
Application-level Security for ROS-based Applications

Bernhard Dieber1, Severin Kacianka2, Stefan Rass3 and Peter Schartner3

Abstract— While the topic of security in industrial applica-
tions has gained some momentum in recent years, there are
still severe security vulnerabilities which are actively exploited
for attacks. The robot operating system (ROS) is expected
to further grow in usage and to be used in many industrial
applications. Analysis, however, shows that it lacks several
security enhancements in order to make it suitable for industrial
use. In its current state, false data and commands can be
injected posing a possible safety risk for the resulting product
and humans in the production. In addition, data may be
eavesdropped and used by outsiders to gain insight into the
production process.

In this paper we propose a security architecture intended
for use on top of ROS on the application level. We use a
dedicated authorization server to ensure that only valid nodes
are part of the application. Cryptographic methods ensure data
confidentiality and integrity. We show in a demonstration with
a collaborative robot how our architecture can be used to secure
a ROS-based application.

I. INTRODUCTION

Future industry production will be done in networked
environments which require data being exchanged between
the factory and data provisioning backend services. Since
security can then no longer be provided by isolating networks
from the outside, this will make the networked production
sites accessible for cyber attacks. Production processes and
the software controlling them are not sufficiently secure to
withstand such attacks [1].

A well known example of an incident where an industrial
control system was infected by malware is the Stuxnet worm
[2]. Such attacks may be preceded by orchestrated malware
infections designated to collect data [3], and/or exploit a
lack of awareness on the user’s side. While comprehensive
standards exist to protect industrial control systems (such as,
for example, being published by the NIST [4]), security in
industrial control remains a demanding issue.

Speculating about reasons, an observable one may be a
misconception of the threats related to industrial manufac-
turing plants. While it is often understood that blueprints or
the manufacturing process must be kept confidential, other
possible attack scenarios are easily overlooked: suppose that
a hack on industrial robots causes them to place less than the

*The work reported in this article has been supported by the Austrian
Ministry for Transport, Innovation and Technology (bmvit) within the
project framework Collaborative Robotics and by the Munich Center for
Internet Research (MCIR).

1Bernhard Dieber is with the ROBOTICS institute at JOANNEUM
RESEARCH bernhard.dieber@joanneum.at

2Severin Kacianka is with the Software Engineering Group at the
Technical University of Munich kacianka@in.tum.de

3Stefan Rass and Peter Schartner are with the System Security Group in
the Institute of Applied Informatics at the Alpen-Adria-University Klagen-
furt {stefan.rass, peter.schartner}@aau.at

minimal number of welding points to a car. If so, then the
damage caused may range from shortened service intervals,
up to lethal mass accidents. In such an attack, the target
was not secret information, but causing maximal damage (to
human life or at least the reputation of some enterprise).

ROS [5] has gained significant momentum in the past
years. The publish/subscribe [6] pattern used by ROS is very
useful to resolve the tight coupling and strong dependencies
in a robotic system by providing various forms of decoupling
and transparency. Exactly this transparency, however, also
introduces several security risks which are not sufficiently
addressed in ROS [7]. Publishers cannot control the con-
sumption of their data and subscribers cannot easily verify
the source and integrity of the received information. This
weakness may be used to inject malicious information or for
eavesdropping on sensitive data.

While using virtual private networks may seem to be
an easy solution to secure the whole production network,
this will also introduce additional overhead because all non-
relevant data is encrypted as well. Furthermore it has already
been proposed in [8] that a multi-layer approach to security
should be considered in industrial networks. A VPN may be
used in addition to our approach but securing the application
itself should be a primary concern.

In this paper we introduce an application-level security
architecture to overcome some major security threats which
arise in a typical ROS application. We first describe our
architecture (section II), then show its practical application
(III), discuss it in section IV and present a variation for
resource-constrained environments along with related work
(section V).

II. APPLICATION-LEVEL SECURITY ARCHITECTURE

Throughout this work, we will confine ourselves to a non-
invasive architecture, that is, we do not apply any changes to
ROS, and implement security exclusively in the application
layer. Thus, we treat ROS as a black-box in the following
and implement security measures, such as an authentication
server (AS) and dedicated functions in the ROS nodes
themselves, on top of it. While this cannot cover all security
risks (detailed in section IV), still the following crucial
problems can be addressed nonetheless:

• a malicious publisher attempting to disturb the robot’s
trajectory using fake joint control commands

• a malicious subscriber to the robot state messages col-
lecting the robots trajectory and actions and attempting
to reverse-engineer the production process.

Whenever we speak about an “adversary” in the following,
we mean a malicious publisher or subscriber (or an instance

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 4477

playing both roles); whichever is meant in particular will be
clear from the context. Both types of hostile behavior can be
counteracted by suitable authentication (of components and
messages), as we describe in section II-A.

Referencing the security objectives presented in [9], our
architecture covers confidentiality, integrity, authentication,
authorization, auditability as well as third-party protection
regarding the control command and state information ex-
changed in the ROS-based application. However, without a
ROS-integrated solution we cannot provide availability and
non-repudiation on the application level (see section IV for
a detailed discussion).

Note, that the mechanisms described in the following
sections are not only applicable to publishing and subscribing
but can also be used to secure services in ROS.

A. Authentication and Key Agreement

In principle, the publish/subscribe system can be taken
as a special form of broadcast encryption, where potentially
many publishers of a certain message need to contact many
(not explicitly known) subscribers in a secure and authentic
way. While it is not too difficult to establish the necessary
cryptographic operations, those nevertheless need to be in-
corporated at every step of the process. For this reason, we
divide the architecture description into phases according to
the lifecycle of a publisher and subscriber, and describe the
relevant cryptographic operations per phase.

To start, let us assume that every possible message being
transmitted by a publisher can be classified to fall into one
out of a finite number N of topics. Let us reference these
topics by indices i ∈ {1, 2, . . . , N} in the following. We will
enforce a publisher to specify the topic (or several topics)
from which messages are to be expected. This specification
is done once during the registration, and then kept fixed
for the lifetime of the publisher. Every other topic from a
publisher will be rejected by the AS. The relevant details of
the registration process are expanded in the next section.

Hereafter, we write E(m, k) to mean the encryption
(symmetric or asymmetric) of a message m under a key
k. For asymmetric cryptography, we write pk, sk to mean
the public and private key of an entity. For digital signa-
tures, let sign(m, sk) be the signature function taking a
message m and private key sk to output a signature s. That
signature s can be verified by a function verify(s, pk) ∈
{true,false} that takes the public verification key as an
additional input to the signature, and outputs either true
or false, depending on whether or not the signature was
cryptographically valid. We let our description in the follow-
ing be abstract, yet emphasize that possible cryptographic
schemes are AES for symmetric encryption, and RSA to
handle asymmetric matters. The symbol x‖y means the
concatenation of the data items x and y in a way so that
x and y can both be recovered uniquely from the compound
representation x‖y. Usually, this will be a humble string
concatenation, with a proper separator symbol.

Throughout this work, we assume that secret keys are pro-
tected from unauthorized access and securely stored within

1) Along with the registration request,
P submits a public key certificatea

Z = (P, pkP , S,sign(P‖pkP ‖S, skS)) to
the AS. In particular, the certificate Z thus tells
the AS who the source S of the new publisher
is.

2) The AS looks up the authentically stored public
signature verification key of S, and verifies the
certificate by checking if verify(Z, pkS)

?
=

true. If and only if so, then it sends a random
number r to P , which P digitally signs with
its secret key skP that belongs to the public
signature verification key pkP . The new publisher
candidate P then replies by sending the signature
sig = sign(r, skP) back to the AS.

3) As before, the AS takes the (authenticated) public
key pkP to verify that the signature on r is
correct. That is, it accepts the new publisher P
if and only if verify(sig, pkP) = true.

aNote that the content of the certificate is intentionally restricted
to only the relevant contents; the real certificates would have a much
richer and complex structure.

Fig. 1. Simple Certificate Based Challenge-Response Authentication

designated logical and physical parts of the infrastructure.
Also, we will implicitly assume a secure boot process to
reliably start a trusted version of the operating system. We
will hereafter not explicitly go into details of such protection,
and take it as subject to standard actions of key management.

B. Registration of a new Publisher

Any new publisher, upon registering itself with ROS,
runs a challenge-response authentication to certify itself as a
legitimate new publisher. This protocol is executed with the
AS, whose duty is the validation and key management for
the subsequent communication (publish/subscribe). The set
of allowed (legitimate) publishers is assumed to be fixed and
defined (hardwired) in the AS, as a set of certificates. To be
specific, suppose each known (trusted) source S is known
to the authentication server as a cryptographic (X.509) cer-
tificate, from which a public signature verification key pkS
can be extracted. Assume that a publisher P , affiliated to a
trusted source S, wants to register itself in the AS, then it can
only do so upon successful completion of the steps detailed
in Figure 1. If P has authenticated itself to the AS, then the
authentication is done in the opposite direction, to authen-
ticate the AS to the new publisher. This avoids person-in-
the-middle situations, where an intermediate malware could
trick either the AS or the new publisher (or both) into sending
their data and commands through a malicious proxy (which
could then manipulate the information flow).

For direct, i.e., private point-to-point communication, it is
easy to use the asymmetric keys known to both, the AS and
P , to exchange a secret session key KAPP,P . Here, the AS
acts as a trust-center (see [10, §13.2] for suitable protocols),

4478

and handles the key establishment between the ROS-based
application (APP) and the publisher. In general, all direct
communication between APP and P must be encrypted under
this key KAPP,P , and digitally signed using the respective
sender’s secret key (skAPP for messages from APP to P ,
and skP for messages from P to APP).

C. Registration of a Subscriber

The registration of a subscriber proceeds analogous to that
of a publisher, only with the obvious change of roles.

Additionally, the AS sends the subscriber a (digitally
signed) list of public signature verification keys related to
publishers of the message topics that the subscriber has reg-
istered for. The rationale is that every publisher is obliged to
digitally sign its messages for authenticity, since a subscriber
will drop messages in the following circumstances:

• the digital signature is missing or invalid
• the digital signature does not come from a previously

known publisher. Note that looking up the signature
verification key in the list given by the AS means that
the AS has taken care of the identity check of the
publisher previously. Thus, the subscriber’s trust in the
publisher is based on its trust in the AS (to have properly
completed the authentication), and the trust in the digital
signature.

D. Publishing

Assume that the new publisher P has registered to send
messages under topic i (where i identifies some message
topic). For each such message topic, the AS maintains an
individual session key Ki. Every publisher that registers for
messages of topic i is told the respective session key(s) Ki,
under which it can encrypt its data and publish it to all
subscribers. The subscriber, upon its registration for the same
topic i, gets the same session key Ki from the AS.

It follows that a session key Ki becomes shared by
possibly many publishers and subscribers. The process of
changing these keys when a subscriber or publisher leaves
is described later in section II-E.

If publisher P wants to broadcast a data item in an
authenticated fashion, it completes the following tasks:

• it attaches its identity P to the data item m (belonging
to topic i) and encrypts P‖m under the session key Ki

into a ciphertext c = E(P‖m,Ki).
• it digitally signs the data item under its private sig-

nature key skP , thus getting a signature value s =
sign(c, skP).

• it attaches the topic i to the compound packet and
broadcasts the tuple (i, c, s) to all subscribers.

Upon reception of a digitally signed message M = (i, c, s),
a subscriber parses M and completes the following steps:

1) it deciphers c using the known secret key Ki to retrieve
the sender’s identity P and the data item m (the correct
session key i is indicated by the first entry in M).
Note that this step is only possible if the subscriber has
previously registered for messages of that particular
topic i (the key Ki was told during the registration); if

not, then M can be dropped immediately before any
decryption attempts.

2) it verifies the digital signature s using the respective
public key pkP of the identity obtained in the first step
(this spares the subscriber to work through the entire
list of potential publishers for that message item).

3) it accepts the data item m if and only if m deciphered
correctly under Ki, and the digital signature s on
E(P‖m,Ki) has been verified correctly.

E. Excluding Publishers or Subscribers

Note that under our restriction of not touching the oper-
ating system internals, we cannot easily exclude a publisher
or subscriber, nor can we preclude a new publisher being
started and replacing the existing one. However, the latter
incident will either:

• introduce a new legitimate publisher (upon successful
authentication), which may then correctly replace the
current publisher,

• or end up with the publisher being registered to ROS,
but not having received the proper keys from the AS, so
that its messages will be abandoned by the subscribers.

In both cases, no immediate harm is to be expected, if
a rejected publisher can be replaced by another legitimate
one timely (in order to avoid a system failure or denial of
service). Also, note that the AS can prevent a subscriber
from effectively establishing itself in the system, since even
despite its registration with ROS, it cannot read any of
the encrypted contents if the AS terminated the registration
process without sending the proper topic decryption keys.

Practical certificates being exchanged during the registra-
tion process, such as X.509, will of course have a much
richer and more complex structure than sketched here, and
in particular must contain the access and “publication rights”
of the publisher. That is, the topics that a publisher may send
messages for must be defined a priori in the list of permitted
topics in the certificate that P submits to register itself. It
may be allowed to register for fewer topics than the possible
set, but a publisher cannot register for arbitrary topics. This
is to avoid situations where a registered publisher becomes
hijacked and starts sending forged messages (perhaps in
disguise of other publishers).

If a publisher/subscriber is at any point discovered as
malicious and shall be excluded from the system, then the
AS needs to redistribute the topic keys across the remaining
legitimate instances in the system. Standard broadcast en-
cryption techniques apply here in a straightforward fashion
(see e.g., [11]).

F. Additional Cryptographic Overhead

Since robot applications are expected to work in real
time, it pays to measure the overhead induced by adding
digital signatures and doing encryptions. We focus this
assessment on the publishing and verification process, since
the registration of a new publisher is part of a setup or startup
phase and thus less time critical.

4479

Fig. 2. System overview as sequence diagram

a) Additional data overhead: using proper block cipher
modes (such as ciphertext stealing), the application of a block
cipher E produces a ciphertext of exactly the same size as
the input. Thus, the message m being published is essentially
extended by the topic i, the publisher’s identity P , as well
as the digital signature s. Taking the bitlengths of i and P
as negligibly small here, the major overhead is due to the
signature. Using an elliptic curve digital signature algorithm
with conteporary recommendations of key sizes (see [12]),
the signature adds approximately 512 Bits of overhead per
message. When RSA is used, the signature will be 2048 Bits.

b) Computational overhead: Reference [13] provides
benchmarks of various cryptographic algorithms, including
the ones proposed in this work. For the symmetric encryption
E, say if we use AES, one encryption achieves a throughput
of 109 MBit/s, i.e., the overhead is negligible for realistic lots
of data. For RSA signatures, benchmarks using the Crypto++
Library measured 6.05ms for a signature creation (publisher),
and 0.16ms for a signature verification (per subscriber).

G. Overview

Figure 2 shows an overview of the entire process, includ-
ing the challenge-response authentication (from Figure 1),
topic registration and message broadcasting. To complete the
registration of a publisher, the AS is assumed to maintain a
whitelist of trusted sources from which publishers (based on
the information in the certificate presented for registration)
are accepted (and rejected otherwise).

III. DEMONSTRATION

To demonstrate our approach we implemented a simple
robot application in ROS. For our experiment we use ROS
Indigo. Cryptographic functionality has been realized using

Fig. 3. The KUKA iiwa used in our experiments

CryptoPP1. In our application a KUKA iiwa (shown in Figure
3) is remotely controlled by a ROS node which periodically
publishes joint angle positions. This will simulate a robot
performing the same task over and over during its operation.
In turn, the robot publishes its current state including its
current joint angles as well as the cartesian position and
rotation of the end-effector. Since the KUKA iiwa is a
collaborative robot, humans may be nearby, who rely on the
robot to cause no harm to them.

The joint commands published to the robot make it fol-
low a simple trajectory to also visually indicate a correct
behaviour of the application. A deviation from this trajectory
will indicate that false movement commands have been
injected by an adversary. In more complex cases where
a truely collaborative robot is adapting its behaviour to a
human or to a changed task, the visual observation of its
path will no longer indicate a malfunction. Hence, automated
methods to prevent and detect malicious behavior are needed.

For demonstration and evaluation, we compare the behav-
ior of a robot without security measures (test case one) and
with the security enhancements implemented as proposed in
section II (test case two). For the first test case, a malicious
publisher starts and tries to inject joint control commands
which move the robot outside of the planned trajectory
(possibly hitting workers, infrastructure or other robots).

In the second test case, we use a dedicated AS and have
each node perform the procedure described in section II.
Each joint value which is sent to the robot is encrypted using
the topic encryption key. Thus, not the whole message but
its individual components are encrypted. Figure III shows
a model of all components and data types involved in
this application. In addition, the iiwa Robot node encrypts
the state information before publishing it. This prevents an
unauthorized malicious subscriber from recording the robot’s
state data.

A. Application behavior with security disabled

With no additional security enabled, the malicious pub-
lisher node can interfere with the planned robot trajectory. It
can send arbitrary movement commands which the robot will

1http://cryptopp.com/

4480

AuthenticationServer

iiwa Robot
RoboStateSubscriber

JointControlPublisher

<<use>>
<<authenticate>>

<<RobotState>>
<<flow>>

<<JointControlCommand>>
<<flow>>

RobotState
-JointStates: double[]
-Position: double[]
-RobotID: char
-Rotation: double[]

JointControlCommand
-JointValues: double[]
-TimeStamp: long

TopicKey
-Key: byte
-Topic: char

<<use>>
<<authenticate>>

<<use>>
<<authenticate>>

Fig. 4. A high-level view on the application architecture and the data types used.

execute. This includes unpredicable movements with high
speed which may harm nearby humans or damage equipment
and other robots.

B. Application behavior with security enabled

With enabled security, the malicious node cannot perform
the authentication with the AS. Thus, it will not receive
the topic key required to publish joint control commands.
Unfortunately it cannot be prevented from publishing it
despite having no key (this can only be prevented by ROS
itself). Thus, the robot node will check incoming messages
for valid encryption and will not execute any command
which has not been encrypted. As a result, the iiwa will
follow the authorized trajectory published by the trusted
publisher and will ignore the joint commands published by
the malicious node.

IV. DISCUSSION

With the presented architecture we can avoid some of
the most serious security vulnerabilities which are currently
present in ROS. First, we can prevent unauthorized nodes
from recording data which can be used for reverse engi-
neering of production processes. This is achieved by topic-
specific encryption keys which are only handed out to
authorized application modules.

Second, we deal with the threat of unauthorized publishing
to prevent the injection of false information into the robotic
application. We accomplish this by verifying for each mes-
sage that it has been encrypted using a valid key.

Still some insufficiencies persist which cannot be handled
on the application level alone. They all need ROS itself to be
modified. First, although the message content is encrypted
and cannot be processed by unauthorized nodes, they can
still collect information on which messages are published
in which frequency. This could be solved by an end-to-end
encryption of whole messages integrated into ROS itself.
An alternative on the application level is to publish fake
messages of certain types to disguise the true publishing
frequency.

Second, in our approach we cannot prevent malicious
publishers from publishing messages. We can only make sure
that those messages are not interpreted by regular nodes.
However, a denial-of-service attack with high publishing
frequency could be possible.

Third, our approach cannot prevent a subscriber from
subscribing to arbitrary topics. Thus, all messages of a certain
topic will be delivered to it. Our approach only ensures that

this subscriber cannot read the message contents without the
proper decryption key.

A suitable method to prevent the exchange of keys be-
tween nodes must still be found. One approach is using
code obfuscation to hide the key, and in addition, methods
from leakage prevention (masking and hiding; see [14]) can
be used to gain additional security against the theft of keys
from code. A reliable protection of keys within unprotected
software is doable by whitebox cryptography [15], [16], [17]
however, these techniques are still in their infancies and have
not reached a state of sufficient maturity to be used in our
application by the time of this work.

V. VARIANTS AND RELATED WORK

The security in industrial networks and applications has
been an active topic for quite some time now [1], [4], [8],
[9]. A general overview on the security issues in publish-
subscribe systems has been presented in [18]. Recently, an
intrusion detection method based on artificial intelligence
methods for SCADA systems using special support vector
machines [19]. Shin et al. [20] study various approaches
for intrusion detection in wireless industrial networks and
propose improvements. In [21] the authors present a method
to extend classical wired industrial networks with wireless
components while still preserving safety and security.

If a ROS-based application should be hardened where the
involved entities have limited computational resources (such
as may be expected for embedded systems), then costly
operations like public key encryption or digital signatures
should be avoided or must be at least minimized. A sim-
ple way to gain efficiency at the cost of some additional
storage requirements for the publishers is the use of one-
time passwords (see [10, Chp.10.2.5]), or the general pref-
erence of symmetric cryptography also for authentication
purpuses. One such scheme that extends this view even to
distributed systems has been proposed in [22]2. When occa-
sional asymmetric cryptographic operations are permissible,
then one-time password schemes can be constructed from
hash-chains that use Chameleon hashes [23] as trapdoor one-
way functions (we leave the details of such a construction
for future work). Another interesting scheme that – like
ours – uses challenge-response authentication to prove a
robot’s identity has been proposed in [24]. As with [22],
cryptographic techniques must be used with care, and ad
hoc “hand-crafted” solutions should in general be avoided.

2Alas, the MAC construction used in [22] has known weaknesses.

4481

The work of [24] is nonetheless interesting in our context, as
it clearly demonstrates the recognition of the authentication
problem quite a while ago, whereas no solution on the level
of the operating system seems to be available until today.

As a purely hardware based alternative to public key
cryptography, one could implement a tamper-proof module
for a subscriber that is dedicated to MAC verification only.
If so, then the subscriber may verify MACs but cannot im-
personate P as its hardware does not support MAC creation.
In turn, this renders the computation of one-time password
lists as described above unnecessary, and buys computational
efficiency and reduced storage requirements at the cost of
additional tamper-proof hardware (like a smartcard).

VI. FUTURE WORK

For cyber-physical systems a sound and complete a-
posteriori account of the system’s actions and decisions is
necessary to improve the trust in such systems. During our
present work we analyzed the default ROS log files and found
that a reconstruction of event sequences leading up to a given
situation is nearly impossible to do.

To alleviate this problem, we want to extend the logging
mechanisms of ROS to allow us to infer causal models of
messages and actions and thus allow us to reconstruct a
system’s behavior.

As a further next step we will transfer the concepts
presented in this work to roscore to make it an integral part
of ROS itself. This will help to deal with the problems which
cannot be solved on the application level. A major part of
this work will be to secure the communication between nodes
and the master.

VII. CONCLUSION

Industrial applications are still insecure in certain settings,
especially whenever the network is not isolated but con-
nected to the outside world. ROS as one important software
framework for future robot applications still has not suffi-
cient security functionalities. In this paper we presented an
approach for application-level security which eases the most
severe security vulnerabilities in ROS-based applications.
Using a dedicated authentication server we enable secure
communication between ROS nodes.

With our approach we can prevent malicious nodes from
injecting false commands into the process and we can ensure
that data is only read by authorized parties. We have shown
a demonstration of this concept in a practical project where
a malicious node can be prevented from interfering with the
original application.

REFERENCES

[1] M. Cheminod, L. Durante, and A. Valenzano, “Review of security is-
sues in industrial networks,” Industrial Informatics, IEEE Transactions
on, vol. 9, no. 1, pp. 277–293, Feb 2013.

[2] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical
system security,” in 37th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2011), Nov 2011, pp. 4490–4494.

[3] N. Nelson, “The impact of dragonfly malware on industrial control
systems,” SANS Institute, Tech. Rep., 2016.

[4] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn,
“Guide to industrial control systems (ics) security,” National Insti-
tute of Standards and Technology, Tech. Rep., 2015, NIST Special
Publication 800-82, Revision 2.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, June 2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857078

[7] J. McClean, C. Stull, C. Farrar, and D. Mascareas, “A
preliminary cyber-physical security assessment of the robot operating
system (ros),” pp. 874 110–874 110–8, 2013. [Online]. Available:
http://dx.doi.org/10.1117/12.2016189

[8] E. Byres, P. E. Dr, and D. Hoffman, “The myths and facts behind
cyber security risks for industrial control systems,” in In Proc. of VDE
Kongress, 2004.

[9] D. Dzung, M. Naedele, T. von Hoff, and M. Crevatin, “Security for
industrial communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1152–1177, June 2005.

[10] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[11] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” in Advances in Cryptology — CRYPTO 2001:
21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19–23, 2001 Proceedings, J. Kilian, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 41–62.

[12] D. Giry, “Bluecrypt – cryptographic key length recommendation,”
http://www.keylength.com/, October 2016, accessed on: July 13th,
2016.

[13] W. Dai, “Crypto++ library 5.6,” https://www.cryptopp.com/ bench-
marks.html, 2016, accessed: 13th July, 2016.

[14] S. Mangard, M. E. Oswald, and T. Popp, Power Analysis Attacks –
Revealing the Secrets of Smart Cards. Springer, 2007.

[15] gemalto SafeNet, “Understanding white box cryptography (white
paper),” http://ru.safenet-inc.com/, 2016.

[16] M. Joye, “On white-box cryptography,” Security of Information and
Networks, 2008, trafford Publishing.

[17] J. Muir, “A tutorial on White-box AES,” Cryptology ePrint Archive:
Report 2013/104, 2013.

[18] C. Wang, A. Carzaniga, D. Evans, and A. Wolf, “Security issues
and requirements for internet-scale publish-subscribe systems,” in
System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii
International Conference on, Jan 2002, pp. 3940–3947.

[19] L. Maglaras and J. Jiang, “Intrusion detection in scada systems using
machine learning techniques,” in Science and Information Conference
(SAI), 2014, Aug 2014, pp. 626–631.

[20] S. Shin, T. Kwon, G.-Y. Jo, Y. Park, and H. Rhy, “An experimental
study of hierarchical intrusion detection for wireless industrial sensor
networks,” Industrial Informatics, IEEE Transactions on, vol. 6, no. 4,
pp. 744–757, Nov 2010.

[21] J. Åkerberg, M. Gidlund, T. Lennvall, J. Neander, and M. Björkman,
“Efficient integration of secure and safety critical industrial wireless
sensor networks,” EURASIP Journal on Wireless Communications
and Networking, vol. 2011, no. 1, pp. 1–13, 2011. [Online]. Available:
http://dx.doi.org/10.1186/1687-1499-2011-100

[22] R. Toris, C. Shue, and S. Chernova, “Message authentication codes for
secure remote non-native client connections to ros enabled robots,” in
IEEE International Conference on Technologies for Practical Robot
Applications (TePRA), April 2014, pp. 1–6.

[23] G. Ateniese and B. de Medeiros, “On the key exposure problem in
chameleon hashes,” in Proceedings of the 4th international conference
on Security in Communication Networks, ser. SCN’04. Berlin,
Heidelberg: Springer, 2005, pp. 165–179.

[24] W. Adi, “Mechatronic security and robot authentication,” in Bio-
inspired Learning and Intelligent Systems for Security, 2009. BLISS
’09. Symposium on, Aug 2009, pp. 77–82.

ACRONYMS

APP ROS-based application
AS authentication server
ROS robot operating system

4482

