
Nequivack: Assessing mutation score confidence
Dominik Holling, Sebastian Banescu, Marco Probst, Ana Petrovska, Alexander Pretschner

Technische Universität München
Garching bei München, Germany

{holling, banescu, probst, petrovska, pretschn}@cs.tum.edu

Abstract—The mutation score is defined as the number of
killed mutants divided by the number of non-equivalent mutants.
However, whether a mutant is equivalent to the original program
is undecidable in general. Thus, even when improving a test suite,
a mutant score assessing this test suite may become worse during
the development of a system, because of equivalent mutants in-
troduced during mutant creation. This is a fundamental problem.

Using static analysis and symbolic execution, we show how to
establish non-equivalence or “don’t know” among mutants. If
the number of don’t knows is small, this is a good indicator that
a computed mutation score actually reflects its above definition.
We can therefore have an increased confidence that mutation
score trends correspond to actual improvements of a test suite’s
quality, and are not overly polluted by equivalent mutants.

Using a set of 14 representative unit size programs, we show
that for some, but not all, of these programs, the above confidence
can indeed be established. We also evaluate the reproducibility,
efficiency and effectiveness of our Nequivack tool. Our findings
are that reproducibility is completely given. A single mutant
analysis can be performed within 3 seconds on average, which is
efficient for practical and industrial applications.

I. INTRODUCTION

Mutation testing [1] uses fault injection for test suite
assessment. By introducing faults into the tested program
P , so called mutants P ′

1...P
′
n are created. The test suite is

then executed using the mutant thereby either killing it by
detecting the introduced fault or keeping it alive by failing
to detect the fault. An equivalent mutant is the result of
applying a transformation to P creating P ′, where P and
P ′ have equivalent input-output behavioral semantics (i.e.
[[P]] == [[P ′]]). The mutant score to judge the quality of a test
suite is defined as the number of killed mutants divided by the
number of non-equivalent mutants. Two fundamental aspects
in mutation testing are: (1) the choice of mutation operators
transforming the program into mutants and (2) avoiding the
creation of equivalent mutants [2]. Since equivalent mutants
are not distinguishable from the original program by a test
suite, they are one limitation of the practical deployment of
mutation testing. For mutation testing to be applicable in
practical contexts, equivalent mutants must be either detected
or their creation must be limited [3]. Otherwise, increasing the
fault detection ability of a test suite may cause the mutation
score to decrease during the development of a program due to
an increased number of equivalent mutants.

Problem: The mutation score inherently suffers from the
undecidable problem of program equivalence [2]. As tools
for mutation testing typically use the number of all mutants
(including equivalent mutants) when computing the mutation

score, the confidence in the mutation score is limited. For ex-
ample, using a mutant generation tool throughout the iterations
or sprints of a certain software project, the mutation score may
decrease even though the fault detection ability of the test
suite has increased and vice versa. The reason behind such
discrepancies is the unknown number of equivalent mutants
against which the test suite is assessed.

Solution: In practice, it is essential to know how close
the mutation score obtained by a tool is to the actual mutation
score. We propose the mutation score confidence as a measure
for this closeness. It is defined as the number of proven non-
equivalent mutants divided by all mutants. To compute the
number of non-equivalent mutants, our tool Nequivack repre-
sents a Non-EQUIVAlence ChecKer using symbolic execution
(see below) on a unit testing level. Nequivack is started after
applying mutation to the program and before executing the
test suite to compute the confidence in the to be obtained
mutation score. For this purpose, Nequivack is given the
original program and a mutant; it tries to find a counter-
example (i.e. a test case as evidence) to their equivalence. If
a test case is found, the mutant is deemed non-equivalent. In
case Nequivack encounters an error times out or terminates,
the equivalence of the mutant is deemed unknown.

Technically, we make use of symbolic execution [4], [5],
which has been employed in software testing for the explo-
ration of program paths leading to the automatic generation of
high coverage test suites. To symbolically execute a program,
symbolic instead of concrete values are used as inputs. Sym-
bolic values represent a set of possible concrete values that
could be taken on a particular program execution path. Thus,
the output and condition to take the path (i.e. path condition)
are expressed w.r.t. the symbolic input values. Whenever a
program termination point (or error state) is reached, a test
case for the taken path is created by querying an SMT-solver
with the corresponding path condition. A framework for the
symbolic execution of programs written in C/C++ is KLEE
[6]. KLEE interprets LLVM bitcode for symbolic execution
using a variety of path exploration techniques and a bit-level
precision memory model. While exploring the paths, it can
detect run time errors, such as out of bound memory access or
division by zero and create respective test cases. In addition,
it has the ability to falsify custom program assertions on each
path. In particular, using symbolic execution and assertions on
the outputs of two programs may generate test cases showing
non-equivalence of those two programs. Note that, although
the generated test cases are inherently able to kill the mutant

Fig. 1. Mutation testing: Original and proposed process

and would yield a high mutation score, their ability to detect
realistic faults is only given iff the coupling hypothesis [1]
holds.

Contribution: To the best of our knowledge, this is the first
assessment of mutation score confidence. By employing our
approach, we are able to give a decision-making criterion on
the closeness of the mutation score obtained and the actual
mutation score. Thus, we are able to give an a priori assess-
ment whether evaluating the test suite using mutation testing
is practically sensible. In case the mutation score confidence
is high, the mutation score will be close to the actual mutation
score as the number of equivalent mutants is acceptably low.
For a low mutation score confidence, the number of equivalent
mutants may be high and the sensibility of mutation testing is
unknown, which may yield the recommendation to use other
forms of test case assessment in practice. In addition, our
approach is lightweight on a unit testing level and is offered
as an open source tool that can be easily be integrated as an
additional efficient step into existing mutation testing tools.
Furthermore, we are able to demonstrate full reproducibility
of the results of Nequivack, while at the same time having high
efficiency and high effectiveness. Reproducibility is especially
important in practical contexts where vastly different results
analyzing the same mutant are unacceptable. Nequivack is
able to efficiently analyze 10 000 mutants in approximately
6 minutes on average while effectively classifying all mutants
correctly.

The structure of this paper is as follows: In Section II,
we present our approach. Section III evaluates the approach
w.r.t. to reproducibility, effectiveness and efficiency using
well-known algorithms. Section IV puts our work in context.
Finally, Section V presents a conclusion and an outlook.

II. APPROACH

Our approach in Figure 1 extends the common mutation
testing process of mutant creation and test execution with
an intermediary non-equivalence check. The source code of
Nequivack and all evaluation programs can be found at
https://github.com/tum-i22/nequivack. To determine the non-
equivalence of two programs at unit testing level, Nequivack
requires 6 steps, which we will describe in the following.

a) Step 1: Annotate all functions in the original pro-
gram which are to be tested for non-equivalence. Annotations
take the form of a single line comment placed right before

1 // @klee[inArraySize=5,outArraySize=4](sym,1)
2 int* remove_first(int a[], int n) {
3 return a + n;
4 }

Listing 1. Example of function annotation

1 // @klee
2 int add(int a, int b) {
3 return a + b;
4 }

Listing 2. Function annotation where all input parameters are symbolic

the function definition. The minimal annotation that must
be provided is @klee, which indicates that this function
will be checked for non-equivalence. If the function has an
array as input parameter or an array as output parameter,
then Nequivack requires specifying the desired maximum
sizes of these arrays via the inArraySize, respectively
outArraySize annotations placed between square brackets,
illustrated in Listing 1. Nequivack also allows specifying
which input parameters of the function to be tested should take
concrete or symbolic values. These values can be specified
via a list between parentheses at the end of the annotation
as shown in Listing 1, i.e. sym on the first position in the
list means that the first parameter of the function will take a
symbolic value, while the value 1 on the second position of
the list means that the second parameter of the function will be
fixed to the concrete value one. If this list is not specified, then
it means that all input parameters are symbolic. For example,
both the input parameters of the add function presented in
Listing 2 will be made symbolic.

Annotation of all functions in a given source code file
can be automated given that all their input arguments are
symbolic and the maximum size of input and output arrays
are the same for all functions. After this automatic annotation
a test developer can manually tune the annotations by adding
concrete values for some arguments, changing the maximum
sizes of arrays or removing annotations from a subset of
functions.

b) Step 2: In a later step the functions to be tested for
non-equivalence from the original program P and a mutant
P ′ will be called in the same source code file. To avoid
name ambiguities, this step renames the functions from P

1 // original program
2 // @klee
3 int original_add(int a, int b) {
4 return a + b;
5 }
6
7 // mutated program
8 // @klee
9 int transformed_add(int a, int b) {

10 return a - b;
11 }

Listing 3. Example of function renaming

https://github.com/tum-i22/nequivack

1 #include "original_Add.h"
2 #include "transformed_Add.h"
3 #include "klee/klee.h"
4
5 void test_add() {
6 int add_0, add_1;
7 klee_make_symbolic(&add_0, sizeof(add_0), "

add_0");
8 klee_make_symbolic(&add_1, sizeof(add_1), "

add_1");
9
10 int original_ret = original_add(add_0, add_1);
11 int transformed_ret = transformed_add(add_0,

add_1);
12
13 klee_assert(original_ret == transformed_ret);
14 }
15
16 int main(int argc, char* argv[]) {
17 test_add();
18 return 0;
19 }

Listing 4. Example of KleeMain.c

and P ′ by prefixing them with original_, respectively
transformed_. If we consider the function from Listing 2
to be part of the original program P and we consider a mutant
P ′, where the addition operator on line 3 of Listing 2 is
changed to a subtraction operator, then the result of step 2
is shown in Listing 3.

c) Step 3: Two header files are generated for each
of P and P ′ containing the signatures of their annotated
functions. If P contains any structure declarations, then these
are extracted into another header file.

d) Step 4: To compare the functions in P against those
in its mutant P ′, Nequivack generates a source code file
called “KleeMain.c”, which contains the main function to be
executed by the symbolic execution engine KLEE [7]. This
file contains calls to functions which test all annotated pairs
of functions from P and P ′, with their corresponding set
of symbolic and/or concrete parameters. Each pair of return
values of all the pairs of original_ and transformed_
functions is placed inside a statement that asserts equality if
the two return values are of integer type. In case of float
integer values the comparison is made by asserting that the
absolute value of their difference is lower than the machine
epsilon1. In case the return value is a structure or an array
multiple assert statements are used to check the equality of
the return values. If a pair of return values are equal then their
corresponding assertion succeeds, otherwise it fails, which
means a counter-example that proves the pair of original_
and transformed_ functions to be non-equivalent has been
found.

An example of step 4 corresponding to the original and
mutant functions from Listing 3, is presented in Listing 4. The
main function of “KleeMain.c” in lines 16-19 of Listing 4,
simply calls the test_add function defined on lines 5-
14, which tests the pair of functions from Listing 3. The

1http://www.cplusplus.com/reference/cfloat/

first two lines in Listing 4 contain the includes of the two
header files generated by step 3. Since the implementation
of Nequivack depends on KLEE, line 3 includes the header
file which offers KLEE’s API. Part of this API is a function
called klee_make_symbolic, which sets the memory at
the address indicated by its first parameter and of size equal
to its second parameter as symbolic. The third parameter
of klee_make_symbolic is an arbitrary name used to
indicate the assigned concrete value to that symbolic memory
in the test cases generated by KLEE. Both input values of the
original and mutated add functions are declared in line 6 of
Listing 4). They are turned into symbolic values on lines 7 and
8 using klee_make_symbolic. The original and mutated
functions are called using these symbolic arguments, on lines
10 and 11. Note that the order in which the original_
and transformed_ functions are called does not matter,
because no output of one function is used as input for the
other function. On line 13 another function from KLEE’s API
klee_assert is called to verify if the integer return values
of the 2 functions are equal.

Note that making the variables original_ret
and transformed_ret symbolic by using
klee_make_symbolic, would not be beneficial to
the goal of checking non-equivalence of the original_ and
transformed_ functions. The reason is that once the two
variables are made symbolic, they will disregard any concrete
return value of the original_ and transformed_
functions and the symbolic variables will simply take on any
value of their specific type.

e) Step 5: Compile and link all the C source code
and header files using the LLVM clang compiler and the
llvm-link linker. Afterwards, we run KLEE. KLEE uses the
modified version of the uClibc library2 to symbolically execute
definitions for a subset of C library functions, which the
program may call. It also uses a POSIX-runtime3, which
handles the majority of operating system facilities used by
command line application.

f) Step 6: Nequivack analyzes the output of KLEE and
classifies each mutant as either non-equivalent if it finds a
counter-example input for which the outputs of a pair of
functions is different, or unknown if no counter-example is
found.

A. Limitations

Nequivack does not support all data types representable in
the C programming language. Currently it supports primitive
types, arrays, pointers and structs, as long as they only contain
primitive types. The C programming language offers more
possibilities like pointers to pointers or pointers to arrays.
For example, Nequivack does not support arrays of character
pointers4. Another minor limitation is that Nequivack does
not also rename global variables used by the function to test,

2http://www.uclibc.org/
3Information from http://klee.github.io/tutorials/testing-coreutils/
4An array of character pointers is equivalent to an array of strings in other

languages like Java.

http://www.cplusplus.com/reference/cfloat/
http://www.uclibc.org/

TABLE I
PROGRAMS USED IN THE EVALUATION AND THEIR MUTATION SCORE CONFIDENCE (# STANDS FOR “NUMBER OF”)

Category Name Purpose # Lines of code # Functions Total
mutants

Non-equiv.
mutants Confidence

Basic Branching All branching constructs 75 3 178 162 91%
Basic Looping All looping constructs 48 3 131 108 82%
Binary MSB Get most significant bit 17 1 72 0 0%
Binary MSB1 Get most significant bit 18 1 105 0 0%
Math Factorial Get factorial 11 1 45 38 84%
Math Fibonacci Produce fibonacci 12 1 54 32 59%
Math GCD Euclid’s algorithm 12 1 15 11 73%
Math PrimePalindrome Get next prime palindrome 65 2 159 0 0%
Math SimpleMath All basic arithmetic 32 5 63 54 86%
Sorting Bubble Sort array 16 1 109 48 44%
Sorting Insertion Sort array 16 1 79 37 47%
Sorting Merge (uses recursion) Sort array 31 2 148 5 3%
Sorting Quick (uses recursion) Sort array 29 1 117 5 4%
Sorting Selection Sort array 21 1 77 17 22%

which may cause an inconsistent state. However, this feature
is straightforward to implement.

Most of the limitations of Nequivack are due to using
KLEE. However, the general idea can be applied by using
other symbolic execution engines instead of KLEE. For ex-
ample, KLEE can only process programs written in the C
language. KLEE cannot handle symbolic sizes for arrays. This
means that users need to provide concrete values for array
sizes via annotations. Otherwise, KLEE generates an error and
silently concretizes the symbolic value. KLEE behaves unpre-
dictably, when it analyzes a program, that calls the exit()
statement. KLEE stops its own execution and therefore the
analysis, when it reaches such a statement.

Finally, our approach has fundamental limitations due to
the use of symbolic execution, i.e. scalability is limited. The
runtime of symbolic execution increases exponentially w.r.t the
number of branches encountered during execution. This means
that if we have a loop then the number of branches includes all
the iterations of that loop. Thus, we apply our approach at unit
testing level as meaningful symbolic execution is possible due
to low complexity of unit compared to the high complexity of
complete programs.

III. EVALUATION

We evaluate Nequivack in combination with the mutation
testing tool Milu [8] on an octa-core Intel Xeon E5540 at 2.5
GHz evaluation system with 40 GB of RAM. Milu allows
the automated creation of mutants for programs written in the
C programming language. The evaluations goal is to show
(1) reproducibility, (2) effectiveness and (3) efficiency of the
approach.

Firstly, symbolic execution as implemented in KLEE [6] is
non-deterministic as choosing a path may occur at random.
Thus, reproducibility must be assessed to evaluate if multiple
executions lead to the same result. In practice, every run should
lead to the same result for the mutation score to represent a
continuous test suite assessment.

Secondly, efficiency of the approach needs to be evaluated.
Classifying the mutants must happen with reasonable time and

resource consumption, to be applicable in practice. In partic-
ular, we are interested in the execution times of our approach
on the mutants with our standard hardware evaluation system.

Thirdly, the effectiveness of the approach must be evaluated
concerning the accuracy of Nequivack. In our definition, a
false positive is defined as an equivalent mutant deemed non-
equivalent. A false negative is a non-equivalent mutant with
an unknown result. Particularly, false negatives increase the
mutation score confidence and could lead to unreasonable use
of mutation testing in practice.

The programs used for the evaluation contain a set of rep-
resentative algorithms on a unit testing level implemented in
the C programming language. An overview of these programs
is presented in Table I. All programs have between 1 and
5 functions and worst case complexities between O(1) and
O(n2). Milu applied 12 of the 14 mutation operators presented
in Table II at least once to the 14 programs yielding 1352
mutants. The only mutant not applied were the OBBA and
OBBN mutations as our programs did not contain the syntactic
elements required for mutation.

For the experiment executed in this evaluation, Nequivack
was then given each single mutant and the respective original
program to find counter-examples as evidence for their non-
equivalence. We limit the execution time of KLEE to 60
seconds. Thus, if a counter-example for equivalence is not
found within this time, equivalence of the mutant is unknown.
We deliberately do not evaluate Milu as this is done elsewhere
[8] and it represents a typical mutation tool used in practice. As
Nequivack is used before test suite execution, our evaluation is
completely independent of the test suite to be evaluated using
the mutants. Thus, we do not evaluate any test execution tool.

A. Reproducibility

To evaluate the reproducibility of our approach, we question
the reproducibility of the results of Nequivack. Steps 1 to 4 and
6 of Nequivack are completely deterministic due to no user
inputs and single-threading. Solely executing KLEE in step 5
has an impact on reproducibility as KLEE uses random path
exploration. To examine reproducibility, we run Nequivack 10

TABLE II
APPLIED MILU OPERATORS

Acronym Description
SBRC Replacement of break statements by continue statements
ABS Absolute value insertion in each arithmetic expression
CRCR Replacement of constants by randomly chosen values or by in-/de-crementing the current value
OAAA Replacement of arithmetic operators used in combination with assignment operators
OAAN Replacement of arithmetic operators in the right hand side of expressions
OBBA Replacement of bitwise operators used in combination with assignment operators
OBBN Replacement of bitwise operators in the right hand side of expressions
OCNG Negation of branching statement boolean conditions
OIDO Replacement of increment operator by the decrement operator or vice-versa
OLLN Replacement of logical operators in boolean expressions
OLNG Logical negation of boolean expressions
ORRN Replacement of relational operators by other relation operators
UOI Insertion of unary operators (e.g., -,++,--,!) in arithmetic or boolean expressions

TABLE III
TOP 10 WORST CASE EXECUTION TIME: NON-EQUIVALENT MUTANTS

Program Mut. No. Avg. (ms) Std. Dev. (ms) Max. (ms)
Selection 57 24 449.5 10 338.0 38 867
Selection 60 22 516.6 7 709.2 38 433
Selection 21 18 115.6 3 209.5 21 871
Selection 46 17 475.9 994.0 18 790
Selection 50 17 362.8 724.4 18 450
Selection 76 15 091.5 3 711.2 22 000
Selection 43 14 703.9 3 347.5 18 720
Selection 45 13 939.6 1 108.1 15 750
Selection 9 13 449.5 683.6 14 600
Bubble 109 13 206.7 3 795.4 17 715

TABLE IV
TOP 10 WORST CASE EXECUTION TIME: UNKNOWN EQUIV. MUTANTS

Program Mut. No. Avg. (ms) Std. Dev. (ms) Max. (ms)
Selection 58 105 347.4 1 777.5 107 189
Selection 56 104 796.2 1 431.6 106 597
Selection 34 103 247.6 2 379.3 105 572
Selection 61 102 220.4 212.4 102 518
Selection 3 101 793.5 892.5 102 814
Selection 4 101 238.2 554.8 102 022
GCD 2 79 619.3 4 664.6 84 866
Fibonacci 66 69 409.1 4 737.4 77 668
Fibonacci 25 65 262.1 931.3 66 311
Fibonacci 11 65 020.0 896.6 66 048

times on each mutant. We deem the results reproducible, iff
at least 80% of all non-equivalent mutants identified in 10
executions are classified as non-equivalent in each run.

The result of the reproducibility analysis was 100% re-
producibility of all results in all runs. Mutants classified as
non-equivalent and unknown equivalence were the same in
all executions for all programs. Thus, we tentatively conclude
that non-equivalence checking with Nequivack is highly re-
producible for the presented programs.

B. Efficiency

To address the aspect of efficiency, we measure the execu-
tion time of Nequivack 10 times for each mutant. For each

mutant, program and program category we compute the aver-
age execution time and its (average) standard deviation. Our
baseline for adequacy in practice is the ability of Nequivack
to process 1000 of our mutants within 60 minutes on average.
This mutant analysis rate allows to even perform mutation
testing in large scale projects like the Apache Web Server5

core within 8 hours overnight when using 4 machines. For this
purpose, we investigate the worst case execution times of all
attested non-equivalent mutants and all unknown equivalence
mutants. In addition, we analyze the worst case execution
times per program and per category to give an indication
towards mutant analysis complexity concerning the programs
and categories. The indication aims to predict execution time
in industry scenarios.

The worst case execution time to reach a counter-example
and attest non-equivalence takes 39 seconds using the 57th
mutant of selection sort as shown in Table III. On average
the worst case program takes 24.5 seconds with a standard
deviation of 10 seconds. We hypothesize the standard deviation
to be due to the non-determinism in KLEE. The worst case
execution time average also decreases significantly from 24
to 13 seconds within the mutants having the top 10 worst
execution times shown in Table III. Thus, it is likely that
these high values represent outliers in the analysis. This is
also illustrated by the average of all non-equivalent mutants
being 3.3 seconds and the median being 2.2 seconds. Thus, for
a vast majority of mutants determining their non-equivalence
is possible within 3 seconds, which fulfills our baseline.

The shortest execution times were produced by mutants
which contain compilation errors, introduced by the mutation
tool. These mutants take less than a second to classify. These
times are negligible and would be the same even without the
presence of Nequivack in the process.

For all unknown equivalence mutants, the worst case execu-
tion times is 107 seconds (see Table IV) where compiling took
about 40 seconds worst case. However, we consider all mutant
analyses above 100 seconds outliers as the average mutant
analysis for unknown equivalence mutants was 21 seconds

5https://httpd.apache.org/

https://httpd.apache.org/

TABLE V
AVERAGE AND WORST EXECUTION TIME BY PROGRAM

Program Average (ms) Standard Deviation (ms) Maximum (ms) Worst case complexity
Branching 2 191.5 45.0 3 312 O(1)
Looping 3 148.6 165.5 62 451 O(n)
MSB 3 079.0 160.0 4 500 O(1)
MSB1 2 801.4 106.4 3 366 O(1)
Factorial 8 705.6 324.4 65 868 O(1)
Fibonacci 28 692.1 402.2 67 057 O(n2)
GCD 22 609.1 959.9 84 866 O(n2)
PrimePalindrome 1 987.4 57.9 78 591 O(n2)
SimpleMath 2 497.9 76.9 11 297 O(1)
Bubble 27 257.0 2 841.1 67 033 O(n2)
Insertion 17 078.4 2 787.0 66 345 O(n2)
Merge 19 842.5 458.6 55 504 O(n2)
Quick 53 999.3 76.2 64 241 O(n2)
Selection 32 267.7 2 080.3 107 189 O(n2)

TABLE VI
AVERAGE AND WORST EXECUTION TIME BY CATEGORY

Category Avg. (ms) Std. Dev. (ms) Max. (ms) Complex.
Basic 2 597.3 96.1 62 451 O(n)
Binary 2 914.3 128.2 4 500 O(1)
Math 8 195.3 192.7 84 866 O(n2)
Sorting 30 300.8 1 446.8 107 189 O(n2)

and compilation time was less than one second. The median
was 3.2 seconds demonstrating the division of this set of
mutants into many short mutant analyses and few very lengthy
ones. The average standard deviation is 1.3 seconds hinting
at stable execution time. Thus, we tentatively conclude for a
vast majority of mutants determining unknown equivalence is
possible within 3.5 seconds fulfilling our baseline.

Of all programs, the worst case execution time was pro-
duced by selection sort followed by GCD and PrimePalin-
drome as seen in Table V. Quick sort produced the worst
average with 54 seconds. In particular, this was due to a large
fraction of equivalent mutants and mutants not symbolically
executable within feasible time by Nequivack being created.
Table V particularly shows an increase of mutant analysis time
with increased worst case complexity. This makes sense as the
number of paths to explore increase as worst case algorithmic
complexity increases.

Of all categories, sorting has by far the biggest worst case
on average and in total (see Table VI). Since sorting contains
the most programs with maximum worst case complexity and
worst case execution times of the categories are ordered by
worst case complexity, the indication is again a correlation.
Thus, we tentatively conclude the evaluation to indicate a
correlation between mutant analysis time and worst case
algorithmic complexity. The results also indicate a non-linear
correlation, which has to be further examined.

Overall the analysis of 927 mutants is performed within 10
seconds (see Figure 2). The analysis of only 425 takes longer
than 10 seconds, almost half of which (178) are analyzed

Fig. 2. Accumulated worst case mutant analysis time

within 30 seconds. In addition, there are 15 mutant analyses
taking longer than 70 seconds, which we consider outliers.
Thus, we tentatively conclude Nequivack to be efficient for
use in practice w.r.t. to the presented programs.

C. Effectiveness and Confidence

To address the aspect of effectiveness, we analyze the true
and false positives/negatives that Nequivack produces for our
14 original programs. In the mutant analysis: True positives are
non-equivalent mutants labeled as non-equivalent. False pos-
itives are mutants with unknown equivalence labeled as non-
equivalent. True negatives are equivalent (or faulty) mutants
labeled with unknown equivalence. False negatives are non-
equivalent mutants labeled with unknown equivalence. Our
baseline for mutation score confidence is, somewhat arbitrarily,
80%. This is to assure a minimal number of equivalent mutants
and an obtained mutation score close to the actual mutation
score.

The total number of created mutants is 1352, of which: 517
mutants are labeled as non-equivalent, 432 are labeled with
unknown equivalence and 403 mutants did not compile. All
517 mutants labeled as non-equivalent were associated with a
test case proving the non-equivalence of the mutant w.r.t. the

1 // Original line 4: if (a < 0)
2 int absolute (int a)
3 {
4 if (a <= 0) {
5 a = - a ;
6 }
7 return a ;
8 }

Listing 5. Exemplary equivalent mutant of SimpleMath

1 // Original line 5: for (i = 1; i < n; i++) {
2 int* sort(int a[], int n) {
3 int i, j, t;
4
5 for (i = 1; abs(i) < n; i++) {
6 t = a[i];
7
8 for (j = i; j > 0 && t < a[j - 1]; j--) {
9 a[j] = a[j - 1];
10 }
11 a[j] = t;
12 }
13 return a;
14 }

Listing 6. Exemplary equivalent mutant of Insertion

original program. Thus, there were no false positives. For the
432 mutants labeled with unknown equivalence, there were
three cases in step 5 of Nequivack : (1) KLEE terminated
exploring all paths, (2) KLEE did not terminate and was force-
fully terminated and (3) KLEE terminated after encountering
a run time error.

In the case where KLEE terminated after exploring all path,
non-equivalence could not be proven by Nequivack. Therefore,
we manually inspected all analyzed mutants (in sum 254)
and found them to be equivalent to the original program.

1 // Original line 2: while (true)
2 while (-1) {
3 n++;
4 t = n;
5
6 while (t) {
7 r *= 10;
8 r += t % 10;
9 t /= 10;
10 }
11
12 if (r == n) {
13 d = original_sqrt32(n);
14
15 /* Checking prime */
16 for (c = 2; c <= d; c++) {
17 if (n % c == 0)
18 break;
19 }
20 if (c == d + 1)
21 break;
22 }
23 r = 0;
24 }
25 return n;

Listing 7. Exemplary equivalent mutant part of PrimePalindrome

1 // Original line 6: if (n == 1)
2 unsigned long fibonacci(unsigned short n) {
3 if (n == 0) {
4 return 0;
5 }
6 if (n == 302) {
7 return 1;
8 }
9 return fibonacci(n - 1) + fibonacci(n - 2);

10 }

Listing 8. Exemplary equivalent mutant of Fibonacci

1 // Original line 5: for (i = 1; i < n; i++) {
2 int* sort(int a[], int n) {
3 int i, j, t;
4
5 for (i = -1; i < n; i++) {
6 t = a[i];
7
8 for (j = i; j > 0 && t < a[j - 1]; j--) {
9 a[j] = a[j - 1];

10 }
11 a[j] = t;
12 }
13 return a;
14 }

Listing 9. Exemplary run time error causing mutant of Insertion

A particular example of an equivalent mutant can be found
in Listing 5. In the example, only the path taken for 0 is
changed, but multiplying 0 with -1 does not change its value.
Predominant was also the replacement of loop variables i
with abs(i) while the loop started at 0 and increased the
value of i as seen in Listing 6. A further example was the
replacement of the constant TRUE in a while loop with -1 as
seen in Listing 7. Although while(TRUE) and while(-1)
may look different to a human reviewer, they have equivalent
semantics.

For the 52 mutants, where KLEE was forcefully terminated
by a timeout, we either found them to be equivalent or
inappropriate for mutation testing. An example of the latter
was a transformation of Fibonacci causing an infinite loop
for a plethora of inputs. As seen in Listing 8, it transformed
the constant 1 to a constant 302. Although this mutant is
non-equivalent, adding it to the set of non-equivalent mutants
depends on the context. In a purely functional testing context,
its execution leads to no additional test suite assessment
information as this mutant will always be killed by a time
out. However, if non-functional aspects such as watchdogs or
safe guards are to be tested, using it for test suite assessment
may prove useful.

The mutants for which KLEE detected a run time error are
divided into mutants causing a divide by zero or a memory
access out of bounds error. Particularly loops in the mutants
of: Looping, Fibonacci, GCD, SimpleMath and all sorting
algorithms (in sum 14 mutants) produced a run time error after
a division by the loop variable was added and the loops started
at 0. Memory out of bounds run time errors were produced
by all sorting algorithms (in sum 112 mutants) as these use

arrays. One example is the modification 0 to -1 to the start
of the loop variable in the first loop of insertion sort. This
directly leads to an out of bounds memory access in line 6 of
Listing 9. We included the mutants producing run time errors
into the category of unknown equivalence category as they
exhibit undefined behavior according to the ANSI C standard.
Thus, a test suite killing these mutants must particularly aim
at finding such defects, which is typically not the case.

The remaining 403 non-compilable mutants typically suf-
fered from a character insertion illegal to the C programming
language or from an illegal removal. An typical illegal inser-
tion was a quote in front of a function (i.e. ’void f()).
Typically illegally removed was the condition of a while loop
(i.e. while()). Since these insertions are easy to avoid, Milu
could be improved to produce fewer non-compilable mutants.
In addition, Nequivack would also work using a compiler-
based mutant generation technique instead of a interpreter-
based technique for the transformations. The LLVM compiler
would then perform the mutation transformations directly on
the bit code used by KLEE and the machine code used by
the test suite. This would remove non-compilable mutants and
potentially increase the performance [2].

On the level of all programs, the mutant score confidence is
54% and below our baseline. However, the evaluation contains
programs of different complexity and with a different muta-
tion score confidence. Thus, we need to assess the mutation
score confidence on a unit level. As seen in Tables I the
mutation score confidence differs greatly among the examined
programs. MSB, MSB1 and PrimePalindrome have 0% con-
fidence as KLEE deemed all mutants unknown. We speculate
the reason to be KLEE’s inability to symbolically execute
an operation within these program. For Branching, Looping,
Factorial and SimpleMath the mutation score confidence is
above 80% yielding a closeness of the to be obtained mutation
score to the actual mutation score. All other programs have a
mutation score confidence lower than 80% and it is unknown
if the mutation score obtained after test suite execution will
be sufficiently close to the actual mutation score.

In sum, we can see that some programs give rise to
“good” confidence ratings and some do not. In line with our
methodological considerations in the beginning of this paper,
this suggests that mutation testing for programs with “high”
confidence is unlikely to suffer from distortions of the mutation
score as a consequence of equivalent mutants. In contrast, for
programs with “low” confidence we simply do not know if
non-equivalent mutants are likely to be a concern.

An interesting aspect of the evaluation is a possible cor-
relation between the unit complexity (see Table V) and the
mutation score confidence. The possibility of the existence
of this correlation becomes even more evident when taking
into account the fundamental scalability issues of symbolic
execution. However, since we found no false positives in our
evaluation, this also hints towards a correlation between the
number of equivalent mutants and the program complexity.

Since we did not find any false positives and false negatives,
we tentatively conclude Nequivack to be effective for the

determination of non-equivalence w.r.t. to the presented unit
testing level programs. Thus, the mutant score confidence is
effectively determinable using Nequivack before executing any
test cases.

D. Summary and Discussion

In summary, the evaluation shows the results of Nequivack
to be reproducible, efficient and effective and Nequivack
usable in practice for mutant score confidence determination.
We are aware that the performed evaluation was on unit-size
programs mostly containing a single function. We deliberately
chose to perform the evaluation with these programs for two
reasons.

Firstly, it is well-known that symbolic execution suffers
from scalability issues [5]. [9] uses slightly larger and more
complex programs to show equivalence using symbolic execu-
tion. However, Nequivack focuses on obtaining the mutation
score confidence on a unit level and is only able to do so
for low complexity units. On program level, this level of
complexity is easily surpassed.

Secondly, when using mutation testing on the unit level, (de-
)composition of the mutants and tests is possible. This means
that splitting a complex function into multiple simpler func-
tions, mutating them and executing all unit test cases yields
no significant difference to mutating the complex function and
executing the unit tests on the mutants of the complex function.
However, it leads to difficulties when comparing our ap-
proach to other approaches in Section IV and non-equivalence
on unit level may not mean non-equivalence at a higher
level. As an example, take the standard function to compare
strings int strcmp(const char *s1, const char

*s2);. It compares two strings and returns a positive, zero or
negative integer if s1 is less than, equal to, or greater than s2
respectively. There exist a plethora of mutants of this function
on the unit level. However, if a higher level only checks for
equality of strings, these mutants can be deemed equivalent.
In addition, optimizations concerning which unit test cases of
the test suite to execute for each mutant may be made (e.g.
by using test case coverage).

There is an effort involved in annotating the source code.
For functions using only primitive arguments, this effort is
negligible as only a single annotation has to be added. This ad-
dition may even be performed automatically. For non-primitive
or fixed arguments, the effort depends on the complexity of
the function. For the C programs used in the evaluation, our
effort was minimal. However, to gain generalizable results
concerning the annotation effort, further (possibly case-study)
research is required.

By construction it is impossible to get false positives with
Nequivack (i.e. Nequivack proves non-equivalence) as the
produced test cases always show non-equivalence. Thus, the
mutation score confidence obtained with Nequivack is an un-
der approximation as no false negatives cannot be guaranteed.
We expect the number of false negatives to be low, given the
fact that the eliminated mutants in the experiments presented in
this paper were manually inspected and no false negatives were

found. However, having any false negatives vastly changes
the perspective on the mutation score confidence. Since some
non-equivalent mutants may have unknown equivalence, the
mutation score confidence given by the results of Nequivack
may be lower than its actual value. Thus, we set our baseline
to 80%. However, large scale research in practice is required
to gain insights on practically useful baselines. One idea to
detect false negatives could be to also run the test suite and
check which mutants are actually killed. Nevertheless, we
believe that Nequivack is still a useful tool to create an under
approximation of the mutation score confidence.

IV. RELATED WORK

This work proposes an addition to mutation testing intro-
duced by DeMillo et. al. [1]. DeMillo extensively discuses
equivalent mutants as one of the core problems of mutation
testing. Although approaches have been developed, which
produce fewer equivalent mutants (e.g. by Offut [3]), the
equivalent mutant problem is still one of the fundamental
problems increasing the ”amount of human effort” in mutation
testing [2].

In previous work, the equivalent mutant problem has been
addressed by using compiler-based techniques [10], program
slicing [11], genetic algorithms [12], run time profiles [13] and
constraints satisfaction [14], [15].

Using compiler optimizations and “deoptimizations”, Bald-
win and Sayward [10] proposed six types of compiler op-
timization rules to detect equivalent mutants. Similarly, Pa-
padakis et. al. [16] use trivial compiler equivalence to detect
equivalent mutants and present a large-scale study on its
effectiveness. These detection techniques are fast and are able
to detect between 9% and 100% of all equivalent mutants
in an evaluation [16]. Hierons et al. [11] created a program
slicing approach to assist humans in the detection of equivalent
mutants. Adamopoulos et al. [12] propose to use a genetic
algorithm with a fitness function to detect equivalent mutants.
Run time profiling was used by Ellims et. al. [13] to detect
equivalent mutants as the run time profile is similar to the
original program. Similarly, Schuler and Zeller [17] examined
the coverage of mutants to determine equivalence. Since any
approach showing equivalence is naturally able to show non-
equivalence by negation, these approaches can also be to detect
non-equivalent mutants and give a mutation score confidence.
We speculate to be as efficient as compiler optimizations, run
time profiling and coverage analysis and more efficient than
slicing for human inspection and genetic algorithms based on
the results of [9]. For a direct comparison, these approaches
will have to be applied to the unit size programs that yield a
sensible mutation score confidence.

The approach closest to Nequivack was proposed by Offutt
and Pan [14], [15] almost two decades ago. They express
mutant equivalence as a constraint solving problem concerning
the path condition over all program paths. Due to advances in
constraint solving improving symbolic execution [5], Nequiv-
ack is a natural evolution of Equivalencer by Offut and
Pan. However, while Equivalencer aims to show equivalence,

Nequivack aims to show non-equivalence. Still the same pre-
dictions about significant better efficiency compared to human
equivalence checking [14], [15] apply. Since the Equivalencer
tool works for programs writing in COBOL, we were not
able to compare its results with the results of Nequivack
on a common set of programs. Bardin et. al. [18] propose
to specify test requirements as labels. These labels can also
specify program equivalence as constraint problem to solve.
However, the specification of the constraints is manual.

Symbolic execution has been combined with model check-
ing to verify the equivalence of sequential and parallel numer-
ical programs [19]. Even closer to our work, KLEE has been
proposed as a tool for low-effort equivalence verification [9].
However, these works do warn about the fact that equivalence
is guaranteed only on the finite set of path that are explored
by the symbolic execution engine. In comparison, our ap-
proach inverts the perspective on equivalence by proving non-
equivalence using a counterexample to equivalence. If no such
counterexample is found, equivalence is deemed unknown and
we do not consider the mutant for mutation testing.

Rice’s Theorem states, that non-trivial properties of a pro-
gram are undecidable [20]. Determining if two programs
are equivalent is one of those non-trivial properties. This
property was also declared a "grand challenge for computing
research" by Tony Hoare [21]. This is because showing that
two programs are equivalent requires a proof that the output
of the two programs are the same for any possible input. On
the other hand, our approach of showing that a mutant is not
equivalent to the original program is a much easier task due
to the fact that only one counter-example to equivalence is
required to prove this.

Symbolic execution and mutation testing has also been com-
bined in previous work for other purposes than our approach of
non-equivalence checking of mutants. Papadakis and Malevris
[22] used symbolic execution for mutants to automatically
derive test suites. By using this approach mutation testing is
used for test case generation instead of assessment. Thus, the
created test cases can be grouped into defect-based testing
[23]–[25]

The above cited works constitute technical rather than
methodological contributions. In contrast, our work is both
technical—by using KLEE for non-equivalence checks—and
methodological, by leveraging the use of technology to the
notion of mutation score confidence.

V. CONCLUSION

In this paper, we have proposed a new approach for as-
sessing the mutation score by introducing the mutation score
confidence. The mutation score equivalence is defined as the
ratio of proven non-equivalent mutants and all mutants. The
mutation score confidence is able to give an a priori assessment
whether evaluating the test suite using mutation testing is prac-
tically sensible. This deviates from earlier approaches, where
equivalent mutants were sorted out instead and no indication as
to how many equivalent mutants remain is given. To arrive at
the set of non-equivalent mutants, we provide an open-source

tool called Nequivack based on the KLEE symbolic execution
engine. Nequivack can be applied to programs written in the
C programming language at a unit level. In mutation testing,
Nequivack is placed between the creation of the mutants
and the execution of the test suite as an additional step. It
applies six steps to determine non-equivalence of a program
starting from a simple static analysis ramping up to a symbolic
execution. Using the non-equivalence results, the mutant score
confidence can be calculated.

We evaluate Nequivack using a set of 14 unit size C
programs containing basic algorithms on unit level. These
programs are mutated using the Milu tool [8], which generated
a set of 1352 mutants. Nequivack was able to filter out more
than 50% of the generated mutants because they were either
equivalent, not suitable for mutation testing or gave a run time
or compilation error. We showed that the results of Nequivack
are 100% reproducible and its efficiency by the fact that it
can process a single none-equivalent mutant in 3 seconds on
average and 24 seconds worst case. We were able to produce
the mutant score confidence for each program resulting in a
correlation to the complexity of the program. However, since
no falsely classified mutants were found in the evaluation,
there may also be a correlation between the complexity of
the program and the resultant number of equivalent mutants.

In the future, we want to extend Nequivack to support
further C data structure types. These include structures with
pointers and arrays, nested structures, pointers to pointers and
pointers to arrays. This would yield a significant increase in
the space of programs analyzable by Nequivack. In addition,
characterizing the mutation transformations and applying a
directed symbolic execution as discussed by Person et. al. [26]
could lead to a significant efficiency gain. Orthogonally, we
plan to investigate the consequences that a high-number of
false negatives of our approach would have for the mutation
score confidence.

To reduce the workload of Nequivack, it is also possible to
combine different techniques of mutant equivalence detection.
Using trivial compiler equivalence [16] before using Nequiv-
ack could already remove many equivalent mutants. This is
particularly interesting since Nequivack requires a shorter time
to show non-equivalence than equivalence.

Finally, our work on non-equivalence can be applied in other
areas of research such as program transformations. Program
obfuscation research is one possibly interesting direction as
finding non-equivalence of an obfuscated program w.r.t its
original is essential in finding bugs while developing any
obfuscation tool.

REFERENCES

[1] R. Demillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–
41, April 1978.

[2] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” Software Engineering, IEEE Transactions on, vol. 37,
no. 5, pp. 649–678, Sept 2011.

[3] A. Offutt, “A practical system for mutation testing: Help for the common
programmer,” in ITC. IEEE Computer Society, 1994, pp. 824–830.

[4] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[5] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, Feb. 2013.

[6] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. OSDI, 2008, pp. 209–224.

[7] ——, “Klee: Unassisted and automatic generation of high-coverage tests
for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, ser.
OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 209–
224.

[8] Y. Jia and M. Harman, “MILU: A Customizable, Runtime-Optimized
Higher Order Mutation Testing Tool for the Full C Language,” in
Practice and Research Techniques, 2008. TAIC PART ’08. Testing:
Academic Industrial Conference, Aug 2008, pp. 94–98.

[9] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in Computer Aided Verification. Springer,
2011, pp. 669–685.

[10] D. Baldwin and F. Sayward, Heuristics for Determining Equivalence
of Program Mutations, ser. Department of Computer Science: Research
report. Yale University, Department of Computer Science, 1979.

[11] R. Hierons, M. Harman, and S. Danicic, “Using program slicing to assist
in the detection of equivalent mutants,” Software Testing, Verification
and Reliability, vol. 9, pp. 233–262, 1999.

[12] K. Adamopoulos, M. Harman, and R. Hierons, “How to overcome the
equivalent mutant problem and achieve tailored selective mutation using
co-evolution,” in Genetic and Evolutionary Computation GECCO 2004,
ser. Lecture Notes in Computer Science, K. Deb, Ed. Springer Berlin
Heidelberg, 2004, vol. 3103, pp. 1338–1349.

[13] M. Ellims, D. Ince, and M. Petre, “The csaw c mutation tool: Initial
results,” in Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007,
Sept 2007, pp. 185–192.

[14] A. Offutt and J. Pan, “Detecting equivalent mutants and the feasible path
problem,” in Computer Assurance, 1996. COMPASS ’96, Jun 1996.

[15] ——, “Automatically detecting equivalent mutants and infeasible paths,”
Software Testing, Verification and Reliability, vol. 7, no. 3, pp. 165–192,
1997.

[16] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, vol. 1, May
2015, pp. 936–946.

[17] D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,”
Software Testing, Verification and Reliability, vol. 23, no. 5, pp. 353–
374, 2013.

[18] S. Bardin, M. Delahaye, R. David, N. Kosmatov, M. Papadakis, Y. L.
Traon, and J. Y. Marion, “Sound and quasi-complete detection of infea-
sible test requirements,” in Software Testing, Verification and Validation
(ICST), 2015 IEEE 8th International Conference on, April 2015.

[19] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Using
model checking with symbolic execution to verify parallel numerical
programs,” in Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ser. ISSTA ’06. ACM, 2006.

[20] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 01 1953.

[21] T. Hoare, “The verifying compiler: A grand challenge for computing
research,” J. ACM, vol. 50, no. 1, pp. 63–69, Jan. 2003.

[22] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, Nov 2010, pp.
121–130.

[23] L. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, 1990.

[24] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar, “A generic
fault model for quality assurance,” in Proc. MODELS, 2013, pp. 87–103.

[25] A. Pretschner, “Defect-Based Testing,” in Dependable Software Systems
Engineering. IOS Press, 2015, to appear.

[26] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental
symbolic execution,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 504–515.

