs (and does not
appear in the negative examples). In contrast, our pattern
utility assessment strategy considers both, the relative fre-
quency and structure of a candidate pattern. This is, for each
pattern p € G we determine the pattern’s utility through
a scoring function S that computes the pattern’s utility as
real number: (p,S(p)) € PC;. We consider two different
pattern scoring functions Spp;, and Sypc and use S
where the choice does not matter. The Minimum Description
Length (MDL) scoring function Sypy, is the standard scoring
function of the original Subdue algorithm and considers
both, the frequency a pattern occurs within the training data
set and the complexity of the pattern. The Maximum Data

Compression (MDC) scoring function Sypc extends it by
also considering quantitative data flow properties encoded
in the QDFGs. We will discuss the details of the scoring
functions in §3.2.2 and §3.2.3.

After evaluating the utility of each pattern candidate on
the entire training set we sort the resulting pattern candidate
set w.r.t. the pattern score in descending order and only
retain the best patterns for the next iteration (denoted as
function bestscoring in the listing). As we only consider the n
best-performing patterns of a pattern set PC; for computing
the patterns set PC;;1 of the next iteration, we essentially
perform a heuristic beam search, where n is the size of
the search buffer. By construction we thus only follow the
best-performing extension branches of the initial singleton-
node patterns which significantly cuts down the algorithm’s
search space.

This process is repeated until a defined maximum pat-
tern complexity £ is reached. As a pattern is extended by an
edge in each iteration, the maximum number of iterations to
be conducted directly limits the maximum allowed pattern
complexity. After termination, the algorithm returns the n,
globally best-performing patterns. Note that the members of
the final pattern set can be of different complexity as in some
situations simple patterns can outperform more complex
ones and vice versa.

Finally, after termination, the Pattern Miner (Component
D) writes the final pattern set to the Pattern Repository for
use by subsequent training and detection steps.

3.2.1.3 Parallelization: To speed up pattern expan-
sion, we can easily distribute the expansion of the different
initial singleton pattern instances among different physical
processes. Since expansion and evaluation of the different
instances are independent of each other we can almost
arbitrarily parallelize the algorithm, even among different
machines in a cloud or grid setting.

To this end, the pattern miner component spawns a new
process for each initial singleton pattern instance and con-
tinues to expand it. After all expansions have finished, the
main component of the pattern miner combines the results
of all processes and filters out the duplicates. Even though
there might be an overlap between pattern candidates in dif-
ferent processes during the expansion, we found it less com-
putationally expensive to remove the duplicates at the end
rather than running more complex process synchronization
mechanisms that avoid redundant pattern exploration (such
as those suggested by the original Subdue authors [13]).
Using this distribution paradigm, the parallelization of the
mining approach in principal is thus only constrained by the
number of initial singleton pattern instances and available
computational resources. Still, independent of the employed
scoring function and parallelization, determining the utility
of a pattern candidate implies evaluating its occurrence
within the positive and negative training graphs. Alterna-
tively, we have decided to distribute the computation in an
even simpler manner, namely we calculate each instance of
the k-fold cross validation on a separate thread.

3.2.14 Checking subgraph isomorphisms: Check-
ing the occurrence of a pattern p = (N, E,A,\) € Gina
given training QDFG G = (N',E’', A’, X') € G boils down
to the node-induced sub-graph isomorphism problem. A
pattern p is sub-graph isomorphic to G, i.e. p =, G, iff:
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1) there exists a sub-graph g of G, i.e. ¢ C G, with:
. g — (N//’E//7A//’A//) c g
L] N// C N/
« BV C(E'N(N" x N"))
. )\// C )\/7
2) and p is isomorphic to g, denoted p = g:
e 3f : N — N" with f being bijective
e Vni,na € N : (ny,nz) € E
— (f(m), f(n2)) € E"
e Vn € N,Va € A: A(n,a) = A(f(n),a)

Using this definition we introduce function sg : G x G —
29 that returns all sub-graphs g of a graph G that are iso-
morphic to a pattern p: sg(p,G) ={g € G:9 CGAp =g}

Computing sub-graph isomorphisms is the most expen-
sive step as the underlying problem is known to be NP-
complete [11]. In practice, the average-case computational
complexity of the employed VF2 algorithm is only quadratic
in the maximum complexity of the training graph and the
pattern candidate [11].

Unfortunately the pattern expansion in all possible di-
rections, at least in theory, demands that we check the
sub-graph isomorphism relation for each possible pattern-
candidate training-graph pair. The theoretical worst-case
computational effort for one entire mining run thus is
exponential in the number of expansion iterations, i.e. is
in O(w? - (|T*| + |T~|) - |PCo|*) with v being the num-
ber of nodes of the most complex training graph, i.e.
v=maz({|g.N|: g€ TTUT}).

In practice, it is not possible to extend each pattern
candidate to an arbitrary depth. Therefore, the exponential
factor in practice is rather ¢* with ¢ < |PCy|. Fortu-
nately, the maximum number of expansion iterations k is
constant and can usually chosen to be rather small. This
further reduces the average case computational complexity.
While we have little influence on the maximum training
graph complexity v, we can further cut down the overall
complexity of the algorithm by only considering a smaller
sub-set of the entire training data set for determining the
pattern scores. To this end we introduce the approximation
ratio o, which describes the fraction of training graphs
that are considered for the isomorphism checks. Each time
we need to evaluate the utility of a pattern, i.e. we need
to calculate the isomorphic sub-graphs in the training set
T =T+ UT~, we only consider a random sub-set of size
o - |T|. In several independent experiments with differently-
sized data sets we empirically determined a approximation
ratio of 0 = 25% to yield the best cost-benefit ratio (see §4.1).

By sub-sampling the training set and thus not con-
sidering all training graphs for assessing the utility of a
pattern we certainly compromise generalizability of the
computed pattern scores. However, as our evaluation shows
(see §4), not too aggressively down-sampling the training
set has barely any effect on the overall detection accuracy.
In contrast, it does have a significant effect on mining
efficiency. We explain this by most malware samples from
the same family behaving fairly similarly. Down-sampling a
sufficiently large training data set with a fairly uniform dis-
tribution of malware families thus mainly removes redun-
dant behavior, resulting in little effect on the respectively
computed pattern utility scores.

We can now turn our attention to the details of the
scoring function, i.e., the pattern utility computation.

3.2.2 Minimum Description Length (MDL)

In the context of compression-based graph mining, scoring
functions are used to express a pattern’s utility in “describ-
ing well” a larger set of graphs.

The standard scoring function of Subdue is Minimum
Description Length (MDL). The idea behind MDL goes back
to the work of Rissanen [34] who, in essence, postulates that
the optimal description for a set of data items is the one that
encompasses as many and complex commonalities within
the data set as possible. In this sense, an optimal description
compresses the data set as well as possible.

Applied to graph mining this means that a pattern is
interesting—it describes well a set of graphs—if by remov-
ing it from each training graph (i.e. removing all isomorphic
sub-graphs), the cumulative complexity of the graph set is
reduced. If we encode the graph structure in bits, a good
pattern thus compresses the graph set so that describing it
after compression needs significantly fewer bits than before.

An optimal pattern p (w.r.t. a set of graphs G) thus
minimizes the term > ., DL(p) + DL(g|p), where g|p
denotes the graph we obtain when compressing g with
p, and DL is a function to encode the structure of a
graph (e.g. its edges and nodes) in bits. DL is defined
as DL(g) = DLn(g9) + DLg(g). DLy(g) computes the
number of bits required to encode the nodes and node labels
of a QDFG g; DLE(g) computes the number of bits needed
to represent the interconnection of nodes via edges.

Let f be the above bijective function between nodes
that defines the subgraph isomorphism between pattern
p and graph G. Compressing G' with pattern p replaces
the image of the pattern in the graph with a new node
n’ € N\ (G.NUp.N) and adds relevant edges from and
ton':

G|p:({n/}UG.N\{f(n):nep.N}, 3)
G.E\ {(n1,n2) : Inj.n1 = f(n}) VInhna = f(nh)}
U{(ni,n):n1 € G.N\{f(n):n € pN}

A 3ns.(na, f(n2)) € G.E}
:ng €GN\ {f(n):ne€p.N}
A Elnl.(f(n1),n2) S GE},
G.A,G)N).

U {(n',n2)

The binary encoding of the nodes of a QDFG G and their
connection via edges is then done as follows:

e DLN(G) =|G.N|-logy |G.N| + |G.N| - (log, |G.A|) +
log, |cod(G.)\)|) encodes the set of nodes N of G and
their respective labeling functions.

e DLE(G) = Y .cq.5(2-1ogy |G.N|) encodes the edges
of a QDFG as list of tuples of node references. Since we
do not use edge labels for the node-induced sub-graph
isomorphism check, we do not need to encode them.

Graph compression is then done by replacing all in-
stances of a pattern p in g, i.e. all sub-graphs in g isomorphic
to p, with a single node while retaining the original edges.
A simple compression example is shown in Fig. 3.

Finally, we do not need only to consider a pattern’s
compression capabilities on the positive graph samples but
also its compression effects on the negative examples. A
good pattern in this sense should strongly compress the
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positive examples while barely compressing the negative
ones. Our MDL scoring function is defined by:

> DL(gYH)+ X DL(g")

Smpr(p) = gtert 9_€T™
mpL(p) = DL(p)+ . DL(gt|lp)+ . (DL(g—)— DL(g—|p))
gtert g—ET™

4)

3.2.3 Maximum Data Compression (MDC)

The MDL scoring function allows us to consider more in-
formation than a purely frequency-based mining approach.
Considering the structural complexity of pattern candidates
for assessing their utility potentially generates patterns
of higher utility. Recent work on malware detection with
quantitative data flow analysis has shown that explicitly
considering quantitative data flow aspects for training sub-
stantially improves detection accuracy [36], [37]. The main
reason is that there exists a correlation between edges that
relate to relatively high data flows and the malicious behav-
ior encoded in a QDFG.

We therefore incorporate information about the data
flows encoded in the training QDFGs into a more advanced
pattern scoring function using the Maximum Data Com-
pression (MDC) pattern scoring function. MDC, like MDL,
considers both pattern frequency and pattern complexity.
However, unlike MDL that only considers the structural com-
plexity of a pattern to assess its utility, MDC also considers
the cumulative data flow complexity of a pattern candidate.

Instead of counting how many edges are removed when
compressing training graphs by pattern candidates, we mea-
sure how much data is compressed when removing those
edges. We calculate the fraction of the total amount of data
associated with the removed edges with respect to the total
amount of data of all edges of the uncompressed graph.

The MDC score of a pattern Sypc(p) thus calculates the
relative amount of data that is encompassed by the edges
removed from all training graphs when removing all sub-
graphs that are isomorphic to the pattern. To this end we
introduce the function QC(p,g) that returns the fraction

of data that is removed by compressing a QDFG ¢ with a
pattern p, formally defined by:

2ccq.B\(glp).E 9-A €, sizE)
Clp, g) = =& glp). ' 5
Q (p g) Zeeg.Eg.)\(e7 SZZ@) ( )

Assigning a positive score to patterns that data-compress
well the positive examples and penalizing the data com-
pression of negative examples, the MDC scoring function is
defined as:

Supc(p) = Y QC(t".9)— > QC(t ,9)  (6)

tterT+ tteT—

In sum, our approach features two distinct pattern scoring
functions to assess the utility of mined pattern candidates.
The Suypr scoring function considers the structural com-
plexity of a pattern candidate to evaluate its expected utility.
In addition, the Sy/pc scoring function also considers a
pattern’s inherent data flow complexity.

3.3 Pattern Matching and Classifier Training

Now that we have established a basis for discriminating
malware behavior patterns, we could directly use them for
the classification of unknown samples and, for instance, flag

a sample as malicious if it contains one or more of the mined
malware patterns. However, as we use a soft-computing
methodology, i.e. a graph mining algorithm, we cannot
be sure that the mined patterns necessarily generalize to
malware different from the ones contained in the training
set. This specifically means that there is a non-negligible risk
of mined malware patterns appearing in unknown benign
software samples. Following such a naive detection strategy
likely leads to many false positives.

Furthermore, our mining algorithm is lazy as it a) does
not evaluate the entire search space and b) by construction
can output malware patterns that also appear in training
graphs of benign software but overall are still more specific
to known malware behavior in the training set. This sug-
gests that implementing a naive pattern matching strategy
that only looks for the existence of a malware pattern in un-
known samples likely will yield sub-optimal effectiveness.

We therefore introduce a second learning phase that
anticipates the potential presence of malware patterns in
benign software. The idea is to match the mined malware
patterns from the first step with the graphs of all malware
and benign software from the training set, and use this
information to train a classifier. This way, the classifier
learns complex relations between the occurrence of different
combinations of behavior patterns in a graph. This to some
extent compensates the effects of our mining step potentially
returning patterns that not exclusively appear in malware.

In the following we elaborate on the pattern matching step
that yields the feature on top of which we train a supervised
machine learning classifier in the classifier training step.

3.3.1 Pattern Matching

The mined patterns together with their utility scores provide
an aggregated view of the distribution of occurrences on
the different malicious and benign samples in the training
set. Unfortunately, we need more precise pattern matching
information in order to build more complex detection mod-
els that relate the occurrence of different patterns in known
benign software and malware graphs for a joined final
classification decision.

We hence propose to again evaluate all mined patterns
on all (positive and negative) examples in the training set.
This is done by the Pattern Matcher (Component E) that for
each training graph searches for all sub-graphs isomorphic
to the mined patterns. The pattern matcher provides us with
a mapping between the mined patterns and the respective
isomorphic sub-graphs in the training graphs. This mapping
allows us to answer questions such es whether, or how
often, a specific pattern matched a certain training graph.

For each pattern / training graph pair we record a) how
many sub-graphs in the training example were isomorphic
to the pattern (Frequency Match), and b) which fraction of the
overall data of the training graph can be “compressed” by
removing all matching sub-graphs (Compression Match).

The matching information is generated by checking sub-
graph isomorphism between all patterns p € PCj, and all
training graphs g € T and then evaluating the functions
Mg and M on the results:

o Frequency Match: Mp(p,g) = |sg(p, g)]
o Compression Match: Mc(p, g) = QC(p, g)
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P1 é
P1 | P2 | P3
P2 (.I >— | a) M, 1 3 2
b)M. | 0.3 | 0.3 | 0.6
P3 (:g

Fig. 4: Example for a matching procedure (where My is a
frequency match and M¢ is a compression match).

While the frequency match is meant to be used in con-
junction with patterns that were mined using GSpan and
MDL, the (quantitative data) compression matching is the
natural dual to the MDC scoring function and thus is used
together with patterns mined using MDC scoring. In the
following, if the exact matching function does not matter,
we will simply use the symbol M.

Figure 4 shows the differences when matching three
different patterns with a simple training graph. The two
scoring functions applied to the same matching scenario
do not necessarily always concur in the distribution of
weights of the matched pattern. For instance, the frequency
matching function in this simple example considers the
pattern P2 to be the most important one and assigns it
with the highest value in the result row. In contrast, the
compression matching function considers P3 to be the most
important pattern. This means that in fact classifiers trained
using different matching functions can come to different
classifications when facing unknown samples.

3.8.2 Classifier Training

Having matched all mined patterns on the positive and
negative training graphs, we can train a supervised machine
learning classifier. We organize the matching information
obtained in the previous step in a training feature matrix
(Feature Generator, Component F). Each column of this table
captures the matching information for one graph ¢; from
the training set 7. Each element of the column is obtained
by evaluating one of the previously mentioned matching
functions for one specific pattern p; from the final mined
pattern set PCY;. As our training set is labeled—the training
set’'s QDFGs represent the behavior of known malware
or goodware—we label each feature vector with the class
(benign vs. malicious) of the respective training graph.
Remember that PCj, is the result of the pattern mining

step that contains n best patterns. The training data genera-
tion function is defined by:

M(p1,t1) M(pn,t1)  class(t1)

gen(PCy, T) :=

M (p1, ty7)) M (pn,ti7)) class(tr))

On this training data we finally train a standard super-
vised machine learning classifier. Preliminary evaluations
on training data obtained from smaller training sets with
different supervised machine learning algorithms (k-nearest
neighbor, support vector machine, etc.) indicated that meta

learners using decision trees, i.e. RandomForest [3] or Extra-
Trees [15] yielded particularly good classification results. We
chose to use a standard ExtraTrees algorithm as classifier.
The final classification model thus consists of the trained
classifier and a set of patterns that were used for training.

3.4 Detection

To classify an unknown sample we first execute the sample
in the analysis sandbox component and follow the data
retrieval process described in §3.1 to obtain a QDFG that
represents the sample’s captured behavior.

Subsequently, we take the set of detection patterns con-
tained in the previously generated classification model and
match them against the QDFG of the sample to be classified.
As described in §3.3 we then convert the matching results
into a feature vector, using the same matching function that
was used for generating the training features the classifier
contained in the classification model was trained on.

Finally, we pass the obtained feature vector to the clas-
sifier which returns a classification based on the similarity
of the matching profile with matching profiles of known
malware and benign software from the training set.

4 EVALUATION

To evaluate the effectiveness of our approach we imple-
mented a prototype of the architecture sketched in Figure 1.
For the Malware Sandbox component we used a modified
Cuckoo sandbox?, with its guests running Windows 7 SP1.

To allow replication and comparability of our results, for
our evaluations we used the Malicia malware data set from
Nappa et al. [28], composed of a representative and diverse
selection of malware from 12 different malware families,
including samples from the Zeus, SpyEye, and Cleaman
family. We further populated this set of known malicious
samples with known benign samples including standard
Windows executables like Paint, Wordpad, or Explorer, as
diverse software samples obtained from the Internet. Exe-
cuting these samples in the malware sandbox then yielded
a total set of 6994 malware and 513 benign QDFGs.

The following experiments were performed on an Intel
Xeon sever running Ubuntu 14.10, powered by 6 physical
3.5GHz cores and 128 GB of RAM.

4.1 Effectiveness

For evaluating the effectiveness of our approach we are
interested in investigating two research hypotheses:

o H1: Compression-based graph mining for malware pat-
tern extraction yields better malware detection accuracy
than frequency-based mining.

e H2: Quantitative data flow information for compres-
sion yields better detection accuracy than the structural
complexity of patterns alone.

For investigating hypothesis H1, which we consider the
main hypothesis that motivates this work, we aimed at
comparing the detection effectiveness of our approach with
other detection approaches that use frequency-based graph
mining [5]-[7], [18], [20], [24], [26], [31].

2. http:/ /www.cuckoosandbox.org/
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| a) GSpan(Mp) | b)MDL(Mp) | < MDC(Mc) |
Avg. AUC (Std. Dev. o) 0.953 (0.012) 0.943 (0.013) 0.993 (0.001)
Avg. BDR (Std. Dev. o) 0.159 (0.065) 0.754 (0.067) 0.967 (0.008)

Avg. F1-Score (Std. Dev. o) 0.983 (0.005)

0.867 (0.004) 0.997 (0.005)

Avg. Precision (Std. Dev. o) 0.982 (0.004)

0.780 (0.000) 0.992 (0.000)

Avg. Recall (Std. Dev. o) 0.986 (0.005)

0.978 (0.004) 0.990 (0.000)

TABLE 1: Effectiveness quality metrics.

Unfortunately, for most of these approaches implemen-
tations and data sets were either not publicly available or
the contacted authors could not provide us with operational
prototypes. For our experiments we thus fell back on re-
implementing the core mining concept shared by most of
the approaches. This is, at least for the ones that mentioned
the used graph mining algorithms we could compare the
detection performance by substituting our compression-
based mining component with a component implementing
the respective mining algorithm. A closer look at related
work that uses graph mining revealed that the frequency-
based GSpan [40] mining algorithm was, by far, the most
commonly used [18], [20], [24], [26], [31]. Most other used
algorithms were structurally very similar to GSpan.

Another major reason for us to (at least partially) re-
implement related approaches instead of directly comparing
the numbers presented in the respective papers is given
by the well-known fact that machine learning based ap-
proaches are highly sensitive to the number and nature
of used training samples. A direct comparison of numbers
produced on different evaluation data sets would thus likely
lead to heavily biased conclusions.

For assessing hypothesis HI we thus evaluated our
approach on the evaluation data set: once with our
compression-based pattern mining component using MDL
scoring for pattern utility evaluation; and once replacing it
with a component that interfaces to the original publicly
available implementation of the frequency-based GSpan
algorithm®. The individual evaluations were performed
through typical 10-fold cross validation experiments. For
each fold of the experiment we trained the approach on
90% of the evaluation data, i.e. mined interesting patterns;
trained the final classifier on this set; and used the resulting
detection model to classify the remaining 10% of the data.

We evaluated the following combinations of mining
algorithms and matching functions as discussed in §3.2
and §3.3: a) frequency-based mining using GSpan and fre-
quency matching; b) compression-based mining using Sub-
due with MDL scoring function and frequency matching; c)
compression-based mining using Subdue with MDC scor-
ing function and (data) compression matching. We chose
these combinations of mining and matching metrics for two
reasons. First, setting a) covers most of the aforementioned
malware detection approaches from that literature that use
frequency-based mining. Second, the combinations of min-
ing scoring and matching functions of setting b) and c) are
the the natural duals of each other.

Malware often uses randomized names for dropped
files. Extracted patterns that use the full name of a file

3. https://www.cs.ucsb.edu/~xyan/software/gSpan.htm

would likely be too restrictive and only match very few
malware instances. We thus conducted all aforementioned
experiments using only the file extensions part of the file
node labels for label equivalence matching instead of the
full file name.

To avoid biasing the comparison due to unequal baseline
data sets we set the sub-sampling ratio J of our mining algo-
rithm and configured our GSpan wrapper to only use 25%
of the training part of each fold for isomorphism checks.
Considering that this sub-sampling was done randomly we
furthermore repeated each cross validation experiment ten
times to weed out noise and cut out random side-effects.

To express the aggregated effectiveness of the ap-
proaches, we computed four standard quality metrics: Area
under ROC Curve (AUC), F1-Score, Precision, and Recall.
True positives in this context refer to malware samples that
have been correctly classified as malicious, true negatives to
benign software samples that were correctly classified as be-
nign, false positives to benign samples incorrectly classified
as malicious, and false negatives to malware samples that
were mistakenly labeled as benign.

To evaluate our approach’s effectiveness in a more op-
erational perspective we furthermore measured its Best-
case Detection Rate (BDR), which captures the best-case true
positive rate that can be achieved when fixing the maximum
acceptable false positive rate to a threshold of 0.5%, which
we deem reasonable in an operational context. In other
words, the BDR is the value of the ROC function at 0.005.
In contrast to the AUC and F1-Score that, although better
capturing the overall quality of a classifier, do not have
an obvious operational interpretation, the BDR gives a
better idea of the operational detection accuracy. Consider a
medium-to-large sized company environment with 10,000 to
be classified email attachments per day. Using BDR would
translate to the question of how many real malicious attach-
ments we can correctly identify as malware when accepting
an upper bound of 50 emails wrongly put into quarantine
due to incorrect malware alerts.

The average results and the respective standard devia-
tions of the experiment runs are depicted in Table 1. We
can see that the results support our hypothesis H1 in that,
at least on our evaluation data set, the best compression-
based mining approach outperformed the frequency-based
mining using GSpan. Even if we factor out random ef-
fects, i.e. take the standard deviations into account, we

UCupe () 0.993 .
at least perform — TCspmrie) 0055 4% better in

terms of AUC when using data compression-based mining
instead of frequency-based mining. At least concerning the
overall effectiveness in terms of AUC, however, structural
compression-based mining performs worse than frequency-
based mining with GSpan. Looking at the individual detec-

~
~
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tion rates when fixing the maximum accepted false positive
rate to 0.5% (BDR), the effectiveness differences between the
approaches become more apparent. Concerning the BDR,
the quantitative data flow compression-based yielded more

BDRypoeg) _ 0.967 .
than BDRagmins, = 0150 ~ 600% better results than the

frequency-basecf )GSpan approach. This means, in particular
when targeting low false positive classification rates, our
quantitative data flow compression-based mining approach
significantly outperforms frequency-based mining (H1).

If we look at the individual differences in effective-
ness between purely structural compression-based mining
and the experiments where we considered quantitative
data flows for mining and matching, we see that quan-
titative data flow compression-based mining on average
yields %%g((%;)) 9293 ~ 5% better overall effective-
ness, i.e. AUC. Again looking at the effectiveness for low
false positive rates, data compression-based mining yields

BDRupcugy _ 0.967 )
BDRupr,, . 0754 > 30% better detection rates than

when only considering structural compression.

These findings support our hypothesis H2 in that con-
sidering quantitative data flow aspects for mining indeed
seems to improve the quality of mined patterns and overall
accuracy of respectively devised detection models.

4.2 Efficiency

For efficiency considerations, we differentiate between train-
ing and detection overheads. The training time encompasses
the computational effort for mining and scoring a set of
detection patterns, as well as training a supervised machine
learning classifier on them. The detection phase consists of
matching the patterns against the testing graphs and evalu-
ating the obtained feature vector on the trained classifier.

GSpan makes use of graph encoding and tries to avoid
expensive isomorphism checks. Our compression-based ap-
proach, in contrast, heavily relies on graph-isomorphism
verification. We hence expected the frequency-based GSpan
approach to outperform ours in terms of time efficiency. We
thus expected that the gain in effectiveness comes at the cost
of efficiency.

Table 2 summarizes the average training and mining
times of the different approaches. The experiment results
confirmed this assumption in that the frequency-based min-
ing with GSpan was more than one order of magnitude
faster than the best compression-based mining experiment.
Frequency-based mining using GSpan was almost A2 —

TGSpan
11333'2805; ~ 10 times faster than compression-based mining
using MDC and more than TTC”; DL — 3‘11g82‘8053 ~ 260 times
3 Span .

faster than MDL. We explain the difference in performance
between MDL and MDC with the same argument as we
explain their effectiveness difference: MDC likely is better
able to early prune useless pattern candidates from the
search space and thus needs to perform significantly less
isomorphism checks than MDL.

For assessing the detection overhead we measured the
time for matching patterns of a detection model against
unknown QDFGs of different size. From the results depicted
in Figure 5 we see that the overall detection time, at least
on our evaluation set, seems to linearly increase with the
complexity of the to be classified QDFGs and ranges from

6ms to almost 4200 ms. On average, classifying an unknown
sample took 102 ms.

4.3 Threats to Validity

While we put considerable effort to ensure the sound evalu-
ation or our approach and comparison with related mining
approaches, there remain threats to the generalizability of
the gained insights.

Firstly, we make use of probabilistic soft-computing al-
gorithms whose overall effectiveness and accuracy are well-
known to depend on the amount and structure of the data
they are trained on. While we used a publicly available
data set for our evaluations, composed of a diverse range
of malware samples from different families as well as a
diverse selection of widely used benign software, we can
only safely claim that our approach works well with respect
to this data set. In other words, because our approach is
learning-based, i.e. infers patterns and their interrelation
from the training data to predict classification of unknown
data, its effectivness naturally depends on the quality and
diversity of the used training data. Although we used a
well-established data set for training and evaluation [28], the
presented insights have to be interpreted with this potential
threat to generalizability in mind.

Furthermore, supervised machine learning algorithms
can suffer from over-generalization or over-fitting to the
training data. To compensate this threat we consistently
employed repeated 10-fold cross validation experiments for
evaluating our research hypothesis and used a supervised
learning algorithm, i.e. ExtraTrees [15], that is known to be
rather robust towards over-fitting to the training data. More-
over, further experiments with nine different classification
algorithms, i.e. Extra Trees, k-NN, QDA, LDA, GaussianNB,
AdaBoost, SVN, Decision Trees, and Random Forest, did
not reveal a significant impact of the used classification
algorithm on the absolute accuracy of the overall approach.

In addition to these more statistics-related threats to
validity we also potentially suffer from the same generaliza-
tion issues as most dynamic malware analysis approaches
do in that we do not tackle the issue of dormant behavior
or in general environment-sensitive malware. Together with
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Fig. 5: Detection time vs. QDFG size.
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| | aGSpan | bMDL | oMDC |
Training Time 13.20s 3408.0s 133.85s
(Std. Dev. o) (0.10s) (555.52s) (3.585s)

TABLE 2: Average training efficiency.

the fact that our malware analysis environment uses a user-
mode monitor for capturing WindowsAPI calls and thus by
construction cannot profile the behavior of more advanced
kernel-level rootkits this imposes the risk that our approach
does not work for kernel-based malware.

Finally, we acknowledge that we introduced a certain
bias in the comparison between our compression-based
mining approach and frequency-based mining approaches
in that we could not directly compare the approaches
themselves but only indirectly compare them based on a
comparison of the used mining algorithms. Considering
that none of the comparison approaches offer publicly-
available implementations or data sets it was impossible
for us to do so and this indirect comparison on the same
standardized data set was the closest we could get towards
a fair comparison. Nevertheless, there is a strong conceptual
similarity between those approaches and they often build on
top of similar graph mining algorithms. We thus argue that
our evaluation results nevertheless give important insights
into the general utility of graph mining for behavior-based
malware detection.

5 RELATED WORK

Behavior-based malware detection received considerable at-
tention in the past decade. We focus on related work that,
like us, uses graphs and graph analysis to model and extract
malware behavior.

Christodorescu et al. [8] were among the first to propose
generating detection patterns by mining the behavior, rep-
resented as graphs, present in malware but not in benign
software. They do so by looking for minimal sub-graphs of
system call dependency graphs of known malware that are
not contained in benign software. By this the utility of a
mined pattern directly correlates with how often it appears
in the malware and does not appear in the benign set. The
structural complexity of the pattern itself is not considered
as long as it is minimal. Therefore, this approach falls into
our category of frequency-based methods.

Chen et al. [6] improve on this idea by first shrinking
the pattern search space by summarizing the to-be-mined
system call dependency graphs and only keeping their core
behavioral properties. Through this approximation they, like
us, avoid an expensive evaluation of the entire search space.
They thus also make use of graph compression but only use
it to reduce the search space; the pattern utility evaluation is
still done entirely frequency-based and does not anticipate
pattern complexity aspects. Hence, we also consider their
work in the category of frequency-based methods.

The HOLMES detection system proposed by Fredrikson
et al. [12] works along the same lines. It also relies on
system call dependency graph mining but introduces an
aggressive probabilistic sampling of the pattern search space
to improve accuracy. They further use concept analysis to

combine semantically redundant patterns. In our under-
standing, their pattern selection does not directly consider
the structural complexity of a pattern and we therefore also
categorize this work into the frequency-based category.

Besides these works that propose custom graph mining
techniques, there exists a considerable body of work that
uses standard frequency-based graph mining algorithms
like GSPan [18], [20], [24], [26], [31].

We differ from all of those approaches in two main ways:
i) we primarily consider the compression capabilities of a
pattern to determine its utility, and not its frequency, and
ii) we make use of quantitative data flow aspects inherent
to system call traces, both of which we showed to improve
detection effectiveness. Finally, like recent semantics-based
detection approaches [29] we also abstract from raw low-
level system calls and thus also suffer less from system call
injection attacks than earlier system call centric approaches.
Our work relies on more abstract QDFGs that have been
shown to be less vulnerable to advanced behavior obfusca-
tion attacks than system call dependency graphs [1], [37].

Park et al. [32], [33] proposed a malware classification
method based on so-called HotPaths, i.e. maximum com-
mon sub-graphs on kernel object dependency graphs, to
capture characteristic behavior of malware families. Their
dependency graphs do not take quantitative flows between
objects into account. As our evaluations showed, this can
have a significant effect on detection accuracy. Even though,
in addition, this approach per se does not make use of
dedicated graph mining techniques to construct HotPaths
and thus does not fit our categorization scheme, we wanted
to compare its performance against our approach.

As we were not able to obtain an implementation of
the approach from the authors we had to fall back to re-
implementing it following the descriptions in the respective
publications. We then tried to evaluate this implementation
on the same data set that we used for evaluating our ap-
proach to assure a fair comparison. Even the most powerful
systems that we had access to did not manage to get the
algorithm to terminate and deliver HotPaths for our data
set. This can be explained by the HotPath calculation process
relying on repeated maximum common sub-graph (MCS)
calculations, which are known to be NP-complete [14]. Our
implementation of their approach turned out to already be
computationally infeasible even for few small graphs (< 50
nodes). This seems to be in line with a purely complexity-
theoretical perspective, and also when comparing our expe-
riences with the practical evaluation of maximum common
sub-graph algorithms by Conte et al. [9]. We probably have
wrongly implemented their algorithms or did not employ
optimizations that went unmentioned in the article.

Recent work proposed the use of graph metrics instead
of patterns for malware detection [19], [25], [37]. This dif-
fers from our approach in that the respective metric-based
detection models lack a clear semantic dimension. This
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makes it very hard to human analysts to verify a detection
prediction and conduct additional post-detection analysis
steps to e.g. get a deeper understanding of the behavioral
characteristics of a malware sample. The detection models
and classification results generated by our approach, in con-
trast, conveniently allow for such further-reaching manual
analysis steps, which already has been shown [39].

In contrast to previous work that uses patterns on QD-
FGs for malware detection [36] we use graph mining to
extract highly characteristic behavior patterns from a large
malware corpus instead of using a fixed selection of manu-
ally defined detection patterns. As we could show with our
evaluation, this significantly boosts detection accuracy.

The differences with related work can thus be sum-
marized as follows: i) we employ a compression-based
mining scheme where most related mining approaches
use frequency-based algorithms; and ii) we mine detection
patterns instead of manually specifying them like related
QDFG pattern-matching do. Both ideas yield superior de-
tection accuracy.

6 DiscusSION AND CONCLUSION

We introduced a novel approach for behavior-based mal-
ware detection that uses compression-based graph mining. We
propose to exploit quantitative data flow properties to extract
highly characteristic behavior patterns from collections of
known malware. By combining a lazy graph mining tech-
nique with a robust machine learning scheme our approach
to some extent is able to compensate noisy training and
testing data, which is reflected by stable high detection
effectiveness in our evaluation experiments.

Our evaluation revealed that compression-based mining
can yield patterns that are up to six times more effective than
patterns obtained through frequency-based mining meth-
ods, which is the common data mining technique employed
by related work. This gain in effectiveness comes at the cost
of a tenfold increase of the training time.

Recent studies [1], [37] indicate that QDFG-based mal-
ware detection approaches often outperform static and
more simplistic dynamic malware detection in accurately
detecting obfuscated malware. As our evaluations indicate
an even better classification accuracy of our approach in
comparison with earlier fixed-pattern QDFG-based detec-
tion approaches [36], [37], we consider our new approach a
significant bar-raiser with respect to the state-of-the-art.

We plan to improve accuracy and efficiency by incorpo-
rating malware-specific domain knowledge into the pattern
scoring process and e.g. early prune patterns that refer to
known benign behavior. Furthermore, we plan to improve
efficiency by more tightly combining the mining and match-
ing steps of the training phase and e.g. storing information
which patterns matched which training graph in order to
avoid redundant isomorphism checks.
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