

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHE UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I
Angewandte Softwaretechnik

MiNT: MULTIMODAL iNTERACTION
FOR MODELING AND MODEL

REFACTORING

Nitesh Narayan

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Nassir Navab, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Bruegge, Ph.D.

 2. Univ.-Prof. Kirill Krinkin, Ph.D.
Saint-Petersburg Electrotechnical University

Die Dissertation wurde am 30.01.2017 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 08.03.2017 angenommen.

Dedicated to my father

Acknowledgements

I would like to thank my adviser, Professor Bernd Bruegge for his continuous guidance,
support and critical feedback throughout my research. Thank you so much for providing an
amazing atmosphere and numerous opportunities to learn and improve. As a great mentor,
you inspired me not only professionally but also as a person. I am sure, I still have a lot to
learn from you. Special thanks to Professor Kirill Krinkin, for accepting to be my second
supervisor. I got to know you from the course of JASS 2016, an intercultural student’s project.
It was a great experience and we have had a lot of fun working with the students from St.
Petersburg. Thank you for providing such an exclusive opportunity.

I take this opportunity to thank all the colleagues from the Chair for Applied Software
Engineering for their continuous support throughout these years. Dr. Jonas Helming and Dr.
Maximilian Kögel played a key role during the early days of my work by providing their
valuable advice and introducing to the scientific work. Dr. Walid Maalej, and Dr. Dennis
Pagano enriched my understanding of scientific work and methodologies through numerous
interactive discussions.

Thank you Yang Li! As an amazing friend and colleague you have always been all ears
discussing even the silliest of my ideas, and even collaborating on them for field-testing.
Thank you Hoda Naguib, for your great support, care, and affection. It is so much fun and
friendly ambiance having you around. Thank you Emitzá Guzmán, for all the interesting and
insightful conversations we had over time about work and life. Thank you Jan Knobloch and
Stefan Nosović. It was always exciting to discuss all the cool happenings on various topics
with you guys. Best wishes for your doctoral work.

I would like to express my gratitude to Frau Markl, for accommodating appointments and
helping with all the organizational issues at work. Thank you Frau Schneider for keeping
me up-to-date with the technical gadgets and instruments during my research work. Thank
you Frau Weber for handling the financial issues behind the curtain. A big thank to all the
modelers, experiment participants and reviewers who provided their valuable insights during

6

the course of this dissertation. And my best wishes to all the current and prospective doctoral
students at the chair.

I am indebted towards my parents and siblings for their continuous care, support, and
guidance. You are the reason behind what I am today and I take this as an opportunity to
try thanking you. Finally, thank you so much Suchi, for having faith in me and being there
through my ups and downs of my life for the last few years (for 11 years as girl-friend and
the last two as wife). As a pillar of support you held me strong through the turbulent times
with your constant support and understanding. Thank you!

Abstract

The development of software brings together participants from different backgrounds, such
as domain experts, analysts, designers, programmers, managers, technical writers, graphic
designers, and users. No single participant can understand or control all aspects of the system
under development, and thus, all participants depend on others to accomplish their work.
Moreover, any change in the system or the application domain requires all participants to
update their understanding of the system. The importance of continuous involvement of
domain experts in the modeling process is well known. But domain experts are usually not
proficient with the modeling tools used by the software developers and as a result are often
limited to the initial requirements elicitation. Researchers have provided substantial evidence
that multimodal interfaces can greatly expand the accessibility of interfaces to diverse and
nonspecialist users.

To address these limitations in the collaboration between application domain experts and
modelers, we developed MiNT, an extensible platform to add new modalities and to configure
multimodal fusion in CASE tools. MiNT is based on the M3 framework that allows capturing
multimodal interaction during the design process of new multimodal interfaces. The M3

framework has been developed in a bootstrapping process during the development of MiNT.
The viability of MiNT was demonstrated in two reference implementations; Mint Eclipse
and Mint Mobile. MiNT Eclipse used the MiNT framework to add multimodality to Eclipse-
based modeling. MiNT Mobile provides multimodal modeling and model transformations
on mobile devices.

We conducted two controlled experiments to study the feasibility and applicability of multi-
modal interfaces for modeling and model refactoring. The results of the first experiment show
that multimodal interfaces employing speech as an input modality improve the efficiency of
modelers. Speech additionally allows modelers to verbalize their thoughts and is suitable for
collaborative modeling sessions. The results of the second experiment show that a multimodal
interface which provides a combination of touch, speech, and touch gestures is more useful
than a multimodal interface employing only touch and speech.

Table of contents

List of figures 13

List of tables 15

1 Introduction 1
1.1 Problem . 3
1.2 Research Approach . 6
1.3 Outline of the Dissertation . 7

2 Foundations 9
2.1 Modeling in Software Engineering . 10

2.1.1 Model Transformation . 11
2.2 Collaborative Modeling . 12
2.3 Multimodal User Interface . 16
2.4 Usability Engineering . 19

3 Multimodal modeling (M3) Framework 21
3.1 M3framework . 21

3.1.1 Generic Multi-modality Model . 22
3.1.2 Use case Meta-model . 25

3.2 Models for Visual Modeling Tools . 26
3.2.1 Diagram Presentation Modality 26

3.3 Application of M 3 framework . 27

4 Requirements Specification and Design Goals for Multimodal Modeling 29
4.1 Speech for UML Modeling . 29
4.2 Gestures for UML Modeling . 32

4.2.1 Results . 33

10 Table of contents

4.3 Requirements for Multimodal Modeling 35
4.3.1 Visionary Scenarios . 36
4.3.2 Requirements . 37

5 MiNT Framework and Applications 39
5.1 Analysis Model . 39
5.2 Design Goals . 41
5.3 Architecture of MiNT . 43
5.4 Multimodal Integration . 45
5.5 MiNT Eclipse . 47
5.6 MiNT Mobile . 50

5.6.1 MiNT Mobile User Interface . 52
5.6.2 Continuous Speech Mode . 54

6 Evaluation Multimodal Modeling on Interactive Whiteboard 59
6.1 Context . 59
6.2 Variables . 61
6.3 Subjects . 63
6.4 Setup . 63
6.5 Procedure . 64
6.6 Experiment Results . 65

6.6.1 Collected Data . 65
6.6.2 Analysis . 67
6.6.3 Exit Interview . 69

6.7 Discussion . 71
6.8 Threats to Validity . 73

7 Evaluation Multimodal Modeling on Mobile Devices 75
7.1 Context . 75
7.2 Variables . 76
7.3 Subjects . 77
7.4 Setup . 77
7.5 Procedure . 77
7.6 Experiment Results . 78

7.6.1 Collected Data . 78
7.6.2 Analysis . 80
7.6.3 Subjective Evaluation . 81

Table of contents 11

7.7 Discussion . 88
7.8 Threats to Validity . 88

8 Conclusion and Future Work 91
8.1 Contributions . 92
8.2 Limitations . 93
8.3 Future Work . 93

Appendix A Model Refactoring Taxonomy 95

Appendix B Controlled Experiment 105
B.1 Instructors Checklist . 106
B.2 Experiment Task . 108
B.3 Subjective Questionnaire . 110
B.4 Stastical Analysis: F-test for variance equality 111
B.5 Stastical Analysis: t-Test for unequal variances 113

Appendix C Controlled Experiment 117
C.1 Instructors Checklist . 117
C.2 Experiment Task . 120
C.3 Subjective Questionnaire . 122
C.4 Statistical Analysis: t-Test paired sample 125

References 129

List of figures

2.1 Traditional classification of models . 13
2.2 Semi-formal model for multimodal interaction 14
2.3 State diagram showing the transition betwen different states of a model . . 15
2.4 Input and output modality. Adapted from [OS04] 17
2.5 A representation of multimodal man machine interaction loop from [DLO09] 18

3.1 Excerpt from the generic multi-modality model (UML Class diagram) . . . 23
3.2 Input modality model (UML Class diagram) 23
3.3 Output modality model (UML Class diagram) 24
3.4 Unified meta-model of M3 framework (UML Class diagram) 25
3.5 Diagram presentation modality for the open diagram use case (UML Class

diagram) . 26

4.1 Vocabulary for UML modeling tools . 30
4.2 JSGF grammar for speech recognition of simple spoken commands 31

5.1 Object model of interaction modalities for multimodal interaction (UML
class diagram) . 40

5.2 Object model of interaction definition (UML class diagram) 41
5.3 MiNT framework architecture (UML component diagram) 42
5.4 Example modality integration definition for MiNT framework 44
5.5 Architecture of MiNT Eclipse reference implementation (UML component

diagram) . 48
5.6 Deployment diagram of MiNT Eclipse (UML deployment diagram) 49
5.7 Multimodal interaction using interactive whiteboard and speech 50
5.8 Architecture of MiNT Mobile reference implementation (UML component

diagram) . 51
5.9 Deployment diagram of MiNT Mobile (UML deployment diagram) 51

14 List of figures

5.10 MiNT Mobile user interface . 52
5.11 MiNT Mobile: Informal modeling using touch sketches 53

6.1 Results: Task difficulty vs difficulty understanding the material 70
6.2 Results: Difficulty performing task using tool interface 72

7.1 Educational background and modeling experience of the subjects 79
7.2 Evaluation of pragmatic qualities for touch and speech interface against

touch, speech (MiNT TS) and touch gesture interface (MiNT TSG) 82
7.3 Evaluation of hedonic qualities for touch and speech interface against touch,

speech (MiNT TS) and touch gesture interface (MiNT TSG) 83
7.4 Evaluation of attractiveness qualities for touch and speech interface against

touch, speech (MiNT TS) and touch gesture interface (MiNT TSG) 84
7.5 Evaluation of suitable working contexts for touch and speech interface against

touch, speech (MiNT TS) and touch gesture interface (MiNT TSG) 85
7.6 Difficulty performing tasks using touch and speech interface against touch,

speech (MiNT TS) and touch gesture interface (MiNT TSG) 86
7.7 Summative evaluation of touch and speech interface against touch, speech

(MiNT TS) and touch gesture interface (MiNT TSG) 87

A.1 Pull up attribute use case . 97
A.2 Pull up method use case . 98
A.3 Extract superclass use case . 99
A.4 Extract subclass use case . 101
A.5 Attribute to object use case . 102
A.6 Collapse hierarchy use case . 103
A.7 Merge classes use case . 104

B.1 Sample solution object model for Task 1 108
B.2 Existing object model for Task 2 . 115

C.1 Sample solution object model for Task 1 119
C.2 Object model for Task 2 . 119

List of tables

3.1 Event flow in the open diagram use case 26
3.2 Steps in create class use case use case . 27

4.1 InteractionActions with touch gestures for modeling and model refactoring
use cases . 34

5.1 Properties to define interaction definition (unimodal or multimodal) with
MiNT Eclipse . 46

5.2 InteractionActions for Papyrus UML Class diagram editor with touch and
speech input . 55

5.3 InteractionActions for model refactoring actions 56

6.1 Task Categorization . 63
6.2 Collected data from the experiment (part 1) 65
6.3 Collected data from the experiment (part 2) 66
6.4 F-test for the equality of variances . 67

7.1 Categorization . 77
7.2 Time to complete modeling (task 1), and model transformation (task 2) by

subjects . 79

Chapter 1

Introduction

Models play an important role in the disciplines of design and engineering. They serve as
a basis for design and are easily understandable by non-software engineers [Moo09]. As
an important method for people to understand complex systems and to navigate around
structured information, models facilitate reasoning, collaboration, communication, and
solving a complex problem using the higher level of abstractions [AF03] [BD10]. The history
of visual modeling notations in Software Engineering (SE) dates back to the 1940s, with the
development of Goldstine and Neumann’s program flow chart [NG47]. Subsequently, several
other graphical modeling languages followed over time such as Object-Modeling Technique
(OMT) [RBP+91], Object-Oriented Software Engineering (OOSE) [Jac93], and eventually
Unified Modeling Language (UML) [OMGb] and the Systems Modeling Language (SysML)
[OMGa] under the umbrella of Object Management Group (OMG).

Along with the development of modeling languages, Computer Aided Software Engineering
tools (CASE-tools) gained prominence among practitioners to enable express designs using
graphical representations such as state machines, structure diagrams, and data flow diagrams
throughout the software development lifecycle [Sch06]. CASE-tools facilitated construction
and manipulation of models as diagrams in accordance with the underlying modeling lan-
guage notation. The trend continues today with the new modeling languages and CASE-tools
emerging to facilitate describing different views of the system as viewpoints of stakeholders.
The IEEE Standard 1471-2000 [Hil00] describes viewpoints as a mean to establish the
languages or notations enabling reusable, domain-specific architecture description standards
[MEH01].

Object-oriented analysis and design is a complex task requiring viewpoints from requirements
analysis, design, and modeling. This raises the need for stakeholders to work together and

2 Introduction

collaborate on models. Collaborative modeling refers to the process where a number of
people actively contribute to the creation of a model [Rit09]. Renger et al. [RKdV08]
describe collaborative modeling as; The joint creation of a shared graphical representation of
a system. Collaborative modeling benefits by encouraging participants to work together, ask
questions, explain, and justify opinions [RS05] [Sol01] [WTF95]. A major criterion for any
effective collaborative session is forming the right group composition [DVDB03]. Frederiks
et al. [FVdW06] highlights two main roles associated with collaborative modeling, namely
domain expert who provide input to the modeling expert who is responsible for creating the
formal model based on the input.

During the early stages of requirements engineering domain expert and the modeling expert
is involved in brainstorming sessions to develop a common understanding of the system
under development. This process accompanies elements of analysis of the problem domain
as well as the solution domain. Domain experts provide critical input to the modelers to help
them understand and articulate the abstractions of the application domain and to explore
design alternatives. Since domain experts are usually not proficient with the modeling tools
and techniques used by the software engineers, their participation is restricted to the role of
knowledge source and have no direct input in creation or transformation of the model. On
the other hand, modelers with limited or no awareness of the domain are forced to make
sense of the information provided by the domain experts, leading to miss-communication,
information loss, and rework.

Active participation of the domain experts is constrained by the very basic fact for whom the
modeling CASE-tools are designed and the collaboration style supported. Traditional model-
ing CASE-tools are primarily designed considering analysts and modelers as the prospective
users with the goal to allow creating precise, archival designs as formal models. Recent work
employing technological enablers such as multi-touch surfaces [BM14] have tried to address
the need of face-to-face or collocated collaboration among modeling participants. Still, the
need to encourage and enable domain experts participation facilitated by modeling tools in
collaborative modeling session remains a challenge and is the main topic of investigation in
this dissertation.

This dissertation aims at addressing the limitations of existing modeling tools to support
the collaboration between domain experts and modelers by identifying and evaluating new
and intuitive interfaces with the focus on improved usability. The ISO 9241-11 standard
defines usability as; extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use
[ISO98].

1.1 Problem 3

1.1 Problem

Chervany et al. [CL98], and Albizuri et al. [AR00] highlights usability issues of existing
modeling CASE-tools. Lahtinen et al. [LP03] specify that bugs, poor design, and incon-
sistencies are common issues attributing to the lowered usability of modeling CASE-tools.
The current generation of modeling CASE-tools is based on the similar interface style of
graphical node editors where a user can drag-&-drop items from the palette. These tools
resemble an ordinary drawing tool or pen and paper with a canvas to draw models visually,
with important operations hidden in the user interface making them hard to use for infrequent
and non-expert users.

Due to the complexity and overhead involved in using traditional modeling CASE-tools,
frequently individuals tend to organize information either using the pen, paper, and white-
boards, or any other idiosyncratic mediums during early requirements elicitation phases.
Since information is captured sporadically, an additional overhead of merging different
models representing views of every stakeholder into a single common understanding as a
design is introduced implicitly. Subrahmanian et al. [SKL+93] highlight that the practice of
design involving multiple representations, disciplines, and stakeholders introduces the need
to broaden the horizon of modeling techniques.

Understanding modeling concepts and the language notations is frequently not sufficient for
users to get started and become productive with a modeling tool, as they are also required
to learn tool-specific usage patterns. For example, the same use case can have variances in
the execution steps from one modeling CASE-tool to another, which causes even the most
experienced modelers to make errors and spend time rectifying them. Such issues can be
attributed to the fact that the underlying modeling language describes the semantics of the
language but do not provide a specification for the tool implementation. On the one hand, this
gives freedom to the implementer of the modeling notation to develop the tool without any
restrictions, but this also means the same modeling use case can be implemented differently
by different CASE-tool.

While basic tool usage knowledge can be acquired rather quickly for simple modeling tasks,
model transformation can be challenging even for the expert modelers due to the unfamiliarity
with the model or modeled phenomena, or complex model with a large number of model
elements, if accompanied with unfamiliarity to the tool. In this dissertation we employ
the term model transformation to refer to the most common transformation techniques of
model refactoring and model refinement. Model refactoring is a transformation process to
improve the structure of a model while preserving its behavior [ZLG05]. Model refinement

4 Introduction

is a transformation that adds more detail to an existing model [VDSJM07]. As oppose to
traditional refactoring and refinement techniques with the focus on the source code, this
dissertation refers to the design models at higher levels of abstraction for refactoring and
refinement.

Usability of modeling CASE-tools can be enhanced, e.g. by adding natural, and intuitive
tool interfaces. Human-Computer Interaction (HCI) researchers have provided substantial
evidence that multimodal interfaces can expand the accessibility of interfaces to diverse
and nonspecialist users [OC00]. Jaimes et al. JS07 define a multimodal interface as; a
multimodal system is simply one that responds to inputs in more than one modality or
communication channel. These interfaces encompass both parallel and sequential usage
of different modalities such as speech, touch, gestures, body movements in a coordinated
manner [Tur14][Ovi99].

Mignot et al. [MVC93] studied the use of speech and gesture and found that gestures are
effective for simple and direct commands, while speech is more effective with the abstract
commands. Speech is an effective interaction modality for novice and occasional users.
Further, Oviatt et al. [OCL04] observed that users spontaneously respond to increase in their
cognitive load by shifting to multimodal interactions. Cognitive load refers to the amount
of information that can be held in short-term memory and is attributed to the mental effort
invested for a certain task [Swe88].

Recent work employing multi-touch tabletops and interactive whiteboard enable new ways
of interaction in collaborative environments [CGH03][FHD09]. Interactive whiteboards are
touch-sensitive boards that allow controlling a computer connected to a projector. Existing
research demonstrates that interactive whiteboard foster interactivity, participation, and col-
laboration among users [SHWM05]. Wu et al. [WG05] describe RoomPlanner, a prototype
application for room furniture layout designing which allows users to collaborate on a multi-
touch tabletop using touch gestures. Touch gestures reduce the number of primitive touch
events required to perform a complex operation by capturing additional information in the
user interaction. Kurtenbach et al. [KH90] distinguish between touch and touch gesture
as;

A touch gesture is a motion of fingers that contain information, and from a
human point of view have significance. A simple touch, on the other hand, is
not a gesture as the motion of a finger to touch a spot on the interface is neither
observed nor significant.

1.1 Problem 5

Usability issues in the current crop of modeling tools, and the need to encourage the partici-
pation of domain experts leads us to the following problem statement, which is addressed
in this dissertation:

We can enhance the usability of modeling tools by employing multimodal
interfaces such that it improves the efficiency of the modeler, and reduces the
learning curve required to be productive. This improved usability will encourage
the participation of domain experts in collaborative modeling sessions.

Based on the problem statement this dissertation investigates the following hypotheses:

H1: A multimodal interface utilizing an interactive whiteboard and speech
input improves the efficiency of modelers during modeling and model transfor-
mation activities.

Acceptance of the hypothesis (H1) that multimodal interface improves the efficiency of
modelers leads us to the investigation of the follow up hypothesis:

H2: Modelers find multimodal interface employing touch, speech and touch
gesture input modalities more useful and practical as opposed to an interface
using only touch and speech input modalities.

A challenge in designing multimodal interface is to identify, evaluate, and associate interac-
tion modalities to the system model. Technology products such as the Leap Motion controller
1, Microsoft Kinect 2, or Ideum’s touch display 3 provide possibilities for multiple users to
interact with the system simultaneously [Seb09]. This concurrent environment raises the
need of a formal process for identifying and evaluating the combination of modalities with a
focus on improved usability in each use case.

A use case describes the behavior of the system from an actors point of view. It captures
function provided by the system as a set of events that yield a visible result for the actors
[JCJO92]. Use cases can be described in different levels of granularity. For example, an
essential use case is a simplified form of use case, an abstract scenario for a complete
and intrinsically useful interaction with a system from the perspective of the user [Con95].
While a generic use case allows capturing the flow of events between user and system in
the form of user step and system step, but with no focus on interaction details such as
whether the interaction is unimodal or multimodal in nature. To best of our knowledge,
even user interface design techniques provide no means to model multimodal interactions.

1https://www.leapmotion.com/product/vr
2http://www.xbox.com/en-US/xbox-one/accessories/kinect
3http://ideum.com/touch-tables/platform/

6 Introduction

This information if available can allow the system designers to evaluate each use case
execution over the usability characteristics identified by Nielson [Nie92] and further benefit
in identifying alternate steps (execution paths) with new interaction possibilities aiming
at reduced learnability and improved efficiency. Capturing interaction details additionally
allow recording the rationale for the selection of a unimodal or multimodal interaction in
a certain usage context (for example, considering touch input over speech in an outdoor
environment).

1.2 Research Approach

With the goal of improving the usability of modeling CASE-tools by employing intuitive
multimodal interfaces for early stage requirements engineering process, this dissertation
employed a three steps approach. Understanding the problem domain, devise tools and
frameworks, and validate the research hypotheses. The first step is realized with a strong
emphasis on understanding the issues affecting the usability of modeling CASE-tools, and
how the multimodal interfaces could be employed as a mean of improving modeling, and
model transformation process. The second step devises the M3framework with a unified
model for capturing multimodal interaction information and associating it with the use
case model during the design process of new multimodal interfaces. The M3framework is
employed in a bootstrapping process during the development of MiNT framework. MiNT
framework was designed and developed to allow modeling tool developers to prototype
modeling CASE-tools with multimodal interfaces.

In the third step, two controlled experiments are performed to evaluate the hypothesis of
this dissertation. MiNT Eclipse, a reference implementation of MiNT framework was
developed to evaluate the first hypothesis (H1). Results from the first controlled experiment
provided evidence that multimodal interface improves the efficiency of modelers. Based on
the observation made during the first experiment, as well as expert feedback, and literature
review we developed a second reference implementation of the MiNT framework namely;
MiNT Mobile to evaluate the second hypothesis (H2). During the development of reference
implementations, we continuously sought and incorporated feedback from expert modelers
in pilot studies for identification of speech commands and touch gestures for modeling and
model transformation.

Since the usability of modeling tools is the main concern of this dissertation, we employed
multimethod research approach for the evaluation of the hypothesis [BH89]. More specifi-

1.3 Outline of the Dissertation 7

cally mixed methods research was used that combines elements of qualitative and quantitative
research approaches [JOT07]. The controlled experiment conducted to evaluate both hypothe-
ses rely on a set of inquisitive [SSL08] techniques for collecting qualitative and quantitative
data. Shadowing and observation were used as a mean to understand how modelers work
with unimodal and multimodal interfaces to perform modeling and model transformation
tasks. An interview questionnaire format was employed to capture the subjective evaluation
of the multimodal interfaces by the modelers.

1.3 Outline of the Dissertation

This dissertation is structured as follows:

Chapter 1 introduces the usability issues with modeling CASE-tools and their limitations for
early stage requirements engineering process. Multimodal interfaces are identified as a mean
to address the usability problems of modeling interfaces. Further, the research approach is
described.

Chapter 2 presents the general foundations of this dissertation with the emphasis on mod-
eling and model transformation, collaborative modeling, multimodal user interface, and
usability engineering.

Chapter 3 introduces the M3 framework with a meta-model that allows capturing modalities
information of the interactions and associating it with the use case.

Chapter 4 describes the elements of multimodal modeling and model refactoring, and
provide a basis for developing multimodal modeling interfaces.

Chapter 5 presents MiNT framework aimed at assisting multimodal interface developers for
rapid prototyping. Afterward, two reference implementation of the framework is described,
namely MiNT Eclipse and MiNT Mobile.

Chapter 6 describes a controlled experiment conducted to investigate the applicability of
the multimodal interface employing interactive whiteboard and speech as an input modality
for modeling and model refactoring.

Chapter 7 describes the second controlled experiment conducted to evaluate the usefulness
and practicality of two different multimodal interfaces for modeling and model refactor-
ing.

Chapter 8 concludes the dissertation and discusses the directions for future work.

Chapter 2

Foundations

Models allow understanding complex information and navigating around designs. This
is especially true for Design Space Exploration (DSE), which facilitates identifying and
evaluating design alternatives [KJS11]. Some common scenarios for DSE are:

1. Prototyping: Create and evaluate the impact of design decisions before implementation.

2. System design: Create and evaluate complex system designs in greenfield engineering
projects. Complex software systems consist of a large number of components, which
can be identified and evaluated over design goals.

DSE allows the identification of design alternatives in the design process as well as the
software maintenance scenarios.

In section 2.1 we describe modeling and the state-of-the-art modeling CASE-tools. Section
2.1.1 describes the model transformation process that aims at improving the structure of
existing model along with facilitating behavioral changes by adding new information. Section
2.2 focuses on collaborative modeling and highlights the importance of involving application
domain experts in the collaborative modeling sessions. In section 2.3 we describe multimodal
interfaces and the role of multimodal interaction for natural human interaction. Finally,
section 2.4 focuses on the usability of multimodal interfaces from the viewpoint of software
engineering.

10 Foundations

2.1 Modeling in Software Engineering

Software Engineering is a problem-solving domain in which models are used to visualize
and understand a system that may or may not exist at the time the model is created. A model
is an abstract representation of a problem with the focus on the relevant aspects and ignoring
all other [BD10]. Models are created to serve particular purposes, for example, to present
a human-understandable description of a system for communication or to capture design
information that could be transformed into a different model [FR07].

The most common approach to modeling is based on diagram sketching, in which the
modeler or the designer freely creates diagrams on paper or using a paint program. These
sketches are informal models, and they do not use any formal language notation. Once the
common understanding of the informal model has been established among the stakeholders,
the diagram is digitized using a formal modeling notation. Digitization of sketches and
transferring them to a formal notation has been researched by several researchers since
sketching is a natural part of human problem-solving. Hammond et al. [HD06] demonstrated
that informal models created using sketches could be translated into formal models. They
recognize a set of objects by their geometrical properties from sketches. Plimmer et al.
[PF07] introduced a sketch tool framework with the objective to allow quick prototyping of
domain-specific sketching tools. Damm et al. [DHT00] investigated shape gestures in the
sketch drawn on an electronic whiteboard. Their approach aimed at facilitating collaboration
between modelers using informal and formal elements.

The second common approach for modeling is to employ tools with pre-defined graphical
elements. These tools focus on producing implementation and deployment artifacts from
models under the umbrella of Model Driven Development (MDD) [FR07]. Example of such
CASE-tools are Visual Paradigm 1, Enterprise Architect 2, and Eclipse Papyrus 3. Mellor
et al. [MCF03] describe MDD as Model-driven development is simply the notion that we
can construct a model of a system that we can then transform into the real thing. Since
the objective of these tools is to support the complete software life-cycle model, they are
complex to use and requires expertise to be productive.

Researcher such as Mackay et al. [MNB03] distinguish between light-weight and heavy-
weight tools by the amount of functionality they provide. Heavyweight tools offer a much
functionality that relates to the problem domain, whereas lightweight tools provide only

1https://www.visual-paradigm.com/
2www.sparxsystems.de/
3https://eclipse.org/papyrus/

2.1 Modeling in Software Engineering 11

essential functionality that is necessary to support a certain stage of software life cycle
model. Learning and using the heavy-weight tools can be overwhelming because of a large
number of inbuilt features. Lightweight tools are more suited towards a particular activity (for
example focus only on analysis phase) without cluttering the user interface with unwanted
and unused features. Biddle et al. [BNT02] present a list of light-weight CASE-tools for
different phases of software lifecycle. A web-based CASE tool for creating UML sequence
diagram is presented by Khaled at al. [KMB+02].

General purpose diagramming tools such as painting applications, OmniGaffle 4, SmartDraw
5 or Microsoft PowerPoint 6 does not follow the semantics of any modeling language. In this
dissertation, we do not consider diagramming tools for modeling.

Models undergo transformation either to improve the existing solution or to extend the
solution with new features. In the next section, we describe model transformation process an
essential part of the modeling process.

2.1.1 Model Transformation

Model transformation is the generation of a target model from a source model, following a
transformation definition. A transformation definition is a set of transformation rules that
describe how a source model can be transformed into a target model [KWBE03]. The input
to any model transformation process is a source model with existing model elements, and a
transformation requirements describing the changes to be done to the model. The process
itself consists of the following steps:

1. Identify the model elements in the source model that requires transformation and
modify these elements following the problem description.

2. Improve the structure of the model while preserving the existing behavior.

3. Introduce new model elements to add the behavior as described in the problem descrip-
tion.

Step 1, Step 2, and Step 3 are executed iteratively until the target transformation is achieved.

Step 2 is also known as model refactoring. Model refactoring is a process used to improve the
structure of a model while preserving its behavior. Step 3, also known as Model refinement,

4https://www.omnigroup.com
5https://www.smartdraw.com
6https://office.live.com/start/PowerPoint.aspx

12 Foundations

is a process that adds more detail to an existing model[VDSJM07]. Model refinement is
frequently performed along with model refactoring to improve the design or adapt to new
requirements during model evolution. It can invoke creation of new model elements, update
or remove existing ones with the aim of reorganization or adding detail to the contained
information [SK03]. Additionally, based on the transformation requirements design patterns
are employed to improve the existing model [FCSK03].

In the next section, we introduce the notion of collaborative modeling, an important aspect
of the modeling process. It provides the foundation of designing modeling interfaces for
collaboration among stakeholders.

2.2 Collaborative Modeling

Collaborative modeling refers to the process where a number of people actively contribute to
the creation of a model [Rit09]. Renger et al. [RKdV08] describe collaborative modeling
as; The joint creation of a shared graphical representation of a system. Collaborative
modeling benefits by encouraging participants to work together, ask questions, explain, and
justify opinions [Sol01]. As software engineering becomes an increasingly complex and
heterogeneous discipline, it raises the need for collaboration among stakeholders. The value
of collaboration has long been identified in the Computer Supported Collaborative Work
(CSCW) research [Gre89].

Johansen [Joh88] further established the needs of collaborative teams into four basic cate-
gories: same place (colocated), different place (remote), same time (synchronous), and a
different time (asynchronous). A majority of the current generation of modeling CASE-tools
support remote and asynchronous style of collaboration by utilizing model repositories.
Model repositories are storage systems for models that are mostly focused on persistence and
concurrent access over a distributed infrastructure and allows [KRM+13]. Another group
of modeling CASE-tools aims at satisfying the need of synchronous modeling by using
a single, shared instance of the model which is edited by multiple users at the same time
[Pin03]. While only recently researchers have started to study the needs and importance of
colocated and face-to-face style of collaboration. For example, Wu et al. [WG05] describe
the importance of collaboration and communication in software design, and motivate the
need to support these activities in software design tools. They introduce Software Design
Board a modeling tool that allows modelers to work on their computer desktop in single user
mode, as well as employing electronic surface in a collaborative session. The availability of

2.2 Collaborative Modeling 13

Fig. 2.1 Traditional classification of models

multi-touch tabletops such as Platform 7 and TableConnect 8 are enabling new collaboration
interfaces [BB12], [A+13].

In the past models were classified in three categories (see Figure 2.1) based on the activities
they support:

Design models provide a representation of the problem that enables stake-
holders to understand and reason about the solution. In software engineering
design models were specifically used as a formal representation of the system
that can be understood by CASE-Tool. Design models were presented in a lan-
guage with formal semantics (such as UML or SysML) and could be transformed
into a representation understood by a computer. For that reason, design models
were required to be correct, complete, consistent, and unambiguous.

Communication models serve stakeholders to establish a common under-
standing of the problem to be solved. In software engineering communication
models include a broad range such as a model sketched on paper or a whiteboard
to capture designs informally. Since the primary purpose of a communication
model is to establish a common understanding among the modeling partici-
pants as opposed to providing a basis for a specification they can be incorrect,
incomplete, inconsistent, and ambiguous in nature.

Archive model provide a compact representation for storing the design and
its rationale for future reference. Design rationale is “the historical record of the
analysis that led to the choice of the particular artifact or the feature in question”
[LL91] and allows stakeholders to become familiar with early decisions.

7http://ideum.com/touch-tables/platform/
8http://www.fingermarks.de/

14 Foundations

Fig. 2.2 Semi-formal model for multimodal interaction

Traditionally, the collaborators of a communication model were application domain experts
and solution domain experts. The collaborators of in a design model collaborators were
solution domain experts such as designers and developers. Application domain experts with
their limited or no CASE-tool familiarity could only collaborate on design models using
formal textual annotations or change requests that had to be executed by a CASE-tool expert.
Working with design models required knowledge of either front-end CASE-tools for require-
ments, specification, planning, and design or integrated CASE-tools supporting the complete
software life-cycle from analysis to maintenance. On the other hand, communication models
were usually created with tools such as a pen or with generic drawing programs.

In 2008 Renger et al. [RKdV08] already highlighted the importance of active involvement
of domain experts in the modeling process to improve the feeling of ownership, acceptance
of the model and the decisions derived from it. Recent advances in continuous integration
and continuous delivery enable frequent iterations where domain experts should provide
their feedback on the models. The emergence of continuous software engineering as a new
discipline emphasizes the importance of continuous involvement of domain experts even
more because now even informal models such as mockups can be used to generate executable
prototypes.

In the continuous software development paradigm, the traditional distinction between design
models and communication models is therefore no longer valid and has become blurry. In this

2.2 Collaborative Modeling 15

Fig. 2.3 State diagram showing the transition betwen different states of a model

dissertation we introduce the notion of semi-formal model (see Figure 2.2). A semi-formal
model inherits all the property of a formal model as well as all the properties of an informal
model. A formal model can further be classified as a specification model which is consistent
with the requirements of the system.

Figure 2.3 shows the transition to different states of a model during multimodal modeling. A
modeler starts with creating an informal model by sketching using a pen and paper. Once a
common understanding is established the informal model undergoes a formalization process
using a modeling CASE-tool with a multimodal interface. The modeling CASE-tool adheres
to a language with formal semantics such as UML or SysML. Modelers can also directly start
with creating a formal model using the multimodal modeling. Models undergo transformation
using multimodal model refactoring to create a target model. A model which is consistent
and can serve as a basis for code generation is derived using model validation process as
specification model. During the design review meetings and collaborative modeling sessions
application domain experts and other stakeholders employ multimodal annotations in the
form of textual notes, audio notes or hand draw shapes to create a semi-formal model. A
semi-formal model can then undergo formalization process to create a formal model, which
includes the changes requested as part of multimodal annotations.

This dissertation aims at improving the collaboration on software engineering design models
by including non-CASE-tool experts such as application domain experts and allowing them
to interact with models naturally. Application domain experts, as well as solution domain

16 Foundations

experts, can collaborate on models naturally using multimodal interactions using speech
and gestures input modalities. We assume that natural multimodal interactions will further
reduce the complexity of performing model transformation such that even application domain
experts can easily perform design changes which were traditionally restricted to expert
modelers.

2.3 Multimodal User Interface

In human-human communication, different modalities corresponding to human senses play
an important role. The human senses are sight, touch, hearing, smell, and taste. Almost any
natural communication among human involves multiple modalities [SPH98].

Multimodal interfaces aim at harnessing the natural form of human communication for
multimodal human-computer interaction. Multimodal interaction in the domain of human-
computer interaction is a class of interaction in which a human-computer interface employs
more than one modality (enabled by one or more devices) for multimodal input and multi-
modal output interactions. Bolt [Bol80] used speech and gesture to allow the user command
simple shapes on a large-screen graphics display surface. Oviat et al. [Ovi03] describes
multimodal interface as;

Multimodal interfaces process two or more combined user input modes such as
speech, pen, touch, manual gestures, gaze, and lip movements in a coordinated
manner with multimedia system output.

Multimodal interfaces process two or more combined input modes such as speech, pen, touch,
manual gestures, gaze, and lip movements for multimodal input. The multimodal output
is produced by using two or more output modes such as visual display, audio, and tactile
feedback is combined to present the state of the system to the user. By employing multiple
modalities, a multimodal interface provides the user freedom in selection of the modality to
interact with the system [OC00]. For example, hearing impaired user will prefer speech as
an input modality, and the visual display or tactile feedback for the multimodal output. The
multimodal interface provides the feasibility for interchanging the modalities based on their
suitability for a particular usage context and environment. For example, a user will prefer
to use gesture or keyboard input in a noisy environment as oppose to employing speech for
interaction.

2.3 Multimodal User Interface 17

Fig. 2.4 Input and output modality. Adapted from [OS04]

In multimodal interaction, two or more primitive interaction are employed to perform the
action, for example pointing at an object and speaking a voice command. Modality can
either be of simple or composite (see Figure 2.4). A simple modality represents a primitive
interaction, whereas a composite modality integrates other modalities to enable multimodal
interaction. Primitive interactions employ only one modality at a time (unimodal in nature)
for interaction. Modalities can be classified as input modality and output modality. Section
3.1.1 describes input and output modality as part of the unified meta-model of the M3

framework.

Multimodal integration is fundamental towards integrating multiple modalities to create
natural interfaces with multimodal input and multimodal output capabilities. Multimodal
integration consists of multimodal fusion and multimodal fission. Multimodal fusion (see
Figure 2.5) plays a crucial role in combining and interpreting various input modalities for
input whose meaning can vary according to the context, task, user and time [LNR+09].
On the other hand, multimodal fission (see Figure 2.5) distributes the output over multiple
channels corresponding to human senses [Wah03]. Dumas et al. [DLO09] divide multimodal
human to computer interaction into four different states. First decision state in which the
communication content is prepared, second action state where means of communication are
selected, third perception state where multimodal interfaces receive the message through
hardware enablers or sensors, finally fourth the interpretation state where the multimodal

18 Foundations

Fig. 2.5 A representation of multimodal man machine interaction loop from [DLO09]

fusion occurs to derive information from the interaction. Further, in the computational state
following the interpretation of human interaction, a response is generated and transmitted in
the action state by using multimodal fission.

Multimodal interfaces seek to utilize the natural human capabilities to communicate via
speech, touch, gesture, facial expression, eye movements, and other modalities since human
beings naturally interact using multimodal interaction. Multimodal interface that employs
pen and speech has shown to improve the efficiency of visual-spatial tasks by 10% [Ovi97].
They observed that multimodal interfaces offer improved error handling and reliability as
users made 36% fewer task-critical content errors with a multimodal interface than with a
unimodal interface. Similarly, Pausch et al. [PL91] showed that adding speech to a drawing
application reduced time to completion by up to 56%, with results showing an average
reduction of more than 21%.

This dissertation employs multimodal interaction for collaborative modeling. The hypothesis
is that even domain experts who are not familiar with CASE tools can participate in collabo-
rative modeling activities, making modeling more natural again. Multimodal interfaces aim
at making human-computer interaction natural by improving the usability. In the following
section, we describe the characteristics of usability.

2.4 Usability Engineering 19

2.4 Usability Engineering

The success of any software system depends on several different factors such as functionality,
performance, reliability, maintenance, and usability [May99]. Usability is defined in the
ISO 9241-11 standard as extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified context of use’
[ISO98].

Neilsen identifies five major characteristics of usability.

• Learnability describes how easily and intuitively a user can get started with the product
to achieve his/her use case.

• Efficiency describes how fast users can operate a system once they are through the
learning curve.

• Memorability defines how much effort is required for a returning user to get productive
with the product.

• Error handling describes how the product reacts to the user errors, and mechanisms to
provide informative feedback and exit strategy.

• Satisfaction describes the overall user experience.

In the design and development of interfaces with multimodal input and multimodal output
capabilities, usability plays an important role. Multimodal interfaces employing speech and
gesture can reduce the number of primitive user interactions and thus subsequently improve
the usability and user-experience. We believe that multimodal interfaces can further help in
overcoming the gulfs as identified by Norman in his work [Nor86]. The two gulfs, which
need to improve human usage of the systems, are the gulf of execution and evaluation. The
gulf of execution represents the effort that the user has to make to translate their goals into
the action sequences, which when applied to the system, will achieve the goal. The gulf of
evaluation represents the effort the user has to make to understand the state of the system as
a result of their actions. The natural form of multimodal interaction can reduce or eliminate
the need to learn tool specific usage. Similarly, system state conveyed over multiple channels
(multimodal output) are more effective in seeking users attention to communicating the
system state.

Coutaz and colleagues [CNS+95] define properties to assess the usability of multimodal
input and multimodal output interaction. Vernier et al. [VN00] in their work describe a

20 Foundations

framework for combining and characterizing output modalities for classifying existing output
systems and evaluating the usability of an interface.

To allow developers of multimodal interfaces capture multimodal interaction during the de-
sign process of new multimodal interfaces, we developed M3 framework, which is described
in the following chapter.

Chapter 3

Multimodal modeling (M3)
Framework

Capturing interaction information at design-time allows designer to answer two important
questions;

1. How does a user interacts with the tools interface using multimodal interaction?

2. How does the system responds to the user using multimodal output?

In this chapter we present M3 framework allows to capture the different aspects of multimodal
interaction and associate it with the use case model from software engineering. The M3

framework allows designers to capture human-computer interaction and computer-human
interaction information during the design process on new multimodal interfaces.

Section 3.1 describes the M3 framework with the unified meta-model. In section 3.2 we
present diagram presentation modality model instantiated using the unified meta-model of the
framework. The model provides evidence for the applicability of the proposed framework in
investigating multimodal integration. Section 3.3 describes the application of M3 framework
during the design and development of a multimodal modeling tool.

3.1 M3framework

The M3 framework combines the generic multi-modality model with the use case meta-model.
The generic multi-modality model is adopted from the work of Obrenovic et al. [OS04].
The presented models give a high-level view of the various types of interaction modalities,

22 Multimodal modeling (M3) Framework

the relationship between them, and also a clear description of input and output modality,
with the computer as a viewpoint. A challenge in designing multimodal interface is to
identify, evaluate, and associate interaction modalities to the system model. While a use case
allows capturing the flow of events between the user and system in the form of UserStep
and SystemStep, it does not focus on interaction details such as whether the interaction is
unimodal or multimodal in nature. To best of our knowledge, even user interface design
techniques provide no means to model multimodal interactions. The unified meta-model of
M3 framework aims at overcoming these challenges by allowing capture multimodal input
and multimodal output information during the design phase of a multimodal interface.

3.1.1 Generic Multi-modality Model

In the domain of human-computer interaction, modality is defined as a mode of com-
munication according to human senses and computer input devices activated by humans
[JS07].

The modalities can be expressed with a composite pattern as shown in Figure 3.1. A modality
can either be simple or multimodal 1. Simple input or output modalities are common in
system interfaces (e.g. An electronic calculator with key input and textual output on liquid
crystal display (LCD). Multimodal integration is used for multimodal modality. For example,
an interface with multimodal input allows the user to combine a touch gesture with speech
input. Similarly, a system with multimodal output capabilities employs multiple output modes.
For example, when clicking a button in the user interface the system can visually respond
with a picture of a clicked button and a clicking sound. Existing research work describe the
challenges involved in the design of multimodal interfaces [Seb09] [Ovi99].

Event-based modalities and streaming modalities are a form of input modality. An event-
based modality takes input in the form of discrete events such as touch, keyboard input
or mouse input (see Figure3.2). An input event occurs when a user presses a key on the
keyboard, uses the touch input on touch-sensitive hardware or uses the mouse to click on a
certain user interface element. A streaming-modality is an input in the form of a continuous-
time signal. This kind of input requires pre-processing by a system to decipher the action
that the user wants to execute with the input. Examples of a streaming modality are gesture
recognition and eye tracking. Another example of a streaming modality is natural language
speech input that requires a speech recognition engine to use an acoustic model and grammar

1In [OS04] calls it composite modality

3.1 M3framework 23

Fig. 3.1 Excerpt from the generic multi-modality model (UML Class diagram)

Input
Modality

Event-
based

Modality
Streaming
Modality

Touch Gesture SpeechKeyboard
Input

Mouse
Input

Eye-
tracking

Fig. 3.2 Input modality model (UML Class diagram)

24 Multimodal modeling (M3) Framework

Output
Modality

Static
Modality

Dynamic
Modality

non-Speech

TextShape Auditory

Speech

Visual
Feedback

Tactile
Feedback

pre-recorded produced@runtime

Fig. 3.3 Output modality model (UML Class diagram)

to translate from the speech into text. Once the text is available, the system can map it to a
specific action.

Feedback is an important aspect of human-computer interaction. Renaud et al. [RC00]
defines feedback as the communication of the state of the system, either as a response to
user actions, to inform the user about the conversation state of the system as a conversation
participant, or as a result of some noteworthy event of which the user needs to be apprised.
In this dissertation, we use the term output modality synonymously with the term feedback.
Output modalities can be categorized into two groups as static modality and dynamic modality
(see Figure 3.3).

A static modality presents stationary data to a user. Examples of static modalities are shapes,
text, icons, and sounds (called auditory in the class diagram). On the other hand, dynamic
modality is sometimes produced by animating the static modality. For example, a static shape
in a visual modeling tool when moved from one position to another presents a dynamic visual
feedback to the user. An auditory feedback produced at runtime to convey the current state
of the system is regarded as dynamic modality, whereas a pre-recorded auditory feedback is
regarded static (see Figure 3.3).

In the following section, we present a meta-model for use cases which allows attaching these
modalities to the interactions performed by the user and system in the event flow of a use
case.

3.1 M3framework 25

Fig. 3.4 Unified meta-model of M3 framework (UML Class diagram)

3.1.2 Use case Meta-model

Jackbson [Jac93] defined a use case as a description of the behavior of the interaction between
an actor and the system from an actor’s point of view. Bruegge and Dutoit [BD10] extended
this definition by describing the behavior with an EventFlow, which consists of one or
more Steps each of them modeling an interaction. A UserStep captures the interaction of
the actor with the system from the users point-of-view, while a SystemStep captures the
system response. In M3 each Step is associated with an InteractionAction class (see figure
3.4). The InteractionAction describes the interaction modality used during the Step. For
example, when the actor touches the screen the interaction modality is of type Touch (see
figure 3.2), when the system responds with a sound, the interaction modality is of type
Auditory (see figure 3.3).

Step can initialize an InteractionAction, which in turn invokes one or more modalities made
available from the generic multi-modality model (see Figure 3.1). For a UserStep input
modality is employed for unimodal or multimodal input. Whereas for a SystemStep an
output modality such as visual feedback or auditory feedback is employed for unimodal or
multimodal output.

26 Multimodal modeling (M3) Framework

Pixel

Diagram View

Pixel Features Shape

Simple shape Composite shape 1..*

*

0..* 1

1..* 1

1

0..*

Color Letters

Textual Content

1..*

1

*<<Static output modality>>

<<Composite modality>>

<<Composite modality>> <<Composite static modality>>

<<Composite modality>>

<<Composite modality>> <<Composite modality>>

System Step Interaction Action
initialize

invoke

Fig. 3.5 Diagram presentation modality for the open diagram use case (UML Class diagram)

Step# Step InteractionAction Modality
1 Open diagram (UserStep) Point and click on the

diagram in the tool
Mouse Input modality

2 Open class diagram
(SystemStep)

Open diagram editor and
show diagram

Diagram presentation
modality (composite output

modality)
Table 3.1 Event flow in the open diagram use case

3.2 Models for Visual Modeling Tools

This section describes the diagram presentation modality and diagram manipulation modality
instantiated using the M3 framework. Diagram presentation modality captures the static data
shown to the user in a visual modeling tool. Diagram presentation modality is explained
using generic use cases from UML diagramming tool for the ease of understanding.

3.2.1 Diagram Presentation Modality

The interface of visual modeling tool offers a diagram view, a palette to select new elements
from and an additional set of tools to work with the diagrams. Diagram view is used to
present existing models to the users and also serve as a workspace to create a new diagram
and modify existing ones.

Diagram presentation modality (see Figure 3.5) is a complex modality that describes the
static representation of a diagram as shown to the user in a modeling tool. At the core of the
diagram presentation modality is DiagramView. A DiagramView consists of various output
modalities as indicated in the figure. Based on the modeling notation of the tool, a model

3.3 Application of M 3 framework 27

Step# Step InteractionAction Modality
1 Enable voice input

(UserStep)
Tap on the voice
command button

Touch Input modality

2 Digital volume unit
meter (SystemStep)

Display digital volume
unit meter

Visual feedback (static
output modality)

3 Listening voice
command

(SystemStep)

Auditory feedback
listening voice

command

Auditory feedback
(static output

modality)
4 Create a class

(UserStep)
Voice command create

class
Speech input modality

5 Listening voice
command over
(SystemStep)

Auditory feedback
done listening voice

command

Auditory feedback
(static output

modality)
6 Class creation

(SystemStep)
A new class is created
on the canvas and is

highlighted

Visual feedback (static
output modality)

Table 3.2 Steps in create class use case use case

can have any number of output modalities such as images, videos, shapes, icons, and text.
Shapes can be either simple or composite. Simple shapes represent the primitive shapes like
lines and dots, while the composite shapes are made of simple shapes (for example, notation
of a UML class with rectangles and text). All the elements in the DiagramView are complex
output modality derived from the simple output modality Pixel. A Pixel can have several
features such as color to provide distinct visual clues to a human user.

Table 3.1 presents the various steps involved in displaying diagram presentation modality for
the open diagram use case. To initiate the use case user performs an InteractionAction of
point and click on the tool-specific action using mouse input modality. In response, the system
invokes the InteractionAction open diagram view and show diagram using composite static
output modality for displaying the model.

3.3 Application of M 3 framework

To study the applicability of the presented M3 framework we used it during the design of
a visual modeling tool for UML class diagrams for a tablet device. Tablet device allowed
multimodal interaction by the hardware enablers of the touch surface, microphone, and
multimedia speakers.

28 Multimodal modeling (M3) Framework

The interface of modeling tool allowed the user to work on models using touch and speech
input modality.Table 3.2 present the flow of events for create class use case for the modeling
tool. To inform the user of the current state of the system auditory output was used along
with visual feedback as output modality.

In total six Steps were defined for the use case. In step 1 user taps on a button to start voice
command input. In the second step SystemStep a digital volume unit meter is shown to the
user to provide the feedback of the signal level in the audio of entry. In step 3 (SystemStep)
the user is informed with an auditory feedback that the interface is ready to accept the voice
input. In step 4 speaks the command create class. Once the user has given the speech
command, and the system detects silence it notifies the user that it is done listening voice
command using auditory feedback in step 5. In the last step, a new class is visually displayed
in the diagram.

In this chapter, we presented M3 framework that enables capturing multimodal interaction
detail in a formal and systematic approach. As this dissertation aims at improving the
usability of modeling tools for modeling and model refactoring by employing multimodal
interfaces, we define requirements for multimodal interaction for modeling in the following
chapter.

Chapter 4

Requirements Specification and Design
Goals for Multimodal Modeling

In this chapter, we define requirements for multimodal interaction for modeling. We employ
an iterative approach towards the identification of requirements. Section 4.1 describes the
vocabulary for defining speech commands. Section 4.2 describes the methodology of defining
touch gestures using the observations from the pilot study and expert feedback to elicit the
requirements of the MiNT framework. In section 4.3 we establish a set of visionary scenarios
to describe the scope of MiNT framework. These scenarios form the basis for identifying the
functional and non-functional requirements of the MiNT framework.

4.1 Speech for UML Modeling

Speech as a natural mode of interaction reduces the learning curve of working with interfaces
and allows the user to move around freely and use hands for different operations. Application
of multimodal interfaces using speech modality is not new to software engineering and has
already been employed by researchers for visual programming [LA97]. Although modern
speech recognition engines offer high accuracy in recognizing the spoken commands, several
factors affect speech as an input modality and its applicability in broader contexts. Peacocke
et al. [PG90] identify five major factors that affect the accuracy of speech recognition
as:

30 Requirements Specification and Design Goals for Multimodal Modeling

Fig. 4.1 Vocabulary for UML modeling tools

1. Isolated words: Speech with isolated words (short silences between the words) is
easier to be recognized as word boundaries are difficult to be found in the continuous
speech which is common to natural human communication.

2. Single speaker: Speech from a single user is easier to recognize than from a variety
of speakers. Therefore, most speech recognition systems are speaker-dependent and
produce different level of accuracy depending on the speaker’s pronunciation.

3. Vocabulary size: Size of the vocabulary of words to be recognized influences the
recognition accuracy. Large vocabularies are more likely to contain ambiguous words
than small vocabularies making them difficult for speech recognition engines.

4. Grammar: the grammar of the recognition domain defines the allowable sequence of
words from the vocabulary. In a tightly constrained grammar number of words that
can follow any given word is smaller. Speech recognition is more accurate with tightly
constrained grammar since it reduces the search space of words that can occur in a
sequence.

5. Environment: Background noise from the environment can significantly affect and
lower the speech recognition accuracy.

When using speech as an input modality user can invoke commands to interact with the
modeling tool or the model. Different layers of vocabulary are combined by the user

4.1 Speech for UML Modeling 31

Fig. 4.2 JSGF grammar for speech recognition of simple spoken commands

to formulate speech commands for modeling and model refactoring. In figure 4.1 we
present the vocabulary identified for spoken commands. Layer 1 represents the elements
of the UML vocabulary which is defined in the UML meta-model. UML meta-model
defines concepts such as classes, attributes, and methods. While UML allows extending
the vocabulary by using UML profiles for domain-specific needs, otherwise the vocabulary
remains unchanged.

Layer 2 define the refactoring vocabulary based on Fowler et al. [FB99]. This layer represents
the body of words forming the model refactoring use cases such as extract superclass, or
push down attribute. In appendix A we describe the use case considered for model level
refactoring in this dissertation. Layer 3 consists of the tool-specific vocabulary that enables
formulation of speech commands common to modeling tools. This vocabulary can contain
words describing various user interface components such as diagram editor, canvas, or the
words commonly associated with diagramming tool such as order, group, style, and layout.
Layer 4 contains the words describing application domain concepts.

The UML vocabulary contains only a small set of words. The modeler is required to have the
knowledge of the vocabulary. It makes the UML vocabulary suitable for a command-and-
control style of speech input. A command-and-control speech input reduces the complexity of
speech recognition by defining a rigid syntax that constrains possible speech input [ROR01].
Command and control interaction allows users to interact with a system by speaking com-
mands restricted to a set of pre-defined phrases with frames for substitution of variables. For

32 Requirements Specification and Design Goals for Multimodal Modeling

example, create class class-name. In this example, class-name can be substituted with a
word from the application domain vocabulary.

A command-and-control style language can be defined using JSpeech Grammar Format
(JSGF) 1. Figure 4.2 shows a sample grammar to recognize speech commands such as create
class, extract interface, delete package.

In the next section, we describe the pilot study to investigate the feasibility of touch gestures
for UML modeling.

4.2 Gestures for UML Modeling

Touch surfaces have been used widely to mimic the physical interactions of manipulating
physical objects on flat surfaces. Mignot et al. [MVC93] studied the use of speech and
gesture and found that gestures are effective for simple and direct commands, whereas
speech is more effective for abstract commands. For example, gesture allows interacting
with visible objects directly, whereas using speech user can interact with objects that can
be described using natural language or are not visible for interacting directly. Wu et al.
[WB03] describe a multi-finger and whole hand gestural interactions for tabletop surfaces.
Ringel et al. [RRS+04] report a set of gesture for sharing documents in a co-located tabletop
environment.

Wobbrock et al. [WMW09] highlight that gestures defined by the interface designers can
be helpful for early investigations, but they are not reflective of the user behavior. Cafaro
et al. [CLK+14] describe two approaches to defining gestures as top-down approach and
bottom-up approach. In a top-down approach, the designer defines the gesture that the user
can perform to interact with the system. Whereas, in the bottom-up approach users participate
in the design and development of interaction gestures.

We employ a mixed approach for identifying touch gestures for modeling since application
context could impact the users choice of gestures [WMW09]. These gestures were presented
to the modeling experts in the pilot study along with modeling and model refactoring use
cases that could be performed using specific gestures. The experts were asked to provide their
opinion on the mapping of a gesture to modeling use case, reassign a gesture to a different
use case if they found the mapping unintuitive, or propose a new gesture. A causality
approach was also employed in which we presented a source model and a target model after

1https://www.w3.org/TR/jsgf/

4.2 Gestures for UML Modeling 33

refactoring, and asked the experts to suggest a gesture they will use naturally to perform the
transformation.

A set of general characteristics for interacting with touch interfaces was identified to form
the basis for identifying and describing gestures. We identify three attributes for these
interactions as:

• Naturalness defines the general characteristics of the interaction. An interaction can
metaphorically represent the similarity or closeness to performing the interaction with
a physical object naturally. For example, a swipe gesture is metaphorically similar to
clearing a tabletop of an unwanted object by the motion of hand forcing the object
away.

• Context attribute defines whether the user interaction requires any contextual informa-
tion to perform the use case. For example in a context-dependent interaction user needs
first to select two classes to create an association. Context-independent interactions do
not require any additional information to perform the use case (for example creating a
class or package on the canvas).

• Complexity describes how modalities are employed for defining a user interaction. In
a sequential interaction, a user can provide input in one modality followed by another
modality. An example of sequential interaction is when a user first points at an object
and then speaks a command. In a parallel interaction, two or more modalities can
be employed at the same time. For example, while pointing at the object, the user
simultaneously speaks a command.

4.2.1 Results

The expert review sessions were conducted with modelers from software engineering back-
ground. Since they were familiar with touch interfaces, and modeling and model refactoring
process, they can easily follow the mapping of different gestures to different modeling use
case. Table 4.1 presents the list of all the identified gestures and their mapping to modeling
and model refactoring use cases.

To perform an operation such as the create class, the modelers preferred the double tap
gesture on an empty area within diagram canvas. Some modelers used drag and drop gesture
as an alternative since they are familiar with performing this operation if they have already
used a CASE-tool user interface. Add attributes and add methods to a class was carried
out with a drag and drop gesture.

34 Requirements Specification and Design Goals for Multimodal Modeling

Use case InteractionAction
Create class One finger double tap gesture, or drag and

drop class from the palette
Delete class Once finger swipe right, followed by swipe

left on existing class (similar to drawing a
cross)

Create attribute or method Drag and drop attribute or method from the
palette

Create an association One finger double tap on the source class,
followed by a line draw gesture to the target
node

Delete association Once finger swipe right, followed by swipe
left on an association (similar to drawing a
cross)

Change association type One finger swipe gesture on an association
Change association direction Two finger swipe gesture on association
Extract superclass Select multiple class, followed by two finger

swipe up gesture
Extract subclass Select a class, followed by two finger swipe

down gesture
Merge classes Select multiple class, followed by two finger

pinch gesture
Collapse hierarchy Select super class, followed by two finger

pinch gesture
Merge subclass Select multiple subclass, followed by two

finger pinch gesture
Move attribute or methods Long press touch event to select attributes or

methods, followed by a line draw gesture to
the target node

Replace attributes with objects Long press touch event to select attributes,
followed by a line draw gesture to the empty
canvas

Table 4.1 InteractionActions with touch gestures for modeling and model refactoring use
cases

4.3 Requirements for Multimodal Modeling 35

To create an association between two classes the modelers found the line draw gesture from
source to target intuitive. To change the association type the one finger swipe gesture on an
existing association was preferred. To change association direction, modelers preferred the
two finger swipe gesture. A swipe right gesture followed by swipe left gesture was used by
the modelers for delete class and delete associations.

For extract superclass use case a two finger swipe up gesture was considered to be appropri-
ate. For the extract subclass use case modelers described two finger swipe down gesture as
the most intuitive gesture interaction.

The merge classes refactoring use case was found to be similar to grabbing two or more
physical objects and forcing them to collide and form a single entity. Modelers preferred a two
finger pinch gesture on selected classes for this use case. Modelers found thepinch gesture
also useful for collapse hierarchy and merge subclasses use case. Wu et al. [WSR+06]
also highlights that gesture reuse reduces the number of gesture primitives that a user must
learn. Though, for both the interactions, the context was found to be different. Collapse
hierarchy should work only if a single class with multiple subclasses is already selected
for the interaction. For the merge subclasses use case, the context requires two or more
subclasses with a common superclass to be selected during the interaction.

4.3 Requirements for Multimodal Modeling

For the elicitation of the requirements, we use a scenario-based process and start with the
identification of the actors of the system. The identified actors represent the users of the
MiNT framework.

The Modeler is the main actor for multimodal modeling and model refactoring offered by the
MiNT framework. The framework should support an individual and collaborative working
style.

Developers of new multimodal interfaces must be able to use existing modalities, as well
add new modalities to the MiNT framework. The framework should allow developers to
define and configure multimodal fusion.

36 Requirements Specification and Design Goals for Multimodal Modeling

4.3.1 Visionary Scenarios

Visionary scenarios are used to define the usage of a future system’ and are instances of use
cases [BD10]. In this section, we describe two scenarios from the modelers perspective, and
two scenarios from the developers perspective.

Scenario 1: Multimodal Modeling

Bean is a software consultant and frequently employs modeling for collaboration and commu-
nication. After returning from a client meeting, he realizes that he is not very well aware of
the application domain concepts. He decides to do some brainstorming on his new interactive
whiteboard. He launches multimodal modeling tool, on his machine, which is connected with
the interactive whiteboard and walks in front of the board. He touches the whiteboard and
speaks create class savings account using his Bluetooth headset paired to his smartphone.
Next, he adds some more classes, attributes, methods, and associations to enrich his model.
As he is not sure about certain part of the model, he draws a circle gesture to highlight the
elements and asks Dodo who is sitting on the other side for her feedback. Dodo puts her
headset on and walks in front of the whiteboard. She realizes that Bean added multiple
common attributes to savings account and checking account classes. She immediately
employs the multimodal input by selecting the two classes using touch input and speaks the
command extract superclass account. Immediately a new class appears on the canvas with
the name Account and all the common attributes from the existing classes. A generalization
association is created from the Account class to the existing classes.

Scenario 2: Collaborative Multimodal Modeling

John and Amy are working on a ride sharing application. Since it is semester break and sunny
weather, they decide to walk to the nearby lake and work on the design of the system. Once
at the lake, they pull out their tablet devices and start the multimodal modeling application.
John already has an existing design, which they can reuse. They connect their tablets using
Wi-Fi Direct [All13] and set up an ad hoc peer-to-peer communication channel to share the
model. They identify two refactoring tasks for the shared model: 1) refactoring the model by
merging a few classes, 2) getting rid of a nested class hierarchy. John decides to merge the
classes, while Amy agrees on reducing the hierarchy in parallel. John performs a multimodal
interaction by selecting the classes using touch input and a pinch gesture. Immediately, all
existing classes are replaced with a new class that contains all attributes and methods from
the old classes. The changes done by John are immediately visible on Amy’s tablet.

Scenario 3: Integrating new Modality

4.3 Requirements for Multimodal Modeling 37

Paul is developing a hand tracking glove as input enabler for virtual reality application. He
realizes that his glove can also be used to interact with the models freely. Since his glove is
based on an inertial measurement unit (IMU) and does not restrict movement, he can turn
any white surface into a canvas with the help of a projector. He uses the MiNT framework
to prototype a modeling tool integrating motion input from his glove, and speech input. He
defines the multimodal integration of these two modalities in the framework and then sets
out a user study to evaluate his prototype.

4.3.2 Requirements

Based on the pilot studies, literature review, and identified visionary scenarios we describe
the functional requirements (FR), and non-functional requirements (NFR) for the MiNT
framework.

FR1: Multimodal Modeling

The MiNT multimodal modeling framework must support interactions using different input
and output modality enablers such as touch surfaces like tablets and whiteboards, motion
controllers such as leap motion, and speech input. It must allow modelers to work with
gestures within the context of modeling and model refactoring tasks identified in section
4.2.

FR2: Collaboration

The MiNT framework must enable multiple users to interact with a model at the same time
in collaborative modeling. Collaboration is an important aspect of modeling for having a
shared understanding and representation of the modeled phenomena. Collaborative mod-
eling sessions facilitate communication among stakeholders for knowledge transfer and
transformation.

Collaborative modeling on a single user interface is affected by input device-specific factors.
For example, some interactive whiteboards do not support multi-touch. Hence only one
modeler can interact with the surface at a time. Similarly, single tablet devices are too small
for two modelers to perform interaction using touch gestures at the same time. The MiNT
framework must allow collaboration using multiple input devices.

FR3: Multimodal integration and customization

A key challenge in the development of multimodal interfaces is the high cost in time of
implementing a multimodal interface from scratch [JS07]. The MiNT framework must

38 Requirements Specification and Design Goals for Multimodal Modeling

support quick prototyping of multimodal interfaces for modeling tools. It must allow the
easy integration of different modalities for multimodal fusion. The MiNT framework must
provide interfaces for the developers to make their tool specific customization. For example,
the developers can configure the mapping between gestures and the resulting actions on the
model.

NFR1: Real-time Multimodal Integration

A key non-functional requirement for multimodal interfaces is the low latency during the
integration of different modalities, and appropriate instantaneous user feedback. A slow
system response can lead to confusion and frustration among the users. For example, if
the system takes too much time recognizing a speech command, without providing any
visual feedback of the process the user might get confused. In face, the MiNT framework
must process different modalities in real-time and perform the fusion efficiently without any
noticeable delay.

NFR2: Extensibility of Modalities

In pilot studies, we identified the need to be able to switch between the various speech
recognition engines, for example, to allow input in different natural languages. The MiNT
framework must enable the developer of a multimodal modeling interfaces to replace or
extend the existing components of the MiNT framework. For example, it must be possible
for the developer to extend the existing gesture vocabulary by adding new letter or shape
strokes gesture [CZ07]. It must also allow developers to add entirely new modality enablers
such as Kinect motion sensor, or Myo 2 wearable gesture and motion control.

2https://www.myo.com/

Chapter 5

MiNT Framework and Applications

This chapter describes analysis and design of the MiNT framework for multimodal modeling
requirements identified in the previous chapter. Section 5.1 presents the analysis object
model of the framework. In section 5.2 we identify the design goal. The architecture of the
framework is presented in the section 5.3. Section 5.4 describes the multimodal integration
in MiNT framework. In section 5.5 we describe a reference implementation of the MiNT
framework using Eclipse Papyrus modeling editor for UML Class diagram. Section 5.6
describes another implementation of the MiNT framework for a multimodal modeling tool
on a tablet device.

5.1 Analysis Model

Figure 5.1 shows the object model of the framework. InputEvent is the core abstraction of
the object model. It describes any interaction of the user that can invoke an action on the
model. We categorize events in two groups based on the nature of their usage.

Selection Events

TouchEvent, MotionPointerEvent, and MouseInputEvent are user interaction events that
trigger the selection of UML model elements on the user interface. TouchEvent is specific to
surfaces allowing user input in the form of touch interaction, for example, from a tablet device
or an interactive whiteboard surface. MotionPointerEvent is triggered when the user points
at a UML model element on the screen using a motion sensor. Both event types facilitate
selection of multiple model elements at the same time. MouseInputEvent is triggered when
the user interacts using a mouse as input device.

40 MiNT Framework and Applications

Fig. 5.1 Object model of interaction modalities for multimodal interaction (UML class
diagram)

Manipulation Events

The TouchGestureEvent represents gesture events that the user can perform while interacting
with the interface. The SwipeGesture event has a direction attribute to distinguish if the event
was triggered in an up, down, left, or right direction. The SpeechInputEvent describes
speech input as interaction modality. Gestures from the motion sensor are defined as
MotionGestureEvent. Finally, we identify traditional keyboard-based user interaction as
KeyboardEvent.

The list of events described above is considered as the core events. Extending the framework
with new modalities that require new events is accomplished by adding a new subclass of
InputEvent with its modality-specific attributes. For example, developers using the MiNT
framework can introduce a new subclass of InputEvent for stroke events to recognize shape
and symbol gestures from touch events.

The class diagram shown in figure 5.2 presents the multimodal integration capability. The
DefinitionManager object contains all the InteractionDefinitions defined for interacting with
the UML models. A set of DefinitionManager objects can be instantiated for different
diagram types by specifying the modelEditorID attribute. For each InteractionDefinition
an actionHandler must be provided, which gets notified when the specific interaction oc-

5.2 Design Goals 41

Fig. 5.2 Object model of interaction definition (UML class diagram)

curs. Whether the interaction is unimodal or multimodal is determined by the number of
InputEvents in the definition.

5.2 Design Goals

The design goals of the MiNT framework refine the nonfunctional requirements of the
framework (see section 4.3.2), as well as feedback from the expert modelers and observations
made during the pilot studies.

Flexible multimodal fusion

Users can use the interaction modalities in parallel or sequentially. For example, a user can
first perform a touch gesture and then speak a command, or use both modalities at the same
time. This allows the developers to design and develop the new combination of modalities
(multimodal fusion) for user interactions in multimodal interfaces. MiNT framework must
provide this flexibility of modality integration.

Human readable interaction definition

Developers must be able to create new unimodal or multimodal interaction definitions in a
human-readable markup language format. These definitions should be independent of the
modeling language implemented by the modeling tool.

42 MiNT Framework and Applications

Fig. 5.3 MiNT framework architecture (UML component diagram)

5.3 Architecture of MiNT 43

5.3 Architecture of MiNT

MiNT is based on a component-based architectural style to enable low coupling and high
cohesion. Figure 5.3 shows the architecture of the MiNT framework. The component-based
architecture provides the possibility to replace an old component with a new component as
long as the new component conforms to the prescribed behavior in the system architecture
[HC01].

The SpeechInput component is responsible for enabling speech interactions. MiNT frame-
work provides two different versions of the SpeechInput component. A local speech recogni-
tion engine and a component that allows integrating cloud-based speech recognition systems
such as Nuance Cloud services 1, or Google cloud speech API 2. Local speech recognition
engines provide freedom of instrumenting the speech recognition process by adding custom
grammar and vocabulary. The SpeechInput component provides a simple socket based server
to enable any remote client to send the speech recognition results. This allows using the
microphone of a mobile phone for speech input when the user interacts with an interactive
whiteboard surface and is physically away from the desktop microphone (enables freedom of
movement).

The TouchInput component is responsible for capturing the event stream from a touch surface
such as tablet device or an interactive whiteboard surface. Touch interaction on any touch
surface produces screen coordinate information that is captured by this component. This
information is translated from the coordinate system of touch surface to the coordinate system
being used by the model editor to point or select an object in the model editor.

MotionInput component allow integrating hand, finger, or body movement data to interact
with the models. When a user interacts using hardware enablers such as Leap motion sensor,
Kinect motion sensor or Myo, motion data is produced by these sensors and made available
to the Motion Input component. This motion information is used for pointing and selection
of model elements after translating to the coordinate system of the model editor.

The MouseKeyboardInput component captures mouse click, mouse movement events along
with keyboard events from the system to enable traditional mouse-keyboard of interac-
tions.

Developer of multimodal interfaces can add new modality components by instantiating the
IActionInput interface of the framework, and defining the new class of InputEvent objects.

1https://developer.nuance.com
2https://cloud.google.com/speech/

44 MiNT Framework and Applications

Fig. 5.4 Example modality integration definition for MiNT framework

Modality components notify InputHandler component through the IActionInput interface
if a particular event is triggered while user is interacting using the modality (see FR3
4.3.2). The InputHandler component decouples the various input modalities from how they
are processed for multimodla fusion. Additionally, the InputHandler component uses the
TouchGestureProcessor component to identify the gesture pattern in the stream of touch data
received from TouchInput component.

The ModalityFusionManager component receives the input event data captured by the modal-
ity components, and processes them incrementally to identify any unimodal or multimodal
interactions as defined in the DefinitionManager component. The developer can define the
fusion of modalities using a simple Extensible Markup Language (XML) format (described
in next section). Thus, separating modality integration from tool-specific actions, allowing
use the same definition for different contexts (see FR3 4.3.2). For example, a circle gesture
can be utilized for selecting multiple objects in a UML class diagram editor, as well as for
creating a use case in a use case diagram.

If the user interaction events match the interaction definitions, the corresponding actionHan-
dler is notified by the MiNT framework. Figure 5.4 presents an example of an interaction
definition using XML format. The actionHandler is notified when the user draws the circle
using motion input, followed by the speech command extract superclass. The timeout prop-
erty defines the validity duration of the event. Once the timeout period is over the event is

5.4 Multimodal Integration 45

discarded. The event from another modality should be triggered within the specified timeout
period of a modality to invoke a multimodal interaction.

5.4 Multimodal Integration

In this section, we describe the attributes available for defining multimodal integration. Table
5.1 presents different modalities, and the associated attributes to formulate the interactions.
This definition can be extended by adding new attributes for existing or new modalities.

While interacting using two or more modalities, there could be a slight delay in the input from
the user. For example, the user can make a circle gesture first and then say merge classes
using speech interface. Similarly, the user can first say the command and then perform
the gesture. Johnston et al. [JBV+02] approach this issue by introducing a short timeout
to distinguish unimodal from a multimodal interaction. Hence, we introduce a common
attribute across all the modalities, namely Timeout. Timeout allows specifying the duration
after which the input event is discarded by the input processor component, providing the
flexibility of temporal integration of input lattices.

Motion Gesture Input properties allow model editors to receive gesture events from the
MiNT framework. Motion input consists of four different gestures (1) Screentap, (2) Keytap,
(3) Circle, and (4) Swipe. Screentap gesture is a forward tapping movement of a finger or tool.
Keytap is considered when a downward movement of finger or tool is recognized, similar to
pressing a button on the keyboard. Circle gesture is performed by a circular motion of finger
or tool in the air, while a swipe gesture is triggered by a linear motion of the finger or tool
in any direction. Additionally, the developer can specify whether the user should make the
gesture with the finger, or tool to be notified of the event.

Keyboard Input properties allow receiving key pressed events. Hold property triggers
the event in case of the specified key was pressed for a specified time interval. This is
synonymous to long press events on touch interfaces. Similarly, Mouse Input is a set of
properties to configure and listen for events performed using the mouse as an input medium.
For mouse events, Button attribute defines the button for the event, while it is also possible to
constraint for double click events using the defined button.

Touch Input properties allow receiving input events derived from the touch interaction by
the user. Different gestures are identified and extracted by the gesture processor component
for example swipe, pinch, and line draw.

46 MiNT Framework and Applications

Table 5.1 Properties to define interaction definition (unimodal or multimodal) with MiNT
Eclipse

Input Modality modality attribute Description
Motion Gesture Input Gesture Type Gesture types such as screentap, keytap, circle,

or swipe identified in the user interaction
Enabled Input Conditional attribute to define if the gesture is

performed using a finger, tool (e.g. a pen or
pencil), or using both.

Timeout The time span defined in milliseconds that can
pass before a timeout occurs and the event is
discarded.

Keyboard Input Key Key that needs to be processed for the action
to be executed.

Hold If the key should be in the pressed state to
invoke the event

Timeout The time span in milliseconds that can pass
before a timeout occurs and the event is
discarded.

Mouse Input Button Mouse button that needs to be clicked to
invoke the event

Double Click Flag denoting if the user needs to double click
with the specified button

Timeout The time span in milliseconds that can pass
before a timeout occurs and the event is
discarded.

Touch Gesture Input Gesture Type Identified touch gesture such as pinch, swipe,
circle, or line draw

Timeout The time span in milliseconds that can pass
before a timeout occurs and the event is
discarded.

Speech Input Phrase Phrase that needs to be recognized in the
output of speech recognition output

Recognition Type Pattern of phrase in the identified text for
example exact, start, contains, end

Timeout The time span in milliseconds that can pass
before a timeout occurs and the event is
discarded.

Pointing Fingers Boolean attribute to denote if the finger
motion input is used for mouse pointer

Tools Attribute to configure if the tool (e.g. a pen or
pencil) detected in motion input is used to
update the mouse pointer location

Touch input If the input from touch surface (interactive
whiteboard, or mobile device) is used to
update the pointer

Multiple pointers Multiple fingers or multi-touch data (if
available) should be visualized

5.5 MiNT Eclipse 47

Speech Input properties are essential if the interface integrated speech as an input modality.
In extract superclass, or add attribute. Once the speech recognition result is found to be
containing the phrase, Input processor components check for the recognition type attribute.
It could be specified to have the speech command completely or partially match the phrase.
Or, contain the phrase at the start or end of the speech command spoken by the user, to be
considered as a valid condition for the event.

Pointing attributes aims at configuring how the desktop pointer is manipulated in response to
the user input with the help of pointing device. If the motion input of fingers and tools, both
are used to enable pointer movement. Similarly, touch events on an interactive whiteboard
can result in pointer location update. Additionally, multiple pointers property allows inter-
acting using multiple fingers or a multitouch surface. This property enables visualizing and
capturing multiple users interaction, and thus useful for collaborative modeling on a shared
machine.

In the next section, we present how the model editors can provide multimodal integration
capabilities in their user interfaces by describing the integration with an Eclipse-based
modeling framework.

5.5 MiNT Eclipse

Eclipse 3 provides several existing modeling and visualization frameworks and technologies
(for example; Graphical Modeling Framework (GMF), and Graphiti) for rapid prototyping
of domain-specific modeling CASE-tools. As a cross-platform integrated development
environment (IDE) used as a platform of choice for researchers and developers to design and
develop tool support for domain-specific modeling notations for desktop operating systems.
Thus we realized that it is the most appropriate platform to show the applicability of MiNT
framework, and thus we developed a reference implementation named MiNT Eclipse.

MiNT Eclipse follows the plug-in concept offered by Eclipse [CR08]. Plug-ins are software
components in Eclipse and facilitate extending applications with additional features using
plug-ins. Plug-ins provide extension points to expose functionality from one component
to another thus enabling loose coupling between components. Components can describe
extension points as a contract that any other plugin which is interested in extending the
functionality must implement. Since the component specifying the extension point knows
nothing about the component which implements the extension, it allows developers to extend

3https://eclipse.org

48 MiNT Framework and Applications

Fig. 5.5 Architecture of MiNT Eclipse reference implementation (UML component diagram)

or introduce new functionalities easily. Since Eclipse runtime realizes the OSGi specification
[All15], plug-ins can be started or stopped at run-time.

To demonstrate the applicability of a multimodal interface for modeling, we integrated
MiNT framework into Eclipse-based Papyrus modeling tool [LTE+09] to implement MiNT
Eclipse. Papyrus provides editors for UML diagrams following the UML 2.0 specification
and supports SysML for model-based system engineering.

Two sets of use cases were identified for MiNT Eclipse with the focus on basic modeling,
and for model refactoring of UML class diagrams. All the use cases employ touch input
as the means of pointing or selecting elements in the diagram. The speech input is used to
trigger diagram manipulation commands.

Figure 5.5 presents the integration of the Papyrus UML in the MiNT framework. The
ModelCommandManager component in the MiNT Eclipse is responsible for providing
handlers to act on the notification of MiNT framework events. For the basic modeling use
case, we defined the handlers (see table 5.2) using the interaction model of M3 framework.
The table provides a list of modeling use cases, the InteractionAction associated with the
use case, and an example speech command in command-and-control format (bold texts
are representative of words from the domain vocabulary and are changeable). Action

5.5 MiNT Eclipse 49

Fig. 5.6 Deployment diagram of MiNT Eclipse (UML deployment diagram)

handlers instantiate tool-specific commands to perform the changes on the model. For model
transformations, the low-level commands are chained together to perform complex operations.
For example, extract superclass handler first instantiates a command to create a class in
the model, next, a command is executed to pull up common attributes from the subclasses
to the new class, and finally, a command to pull up common methods to the new class is
executed.

The model refactoring use cases are presented in the table 5.3. All the refactoring use cases
were taken from the Fowler’s book Refactoring: Improving the Design of Existing Code
[FB99]. While this book primarily focuses on the code refactorings, some refactorings are
also applicable for the model. Appendix A contains detail description of each of the model
refactoring use cases.

MiNT Eclipse allows users to work on models using touch input, motion input, speech input
and traditional keyboard and mouse input. Figure 5.6 shows the deployment diagram of
MiNT Eclipse. Leap motion sensor data is transferred to the Motion Input component of
MiNT framework using USB connection. Leap motion allows capturing hand and finger
movements without the need of physical contact while the user interacts in the air above
the hardware sensor. Additionally, leap motion identifies gestures such as circle gesture, or
swipe gesture, from the movement of hand and finger, and makes it accessible through the
leap motion SDK.

Touch interaction from interactive whiteboard is received using USB connection by the Touch
Input component of the framework. MiNT Eclipse allows the user to invoke speech command
using the microphone of the computer as well as using Speech App on the phone. Recorded
audio is sent over HTTPS protocol to Nuance cloud services for recognition. Recognized

50 MiNT Framework and Applications

Fig. 5.7 Multimodal interaction using interactive whiteboard and speech

text is sent to the MiNT Eclipse from the phone over web-socket. A local speech recognition
component based on CMU Sphinx is provided for offline usage.

Figure 5.7 shows a user interacting with the MiNT Eclipse interface using touch and speech
input. In the next section, we describe MiNT Mobile implementation.

5.6 MiNT Mobile

MiNT Mobile is a standalone Android application using the MiNT framework to enable
the use of touch, speech, and touch gestures for working with models using multimodal
interaction.

The ModelCommandManager component is responsible for providing the action handler and
instantiates a command for model manipulation. Additionally, the command manager allows
undo-redo operations on a model. An implementation of the memento pattern is employed
for this purpose [Gam95]. Commands once executed, modify the underlying UML model,
and notify DesignerView subsystem to update the graphical user interface.

The DesignerView maintains a list of nodes and associations and on update requests, the
ViewItem of each element available in UMLModel subsystem to render themselves on the
canvas provided by DesignerView. Since the DesignerView provides a generic implemen-

5.6 MiNT Mobile 51

Fig. 5.8 Architecture of MiNT Mobile reference implementation (UML component diagram)

Fig. 5.9 Deployment diagram of MiNT Mobile (UML deployment diagram)

tation and is coupled with UMLModel component, it provides the extensibility to provide
support for new diagram types without changing the underlying implementation. Similarly,
the underlying model could be easily extended to support additional UML Class diagram
elements such as package or interface.

A main requirement of the MiNT framework is to facilitate real-time modeling and collabora-
tion between modelers (see FR2 4.3.2). The CommunicationManager component establishes
a peer-to-peer communication across the different devices. Modelers can share their models
with other peers. The CommandExecutor synchronizes all the commands and propagates
them to the connected peers to have the same state of the model on all the peers. Wi-Fi
Direct [All13] allows a Collaboration component on Android devices to communicate with
each other directly without the need of any internet connection. This component enables
collaborating on UML models as well as diagram sketches.

Figure 5.9 shows the deployment diagram of MiNT Mobile implementation. MiNT Mobile
uses SQLite database4 component provided by the Android application framework to save the

4https://sqlite.org/

52 MiNT Framework and Applications

Fig. 5.10 MiNT Mobile user interface

models locally. Peer-to-peer communication for collaboration is enabled by the use of Wifi
P2P component of the Android framework. MiNT Mobile uses the Nuance Cloud services
for the speech recognition. Speech recognition is enabled by the SpeechKit component that
is part of the nuance mobile SDK.

In the next section, we present the user interface of MiNT Mobile, realized within the
DesignerView component.

5.6.1 MiNT Mobile User Interface

The user interface of MiNT Mobile consists of the four parts shown in Figure 5.10. The
central area (annotation 1 in the figure) is the canvas view to visualize all the model elements.
The canvas view is continuously monitored by the GestureObserver subsystem to extract
touch gestures from the touch events. Annotation 2 in the figure highlights a floating action
button, which allows users to notify the SpeechKit component to start listening for the speech
commands. As soon as the silence is detected, the SpeechKit subsystem sends the recorded
audio to a cloud-based automatic speech recognition engine. Additionally, the user can
manually press the button to send the recorded audio for speech recognition.

5.6 MiNT Mobile 53

Fig. 5.11 MiNT Mobile: Informal modeling using touch sketches

MiNT Mobile enforces the Java naming convention 5 and automatically performs the nec-
essary changes to the letter case, on the speech recognition input as and when applicable.
For example, a speech command add attribute first name results in an attribute with the
name firstName. Additionally, it performs the low level consistency check on the model.
For example, a class can have only one instance of an attribute or method with the same
signature.

Annotation 3 as shown in the figure is a small palette with the model items available for the
current diagram type. Users can drag and drop elements from the palette onto the canvas.
Attributes and methods require the drop location to be a class in the canvas for a valid model
update. For frequently used tool-specific features, the interface provides an action bar on
the top (annotation 4 in the figure). Actions such as undo-redo model change, create a new
model, save or load model, enable-disable continuous speech mode (detailed in the section
5.6.2), share the model with peers, and collaborative informal modeling, can be accessed
quickly and without interfering with the model currently open in the canvas view. Figure
5.11 presents an informal model created using MiNT Mobile.

Another critical component of the MiNT Mobile user interface is the model edit dialog.
While for lightweight and rapid modeling touch, speech, and touch gestures are sufficient, to

5http://www.oracle.com/technetwork/java/codeconventions-135099.html

54 MiNT Framework and Applications

add more detail (formalization) in the model, a user can open the dialog with a long press
gesture on a class node. This dialog allows adding, remove, and update attributes or methods.
Additionally, one can specify visibility and data types for attributes and methods, which is
immediately reflected in the canvas view.

MiNT Mobile support the similar set of use cases as identified for Papyrus UML class
diagram editor for a combination of touch and speech input. Additionally, MiNT Mobile
allows user interaction with touch gestures, as identified in the pilot study (reported in
4.2.1). Touch input is primarily for selection of model elements, whereas touch gesture
is employed for actions resulting in model manipulations. MiNT Mobile provides three
different alternatives to interact with the user interface for naming and renaming use cases
(1) Touch input on the software keyboard, (2) Speech input similar to the InteractionActions
for Papyrus UML class diagram editor, (3) Continuous Speech Mode (detailed in the next
section).

5.6.2 Continuous Speech Mode

A majority of user interactions while working with models are directed towards the naming
and renaming of model elements using domain-specific terminology. A software keyboard
on touch interfaces allows a user to provide the input by keystroke. While developing MiNT
Mobile, we observed that a significant amount of time was spent by the user to type the name
of model elements once they have created structural modifications using the combination of
touch and touch gestures. We, therefore, provided speech as input modality to reduce the
amount of touch interaction for this use case.

Observations made during the evaluation of hypothesis 1 revealed that a majority of subjects
reported fatigue caused by two reasons; First, speaking long commands continuously and
second, the reduced speech recognition accuracy for longer speech commands. Thus, we
needed to devise an efficient and intuitive approach of utilizing speech in combination with
the other two modalities employed by MiNT Mobile. To solve this problem, we introduce
Continuous speech mode.

Continuous speech mode is a context aware speech input enabler. Once the mode is activated
from the action bar of the MiNT Mobile interface, the CommandExecutor component starts
to monitor all commands that create new model elements. As soon as such a creation
command is captured to be invoked from touch or touch gesture modality, the SpeechKit
component is notified to listen for speech input. If the speech lattice is captured within a

5.6 MiNT Mobile 55

Use case InteractionAction Example speech command
Create class Point the location

on canvas and use
speech command

Create class Employee

Delete class Point on an
existing model

element and use
speech command

Delete or delete class

Rename class Point an existing
model element
and use speech

command

Rename class account

Create associations Select two model
elements and use
speech command

Add association

Delete associations Select two model
elements with an

existing
association and

use speech
command

Remove association

Create attribute or methods Point to an
existing class and

use speech
command

Add attribute name

Delete attribute or methods Point to existing
class containing

attribute or
method and use

speech command

Delete attribute email

Rename attribute or methods Point to existing
class containing

attribute or
method and use

speech command

Rename attribute name to first name

Table 5.2 InteractionActions for Papyrus UML Class diagram editor with touch and speech
input

56 MiNT Framework and Applications

Use case InteractionAction Example speech command
Extract super class Select one or

more model
elements and use
speech command

Extract super class Employee

Extract sub class Select one model
element and use
speech command

Extract sub class Bus

Merge classes Select two or
more model

elements and use
speech command

Merge classes

Collapse hierarchy Select a model
element with

subclasses and
use speech
command

Collapse hierarchy

Pull up attribute or method Select model
element with the

attribute or
method and use

speech command

Pull up attribute email

Push down attribute or method Select model
element with the

attribute or
method and use

speech command

Push down attribute email

Pull up common Select two or
more subclasses
and use speech

command

Pull up common

Move attribute or method Select source and
target model

element with the
attribute or

method and use
speech command

Move attribute email

Table 5.3 InteractionActions for model refactoring actions

5.6 MiNT Mobile 57

certain timeout period, it is wrapped in a rename command and executed on the newly created
model elements. This allows integration of touch, touch gesture and speech modalities in a
seamless and natural interaction. For example, a user can perform a drag and drop gesture
to create a class, attribute or method, and in parallel to performing the gesture speak the
name of the element. Similarly, after performing an extract superclass use case using two
finger swipe up gesture, a user can name the new class using speech. To rename attributes or
methods, a modeler can perform a long press touch event on an existing element, and input a
new name using speech.

Continuous speech mode, apart from making the interaction more natural, reduces the number
of interactions needed to start the speech command manually or to type a name using the
software keyboard.

In the next chapter, we describe the experiments conducted to evaluate the hypothesis of this
dissertation.

Chapter 6

Evaluation Multimodal Modeling on
Interactive Whiteboard

In this chapter, we describe the experiments conducted to study the applicability of multi-
modal interface employing an interactive whiteboard surface and speech as an input modality
for modeling and model refactoring. MiNT Eclipse reference implementation was used
for the controlled experiment. In section 6.1 we establish the hypothesis for the controlled
experiment. Section 6.2 describe the independent and dependent variables. Section 6.3 and
section 6.4 present the profile of the experiment participants and detail the experiment setup.
Section 6.6 presents the results of the controlled experiment. Finally, we discuss the findings
of the experiment and reports threats to the validity of the results.

6.1 Context

A new or a complex interface with hidden menus and actions can introduce additional
cognitive load to recall, remember, and discover actions while working on complex modeling
tasks. A common reason for increased cognitive load is the abundance of information to
be processed at a given time. Complex task increases the number of information units in
working memory that interacts with each other. These information units are required to be
processed simultaneously to fulfill task objective. For example driving from one point to
another requires several information units such as knowledge about navigation path, traffic
and weather conditions, distance from the car/object in front, and obvious knowledge about

60 Evaluation Multimodal Modeling on Interactive Whiteboard

driving and controlling the vehicle. Cognitive load theory differentiates between three types
of cognitive load in the design and evaluation of instructions:

• Intrinsic: It is the inherent level of difficulty caused by the structure and complexity of
any given content. Intrinsic cognitive load depends upon the number of informational
units a learner needs to hold in the working memory to comprehend the information
[PCS02].

• Extraneous: The cognitive load imposed by the manner in which information is
presented to the user and by the working memory requirements of the instructional
activities is termed as an extraneous cognitive load. This load is a form of overhead
that does not contribute to an understanding of the content and reduces the number of
cognitive resources available to process the intrinsic and germane load [CS91].

• Germane: Germane cognitive load represents the load induced by the learner’s effort
to process and comprehend the material [SVMP98]. In the modeling task, this load
can be attributed to the mental model created by the modeler.

We believe multimodal interfaces employing speech could be effective in reducing the
cognitive load by allowing the modelers to naturally interact with the interface, as oppose to
traditional unimodal interfaces. Thus, enabling modelers to improve their efficiency during
modeling and model refactoring tasks.

We formulate null hypothesis for the controlled experiment:

H10: Modelers using multimodal interface utilizing an interactive white-
board surface and speech input have no improvement in their efficiency than the
modelers using traditional unimodal modeling interface during modeling and
model transformation activities.

Corresponding alternative hypothesis is:
H1A: A multimodal interface utilizing an interactive whiteboard and speech

input improves the efficiency of modelers during modeling and model transfor-
mation activities.

Roland Brunken [BPL03] categorize various approaches to measure cognitive load in two
categories as, objectivity and causal relation. Objectivity describes whether the approach uses
subjective data or objective observations for the evaluation of cognitive load. While Causal
relation, classifies approaches based on the type of relation of the phenomena observed by
the measure and the actual attribute of interest. For example, a direct link exists between
cognitive load, the difficulty of the content, change in efficiency of task completion and

6.2 Variables 61

error rate. For the evaluation of our hypothesis, we consider a combination of subjective and
objective approaches.

6.2 Variables

In an experiment, the independent variable is the variable that is varied or manipulated by
the researcher, and the dependent variable is the response that is measured. An independent
variable is a presumed cause, whereas the dependent variable is the presumed effect.

Independent variables:

• Setup: It is a binary variable capturing whether the subject is using the multimodal
interface employing speech and touch interaction or any general UML modeling tool
as the baseline approach. For this experiment, we employed Visual Paradigm 1 as the
baseline modeling tool.

• Application domain knowledge: It is not always the case that the modelers are
very well aware of the application domain being modeled. Frequently modelers take
the input of application domain experts in a separate session and try to produce a
structured model subsequently in a different session either alone or with a group of
modelers. Further, there is considerable evidence that domain specific knowledge is a
key factor distinguishing experts from novices within the context of problem-solving
[Swe88]. Unfamiliarity with the application domain can increase cognitive load and
affect performance in explorative tasks. To this end, we categorize subjects with low,
medium and high awareness of the application domain. Low represents awareness of
some domain-specific terminology, medium represents being able to associate entities
within the domain, and high represents subjects with the working experience.

• Modeling frequency: Basic modeling knowledge is a pre-requisite for the recruitment
of the subjects. The subjects are classified in three categories based on their modeling
frequency i.e. low, medium, high. Low represents a subject group with modeling
frequency within the range of one twice per month (also could be considered returning
or infrequent users). A medium is a group of subjects using modeling tools and
techniques one twice per week (frequent modelers). High-frequency subjects are the
one practicing modeling and model transformation within the context of their work
almost every day (very frequent modelers).

1https://www.visual-paradigm.com

62 Evaluation Multimodal Modeling on Interactive Whiteboard

Dependent variables:

1. Objective Measures:

• Time to complete: Cognitive load can be correlated with the efficiency of the
user and relate to the performance. We define ‘efficiency’ as the amount of time
required to complete a task. If the user’s cognitive load increases either due to
the unfamiliarity with the tools interface or due to complex navigations within
the tool, he is supposed to take more time to complete his task.

• Number of errors: As the complexity of tasks increases, users can make errors,
which explicitly affect the efficiency variable. We make an observation to see if
any correlation exists between the complexity of modeling task, tool interface,
and the number of errors. The number of errors can affect time to complete as
modelers have to spend additional time to correct the mistakes. We only consider
errors that occur or lead to change in the model. The following two different
error types are identified:

– E1: Unintentional errors occur due to the lack of tool usage knowledge or
the unwanted behavior of the tool resulting in change within the model. Such
errors require modelers to undo their changes and find an alternative approach
to accomplish his task. For example, the tool creates self-association for
a class when the user is trying to create an association from one class to
another, or creating/deleting an element unintentionally while trying to
create something else (could be attributed to either of the two gulfs defined
by Norman).

– E2: These are the error specific to a modeling task for example creating an
irrelevant class, adding attribute and methods in wrong objects, or adding
unnecessary association. Such errors could be attributed to an incomplete
mental model of the application domain, solution domain, cognitive load or
individual attentional process. Frequently if the modeler can spot the error,
they rectify their mistakes with the combination of undo-redo or copy-paste
mechanism. For example cut and paste attribute to the correct class, or delete
it from the wrong class and recreate in the target class.

2. Subjective Measures:

• Self-reported difficulty of materials: is a subjective measure that aims at cap-
turing the cognitive load from the perspective of the modeler or the tool user. The

6.3 Subjects 63

difficulty of the materials could be attributed to the difficulty of the task itself,
individual competency, or attentional processes.

• Self-reported difficulty using interface for a certain task: describes the use-
fulness of any tool interface from the modelers perspective to accomplish their
task.

6.3 Subjects

Modeling knowledge is an essential prerequisite for this study. 13 subjects were recruited
with basic modeling experience using UML. We believe that if the subjects are aware of
modeling tools and techniques, they should easily be able to start working with either of the
two interfaces. Subjects were randomly assigned into two setup treatment groups. In this
experiment, we did not consider creating a balanced group by expertise as our objective was
to explore and understand the generality of the hypothesis.

6.4 Setup

The experiment required the subjects to work on two different tasks, modeling, and model
transformation. Tasks were identified and improved in pilot sessions with the help of
several volunteers before the final experiment to have a more clear, unambiguous, and
realistic representation of the task description along with supporting material (see appendix
B.2).

Task 1 Modeling : Online Rental Platform
Task 2 Model transformation (Refactoring and Refinement) : Rental Company

Table 6.1 Task Categorization

Task 1 required (as shown in Table 6.1) the subjects to work on the creation of a simple
application domain model representing the domain elements and their associations. Task
description was formulated as natural language requirements instead of instructional format
or bullet points. Providing the description in instructional format can influence or interfere
with the subjects natural thinking process of breaking down the task into logical steps. Task
2 was aimed at model transformation employing model refactoring and model refinement
to extend an existing model. Task description was formulated as transformation steps in

64 Evaluation Multimodal Modeling on Interactive Whiteboard

an instructional format. The application domain of the tasks was ’Online Rental Platform’
and Organizational hierarchy of a ’Rental Company.’ These domains were chosen with the
assumption that the subjects should have some awareness of the domain, model elements,
and their associations.

For this experiment, MiNT Eclipse speech recognition system was not instrumented to use a
domain vocabulary. An unconstrained vocabulary allowed us to have a realistic observation
for the applicability of a speech interface in a global software engineering project setup,
where stakeholders with different speech accents can interact with the system. In such
scenarios, it is not possible to either train the speech recognition system with a customized
acoustic model for every stakeholder or constraint the vocabulary with predefined words
from a domain as domain vocabulary tend to be rather flexible and evolving with the software
project.

6.5 Procedure

The experiment was divided into three parts. In the first part subjects working with the
multimodal interface, treatment was given a short introduction on how to interact and work
with the multimodal interface and the infrastructure setup. Additionally, subjects were
provided with a list of speech commands supported by the MiNT Eclipse interface for
reference. Subjects assigned to baseline treatment were given a basic tool usage training in
case subjects asked for it explicitly. All subjects reported that they have already worked with
the baseline tool earlier. In the second part of the experiment, subjects were provided with
the first task description.

Once the subject has finished reading the description, they notified the instructor as soon as
they were ready to start working on the task using the tool interface. Subjects were required to
use think aloud methodology working on the tasks. Thinking aloud during problem-solving
means that the subject speaks out whatever thoughts come to mind while performing the
task [VSBS+94]. After completing the task, subject notified the instructor. Subsequently,
they were provided with the second task description along with the existing model, and the
subject performed the task in the same format as of the first task. The second part of the
experiment was video recorded for further analysis with the consent of the subject. In the
third and last part of the experiment, subjects were asked to fill out an online questionnaire.
Further, instructor reviewed subjects responses with them to get a clear understanding of

6.6 Experiment Results 65

their selected choices. Subjects were additionally encouraged in the session to share their
insight and observations made during the experiment.

6.6 Experiment Results

6.6.1 Collected Data

In total, 13 subjects voluntarily participated in the experiment. At random subjects were
assigned to baseline treatment, which was a familiar modeling tool for all the participants,
or the MiNT Eclipse treatment. Out of six subjects assigned for baseline treatment total
three had Masters (either pursuing or completed) as minimum education qualification, while
educational qualification of remaining three was Ph.D. (either pursuing or completed). Seven
subjects were assigned to MiNT Eclipse treatment, with two subjects having Bachelors
and Masters each as their qualification while remaining five had Ph.D. (either pursuing or
completed). Detailed information on the subjects and the collected data during the experiment
is presented in the following section.

ID# Setup Education Domain
Familiarity

(Task 1)

Domain
Familiarity

(Task 2)
1S baseline Master medium low
2E baseline Master medium high
3M baseline Master medium medium
4J baseline Ph.D high high
5A baseline Ph.D medium medium
6D baseline Ph.D medium medium
7D MiNT Eclipse Bachelor low medium
8K MiNT Eclipse Master medium medium
9S MiNT Eclipse Ph.D high medium

10Z MiNT Eclipse Ph.D medium medium
11C MiNT Eclipse Ph.D high high
12D MiNT Eclipse Ph.D high high
13J MiNT Eclipse Ph.D low medium

Table 6.2 Collected data from the experiment (part 1)

Setup, education level of subjects, self-reported domain familiarity for modeling task, self-
reported domain familiarity for model transformation task is summarized in Table 6.2. Table

66 Evaluation Multimodal Modeling on Interactive Whiteboard

ID# Modeling Frequency Time to
Complete in

seconds
(speech

overhead)
(Task 1)

Time to
Complete in

seconds
(speech

overhead)
(Task 2)

#E1 #E2

1S Once-twice per week 511 717 - 4
2E Once-twice per month 768 780 3 -
3M Once-twice per week 292 580 9 1
4J Once-twice per week 347 281 4 2
5A Once-twice per week 284 663 11 -
6D Once-twice per month 646 512 - -

Number of total errors 27 7
7D Once-twice per week 369 (51) 394 (104) 2 1
8K Once-twice per month 263 (174) 352 (40) - 1
9S Once-twice per month 294 (40) 370 (70) 2 -

10Z Once-twice per week 399 (116) 427 (71) - -
11C Once-twice per month 430 (49) 541 (50) 1 -
12D Once-twice per week 367 (46) 327 (70) 3 1
13J Once-twice per month 316 (52) 358 (16) 3 2

Number of total errors 11 5
Table 6.3 Collected data from the experiment (part 2)

6.6 Experiment Results 67

6.3 presents self-reported modeling frequency of the subjects, time to complete modeling
task, time to complete model transformation tasks, the number of type one error, and the
number of type two error during modeling and model transformation task. Additionally,
time to complete for MiNT Eclipse section separately within bracket reports the additional
time spent by the participant to repeat the speech command if the speech recognition engine
was not able to provide correct recognition result on the first attempt. All the time variables
are reported in seconds and recorded using stopwatch during the experiment. Further, we
cross-checked time to complete variable and errors with the help of video transcribing of
each experiment session.

6.6.2 Analysis

We applied t-Test to test on the collected data set. A t-test was selected as a statistical
method since we have two sample groups and the sample size was small (13 subjects in two
groups). Since there was significant speech recognition overhead for the MiNT interface, we
performed t-Test twice; with speech overhead, and ignoring speech overhead, against the
baseline. We reformulate our hypothesis as:

H10 : µ1 −µ2 = 0
H1A : µ1 −µ2 ̸= 0

Baseline vs
MiNT Eclipse

(ignoring speech
overhead)

Baseline vs
MiNT Eclipse (

speech
overhead)

Task1 Task 2 Task 1 Task 2
F at α = 0.05 11.42 6.20 10.62 5.26

Fcriticalat α = 0.05 4.38 4.38 4.38 4.38
Table 6.4 F-test for the equality of variances

To perform t-Test we have to identify if the variances of the two groups are equal or not.
For this we perform an F-test [SC89]. More detailed summary of the results is presented in
the appendix B.4. Since F > Fcritical for every observation (see table 6.4) we conclude that
the variances of the two groups are unequal. Hence, we perform Welch’s t-test or unequal
variances t-test to validate our hypothesis. Unequal variance t-test was conducted as it is
more reliable if two samples have unequal variances and unequal sample sizes in place of
regular Student’s t-test or Mann–Whitney U test [Rux06].

68 Evaluation Multimodal Modeling on Interactive Whiteboard

Observations from the the two-tailed t-test are presented below (detailed summary in appendix
B.5.). For every observation if tStat < -tCritical two-tail, or tStat > tCritical two-tail, we reject the
null hypothesis. We use significance level (α) of 0.05 and reject the null hypothesis if the
ptwo-tailvalue (probability of finding the observed results when the null hypothesis is true) is
less thanα .

Baseline vs MiNT Eclipse (ignoring speech overhead) Task 1: There is
no evidence of significant improvement in the efficiency of using MiNT Eclipse
setup against the baseline approach in-spite of ignoring speech recognition
overhead (-2.44 < 1.48 < 2.44, and ptwo-tail = 0.18 > 0.05 = α). Thus, the null
hypothesis H10 can not be strongly rejected for this scenario. Although there
is evidence suggesting modelers complete modeling task when using MiNT
Eclipse (M=348.28, SD=59.56) over baseline approach (M=474.66, SD=201);
t(6)=1.48, p=0.18 by an average of 126 seconds less time in the current data
set.

Baseline vs MiNT Eclipse (ignoring speech overhead) Task 2: For the
model transformation task ignoring speech overhead report improved efficiency
over the baseline approach (-2.44 < 2.48 > 2.44, and ptwo-tail= 0.04 < 0.05 = α).
Thus, the null hypothesis H10 can be rejected and alternate hypothesis H1Acan
be accepted. Data set further reveals that modelers working with MiNT Eclipse
(M=395.57, SD=71.65) against baseline approach (M=588.83, SD=178.44);
t(6)=2.48, p=0.04 are faster by an average of 193 seconds.

Baseline vs MiNT Eclipse (speech overhead) Task 1: For modeling task
with speech overhead included statistical analysis concludes rejecting alternate
hypothesis with α value of 0.05 (-2.44 < 0.59 < 2.44, and ptwo-tail = 0.57 >
0.05 = α). Still, in the current data set with time to recover from speech
errors included, subjects achieve an efficiency of 50 seconds with MiNT Eclipse
(M=424, SD=61.78) over baseline approach (M=474.66, SD=201); t(6)=0.59,
p=0.57.

Baseline vs MiNT Eclipse (speech overhead) Task 2: Similarly, including
speech overhead for model transformation, suggests rejecting alternate hypothe-
sis (-2.36 < 1.69 < 2.36, and ptwo-tail = 0.06 > 0.05 = α). For model transforma-
tion task with speech overhead included MiNT Eclipse (M=455.71, SD=77.78)
user saved 133 seconds on average over baseline approach (M=588.83, SD=178.44);
t(6)=1.69, p=0.13.

6.6 Experiment Results 69

Our statistical observation revealed that for model transformation task there was a significant
improvement in the efficiency (193 seconds on average) after ignoring the speech recognition
overhead, and also data sample gives reasonable evidence to support the alternative hypothesis.
For the modeling task ignoring speech overhead modelers are faster by an average of 126
seconds, but the current sample provides comparatively weak evidence of finding the same
observation. For the remaining two analysis with speech overhead included, current data
set show efficiency of 50 seconds(Task1) and 133 seconds (Task 2) when using multimodal
interface over baseline approach. Application domain familiarity and modeling frequency do
not suggest any correlation to the efficiency of modelers in the current data sample.

Next, we tried to understand any correlation between the interface type and errors subjects
made while working on the tasks. Average of the baseline users creating type 1 error was
4.5 errors (SD = 4.6) per user, while for the same error type MiNT Eclipse users had a mean
value of 1.5 errors (SD = 1.26). For type 2 error, baseline users had an average of 1.16
(SD = 1.6), and the user of speech interface created errors with a mean value of 0.71 (SD =
0.75). Since the sample size was rather small, we considered applying any statistical model
irrelevant. From the observation, we understood that in-spite of having more errors on an
average baseline approach did not suffer from any major efficiency drop due to the nature of
interface setup. Subjects working with baseline approach had to sit in front of the experiment
computer and perform the task, which did not cause any interruption in the workflow or
introduced any overhead over their normal working with a modeling tool. On the other
hand, working with MiNT Eclipse required subjects to frequently adjust their view focus by
moving away from the interactive surface to have an overview of the model, and subsequently
move closer to interact with the surface. Additionally, speech processing naturally takes
more time as subjects have first spoken the complete command than the speech recognition
system produces the speech to text of the spoken audio, and finally, the identified command
is executed on the model.

6.6.3 Exit Interview

After the subjects finished the modeling task with either of the two interface assigned for
the experiment they were asked to assess the difficulty of the tasks, accompanying material,
and the difficulty working on a particular task using tool interface (see Appendix B.3 for
the statements). Subjects provided self-reported difficulty of the task and the difficulty
understanding the material for the most difficult task using binary variables. There was no
significant difference in being able to understand the provided material for the most difficult

70 Evaluation Multimodal Modeling on Interactive Whiteboard

Fig. 6.1 Results: Task difficulty vs difficulty understanding the material

task among the baseline and MiNT treatment group, as most of the subjects reported that the
provided material was understandable and was helpful comprehending the problem (Figure
6.1).

A significant difference was noted within the subject group regarding the most difficult task.
83% subjects working with baseline approach reported that the modeling task (task 1) was the
most difficult for them, while 71% in the MiNT group agreed on the model transformation
task being the most difficult (task 2). We asked the subjects to summarize the rationale
behind their selections verbally. Subjects working with baseline approach reported finding
model transformation easier as they could comfortably have an overview of the existing
model from the comfort of their sitting position, and quickly follow the transformation steps
mentioned in the provided material without much thinking. MiNT group mentioned that
they had to physically change their position either to interact with the interface during model
transformation task or to get an overview as they could not have the complete model in their
head all the time. This introduced interruption in their problem-solving process after each
transformation step.

Next, we asked the subjects to provide their subjective assessment using a Likert scale
for the difficulty of performing each task using the tool interface. Figure 6.2 presents the

6.7 Discussion 71

response collected from the subjects. For the modeling task, 50% subjects from the baseline
approach reported finding the tool interface introducing high difficulty, while the remaining
50% considered the difficulty to be either low or very low. 70% subjects from the MiNT
group considered the interface to be introducing low or very low difficulty in task completion
while remaining 30% found the difficulty level to be medium. For the model transformation
task, as also coincide with the task 2 being the least difficult for the baseline group, 80%
subjects reported low difficulty. At the same time for MiNT Eclipse group, we had 70%
subjects reporting difficulty to be low or very low. For the MiNT group, we also had a subject
reporting very high difficulty performing the model transformation task. Subject provided the
explanation as I feel nervous if being observed, and thus was forgetting the speech command,
or saying wrong or partial commands, subsequently feeling overwhelmed.

Subjects were asked if they created any mental or external to-do list to break down the
problem in solution steps after reading the task description. We wanted to gain an insight into
the process of identifying solution steps and if the modeling tool interaction is considered
and introduced in this to-do list. All the subjects for MiNT approach agreed to have a mental
or external to-do list after reading the task description, while for baseline except two subjects,
remaining subjects created a to-do list. We observed during the experiment that these two
subjects decided to read the task description while working on the task.

Additionally, we asked the subjects if they have anything to share with the experimenter on
the tool interface usage during the experiment. Baseline users had nothing to share, although
MiNT Eclipse users provide personal opinions and observations. One subject reported
interactive surface combined with speech is good for brainstorming. It can help verbalize
thinking over watching models being created. Another subject reported that speech improves
the speed of creating models. Facilitates collaboration by allowing people to contribute to
the model at the same time. One subject highlighted the issue of speech recognition overhead
as speech recognition errors interrupt the thinking/problem-solving process. Additionally,
subjects mentioned several features that could be interesting to have, for example, being
able to create multiple attributes in one command (add attribute email password and phone
number).

6.7 Discussion

Welch’s unequal variance t-test shows that multimodal interface employing interactive surface
and speech as input modality have statistically significant impact on the improvement of

72 Evaluation Multimodal Modeling on Interactive Whiteboard

Fig. 6.2 Results: Difficulty performing task using tool interface

efficiency of model transformation. For the modeling task results for multimodal interface
show improvement in the efficiency, though the probability of finding the same observation
if the null hypothesis was true is higher than alpha value of 0.05 in the current data set. We
think larger sample size could provide stronger evidence to reject the null hypothesis.

Based on our observation, we found that interactive whiteboard surfaces by design are more
suitable for brainstorming and collaborative modeling sessions, as oppose to the efficiency
of modeling. Speech as an input modality shows to improve the efficiency of modeling and
model transformation and fewer unintentional errors if combined with interactive whiteboard
surface, apart from additional benefits such as allows verbalize thinking in collaborative
modeling sessions, as reported by the subjects.

Speech recognition error caused by unconstrained domain vocabulary presents a different
perspective on the current state of speech recognition technologies and their applicability
for a speech interface that is to be used by an international group of users with the different
accent. Experiment results make it apparent that the state of speech recognition is not ready
for a global software engineering project with the requirement of explorative modeling, where
new domain-specific terms are frequently introduced during the early stages of requirements
engineering process and are usually only known to domain experts. Using existing domain
ontology (if available) or semi-automatically extracting frequently occurring terms in the
requirements specification of projects with similar domain and using it to constrain the
vocabulary of speech recognition system could help to some extent reduce the speech
recognition induced errors.

The number of errors created while working with baseline approach was found to be greater
than the multimodal interface, but this does not introduce any noticeable delay in the working
time of modelers. We believe modelers can more quickly resolve the errors in the baseline

6.8 Threats to Validity 73

approach as it does not require subjects to physically switch their position and thus do not
interrupt in the workflow process.

6.8 Threats to Validity

We identify following threats to the validity of the controlled experiment.

• Size of the experiment group: The total number of subjects recruited for this ex-
periment was relatively small with 6 out of 13 assigned to baseline treatment while
remaining seven assigned to MiNT Eclipse treatment. We think for an experiment of
this nature with multiple independent and dependent variables, it is still an acceptable
group size to cautiously generalize the findings as an early evidence of the applicability
of a multimodal interface employing interactive surface and speech input. The size
of the group for baseline and multimodal treatment was also affected by the enormity
of the experiment, which sometimes lasted for almost an hour, and thus prospective
subjects had difficulty finding time.

• Tool familiarity: All the subjects of the experiment had working experience with the
baseline approach, as oppose to the subject group assigned for MiNT Eclipse treatment
who had to learn a new interface and start working immediately. We cautiously assume
that this could have made it easier for the baseline treatment group to get started
with their task and make less error. Although, this was not clearly evident from the
observations of baseline users on average took more time, and had a higher error mean.

Chapter 7

Evaluation Multimodal Modeling on
Mobile Devices

In this chapter, we describe the experiments conducted to study the applicability of two
different multimodal interfaces in the different modeling context. MiNT Mobile reference
implementation was used in the controlled experiment. In section 7.1 we establish the
hypothesis for the controlled experiment. Section 7.2 describe the independent and dependent
variables. Section 7.3 present the profile of the experiment participants and section and
section 7.4 detail the experiment setup. In section 7.6 we present the results of the controlled
experiment. Finally, we discuss the findings of the experiment and report threats to the
validity.

7.1 Context

Oviatt et al. [OV96] describe the advantage of multimodal interfaces for error correction
as users can act upon good intuitions regarding the accuracy of a particular modality.
Thus dynamically user switches from one modality to another while working to reduce the
modality-specific errors or the limitations of a particular modality in a certain context. We
performed a follow-up controlled experiment to identify the need for a multimodal interface
which is efficient, as well as suitable for different modeling contexts.

We formulate null hypothesis for the controlled experiment:

We formulate null hypothesis as:

76 Evaluation Multimodal Modeling on Mobile Devices

H20: Multimodal interface with touch, speech, and touch gestures have no
benefit over an interface employing touch and speech as input modalities for
modelers.

Corresponding alternative hypothesis is:
H21: Modelers find multimodal interface employing touch, speech and touch

gesture input modalities more useful and practical as opposed to an interface
using only touch and speech input modalities.

7.2 Variables

Based on the hypothesis it was determined that the subjective evaluation is the most optimal
approach to identifying the usefulness and practicality of either of the two interface. Though,
we are also interested in understanding if the interface reported as most useful and practical
is also the most efficient for modelers. In the last experiment, we already found initial
evidence that interfaces with speech modality improves efficiency, provided it is not affected
by errors caused by speech recognition. To this end, we identify following variables for this
experiment;

Independent variables:

• Setup: Setup is a binary variable representing the treatment either with MiNT Mobile
implementation using touch and speech interface (MiNT TS), or touch, speech, and
touch gesture interface (MiNT TSG). Since we use the same tool, it neutralizes the
tool expertise among subjects as they all have to familiarize themselves with the tool
and its interface.

Dependent variables:

1. Objective Measures:

• Time to complete: Time to complete denotes the efficiency of modelers while
performing their tasks using either of the two multimodal interfaces.

2. Subjective Measures:

• Self-reported usefulness and practicality: Modelers can evaluate an interface
for its pragmatic, hedonic, attractiveness qualities, to determine the usefulness
and practicality. We employ a combination of interview and questionnaire to
collect the ’self-reported’ subjective evaluation data from the subjects.

7.3 Subjects 77

7.3 Subjects

In total 17 subjects were recruited for the controlled experiment on the voluntary basis,
and the subjects performed the experiment in a one-on-one session in the presence of the
experimenter. All the subjects had basic knowledge of UML Class diagram notation and
experience working with CASE-tools. Every subject was required to perform the same
set of tasks using both the interfaces and provide subjective feedback. Interface to start
experiment was selected at random. Thus, nine subjects started with MiNT TS to complete
the tasks and subsequently used MiNT TSG to perform the same task, while remaining eight
subjects started with MiNT TSG, and moved on to using MiNT TS. The rationale for this
randomization was to study if there was any correlation between interface order and time to
complete.

7.4 Setup

The experiment required the subjects to work on two different tasks, modeling and model
transformation in a similar format employed in the first experiment (see table 7.1). The first
task required modelers to create a simple domain model following the description. Order
tracking domain was selected such that all the subjects have at least basic familiarity with
the domain entities and their relationships. The second task required subjects to transform
an existing model from organizational hierarchy following the transformation guidelines
provided along with an existing model. Provided material is available in the appendix
C.2

Task 1 Modeling : Order tracking
Task 2 Model transformation (Refactoring and Refinement) : Organizational

Hierarchy
Table 7.1 Categorization

7.5 Procedure

The experiment was divided into three parts for each interface. In the first part, subjects
were introduced to the multimodal interface and asked to familiarize themselves with using
the interface for five minutes. In the second part, subjects were invited to perform the

78 Evaluation Multimodal Modeling on Mobile Devices

modeling task, followed by model transformation task using the interface. We asked the
subjects to signal experimenter when they have read the task description and want to start
working with the interface. Similarly, as soon as they were done with the task, they had
to signal of completion. This time duration was recorded for time to complete variable
for both the task using the interface. In the last part, we asked the subjects to fill in a
questionnaire covering questions on various aspects of usefulness and practicality of the
interface. The Same procedure was repeated for the second interface after the subject has
finished working on both the task using initial interface, with a minor variation. While filling
in the questionnaire for the second interface, we allowed the subjects to make comparative
changes in their response to the first experiment. As the subjects had their opinion about
the first interface in a recorded format, and the opinion about the second interface mentally,
they could easily compare both the interfaces on various factors and provide a summative
response. Finally, subjects were asked to share any insight and observations within the scope
of the experiment.

7.6 Experiment Results

7.6.1 Collected Data

Since to start the experiment, subjects had to work with one of the two randomly assigned
interface; we capture this information as ’Initial interface’ in the table 7.2. Next, for each
subject time to complete modeling and model transformation task using either MiNT TS or
MiNT TSG was captured using a stopwatch and recorded in seconds. We use this collected
data to identify statistical significance in task completion time first among interfaces, and
secondly among the order of interface selection and their impact on task completion.

In total 17 subjects participated in the experiment which lasted for 30-45 minutes. As MiNT
Mobile allows working comfortably in sitting position, whereas MiNT Eclipse required
subjects to physically switch places to interact, experiment infrastructure was a regular
office setup with a tablet device to conduct the experiment. As presented in Figure 7.1,
59% subjects joining the experiment where either Ph.D. students or already had their Ph.D.
title as the education level. Remaining 41% reported to either pursuing Masters or already
have completed it. Most of the subjects reported having over three years of experience with
modeling tools and techniques (76%) accumulated from either their work experience or
within the course of software engineering studies. 18% subjects reported of experience in

7.6 Experiment Results 79

Fig. 7.1 Educational background and modeling experience of the subjects

between 2 to 3 years, while only 6% had relatively less experience in comparison i.e. 1 to 2
years.

ID# Initial interface MiNT TS MiNT TSG
Task 1 Task 2 Task 1 Task 2

1 MiNT TS 298 235 240 153
2 MiNT TS 230 190 140 105
3 MiNT TS 251 167 130 79
4 MiNT TS 250 202 136 74
5 MiNT TS 229 242 124 75
6 MiNT TS 229 208 132 86
7 MiNT TS 161 182 92 78
8 MiNT TS 152 138 111 95
9 MiNT TS 253 212 178 94

10 MiNT TSG 148 129 166 152
11 MiNT TSG 202 204 172 115
12 MiNT TSG 274 249 238 121
13 MiNT TSG 184 182 199 155
14 MiNT TSG 188 187 160 114
15 MiNT TSG 148 183 133 134
16 MiNT TSG 220 198 232 173
17 MiNT TSG 175 172 147 116

Table 7.2 Time to complete modeling (task 1), and model transformation (task 2) by subjects

80 Evaluation Multimodal Modeling on Mobile Devices

7.6.2 Analysis

We applied paired sample t-test to evaluate the effect of using MiNT TS and MiNT TSG on
the efficiency of the modeling. Since, both the samples were collected from the same set of
individuals paired t-test was identified as the most suitable technique.

Finding of the t-test is reported in APA (American Psychological Association) style (also
appendix C.4);

MiNT TS vs MiNT TSG Modeling: A paired sample t-test was conducted to compare
the time to complete for modeling task by subjects when using MiNT TS interface and
when using MiNT TSG interface. There was a significant improvement in the efficiency of
modelers to complete modeling task when using MiNT TSG (M=160.58, SD=44.41) over
using MiNT TS (M=211.29, SD=46.14); t(16)=4.63, p=0.0002. Modelers took 51 seconds
less when using the MiNT TSG interface to complete the modeling task.

MiNT TS vs MiNT TSG Model transformation: t-test showed significant improvement
in the efficiency of modelers to complete modeling task when using MiNT TSG (M=112.88,
SD=31.45) over using MiNT TS (M=192.94, SD=32.34); t(16)=7, p=0.000002. Reduction
of 80 seconds was observed on an average with MiNT TSG over MiNT TS during model
transformation task.

We further analyzed the data to understand if order of the interface has any affect on the
modelers efficiency. Below we summarize the finding for subjects who used MiNT TS as the
first interface;

MiNT TS vs MiNT TSG Modeling - Initial Interface MiNT TS: Results show that MiNT
TS (M=228.11, SD=45.83) users were less efficient than MiNT TSG (M=142.55, SD=43.25);
t(8)=9.59, p=0.00001 by an average of 86 seconds.

MiNT TS vs MiNT TSG Model Transformation- Initial Interface MiNT TS: During
model transformation task still MiNT TSG (M=93.22, SD=24.73) users took less time than
half the time of MiNT TS users (M=197.33, SD=32.57); t(8)=8.88, p=0.00002. Thus overall
completing the task with an average 104 seconds less. We believe the results showed such
low time for MiNT TSG subjects as by this time they were highly aware of the task by
already completing is using the previous interface, as well as the interface by using it to
perform the modeling task.

Next, we analyzed how the subjects performed who had to use MiNT TSG interface first to
work on the tasks;

7.6 Experiment Results 81

MiNT TS vs MiNT TSG Modeling - Initial Interface MiNT TSG: Results show that
MiNT TS (M=192.37, SD=41.13) users were less efficient than MiNT TSG (M=180.87,
SD=38.49); t(7)=1.42 p=0.19 by an average of 12 seconds. Thus, there is no significance
difference between the two groups.

MiNT TS vs MiNT TSG Model Transformation- Initial Interface MiNT TSG: During
the model transformation task using MiNT TSG (M=135, SD=22.44) interface subjects
showed reduced time to complete (an average of 53 seconds) than while working with MiNT
TS (M=188, SD=33.54); t(7)=3.28, p=0.01.

Paired sample t-test results for all the observations reveal that multimodal interface employing
touch, speech, and touch gesture was helpful in reducing the time to complete for modelers.
Results obtained for overall comparison between both the interfaces and the sample when
subjects used MiNT TS interface first are statistically highly significant. Observations
reveal that subjects suffered high learning curve when they started working with MiNT
TSG interface for the first task (average improvement of only 12 seconds and probability
value greater than significance level). Apart from remembering touch interaction, speech
commands and various gestures they had to focus on creating the model using recently
acquired information. By the time they moved on to perform model transformation post-
completion modeling, they were relatively more familiar with the interface, and the same is
reflected in the probability value and the difference of mean for MiNT TS and MiNT TSG.
We sum up the analysis results as:

MiNT TSG allows subjects to be more efficient irrespective of whether the
subjects already performed the same task using MiNT TS or not, though once
gained familiarity with the task and already worked with MiNT TS subjects were
highly efficient with MiNT TSG. If MiNT TSG was the first interface, subjects
reported having faced information overload.

7.6.3 Subjective Evaluation

After subjects had finished with either MiNT TS using touch and speech as input modalities
or MiNT TSG using touch, speech, and touch gestures, we asked them to evaluate the
interface for their pragmatic qualities, hedonic qualities, and attractiveness for modeling and
model transformation. Pragmatic qualities describe usability and usefulness of the interface.
In this context, we define usability being associated with the ease of use, while usefulness
is determined by the degree to which interface helps modelers expectations for frequent

82 Evaluation Multimodal Modeling on Mobile Devices

Fig. 7.2 Evaluation of pragmatic qualities for touch and speech interface against touch,
speech (MiNT TS) and touch gesture interface (MiNT TSG)

usage. Subjects provided their assessment on the pragmatic attributes of the interfaces by
answering following statements: (a) I found the interface easy to use; (b) I found the interface
practical for frequent usage. Hedonic qualities denotes the aspect of interface that relates to or
characterizes the pleasure, novelty, and of being able to hold interest by providing a positive
experience. Following statements were focused on capturing the hedonic attributes of the two
interfaces: (a) I found the interface to be creative (involving new approach towards working
with models); (b) I found the interface to be captivating (being able to hold my interest).
Attractiveness is an attribute equally influenced by the pragmatic and hedonic qualities of
the interface. We use the following to statement to understand if the modelers find MiNT
TS and MiNT TSG interface attractive and pleasant for frequent usage during their regular
modeling and model transformation tasks: (a) I found the interface to be appealing (attractive
for regular modeling and model refactoring tasks); (b) I found the interface to be pleasant
(enjoyable in a sense making pleased and satisfied). Subjects provided their assessment using
a five-point Likert scale ranging from strongly disagree to strongly agree.

Figure 7.2 presents the response for the pragmatic qualities of both the interfaces. For MiNT
TS and MiNT TSG, an equal number of subjects responded that they either agree or strongly
agree of the interface being easy to use. Out of 17 subjects, one subject (5.88% among all)
disagreed for MiNT TSG being easy to use. Our observation revealed that the reason behind
this response was the steep learning curve of knowing touch, speech, and touch gesture to
perform the task in such short span of time. This also supports the statistical observation for
MiNT TS vs. MiNT TSG Modeling - Initial Interface MiNT TSG, where subjects were
less efficient in comparison to other observations. Next, in response to the practicality of the
interfaces for frequent usage 52.94% subjects strongly agreed that touch, speech, and touch
gesture makes MiNT TSG very useful. Another 41.18% subjects agreed on the practicality
of MiNT TSG, and only one subject (5.88%) responded in neutral. For MiNT TS, a majority

7.6 Experiment Results 83

Fig. 7.3 Evaluation of hedonic qualities for touch and speech interface against touch, speech
(MiNT TS) and touch gesture interface (MiNT TSG)

of the population (58.8%) decided to opt for neutral or simply disagreed (17.65%) on the
statement. Several subjects verbalized the rationale as speech recognition being prone to
error, fatigue by speaking a lot, or awkwardness of talking to a speech interface in social
setups.

Subjects next evaluated both the interfaces for their hedonic attributes, and the observations
are presented in Figure 7.3. A large majority of subjects (76.47%) strongly agreed that MiNT
TSG is a creative and new approach towards working with models. Remaining 23.53% also
affirmed by agreeing on the statement. For MiNT TS there was a comparatively less strong
affirmation from a large majority (58.82%), who agreed to the statement. There was also a
small group of a subject (23.53%) who opted for a neutral stance on the point of MiNT TS
being creative and new from the modeling perspective. All the subjects found MiNT TSG
to be captivating and provided their confirmation by agreeing or strongly agreeing on the
point. For MiNT TS a majority of subjects responded by agreeing (52.94%) while remaining
subjects opted for either disagrees, neutral or strongly agree. Collected data reveals that
on hedonic qualities MiNT TSG provided a sense of positive experience, thus receiving
either agree or strongly agree as a response from all the subjects who participated in the
experiment.

In Figure 7.4 results for the evaluation of both the interface for their attractiveness is presented.
A large group of the subject found MiNT TSG to be very appealing for modeling and model
transformation by strongly agreeing (82.35%), while for MiNT TS 64.71% agreed and only
23.53% selected strongly agree as an option. Thus, there was a clear mandate that MiNT
TSG is overall very attractive among all the modelers. For the interfaces being pleasant to use
again, MiNT TSG was preferred by almost 94% subjects by accumulating agree or strongly
agree in response. On the other hand for MiNT TS, responses were split among all five points
of the Likert scale, with no clear majority. Still if accumulated, around 47% responded by

84 Evaluation Multimodal Modeling on Mobile Devices

Fig. 7.4 Evaluation of attractiveness qualities for touch and speech interface against touch,
speech (MiNT TS) and touch gesture interface (MiNT TSG)

agreeing or strongly agreeing on MiNT TS being enjoyable. One subject (5.88%) responded
by taking a neutral stance for MiNT TSG, and further went on to mention again as the steep
learning curve being the rationale. We think if given more time to work with MiNT TSG, the
subject would have felt more confident.

Traditional modeling CASE-tools with there unimodal interfaces are restrictive in the sense
that modelers can use them only in limited spaces (office, workbench, or confined spaces),
while mobile devices enable informality and allow users to work in the wider work context.
With MiNT TS and MiNT TSG, being available on mobile devices it is interesting to
understand if modelers perceive such multimodal interfaces useful or applicable in the
context they interact with models or modeling tools. To this end, we asked the modelers to
rate both the interfaces on their suitability in the following work context: (a) meetings; (b)
office spaces; (c) public spaces; (d) individual modeling sessions; (e) collaborative modeling
sessions, where they think can regularly use either of the two interfaces. Figure 7.5 presents
the feedback from subjects for which they were asked to select all contexts that apply to a
given interface. 58.82% subjects reported that they would readily use MiNT TSG in meetings
to quickly realize design changes, while 35.29% subjects considered MiNT TS suitable in
such modeling context. Similarly, for office spaces, 64.71% reported finding MiNT TSG
applicable, whereas only 35.29% agreed on the same statement for MiNT TS. A few subjects
detailed their views as; they would not like to disturb other colleagues by continuously
talking with the interface, while with MiNT TSG they believe to be still able to work with
less or no speech input if necessary.

None of the subjects considered MiNT TS suitable for public spaces for example during
transit using public transportation. For MiNT TSG also subjects were reserved affirming to
the statement and only 35.29% responded by agreeing to the statement. We received some
explanations covering technical and social concerns such as; internet connection drops in

7.6 Experiment Results 85

Fig. 7.5 Evaluation of suitable working contexts for touch and speech interface against touch,
speech (MiNT TS) and touch gesture interface (MiNT TSG)

86 Evaluation Multimodal Modeling on Mobile Devices

Fig. 7.6 Difficulty performing tasks using touch and speech interface against touch, speech
(MiNT TS) and touch gesture interface (MiNT TSG)

transit and speech recognition will not work, strange feeling talking to the interface when
others are watching, do not want to disturb fellow passengers, and some even completely
rejected the thought of modeling in such a scenario. Next, a large majority of participants
agreed that they could use both the interfaces for individual modeling sessions (MiNT
TSG=94.12%, MiNT TS=88.24%) and collaborative modeling sessions (MiNT TSG=88.24%,
MiNT TS=82.35%) with other modelers and stakeholders. Our observation of the context
in which the modelers can use both the interfaces reveals that MiNT TSG has broader
applicability over MiNT TS. Although, for both the interfaces participants had their concerns
on using speech as an input modality when in public locations for MiNT TSG they considered
touch gesture as an alternative for speech.

Next, we asked the subjects to evaluate the tools on a Likert scale to present the difficulty
posed by the interface during modeling and model transformation task performed during
the experiment (Figure 7.6). Likert scale for the statements presented to the user ranged
from difficulty being very high to very low. For modeling task, 41.18% subjects reported
that the difficulty with MiNT TS was very low, while with MiNT TSG 29.14% subjects
reported the same. A larger group of participants (47.06%) found lower difficulty with MiNT
TSG in comparison to MiNT TS interface (29.41%). Modeling was the first task no matter
the order of interface to start with for each subject when working with the MiNT TSG. As
we already learned from the response of the subject of the steep learning curve with MiNT
TSG, we think it to be a reason MiNT TSG did not have a clear mandate of having very low
difficulty. On the other hand, subjects while working with MiNT TS interface reported that
as the speech recognition works so smooth, they found it extremely supportive to be able to
perform the experiment task. For model transformation task, there was an affirmation from a
small group for both the interfaces having very low difficulty (MiNT TSG=17.65%, MiNT
TS=29.14%), whereas a large group found MiNT TSG (58.82%) to be having low difficulty

7.6 Experiment Results 87

Fig. 7.7 Summative evaluation of touch and speech interface against touch, speech (MiNT
TS) and touch gesture interface (MiNT TSG)

over MiNT TS interface (29.41%). For medium difficulty option both the interfaces received
relatively fewer responses, and from an almost identical number of subjects. Surprisingly a
few subjects reported MiNT TS to be introducing high difficulty when working on model
transformation. We could not derive any rationale for their response, even though during
the experiment subjects neither faced any speech recognition issues nor the time taken to
complete the task was higher than the average. Fatigue caused by speaking continuously to
the interface can be a possible reason in this scenario.

Finally, we asked the subjects to rate the interface they liked the most after performing their
tasks and would use for daily modeling tasks. Figure 7.7 presents the result in a pie-chart
format. 96% clearly opted for MiNT TSG as an interface of their choice, while only 6% (i.e.
one subject) selected MiNT TS as the choice of preferred modeling tool interface. This clear
mandate from the modelers makes it obvious that a combination of touch, speech, and touch
gesture is found to be more useful and practical from a group of experienced modelers.

88 Evaluation Multimodal Modeling on Mobile Devices

7.7 Discussion

The multimodal interface developed during this dissertation that combines touch, speech,
and touch gesture shows significant improvement in efficiency of modelers for modeling and
model transformation process both. Statistical analysis with paired sample t-Test method-
ology highlights high significance in the data set, and the difference of the mean reports
less time taken by modelers if using MiNT TSG, irrespective of the order. Based on our
observation, statistical results, and subjects feedback, we found that MiNT TSG requires
more input from the subjects to get started with (learning curve) if compared with the inter-
face employing two modalities (MiNT TS with touch and speech). It was found that the 5
minutes time allocated to familiarize the interface was not sufficient to grasp the interplay of
three modalities, and hence subjects felt less confident during the modeling task if the initial
interface was MiNT TSG.

Subjective evaluation of both the interface on pragmatic, hedonic and attractiveness qualities
provide further evidence of MiNT TSG being very useful and practical. While MiNT TSG
did not have any significant differentiation from MiNT TS on the ease of use attribute, it was
clearly considered very practical by a vast majority. On the hedonic qualities, subjects pro-
vided clear mandate for MiNT TSG to be more creative and captivating of the two interfaces.
Similarly, on attractiveness qualities also subjects found a combination of three modalities
far more appealing and pleasant to work with during modeling and model transformation
process.

Further subjective evaluation reveals that a combination of touch and speech as input modality
is considered suitable for individual modeling sessions or during collaborative modeling
sessions. But, introducing one more modality as it is with MiNT TSG makes the interface
applicable to broader working contexts. Performing tasks, no matter whether it is modeling
or model transformation, MiNT TSG was found to be introducing low difficulty for the
modelers and considered ideal for early stage requirements engineering process.

Finally, an overwhelming number of modelers (96%) reported MiNT TSG as the interface
they would like to use for their regular modeling and model transformation tasks.

7.8 Threats to Validity

In this section, we discuss how we addressed various threats to the validity of the re-
sults.

7.8 Threats to Validity 89

Since every subject had to perform the same set of tasks using two different, but not the
mutually exclusive set of tool specific functionality and interactions, we identify learning
curve effect as a major threat to the validity of the results. Since MiNT TS and MiNT
TSG both the interface were available as part of the same tool implementation and the two
modalities touch and speech are common to both the interfaces, this can affect the efficiency
of modelers. Once familiar with the usage of an interface, modelers can get started with
the second interface faster. To reduce the effect of learning curve biasing the efficiency, we
randomly assigned nine subjects to work with MiNT TS first, and the remaining to work
with MiNT TSG first. Our observation shows that both the groups while working with MiNT
TSG took less time to work on both the tasks. This randomized assignment also covered the
selection bias.

To reduce the experimenter’s influence and involvement, task description, existing model for
model transformation task, and a list of speech commands, and gesture list was provided to
the subjects. Personal interaction was limited to the first phase of the experiment in which
experimenter demonstrated how to interact with the interface and clarified any questions or
doubts raised by subjects.

Chapter 8

Conclusion and Future Work

Modeling tools are reported to suffer from usability issues and limit the productivity of
modelers by hiding functionalities behind complex menus and actions. Making them un-
usable during the early stages of requirements engineering process when the objective is
to build a shared understanding of the system in collaborative sessions involving different
stakeholders.

This dissertation employed multimodal interfaces for modeling and model refactoring with
the objective to improve the usability of modeling tools, resulting in improved efficiency of
the modelers. MiNT framework was designed and developed as a platform for the developers
of modeling tools to integrate and benefit from multimodal integration in their modeling
CASE-tools. The framework supports the integration of touch gesture, hand and finger
motion, interactive whiteboard surfaces, speech input, along with traditional mouse and
keyboard input to create natural interfaces.

Two separate reference implementations instantiate the framework to study the feasibility
of multimodal interfaces for modeling and model refactoring. Observations from the two
controlled experiment using the reference implementation reveal that multimodal interfaces
improve the usability as well as makes the modelers more efficient.

This chapter summarizes the contributions (see section 8.1) of this dissertation and highlight
the limitations (see section 8.2). In section 8.3 we discuss the future research directions.

92 Conclusion and Future Work

8.1 Contributions

In this section we describe the main contributions of this dissertation.

M3 framework

We presented M3 framework which unifies the generic multi-modality model with the use
case meta-model. M3 framework allows the designers of multimodal interfaces to capture
the modality integration information and associate it with the use case meta-model. This
information once established can be linked to other artifacts such as analysis model elements,
and for understanding the rationale and evaluating the multimodal interactions on usability
goals.

MiNT framework

This dissertation introduces MiNT framework for developers to prototype multimodal mod-
eling interfaces. The framework is highly extensible by design to add new modalities and
extend existing modalities such as touch input, gesture input, motion input, speech input,
and mouse-keyboard input for multimodal fusion. The framework extends the flexibility
of modality integration by allowing the developers to create new unimodal or multimodal
interaction definitions in a human-readable markup language format.

Reference implementation for multimodal modeling

The use of MiNT framework is manifested in two reference implementations. MiNT Eclipse
enables collaborative face-to-face modeling by employing an interactive whiteboard surface
and speech input. MiNT Eclipse also facilitate desktop style modeling session using motion
input and speech input modality. MiNT Mobile, the second reference implementation
uses touch, speech, and touch gestures on multi-touch tablet devices. By employing three
modalities for working with models i t addresses the wider working contexts of the modelers
as oppose to MiNT Eclipse which is suitable for office or meeting room scenarios.

Controlled experiments for multimodal modeling and model refactoring

Two controlled experiments were performed to study the feasibility and applicability of
multimodal interfaces for modeling and model refactoring. Anecdotal evidence and statistical
analysis from the first experiment reveal that employing speech as an input modality improves
the efficiency of modelers. Participants reported that speech as an input modality enabled
them to verbalize their thoughts, and increased the interactivity.

8.2 Limitations 93

Evidence from the second controlled experiment, statistical observations, and subjective
feedback of the modelers support the second hypothesis of this thesis that multimodal
interface with a combination of touch, speech, and touch gestures are more useful and
practical as oppose to a multimodal interface employing only touch and speech input. A
combination of three modalities improves the efficiency of modelers by allowing them to
use more than one modality in parallel and makes the interface suitable for wider modeling
context. Subjective evaluation validates the usefulness of the interface employing three
modalities.

8.2 Limitations

We identify the participants modeling awareness in both the experiment as the main limitation
of this dissertation. The experiment participants had prior modeling expertise and thus do not
represent an application domain expert with no modeling expertise. The participants rather
fulfilled the requirements a modeler. One of the main objectives of this dissertation was
to improve the usability of modeling interfaces such that it encourages the participation of
domain experts in collaborative modeling sessions. We think as part of the future work, more
thorough investigation and experiments need to be conducted involving application domain
experts to study the effectiveness of multimodal interfaces for the mentioned objective.

8.3 Future Work

Through the course of this dissertation, we identified several topics that can be investigated
in the future. In the following, we describe possible improvements and different dimensions
for extension of the presented work.

Error correction in Multimodal Modeling

Speech recognition error remains a major problem in the design and development of multi-
modal interfaces with speech as an input modality. Observations made during the controlled
experiments indicate that speech recognition errors lead to increased working time and occa-
sionally to the execution of unintended commands, leading to additional user interactions
in the form of undo-redo operations. Brinton and colleagues [BFS88] suggested repeating
the commands. Murray et al. [MFJ93] raised the issue that repeating might not solve the
recognition errors and proposed an elimination-based approach to facilitate correction of

94 Conclusion and Future Work

misrecognition. Suhm et al. [SMW01] employ a multimodal interface for a dictation task and
identify that multimodal speech correction is faster than unimodal correction by repeating
the spoken command. They improve the correction accuracy by employing algorithms that
use context information for error correction.

MiNT provides a limited amount of error correction based on the work from Suhm and his
colleagues by allowing a user to switch from one modality to another to correct an erroneous
input. However, error prevention and correction during multimodal modeling remains a topic
for future work.

Collaborative Multimodal Modeling

Collaboration is an inseparable part of the modeling, a knowledge acquisition, and building
process. Within the scope of this dissertation, we identified that collaborative modeling could
benefit from seamless integration of multimodal interfaces, for example during early stages
of requirement analysis domain experts can provide input using speech as an input modality.
Or a group of modelers works on the same model in a real-time collaborative environment
using multimodal interface employing speech and gestures. More work needs to be done
in future to study the collaboration of the domain experts and modelers using multimodal
interfaces.

Large-scale Study of Multimodal Acceptance

This dissertation provides evidence for the applicability and acceptance of multimodal
interfaces by modelers. In the future, it will be interesting to deploy the multimodal interfaces
for modeling to the general everyday modelers and study the usage. It will allow gaining
more insight into the acceptance of multimodal modeling interfaces by a larger modeling
population and the collecting user feedback for possible improvements.

Output Modality Enablers for Virtual and Augmented Reality

This dissertation primarily focused on the input modalities for multimodal fusion. Tech-
nological limitations have traditionally restricted modeling within the two-dimensional
representation of computer screens enabling visual output coupled with auditory modality.
Advancement and wider availability of virtual reality and augmented reality device open
a new paradigm for experimenting with how we visualize and conceptualize models. Can
augmenting real-world objects by overlaying the model elements on the top enhance model
comprehension, or can virtual reality provide more freedom to interact with models in room
scale visualization? These ideas are worth investigation and a possible future towards solving
complex problems collaboratively.

Appendix A

Model Refactoring Taxonomy

In this section, we detail some of the most common model refactoring use case that is
considered throughout this thesis.

1. Pull Up Method: Duplicate methods in the subclasses can be a source for error and
unnecessary complexity. The most common scenario for this refactoring task is the
scenario when two methods have the similar body, attributed to code duplicates. If the
methods are supposed to have an identical purpose, duplication can result in overhead
in keeping both of them updated in case of any changes.

2. Pull Up Attribute: Duplicate attributes can be a source of a bug. If the subclasses have
attributes serving the similar purpose, it is advisable to benefit from the generalization
concept by moving the attribute declaration to the superclass.

3. Extract Superclass: Duplicate functionality in the code is a common is a principal
cause associated with bad design. It can further increase the overhead of keeping the
similar functionality updated in the classes as well as separately testing them for any
regression fault. The idea behind this refactoring task is to benefit from inheritance
concept of object oriented programming. An alternative to Extract Superclass refac-
toring task is Extract class. Modeler has a choice between inheritance and delegation.
Inheritance is a simpler choice if the two classes share similar interface and behavior.

4. Push Down Attribute: This refactoring task is opposite of Pull Up Attribute. This
is performed by moving an attribute from a superclass to a subclass if the attribute is
specific to the subclass.

96 Model Refactoring Taxonomy

5. Push Down Method: This task is opposite of Pull Up Method. This is performed
by moving a method from a superclass to a subclass if the behavior is specific to the
subclass.

6. Extract Subclass: Input to this refactoring task is a class with features which are only
used by some instances of the class or a class with features accumulated over time
(e.g. Blob anti-pattern). An alternative to Extract subclass refactoring task is Extract
class. Again the choice is between inheritance and delegation. Extract subclass is
simpler over delegation but restricts the class-based behavior of an object as a subclass
represents a set of variations in the hierarchy. On the other hand, Extract class allows
having behavior which is not necessarily highly coupled.

7. Collapse Hierarchy: Too detailed inheritance hierarchy is the prime target for this
refactoring task. After moving methods and fields in the hierarchy tree, subclasses
can become obsolete and necessarily not be adding any value. In such a scenario this
refactoring task is performed to merge the classes together and reduce the hierarchal
depth.

8. Merge Classes: Closely associated behavior are advisable to be kept together for
simplicity and maintenance purposes. This refactoring task aims at achieving that by
merging classes with similar behavior by moving fields and attributes from one class
to another and removing the obsolete class.

9. Replace Data Value with Object: Frequently in early stages of development basic
data types are used to represent attributes in a class to capture simple facts. But as the
development proceeds, these simple attributes can require having additional attributes
and behavior leading them to look like an independent object in itself. For example, a
user name represented as a string can at a later stage require more information like user
address, or user phone number, which could be grouped together. This refactoring task
assists in dealing with such scenario by creating a new class and moving the simple
attribute from the source class to the new class. Additional attributes and behaviors
can further be added to the new class. Finally, a reference to this new class is left in
the source class.

97

Fig. A.1 Pull up attribute use case

Use case PullUpAttribute

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects two or more classes and executes Pull
up attribute use case

2. SystemStep: CASE-tool moves all the common attributes of the
selected classes to the superclass

3. SystemStep: CASE-tool notifies user of the successful execution of
the use case

Entry condition
• Modeler has selected two or more classes for the use case

Exit condition
• CASE-tool presents user a superclass with all the common attributes

of the selected subclasses

98 Model Refactoring Taxonomy

Fig. A.2 Pull up method use case

Use case Pull up method

Participating actors Instantiated by Modeler
Flow of events

1. UserStep:Modeler selects a class and executes Pull up method use
case

2. SystemStep: CASE-tool moves all the common methods of the
selected class to the superclass

3. SystemStep: CASE-tool notifies user of the successful execution of
the use case

Entry condition
• Modeler has selected two or more classes for the use case

Exit condition
• CASE-tool presents user a superclass with all the common methods

of the selected subclasses

99

Fig. A.3 Extract superclass use case

Use case Extract superclass

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects two or more classes and executes
Extract superclass use case

2. SystemStep: CASE-tool creates a new abstract superclass, and
makes the Modeler selected classes its subclass

3. SystemStep: CASE-tool executes Pull up attribute, Pull up
method use cases to move common elements to the superclass

4. SystemStep: CASE-tool notifies user of the successful execution of
the use case

Entry condition
• Modeler has selected more then one classes for the use case

Exit condition
• CASE-tool presents user with a superclass of the selected classes

that contains all the common attributes, and methods of the
subclasses

100 Model Refactoring Taxonomy

Use case Push down attribute

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects an existing superclass along with zero or
more subclasses, and executes Push down attribute use case for
every desired attribute

2. SystemStep: CASE-tool moves the selected attribute to the user
selected subclass. If user did not select a subclass, attribute is
moved to all the existing subclasses

Entry condition
• Modeler has selected at least one class for the use case

Exit condition
• CASE-tool presents user with desired attribute moved to the

subclass

Use case Push down method

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects an existing superclass along with zero or
more subclasses, and executes Push down method use case for
every desired method

2. SystemStep: CASE-tool moves the selected method to the user
selected subclass. If user did not select a subclass, method is moved
to all the existing subclasses

Entry condition
• Modeler has selected at least one class for the use case

Exit condition
• CASE-tool presents user with desired method moved to the subclass

101

Fig. A.4 Extract subclass use case

Use case Extract subclass

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects an existing class and executes Extract
subclass use case

2. SystemStep: CASE-tool presents user a new class with
generalization relationship to the selected class

3. UserStep (optional): Modeler executes push down attribute,
push down method use cases to move elements from superclass to
the subclass

Entry condition
• Modeler has selected one class for the use case

Exit condition
• CASE-tool presents user with a subclass of an existing class

102 Model Refactoring Taxonomy

Fig. A.5 Attribute to object use case

Use case Attribute to object

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects one of more attributes from an existing
class and executes Attribute to object use case

2. SystemStep: CASE-tool moves attributes and the getter/setter of the
attributes to the new class

3. SystemStep: CASE-tool changes the type of the attribute in the
source class to the new class

Entry condition
• Modeler has selected attributes from an existing class

Exit condition
• CASE-tool presents user with a new class with existing attributes

and a reference variable in the source class

103

Fig. A.6 Collapse hierarchy use case

Use case Collapse hierarchy

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects an existing superclass along with zero or
more subclasses to execute Collapse hierarchy use case

2. SystemStep: CASE-tool moves all attributes and methods from the
selected subclass and moves them to superclass. If no subclass was
selected method and attributes from all immediate subclasses are
moved to the superclass

3. SystemStep: CASE-tool removes the subclass/es
4. SystemStep: CASE-tool notifies user of the successful execution of

the use case

Entry condition
• Modeler has selected a superclass

Exit condition
• CASE-tool presents user with a superclass which contains all the

attributes and methods of the subclass/es

104 Model Refactoring Taxonomy

Fig. A.7 Merge classes use case

Use case Merge classes

Participating actors Instantiated by Modeler
Flow of events

1. UserStep: Modeler selects source and target class and executes
Merge classes use case

2. SystemStep: Attributes and methods from source class is moved to
the target class

3. SystemStep (optional): Common attributes and methods in source
and target class is moved to superclass by extract superclass use
case

4. SystemStep: Source class is removed from the model

Entry condition
• Modeler has selected a source and target class

Exit condition
• Source class attributes and methods are either moved to target class

or the superclass of the target class

106 Controlled Experiment

Appendix B

Controlled Experiment

B.1 Instructors Checklist

Part 1 : Before the experiment

1. Introduce participant selected for multimodal interface treatment on how to work with
the interface. Provide a list of available speech commands.

2. Provide basic tool usage information to the participant selected for baseline treatment
(only if they request for it).

3. Answer any questions participant might have on the tool usage.
4. Notify participant that the modeling session will be video recorded for further analysis.

It will only be viewed only for research purposes by the investigator and subsequently
removed from every storage once they are transcribed or coded. Every participant’s
participation is treated as anonymous within the course of this experiment and an
appropriate level of confidentiality will be maintained about the participation. If you
do not wish to be recorded, please notify the instructor immediately.

5. Notify participant that they have to employ think a loud methodology while working
on the modeling tasks.

6. Inform the participant that they have to perform two modeling tasks. Task description
for the next task will be provided when the participant notifies the instructor of the
completion of the current task. Once the task description is provided, the participant
should start with the modeling task as soon as possible, and also the participant should
notify instructor when they are ready to model after reading the task description.

7. Start recording session.
8. Distribute first task description.

B.1 Instructors Checklist 107

Part 2: During the experiment

1. Monitor participants behavior and make notes of any subjective observations.
2. Pause recording session if the participant notifies of a task completion.
3. Hand in the subsequent task description to the participant as soon as he is ready, and

also resume the recording session.

Part 3 : After the experiment

1. Stop video recording.
2. Distribute questionnaire to the participant and ask them to fill it.
3. After they have finished with the questionnaire, discuss with them their rationale

behind each of the answers. Note down any observations that might be interesting.
Participant can give their subjective perception on the usability of the multimodal
interface, and if any observation they want to share with the instructors.

4. Thanks the participant for their participation, and ask them to leave their email address
if they would like to have a copy of the video recording.

5. Store artifacts from each participation in a labeled set.

108 Controlled Experiment

Fig. B.1 Sample solution object model for Task 1

B.2 Experiment Task

Task 1 Modeling : Online Rental Platform

Context You are developing an online platform for vehicle rental. You are required
to model the basic domain objects, their attributes and how they associate
with each other (ignore methods, types, and multiplicity for this task).

Description The Online Rental Platform allows a Customer to rent the Vehicle. A
customer needs to have an Account on the system to rent a vehicle. Every
customer should provide their email, phone and address information. An
account must have a username, and password of the customer. A
customer can select vehicle by providing start and end date, and add them
to their Shopping cart. Shopping cart stores all the Rental items, and
shows the total cost to the customer for all the vehicles. Each vehicle has
a different name and a short description.

B.2 Experiment Task 109

Task 2 Model transformation (Refactoring and Refinement) : Rental
Company

Context The provided model represents a rental company (see figure B.2).
Description Improve the existing model using model refactoring and refinement based

on the transformation steps given below. In a meeting, the following
model improvements have been decided. You as a modeling expert are
asked to refactor the model without changing the underlying functionality.
Do the following model transformation on the provided model:

• The distinction between the AdministrativeStaff and TechnicalStaff
is no longer necessary. Except for the joiningDate attribute, which
should be moved to the Support class.

• Manager and Support both should be modeled with an Employee
class and associated with the Department class. Common attributes
and associated getters should be moved to the Employee super class.

• The Contact class has two attributes customerId and supplierId.
Move these attributes to their respective classes, create new classes
if needed.

• The Customer and Lawyer class contain duplicate methods and
attributes that should be moved to Contact class.

• Prepare RentalCompany and Contact for extensibility using
delegation. Turn the address attribute into a separate class and use
delegation to access it from the RentalCompany and Contact. The
Address should also contain two new attributes country name and
postal code.

Date:
Participant ID:

Thank you for your participation.
Please leave your email address if you want to receive a copy of the results.

Email:

1. Select your level of domain expertise for each of the tasks in the experiment.

• Task 1: Online Rental Platform Low Medium High
• Task 2: Organizational Hierarchy Low Medium High

2. Select how frequently you are using modeling tools and techniques.

Never Once-twice per month Once-twice per week Everyday

3. Which task was most difficult?

Task 1 Task 2

4. Was the provided material (task description and model) difficult to understand for the most difficult

task?

Yes No

5. Did you create some kind of to-do list (external or in your mind) after reading the task description
or after looking at the model for each of the tasks?

Yes No

6. If answered ‘YES’ to question 5: Did you think about required actions (tool-specific) while
creating the to-do list before starting to work on the task, or you thought about tool-specific actions
during the task?

Yes, I thought before starting to work Yes, I thought during the task

7. Rate the difficulty of performing each task using the modeling tool interface.

• Task 1: Very Low Very High
• Task 2: Very Low Very High

If you have additional comments you can add them here:

110 Controlled Experiment

B.3 Subjective Questionnaire

F-Test	Two-Sample	for	
Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

1)	
Group	M3	(Task	1,	no	
overhead)	

Mean	 474,6666667	 348,2857143	
Variance	 40547,86667	 3548,571429	
Observations	 6	 7	
df	 5	 6	
F	 11,42653247	 		
P(F<=f)	one-tail	 0,00504258	 		
F	Critical	one-tail	 4,387374187	 		

	

F-Test	Two-Sample	for	
Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

1)	
Group	M3	(Task	1,	
speech	overhead)	

Mean	 474,6666667	 424	
Variance	 40547,86667	 3817,333333	
Observations	 6	 7	
df	 5	 6	
F	 10,62203982	 		
P(F<=f)	one-tail	 0,006095738	 		
F	Critical	one-tail	 4,387374187	 		
	

F-Test	Two-Sample	for	
Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

2)	
Group	M3	(Task	2,	no	
overhead)	

Mean	 588,8333333	 395,5714286	
Variance	 31842,96667	 5134,285714	
Observations	 6	 7	
df	 5	 6	
F	 6,202024671	 		
P(F<=f)	one-tail	 0,023031146	 		
F	Critical	one-tail	 4,387374187	 		
	

B.4 Stastical Analysis: F-test for variance equality 111

B.4 Stastical Analysis: F-test for variance equality

F-Test	Two-Sample	for	
Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

2)	
Group	M3	(Task	2,	
speech	overhead)	

Mean	 588,8333333	 455,7142857	
Variance	 31842,96667	 6051,571429	
Observations	 6	 7	
df	 5	 6	
F	 5,261933539	 		
P(F<=f)	one-tail	 0,033581736	 		
F	Critical	one-tail	 4,387374187	 		
	

t-Test:	Two-Sample	
Assuming	Unequal	Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

1)	
Group	M3	(Task	1,	no	
overhead)	

Mean	 474,6666667	 348,2857143	
Variance	 40547,86667	 3548,571429	
Observations	 6	 7	
Hypothesized	Mean	
Difference	

0	 		

df	 6	 		
t	Stat	 1,482744455	 		
P(T<=t)	one-tail	 0,094330822	 		
t	Critical	one-tail	 1,943180281	 		
P(T<=t)	two-tail	 0,188661644	 		
t	Critical	two-tail	 2,446911851	 		
	
t-Test:	Two-Sample	
Assuming	Unequal	Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

1)	
Group	M3	(Task	1,	speech	
overhead)	

Mean	 474,6666667	 424	
Variance	 40547,86667	 3817,333333	
Observations	 6	 7	
Hypothesized	Mean	
Difference	

0	 		

df	 6	 		
t	Stat	 0,592874037	 		
P(T<=t)	one-tail	 0,287457532	 		
t	Critical	one-tail	 1,943180281	 		
P(T<=t)	two-tail	 0,574915064	 		
t	Critical	two-tail	 2,446911851	 		

	

B.5 Stastical Analysis: t-Test for unequal variances 113

B.5 Stastical Analysis: t-Test for unequal variances

t-Test:	Two-Sample	
Assuming	Unequal	Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

2)	
Group	M3	(Task	2,	no	
overhead)	

Mean	 588,8333333	 395,5714286	
Variance	 31842,96667	 5134,285714	
Observations	 6	 7	
Hypothesized	Mean	
Difference	

0	 		

df	 6	 		
t	Stat	 2,486595366	 		
P(T<=t)	one-tail	 0,023690076	 		
t	Critical	one-tail	 1,943180281	 		

P(T<=t)	two-tail	 0,047380152	 		
t	Critical	two-tail	 2,446911851	 		
	
t-Test:	Two-Sample	
Assuming	Unequal	Variances	

		 		

		 		 		
		 Group	Baseline	(Task	

2)	
Group	M3	(Task	2,	speech	
overhead)	

Mean	 588,8333333	 455,7142857	
Variance	 31842,96667	 6051,571429	
Observations	 6	 7	
Hypothesized	Mean	
Difference	

0	 		

df	 7	 		
t	Stat	 1,694489209	 		
P(T<=t)	one-tail	 0,066998912	 		
t	Critical	one-tail	 1,894578605	 		
P(T<=t)	two-tail	 0,133997823	 		
t	Critical	two-tail	 2,364624252	 		
	

B.5 Stastical Analysis: t-Test for unequal variances 115

Fig. B.2 Existing object model for Task 2

Appendix C

Controlled Experiment

C.1 Instructors Checklist

Part 1: Before the experiment

1. Introduce participant that they will be performing two tasks using two different
interfaces.

2. Interface that should be used first in the experiment will be decided at random.
3. Participant will be introduced to the selected interface and allowed to familiarize

themselves with using the interface for five minutes.
4. Once the participant has completed both the task with the first interface, the second

interface will be introduced. Participant will again have the possibility to familiarize
them with using the interface for five minutes.

5. Once the tasks are completed with an interface, the participant will have to fill the
corresponding questionnaire.

6. Notify participant that they have to employ think a loud methodology while working
on the modeling tasks.

7. Provide first task description.

118 Controlled Experiment

Part 2: During the experiment

1. Monitor participants behavior and make notes of any subjective observations.
2. Hand over second task description if participant notifies of first task completion.
3. Ask participant to fill the questionnaire for the interface used for the last task.
4. Introduce participant second interface.

Part 3: After the experiment

1. Ask participant to fill the questionnaire for the second interface
2. Thanks the participant for their participation.
3. Store artifacts from each participation in a labeled set.

C.2 Experiment Task 119

Fig. C.1 Sample solution object model for Task 1

Fig. C.2 Object model for Task 2

120 Controlled Experiment

C.2 Experiment Task

Task 1 Modeling : Order tracking

Context Your company is developing an online e-commerce platform. You are
assigned the task of modeling domain objects, their attributes and how
they associate with each other for the order tracking subsystem (ignore
methods, attribute types, method return types, and multiplicity for
this task).

Description An order tracking subsystem should allow the management of the orders
and report their status to the user. This system should support two
different types of users; customer, and guest. A Customer is a registered
user of the system and has provided the name, address, and email. A
Guest is a user who has not registered with the system. Guests have a
sessionId attribute that is used to keep track of their shopping activity.
Guest users are required to register as a Customer before they can place
their Order. Every Order belongs to a Customer. An Order has an
orderId, creationDate, shippingDate and a shippingStatus attribute.
Furthermore, every Order is associated with a Shipping Information that
keeps track of shippingCost, and shippingLocation.

C.2 Experiment Task 121

Task 2 Model transformation (Refactoring and Refinement) :
Organizational Hierarchy

Context The provided model represents a generic Organizational hierarchy (see
figure C.2).

Description Improve the provided model using model refactoring and refinement
based on the transformation steps given below. Do the following model
transformation on the provided model:

• Extract a super-class Department for Marketing, and Sales classes.
Add attribute name and annualBudget to the Department class.

• Pull up common attributes and methods from Marketing and Sales
class to the Department super class.

• Merge Marketing and Sales as MarketingAndSales.
• Collapse Hierarchy of the SalesChannel class. Attributes and

methods from subclasses should be moved to the super class.
• Create a class Address and use delegation to access it from the

Company class. Move attributes streetAddress, postalCode and
methods getStreetAddress and getPostalCode from Company to the
new class.

122 Controlled Experiment

C.3 Subjective Questionnaire

t-Test:	Paired	Two	Sample	for	
Means	-	Modeling	 		 		

		 		 		
		 TS	 TSG	
Mean	 211,2941176	 160,5882353	
Variance	 2129,095588	 1972,882353	
Observations	 17	 17	
Pearson	Correlation	 0,504026874	 		

Hypothesized	Mean	Difference	 0	 		

df	 16	 		
t	Stat	 4,633370777	 		
P(T<=t)	one-tail	 0,000138071	 		
t	Critical	one-tail	 1,745883676	 		
P(T<=t)	two-tail	 0,000276142	 		
t	Critical	two-tail	 2,119905299	 		
	

t-Test:	Paired	Two	Sample	for	
Means	-	Model	Transformation	 		 		

		 		 		
		 TS	 TSG	
Mean	 192,9411765	 112,8823529	
Variance	 1046,183824	 989,2352941	
Observations	 17	 17	
Pearson	Correlation	 -0,091117505	 		

Hypothesized	Mean	Difference	 0	 		

df	 16	 		
t	Stat	 7,004515124	 		
P(T<=t)	one-tail	 0,0000014861	 		
t	Critical	one-tail	 1,745883676	 		
P(T<=t)	two-tail	 0,0000029723	 		
t	Critical	two-tail	 2,119905299	 		
	

t-Test:	Paired	Two	Sample	for	
Means	-	Modeling	-	Initial	MiNT	
TSG	

		 		

		 		 		
		 TS	 TSG	
Mean	 192,375	 180,875	
Variance	 1692,553571	 1482,982143	
Observations	 8	 8	

C.4 Statistical Analysis: t-Test paired sample 125

C.4 Statistical Analysis: t-Test paired sample

Pearson	Correlation	 0,83879654	 		

Hypothesized	Mean	Difference	 0	 		

df	 7	 		
t	Stat	 1,429544765	 		
P(T<=t)	one-tail	 0,097960781	 		
t	Critical	one-tail	 1,894578605	 		
P(T<=t)	two-tail	 0,195921561	 		
t	Critical	two-tail	 2,364624252	 		
	

t-Test:	Paired	Two	Sample	for	
Means	-	Model	transformation	-	
Initial	MiNT	TSG	

		 		

		 		 		
		 TS	 TSG	
Mean	 188	 135	
Variance	 1125,142857	 504,5714286	
Observations	 8	 8	
Pearson	Correlation	 -0,300894137	 		

Hypothesized	Mean	Difference	 0	 		

df	 7	 		
t	Stat	 3,284440027	 		
P(T<=t)	one-tail	 0,006702397	 		
t	Critical	one-tail	 1,894578605	 		
P(T<=t)	two-tail	 0,013404793	 		
t	Critical	two-tail	 2,364624252	 		
	

t-Test:	Paired	Two	Sample	for	
Means	-	Modeling	-	Initial	MiNT	TS	 		 		

		 		 		
		 TS	 TSG	
Mean	 228,1111111	 142,5555556	
Variance	 2101,111111	 1870,777778	
Observations	 9	 9	
Pearson	Correlation	 0,82123406	 		

Hypothesized	Mean	Difference	 0	 		

df	 8	 		
t	Stat	 9,595248381	 		
P(T<=t)	one-tail	 0,0000057727	 		

t	Critical	one-tail	 1,859548038	 		
P(T<=t)	two-tail	 0,0000115453	 		
t	Critical	two-tail	 2,306004135	 		
	

t-Test:	Paired	Two	Sample	for	
Means	-	Model	transformation	-	
Initial	MiNT	TS	

		 		

		 		 		
		 TS	 TSG	
Mean	 197,3333333	 93,22222222	
Variance	 1061,75	 612,9444444	
Observations	 9	 9	
Pearson	Correlation	 0,271986859	 		

Hypothesized	Mean	Difference	 0	 		

df	 8	 		
t	Stat	 8,884510458	 		
P(T<=t)	one-tail	 0,0000101875	 		
t	Critical	one-tail	 1,859548038	 		
P(T<=t)	two-tail	 0,0000203749	 		
t	Critical	two-tail	 2,306004135	 		
	

References

[A+13] FIRAS ALGHANIM et al. Investigating the Impact of Co-located and Dis-
tributed Collaboration Using Multi-touch Tables. PhD thesis, Durham Univer-
sity, 2013.

[AF03] D. Avison and G. Fitzgerald. Information systems development: methodologies,
techniques and tools (3rd edition). McGraw-Hill, 2003.

[All13] Wi-Fi Alliance. Wi-fi direct. URL: http://www. wi-fi. org/discover-wi-fi/wi-fi-
direct [accessed: May 2014], 2013.

[All15] OSGi Alliance. Open services gateway initiative. URL: http://www. osgi. org,
2015.

[AR00] M.B. Albizuri-Romero. A retrospective view of case tools adoption. ACM
SIGSOFT Software Engineering Notes, 25(2):46–50, 2000.

[BB12] Mohammed Basheri and Liz Burd. Exploring the significance of multi-touch
tables in enhancing collaborative software design using uml. In 2012 Frontiers
in Education Conference Proceedings, pages 1–5. IEEE, 2012.

[BD10] B. Bruegge and A.H. Dutoit. Object-Oriented Software Engineering: Using
Uml, Patterns, and Java (3rd Edition). Prentice Hall, 2010.

[BFS88] Bonnie Brinton, Martin Fujiki, and Esther A Sonnenberg. Responses to requests
for clarification by linguistically normal and language-impaired children in
conversation. Journal of Speech and Hearing Disorders, 53(4):383–391, 1988.

[BH89] John Brewer and Albert Hunter. Multimethod research: A synthesis of styles.
Sage Publications, Inc, 1989.

[BM14] Mohammed Basheri and Malcolm Munro. Enhancing the quality of software
design through multi-touch interfaces. In 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, pages 1–7. IEEE, 2014.

[BNT02] Robert Biddle, James Noble, and Ewan Tempero. Lightweight web-based tools
for usage-centered and object-oriented design. In 1st International Conference
on Usage-Centered Design, Performance-Centered Design, and Task-Oriented
Design, 2002.

130 References

[Bol80] Richard A Bolt. “Put-that-there”: Voice and gesture at the graphics interface,
volume 14. ACM, 1980.

[BPL03] Roland Brunken, Jan L Plass, and Detlev Leutner. Direct measurement of
cognitive load in multimedia learning. Educational Psychologist, 38(1):53–61,
2003.

[CGH03] Qi Chen, John Grundy, and John Hosking. An e-whiteboard application to
support early design-stage sketching of uml diagrams. In Human Centric
Computing Languages and Environments, 2003. Proceedings. 2003 IEEE Sym-
posium on, pages 219–226. IEEE, 2003.

[CL98] N.L. Chervany and D. Lending. Case tools: understanding the reasons for
non-use. ACM SIGCPR Computer Personnel, 19(2):13–26, 1998.

[CLK+14] Francesco Cafaro, Leilah Lyons, Raymond Kang, Josh Radinsky, Jessica
Roberts, and Kristen Vogt. Framed guessability: using embodied allegories to
increase user agreement on gesture sets. In Proceedings of the 8th International
Conference on Tangible, Embedded and Embodied Interaction, pages 197–204.
ACM, 2014.

[CNS+95] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann Blandford, Jon May, and
Richard M Young. Four easy pieces for assessing the usability of multimodal
interaction: the care properties. In Human—Computer Interaction, pages
115–120. Springer, 1995.

[Con95] Larry L. Constantine. Essential modeling: Use cases for user interfaces. inter-
actions, 2(2):34–46, April 1995.

[CR08] Eric Clayberg and Dan Rubel. eclipse Plug-ins. Pearson Education, 2008.

[CS91] Paul Chandler and John Sweller. Cognitive load theory and the format of
instruction. Cognition and instruction, 8(4):293–332, 1991.

[CZ07] Xiang Cao and Shumin Zhai. Modeling human performance of pen stroke
gestures. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1495–1504. ACM, 2007.

[DHT00] Christian Heide Damm, Klaus Marius Hansen, and Michael Thomsen. Tool
support for cooperative object-oriented design: gesture based modelling on an
electronic whiteboard. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 518–525. ACM, 2000.

[DLO09] Bruno Dumas, Denis Lalanne, and Sharon Oviatt. Multimodal interfaces: A
survey of principles, models and frameworks. In Human machine interaction,
pages 3–26. Springer, 2009.

[DVDB03] Gert-Jan De Vreede, Robert M Davison, and Robert O Briggs. How a silver
bullet may lose its shine. Communications of the ACM, 46(8):96–101, 2003.

[FB99] M. Fowler and K. Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

References 131

[FCSK03] R. France, S. Chosh, E. Song, and Dae-Kyoo Kim. A metamodeling approach
to pattern-based model refactoring. Software, IEEE, 20(5):52–58, Sept 2003.

[FHD09] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. Investigating multi-
touch and pen gestures for diagram editing on interactive surfaces. In Pro-
ceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, pages 149–156. ACM, 2009.

[FR07] Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineering, pages
37–54. IEEE Computer Society, 2007.

[FVdW06] Paul JM Frederiks and Th P Van der Weide. Information modeling: The
process and the required competencies of its participants. Data & Knowledge
Engineering, 58(1):4–20, 2006.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[Gre89] Saul Greenberg. The 1988 conference on computer-supported cooperative
work: Trip report. Intelligence, 1989.

[HC01] George T Heineman and William T Councill. Component-based software
engineering. Putting the pieces together, addison-westley, page 5, 2001.

[HD06] Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recognition
system for uml class diagrams. In ACM SIGGRAPH 2006 Courses, page 25.
ACM, 2006.

[Hil00] Rich Hilliard. Ieee-std-1471-2000 recommended practice for architectural
description of software-intensive systems. IEEE, http://standards. ieee. org,
12:16–20, 2000.

[ISO98] W ISO. 9241-11. ergonomic requirements for office work with visual display
terminals (vdts). The international organization for standardization, 45, 1998.

[Jac93] Ivar Jacobson. Object-oriented software engineering: a use case driven ap-
proach. Pearson Education India, 1993.

[JBV+02] Michael Johnston, Srinivas Bangalore, Gunaranjan Vasireddy, Amanda Stent,
Patrick Ehlen, Marilyn Walker, Steve Whittaker, and Preetam Maloor. Match:
An architecture for multimodal dialogue systems. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, pages 376–383.
Association for Computational Linguistics, 2002.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-oriented
software engineering: a use case driven approach. Addison-Wesley, 1992.

[Joh88] Robert Johansen. Groupware: Computer support for business teams. The Free
Press, 1988.

132 References

[JOT07] R Burke Johnson, Anthony J Onwuegbuzie, and Lisa A Turner. Toward a
definition of mixed methods research. Journal of mixed methods research,
1(2):112–133, 2007.

[JS07] A. Jaimes and N. Sebe. Multimodal human-computer interaction: A survey.
Computer Vision and Image Understanding, 108(1-2):116–134, 2007.

[KH90] Gordon Kurtenbach and Eric A Hulteen. Gestures in human-computer com-
munication. The art of human-computer interface design, pages 309–317,
1990.

[KJS11] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective
design space exploration. In Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems, pages 33–54. Springer,
2011.

[KMB+02] Rilla Khaled, Dan Mackay, Robert Biddle, James Noble, and Ewan Tempero.
A lightweight web-based case tool for sequence diagrams. In Proceedings
of the SIGCHI-NZ Symposium on Computer-Human Interaction, CHINZ ’02,
pages 55–60, New York, NY, USA, 2002. ACM.

[KRM+13] Dimitrios S Kolovos, Louis M Rose, Nicholas Matragkas, Richard F Paige,
Esther Guerra, Jesús Sánchez Cuadrado, Juan De Lara, István Ráth, Dániel
Varró, Massimo Tisi, et al. A research roadmap towards achieving scalability
in model driven engineering. In Proceedings of the Workshop on Scalability in
Model Driven Engineering, page 2. ACM, 2013.

[KWBE03] Anneke G Kleppe, Jos Warmer, Wim Bast, and MDA Explained. The model
driven architecture: practice and promise, 2003.

[LA97] Jennifer L Leopold and Allen L Ambler. Keyboardless visual programming
using voice, handwriting, and gesture. In Visual Languages, 1997. Proceedings.
1997 IEEE Symposium on, pages 28–35. IEEE, 1997.

[LL91] Jintae Lee and Kum-Yew Lai. What’s in design rationale? Human–Computer
Interaction, 6(3-4):251–280, 1991.

[LNR+09] Denis Lalanne, Laurence Nigay, Peter Robinson, Jean Vanderdonckt, Jean-
François Ladry, et al. Fusion engines for multimodal input: a survey. In
Proceedings of the 2009 international conference on Multimodal interfaces,
pages 153–160. ACM, 2009.

[LP03] S. Lahtinen and J. Peltonen. Enhancing usability of uml case-tools with speech
recognition. In Human Centric Computing Languages and Environments, 2003.
Proceedings. 2003 IEEE Symposium on, pages 227–235. IEEE, 2003.

[LTE+09] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien
Gerard, Patrick Tessier, Remi Schnekenburger, Hubert Dubois, and François
Terrier. Papyrus uml: an open source toolset for mda. In Proc. of the Fifth Euro-
pean Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA 2009), pages 1–4. Citeseer, 2009.

References 133

[May99] Deborah J. Mayhew. The usability engineering lifecycle. In CHI ’99 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’99, pages 147–
148, New York, NY, USA, 1999. ACM.

[MCF03] Stephen J Mellor, Tony Clark, and Takao Futagami. Model-driven development:
guest editors’ introduction. IEEE software, 20(5):14–18, 2003.

[MEH01] Mark W Maier, David Emery, and Rich Hilliard. Software architecture: intro-
ducing ieee standard 1471. Computer, 34(4):107–109, 2001.

[MFJ93] AC Murray, CR Frankish, and DM Jones. Data-entry by voice: Facilitating
correction of misrecognitions. In Interactive speech technology, pages 137–144.
Taylor & Francis, Inc., 1993.

[MNB03] Daniel Mackay, James Noble, and Robert Biddle. A lightweight web-based
case tool for uml class diagrams. In Proceedings of the Fourth Australasian
user interface conference on User interfaces 2003-Volume 18, pages 95–98.
Australian Computer Society, Inc., 2003.

[Moo09] Daniel Moody. The physics of notations: Toward a scientific basis for con-
structing visual notations in software engineering. IEEE Trans. Softw. Eng.,
35(6):756–779, November 2009.

[MVC93] Christophe Mignot, Claude Valot, and Noelle Carbonell. An experimental study
of future “natural” multimodal human-computer interaction. In INTERACT’93
and CHI’93 Conference Companion on Human Factors in Computing Systems,
pages 67–68. ACM, 1993.

[NG47] J. Neumann and HH Goldstine. Planning and coding of problems for an
electronic computing instrument. Institute for Advanced Study, Princeton, New
Jersey, 1947.

[Nie92] Jakob Nielsen. The usability engineering life cycle. Computer, 25(3):12–22,
1992.

[Nor86] D.A. Norman. Cognitive engineering. User centered system design, pages
31–61, 1986.

[OC00] Sharon Oviatt and Philip Cohen. Perceptual user interfaces: multimodal
interfaces that process what comes naturally. Communications of the ACM,
43(3):45–53, 2000.

[OCL04] Sharon Oviatt, Rachel Coulston, and Rebecca Lunsford. When do we interact
multimodally?: cognitive load and multimodal communication patterns. In
Proceedings of the 6th international conference on Multimodal interfaces,
pages 129–136. ACM, 2004.

[OMGa] OMG. Sysml 1.3 specification. http://www.omg.org/spec/SysML/1.3/. Ac-
cessed: 18/09/2012.

[OMGb] OMG. Uml 2.2 specification. http://www.omg.org/technology/documents/
formal/uml.htm. Accessed: 18/09/2012.

http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

134 References

[OS04] Z. Obrenovic and D. Starcevic. Modeling multimodal human-computer inter-
action. Computer, 37(9):65–72, 2004.

[OV96] Sharon Oviatt and Robert VanGent. Error resolution during multimodal human-
computer interaction. In Spoken Language, 1996. ICSLP 96. Proceedings.,
Fourth International Conference on, volume 1, pages 204–207. IEEE, 1996.

[Ovi97] Sharon Oviatt. Multimodal interactive maps: Designing for human perfor-
mance. Hum.-Comput. Interact., 12(1):93–129, March 1997.

[Ovi99] S. Oviatt. Ten myths of multimodal interaction. Communications of the ACM,
42(11):74–81, 1999.

[Ovi03] Sharon Oviatt. Advances in robust multimodal interface design. IEEE Com-
puter Graphics and Applications, 23(5):62–68, 2003.

[PCS02] Edwina Pollock, Paul Chandler, and John Sweller. Assimilating complex
information. Learning and instruction, 12(1):61–86, 2002.

[PF07] Beryl Plimmer and Isaac Freeman. A toolkit approach to sketched diagram
recognition. In Proceedings of the 21st British HCI Group Annual Conference
on People and Computers: HCI... but not as we know it-Volume 1, pages
205–213. British Computer Society, 2007.

[PG90] Richard D. Peacocke and Daryl H. Graf. An introduction to speech and speaker
recognition. Computer, 23(8):26–33, 1990.

[Pin03] Niels Pinkwart. A plug-in architecture for graph based collaborative modeling
systems. In 11th Conference on Artificial Intelligence in Education, pages
89–94. SIT, 2003.

[PL91] Randy Pausch and James H Leatherby. An empirical study: Adding voice input
to a graphical editor. In Journal of the American Voice Input/Output Society.
Citeseer, 1991.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
William E. Lorensen, et al. Object-oriented modeling and design, volume
199. Prentice-hall Englewood Cliffs, NJ, 1991.

[RC00] K. Renaud and R. Cooper. Feedback in human-computer interaction-
characteristics and recommendations. SOUTH AFRICAN COMPUTER JOUR-
NAL, pages 105–114, 2000.

[Rit09] Peter Rittgen. Collaborative modeling: A design science approach. In Hawaii
International Conference on System Sciences (HICSS), Hawaii Januari 2009,
pages 1–10, 2009.

[RKdV08] Michiel Renger, Gwendolyn L Kolfschoten, and Gert-Jan de Vreede. Chal-
lenges in collaborative modeling: A literature review. In Advances in Enterprise
Engineering I, pages 61–77. Springer, 2008.

References 135

[ROR01] Ronald Rosenfeld, Dan Olsen, and Alex Rudnicky. Universal speech interfaces.
interactions, 8(6):34–44, 2001.

[RRS+04] Meredith Ringel, Kathy Ryall, Chia Shen, Clifton Forlines, and Frederic Vernier.
Release, relocate, reorient, resize: fluid techniques for document sharing on
multi-user interactive tables. In CHI’04 Extended Abstracts on Human Factors
in Computing Systems, pages 1441–1444. ACM, 2004.

[RS05] Nikol Rummel and Hans Spada. Learning to collaborate: An instructional
approach to promoting collaborative problem solving in computer-mediated
settings. The Journal of the Learning Sciences, 14(2):201–241, 2005.

[Rux06] Graeme D Ruxton. The unequal variance t-test is an underused alternative to
student’s t-test and the mann–whitney u test. Behavioral Ecology, 17(4):688–
690, 2006.

[SC89] George W Snedecor and Witiiam G Cochran. Statistical methods, 8thedn.
Ames: Iowa State Univ. Press Iowa, 1989.

[Sch06] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[Seb09] N. Sebe. Multimodal interfaces: Challenges and perspectives. Journal of
Ambient Intelligence and smart environments, 1(1):23–30, 2009.

[SHWM05] Heather J Smith, Steve Higgins, Kate Wall, and Jen Miller. Interactive white-
boards: boon or bandwagon? a critical review of the literature. Journal of
Computer Assisted Learning, 21(2):91–101, 2005.

[SK03] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul of
model-driven software development. Software, IEEE, 20(5):42 – 45, sept.-oct.
2003.

[SKL+93] Eswaran Subrahmanian, Suresh L Konda, Sean N Levy, Yoram Reich, Arthur W
Westerberg, and Ira Monarch. Equations aren’t enough: Informal modeling in
design. Artificial Intelligence for Engineering, Design, Analysis and Manufac-
turing, 7(04):257–274, 1993.

[SMW01] Bernhard Suhm, Brad Myers, and Alex Waibel. Multimodal error correction
for speech user interfaces. ACM transactions on computer-human interaction
(TOCHI), 8(1):60–98, 2001.

[Sol01] Amy Soller. Supporting social interaction in an intelligent collaborative
learning system. International Journal of Artificial Intelligence in Education
(IJAIED), 12:40–62, 2001.

[SPH98] Rajeev Sharma, Vladimir I Pavlovic, and Thomas S Huang. Toward multimodal
human-computer interface. Proceedings of the IEEE, 86(5):853–869, 1998.

[SSL08] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. Software Engineering
Data Collection for Field Studies, pages 9–34. Springer London, London,
2008.

136 References

[SVMP98] John Sweller, Jeroen JG Van Merrienboer, and Fred GWC Paas. Cognitive ar-
chitecture and instructional design. Educational psychology review, 10(3):251–
296, 1998.

[Swe88] John Sweller. Cognitive load during problem solving: Effects on learning.
Cognitive science, 12(2):257–285, 1988.

[Tur14] Matthew Turk. Multimodal interaction: A review. Pattern Recognition Letters,
36:189–195, 2014.

[VDSJM07] Ragnhild Van Der Straeten, Viviane Jonckers, and Tom Mens. A formal
approach to model refactoring and model refinement. Software and Systems
Modeling, 6:139–162, 2007. 10.1007/s10270-006-0025-9.

[VN00] Frederic Vernier and Laurence Nigay. A framework for the combination and
characterization of output modalities. In International Workshop on Design,
Specification, and Verification of Interactive Systems, pages 35–50. Springer,
2000.

[VSBS+94] Maarten W Van Someren, Yvonne F Barnard, Jacobijn AC Sandberg, et al.
The think aloud method: A practical guide to modelling cognitive processes,
volume 2. Academic Press London, 1994.

[Wah03] Wolfgang Wahlster. Towards symmetric multimodality: Fusion and fission
of speech, gesture, and facial expression. In Annual Conference on Artificial
Intelligence, pages 1–18. Springer, 2003.

[WB03] Mike Wu and Ravin Balakrishnan. Multi-finger and whole hand gestural
interaction techniques for multi-user tabletop displays. In Proceedings of the
16th annual ACM symposium on User interface software and technology, pages
193–202. ACM, 2003.

[WG05] James Wu and TC Nicholas Graham. The software design board: A tool
supporting workstyle transitions in collaborative software design. In Engi-
neering Human Computer Interaction and Interactive Systems, pages 363–382.
Springer, 2005.

[WMW09] Jacob O Wobbrock, Meredith Ringel Morris, and Andrew D Wilson. User-
defined gestures for surface computing. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 1083–1092. ACM,
2009.

[WSR+06] Mike Wu, Chia Shen, Kathy Ryall, Clifton Forlines, and Ravin Balakrish-
nan. Gesture registration, relaxation, and reuse for multi-point direct-touch
surfaces. In First IEEE International Workshop on Horizontal Interactive
Human-Computer Systems (TABLETOP’06), pages 8–pp. IEEE, 2006.

[WTF95] Noreen M Webb, Jonathan D Troper, and Randy Fall. Constructive activity
and learning in collaborative small groups. Journal of educational psychology,
87(3):406, 1995.

References 137

[ZLG05] Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and domain-specific model
refactoring using a model transformation engine. In Model-driven Software
Development, pages 199–217. Springer, 2005.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem
	1.2 Research Approach
	1.3 Outline of the Dissertation

	2 Foundations
	2.1 Modeling in Software Engineering
	2.1.1 Model Transformation

	2.2 Collaborative Modeling
	2.3 Multimodal User Interface
	2.4 Usability Engineering

	3 Multimodal modeling (M3) Framework
	3.1 M3framework
	3.1.1 Generic Multi-modality Model
	3.1.2 Use case Meta-model

	3.2 Models for Visual Modeling Tools
	3.2.1 Diagram Presentation Modality

	3.3 Application of M 3 framework

	4 Requirements Specification and Design Goals for Multimodal Modeling
	4.1 Speech for UML Modeling
	4.2 Gestures for UML Modeling
	4.2.1 Results

	4.3 Requirements for Multimodal Modeling
	4.3.1 Visionary Scenarios
	4.3.2 Requirements

	5 MiNT Framework and Applications
	5.1 Analysis Model
	5.2 Design Goals
	5.3 Architecture of MiNT
	5.4 Multimodal Integration
	5.5 MiNT Eclipse
	5.6 MiNT Mobile
	5.6.1 MiNT Mobile User Interface
	5.6.2 Continuous Speech Mode

	6 Evaluation Multimodal Modeling on Interactive Whiteboard
	6.1 Context
	6.2 Variables
	6.3 Subjects
	6.4 Setup
	6.5 Procedure
	6.6 Experiment Results
	6.6.1 Collected Data
	6.6.2 Analysis
	6.6.3 Exit Interview

	6.7 Discussion
	6.8 Threats to Validity

	7 Evaluation Multimodal Modeling on Mobile Devices
	7.1 Context
	7.2 Variables
	7.3 Subjects
	7.4 Setup
	7.5 Procedure
	7.6 Experiment Results
	7.6.1 Collected Data
	7.6.2 Analysis
	7.6.3 Subjective Evaluation

	7.7 Discussion
	7.8 Threats to Validity

	8 Conclusion and Future Work
	8.1 Contributions
	8.2 Limitations
	8.3 Future Work

	Appendix A Model Refactoring Taxonomy
	Appendix B Controlled Experiment
	B.1 Instructors Checklist
	B.2 Experiment Task
	B.3 Subjective Questionnaire
	B.4 Stastical Analysis: F-test for variance equality
	B.5 Stastical Analysis: t-Test for unequal variances

	Appendix C Controlled Experiment
	C.1 Instructors Checklist
	C.2 Experiment Task
	C.3 Subjective Questionnaire
	C.4 Statistical Analysis: t-Test paired sample

	References

