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Zusammenfassung

Der Zustandsraum selbst komplizierter Dynamischer Systeme lässt sich häufig in Mengen

unterteilen, die durch starke Transportbarrieren umgeben sind. Solche kohärenten Men-

gen beeinflussen das Verhalten des Systems und sind deshalb äußerst hilfreich für dessen

Verständnis. Diese Arbeit widmet sich der formalen Beschreibung und mathematischen

Berechnung solcher kohärenter Mengen. Wir entwickeln hierzu einen konzeptionellen

Zugang und benutzen dessen Verbindung zu Transferoperatoren um effiziente Algorith-

men für die numerische Berechnung kohärenter Mengen zu entwickeln. Wir wenden diese

Algorithmen auf verschiedene Probleme der Fluiddynamik und Plasmaphysik an.
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Abstract

Even for complicated dynamical systems, it is often possible to subdivide the state

space into several sets that are separated by strong transport barriers. Such coherent

sets greatly influence the behavior of the system and are therefore helpful for its compre-

hensive characterization. This thesis deals with the conceptional description and math-

ematical computation of coherent sets. To this end we develop a conceptual approach to

coherence and use its connection to transfer operators to develop efficient algorithms for

the numerical computation of coherent partitions. We apply these algorithms to various

problems in fluid dynamics and plasma physics.
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Chapter 1

Introduction

Time-dependent processes are mathematically modeled via dynamical systems. Their

complexity ranges from the relatively simple motion of a pendulum to complex currents

in the oceans or atmosphere. The laws covering the dynamics are seldom sufficiently

simple to analytically obtain explicit solutions of the system. Therefore we depend on

numerical methods to analyze such systems. Even if it is possible to obtain a numerical

solution, it does not necessarily reveal valuable insight into the system. The purpose of

an analysis then, if numerically or analytically, is a comprehensive characterization of

the system, like

• topological or geometric information of invariant sets, e.g. attractors or invariant

manifolds,

• statistical information, e.g. probability distributions of trajectories in some subsets

of the state space,

• information on the stability of those objects with respect to small random pertur-

bations of the deterministic system [Junge, 1999].

Subsets of state space which are stable with respect to small random perturbations dur-

ing their evolution over time are called coherent sets. In other words, at least within a

finite time horizon, trajectories initiating within such a set stay inside during its evo-

lution with high probability even under small perturbations. The edges of those sets

hence form persistent, albeit leaky transport barriers and play a fundamental role in the

evolution of dynamical systems. In geophysical flows, coherent sets organize the fluid

flow and obstruct transport between them. For example, vortices and currents influ-

ence the horizontal distribution of heat in the oceans, and atmospheric vortices can trap

chemicals. In a plasma reactor, the confinement of the plasma is of uttermost interest
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Chapter 1 Introduction

in order to lose as little as possible energy, and to protect the facility [Padberg et al.,

2007].

Various techniques have been developed for the qualitative and quantitative study of

transport problems and the computation of coherent sets: One big class of algorithms

is formed by geometric approaches that mainly aim at detecting transport barriers, so-

called Lagrangian coherent structures, see [Haller, 2000,Haller, 2001,Haller and Beron-

Vera, 2012]. The concept of shape coherence is also of geometric nature [Ma and Bollt,

2013]. Another big group of approaches relies on the observation that coherent sets are

closely connected to transfer operators, describing the evolution of densities of particles

due to the given dynamics, and their (singular) spectrum. This fact is well-known in

the autonomous setting, where almost invariant sets e.g. molecules are computed [Dell-

nitz and Junge, 1999,Deuflhard and Weber, 2005,Deuflhard et al., 2000,Deuflhard and

Schütte, 2004, Koltai, 2010]. In the context of non-autonomous dynamical systems this

connection was utilized first in [Froyland and Padberg, 2009] and various applications

have developed from there [Froyland, 2013,Froyland et al., 2010a,Froyland et al., 2010b].

Methods based on transfer operators focus on the computation of the coherent sets

themselves instead of their transport barriers. Recently, also purely data oriented algo-

rithms [Hadjighasem et al., 2016, Banisch and Koltai, 2016] and differential geometric

approaches [Froyland and Kwok, 2016,Karrasch and Keller, 2016] have been developed.

Another group of approaches uses the Koopman operator and its spectrum for the com-

putation of meaningful structures in a dynamical system [Rowley et al., 2009].

This thesis focuses on the computation of coherent sets, and contributes to the ad-

vancement of the set-oriented analysis of dynamical systems through the following:

1. A rigorous definition of coherence and its connection to almost invariance. Instead

of relying on numerical dissipation we directly include diffusion into the dynamical

system and in the definition of coherence. We establish a connection to the well

understood concept of almost invariance. This allows a generalization of important

theorems and high order numerical methods.

2. Usage of transfer operator families. We generalize the mathematical notion of co-

herence such that families of transfer operators can be used. In addition to concep-

tional enhancement, this allows very efficient discretizations and purely data-driven

algorithms.

3. Application to plasma physics. We apply the not yet well-known concept and

methods to various processes covering dynamics in plasma physics. This includes

up to four dimensional problems.

In the following we give a detailed outline of this thesis.
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In Chapter 2, we review on major concepts used in this manuscript, e.g. dynamical

systems, transfer operators, Ulam’s method and equations from plasma physics.

In Chapter 3, we derive a first mathematical notion of coherence based on previous

works. We use the Frobenius-Perron operator to develop a heuristic algorithm comput-

ing a partition of the state space into a meaningful collection of n coherent sets. To this

end, an existing method for the computation of coherent sets, focusing on partitions into

a coherent sets and its complement, is generalized. As discretization Ulam’s method, a

Galerkin-projection onto the indicator functions of boxes, is used. The numerical dissi-

pation added by Ulam’s method can be interpreted as small diffusion, and consequently

does not need to be included into the model. The algorithm is tested with the standard

examples Double gyre and Bickley jet.

In Chapter 4, we include diffusion into the dynamical system – instead of relying on

numerical dissipation. We establish a rigorous connection to the well understood concept

of almost invariance. This allows a generalization of an important theorem [Huisinga

and Schmidt, 2006] introducing a lower bound for the computed almost invariance to

coherence. If white noise is used as diffusion, coherent sets may be computed by directly

solving the Fokker-Planck equation. More precisely, instead of computing the evolution

of the basis of our approximation space under the deterministic dynamics and then ap-

plying diffusion, we directly compute the evolution of this basis under the stochastic

push forward operator given by the solution operator of the Fokker-Planck equation.

This advection-diffusion equation can efficiently be discretised using spectral collocation

(cf. also [Froyland et al., 2013]). In order to deal with aliasing in the case of dominat-

ing advection, a skew symmetric form of the advection term is used. In order to deal

with stiffness in time due to the Laplace operator, an exponential time differentiation

(etd) integrator is employed. As a key advantage of the new method, we only need to

sample the vector field at each time instance on a fixed grid of rather coarse resolution.

In particular, we do not need to integrate trajectories of (Lagrangian) particles and no

interpolation of the vector field to points off the grid is needed.

In Chapter 5, we generalize the mathematical notion of coherence to not rely only

on the initial and final time, but to include all intermediate times of the time interval

observed. This results in the analysis of whole time-parameterized families of transfer

operators. Those families are well-known and frequently used in optimization [Becker

et al., 2007], [Tröltzsch, 2005]. They are also introduced in [Lasota and Mackey, 1993],

Chapter 7.4, for the computation of invariant states. The motivation for this approach

is twofold. First, common existing transfer operator methods, like Ulam’s method in-

troduced in Chapter 3, consider the dynamical system at initial and final time. They

only implicitly know about what happens during the evolution. Our approach is a gen-

eralization considering the system at all time instants of interest. Second, especially in
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Chapter 1 Introduction

applications, most of the time, only a limited set of observations (data) is available, but

at many time instants. Again it is favorable to use all those data. We introduce a coarse

meshfree discretization of the transfer operator family that leads to an algorithm only

requiring data, which is comparable to recently developed, purely data-driven algorithms

and hence connecting those to set oriented methods.

In Chapter 6, we close this thesis with an application of the developed methods to sev-

eral problems in plasma physics. We identify coherent structures and transport barriers

for several problems based on the the Vlasov-Poisson and Vlasov-Maxwell equations.

This includes the Two-stream instability, the Bump-on-tail instability in two and four

dimensions and the Streaming Weibel instability.
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Chapter 2

Theory and background

2.1 Dynamical systems

In general a dynamical system is given as following.

Definition 1. A dynamical system is a triple (T,Ω, T ), where T is a monoid (e.g.

T ∈ {N, R, R+}), Ω is a non-empty topological Hausdorff space and T is a function

T : T × Ω→ Ω with

T (0, x) = x ∀x ∈ Ω, (2.1)

T (s, T (t, x)) = T (s+ t, x) ∀s, t ∈ T, (2.2)

and the mapping (t, x)→ T (t, x) from T × Ω→ Ω is continuous.

The function T (t, x) =: T 0,t(x) is called the flow map or evolution function of the dy-

namical system. It associates to every point in the set Ω, and at initial time 0, a unique

image, depending on the variable t, called the evolution parameter. Ω is called phase

space or state space. The variable x represents an initial state of the system. If T = N
we say (T,Ω, T ) is a discrete-time dynamical system. We then write T (x) := T 1(x) for

one iteration of the map. For fixed x ∈ Ω, Γx := {T (t, x) : t ∈ T} is called the orbit of

x.

If the dynamics are non-autonomous, i.e. depend on the initial time, we write the

flow map as T : T × T × Ω → Ω. Note that in this case we use the convention, that

the first argument of T denotes the initial, and the second argument denotes the final

time. The flow map hence associates to a point x in Ω at initial time t0 a unique image
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Chapter 2 Theory and background

T (t0, t, x) := T t0,t(x), at time t. Conditions (2.1), (2.2) change to

T (t0, t0, x) = x ∀x ∈ Ω,

T (t0, s+ t, x) = T (t, s+ t, T (t0, t, x)) ∀t0, s, t ∈ T.

2.2 Markov operators

In this section, we shortly introduce the concept of Markov operators and as special case

the Frobenius-Perron and its adjoint, the Koopman operator. Originally developed for

the analysis of chaotic systems and the computation of invariant states, those operators

contain all information of a dynamical system and are hence naturally well suited for

the analysis of those. A very readable and detailed introduction to Markov operators is

given in [Lasota and Mackey, 1993], a nice motivation for the Frobenius-Perron operator

is given in [Boyarsky and Gora, 2012].

Remark. We denote with Lp(Ω,A, µ), p ∈ {1, 2, . . . ,∞} the well-konwn Lebesgue spaces.

When the meaning is clear, we sometimes omit the σ-algebra A or the measure µ. With

‖ · ‖Lp(Ω,A,µ) we denote the corresponding Lp-norm. If there is no danger of confusion,

we write ‖ · ‖p,µ or ‖ · ‖p for better readability.

Definition 2. Let (Ω,A, µ) be a measure space with a σ-algebra A and a σ-finite measure

µ. Any linear operator P : L1(Ω)→ L1(Ω) satisfying

1. Pf ≥ 0 for f ≥ 0, f ∈ L1(Ω),

2. ‖Pf‖1 = ‖f‖1 for f ≥ 0, f ∈ L1(Ω)

is called a Markov operator.

Note that Markov operators are monotonic, i.e.

f(x) ≥ g(x)⇒ Pf(x) ≥ Pg(x) for a.e. x ∈ Ω

because

f − g ≥ 0⇒ P(f − g) ≥ 0⇒ Pf ≥ Pg.

2.2.1 Frobenius-Perron operator

We motivate the Frobenius-Perron operator via considering a chaotic system, where the

computation of trajectories is naturally ill-conditioned. To be precise we look at the

logistic map

T : [0, 1]→ [0, 1]

x 7→ 4x(1− x),
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Figure 2.1: Logistic map: Two trajectories starting in 0.1 (blue) and 0.1 + 10−10 (red).

which is a standard example for a chaotic map. We consider two trajectories with initial

values 0.1 and 0.1 + 10−10. In Figure 2.1 we show the first 100 iterations and see that

they quickly diverge. In [Lasota and Mackey, 1993] it is observed that it is easier to

predict the evolution of densities than trajectories (see also Gibb’s original book [Gibbs,

1902] for the origins of statistical mechanics).

But how do the dynamics propagate densities? To see this we assume for a moment

that µ is a probability measure and the random variable

X ∼ f0 ∈ L1
+(Ω,A, µ) , i.e. P(X ∈ A) =

∫
A
f0 dµ ∀A ∈ A,

where P(X ∈ A) denotes the probability that X is in A. We want to compute the

distribution f1 of T (X), T (X) ∼ f1:

P(T (X) ∈ A) = P(X ∈ T −1(A)) =

∫
T −1(A)

f0 dµ
!

=

∫
A
f1 dµ.

When does f1 exist? We note that for a σ-finite measure µ and a function f ∈ L1
+(Ω, µ),

the image measure

νf (A) :=

∫
T −1(A)

f(x)µ(dx) ∀A ∈ A

again is a measure: First, because T is measurable, T −1(A) ∈ A. As

1. νf (∅) =
∫
∅ f(x)µ(dx) = 0,

2. νf (A) =
∫
T −1(A) f(x)︸︷︷︸

≥0

µ(dx) ≥ 0 ∀A ∈ A,
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Chapter 2 Theory and background

3. νf (
⋃
k≥1Ak) =

∫
T −1(

⋃
k≥1 Ak) f(x)µ(dx) =

∫⋃
k≥1 T −1(Ak) f(x)µ(dx)

=
∑

k≥1

∫
T −1(Ak) f(x)µ(dx) =

∑
k≥1 νf (Ak)

for all A1, A2, . . . ∈ A disjoint,

νf is a measure on A. If additionally νf is absolutely continuous with respect to the

σ-finite measure µ, νf � µ, then by the Radon-Nikodym theorem (e.g. [Lasota and

Mackey, 1993, Theorem 2.2.1]) there exists a unique function in L1
+(Ω, µ), which we

denote by Pf such that

νf (A) =

∫
A
Pf(x)µ(dx) =

∫
T −1(A)

f(x)µ(dx) ∀A ∈ A.

The question under which conditions the image measures νf are absolutely continuous

w.r.t µ is answered by the following lemma:

Lemma 1. νf � µ for all f ∈ L1
+(Ω,A, µ) iff ν := µ ◦ T −1 � µ.

Proof. Assume A ∈ A. We start with the first implication.

µ(A) = 0

⇒ νf (A) = 0 ∀f ∈ L1
+(Ω,A, µ)

⇒
∫
T −1(A)

f(x) µ(dx) = 0 ∀f ∈ L1
+(Ω,A, µ)

⇒
∫
T −1(A)

1Ω(x) µ(dx) = 0

⇒ µ(T −1(A)) = 0

⇒ ν(A) = 0

⇒ ν � µ.

The second implication follows from

µ(A) = 0⇒ ν(A) = 0

⇒ µ(T −1(A)) = 0

⇒
∫
T −1(A)

f(x) µ(dx) = 0 ∀f ∈ L1
+(Ω,A, µ)

⇒ νf (A) = 0 ∀f ∈ L1
+(Ω,A, µ)

⇒ νf � µ ∀f ∈ L1
+(Ω,A, µ).

To sum up we have to demand from the flow map T , that µ ◦ T −1 � µ in order to

define the image density Pf on L1
+. This claim is formalized in the following definition:
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2.2 Markov operators

Definition 3. A measurable transformation T : Ω→ Ω on a measure space (Ω,A, µ) is

called non-singular under T if µ(T −1(A)) = 0 for all A ∈ A such that µ(A) = 0.

Now let f ∈ L1(Ω) be arbitrary, i.e. not necessarily non-negative. We write f =

f+ − f−, where

f+(x) = max(0, f(x)), f−(x) = max(0,−f(x))

and define

Pf := Pf+ − Pf−.

Thus ∫
A
Pf(x)µ(dx) =

∫
T −1(A)

f+(x)µ(dx)−
∫
T −1(A)

f−(x)µ(dx)

and hence ∫
A
Pf(x)µ(dx) =

∫
T −1(A)

f(x)µ(dx) ∀A ∈ A.

As for integrable f, g holds that[∫
A
f(x)µ(dx) =

∫
A
g(x)µ(dx) ∀A ∈ A

]
⇒ f = g a.e.

and T is non-singular, Pf is uniquely defined.

We use these considerations for the following definition.

Definition 4. Let (Ω,A, µ) be a measure space. If T : Ω → Ω is a non-singular

transformation, f ∈ L1(Ω), the unique operator P : L1(Ω)→ L1(Ω) defined by∫
A
Pf(x)µ(dx) =

∫
T −1(A)

f(x)µ(dx) ∀A ∈ A (2.3)

is called the Frobenius-Perron operator corresponding to T .

The Frobenius-Perron operator hence describes the evolution of a given density f

under the transformation T , see Figure 2.2. It is consequently also called push for-

ward operator. It follows directly from 2.3, that the Frobenius-Perron operator has the

following properties:

Corollary 1. 1. P is a linear operator on L1(Ω),

2. f ≥ 0⇒ Pf ≥ 0,

3.
∫

Ω Pf(x)µ(dx) =
∫

Ω f(x)µ(dx).

17



Chapter 2 Theory and background

Figure 2.2: The Frobenius-Perron operator P pushes forward a density f , the Koopman

operator K (see Chapter 2.2.2) pulls back a density f .

Remark. Note that the Frobenius-Perron operator is hence a Markov operator.

Next we want to explore if the Frobenius-Perron operator can also be defined on

Lp, p = 1, 2, . . . ,∞. To this end we denote with E(f) the expected value of a random

variable X ∼ f , and with E(f |C) the conditional expectation of a random variable

X ∼ f given C. We will see, that this is possible if the measure µ is not affected by the

transformation T .

Definition 5. Let (Ω,A, µ) be a measure space, T a non-singular transformation. We

say that a measure µ is invariant with respect to T , if

µ(T −1A) = µ(A) ∀A ∈ A.

As

(1A ◦ T )(x) =

{
1 T (x) ∈ A
0 else

=

{
1 x ∈ T −1(A)

0 else
= 1T −1(A)(x),

in this case holds∫
T −1(B)

(1A ◦ T )(x) µ(dx) =

∫
T −1(B)

1T −1(A)(x)µ(dx) = µ(T −1(A) ∩ T −1(B))

= µ(T −1(A ∩B)) = µ(A ∩B) =

∫
B

1A µ(dx) ∀A ∈ A.

With a standard argument from measure theory (see e.g. [Lasota and Mackey, 1993,

Remark 2.2.6]), this also holds for simple functions which are dense in L1(Ω,A, µ). We

can state for f ∈ L1(Ω,A, µ), B ∈ A that, if µ is invariant,∫
T −1B

(f ◦ T )(x)µ(dx) =

∫
B
f(x)µ(dx). (2.4)

Theorem 1. If (Ω,A, µ) is a probability space, T a non-singular transformation and µ

an invariant measure with respect to T , then

Pf ◦ T = E(f |T −1A).

18



2.2 Markov operators

Proof. Pf ◦ T is clearly T −1A measurable. We have for A = T −1B ∈ T −1A:

E(1A(Pf ◦ T )) =

∫
A
Pf ◦ T dµ µ invariant, (2.4)

=

∫
B
Pf dµ Definition P

=

∫
T −1B

f dµ

=

∫
A
f dµ = E(1Af).

Theorem 2. If Ω ⊂ Rd open, d ∈ N and T : Ω → Ω is a Lebesgue-preserving homeo-

morphism, then

Pf = f ◦ T −1 a.e.

Proof. As T , T −1 continuous, T −1A = A and therefore E(f |T −1A) = f . Using Theorem

1, we have that Pf ◦ T = f and as T is invertible Pf = f ◦ T −1.

Theorem 3. If (Ω,A, µ) is a probability space, T a non-singular transformation and µ

an invariant measure with respect to T , then P is a contraction for every 1 ≤ p ≤ ∞.

Proof. For 1 ≤ p <∞

‖Pf‖pp =

∫
Ω
|Pf |pdµ =

∫
Ω
|Pf ◦ T |pdµ =

∫
Ω
|E(f |T −1A)|pdµ

≤
∫

Ω
|E(|f |p|T −1A)|dµ = E(E(|f |p|T −1A)) = E(|f |p) =

∫
Ω
|f |pdµ = ‖f‖pp

via using Jensen’s inequality. For p =∞ we have

‖Pf‖∞ µ invariant
= ‖Pf ◦ T ‖∞ = ‖E(f |T −1A)‖∞ ≤ ‖f‖∞,

as ess supx∈ΩE(f |T −1A) ≤ ess supx∈Ωf .

Corollary 2. If (Ω,A, µ) is a measure space with a finite measure µ, µ(Ω) <∞. Then

P is a contraction on Lp(Ω,A, µ) for all 1 ≤ p ≤ ∞.

Proof. Via defining the probability measure µ̂ := µ/µ(Ω), Pε is a contraction on Lp(Ω,A, µ̂)

for all 1 ≤ p ≤ ∞. Furthermore

f ∈ Lp(Ω,A, µ̂)⇔ f ∈ Lp(Ω,A, µ).

Remark. This allows us to e.g. consider the Frobenius-Perron operator on any Lebesgue

space Lp(Ω,B, λ), 1 ≤ p ≤ . . . ≤ ∞, with Ω ⊂ Rd compact, and λ invariant under T .
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Chapter 2 Theory and background

Frobenius-Perron without invariant measure

Now we consider the case, when the measure µ is not invariant under T . Then P
is not stochastic in the sense that P1Ω = 1Ω and can not necessarily be defined on

Lp, 1 ≤ p ≤ ∞. However, if we remember ν := µ ◦ T −1, the image measure of µ under

the transformation T and assume T to be non-singular, i.e. ν � µ, we can introduce

the transfer operator

P̃ : L1(Ω,A, µ) −→ L1(Ω,A, ν)∫
A
P̃f dν =

∫
T −1(A)

f dµ.
(2.5)

If µ and ν are absolutely continuous with respect to the Lebesgue measure λ with

Radon-Nikodym derivatives hµ and hν = Phµ, respectively, we can compute∫
A
P̃f dν =

∫
T −1(A)

f dµ =

∫
T −1(A)

fhµ dλ =

∫
A
P(fhµ)dλ

=

∫
A

P(fhµ)

Phµ
dν.

Hence, we can write for P̃:

P̃f =
P(fhµ)

Phµ
=
P(fhµ)

hν
,

which can consequently be seen as normalized Frobenius-Perron operator, such that P̃
is stochastic, i.e.

P̃1Ω =
P(1Ωhµ)

Phµ
= 1Ω,

see also [Froyland, 2013]. Furthermore note that, if µ is invariant, P̃ = P.

Furthermore, for functions f in L1(Ω,A, ν) holds that∫
B
f dν =

∫
T −1B

f ◦ T dµ, (2.6)

as for f = 1A, A, B ∈ A we can compute∫
T −1(B)

1A ◦ T dµ =

∫
T −1(B)

1T −1(A)dµ = µ(T −1(A ∩B)) = ν(A ∩B) =

∫
B

1A dν.

and with that (2.6) holds for simple functions and hence for all functions f ∈ L1(Ω,A, ν).
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2.2 Markov operators

Theorem 4. If (Ω,A, µ) is a probability space and T a non-singular transformation,

then

P̃f ◦ T = Eµ(f |T −1A)

Proof. P̃f ◦ T is clearly T −1A measurable. We have for A = T −1(B) ∈ T −1A:

Eµ(1A(P̃f ◦ T )) =

∫
A
P̃f ◦ T dµ (2.6)

=

∫
B
P̃f dν (2.5)

=

∫
T −1(B)

f dµ

=

∫
A
f dµ = Eµ(1Af).

Theorem 5. If (Ω,A, µ) is a probability space and T a non-singular transformation,

then P̃ is a contraction for every 1 ≤ p ≤ ∞.

Proof. For 1 ≤ p <∞

‖P̃f‖pν,p =

∫
Ω
|P̃f |pdν (2.6)

=

∫
Ω
|P̃f ◦ T |pdµ =

∫
Ω
|Eµ(f |T −1A)|pdµ

≤
∫

Ω
|Eµ(|f |p|T −1A)|dµ = Eµ(Eµ(|f |p|T −1A)) = Eµ(|f |p) =

∫
Ω
|f |pdµ = ‖f‖pp.

via using Jensen’s inequality. For p =∞ we have

‖P̃f‖ν,∞ Def. ν
= ‖P̃f ◦ T ‖µ,∞ = ‖E(f |T −1A)‖µ,∞ ≤ ‖f‖µ,∞.

Corollary 3. If (Ω,A, µ) is a measure space with a finite measure µ. Then P̃ :

Lp(Ω,A, µ)→ Lp(Ω,A, ν) is a contraction for all 1 ≤ p ≤ ∞.

To sum up, even if a finite measure µ is not invariant, and hence P is no contraction

on Lp(Ω,A, µ), we can construct a normalized operator P̃ that is a contraction on

Lp(Ω,A, µ)→ Lp(Ω,A, ν).

2.2.2 Koopman operator

We now introduce a third type of operator closely related to the Frobenius-Perron op-

erator.

Definition 6. Let (Ω,A, µ) be a measure space, T : Ω→ Ω a non-singular transforma-

tion and f ∈ L∞(Ω, µ). The operator K : L∞(Ω, µ)→ L∞(Ω, µ) defined by

Kf = f ◦ T

is called Koopman operator with respect to T .

21



Chapter 2 Theory and background

Note that, as T is non-singular, f1(x) = f2(x) a.e. implies that f1(T (x)) = f2(T (x))

a.e. Furthermore as f(x) ≤ ‖f‖∞ a.e. implies that f(T (x)) ≤ ‖f‖∞ a.e. and therefore

K is a contraction on L∞(Ω), ‖Kf‖∞ ≤ ‖f‖∞. Hence K is well defined as an operator

from L∞(Ω, µ)→ L∞(Ω, µ).

K can be interpreted as going backward in time and assigning to a given density

f ∈ L∞(Ω, µ) at final time t1 the initial density Kf evolving to become f . K is therefore

also called pull-back operator, see Figure 2.2. K is also obviously linear.

Lemma 2 ( [Lasota and Mackey, 1993, Section 3.3]). For every f ∈ L1(Ω, µ), g ∈
L∞(Ω, ν) holds

〈Pf, g〉 = 〈f,Kg〉, (2.7)

so that K is adjoint to the Frobenius-Perron operator P : L1(Ω, µ)→ L1(Ω, µ).

Proof. We first check (2.7) for g = 1A, A ∈ A:

〈Pf, g〉 =

∫
Ω
Pf 1A dµ =

∫
A
Pf dµ =

∫
T −1(A)

f dµ

=

∫
Ω
f 1A ◦ T dµ =

∫
Ω
f K1A dµ = 〈f,Kg〉

Because (2.7) holds for g = 1A, it is true for any simple function g and hence for all

functions g ∈ L∞(Ω), (see [Lasota and Mackey, 1993, Remark 2.2.6]).

With the same argument as in Lemma 2.7, we can state

Corollary 4. Let µ be invariant under T . For every f ∈ Lp(Ω, µ), g ∈ Lq(Ω, µ), 1
p+ 1

q =

1 holds

〈Pf, g〉 = 〈f,Kg〉, (2.8)

so that the Koopman operator K : Lq(Ω, µ)→ Lq(Ω, µ) is adjoint to the Frobenius-Perron

operator P : Lp(Ω, µ)→ Lp(Ω, µ).

2.2.3 Semi groups of Frobenius-Perron operators

We next introduce the Frobenius-Perron operator for dynamical systems and therefore

recapture some basics of semi group theory as developed for example in [Evans, 2010]

Chapter 7.4.

Definition 7. Let (Y, ‖·‖) be a Banach space. A one parameter family (Pt)t≥0 of

bounded linear operators Pt : Y → Y is called a semi group on Y , if

1. P0 = I (I denoting the identity on Y ),
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2.2 Markov operators

2. Pt+s = PtPs ∀t, s ≥ 0.

Furthermore, if
∥∥Pt∥∥ ≤ 1, then (Pt)t≥0 is called a semi group of contractions.

Let Ω be a topological Hausdorff space and A be the Borel σ−algebra, i.e. the smallest

σ−algebra containing all open subsets of Ω. Since, for any fixed t ∈ R+ in a dynamical

system (T 0,t)t≥0 the transformation T 0,t is measurable, we can adopt the discrete time

definitions of the Frobenius-Perron operator directly for the continuous time case.

Let µ be a measure on Ω and let all transformations T 0,t of a dynamical system

(T 0,t)t≥0 be non-singular, that is

µ(T t,0(A)) = 0 ∀A ∈ A such that µ(A) = 0.

Then analogously to Definition 2.3, the property∫
A
Ptf(x)µ(dx) =

∫
T t,0(A)

f(x)µ(dx) ∀A ∈ A

for each fixed t ≥ 0 uniquely defines the Frobenius-Perron operator Pt : L1(Ω)→ L1(Ω),

corresponding to the transformation T 0,t. Hence, for fixed t ≥ 0, the operator Pt :

L1(Ω)→ L1(Ω) is a Markov operator.

Remark. The Frobenius-Perron operator P is always associated to a non-singular map

T : Ω→ Ω. If we want to make clear that this map is a flow map T 0,t : Ω→ Ω, at fixed

time t ≥ 0, we write Pt or P0,t for P. If we want to make clear that this map is a flow

map T t0,t1 : Ω→ Ω, depending on the fixed initial time t0 and the fixed final time t1, we

write Pt0,t1 for P.

The Frobenius-Perron operator also fulfills two properties analogue to (2.1) and (2.2)

in the definition of dynamical systems:

As (T 0,t)t≥0 is a dynamical system it holds that T 0,s+t = T 0,s ◦ T 0,t and hence T s+t,0 =

T t,0 ◦ T s,0. This property is inherited to (Pt)t≥0.∫
A
Ps+tf(x)µ(dx) =

∫
T s+t,0(A)

f(x)µ(dx)

=

∫
T t,0(T s,0)(A)

f(x)µ(dx)

=

∫
T s,0(A)

Ptf(x)µ(dx)

=

∫
A
Ps(Ptf(x))µ(dx) ∀A ∈ A.
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Chapter 2 Theory and background

Thus we can conclude

Ps+tf = Ps(Ptf) ∀f ∈ L1(Ω), s, t ≥ 0. (2.9)

Furthermore, since T 0,0(x) = x we have (T 0,0)−1(A) = A for all A ∈ A and consequently∫
A
P0f(x)µ(dx) =

∫
(T 0,0)−1(A)

f(x)µ(dx) =

∫
A
f(x)µ(dx) (2.10)

which is equivalent to

P0f = f ∀f ∈ L1(Ω). (2.11)

Hence Pt satisfies properties analogue to (2.1) and (2.2) in the definition of dynamical

systems and therefore defines a semi group on L1(Ω).

Moreover it fulfills the following properties, too.

Definition 8. Let (Ω,A,µ) be a measure space. A family of operators Pt : L1(Ω) →
L1(Ω) t ≥ 0, satisfying

1. Pt is a linear operator on L1(Ω),

2. f ≥ 0⇒ Ptf ≥ 0 ∀f ∈ L1(Ω),

3.
∫

Ω Ptf(x)µ(dx) =
∫

Ω f(x)µ(dx),

4. Ps+tf = Ps(Ptf) ∀f ∈ L1(Ω), s, t ≥ 0,

5. P0f = f ∀f ∈ L1(Ω).

is called a stochastic semi group.

1.-3. are inherited by Corollary 1. 4., 5. we showed above. Thus the family of

Frobenius-Perron operators on L1(Ω) is also a stochastic semi group. Note that 3. holds

iff T t,0(Ω) = Ω.

2.3 Galerkin projections

In this section let (Ω,A, µ) be a measure space, Ω a compact metric space and µ a

σ-finite measure. Let l1, . . . ln ∈ (Lp)′(Ω) be elements of the dual space (Lp)′(Ω) of

Lp(Ω), p ∈ {1, 2, . . . ,∞}. Let Vn := span(ϕ1, . . . , ϕn), where ϕi : Ω → R are bounded,

piecewise continuous and linearly independent functionals.

Remark. Note that the ϕi may also depend on n but we omit the index n for a clearer

notation.
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2.3 Galerkin projections

We proceed analogous to [Koltai, 2010], Chapter 3. It holds that

Vn ⊂ L∞(Ω), dimVn = n.

We define now the projection πn : Lp(Ω)→ Vn such that

li(f − πnf) = 0 ∀f ∈ Lp(Ω) ∀i = 1, . . . , n. (2.12)

Lemma 3. The projection πn exists and is unique.

Proof. Let be f ∈ Lp(Ω). Then πnf =
∑n

j=1 cjϕj , cj ∈ R and hence

li(f) = li(πnf) = li(
n∑
j=1

cjϕj) =
n∑
j=1

cjli(ϕj) ∀i = 1, . . . , n.

⇔ Lc = l

where L = (Lij) ∈ Rn×n, Lij = li(ϕj), l = (li) ∈ Rn, li = li(f) ∈ R, c = (cj) ∈ Rn.

Because the functionals li are linear independent, L is injective and as Rn is a finite

dimensional vector space also surjective. Hence there is a unique solution to Lc = f and

a unique projection πn : Lp(Ω)→ Vn.

As (Lp(Ω))′ ∼= Lq(Ω), 1
p + 1

q = 1, see for example [Evans, 2010], there are ψ1, . . . , ψn ∈
Lq(Ω), such that

li(f) =

∫
Ω
fψidµ ∀f ∈ Lp(Ω) ∀i = 1, . . . , n.

The ψi are called test functions.

For general ψi, πn is called Petrov-Galerkin projection.

If ψi = ϕi ∀i = 1, . . . , n, πn is called Galerkin projection.

We are mainly interested in Galerkin projections and hence can write for f ∈ Lp(Ω):

πnf =
n∑
i=1

ciϕi ∈ Vn, ϕi ∈ L∞(Ω).

Set

bj :=

∫
Ω
fϕjdµ = lj(f) = lj(πnf) =

∫
Ω
πnfϕjdµ =

n∑
i=1

ci

∫
Ω
ϕiϕj ∀j = 1, . . . , n.

(2.13)

If we define Aijn :=
∫

Ω ϕiϕjdµ(x), b = (b1, . . . , bn)′ and c = (c1, . . . , cn)′ we can write

equation (2.13) as a Matrix vector equation:

c = A−1
n b. (2.14)
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Chapter 2 Theory and background

With Φn := (ϕ1, . . . , ϕn)′ holds

An =

∫
Ω

ΦnΦT
ndµ(x), b =

∫
Ω

Φnfdµ(x)

and thus

πnf = ΦT
nA
−1
n

∫
Ω

Φnfdµ(x).

2.4 Discretization of the Frobenius-Perron operator

In this section we present a common method to discretize the Frobenius-Perron operator

P : Lp(Ω,A, λ)→ Lp(Ω,A, λ)∫
A
Pf(x)λ(dx) =

∫
T −1(A)

f(x)λ(dx) ∀A ∈ A ∀ f ∈ Lp(Ω,A, λ)

with Ω ⊂ Rd compact, and T -invariant Lebesgue measure λ. Therefor we use Ulam’s

well known method (see e.g. [Koltai, 2010] or originally [Ulam, 1960]). We partition the

state space Ω into finitely many disjoint subsets B1, . . . Bn, i.e. Ω =
⋃n
i=1Bi = Ω, where

each set Bi has a piecewise smooth boundary ∂Bi, such that the unit outer normal vector

ni exists almost everywhere. In all our considerations the Bi will be hyper rectangles

and are called boxes. The size of the boxes will decrease at least linearly in 1
n , i.e.

∃c ≥ 0 ∀i = 1 . . . n : λ(Bi) ≤
c

n
and d(Bi) ≤

c

n
, (2.15)

where d denotes the longest side length of the box, which we call diameter. Let χi, i =

1, . . . , n denote the characteristic function on Bi, i.e. χi : Ω→ R,

χi(x) =

{
1 x ∈ Bi,
0 x ∈ Ω\Bi.

We construct the approximation space Vn := span(χ1, . . . , χn) and represent functions

in and operators on Vn with respect to the basis B′n =
{
χ1

1, . . . , χ
1
n

}
, where χ1

i = χi
λ(Bi)

.

Next, we define a projection πn : Lp(Ω)→ Vn, p ∈ {1, 2, . . . } , by

πnf =

n∑
i=1

aiχ
1
i with ai =

∫
Bi

f(x)dλ(x). (2.16)

We define the approximate Frobenius-Perron operator

Ptn := πnPtπn, (2.17)
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2.5 Ulam’s method as Galerkin projection and stochastic interpretation

yielding Ptn : Lp(Ω)→ V 1
n . We are also in the position to compute the matrix represen-

tation P tn for the operator Ptn|Vn with respect to the basis B′n:

Ptn|Vnχ1
j = πnPtπnχ1

j =

n∑
i=1

∫
Bi

Ptχ1
jdλ · χ1

i =
n∑
i=1

(
1

λ(Bj)

∫
Bi

Ptχjdλ
)
χ1
i

as πnχ
1
j = χ1

j and therefore P tn reads as

P t,ijn =
1

λ(Bj)

∫
Bi

Ptχjdλ.

If we use the defining property of the Frobenius-Perron operator we can compute this to

1

λ(Bj)

∫
Bi

Ptnχjdλ =
1

λ(Bj)

∫
T t,0(Bi)

χjdλ =
λ(Bj ∩ T t,0(Bi))

λ(Bj)
,

and hence

P t,ijn =
λ(Bj ∩ T t,0(Bi))

λ(Bj)
.

2.5 Ulam’s method as Galerkin projection and stochastic

interpretation

Ulam’s method above corresponds to a Galerkin projection πn : Lp(Ω) → Vn, p ∈
{1, 2, . . . }, with basis B′n :=

{
χ1

λ(B1) , . . . ,
χn

λ(Bn)

}
and functionals

li(f) :=

∫
Ω
χ1
i fdλ

=
1

λ(Bi)

∫
Ω
χifdλ(x)

=
1

λ(Bi)

∫
Bi

fdλ(x) ∀f ∈ Lp(Ω) ∀i = 1, . . . n.

Because with

πnf =
n∑
i=1

ciχi ∈ Vn,

ci ∈ R constant, and due to (2.12),

li(f) = li(πnf),
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we have

1

λ(Bi)

∫
Bi

f(x)dλ(x) = li(f) = li(πnf)

=
1

λ(Bi)

∫
Bi

πnfdλ(x)

=
1

λ(Bi)

∫
Bi

n∑
j=1

cjχj(x)dλ(x)

=
1

λ(Bi)

∫
Bi

cidλ(x)

= ci ∀f ∈ Lp(Ω) ∀i = 1, . . . n.

(2.18)

Hence the projection πn in (2.16) in Ulam’s method corresponds to the Galerkin projec-

tion (2.18).

Furthermore Ulam’s discretization has a stochastic interpretation, too. If we use the

basis B′ given above, the transition matrix P tn of T 0,t with respect to B′ is given by

P t,ijn =
λ(Bj ∩ T t,0(Bi))

λ(Bj)

=

∫
T t,0(Bi)

χj
λ(Bj)

dλ

=

∫
Bi

Ptn
χj

λ(Bj)
dλ

=

∫
Bi

Ptnχ1
jdλ.

Ptn describes the probability that a point x ∈ Bj chosen randomly via a uniform distri-

bution (with respect to λ) on Bj is mapped to Bi by T 0,t. Hence P t,ijn is the transition

rate from Bj to Bi. Ptn is obviously positive and

n∑
i=1

P t,ijn =

n∑
i=1

λ(Bj ∩ T t,0(Bi))

λ(Bj)

=
1

λ(Bj)

n∑
i=1

λ(Bj ∩ T t,0(Bi))

=
1

λ(Bj)
λ

(
n⋃
i=1

(Bj ∩ T t,0(Bi)

)
, as the Bj are disjoint,

=
1

λ(Bj)
λ

(
Bj ∩

n⋃
i=1

T t,0(Bi)

)
= 1 ∀j = 1, . . . n,

(2.19)

as T t,0(Ω) = Ω. Hence P tn is a stochastic matrix (column wise) and thus Ulam’s method

defines a Markov jump process on Ωn.
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In summary the Markov operator Pt is approximated by an operator Ptn whose rep-

resentation on Vn is a stochastic matrix. Ulam’s discretization of the Frobenius-Perron

operator leads to an approximation of the deterministic process

Z0,t = T 0,t

with probability 1. It is approximated by a stochastic process (Y t
n)t≥0 such that if

Y 0
n = y ∈ Ω (Y 0

n ∼ δy) then

Y t
n ∼

n∑
i=1

P
t,ijy
n χ1

i

where jy is the unique index of Bjy with y ∈ Bjy .

Convergence

Theorem 6 ( [Koltai, 2010]). The discrete Frobenius-Perron operator Ptn converges to

the Frobenius-Perron operator Pt for n→∞ point-wise in Lp(Ω,B, λ), p ∈ {1, 2, . . . }.
Proof. First we show, that for all f ∈ Lp(Ω,B, λ):

πnf → f (n→∞). (2.20)

Therefor let f ∈ C0(Ω). As Lp(Ω, λ) ⊂ Lq(Ω, λ), 1 ≤ q ≤ p ≤ ∞, there is a c > 0, such

that

‖πnf − f‖Lp(Ω) ≤ c ‖πnf − f‖L∞(Ω)

= c

∥∥∥∥∥
(

n∑
i=1

(∫
Bi

f(y)dλ(y)

)
χ1
i (x)

)
− f(x)

∥∥∥∥∥
L∞(Ω)

= c

∥∥∥∥∥
(

n∑
i=1

1

λ(Bi)

∫
Bi

f(y)dλ(y)χi(x)

)
− f(x)

∥∥∥∥∥
L∞(Ω)

.

According the mean value theorem for integration ∃ξi ∈ Bi:

f(ξi) =
1

λ(Bi)

∫
Bi

f(y)dλ(y)

for all i = 1 . . . n. Hence

‖πnf − f‖Lp(Ω) ≤ c
∥∥∥∥∥
(

n∑
i=1

f(ξi)χi(x)

)
− f(x)

∥∥∥∥∥
L∞(Ω)

= c max
i∈{1,...,n}

‖f(ξi)− f‖L∞(Bi)
,

29



Chapter 2 Theory and background

as Ω =
⋃
i=1,...,nBi. Furthermore

c max
i∈{1,...,n}

‖f(ξi)− f‖L∞(Bi)

=c max
i∈{1,...,n}

sup
x∈Bi
|f(ξi)− f(x)|

≤c′ max
i∈{1,...,n}

sup
x∈Bi
‖ξi − x‖ → 0 (n→∞)

as f ∈ C0(Ω), and according to (2.15), with λ(Bi) also the diameter d(Bi)→ 0 (n→∞).

As C0(Ω) is dense in Lp(Ω) and πn is continuous we have proven (2.20).

Due to Theorem 3, the operator Pt : Lp(Ω)→ Lp(Ω) is bounded and∥∥Ptf − Ptnf∥∥Lp(Ω)
=
∥∥Ptf − πnPtπnf∥∥Lp(Ω)

=
∥∥Ptf − Ptπnf + Ptπnf − πnPtπnf

∥∥
Lp(Ω)

≤ ‖Pt (f − πnf) ‖Lp(Ω) + ‖(Id− πn) Ptπnf︸ ︷︷ ︸
:=g∈L1(Ω)

‖Lp(Ω)

≤ ‖Pt‖op ‖(Id− πn) f‖Lp(Ω) + ‖(Id− πn)g‖Lp(Ω) → 0 ∀f ∈ Lp(Ω)

for n→∞ in Lp(Ω) as πn → Id point-wise in Lp(Ω), Pt bounded ∀t.

2.6 Bochner spaces

2.6.1 Integration of Banach space valued functions

In Chapter 5 we will consider the whole evolution of a special set A ⊂ Ω over a fixed

time interval [t0, t1]. The indicator function of such a time parameterized family of sets

(At)t∈[t0,t1] is a mapping 1(At) : [t0, t1] −→ L2(Ω) and hence a Banach space valued

function. We now shortly extend the notions of measurability, integrability, etc. to

functions

f : [t0, t1]→ X, t0, t1 ∈ R+, t0 < t1,

where X is a real Banach space with norm ‖.‖X . The approach is similar to the one for

real valued functions and for example given in [Lasota and Mackey, 1993] (see also the

references therein).

Definition 9. 1. A function s : [t0, t1]→ X is called simple, if it is of the form

s(t) =
m∑
i=1

χEi(t)ui t ∈ [t0, t1]

whereat Ei are Lebesgue measurable subsets of [t0, t1] and ui ∈ X for i = 1 . . .m
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2. A function f : [t0, t1] → X is called strongly measurable, if there exists a se-

quence of simple functions sk : [t0, t1]→ X, k = 1, 2, . . . so that it holds:

sk(t)→ f(t) for almost all t ∈ [t0, t1].

Now, analogue to the Lebesgue integral, integration of strongly measurable functions

can be specified.

Definition 10. 1. For a simple function s : [t0, t1]→ X it is defined:∫
[t0,t1]

s(t)dt :=

m∑
i=1

|Ei|ui.

2. A strongly measurable function f : [t0, t1]→ X is called integrable, if there exists

a sequence (sk)k∈N of simple functions, so that it holds:∫
[t0,t1]

‖sk(t)− f(t)‖X dt→ 0 (k →∞)

3. For integrable f we define:∫
[t0,t1]

f(t)dt = lim
k→∞

∫
[t0,t1]

sk(t)dt.

Theorem 7 (Bochner theorem). A strongly measurable function f : [t0, t1] → X is

integrable if and only if t→ ‖f(t)‖ is integrable. In this case∥∥∥∥∥
∫

[t0,t1]
f(t)dt

∥∥∥∥∥
X

≤
∫

[t0,t1]
‖f(t)‖dt〈

u∗,
∫

[t0,t1]
f(t)dt

〉
=

∫
[t0,t1]

〈u∗, f(t)〉dt.

for each u∗ ∈ X∗.
See e.g. [Yosida, 1995, Chapter V] for a proof. We use this to define the following Lp

spaces.

Definition 11. The space

Lp([t0, t1], X)

consists of all strongly measurable functions f : [t0, t1]→ X with

‖f‖Lp([t0,t1],X) :=

(∫
[t0,t1]

‖f(t)‖pdt
) 1

p

<∞

for 1 ≤ p <∞ and

‖f‖L∞([t0,t1],X) := ess sup
t∈[t0,t1]

‖f(t)‖ <∞.

31



Chapter 2 Theory and background

In particular the space L2([t0, t1],L2(Ω)) is a Hilbert space with norm

‖f‖L2([t0,t1],L2(Ω)) =

(∫
[t0,t1]

‖f(t)‖2L2(Ω)dt

) 1
2

=

(∫
[t0,t1]

(∫
Ω
f(t, x)2dx

)
dt

) 1
2

and inner product

〈f, g〉L2([t0,t1],L2(Ω)) =

∫
[t0,t1]

〈f(t), g(t)〉L2(Ω) dt.

2.7 Functional analysis

Essential for the computation of coherent sets is the Courant-Fischer theorem, that

gives a variational characterization of eigenvalues of (in our case) compact, self-adjoint

operators on Hilbert spaces.

We consider a compact, self-adjoint operator H : L2(Ω, µ)→ L2(Ω, µ). H then exhibits

eigenvalues . . . ≤ λn ≤ . . . ≤ λ2 ≤ λ1 counted according to their multiplicity. The

corresponding set of µ-orthonormal eigenvectors, associated to the n largest eigenvalues,

is denoted by {vn, . . . , v1}. Recall, that by the Rayleigh principle (see e.g. [Huisinga and

Schmidt, 2006]), the k− th largest eigenvalue λk of H is given by the variational formula

λk = max
{
〈Hw,w〉µ : w ∈ L2(Ω, µ), ‖w‖µ = 1, w ⊥ v1, . . . , vk−1

}
where ⊥ denotes orthogonality with respect to the inner product 〈·, ·, 〉µ.

We consider a finite dimensional subspace U ⊂ L2(Ω, µ) with orthonormal basis ϕ1, . . . , ϕn,

dim(U)= n. Then for a self adjoint operator H on L2(Ω, µ) the Rayleigh trace is defined

as

TrU H =
n∑
i=1

〈Hϕi, ϕi〉µ.

Note, that this choice is independent of the particular choice of the orthonormal basis.

We now state the Courant-Fischer theorem and give a short proof, following [Huisinga

and Schmidt, 2006].

Theorem 8 (Courant-Fischer theorem, [Huisinga and Schmidt, 2006, Theorem 1]).

Assume that H : L2(Ω, µ)→ L2(Ω, µ) is a self adjoint, compact operator. Then

n∑
i=1

λk = max
{

TrU H : U n-dim subspace of L2(Ω, µ)
}

= max

{
n∑
i=1

〈Hϕi, ϕi〉µ : (ϕ1, . . . , ϕn) is orthonormal system in L2(Ω, µ)

}

32



2.8 Heuristic clustering

Proof. The second equality is clear. For k ≤ n denote by vk the normalized eigenvector

of H corresponding to λk. Set ϕi = vi, then

〈Hϕi, ϕi〉µ = 〈Hvi, vi〉µ = λi,

and therefore

n∑
i=1

λk ≤ max
{

TrU H : U n-dim subspace of L2(Ω, µ)
}
.

Now let U be an arbitrary n-dimensional subspace. We choose wn to be a normalized vec-

tor wn ∈ U orthogonal to span {v1, . . . , vn−1}. We now inductively define wn−1, . . . , w1:

If wn, . . . , wk+1 have been defined, we choose wk to be a normalized vector in the

k-dimensional subspace U ∩ span {wk+1, . . . , wn}⊥, which is additionally perpendicular

to span {v1, . . . , vk−1}.
Like that, for the constructed vectors wk, k = 1, . . . , n holds, that wk ⊥ span {v1, . . . , vk−1}.
Hence, with the Rayleigh principle, λk ≥ 〈Hwk, wk〉µ, and thus

n∑
i=1

λi ≥
n∑
i=1

〈Hwk, wk〉µ = TrU H.

Let L : L2(Ω, µ) → L2(Ω, µ) be a compact operator. Then L∗L is self adjoint and

compact, and the k-th singular value of σk(L) = λk(L∗L)
1
2 . As the Rayleigh principle

also holds for singular values

σk(L) = max

{
〈L∗Lw,w〉

1
2
µ : w ∈ L2(Ω, µ), ‖w‖µ = 1, w ⊥ v1, . . . , vk−1

}
,

where v1, . . . , vk−1 are the corresponding right singular vectors of L, we can directly

state a version of the Courant-Fischer theorem for singular values:

Corollary 5 (Courant-Fischer theorem for singular values). Assume that L : L2(Ω, µ)→
L2(Ω, µ) is a compact operator. Then

n∑
i=1

σk = max

{
n∑
i=1

〈L∗Lϕi, ϕi〉
1
2
µ : (ϕ1, . . . , ϕn) is orthonormal system

}
.

2.8 Heuristic clustering

During this thesis, we will encounter a classic problem in computational geometry:
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We want to compute k ∈ N clusters within a given data set X ⊂ Rd.

To this end, we identify each cluster with its center c ∈ Rd, and assign each point to

the center closest to it (with respect to a given metric). Like that we can restate the

problem as:

Given an integer k and a set of n data points in Rd, we aim at choosing k centers so

as to minimize a given cost function φ.

The cost function φ is usually the total squared distance between each point and its

closest center. Solving this problem exactly is NP-hard. To nevertheless get an approx-

imate solution to this problem, we shortly introduce a widely used, heuristic clustering

algorithm introduced in [Lloyd, 1982] and usually referred to as k-means.

We wish to choose the k centers c ∈ C ⊂ Rd so as to minimize

φ =
∑
x∈X

min
c∈C
‖x− c‖22.

From these centers, we can simply define a clustering by grouping data points according

to which center each point is closest to (in euclidian distance). The k-means algorithm

is a two-phase iterative algorithm to minimize the sum of point-to-centroid distances,

summed over all k clusters:

1. Arbitrarily choose k initial centers C = {c1, . . . , ck}.

2. For each i ∈ {1, . . . , k}, set the cluster Ci to be the set of points in X that are

closer to ci than they are to cj for all j 6= i.

3. For each i ∈ {1, . . . , k}, set ci to be the center of mass of all points in Ci:

ci =
1

|Ci|
∑
x∈Ci

x.

4. Repeat Steps 2 and 3 until C no longer changes.

In its original form the initial centers are chosen uniformly at random in X . In step

2, ties may be broken arbitrarily. Very common nowadays is a version with a modified

initialization step 1, called k-means++, see [Arthur and Vassilvitskii, 2007]:

Let D(x) denote the shortest distance from a data point to the closest center already

chosen. Then, step 1 is replaced by

1a. Take one center c1, chosen uniformly at random from X .

1b. Take a new center ci, choosing x ∈ X with probability

D(x)2∑
x∈X D(x)2

.
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2.9 Some basics of plasma physics

1c. Repeat Step 1b. until all k centers are chosen.

With this modification the algorithm both, speed and the accuracy are improved [Arthur

and Vassilvitskii, 2007].

As k-means(++) massively depends on the chosen initial centers, k-means(++) is

usually run several times and the result with the lowest within cluster sums of point

to centroid distances
∑

i=1:k

∑
x∈Ci
‖x − ci‖2 is taken. k-means++ is implemented in

Matlab. The Matlab command

1 C=kmeans(X, k, ’Replicates ’, 500);

calls the kmeans++ algorithm for the data matrix X ∈ Rn×d, performs it 500 times,

and chooses the result with the lowest within cluster sums.

2.9 Some basics of plasma physics

A plasma is usually described as the fourth fundamental state of matter. The first three

states are solid, liquid and gas, which are separated by the strength of the bonds that

hold their constituent particles together. These binding forces are relatively strong in a

solid, weak in a liquid, and essentially almost absent in the gaseous state. Depending on

pressure, a substance can transform from solid via fluid to gaseous state with increas-

ing thermal energy of its atoms or molecules, i.e. with increasing temperature. If the

substance is heated up further, an increasing fraction of atoms possesses enough kinetic

energy to overcome, by collisions, the binding energy of the outermost orbital electrons.

The result is a (fully) ionized gas, also known as plasma.

In this section we derive two basic sets of equations describing the particle dynam-

ics of a plasma, the Vlasov-Maxwell equations and the Vlasov-Poisson equations, see

e.g. [Bittencourt, 2013]. First we consider the Lorentz force law and the Maxwell equa-

tions, which together form the foundation of classical electrodynamics. The Lorentz

force describes the combination of electric and magnetic force on a point charge due to

electromagnetic fields: If a particle of charge q moves with velocity v in the presence of

an electric field E and a magnetic field B, then it will experience a force

F = q [E + (v ×B)] . (2.21)

A positively charged particle hence will be accelerated in the same linear orientation as

the E field and will curve perpendicularly to both the instantaneous velocity vector v

and the magnetic field B according to the right-hand rule. The term qE is called the

electric force, while the term qv ×B is called the magnetic force.
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Chapter 2 Theory and background

The (macroscopic) Maxwell equations describe how the electric and magnetic fields are

generated and altered by each other and by charges and currents. They read

∇×E = −∂tB
∇×B = µ0I + µ0ε0∂tE

∇ ·E =
ρ

ε0

∇ ·B = 0,

(2.22)

where ρ and I describe the electric charge density and the current density, respectively.

The appearing universal constants are the permittivity of free space, ε0, and the perme-

ability of free space, µ0.

Each of the four Maxwell equations describes a physical concept:

Faraday’s law

∇×E = −∂tB

describes how a time varying magnetic field induces an electric field. This dynamically

induced electric field has closed field lines just as the magnetic field, if not superposed

by a static (charge induced) electric field.

Ampere’s law

∇×B = µ0I + µ0ε0∂tE

states that magnetic fields can be generated either by electric current (Ampere) or by

changing electric fields (Maxwell’s addition).

Gauss’s Law

∇ ·E =
ρ

ε0

describes the relationship between a static electric field and the electric charges that

cause it. The static electric field points away from positive charges and towards negative

charges.

Gauss’s law for magnetism

∇ ·B = 0

states that there are no magnetic charges, analogous to electric charges.
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Poisson equation

The Poisson equation is obtained from the Maxwell equations when the electric and

magnetic fields are not, or only very little, time dependent. In this case we obtain the

stationary Maxwell equations

∇×E = 0

∇×B = µ0I

∇ ·E =
ρ

ε0

∇ ·B = 0.

Here the electric and magnetic fields are decoupled. Furthermore in many cases, because

B or its contribution to the Lorentz force is small we only consider the equations for the

electric field

∇×E = 0

∇ ·E =
ρ

ε0
.

The first equation implies that that the electric field E is rotation free and hence there

exists a scalar potential Φ : Ω→ R such that E = −∇Φ so that the Maxwell equations

simplify to the Poisson equation

∆Φ =
ρ

ε0
. (2.23)

Vlasov equation

In a kinetic model, each particle species s in the plasma is characterized by a distribution

function fs(t,x,v) which corresponds to a statistical mean of the repartition of particles

in phase space for a large number of realizations of the considered physical system. This

distribution function fs contains more information than a fluid description as it also

includes information on the distributions of particle velocities at each position. In the

non-relativistic case assuming that collective effects are dominant on Coulomb (binary)

collisions between particles, the kinetic equation for the plasma is the Vlasov equation

which reads

df(t,x,v)

dt
= 0,

which can be reformulated as

df

dt
= ft + fxẋ + fvv̇

= ft + fxv +
F

m
fv

= ft + fxv +
q

m
(E + v ×B)fv = 0,
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where we used Newton’s second law F = m · v̇ and the Lorentz equation (2.21). This

equation expresses that the distribution function fs is conserved along the trajectories of

the particles which are determined by the mean electric field. The Vlasov equation, when

it takes into account the self-consistent electromagnetic field generated by the particles,

is coupled to the Maxwell equations (2.22) or the Poisson equation (2.23). Note that in

the kinetic model the electric charge density and the current density can be expressed

via the distribution functions of the different species of particles fs using the relations

ρ = ρ(t,x) =
∑
s

qs

∫
f(t,x,v)dv, I = I(t,x) =

∑
s

qs

∫
f(t,x,v)v dv,

where qs is the charge of the particles species s.

If the magnetic field B and the electric field E are created by the particles we can

combine the Vlasov equation and the Maxwell equations (2.22) to the Vlasov-Maxwell

system of equations

ft + fxv +
q

m
(E + v ×B)fv = 0

∇×E = −∂tB
∇×B = µ0I + µ0ε0∂tE

∇ ·E =
ρ

ε0

∇ ·B = 0

(2.24)

and obtain a closed model for a plasma. If the magnetic field is negligible we can combine

the Vlasov equation and the Poisson equation (2.23) to the Vlasov-Poisson equation

ft + fxv +
q

m
Efv = 0

∆Φ =
ρ

ε0
.

(2.25)

38



Chapter 3

Coherent structures

In this chapter, we turn to the main topic of this thesis, coherence, and its connection

to transfer operators. First, we give a short overview over the preceding concept of

metastability (almost invariance) and use this to motivate a mathematical notion of co-

herence for non-autonomous dynamics. We derive a numerical method based on Ulam’s

discretization to partition the state space of a given system into n coherent sets and

apply this method on two examples: The Double gyre and the Bickley jet.

3.1 Almost invariant sets

The effective dynamics of many biomolecules is generally understood to be governed by

statistically rare transitions between so-called conformations of the biomolecule. In a

conformation, the large scale geometric structure of the molecule is conserved, whereas

on smaller scales the system may well rotate, oscillate or fluctuate. While the microscopic

state of a molecule varies quickly, a change between two conformations is a comparatively

rare event. Hence, from the dynamical point of view, the subset of the state space associ-

ated with a conformation is metastable. The resulting macroscopic dynamical behavior

can be described as a flipping process between the metastable subsets. Consequently,

it is of interest to decompose the state space of the molecular motion into some main

metastable sets and evaluate the transition probabilities between them. This is of fur-

ther importance because computing the full (microscopic) system over longer timespans

is infeasable [Deuflhard and Schütte, 2004]. In Figure 3.1, we show the three conforma-

tions of the molecule Butane. The conformation of the molecule mainly depends on the

central dihedral angle θ ∈ [0, 2π), so the state space in this model is one-dimensional.
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Figure 3.1: The three metastable conformations C, B, A for the molecule butane. On

the right, a possible trajectory in state space is shown.

Additionally a typical trajectory in state space is shown.1

The setting usually used in molecular dynamics is the following: Let X = (X)n∈N
denote a homogeneous, reversible Markov chain on the state space Ω with transition

kernel

p(x,A) = P[X1 ∈ A|X0 = x]

for all x ∈ Ω and all subsets A ⊂ Ω contained in the σ−algebra A. Consider a probability

measure ν on Ω and assume that the Markov chain is initially distributed according to

ν, i.e. X0 ∼ ν , P[X0 ∈ A] = ν(A) for all A ∈ A. The Markov chain at time k > 0 is

then distributed via

P[Xk ∈ A|X0 ∼ ν] =: Pν [Xk ∈ A] =: νk(A).

The evolution of probability measures νk can be described by a transfer operator P
acting on the space of bounded measures on (Ω,A) via

Pν(A) = Pν [X1 ∈ A] =

∫
Ω
p(x,A) ν(dx).

Assume, that µ is an invariant probability measure of P, then ν0 � µ implies νk � µ (see

e.g. [Revuz, 2008] Chapter 4). Hence, usually P is considered as operator on L2(Ω,A, µ)

acting on probability measures, which are absolutely continuous w.r.t. µ according to∫
A
Pf(x)µ(dx) =

∫
Ω
p(x,A)f(x)µ(dx).

As the Markov chainX is reversible, the transfer operator P is self-adjoint on L2(Ω,A, µ).

In order to identify the conformations of a given molecule, the concept of almost invariant

(metastable) sets in state space is introduced in [Dellnitz and Junge, 1999]:

Definition 12. Let A,B ∈ A
1For a more detailed investigation of Butane and its metastable conformations, see [Bittracher, 2016,

Griebel et al., 2007].
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• The transition probability is defined to be the conditional probability

p(A,B) = Pµ[X1 ∈ B|X0 ∈ A] =
1

µ(A)

∫
A
p(x,B)µ(dx)

if µ(A) > 0 and p(A,B) = 0 if µ(A) = 0.

• A subset is called invariant if p(A,A) = 1.

• A subset is called δ-almost invariant (metastable) if p(A,A) = δ.

Usually, a set is hence considered to be almost invariant, if it is δ−almost invariant with

δ ≈ 1. This transition probability of approximately one is of course a vague statement.

In most applications, however, one is interested in a partition of the state space into the

most metastable sets. Therefore, it is not necessary to interpret ”approximately one”,

but to determine the number of subsets we are looking for.

The connection between the notion of almost invariance and the transfer operator P is

the following:

p(A,B) =
1

µ(A)

∫
A
p(x,B)µ(dx) =

1

µ(A)

∫
Ω
p(x,B)1A(x)µ(dx)

=
1

µ(A)

∫
B
P1Aµ(dx) =

〈P1A, 1B〉µ
µ(A)

.

In [Huisinga and Schmidt, 2006] it is shown that under Assumption 1, Theorem 9 holds.

Assumption 1. The transfer operator P is self-adjoint and exhibits n eigenvalues λn ≤
. . . ≤ λ2 < λ1 = 1 counted according to their multiplicity. The corresponding set of n

orthonormal eigenvectors are denoted by {vn, . . . , v1}. Furthermore the spectrum σ(P)

satisfies

σ(P) ⊂ [a, b] ∪ {λn ≤ . . . ≤ λ2 < λ1}

for some constants a, b ∈ (−1, 1) satisfying −1 < a ≤ b < λn. In this sense, the

eigenvalues λ1, . . . , λn are called dominant.

Theorem 9 ( [Huisinga and Schmidt, 2006]). Consider a reversible homogeneous continuous-

time Markov process X = (Xt)t∈[0,∞) and its corresponding semigroup of transfer oper-

ators Pt : L2(Ω,A, µ) → L2(Ω,A, µ). If P = Pt1 satisfies Assumption 1 for some fixed

time t1 > 0, then the metastability of an arbitrary decomposition D = {A1, . . . , An} of

the state space can be bounded from above by

p(A1, A1) + p(A2, A2) + . . .+ p(An, An) ≤ 1 + λ2 + . . . λn

and bounded from below by

1 + ρ2λ2 + . . . ρnλn ≤ p(A1, A1) + . . .+ p(An, An)

where ρj = ‖Qvj‖2 and λk denote eigenvalues of P.
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Here

Q : L2(Ω,A, µ) −→ span(1A1 , . . . , 1An)

Qf =
n∑
k=1

〈f, χAk〉χAk

where χAk = 1Ak/‖1Ak‖2, k = 1 . . . n, is the orthogonal projection from L2 onto the

span of the indicator functions of the metastable sets.

In other words, the lower bound depends on how close the eigenfunctions of P are to

indicator functions of metastable sets. Via a spectral analysis of the transfer operator

P we can find the metastable sets for a given molecule: If we can identify a gap in the

(eigen-) spectrum of the transfer operator, this tells us how many metastable sets exist

in the system. The first n eigenfunctions then are approximations to linear combinations

of the indicator functions of the n metastable sets.

3.2 Coherent sets

After having examined the concept of metastability in molecule dynamics, we turn to

the main topic of this thesis: The analysis of complex non-autonomous systems, such

as fluids (see Chapters 3, 4, 5) or plasmas (see Chapter 6), via finding partitions into

meaningful high level structures, so called coherent sets.

Intuitively spoken, coherent sets are subsets of the domain Ω that are surrounded by

a strong, albeit leaky transport barrier. As a result, they keep most of their mass while

being moved around by the flow T over a finite time interval [t0, t1]. They have a massive

influence on the behavior of the system, and usually a regular surface shape.

This setting is slightly different than for metastable sets. The dynamics are usually

deterministic. As they might be non-autonomous, we are interested in a finite time in-

terval. Furthermore, we are also interested in the shape of a coherent set.

To get a first mathematical grasp, we proceed analogously to the pioneering work

in [Froyland et al., 2010b], where the notion of coherent sets was first connected with

transfer operators. To keep the computations simple, we consider a dynamical system

induced by a smooth vector field b : [t0, t1]×Ω→ Ω and its flow map T t0,t1 from initial

time t0 = 0 to final time t1. Inspired by the associated notion of a metastable set, we

start formalizing this request by asking for a pair of sets A0, A1 ⊂ Ω, such that A0 will

approximately be carried to A1 by T t0,t1 in the sense that

ρ(A0, A1) =
µ(A0 ∩ T t1,t0(A1))

µ(A0)
≈ 1. (3.1)
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A1

T −1

T −1A1

A0

Figure 3.2: The preimage of the set A1 is almost equal to the set A0.

In other words, a particle starting in the set A0 at time t0 = 0 is very likely to end up

in the set A1, see Figure 3.2. A0 and A1 in the end will represent the coherent set A at

times t0 and t1, respectively. Evidently, with A1 = T t0,t1(A0), we obtain ρ(A0, A1) = 1

for any A0 ⊂ Ω. This is not yet a well defined problem. In fact, (3.1) does not impose

any condition on the geometries of the sets A0 and A1. In particular, the image set

A1 = T t0,t1(A0) might be stretched and folded all over the domain Ω – but this is not

the type of coherent set we have in mind. Froyland observed that ρ(A0, T t0,t1(A0)) is not

close to 1 for every set A0 any more, as soon as some random perturbation is artificially

added to the dynamics (cf. [Dellnitz and Junge, 1999, Dellnitz et al., 2001] for related

ideas in the autonomous context). This perturbation can be realized via e.g. diffusion.

3.3 Computing coherent n-partitions

With this first mathematical intuition of coherence, we next want to compute a coherent

partition of the domain Ω ⊂ Rd into n coherent sets. We never consider a coherent

set on its own, but always a partition, because our problem formulation is intrinsically

symmetric. Mathematically we want to partition Ω into n coherent sets Akj , k = 1, . . . n,

at times tj = t0, t1, Ω =
⋃̇
Ak0 =

⋃̇
Ak1, such that

1. Pt0,t11Ak0
≈ 1Ak1

, k = 1, . . . n

2. µ(Ak1) = µ(Ak0), k = 1, . . . n

3. Pt0,tAk0, t ∈ [t0, t1], k = 1 . . . n, are stable under small random perturbations.

Condition 1 ensures, that Ak1 is approximately the image of Ak0 under the dynamics.

Condition 2 means the coherent sets Ak0 do not lose mass at all, while being mapped

to Ak1. This is a very strong claim, which will be relaxed later. The stability under

small perturbations in Condition 3 helps to prefer nicely shaped sets, i.e. sets that do

not become filaments: Ill-shaped sets have a longer boundary and, hence, loose more

mass due to the perturbation. To phrase our problem mathematically, we consider a

symmetric version of (3.1). For a clearer representation let P := Pt0,t1 . As the number n

of those sets is not known a priori, we try to find a formulation that reveals the partition
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Chapter 3 Coherent structures

into n coherent sets for several n ≥ 1 and choose a meaningful number from this. To

this end, we formulate the optimization problem

max
Ω=

⋃̇
Ak0 , µ(Ak0)=ν(Ak1)

n∑
k=1

µ(Ak0 ∩ T t1,t0Ak1)

µ(Ak0)
, (3.2)

which we will interpret as a problem in L2(Ω, µ). We demand the coherent sets Ak to

form a partition of the domain and to keep their mass during the evolution. ν denotes

the evolution of the reference measure ν, i.e. ν = µ ◦ T t1,t0 . The connection between

(3.2) and the Frobenius-Perron operator P̃ : L2(Ω, µ)→ L2(Ω, ν) is given via

µ(Ak0 ∩ T t1,t0Ak1) =

∫
T t1,t0 (Ak1)

1Ak0
dµ =

∫
Ak1

P̃1Ak0
dν

= 〈P̃1Ak0
, 1Ak1
〉ν ,

see (2.5). We can reformulate (3.2) as

max
Ω=

⋃̇
Ak0 , µ(Ak0)=ν(Ak1)

n∑
k=1

µ(Ak0 ∩ T t1,t0Ak1)

µ(Ak0)

= max
Ω=

⋃̇
Ak, µ(Ak0)=ν(Ak1)

n∑
k=1

〈P̃1Ak0
, 1Ak1
〉ν

‖1Ak0‖µ ‖1Ak1‖ν

≤ max
f1⊥···⊥fn∈L2(Ω,µ), gk∈L2(Ω,ν)

n∑
k=1

〈P̃fk, gk〉ν
‖fk‖µ ‖gk‖ν

= max
f1⊥···⊥fn, gk

n∑
k=1

〈P̃fk, gk/‖gk‖ν〉ν
‖fk‖µ

= max
f1⊥···⊥fn

n∑
k=1

〈P̃fk, P̃fk〉
1
2
ν

‖fk‖µ
,

where we simply used the Cauchy Schwartz inequality,

max
f1⊥···⊥fn

n∑
k=1

〈P̃fk, P̃fk〉
1
2
ν

‖fk‖µ

= max
f1,...,fn ONB of Vn≤L2(Ω,µ)

n∑
k=1

‖P̃fk‖ν

= max
f1,...,fn ONB of Vn≤L2(Ω,µ)

n∑
k=1

〈P̃∗P̃fk, fk〉
1
2
µ .

(3.3)

We have not yet considered the demand for stability under small random perturbations

(which, e.g. can be realized via diffusion). To this end, we add some suitable small
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3.4 Time-discrete diffusion and Ulam’s method

random perturbation to the problem. We obtain a slightly perturbed transfer operator

P̃ε for the slightly perturbed dynamics T t0,t1ε . We can compute2

≈ max
f1,...,fn ONB of Vn≤L2(Ω)

n∑
k=1

〈P̃∗ε P̃εfk, fk〉
1
2
µ

=
n∑
k=1

λk(P̃∗ε P̃ε)
1
2

=

n∑
k=1

σk(P̃ε)

(3.4)

due to the Courant-Fischer theorem 5. In order to apply this theorem, we have to assume

that the diffusion added to the problem makes the transfer operator P̃ε compact. We

do not need to assume the leading singular value is isolated. The maximizing functions

are the corresponding first n singular functions of P̃ε. As a basis of the vector space

Vn = span(v1, . . . , vn) is not unique, the computed singular functions v1, . . . , vn are not

necessarily approximations to the indicator functions of the coherent sets 1A1
0
, . . . , 1An0 .

They are linear combination of these, if our relaxation step from indicator functions

to functions in L2 was not too strong. To ”change” the basis to indicator functions

and actually extract the coherent partition, some heuristic algorithms like k-means (see

Section 2.8) can be used (see also [Banisch and Koltai, 2016], [Hadjighasem et al., 2016]).

The question of how many sets a partition should contain is answered by the singular

spectrum of P̃ε, analogous to [Huisinga and Schmidt, 2006, Proposition 2.3]. For a

partition into n coherent sets should hold:

1. the first n singular values are close to one,

2. v1, . . . , vn are good approximations of linear combinations of n(!) indicator func-

tions partitioning Ω.

The first condition ensures that the partition is actually coherent. The second is an a

posteriori check of the relaxation to functions in L2 was not strong. Useful choices for n

are usually encoded in the spectrum of P̃ε, in which gaps occur showing where to cut the

spectrum, see [Huisinga and Schmidt, 2006]. In Chapter 4, we will formalize this request

and give a lower bound on the approximation of the singular values to the coherence

ratios.

3.4 Time-discrete diffusion and Ulam’s method

In the last Section 3.2, we asserted that we can compute an approximation to (3.2) via

a spectral analysis of the slightly perturbed operator P̃ε, which is rendered compact by

a small diffusion. We now have to do two things:

2Here we make a modeling choice and we have only an approximate equality in this step. However, for

application purposes this is good enough. In chapter 4 we will establish a rigorous connection here.
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1At Dε1At
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Pε1At := DεPDε1At

ε

Figure 3.3: Perturbed operator Pε via time-discrete diffusion.

• Choose a diffusion such that P̃ε is compact,

• Discretize the operator P̃ε.
We first assume µ = λ, the Lebesgue measure, to be invariant under T t0,t1 . In this case

P̃ε = Pε. In [Froyland, 2013] it is observed, that adding a small spatial diffusion at initial

and final time is enough to make the such perturbed transfer operator Pε compact, see

Figure 3.3. To achieve this, we add a random perturbation to the flow map T t0,t1 by a

diffusion operator

Dε : L2(Ω)→ L2(Ω) Dεf(y) =

∫
Ω
αε(y − x)f(x)dx,

where αε : Ω → [0,∞) is a bounded kernel with
∫

Ω αε(y − x)dx = 1 for all y ∈ Ω.

With the Frobenius-Perron operator P and the perturbation operator Dε, we define the

disturbed transfer operator

Pε : L2(Ω)→ L2(Ω) Pε := DεPDε,

see also Figure 3.3. Note that Pε is still stochastic, i.e. Pε1Ω = 1Ω. Further, as αε is

bounded, Pε is a Hilbert-Schmidt operator. Hence, Pε is compact and suited for the

computation of coherent sets. In Section 2.4, we introduced an accessible discretization

of the Frobenius-Perron operator, Ulam’s method, as a Galerkin-Projection onto the

indicator functions of boxes B1, . . . , BN , Ω =
⋃N
i=1Bi. The approximate Frobenius-

Perron operator P ∈ RN×N then reads

P ij =
λ(Bj ∩ T t1,t0(Bi))

λ(Bj)
. (3.5)

In Section 2.5 we already established an interpretation of Ulam’s method as stochastic

process. Here we interpret the method as two stochastic perturbations (in space) at

initial and final time. To numerically estimate (3.5), one may use a Monte Carlo method

and sample test points xik , k = 1, . . . ,K uniformly distributed over Bi and then compute

T t0,t1(xik) and count how many fall in Bj . That is

P ij ≈ #(k : T t0,t1(xik) ∈ Bj)
K

. (3.6)
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3.4 Time-discrete diffusion and Ulam’s method

As the indicator functions of the boxes can be interpreted as density functions of uniform

distributions on boxes, the discretization of the Frobenius-Perron operator via Ulam’s

method usually induces enough numerical dissipation to regularize the problem. In this

case we do not need to add explicit diffusion in order to compute coherent sets. Once

the approximate Frobenius-Perron operator P = Pε ∈ RN×N is computed, the spectral

analysis

P = USV ′ =

 | | |
u1 u2 . . . uN
| | |


σ1

. . .

σN


− v′1 −

...

− v′N −

 ,

where u1, . . . , uN are the left singular values, v1, . . . , vN are the right singular values,

and σ1, . . . σN are the singular values, can be performed by standard methods. One

problem with this approach is, that Ulam’s method does not conserve the stochasticity

of the Frobenius-Perron operator, i.e. P1 6= 1 in general, even if P1Ω = 1Ω. The

discretized transfer operator P is column stochastic, but not row stochastic, see (2.19).

As a result the leading singular value is only approximately equal to 1. In the next

section we introduce a way to deal with that.

3.4.1 Ulam’s method for varying domains and reference measures

We now take a look at how to compute an approximation to P̃ via Ulam’s method. This

means we want to compute coherent sets with respect to a reference measure µ, that is

not invariant under T t0,t1 . We also directly cover the situation, in which the flow does

not stay in the initial domain Ω1 but evolves to a different domain Ω2. We therefore not

consider a flow T t0,t1 : (Ω, λ) 	, but a still non-singular flow T t0,t1 : (Ω1, µ) → (Ω2, ν),

where ν = µ ◦ T t1,t0 is the image of µ under the dynamics. We assume both µ and ν to

be absolutely continuous with respect to the Lebesgue measure λ, and µ and ν to have

Radon-Nikodym derivatives hµ and hν = Phµ, respectively. Hence we have to consider

the operator

P̃ : L2(Ω1, µ)→ L2(Ω2, ν)

P̃f =
P(fhµ)

hν
,

see Section 3.3. Via defining P̃ like that, we obtain again a stochastic operator in the

sense that P̃1Ω1 = P(hµ1Ω1)/hν = 1Ω2 ..

For discretizing the problem we partition the domain Ω1 intoN1 boxesB1, . . . , BN1 , Ω =⋃N1
i=1Bi and the domain Ω2 into N2 boxes C1, . . . , CN2 , Ω =

⋃N2
i=1Ci. We then project

the initial density hµ to the approximation space VN1 . VN1 is the space spanned by the

indicator functions of the boxes B1, . . . , BN1 , VN2 is the space spanned by the indicator

functions of the boxes C1, . . . , CN2 . hµ is hence represented by a vector p ∈ RN1 . An
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approximation q to hν is computed via q = Pp ∈ RN2 . Approximations to the inner

products 〈·,·〉µ and 〈·,·〉ν hence read

〈x, y〉p = 〈Π
1
2
p x,Π

1
2
p y〉2 ∀x, y ∈ RN1 ,

〈x, y〉q = 〈Π
1
2
q x,Π

1
2
q y〉2 ∀x, y ∈ RN2 .

Π
1
2
p = diag(p) and Π

1
2
q = diag(q) are diagonal matrices with p, q on their diagonals,

respectively. 〈·,·〉2 denotes the Euclidean inner product:

〈x,y〉2 =

N∑
k=1

xi · yi ∀x, y ∈ RN .

We can compute an approximation to P̃ via Ulam’s method as

P̃ : (RN1 , 〈·, ·〉p)→ (RN2 , 〈·, ·〉q)
P̃ := Π−1

q PΠp.

We then have to compute the singular value decomposition of P̃ . The singular values

of P̃ are the eigenvalues of P̃ ∗P̃ . We note that the adjoint P̃ ∗ of P̃ (with respect to the

inner products 〈., .〉p, 〈., .〉q) is not P̃ T , the transposed matrix of P̃ , but the Koopman

operator, which is the adjoint of P with respect to the standard 2-norm, i.e. P T . A

short computation shows, that the connections are:

〈Pf, g〉2 = 〈f,Kg〉2,

and as

〈P̃ f, g〉q = 〈Π−1
q PΠpf, g〉q = 〈PΠpf, g〉2 = 〈Πpf,Kg〉2 = 〈f,Kg〉p

we have

〈P̃ f, g〉q = 〈f,Kg〉p,

where K = P T is the approximation to the Koopman operator. Hence

〈P̃ f, g〉q = 〈f, P T g〉p.

To sum up, we have to compute the singular value decomposition of P̃ , i.e an eigenvalue

decomposition of P̃ ∗P̃ = P T P̃ . For this discretization holds, that σ1 = 1 is the leading

singular value:
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3.4 Time-discrete diffusion and Ulam’s method

Lemma 4. The leading singular value of P̃ : (Rn, 〈·, ·, 〉p)→ (Rn, 〈·, ·, 〉q) is equal to 1.

Proof. The squares of the singular values of P̃ are the eigenvalues of P̃ ∗P̃ . We have

seen that P̃ ∗ = P T . P̃ is row-stochastic by construction, and P is column stochastic,

see (2.19). Hence, P T is row-stochastic and P T P̃ is row-stochastic. It follows, that the

leading eigenvalue of P T P̃ is equal to 1.

This discretization works fine, but naively we have to compute the matrix-matrix

multiplication of two matrices, that are hopefully sparse. This is computationally very

expensive. In order to avoid that, we perform a transformation from (Rd, 〈·, ·〉p) to

(Rd, 〈·, ·〉2). Like that, we get an optimization problem in (Rd, 〈·, ·〉2), where adjungating

is simply transposing. To this end, we consider the discrete version of (3.3) and adapt

[Froyland et al., 2010b, Lemma 1] for our purposes:

Lemma 5. The solution to

max
x1,...,xn∈RN1

{
n∑
k=1

‖P̃ xk‖q
‖xk‖p

: 〈xi, xj〉p = δij ∀i, j = 1, . . . , n

}
(3.7)

is given by the sum
∑n

k=1 σk(Π
− 1

2
q PΠ

1
2
p ) of the n largest singular values σk, k = 1, . . . , n,

of Π
− 1

2
q PΠ

1
2
p . The maximizing xk are given by vk = Π

1
2
p v̂k, where v̂k is the corresponding

k − th right singular vector. Furthermore the leading singular value is σ1 = 1.

Proof. We convert (3.7) to a maximization in the standard euclidean norm via

max
x1,...,xn∈RN1

{
n∑
k=1

‖P̃ xk‖q
‖xk‖p

: 〈xi, xj〉p = δij ∀i, j = 1, . . . , n

}

= max
x1,...,xn∈RN1


n∑
k=1

〈Π
1
2
q P̃ xk,Π

1
2
q P̃ xk〉2

〈Π
1
2
p xk,Π

1
2
p xk〉2

: 〈Π
1
2
p xi,Π

1
2
p xj〉2 = δij ∀i, j = 1, . . . , n


= max
x1,...,xn∈RN1


n∑
k=1

‖Π
1
2
q P̃ xk‖2
‖Π

1
2
p xk‖2

: 〈Π
1
2
p xi,Π

1
2
p xj〉2 = δij ∀i, j = 1, . . . , n

 .

We substitute x̂ = Π
1
2
p x and obtain

= max
x̂1,...,x̂n∈RN1


n∑
k=1

‖Π
1
2
q P̃Π

− 1
2

p x̂k‖2
‖x̂k‖2

: 〈x̂i, x̂j〉2 = δij ∀i, j = 1, . . . , n


= max
x̂1,...,x̂n∈RN1


n∑
k=1

‖Π−
1
2

q PΠ
1
2
p x̂k‖2

‖x̂k‖2
: 〈x̂i, x̂j〉2 = δij ∀i, j = 1, . . . , n
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Again, due to theCourant-Fischer theorem, the maximum of (3.7) is
∑n

k=1 σk(Π
− 1

2
q PΠ

1
2
p ),

and the maximizing vectors are the corresponding singular vectors v̂k, k = 1, . . . , n. Via

re-substituting, we obtain that the maximizing vectors vk of (3.7) are vk = Π
1
2
p v̂k.

The claim, that the leading singular value σ1 is equal to one directly follows from Lemma

4.

Remark. Note that we also directly obtain an approximation of the indicator functions

of the coherent sets at final time. These are given by uk = Π
− 1

2
q ûk, where ûk is the k-th

left singular vector of Π
− 1

2
q PΠ

1
2
p . This holds, because

uk = P̃ vk = Π−1
q PΠpvk = Π

− 1
2

q

(
Π
− 1

2
q PΠ

1
2
p

)
v̂k = Π

− 1
2

q ûk.

To sum up, with Lemma 5, we obtain a discretization of (3.2) that preserves the

stochasticity of the operator P and can be solved via a singular value decomposition of

the matrix Π
− 1

2
q PΠ

1
2
p ∈ (RN1×N2 , 〈·,·〉2). We can avoid the matrix matrix multiplications.

Let | | |
a1 a2 . . . aN2

| | |

 ∈ RN1×N2 ,

− b′1 −
...

− b′N1
−

 ∈ RN1×N2 ,

α1

. . .

αN

 ∈ RN×N .

We realize that the multiplication with diagonal matrix from the right hand side is

scaling the columns with the diagonal entries. Multiplication from the left hand side is

scaling the rows with the diagonal entries: | | |
a1 a2 . . . aN2

| | |


α1

. . .

αN2

 =

 | | |
α1a1 α2a2 . . . αN2aN2

| | |


α1

. . .

αN1


− b′1 −

...

− b′N1
−

 =

− α1b
′
1 −

...

− αN1b
′
N1
−

 .

We can implement this very efficiently via directly using the bsxfun (Binary Singelton

eXpansion) function in matlab:

1 Π
− 1

2
q PΠ

1
2
p =bsxfun(@times ,q.^( -0.5), bsxfun(@times ,P,p.^(0.5)));

where P ∈ RN1×N2 is the Frobenius-Perron operator computed via Ulam’s method,

p ∈ RN1 , and q ∈ RN2 are the approximations of hµ, hν , respectively. We use this

approach for the following numerical experiments.
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3.5 Numerical experiments

Remark. When we use Ulam’s method in practice, we often do not know the image

domain Ω2, but start with an initial domain Ω1, which some particles possibly leave

during their evolution over time. We can easily deal with this if we initially define P
mapping into a greater domain Ω ⊇ Ω2, and delete all boxes not reached by any particles.

3.5 Numerical experiments

3.5.1 Double gyre

First we look at the benchmark example of the Double gyre. The model was introduced

in [Shadden et al., 2005] and also considered in [Froyland and Padberg-Gehle, 2014],

[Froyland and Padberg, 2009], [Williams et al., 2014b], [Ma and Bollt, 2013]. The model

describes a flow

Ψ(t, x, y) := A sin(πf(t, x)) sin(πy),

where f(t, x) = δ sin(ωt)x2 + (1 − 2δ sin(ωt))x, in a domain Ω = [0, 2] × [0, 1]. The

velocity field is given by

b(t, x, y) =

(
−∂Ψ
∂y
∂Ψ
∂x

)
=

( −πA sin(πf(t, x)) cos(πy)

πA cos(πf(t, x)) sin(πy)∂f∂x (t, x)

)
. (3.8)

This model is not intended to describe a real fluid flow but a simplification of a double-

gyre pattern seen in geophysical flows [Shadden et al., 2005].

The example describes two counter-rotating vortices separated by a periodically mov-

ing leaky transport barrier. For δ = 0 the flow is autonomous. For δ > 0 the flow is

non-autonomous and the gyres conversely expand and contract periodically in the x-

direction, such that the domain Ω enclosing the gyres remains invariant. A determines

the magnitude of the vector field b, ω/2π is the frequency of oscillation, and δ is ap-

proximately how far the line separating the gyres moves to the left and to the right,

see [Shadden et al., 2005]. We fix the parameter values to

A = 0.25, δ = 0.25, ω = 2π.

In Figure 3.4, we show the velocity field of the Double gyre at times 0, 0.25 and 0.75.

The Double gyre is 1-periodic in our configuration . We compute an approximation of

the maximally coherent sets via Ulam’s method using 28 × 27 boxes and 100 test points

per box. We use µ = λ as reference measure, which is invariant under the flow. For

the time integration, we use a standard Runge-Kutte 4 scheme with step size h = 0.1.

As initial and final time, we choose t0 = 0.25, t1 = 10.75. In Figure 3.5 we show the

singular spectrum of the transfer operator. There we spot a gap after the third singular

value.
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Figure 3.4: Field lines of the vectorfield of the Double gyre at times 0, 0.25 and 0.75.

The vectorfield is 1-periodic.
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Figure 3.5: Singular values for the Double gyre.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

−2

−1

0

1

2

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

−2

−1

0

1

2

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

0

0.5

1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

0

1

2

Figure 3.6: First row: Second left and right singular vectors of the Frobenius-Perron

operator for the Double gyre, Second row: Third singular vector at initial

and final time.
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Figure 3.7: Extracted partition into three coherent sets at initial and final time.

In Figure 3.6, we show the second and third singular vectors of the such computed

Frobenius-Perron operator. They nicely indicate the two vortices at initial and final

time.

We use k-means, see Section 2.8, to actually extract the coherent sets. The partition

at initial and final time is shown in Figure 3.7.

3.5.2 Quasiperiodic Bickley jet

The Bickley jet, an idealized model of a meandering zonal jet, see [del Castillo-Negrete

and Morrison, 1993] [Rypina et al., 2007] [Hadjighasem et al., 2016], will serve as a test

problem throughout the thesis. This model consists of a steady background flow subject

to a time-dependent perturbation. The time-dependent Hamiltonian reads

ψ(x, y, t) = ψ0(y) + ψ1(x, y, t),

ψ0(y) = −U0L0 tanh(
y

L0
),

ψ1(x, y, t) = U0L0sech2(
y

L0
)R
(

3∑
n=1

fn(t) exp(iknx)

)

where ψ0 is the steady background flow and ψ1 is the perturbation. The constants U0

and L0 are the characteristic velocity and the characteristic length scale, respectively.

For the following analysis, we apply the set of parameters used in [Rypina et al., 2007]

and [Hadjighasem et al., 2016]:

U0 = 62.66 ms−1, L0 = 1770 km, kn =
2n

r0
,

where r0 = 6371 km is the mean radius of the earth. For fn(t) = εnexp(ikncnt), the time-

dependent part of the Hamiltonian consists of three Rossby waves with wave numbers

kn traveling at speeds cn. The amplitude of each Rossby wave is determined by the

parameters εn. The parameters we use are the following: c1 = 0.1446 U0, c2 = 0.205 U0,

c3 = 0.461 U0, ly = 1.77 · 106, ε1 = 0.0075, ε2 = 0.04, ε3 = 0.3, lx = 6.371 · 106π, kn =

2nπ/lx. The time interval we consider is from t0 = 0 to t1 = 40 days = 3.456·106 seconds.

The initial domain is Ω0 = [0, 20]× [−3, 3] at time t0. As the flow does not stay in Ω0,
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Figure 3.8: Field lines of the vector field of the Bickley jet at time t0. The red color

indicates high velocity.

we define the initial density as µ = 1/|Ω|1Ω, project µ onto the approximation space VN
and obtain the constant vector p = 1/(n ·m) ∈ RN . We let the approximate transfer

operator Pn map to a greater domain Ω = [−5, 5] × [0, 20]. Then we only consider the

subdomain Ω2 ⊂ Ω where q = pP > 0, i.e. delete all boxes that are not reached by any

particle.

A picture of the vector field at time t0 = 0 and t1 is given in Figure 3.8. We utilize

Ulam’s method to compute an approximation of the Frobenius-Perron operator for the

system, see Section 3.4. Therefore we use 27 × 25 boxes with 100 testpoints per box.

In Figure 3.9 we show the singular values of the transfer operator and see several gaps

occurring after the second, the eighth, the ninth and the fifteenth singular value. This

indicates that there is not only one meaningful partition but several, and it is not clear

a priori which to choose. In Figure 3.10 we show the second singular vector at initial

and final time. We see that the 2-partition will simply separate the northern and the

southern hemisphere. In Figure 3.11 we show partitions into two, eight, nine and fifteen

coherent sets together with the corresponding last singular vectors contributing to the

partition:

• The 2-partition indeed separates the northern from the southern hemisphere.

• The 8-partition identifies the six vortices and the two hemispheres.

• The 9-partition separates the zonal jet, too.

• The 15-partition additionally divides the vortices in an inner and outer part.
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3.5 Numerical experiments
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Figure 3.9: Singular values for the Bickley jet.
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Figure 3.10: Left and right second singular vectors indicating the coherent sets at times

t0 and t1.
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Figure 3.11: First column: Partition into two, eight, nine and fifteen coherent sets. Sec-

ond column: Second, eighth, ninth and fifteenth singular vectors.
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Chapter 4

Coherence via stochastic process

In this chapter, we directly add the diffusion needed for the computation of a coherent

partition into the modeling of the dynamical system. We introduce a stochastic flow

map, and construct the transfer operator for this system. This approach has the ad-

vantage that we can derive some rigorous lower bounds for the approximation of the

coherence ratio of the partition. In the second part of the chapter, we choose a stochas-

tic flow map induced by white noise added to the deterministic process. The associated

transfer operator solves a Fokker-Planck equation. For the numerical implementation,

we employ spectral collocation methods and an exponential time differentiation scheme.

We compare our approach experimentally with the more classical method by Ulam.

4.1 Stochastic flow maps

In the previous chapter we called a set A ⊂ Ω coherent, if

µ(A0 ∩ T t1,t0A1)

µ(A0)
≈ 1

subject to some small random perturbation. Here A0 denotes the coherent set at initial

time t0, A1 at final time t1. Using this expression, the connection to transfer operators

can be directly established via

µ(A0 ∩ T t1,t0A1) = 〈P1A0 , 1A1〉µ.

On the other hand, this formulation is challenging because the perturbation is not for-

mulated initially but added ”on the way”. To overcome this, we aim at including the

diffusion directly in the mathematical definition of coherence. We introduce a stochastic
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Chapter 4 Coherence via stochastic process

flow map of homeomorphisms as in [Kunita, 1997, Chapter 4], and introduce the trans-

fer operators for these. We always consider ε-small perturbations of the deterministic

system. When talking about stochastic flows, we equip the stochastic flow map with an

ε to distinguish it from the deterministic one.

Definition 13. Let T s,tε (x, ξ), s, t ∈ [t0, t1], x ∈ Rd be a continuous, Rd-valued random

field defined on the probability space (Σ,F ,P), T s,tε (x, .) : Σ → Rd. Then for almost all

ξ, T s,tε (ξ) = T s,tε (·, ξ) defines a continuous map from Rd into itself for any s, t. It is

called a stochastic flow of homeomorphisms if there exists a null set N of Σ such

that for any ξ ∈ N c, the family of continuous maps
{
T s,tε (ξ) : s, t ∈ [t0, t1]

}
defines a

flow of homeomorphisms, i.e. it satisfies the following properties:

1. T s,uε (ξ) = T t,uε (ξ) ◦ T s,tε (ξ) = holds for all s, t, u,

2. T s,sε (ξ) is the identity map for all s,

3. the map T s,tε (ξ) : Rd → Rd is a homeomorphism for all s, t.

The definition can, of course, be generalized to suitable manifolds (see [Kunita, 1997,

Chapter 4.8]). However, as for our use the domain considered is usually a subspace of

Rd, we stay in this setting for now and deal with other domains as they occur.

4.2 Transfer operators for stochastic flows

We now introduce the push forward (Frobenius-Perron) operator for stochastic flow

maps. Again we fix an initial time t0 and a final time t1. For a σ-finite, invariant

measure µ on Rd (i.e. for all ξ ∈ Σ holds that µ ◦ T t0,t1ε (A, ξ) = µ(A) for all A ∈ A) we

define the Frobenius-Perron operator as

Pε : L1(Rd,A, µ)→ L1(Rd,A, µ)

(Pεf)(x) = EP[f ◦ T t1,t0ε (x, ·)].
(4.1)

This definition is similar to the deterministic one but now we take the mean over all

realizations of the stochastic process. The operator itself is deterministic. We again omit

the fixed initial and final time t0, t1, respectively.

The Koopman operator can be defined in the same way as

Kε : L∞(Rd,A, µ)→ L∞(Rd,A, µ)

(Kεf)(x) = EP[f ◦ T t0,t1ε (x, ·)].
(4.2)

Analogous to the deterministic case, Pε and Kε can be restricted to L2 and it can easily

be seen, that they are dual operators:

〈Pεf, g〉µ = 〈f,Kεg〉µ.
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4.3 Coherence via stochastic flows

4.3 Coherence via stochastic flows

We next use the stochastic flow for stochastic flow maps to introduce a more rigorous

notion of the coherence of sets. We subsequently connect this notion to transfer operators

and use these for the computation of coherent partitions. To this end, we assume the

stochastic flow map to be induced by ε-small perturbations of the deterministic dynamics,

and the reference measure µ to be a probability measure.

Definition 14. We call a set A ∈ A (at initial time) δ−coherent, if

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

] ∣∣∣ A) = δ. (4.3)

We furthermore call a set coherent, if it is δ-coherent, with δ ≈ 1. In other words,

a set A is called coherent if A is mapped on average approximately onto itself via the

perturbed forward and backward evolution. The expected value EP×P in (4.3) denotes

simply the average over all realizations of the stochastic process in forward (T t0,t1ε ) and

backward time (T t1,t0ε ). This is the same intuition as before but now we specify the small

random perturbation as stochastic process.

In the deterministic setting holds µ(A0 ∩ T t1,t0A1) = 〈P1A0 , 1A1〉. We can establish a

similar connection here:

EP[µ(A0 ∩ T t1,t0ε (A1, ·))]

=EP

[∫
T t1,t0ε (A1,·)

1A0 dµ(x)

]

=

∫
Σ

∫
T t1,t0ε (A1,·)

1A0 dµ(x) dP(ξ)

µ invariant
=

∫
Σ

∫
A1

1A0 ◦ T t1,t0ε (x, ·) dµ(x) dP(ξ)

Fubini
=

∫
A1

∫
Σ

1A0 ◦ T t1,t0ε (x, ·) dP(ξ) dµ(x)

=

∫
A1

EP
[
1A0 ◦ T t1,t0ε (x, ·)

]
dµ(x)

=

∫
Rd
Pε1A01A1 dµ(x)

=〈Pε1A0 , 1A1〉µ.

In the connection between the spectrum of the deterministic transfer operator and the

maximally coherent partition in Section 3.3, we saw that the optimal choice for 1A1 is
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Chapter 4 Coherence via stochastic process

Pε1A0 . Hence we can directly include this into the considerations:

〈Pε1A0 ,Pε1A0〉
=〈KεPε1A0 , 1A0〉µ

=

∫
Rd
KεPε1A0(x)1A0(x) dµ(x)

=

∫
Rd

EP
[
Pε1A0 ◦ T t0,t1ε (x, ·)

]
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ
Pε1A0 ◦ T t0,t1ε (x, ξ1) dP(ξ1)

)
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ
EP
[
1A0 ◦ T t1,t0ε (·, ·)

]
◦ T t0,t1ε (x, ξ1) dP(ξ1)

)
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ

(∫
Σ

1A0 ◦ T t1,t0ε (·, ξ2) dP(ξ2)

)
◦ T t0,t1ε (x, ξ1) dP(ξ1)

)
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ

(∫
Σ

1A0(T t1,t0ε (T t0,t1ε (x, ξ1), ξ2)) dP(ξ2)

)
dP(ξ1)

)
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ×Σ

1A0(T t1,t0ε (T t0,t1ε (x, ξ1), ξ2)) d(P× P)(ξ2, ξ1)

)
1A0(x) dµ(x)

=

∫
Rd

(∫
Σ×Σ

1T t1,t0ε (T t0,t1ε (A0,ξ2),ξ1)
(x) d(P× P)(ξ2, ξ1)

)
1A0(x) dµ(x)

=µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A0, ·), ·)

]
∩A0

)
.

(4.4)

If we use this for a definition of coherence, we can motivate (4.3) and call a set

A = A0 ∈ A (at initial time) coherent, if

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

]
∩A

)
µ(A)

= µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

] ∣∣∣ A) ≈ 1.

which tells us that coherence is nothing but almost invariance under forward-backward

evolution of the stochastic flow.

The following considerations are then analogous to the previous chapter: We now want

to compute an actual coherent partition of the domain Ω ⊂ Rd into n coherent sets. We

never consider a coherent set on its own but always a partition. We use as definition of

a coherent set

ρ(A) := µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

] ∣∣∣ A) ≈ 1. (4.5)

The number n of those sets however again is not known a priori. So we try to find

a formulation which shows the partition into n coherent sets for several n ≥ 1, and
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4.3 Coherence via stochastic flows

choose a meaningful number from that. We formulate the optimization problem for

A1, . . . , An ∈ A

max
Ω=

⋃̇
Ak

n∑
k=1

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (Ak, ·), ·)

] ∣∣∣ Ak) (4.6)

which we interpret in L2(Ω,A, µ), demanding that the coherent sets Ak form a partition

of the domain and that they keep their mass during the evolution. We can reformulate

(4.6) as

max
Ω=

⋃̇
Ak

n∑
k=1

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (Ak, ·), ·)

] ∣∣∣ Ak)
= max

Ω=
⋃̇
Ak

n∑
k=1

〈KεPε1Ak , 1Ak〉µ
‖1Ak‖2µ

≤ max
f1⊥···⊥fn∈L2(Ω,µ)

n∑
k=1

〈KεPεfk, fk〉µ
‖fk‖2µ

= max
f1⊥···⊥fn∈L2(Ω,µ)

n∑
k=1

〈
KεPε

(
fk
‖fk‖µ

)
,

fk
‖fk‖µ

〉
µ

= max
f1,...,fn ONB of Vn≤L2(Ω,µ)

n∑
k=1

〈KεPεfk, fk〉µ

=

n∑
k=1

λk(KεPε)

=

n∑
k=1

σk(Pε)2

due to the Courant-Fischer theorem 8. In order to apply the theorem, we again have

to assume the diffusion in the system to make the transfer operator Pε compact (or at

least, that Pε has n singular values below the bottom of the essential spectrum). The

maximizing functions are the corresponding first n singular functions of Pε.

Remark. Note that instead of the singular values σk of Pε, we obtain σ2
k. This happens

because this notion of coherence considers directly forward and backward evolution. We

can also normalize the coherence to
√
ρ(A) and obtain the same algorithms as before.

Upper and lower bound

In Chapter 3.3 we observed that, because a basis of the vector space Vn = span(v1, . . . , vn)

is not unique, the computed singular functions v1, . . . , vn are not necessarily (approxi-

mations to) the indicator functions of the coherent sets 1A1 , . . . , 1An . We examined that

the computed singular functions are approximations to linear combinations of these if
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Chapter 4 Coherence via stochastic process

our relaxation step was not too strong. For the spectral decomposition of Pε should

hold:

1. the first n singular values are close to one,

2. v1, . . . , vn are good approximations of linear combinations of n indicator functions

partitioning Ω.

We now take a closer look at this statement. The first condition is obvious by our

initial motivation, and ensures that the partition is actually coherent. The second is as

mentioned an a posteriori check if the relaxation to functions in L2 was not strong. We

now derive a theorem which rigorously links the quality of this approximation with the

coherence of the indicated sets. To this end, we assume that we already have computed

a partition of the domain Ω into coherent sets A1, . . . , An. We consider the first n

singular values σ1, · · · , σn and right singular vectors v1, . . . , vn of Pε. We choose the

singular vectors to be orthonormal and introduce the following projections:

Q : L2(Ω,A, µ) −→ span(1A1 , . . . , 1An)

Qf =

n∑
k=1

〈f, χAk〉µχAk

where χAk = 1Ak/‖1Ak‖2, k = 1 . . . n and

Π : L2(Ω,A, µ) −→ span(v1, . . . , vn)

Πf =

n∑
k=1

〈f, vk〉µvk.

Further we define Π⊥ := Id−Π. We can now state a theorem inducing a lower bound for

the coherence ratios depending on how good the singular vectors of Pε, vi approximate

linear combinations of indicator functions of the coherent sets χAi , i.e. depending on

how strong our relaxation step was:

Theorem 10. It holds that

n∑
k=1

ρkσ
2
k ≤

n∑
k=1

ρ(Ak) ≤
n∑
k=1

σ2
k,

where ρk = ‖Qvk‖22 ∈ [0, 1].

Proof. The proof is strongly related to the one elaborated in [Huisinga and Schmidt,

2006]. The second inequality directly follows from the derivation because we used a
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4.3 Coherence via stochastic flows

relaxation from indicator functions to general functions in L2 in order to end up with

the singular value decomposition. For the first inequality we look at

n∑
j=1

ρ(Aj) =
n∑
j=1

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

]
∩ A

)
=

n∑
j=1

〈KεPεχAj , χAj 〉µ

=

n∑
j=1

〈
(
KεPεΠ +KεPεΠ⊥

)
χAj ,

(
Π + Π⊥

)
χAj 〉µ

=

n∑
j=1

〈KεPεΠχAj ,ΠχAj 〉µ +

n∑
j=1

〈KεPεΠ⊥χAj ,Π⊥χAj 〉µ.

The last equality holds, because Π is a projection and, hence, Π∗ = Π, Π2 = Π and

〈Πf,Π⊥f〉µ = 〈Πf, f〉µ − 〈Πf,Πf〉µ = 〈Πf, f〉µ − 〈Π∗Πf, f〉µ
= 〈Πf, f〉µ − 〈Π2f, f〉µ = 〈Πf, f〉µ − 〈Πf, f〉µ = 0.

and the fact that the action of KεPε does not leave the span of singular vectors of Pε.
Like that the mixed terms vanish. For the first summand we compute

n∑
j=1

〈KεPεΠχAj ,ΠχAj 〉µ =
n∑
j=1

〈
KεPε

n∑
k=1

〈χAj , vk〉µvk,
n∑
l=1

〈χAj , vl〉µvl
〉
µ

=
n∑
j=1

〈
n∑
k=1

σ2
k〈χAj , vk〉µvk,

n∑
l=1

〈χAj , vl〉µvl
〉
µ

=
n∑
j=1

n∑
k=1

σ2
k〈χAj , vk〉2µ〈vk, vk〉µ

=

n∑
j=1

n∑
k=1

σ2
k〈χAj , vk〉2µ

=

n∑
k=1

σ2
k〈Qvk, Qvk〉µ

=

n∑
k=1

σ2
k‖Qvk‖22.
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Chapter 4 Coherence via stochastic process

To sum up we have

n∑
j=1

ρ(Aj) =

n∑
j=1

σ2
j ‖Qvj‖22 +

n∑
j=1

〈
KεPεΠ⊥χAj ,Π⊥χAj

〉
µ

=
n∑
j=1

σ2
j ‖Qvj‖22 +

n∑
j=1

‖PεΠ⊥χAj‖22︸ ︷︷ ︸
≥0

4.4 The Fokker-Planck equation and coherent sets

This section is based on [Denner et al., 2016]. We now want to employ a stochastic flow

map and actually compute coherent sets. We assume that the dynamics are induced by

a time-dependent ordinary differential equation ẋ = b(t, x), b : R × Ω → Rd, on some

bounded domain Ω ⊂ Rd. We fix some initial and final time t0, t1 ∈ R, and assume that

the vector field b is continuous and locally Lipschitz w.r.t. x for all t ∈ [t0, t1] such that

the associated flow map T t0,t1 : Ω→ Ω is uniquely defined. In order not to obscure the

key ideas, we restrict to the case of Ω being a hyperrectangle, and b being periodic in x

and divergence free, i.e. the flow map T t0,t1 being volume preserving.

We incorporate a small random perturbation continuously in time, i.e. we now use the

stochastic differential equation

dx = b(t, x)dt+ εdBt (4.7)

in order to define the stochastic flow map T t0,t1ε . Here, (Bt)t≥0 is d-dimensional Brownian

motion and ε > 0. Since we assume b(t, ·) to be Lipschitz, Ω to be bounded and b to

be periodic in x, for any initial condition ξ ∈ Ω, (4.7) has a unique continuous solution

x in the sense of [Oksendal, 2003, Theorem 5.2.1]. The associated flow map forms a

stochastic flow map [Kunita, 1997]. Due to Feynman-Kac formula, the transfer operator

Pε associated to this stochastic differential equation is given by the solution operator of

the parabolic Fokker-Planck equation

∂tu = Lεu := ε2

2 ∆u− div(ub), (4.8)

see also [Lasota and Mackey, 1993]. Appropriate boundary conditions are chosen (e.g.,

periodic or homogeneous Neumann boundary conditions), so that for all u,w ∈ L2(Ω)

in the domain of Lε holds:

〈w,Lεu〉 = −ε
2

2

∫
Ω
∇u · ∇w +

∫
Ω
u b · ∇w. (4.9)

More precisely, Pεu0 = u(t1, ·), where u is the solution to (4.8) with initial condition

u(t0, ·) = u0. We then have to ensure the transfer operator Pε to be compact and

stochastic.
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4.4 The Fokker-Planck equation and coherent sets

Lemma 6. If

‖b‖C1 = sup
s∈[t0,t1]

sup
x∈Ω

max {|b(s, x)|, |∂x1b(s, x)|, . . . , |∂xdb(s, x)|} <∞,

then Pε : L2(Ω)→ L2(Ω) is compact.

Proof. We prove the lemma in the slightly more general case that div(b) 6= 0. ‖b‖C0 :=

sups∈[t0,t1], x∈Ω {|b(t, x)| <∞, i = 1, . . . , d}. Let u = u(t, x) be the solution of (4.8) with

initial condition f = u0 ∈ L2(Ω). Without loss of generality we set ε =
√

2 and t0 = 0.

We first note that ‖u‖2 is bounded by ‖u0‖2:

1

2

d

dt
‖u‖22 = 〈u, ∂tu〉 = 〈u,∆u+ div (ub)〉 = 〈u,∆u〉+ 〈u,div (ub)〉

= −‖∇u‖22 − 〈∇u, ub〉 = −‖∇u‖22 − 〈
1

2
∇(u2), b〉

= −‖∇u‖22 −
1

2
〈u2, div (b)〉 ≤ −‖∇u‖22 +

1

2
‖u‖22‖b‖C1 .

(4.10)

Gronwall’s inequality thus implies that for all t > 0

‖u‖22 ≤ et‖b‖C1‖u0‖22. (4.11)

We now show that also ‖∇u‖2 is bounded by ‖u0‖2. Because of (4.10) we have

‖∇u‖22 ≤ −
1

2

d

dt
‖u‖22 +

1

2
‖u‖22‖b‖C1 .

Integrating from t = t0 = 0 to t = t1 we obtain∫ t1

0
‖∇u‖22 dt ≤

1

2

(
‖u0‖22 − ‖u(t1)‖22

)
+

1

2
‖b‖C1

∫ t1

0
‖u‖22 dt

(4.11)

≤ 1

2
‖u0‖22 +

1

2
‖b‖C1

∫ t1

0
et‖b‖C1‖u0‖22ds

=
1

2
et1‖b‖C1‖u0‖22.

(4.12)

Therefore there is at least one t∗ ∈ [0, t1], such that

‖∇u(t∗, ·)‖22 ≤
1

2t1
et1‖b‖C1‖u0‖22, (4.13)

and we finally get

1

2

d

dt
‖∇u‖22 =

1

2

d

dt
〈∇u,∇u〉 =

1

2
〈 d
dt
∇u,∇u〉+

1

2
〈∇u, d

dt
∇u〉

= −〈∆u, ∂tu〉 = −〈∆u,∆u+∇(ub)〉
= −‖∆u‖22 − 〈∆u,∇ub〉 − 〈∆u, udiv (b)〉
C−S
≤ −‖∆u‖22 + ‖∆u‖2‖∇u‖2‖b‖C0 + ‖∆u‖2‖u‖2‖b‖C1

≤ 1

2
‖∇u‖22‖b‖2C0 +

1

2
‖u‖22‖b‖2C1 ,
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where we used that 1
2(a2c2 + d2e2) ≥ −b2 + bac+ bde for a, b, c, d, e ∈ R.

Integration from t = t∗ to t = t1 yields

‖∇u(t1)‖22 ≤ ‖∇u(t∗)‖22 +

∫ t1

t∗
‖∇u‖22‖b‖2C0 dt+

∫ t1

t∗
‖u‖22‖b‖2C1 dt

(4.11)(4.12)(4.13)

≤ 1

2t1
et1‖b‖C1‖u0‖22 + ‖b‖2C0

1

2
et1‖b‖C1‖u0‖22

+ ‖b‖2C1

∫ t1

t∗
et‖b‖C1‖u0‖22 dt

≤
(

1

2t1
+

1

2
‖b‖2C0 + ‖b‖C1

)
‖u0‖22et1‖b‖C1 .

(4.14)

Combining equations (4.11) and (4.14) we obtain

‖Pεu0‖H1 = ‖u(t1, ·)‖H1 ≤
(

1 +
1

2t1
+

1

2
‖b‖2C0 + ‖b‖C1

)
et1‖b‖C1‖u0‖22.

Hence Pε maps bounded sets in L2(Ω) onto bounded sets in H1(Ω). As the embedding

of H1(Ω) onto L2(Ω) is compact by Rellich’s theorem, Pε is a compact operator.

Since we assumed b to be divergence free, we also have:

Lemma 7. Pε : L2(Ω)→ L2(Ω) and Kε : L2(Ω)→ L2(Ω) are stochastic.

Proof. We set ε =
√

2 without loss of generality. Since Lε1Ω = ∆1Ω−div(1Ωb) = div b =

0, it follows that 1Ω is a steady state of (4.8), and consequently Pε1Ω = 1Ω.

For the adjoint operator Kε we test with u ∈ L2(Ω):

〈Kε1Ω, u〉 = 〈1Ω,Pεu〉 =

∫
Ω
Pεu =

∫
Ω
u =

∫
Ω
u1Ω = 〈1Ω, u〉,

where we have used that Pε is integral conserving:

∂t

∫
u =

∫
Lεu = 〈1Ω, Lεu〉 = −

∫
Ω
∇u · ∇1Ω +

∫
Ω
u b · ∇1Ω = 0,

thanks to the integration-by-parts rule (4.9). Hence
∫

Ω u =
∫

Ω Pεu for all u ∈ L2(Ω),

cf. [Lasota and Mackey, 1993]. By the Riesz representation theorem, we can conclude

that also Kε1Ω = 1Ω.

For proving positivity of Pε, we consider the evolution of the negative part u−(s, x) =

−min(u(s, x), 0). Since ∂t(u
2
−) = 2u−∂tu almost everywhere on Ω × (t0, t1), using the
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integration-by-parts rule (4.9), we have

1

2
∂t

∫
Ω
u2
− =

∫
Ω
u−∂tu =

∫
u−Lεu

= −
∫

Ω
∇u · ∇u− +

∫
Ω
u b · ∇u− = −

∫
Ω
|∇u−|2 +

1

2

∫
Ω
b · ∇(u2

−)

= −
∫

Ω
|∇u−|2 −

1

2

∫
Ω

div(b) u2
−

= −
∫

Ω
|∇u−|2 ≤ 0.

(4.15)

Hence if u(t0, ·) is non-negative, u(t, ·) is non-negative for all t > t0, as the norm of its

negative part does not increase. To show positivity of Kε, let two non-negative functions

u,w ∈ L2(Ω) be given. Then

〈Kεw, u〉 = 〈w,Pεu〉 ≥ 0

by positivity of Pε. For any fixed non-negative w, this relation holds for all non-negative

u. This implies that Kεw is non-negative.

Hence, Pε is compact and stochastic.

4.5 Discretization of the Fokker-Planck equation

In order to approximate the transfer operator Pε, we choose a finite dimensional approx-

imation space VN ⊂ L2(Ω), and use collocation. As the Fokker-Planck equation (4.8) is

parabolic, and since we assume the vector field b(t, ·) to be smooth for all t, its solution

u(t, ·) is smooth for all t > t0 (see e.g. [Evans, 2010], Chapter 7, Theorem. 7). To exploit

this, we choose VN as the span of the Fourier basis

ϕk(x) = ei〈k,x〉, k ∈ Zd, ‖k‖∞ ≤ (N − 1)/2, N odd.

Note that dim(VN ) = Nd. Choosing a corresponding set {x1, . . . , xM} ⊂ Ω of collocation

points (typically on an equidistant grid), the entries of the matrix representation Pε of

Pε are given by

P jkε = Pεϕk(xj), (4.16)

where k ∈ Zd, ‖k‖∞ ≤ (N − 1)/2 and j = 1, . . . ,M . For Pε, we then compute singular

values and vectors via standard algorithms. Note that we might choose M ≥ N , i.e.

more collocation points than basis functions. This turns out to be useful, because we

expect the maximally coherent sets to be comparatively coarse structures which can be

captured with a small number of basis functions.
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Solving the Fokker-Planck equation. In order to compute Pεϕk in (4.16) for some

basis function ϕk ∈ VN we need to solve the Fokker-Planck equation (4.8) with initial

condition u(t0, ·) = ϕk. This can efficiently be done in Fourier space via integrating the

Cauchy problem

∂tû = ε2

2 ∆̂û− d̂ivF(F−1(û)b), û(t0, ·) = ϕ̂k,

in time, where v̂ = F(v) is the Fourier transform of v ∈ VN . Note that the differential

operators in Fourier space reduce to multiplications with diagonal matrices, while F and

F−1 can efficiently be computed by the (inverse) fast Fourier transform.

Aliasing. One problem with this formulation is the possible occurence of aliasing. As

û and b̂ are trigonometric polynomials of degree N , the multiplication F−1(û)b in the

advection term leads to a polynomial F−1(û)b of degree 2N , which cannot be represented

in our approximation space VN . The coefficients of degree ≥ N of this polynomial act on

the coefficients of lower degree leading to unphysical contributions in these. This shows

up in high oscillations and blow ups (see [Boyd, 2001], Chapter 11) in the computed

solution. One way to deal with this problem is to use the advection term

div (bu) =
1

2
div (bu) +

1

2
(b∇u) .

The spectral discretization of the left-hand side is not skew symmetric but the discretiza-

tion of the right-hand side is [Zang, 1991]. This leads to purely imaginary eigenvalues

of the resulting discretization matrix, and hence to mass conservation. For the unper-

turbed operator (ε = 0), the resulting matrix consequently has eigenvalues on the unit

circle. However, this approach has to be used carefully: Even though the solution does

not blow up, it might still come with a large error. For example small scale structures

may be suppressed. If the system produces such small scale structures the grid has to

be chosen fine enough to resolve them.

Time integration. For low resolutions, the time integration of the space discretized

system can be performed by a standard explicit scheme. For higher resolutions, the

stiffness of the system due to the Laplacian becomes problematic. and a more sophis-

ticated method must be employed. Here, we use the exponential time differentiation

scheme [Cox and Matthews, 2002] for the space discretized system. The etd-scheme

separates the diffusion term L = ε2

2 D, where D is the discretized Laplacian, from the

advection term N (u, t) = −divF(F−1(û)b(·, t)), where b is evaluated via spectral collo-

cation. The system can thus be written as

ut = Lu+N (u, t). (4.17)

Via multiplying (4.17) with e−tL and integrating from t0 to t1 we obtain

u(t1) = ehLu(t0) + ehL
∫ h

0
e−τLN (u(t0 + τ), t0 + τ)dτ, (4.18)
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Figure 4.1: Quadruple gyre vector field at t = 0 and t = 10.25. The four gyres are

separated by a horizontal and a vertical line, such that their intersection

point moves on the diagonal.

with h = t1− t0. A numerical scheme is derived by approximating the integral in (4.18),

e.g. by a Runge-Kutta 4 type rule, resulting in a scheme called etdrk4. Note that D is a

diagonal matrix. We use the version in [Kassam and Trefethen, 2005], which elegantly

treats a cancellation problem occurring in a naive formulation of etdrk4 by means of a

contour integral approximated by the trapezoidal rule. (See Appendix for a motivation

of the etdrk4 scheme and the Matlab Code used).

4.6 Numerical experiments

4.6.1 Quadruple gyre

The first numerical example is a two dimensional flow (cf. Fig. 4.1), which is an extension

of the double gyre flow (see Chapter 3.5.1), given by

ẋ = −g(t, x, y)

ẏ = g(t, y, x)

on the 2-torus [0, 2]× [0, 2], where

g(t, x, y) = π sin(πf(t, x)) cos(πf(t, y))∂xf(t, y)

and f(t, x) = δ sin(ωt)x2 +(1−2δ sin(ωt))x. We fix δ = 0.25, ω = 2π, t0 = 0, t1 = 10.25,

h = 0.205 (i.e. 50 time steps) and choose ε = 0.02 in such a way, that the six largest

singular values of P ε roughly equal those obtained by Ulam’s method (without explicit

diffusion).

We use M = 15 collocation points and N = 5 basis functions in each direction, and

compute the first four singular values and right singular vectors of P ε. As shown in Figure

4.2 (top row), they reveal the gyres in their sign structures nicely. The computation of

P ε takes less than a second, the computation of all singular values and -vectors less than
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Figure 4.2: 2-th to 5-th right singular vector. Top row: computed via Fokker-Planck

approach. Bottom row: computed via Ulam’s method.

0.01 seconds1. For comparison, in the bottom row of Fig. 4.2, we show the same singular

vectors computed via Ulam’s method (without explicit diffusion) on a 32× 32 box grid

using 100 sample points per box. Here, the computation of the transition matrix takes

around 5 seconds, the computation of the six largest singular values resp. vectors less

than 0.2 seconds. In Figure 4.3, we show the singular values of the discretized transfer

operator, and the coherent partition into five coherent sets.

4.6.2 A fluid flow

We now turn to a case where the vector field is only given on a discrete grid. Here, the

approach proposed in Section 4.5 is particularly appealing, if we choose the grid points

as collocation points (resp. a subset of them): In contrast to methods based on explicit

integration of individual trajectories (such as Ulam’s method), no further interpolation

of the vector field is necessary. Depending on the initial point of a trajectory, the small

scale structure of the turbulent vector field might enforce very small step sizes of the

time integrator and, hence, makes the computation expensive.

For the experiment, we consider the incompressible Navier-Stokes equation with con-

1Computation times are measured on an 2.6 GHz Core i5 running Matlab R2015b.
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Figure 4.3: Singular values for the quadruple gyre and coherent partition at t0 = 0 and

t1 = 10.25.

stant density on the 2-torus Ω = [0, 2π]2.

∂v

∂t
= ν∆v − (v · ∇)v −∇p

∇ · v = 0,

where v denotes the velocity field, p the pressure, and ν > 0 the viscosity. Via intro-

ducing the vorticity w := ∇× v, the Navier-Stokes equation in 2D can be rewritten as

vorticity equation

Dw

Dt
= ∂tw + (v · ∇)w = ν∆w (4.19)

∆ψ = −w.

where the pressure p cancels from the equation. We can extract the velocity field v from

the streamline function ψ via v1 = ∂yψ and v2 = −∂xψ.

The equation can be integrated by standard methods, e.g. a pseudo spectral method as

proposed in [Nave, 2008]. For a first experiment, we choose an initial condition inducing

three vortices, two with positive and one with negative spin, as initial condition:

w(0, x, y) = e−5‖(x,y)−(π,π
4

)‖22 + e−5‖(x,y)−(π,−π
4

)‖22 − 1

2
e−

5
2
‖(x,y)−(π

4
,π
4

)‖22 .

We solve (4.19) on a grid with 64 collocation points in both coordinate direction. For the

computation of coherent sets we choose n = 16 basis functions and N = 32 collocation

points in both directions, as well as t0 = 0 and t1 = 40. We hence use only every second

collocation point of the computed vector field. Because the induced coherent structures

being way bigger in comparison to the grid size, this does not affect the result. The

underresolution of the vector field can be interpreted as additional diffusion. We use

ε = 10−2, which is of the same order as the grid resolution. In Figure 4.4, we show the

vector field at time t0 = 0 (left) as well as the second right singular vector (center) in

the first row, and the vector field at t1 = 20 (left) as well as the second left singular

vector (center) in the second row. The computation took 35 seconds.
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Figure 4.4: Top row: vector field at t0 = 0 (left), second right singular vector computed

via Fokker-Planck (center) and via Ulam (right). Bottom row: vector field

at t1 = 20 (left), second left singular vector computed via Fokker-Planck

(center) and via Ulam (right).

For comparison, we show the same singular vectors computed via Ulam’s method

(right) on a 32× 32 box grid using 100 sample points per box which were integrated by

Matlab’s ode45. Here, we need to interpolate the vector field between the grid points

using splines (i.e. using interp2 in Matlab). This computation also took 35 seconds.

In Figure 4.5, we show the spectrum of the discretized transfer operator. We extract

three coherent sets and show them at initial and final time also in Figure 4.5.

In the second experiment, we use a turbulent initial condition by choosing a real

number randomly in [−1, 1] from a uniform distribution at each collocation point. For

the coherent set computation, we restrict the time domain to [t0, t1] = [20, 40] since then

the initial vector field has smoothed somewhat, cf. Figure 4.7. Here, we choose M = 32,

N = 16 and ε = 10−2. In Figure 4.7, we show the vector field, the computed second

singular vectors via Fokker-Planck and via Ulam’s method. For comparison, we show

the same singular vectors computed via Ulam’s method on a 32× 32 box grid using 100

sample points per box. Here, we need to interpolate the vector field between the grid

points using splines (i.e. using interp2 in Matlab). Since the vector field is turbulent,

using Matlab’s ode45 for the vectorized system is infeasible. We therefore choose a

fixed time-step of h = 0.01, such that the result does not seem to change when further

decreasing h. This computation took roughly 100 seconds.

In Figure 4.8, we show the singular values of the discretized transfer operator. We
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Figure 4.5: Singular values of the discretized transfer operator and a coherent partition

at time t0 = 0 and t1 = 40.

decide to extract five coherent sets, and show the coherent partition at initial and final

time also in Figure 4.7. In order to further visualize the dynamics, we also added the

evolution of an arbitrary chosen (incoherent) set to the figure. The fifth singular vector

indicates the (light blue) coherent set in the lower center. Hence, if we compute a 4-

partition of the domain, we would get the same figure as in 4.7 without the light blue

set.
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Figure 4.6: First row: second singular vector at time t0 = 20 computed via Fokker-

Planck and via Ulam’s method, Second row: second singular vector at time

t1 = 40 computed via Fokker-Planck and via Ulam’s method.
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Figure 4.7: First row: Vector field, computed coherent five-partition, and an arbitrary

chosen set at initial time t0 = 20. Second row: Vector field, the evolution of

the computed coherent five-partition and of the arbitrary chosen set at final

time t1 = 40.
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Figure 4.8: Singular values of the discretized transfer operator for the second fluid flow

example.
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Chapter 5

Transfer operator families

The methods for the computation of coherent sets introduced in Chapter 3 and 4 work

well, but have in common that the used transfer operator Pε = Pt0,t1ε only ”sees” initial

and final times t = t0 and t = t1. As a result, we do not directly know what happens to

coherent sets during the time evolution. Especially Ulam’s method (Section 3.4) does not

take into consideration what happens during the evolution, as the diffusion added by the

discretization works only at initial and final time. For the computation of the transfer

operator, the positions of test particles (Ulam’s method) or the evolution of densities

(Fokker-Planck) are used only at final time — although all trajectories and densities

in the entire time interval [t0, t1] are computed. This has an additional drawback: All

information obtained during the process is not used. Especially, if only limited data on

the flow are available, this can be a problem.

In this chapter, we want to further generalize the concept of coherence to consider

intermediate times, too. In our approach, we consider a family of transfer operators,

parameterized by time. We use the spectral analysis of this family to extend the methods

derived in Chapter 3 and 4. We furthermore discuss different discretizations, one of which

leads to a recently developed, purely data-driven algorithm for determining coherent sets.

Then we apply the method to several examples, including the Double gyre, the Bickley

jet, and an oceanographic flow determined by data from surface drifters. This chapter

is based on [Denner et al., 2017], which is in preparation.

In this chapter we again consider a time-dependent ordinary differential equation

ẋ = b(t, x), where x(t) lies in some bounded domain Ω ⊂ Rd, and b : R × Ω → Rd
is Lipschitz-continuous in x and continuous in t. We fix the initial time t0 = 0 and

some final time t1, and assume that for every time t ∈ [0, t1] the associated flow map

T 0,t : Ω −→ Ω given by

T 0,t(x0) = T (0, t, x0) = x(t;x0)

77



Chapter 5 Transfer operator families

is defined. We again consider a perturbed stochastic flow map T t0,t1ε and a reference

measure µ, which we assume to be invariant under T t0,t1ε . This holds for example, if the

vector field b is divergence-free, and a Brownian motion is used as perturbation of the

flow map.

We now introduce a generalization of the notion of coherence to a continuously param-

eterized family of sets A[0,t1] = (At)t∈[0,t1] ⊂ Ω. Intuitively, for such a family of sets, we

want to obtain an expression like

1

t1

∫ t1

0

µ(A0 ∩ T t,0At)
µ(A0)

dt ≈ 1, (5.1)

which is simply the time average of the notion of coherence made in (3.1). This translates

to

ρ
(
(At)t∈[0,t1]

)
:=

1

t1

∫ t1

0

µ
(
EP×P

[
T t,0ε (T 0,t

ε (A, ·), ·)
]
∩A

)
µ(A)

dt, (5.2)

which is the generalization of the definition (4.5) used in Chapter 4. We use definition

(5.2) for the remainder of this chapter.

5.1 Transfer operator families

The question now is, whether there is a canonical generalization of Pε and Kε which can

be connected to (5.2). An intuitive approach is to interpret the stochastic flow map as

T [0,t1]
ε : [0, t1]× Ω −→ Ω

T [0,t1]
ε (t, x) := T 0,t

ε (x).

A generalized Koopman operator can then be defined as

Kε : L2(Ω) −→ L2([0, t1],L2(Ω))

Kεf = f ◦ T [0,t1]
ε

(Kεf)(t) = f ◦ T 0,t
ε = Ktεf,

where L2([0, t1],L2(Ω)) denotes the space of square-integrable functions on the interval

[0, t1] that take on values in L2(Ω). L2([0, t1],L2(Ω)) is called Bochner space, see Section

2.6. For a given density f ∈ L2(Ω), and some time instant t ∈ [0, t1], Ktε hands back

the initial density f0, such that f is the image of f0 under T 0,t
ε . In other words, as f0

is the image of f under T t,0, Kε hands back the evolution of f at all times t ∈ [0, t1]

under the time-inverted dynamics, see Figure 5.1. Hence, our Koopman operator can

be interpreted as a family of Koopman operators Ktε, as defined in the sense of (4.2). In

the following, we use the shorthand notation

F0 := L2(Ω, µ)

F01 := L2([0, t1],L2(Ω, µ)).
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Figure 5.1: The Koopman operator pulls back f from times t and t1.

Figure 5.2: The Frobenius-Perron operator pushes forward f to times t and t1.

The Bochner space F01 can be equipped with an inner product

〈f, g〉F01 =
1

t1

∫ t1

0
〈f(t), g(t)〉F0dt,

leading to a norm

‖f‖F01 =
1√
t1

(∫ t1

0
‖f(t)‖2F0

dt

)1/2

.

It, hence, is simply isomorphic to L2([0, t1] × Ω). Note that ‖1[0,t1]×Ω‖F01 =
√
µ(Ω) =

‖1Ω‖F0 . We further denote by µ the Lebesgue measure on [0, t1]× Ω.

A similar generalization applies to the Frobenius-Perron operator: we define Pε by

Pε : F0 −→ F01

Pε(f0)(t) = Ptεf0,
(5.3)

which may again be regarded as a family of Frobenius-Perron operators defined in the

traditional sense. Here, the interpretation is straightforward: for a given f0 ∈ F0 and

every time instant t, Pε hands back the image of f0 under T 0,t
ε , i.e., Pε hands back the

whole evolution of f0 at all times, see Figure 5.2.

To summarize, so far we have defined generalizations of the Frobenius-Perron and

Koopman operators as families of pointwise (in time) operators. Note that in this setting

Ptε and Ktε are dual at each fixed t, but Pε and Kε are no dual operators.
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However, we can formally compute the dual of Pε:

t1〈Pεf, g〉F01 =

∫ t1

0
〈Ptεf, g(t)〉F0dt

=

∫ t1

0
〈f,Ktεg(t)〉F0dt

=

∫ t1

0

∫
Ω
f(x)(Ktεg(t))(x)dx dt

=

∫
Ω
f(x)

∫ t1

0
(Ktεg(t))(x)dt dx

=

〈
f,

∫ t1

0
Ktεg(t) dt

〉
F0

.

Hence, the formal dual K̂ε := P∗ε is

K̂ε : F01 −→ F0

K̂εg =
1

t1

∫ t1

0
Ktεg(t) dt,

(5.4)

i.e., the time-average over all images of Ktε.
Analogously, we can derive P̂ε := K∗ε as

P̂ε : F01 −→ F0

P̂εg =
1

t1

∫ t1

0
Ptεg(t) dt.

Note that in this case P̂ε is also defined via

〈P̂εg, f〉F0 = 〈g, f ◦ T [0,t1]
ε 〉F01 ∀f ∈ F0.

For the transfer operators Pε andKε holds that P1Ω = Kε1Ω = 1[0,t1]×Ω and ‖Pε‖F0→F01 =

‖Kε‖F0→F01 = ‖K̂ε‖F01→F0 = ‖P̂ε‖F01→F0 = 1.

5.1.1 Computing coherent sets using transfer operator families

In this section we want to use the transfer operator families in order to compute coherent

sets as stated in section 5.1. We start by establishing a connection between (5.2) and

the Frobenius-Perron operator (5.3):〈
K̂εPε1A0 , 1A0

〉
F0

=
1

t1

∫ t1

0

〈
KtεPtε1A0 , 1A0

〉
F0
dt

=
1

t1

∫ t1

0
µ
(
EP×P

[
T t,0ε (T 0,t

ε (A0, ·), ·)
]
∩A0

)
dt

(5.5)
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where we used (4.4) for the second step.

The following works analogous to the previous chapters: We want to compute a co-

herent partition of the domain Ω ⊂ Rd into n coherent sets. The number n of those sets

however is again not known a priori. So we try to find a formulation, which shows the

partition into n coherent sets for several n ≥ 1, and choose a meaningful number from

that. To this end, we formulate the optimization problem for A1, . . . , An ∈ A

max
Ω=

⋃̇
Ak

n∑
k=1

1

t1

∫ t1

0
µ
(
EP×P

[
T t,0ε (T 0,t

ε (Ak, ·), ·)
] ∣∣∣ Ak) dt (5.6)

which we interpret in L2(Ω,A, µ), demanding that the coherent sets Ak form a partition

of the domain and that they keep their mass under the evolution. We can reformulate

(5.6) as

max
Ω=

⋃̇
Ak

n∑
k=1

1

t1

∫ t1

0
µ
(
EP×P

[
T t,0ε (T 0,t

ε (Ak, ·), ·)
] ∣∣∣ Ak) dt

= max
Ω=

⋃̇
Ak

n∑
k=1

〈
K̂εPε1A0 , 1A0

〉
F0

‖1Ak‖2F0

≤ max
f1⊥···⊥fn∈F0

n∑
k=1

〈
K̂εPεfk, fk

〉
F0

‖fk‖2F0

= max
f1⊥···⊥fn∈F0

n∑
k=1

〈
K̂εPε

(
fk
‖fk‖F0

)
,

fk
‖fk‖F0

〉
F0

= max
f1,...,fn ONB of Vn≤L2(Ω,µ)

n∑
k=1

〈K̂εPεfk, fk〉F0

=
n∑
k=1

λk(K̂εPε)

=
n∑
k=1

σk(Pε)2

due to the Courant-Fischer Theorem 8. In order to apply the theorem, again we have

to assume that the diffusion in the system makes the transfer operator Pε compact (or

at least, that it has n singular values below the bottom of the essential spectrum). The

maximizing functions are the corresponding first n singular functions of Pε.
Remark. Note that if we consider the probability space ([0, t1] × Ω,B × A, π) with the

probability measure π(C [0,t1]) = 1/t1
∫ t1

0 µ(Ct) dt for all C ∈ B × A, we can interpret

our notion of coherence again as conditional probability

1

t1

∫ t1

0
µ
(
EP×P

[
T t,0ε (T 0,t

ε (Ak, ·), ·)
] ∣∣∣ Ak) dt = π

(
EP×P

[
T t,0ε (T 0,t

ε (Ak, ·), ·)
] ∣∣∣ Ak).
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5.1.2 Compactness of Pε
In the previous section we discussed how to compute indicator functions of coherent sets

via singular value decomposition, by adding some small random perturbations to the

system, such that the transfer operator Pε, Pε(t) := Ptε of the such perturbed system

is compact. The same problem occurs in the classic setting for Pt1 , and there are well-

known perturbations like Ulam’s method (Chapter 3.4) or Brownian motion (Chapter

4) which have the desired properties. The question is the following: if we incorporate

such a perturbation that renders Ptε compact for every t ∈ (0, t1], will then Pε also be

compact? In other words, is a family of pointwise (in time) compact operators compact?

The answer is yes, as established by the following theorem.

Theorem 11. If we apply a perturbation to the system, such that Ptε is compact for any

t ∈ (0, t1], P0
ε is bounded and im(Pε) is equicontinuous on (0, t1], then Pε : F0 → F01 is

compact.

Proof. We want to use the Arzelà Ascoli Theorem, but have the problem that Pε,0 (which

is the identity, if no perturbation is applied at time t = 0) is not necessarily compact.

As a first step, we fix δ > 0, and define Fδ1 := L2([δ, t1],L2(Ω)) and Pδε : F0 → Fδ1 as

the restriction of Pε to [δ, t1].

The Arzelà Ascoli Theorem states, that a subspace F ⊂ C([δ, t1],L2(Ω)) is relatively

compact with respect to the topology of uniform convergence, if F is equicontinuous

and for every t in [δ, t1] holds that {f(t) : f ∈ F} is relatively compact in L2(Ω), see

e.g. [Hirzebruch and Scharlau, 1971].

We assumed, that im(Pε) is equicontinuous on (0, t1] and, hence, on [δ, t1]. Therefore

Pδε maps in particular to C([δ, t1],L2(Ω)) ∩ F01. Consider a bounded set A in L2(Ω).

As Ptε is compact for all t ∈ [δ, t1], PtεA is relatively compact in L2(Ω). Hence, due to

the Arzelà Ascoli Theorem, Pδε is compact as a mapping L2(Ω)→ C([δ, t1],L2(Ω))∩F01

with respect to ‖ · ‖∞.

We now show, as a second step, that Pδε is also compact as a mapping from L2(Ω)→
L2([δ, t1],L2(Ω)). To this end, let (un)n∈N be a bounded sequence in L2(Ω). As Pδε
is compact, Pεδun has a converging subsequence Pδε (un)k with respect to ‖ · ‖∞. As

µ([δ, t1]×Ω) is finite, Pδε (un)k also converges with respect to ‖ · ‖2. Consequently, Pδε is

sequentially compact and, hence, compact on L2([δ, t1],L2(Ω)).

This argument holds for all δ > 0, but not for δ = 0, as P0
ε = Id is not compact and,

hence, the Arzelà Ascoli Theorem can not be applied. As a third step, we formulate Pε
as limit of the compact operators Pδε for δ → 0. To this end, we embed Pδε into F01 via

P̃δε : F0 → F01

(P̃δε f)(t) =

{
Ptε t ∈ [δ, t1]

0 t ∈ [0, δ)
.

82



5.2 Time-continuous diffusion

It is easy to show that P̃δε is still compact. Furthermore

‖P̃δε − Pε‖2F0→F01
=

1

t1
sup

‖f‖F01=1
‖ ˜(Pδε − Pε)f‖2F01

=
1

t1
sup

‖f‖F01=1

∫ t1

0
‖ ˜(Pδε − Pε)f(t)‖F0 dt

=
1

t1
sup

‖f‖F01=1

∫ δ

0
‖Ptεf‖F0 dt

≤ 1

t1
sup

‖f‖F01=1

∫ δ

0
‖P‖F0→F01‖f‖F0 dt

≤Cδ → 0 (δ → 0),

where C = 1/t1 supt∈[0,δ] ‖P‖F0→F01 <∞, as Ptε is bounded for all t ∈ [0, t1]. Hence, Ptε
is compact as limit of compact operators.

5.2 Time-continuous diffusion

In this section, we consider a hyperrectangle Ω ⊂ Rd, b : [0, t1] × Ω → Ω Lipschitz and

periodic in x. We add a continuous-time diffusion via Brownian motion ξt

ẋ = b(t, x) + εξt

and obtain the associated Fokker-Planck equation

∂tu =
ε2

2
4u− div(bu)

u(0) = u0 ∈ L2(Ω)

(5.7)

with periodic boundary conditions as presented in Chapter 4, where 4 denotes the

Laplacian. The transfer operator Pε : F0 → F01 is the family of solution operators

Ptε , t ∈ [0, t1], of (5.7). In Lemma 6, we showed that Ptε is compact for every t > 0.

Lemma 8. For the family of solution operators Pε of (5.7) holds that im(Pε) is equicon-

tinuous on (0, t1].

Proof. Pε is the family of solution operators of (5.7) and, hence, Pt,εu0 is continuously

differentiable for every u0 ∈ F0 and every t ∈ (0, t1] with a common upper bound ‖b‖∞.

Therefore Pε is equicontinuous in (0, t1].

We can now apply Theorem 11 and obtain that Pε is compact.
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Chapter 5 Transfer operator families

5.2.1 Spectral discretization

In order to get a finite-dimensional approximation of Pε, we use spectral collocation

presented in 4.5. In time we simply use constant ansatz functions leading to basis

functions ϕ and ψ of the approximation spaces V n
0 ⊂ F0 and V N

01 ⊂ F01:

ϕk(x) = ei〈k,x〉, |k| ≤ (n− 1)/2, n odd

ψmk(t, x) =

√
t1 − 0

M
ei〈k,x〉1(sm−1,sm], |k| ≤ (N − 1)/2, N odd, m = 1, . . .M

0 = s0 < s1 < · · · < sM = t1.

where we choose the normalization such that ‖ψmk‖F01 = ‖ϕk‖F0 = 1. The matrix Pε
takes the form

Pε : V n
0 −→ V N

01

Pε =

√
t1
M

 Pε,s1
...

Pε,sM

 ∈ RMN×n

where P ε,sk : V n
0 → V N

0 is the approximation of Pε,sk as given in Chapter 4.5.

5.2.2 A fluid example

As numerical example, we reconsider the incompressible Navier-Stokes equation (see also

Section 4.6.2) with constant density on the 2-torus X = [0, 2π]2,

∂v

∂t
= −(v · ∇)v −∇p+ ν4v

∇ · v = 0,

where v denotes the velocity field, p the pressure, and ν > 0 the kinematic viscosity

Defining the vorticity ω := ∇×v and writing the (two-dimensional) velocity in terms of

a streamfunction ψ as v = (∂yψ,−∂xψ), the equation can be rewritten as the vorticity

equation
∂ω

∂t
= −(v · ∇)ω + ν4ω

4ψ = −ω,
in which the pressure no longer appears. The equation can be integrated by standard

methods, e.g. a pseudo spectral method as proposed in [Nave, 2008]. We set ν = 10−3

and choose an initial condition inducing three vortices, two with positive and one with

negative spin:

ω(0, x, y) = e−5‖(x,y)−(π,π
4

)‖22 + e−5‖(x,y)−(π,−π
4

)‖22 − 1

2
e−

5
2
‖(x,y)−(π

4
,π
4

)‖22 .

84



5.3 Data-driven discretizations
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Figure 5.3: First column: vector field at t0 = 0 and t1 = 20. Other columns: Time-slices

of the second left singular vector. Yellow (blue) indicates 1 (-1).

We solve (5.8) on a grid with 64 collocation points in both coordinate directions. For

the computation of coherent sets, we choose n = 16 basis functions for V0 and N = 32

collocation points in both directions, as well as t0 = 0 and t1 = 20 and δt = 1 for the

time discretization. We use ε = 10−2, which is of the same order as the grid resolution.

Assembling Pε does not take longer than assembling P t1ε , as we have to evolve the basis

functions ϕ of V n
0 anyway. The singular value decomposition takes longer, because the

matrix Pε is larger. Here, the computation took 120 seconds. In Figure 5.3 we show the

vector field at the initial time 0 and the final time t1, and snapshots of the second left

singular vector v2 ∈ V N
01 at times t = 0, 4, 8, 12, 16, 20.

5.3 Data-driven discretizations

One motivation for the use of families of transfer operators is to be able to use data at

all intermediate times. This is beneficial, if the transfer operator at time t1 equals the

identity, or in applications where only very limited information in space but at several

times are available, as in the experimental dataset we consider in Section 5.4.4.

We consequently assume, that we do not know the underling flow map T [t0,t1]
ε , but

only N observed discrete trajectories of particles T ki , i = 1, . . . , N, k = 1 . . .M starting

at initial points xi, i = 1, . . . , N and having their positions measured at times sk =

(k − 1)∆t, k = 1, . . . ,M, ∆t = t1/(M − 1), of a slightly perturbed flow T [0,t1]
ε . The
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Chapter 5 Transfer operator families

flow T [0,t1]
ε is perturbed either by measurement errors, numerical dissipation, see e.g.

[Froyland, 2013] or by force, see e.g. [Williams et al., 2014a]. In other words, we have

access to only one realization T [t0,t1]
ε (xi, ξ̃) of the stochastic flow map, and that also only

for the initial points xi, i = 1, . . . , N . Hence we can compute only a rough approximation

to the Koopman operator of the stochastic flow:

Ktεf(xi) = EP[f ◦ T 0,t1
ε (xi, ·)] =

∫
Σ
f ◦ T 0,t1

ε (xi, ξ) dP(ξ)

≈ P(Σ)
(
f ◦ T 0,t1

ε (xi, ξ̃)
)

= f ◦ T 0,t1
ε (xi, ξ̃)

(5.8)

which is the deterministic Koopman operator Kt for the realization of the flow.

We compute an approximation of the Koopman operator K̂ε as given in (5.4) of the

form

K̂ε : V01 −→ V0

K̂ε =

 | | |
RK̂εψ1 RK̂εψ2 . . . RK̂εψN
| | |

 ,

where

R : L2(Ω)→ V0

is the L2−projection on the approximation space V0 ⊂ F0. As ansatz functions for V0,

we use the indicator functions 1Ωi of Voronoi cells Ωi containing all points in Ω closest

to xi in Euclidean distance. Note that the constant function 1Ω is contained in V0.

span(ψ1, . . . , ψN ) = V01 ⊂ F01 is the approximation space for F01 with basis functions

ψi, i = 1, . . . , N . The L2−projection R : F0 → V0 is then given by

g →
N∑
i=1

1

|Ωi|

(∫
Ωi

g

)
1Ωi .

As V0 is finite dimensional, the projection R is compact and as K̂ε is bounded, RK̂ε is

compact, too. Similar to Ulam’s method, R can be interpreted as uniform distribution

on the chosen Voronoi cells making the discretized operator K̂ε compact. We compute

K̂εψj =
1

t1

∫ t1

0
Ktεψj(t)dt

(5.8)
≈ 1

t1

∫ t1

0
ψj(t) ◦ T 0,t

ε (., ξ̃)dt

=
1

t1

∫ t1

0
ψj(t, T 0,t

ε (·, ξ̃))dt
(5.9)
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5.3 Data-driven discretizations

and furthermore

RK̂εψj(x) = R

(
1

t1

∫ t1

0
ψj(t, T 0,t

ε (x, ξ̃)) dt

)
=

N∑
i=1

(
1

t1|Ωi|

∫
Ωi

∫ t1

0
ψj(t, T 0,t

ε (x, ξ̃)) dt dx

)
1Ωi

=
N∑
i=1

(
1

t1|Ωi|

∫ t1

0

∫
Ωi

ψj(t, T 0,t
ε (x, ξ̃)) dx dt

)
1Ωi .

(5.10)

As we do not have any information on Ωi at time 0 except the trajectory originating

from xi, we apply a one-point rule:

≈
N∑
i=1

(
1

t1

∫ t1

0

1

|Ωi|
|Ωi| ψj(t, T 0,t

ε (xi, ξ̃)) dt

)
1Ωi , (5.11)

and as we only have information at times sk, k = 1 . . . ,M , we approximate further

≈
N∑
i=1

1

t1

(
M∑
k=1

∆tψj(sk, T 0,sk
ε (x, ξ̃))

)
1Ωi .

Hence, the ij-th entry of K̂ε is

K̂ε,ij =
1

t1

M∑
k=1

∆tψj(sk, T 0,sk
ε (xi, ξ̃)). (5.12)

The approximations we made are O(∆t) and O(h), where h = maxi minj(‖xi − xj‖Rd)
is the fill distance of the initial points.

We now have to choose basis functions ψj of V01. As we only have several data trajectories

given, a natural choice are radial basis functions φ : [0,∞] → [0,∞] of a meshfree

discretization, see [Wendland, 2004] [Fasshauer, 2007] , e.g.

• distance functions ψ(r) = ‖r‖2,

• Gaussians, φ(r) = exp(−r2),

• Wendland functions, e.g.

φ(r) = max(1− r, 0)6 (35r2 + 18r + 3)/3 for the Wendland 3,2 function, which is

positive definite on R3 and has compact support [0, 1].

Our basis functions then read ψj(t, x) = φ(α‖T (t, xk) − x‖2), where α is the scaling

parameter, determining how fast the basis functions decay. For Wendland functions, the

support of the basis function is then 1/α.
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If we use simple distance functions, the discretization leads to the matrix K̂ε, K̂ε,ij =
1
t1

∑M
k=1 ∆t‖T kj − T ki ‖2 occuring in [Froyland and Padberg-Gehle, 2015]. There, K̂ε is

interpreted as adjacency matrix of a graph whose nodes are the trajectories Tj and whose

edge weights are the distances in space-time of those trajectories. If Gaussians are used,

the similarity matrix K̂ε, K̂ε,ij = 1
t1

∑M
k=1 ∆t exp(−ε2‖T kj − T ki ‖22) from [Hadjighasem

et al., 2016] is derived.

For all those choices of basis functions the constant density 1[0,t1]×Ω is not contained

in V01 and the approximated operator K̂ε is not stochastic. To overcome this we con-

sider the normalized operator family P̃ε, P̃εf = Pε(f1Ω)/Pε1Ω, which is the natural

transfer operator family when analyzing systems induced by vector fields with non-zero

divergence (see chapter 3.4.1). For divergence free vector fields and reference measure

µ = λ, the Lebesgue measure, P̃ε equals Pε. In order to obtain an approximation to P̃ε,
we first compute Pε = K̂ ′ε (first discretize, then adjungate) and normalize the matrix Pε
to P̃ε = Pε/Pε1Ω, as 1Ω =

∑N
i=1 1Ωi .

5.4 Numerical experiments

5.4.1 Double gyre

We now look at the benchmark example of the Double gyre, see also Section 3.5.1. The

model describes a flow with stream function

Ψ(t, x, y) := A sin(πf(t, x)) sin(πy)

where f(t, x) = δ sin(ξt)x2 +(1−2δ sin(ξt))x, in a domain Ω = [0, 2]× [0, 1]. The velocity

field is given by

b(t, x, y) =

(
−∂Ψ
∂y
∂Ψ
∂x

)
=

( −πA sin(πf(t, x)) cos(πy)

πA cos(πf(t, x)) sin(πy)∂f∂x (t, x)

)
. (5.13)

This model is not intended to describe a real fluid flow but a simplified Double gyre

pattern seen in geophysical flows [Shadden et al., 2005].

The example describes two counter-rotating vortices separated by a periodically mov-

ing leaky transport barrier between them. For δ = 0 the flow is autonomous. For δ > 0,

the flow is non-autonomous, and the gyres conversely expand and contract periodically

in the x-direction such that the domain Ω enclosing the gyres remains invariant. A

determines the magnitude of the vector field b, ξ/2π is the frequency of oscillation, and

δ is approximately how far the line separating the gyres moves to the left and to the

right, see [Shadden et al., 2005]. We fix the parameter values A = 0.25, δ = 0.25 and

ξ = 2π.

In our configuration the Double gyre is 1-periodic. In Figure 3.4, we show the velocity

field of the Double gyre at times 0, 0.25 and 0.75.
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Figure 5.4: Singular spectrum of P̃ε for the Double gyre example with a gap occurring

after the third singular value.
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Figure 5.5: First row: Time slices of the third left singular vector and partition into three

coherent sets at times t = 0, 5.25, 10.50, 19.75. Yellow (blue) indicates 1 (-1).

Second row: Coherent 3-partition. See also Figure 3.7 for comparison.

In order to extract the coherent sets, we release 27 × 26 = 8192 trajectories starting

on an equispaced grid, and look at 301 samples in time. This is several magnitudes less

than the 28× 27× 100 = 3276800 test points we used for Ulam’s method for the Double

gyre in Section 3.5.1. As basis functions we use Wendland 3,2 functions, and choose

the shape parameter such that the support of one basis function intersects the support

of 50 other basis functions on average. In Figure 5.4, we show the singular spectrum

of the computed transfer operator P̃ . We spot a gap after the third singular value,

and consider the first three singular vectors to extract three coherent sets. In order to

extract coherent sets from these, we use the kmeans++ algorithm, see Section 2.8. In

Figure 5.5, we show time slices of the third left singular vector. We see that the singular

vector is indeed a linear combination of the indicator functions of three (connected) sets.

Furthermore, we show the extracted coherent 3-partition.
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Figure 5.6: Singular Values of P̃ for the Bickley jet, including several spectral gaps.

5.4.2 Bickley jet

Next we consider the Bickley jet, an idealized model of a meandering zonal jet, see

Section 3.5.2. A visualization of the vector field at time t0 = 0 is given in Figure 3.8. We

release 27×26 = 8192 trajectories starting on a grid, and consider 346 time samples. We

again use Wendland 3,2 functions as basis functions, and choose the shape parameter

such that the support of one basis function intersects the support of 50 other basis

functions on average. In Figure 5.6, we show the singular spectrum of the computed

transfer operator P̃ε. As more structures exists in the Bickley jet, it is less obvious

to spot the spectral gap than in the Double gyre example. We found three gaps after

the second, eighth and ninth singular value inducing partitions into two, eight and nine

coherent sets. In Figure 5.7, we show the resulting partitions at initial and final time,

and the corresponding last singular vector contributing to the partition. For comparison,

also consider the results obtained via Ulam’s method in Chapter 3.5.2. The partitions

shown in Figure 3.11 are the same obtained here. One main difference is, that for Ulam’s

method we used 27 ·25 ·100 = 409600 trajectories compared to 8192 for the data focused

method. Of course, in fact 8192 · 346 = 2834432 data points are used here, as the family

uses the intermediate times.

5.4.3 Incomplete data

In practice most often only an incomplete set of data is available, i.e. the trajectories Tj
are known only on a sub interval Sj ⊂ [0, t1]. We can deal very naturally with this case,

if we simply change our basis slightly to

ψ̃j(t, x) =


t1√
µ(Sj)

ψj(t, x), if t ∈ Sj
0 else.

, i = 1, . . . , N.

90



5.4 Numerical experiments

Right singular vector Coherent partition at Coherent partition after

(first day) first day 40 days

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

0 5 10 15 20
−2
0
2

Figure 5.7: First row: Second right singular vector and the coherent 2-partition at initial

and final time. Second row: Eighth right singular vector and the coherent

8-partition at initial and final time. Third row: Ninth right singular vector

and the coherent 9-partition at initial and final time. Yellow (blue) indicates

1 (-1).

The factor 1/
√
µ(Sj) ensures all ψ̃j having the same norm. We can do the same calcu-

lations as in the full data case, and obtain analogously to (5.11)

K̂ε,ij =
1

t1

∫
Sj
ψ̃j(t, T 0,t

ε (xi, ξ̃))dt

=
1√
µ(Sj)

∫
Sj
ψj(t, T 0,t

ε (xi, ξ̃))dt,

which is a mean value of ψj(t, T 0,t
ε (xi, ξ̃)) over time. The problem here is, that we may

not have information of T 0,t
ε (xi, ξ̃) at times t ∈ Sj but only at times t ∈ Si. However,

our best guess for the mean is simply the mean over the time interval, where we have

information of Ti available, namely Si ∩ Sj . So

K̂ε,ij ≈
1√

µ(Si ∩ Sj)

∫
Si∩Sj

ψj(t, T 0,t
ε (xi, ξ̃))dt

≈ ∆t√
#(sk ∈ Si ∩ Sj)∆t

∑
sk∈Si∩Sj

ψj(sk, T
k
i )

=

√
∆t√

#(sk ∈ Si ∩ Sj)
∑

sk∈Si∩Sj
ψj(sk, T

k
i ).
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Chapter 5 Transfer operator families

If two trajectories live on disjoint time intervals Si ∩ Sj = {}, the corresponding entry

Kij = 0.

5.4.4 Martha’s Vineyard

In this last example we look at 72 buoys released in August 2011 into Martha’s Vineyard

bay by Irina Rypina and her team, [Rypina et al., 2014]. The buoys sent their positions

100 times or roughly every 45 minutes from August 1st, 14:30 until August 4th, 20:00.

The buoys are not all released at the same time and only three of them are still alive at

the final time August 4th, 20:00. Hence the data set is very sparse and incomplete and

therefore unsuited for traditional transfer operator methods. Furthermore the underlying

flow is not really conservative, as up and downwelling can occur. However, our transfer

operator P̃ε is designed to deal with this setting. As basis for V01 we use the Gaussians

ψj(t, x) = exp(−α2‖T (t, xj)− x‖2V )

with global support as basis. Here, ‖.‖V is the 2-norm on the sphere. The buoys are all

released south of Martha’s vineyard and live on average for 64 time steps, see Figure 5.8.

In Figure 5.9, we show a basis function ψi at fixed time as well as the spectrum of the

computed transfer operator P̃ε. We see that in this data set there are no truely apparent

coherent structures as the singular values decay rapidly. However we use the gap after the

third singular value and identify three sets. One of those sets is a very separated group of

drifters diverting to the north-east through the narrow between Martha’s Vineyard and

Tuckernuch Island. The other groups are first heading west and then north and south,

respectively. Of course this is a very rough approximation of the transfer operator and

only in some sub-domains of Ω. However the data foundation is very sparse in this

example and at least some coarse separated regions can be identified. Note also that in

the beginning, as all buoys are released together they are all very close and hence the

first time measurements do not contribute much to the separation.
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0 20 40 60 80 100

0

20

40

60

time instances

d
ri
ft
er

Figure 5.8: Lifetime of the drifters.
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Figure 5.9: Martha’s vineyard: A basis function ψi at fixed time and the singular values

of P̃ε.
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Chapter 6

Coherent sets in plasma physics

In this chapter, we want to apply the concepts and algorithms developed in the previous

chapters to problems in plasma physics. We discuss several famous instabilities occur-

ring in the kinetic description of a plasma, such as two-stream instability, Bump-on-tail

instability and streaming Weibel instability. In difference to classical fluids, particles

in a plasma are described via their position and their velocity. Hence the state space

consists of up to six dimensions, three position, and three velocity dimensions. This is

one reason, why the numerics of a plasma are exceedingly challenging. Especially in high

dimensional state spaces, particle based algorithms such as particle in cell (PIC) and

particle in Fourier (PIF) codes are widespread in plasma numerics. This is beneficial

for the trajectory based discretization of the transfer operator family (see Chapter 5.3).

Like that we can directly access the data of the theoretical particles, and use those to

compute a coarse approximation of the transfer operator family even in high dimensions.

Hence, we will use this approach for most of the examples. All computations of the par-

ticles are carried out by Jakob Ameres1 [Ameres and Sonnendrücker, 2015,Ameres and

Sonnendrücker, 2016].

6.1 Two-stream instability

In our first example, we consider the Vlasov-Poisson equation (2.25),

ft + fxv +
q

m
Efv = 0

∆Φ =
ρ

ε0
.

1Max-Planck-Institut für Plasmaphysik (IPP), Boltzmannstraße 2, D-85748 Garching and TUM, Center

for Mathematics, Boltzmannstraße 3, D-85748 Garching.
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Chapter 6 Coherent sets in plasma physics

Figure 6.1: Particle density of the two-stream instability example at times t = 0, 30, 130.

with initial condition

f0(x, v) =
1

2
√

2π
(1 + ε cos(kx))(exp(−1

2
(v − v0)2))(exp(−1

2
(v + v0)2)),

where v0 = 2.4, k = 0.2, ε = 0.01 on a domain Ω = [0, 2π/0.16]× [−8, 8] describing the

position-velocity space (x-v space). We assume Ω to be periodic in x. This describes

two particle beams shot at each other in a one dimensional tube. Depending on k and

v0, this configuration can be stable or unstable in the sense that the two beams are

perturbed and a vortex forms out. With our choice, the system is indeed unstable. We

normalize the equation, such that q/m = 1.

There are many methods to solve this standard example, e.g. particle methods, [Hock-

ney and Eastwood, 1988], Semi-Lagrangian methods [Sonnendrücker et al., 1999], or

splitting schemes [Klimas and Farrell, 1994]. An overview of computational plasma

physics in general is given in [Birdsall and Langdon, 2004]. An overview over the var-

ious numerical methods for solving the Vlasov-Poisson equation is given in [Filbet and

Sonnendrücker, 2003]. Here, we compute the electric field induced by the particles via a

standard semi-Lagrangian method. In Figure 6.1, we show the evolution of the particle

density. As time evolves, some particles get trapped in state space, and a vortex in

position-velocity space forms out. This phenomena is called two-stream instability. We

extract the electric field E from this computation.

In this example, we aim at computing the coherent sets in the plasma via Ulam’s method.

To this end we have to compute the trajectories of single particles, in this case electrons.

As we have now obtained the electric field E, we can compute these trajectories in the

following way:

As we assume the magnetic field B = 0, the force applied to an electron in the plasma

is F(t, x) = qE(t, x). With F = mv follows

v̇(t, x) =
q

m
E(t, x).

In reality, for the electron holds

q = −1, 602 · 10−19C

m = 9, 109 · 10−31kg.
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Figure 6.2: Singular values of the transfer operator for the two-stream instability

and, therefore, as E = F
q and N = kg·m

s2

[v̇] =
m

s2

and

v̇(t, x) =
qe
me

E(t, x) = −0.1759 · 1012 ·E(t, x).

As we consider the normalized Vlasov-Poisson equation, we get

v̇(t, x) = −E(t, x).

which we rewrite as a two dimensional system(
ẋ

v̇

)
=

(
v

−E(t, x)

)
For the computation of the coherent partition, we start at time t0 = 100, when the vortex

already has formed out, and compute up to time t1 = 130. We release 100 particles per

box on a grid containing 26 × 26 boxes. We use the Lebesgue measure as reference

measure. In Figure 6.2, we show the singular spectrum of the transfer operator. We

spot possible gaps after the third and fourth singular values. In Figure 6.3, we show the

second to fourth singular vectors, and in Figure 6.4, we show two partitions into three

and four coherent sets, respectively.

As we compute a coherent 3-partition, we can distinguish the northern and south-

ern hemisphere from the center stream. In the coherent 4-partition also the vortex is

identified.
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Figure 6.3: Second, third and fourth singular vectors at initial time for the two-stream

instability.
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Figure 6.4: Coherent partitions at initial (first row) and final time (second row).
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Figure 6.5: Spatially averaged initial distribution function plotted against velocity for

the one dimensional Bump-on-tail instability.

6.2 Bump-on-tail instability

Next we consider the Vlasov-Poisson equation with initial condition

f(t = 0, x,v) =

(
1 + ε

(
d∑
i=1

kixi

))
1√
2π

1

(1 + a)
e−

v2

2 +
a

σ
e
−‖v−v0‖

2

2σ2 ,

describing a diffuse electron beam drifting with a velocity v0 relative to a station-

ary hot plasma. It models the situation of a fast particle injection, similar to the

neutral beam injection (NBI) in a tokamak. Here, σ2 is the thermal spread, and

the ions are assumed to form an immobile background. We set the parameters to

ε = 0.001, σ = 0.5, a = 2/9, v0 = 4.5, q/m = −1. The domain considered is

Ω = Ωx × Ωv, Ωx = [0, 2π/k]d, Ωv = [−5, 8.5]. We assume the position space Ωx to

be periodic.

6.2.1 1D × 1D Bump-on-tail

We first consider the system in one position dimension and one velocity dimension.

Therefore, d = 1. We set the wave number k = k1 = 0.3/3. In Figure 6.5, we show the

spatially averaged initial distribution function f showing the Bump-on-tail perturbation.

This initial distribution turns out to be unstable due to the perturbation. This leads

to a growth of this initial perturbation followed by saturation and oscillation of the

particles trapped in the potential through the wave [Shoucri, 1979].

In this example we have access to 10000 computed particles computed via a particle-

in-Fourier (PIF) solver [Ameres et al., 2016]. We apply the data-driven discretization

developed in section 5.3. As basis functions we use Wendland 3-2 functions, and choose

the support of a basis function such that it intersects with the support of approximately

100 other basis functions. We choose the initial time as t0 = 75 and the final time as

t1 = 110. In Figure 6.6, we show the singular spectrum of the such computed transfer
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Figure 6.6: Singular values of the transfer operator for the 1× 1 dimensional Bump-on-

tail instability.

operator and spot several gaps after the second, third and the sixth singular value. In

Figure 6.7, we show the coherent partitions into two and six sets at initial and final time.

The partition into two sets separates the southern part, a partition into three sets would

also separate the northern part from the center. The partition into six sets additionally

identifies three vortices that move to the east over time.

6.2.2 2D × 2D Bump-on-tail

Next we consider the Bump-on-tail instability in two spatial and two velocity dimensions.

We set k = 0.3. Hence, the periodic position space Ωx = [0, 2π/0.3]2. The velocity space

is Ωv = [−9, 9]2. In principle, the velocity space is unbounded. However, the are very

few particles in the gaussian tail of the initial distribution and therefore they can be

neglected. We compute 5000 particles via a particle-in-Fourier (PIF) solver [Ameres

et al., 2016]. We consider the time interval [t0, tf ] = [50, 80], and use time resolution of

dt = 0.2, resulting in 150 time slices for the computation of the transfer operator family.

We use Wendland 4-2 functions ψ4,2

ψ4,2 : [0,∞) −→ [0,∞)

ψ4,2(r) = max(1− r, 0)6(32r2 + 18r + 3),

which are strictly positive definite and radial on R4, for the construction of basis functions

[Wendland, 2004]. The basis functions then read ψj(t, x) = φ(α‖T (xj(t))− x‖2), where

xj(t) denotes the j-th particle at time t, see Chapter 5. The support of ψj is 1/α.

We choose α, such that the support of one basis function intersects with the support

of 50 other basis functions on average. In Figure 6.8, we show the spectrum of the

transfer operator family. The singular values decay quite fast. We spot a spectral gap

after the third singular value and decide to extract a coherent 3-partition. In Figure

6.9 we show several projections of this partition at time t = 50. We observe in the
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Figure 6.7: Parition into two and six coherent sets at initial time t0 = 75 (first row),

time t = 100 (second row) and final time t1 = 110 (third row).

projection of the coherent partition to velocity space, that the velocity of the particles

is very homogeneous. On the other hand, the projection to position space seems totally

chaotic. With the other two projections, we see the reason for that: In position space the

coherent sets are ”stacked” onto each other. In this example, it is, hence, not sufficient

to consider the position of the particles only, in order to detect the coherent structures.

The full dimensions are needed.

Nevertheless, the question remains what can be found in position (velocity) space. This

encourages us to look at the position and velocity separately. We redo the computation

for reduced state spaces Ωx and Ωv, instead of Ω = Ωx × Ωv. The results are shown in

Figure 6.10. The spectrum for the position space reveals, that there are indeed no really

coherent sets there, with the second singular value σ2 ≈ 0.3. However if we compute

the 2-partition we actually rediscover the evolution of the initial condition as a traveling

wave in position space. The spectrum for the velocity space reveals the sets there indeed

being very coherent.

6.3 Diocotron instability

Next, we consider the Diocotron instability in a Guiding Center Model. The evolution

of a density f(x, y) coupled to the Poisson equation is given as

∂tf +∇f ×E = 0, t ∈ [0, T ]⇔
∂tf + (∇Φ)2∂xf − (∇Φ)1∂yf = 0, t ∈ [0, T ],
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Figure 6.8: Spectrum of the transfer operator family for the 2 × 2 dimensional Bump-

on-tail instability.
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Figure 6.9: Projections of the three-partition onto several subspaces of Ω at time t = 50.
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Figure 6.10: First column: Spectrum of the transfer operator family for the four dimen-

sional Bump-on-tail instability reduced to position space, and partition into

two coherent sets at initial and final time. We identify the particle wave

traveling through position space. Second row: Spectrum of the transfer op-

erator family for the four dimensional Bump-on-tail instability reduced to

velocity-space and partition into five coherent sets at initial and final time.

The partitions are very coherent and do not move much in time at all.
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where (∇Φ)i denotes the i-th component of ∇Φ, where the electric field is induced by

the potential Φ via

E = −∇Φ,

and the Poisson equation is

−∆Φ(x, y) = f(x, y).

The characteristics for every particle are given as

d

dt
x(t) = −Ey(t, x(t), y(t)),

d

dt
y(t) = −Ex(t, x(t), y(t)).

For more details about the equations and their observation in nature, see [Levy, 1965].

We used Finite Elements coupled with a particle-in-cell code provided by [Ameres, 2016].

In a cylinder, the most unstable θ-mode is five, therefore we excite this one as initial con-

dition, see Figure 6.11. This method again has the advantage, that it directly computes

the trajectories of particles we can use for the approximation of our transfer operator

family. In this case, we used 10000 particles equally distributed on a ring around the

origin. Their evolution is quite complex, and the five stable vortices form quite leaky

clusters, see Figure 6.11. We consider the time interval [t0, tf ] = [0, 500], as we want to

detect where the vortices origin from. We compute the approximation to the transfer

operator family with our data driven approach, and set α = 0.025 such that the result-

ing matrix has approximately 2.8% non-zero entries. We obtain the spectrum shown in

Figure 6.11. We spot two dominant gaps after five and ten singular values. In Figure

6.12, we show the extracted coherent five and ten-partitions. The five-partition cuts the

initial ring into five parts which evolve into five stable but leaky modes including their

tails. The ten-partition additionally separates those tails from the vortices.
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Figure 6.11: Particle density in the Diocotron instability at initial and final time. Right:

Singular values of the associated transfer operator family.
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Figure 6.12: First row: Coherent 5-partition identifying the five stable modes in the

Diocotron instability example at initial time t0 = 0, time t = 100 and final

time t1 = 500. Second row: Coherent 10-partition additionally separating

the tails.
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6.4 Streaming Weibel instability (Vlasov-Maxwell)

In this section, we consider the Vlasov-Maxwell equation (2.24) in three dimensions.

We take the equations, the initial condition, and the Finite Element Particle-in-Cell

code for their solution from [Kraus et al., 2016]. The Vlasov-Maxwell equations in one

dimensional position space and two dimensional velocity space read

ft + fxv +
q

m
(E + v ×B)fv = 0

∂tB = −∂xE2,

∂tE1 = −j1,
∂tE2 = −∂xB − j2,
∂xE1 = ρ

The currents j1(x, t), j2(x, t) and the charge density ρ(x, t) are defined as

j1(x, t) :=

∫
R2

v1f(x, v1, v2, t)dv1dv2,

j2(x, t) :=

∫
R2

v2f(x, v1, v2, t)dv1dv2,

ρ(x, t) :=

∫
R2

f(x, v1, v2, t)dv1dv2.

The initial condition is set to

f(t = 0, x, v) =
1

πσ
e−

v21
2σ2

(
δe−

(v2−v0,1)
2

2σ2 + (1− δ)e−
(v2−v0,2)

2

2σ2

)
B3(x, t = 0) = β sin(kx)

E2(x, t = 0) = 0,

and E1(x, t = 0) is computed from the Poisson equation. We set the parameters to the

following values σ = 0.1/
√

2, k = 0.2, β = 103, v0,1 = 0.5, v0,2 = −0.1, δ = 1/6. The

domain size Ωx = [0, 10π]. The parameters were chosen like this originally in [Cheng

et al., 2014]. We release 10000 particles for the computation of the field and for the

approximation of our transfer operator family. The time step we use for the computation

of the evolution of the particles is 0.01. As time interval we choose [t0, t1] = [0, 300]. The

domain for the velocity is in principle R2, but only finite values are taken by the particles,

of course. We show the evolution of the particle density in Figure 6.13. We observe that

some particles are separated from the center main stream. For the computation of

the approximation to the transfer operator family, we use Wendland 3-2 functions as

basis functions. One challenge in this example is, that position and velocity live on

different scales. We observe that the maximum absolute velocity is approximately 0.2,

which is around 20 times less than the interval length of the position space. Hence,
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Figure 6.13: Particle density in the streaming Weibel instability at time t = 0, initial

time t0 = 100 and final time t1 = 300 and singular values of the associated

transfer operator family.

if we do not choose the support of a basis function carefully each basis function lives

on the whole velocity domain or only on a very small part of the position domain. To

overcome this problem, we set the radius of the basis functions to 0.2 in position space

and 0.02 in velocity space (the support is an ellipse). For the computation of the transfer

operator family, we use the coarser step size 1 in time, resulting in 301 time slices for

its computation. In Figure 6.13, we show the spectrum of the so computed transfer

operator family. We spot a gap after the third singular value and decide to extract three

coherent sets. In Figure 6.14, we show the coherent three partition of the particles. We

can identify clearly a vortex forming out above the center main stream. Additionally,

the vortex is equipped with a ring of particles orbiting it.
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Figure 6.14: First row: Coherent three-partition at initial time t0 = 100, side and top

view. Second row: Coherent three-partition at initial time t0 = 300, side

and top view.

108



Chapter 7

Conclusion and outlook

Starting point of this thesis was [Froyland, 2013] using transfer operators for the com-

putation of coherent sets, and identifying these sets as coherent pairs via

µ(A0 ∩ T t1,t0(A1))

µ(A0)
≈ 1,

subject to some small (numerical) diffusion. We developed this mathematical notion

of coherence in several steps and identified connections to related mathematical fields.

First, we recaptured well-known techniques from spectral clustering theory to extend

Ulam’s method for the identification of an arbitrary meaningful number of n coherent

sets in chapter 3 via considering

1

n

n∑
k=1

µ(Ak0 ∩ T t1,t0Ak1)

µ(Ak0)
≈ 1

subject to some small diffusion.

In chapter 4, we used stochastic flow maps to establish a more rigorous definition directly

including the necessary diffusion:

µ
(
EP×P

[
T t1,t0ε (T t0,t1ε (A, ·), ·)

] ∣∣∣ A) ≈ 1.

Like that we could establish a connection to the originating theory of almost invariant

sets. We used Brownian motion to connect this notion of coherence to the Fokker-Planck

equation allowing a spectral discretization.

We extended this definition in chapter 5 to consider the state of the system at all time

instances of the time interval. We called a set A coherent, if

1

t1

∫ t1

t0

µ
(
EP×P

[
T t,t0ε (T t0,tε (A, ·), ·)

] ∣∣∣ A) dt ≈ 1,
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and established a connection to families of transfer operators, which are also known

in optimization. We derived a data based discretization of this family using meshfree

methods, and connected it to recently established data-driven algorithms.

We applied the methods derived to various instabilities in plasma physics in chapter

6. We thoroughly identified the previously hard to catch instabilities in plasma physics

models, also in high dimensions.

An important question not touched by this thesis is the zero diffusion limit, i.e. what

happens if the diffusion added to the system approaches zero. This question was in-

vestigated recently in [Karrasch and Keller, 2016] (see also [Froyland, 2015]). There, a

Laplace-Beltrami operator is obtained and used for the computation of (geometrically)

coherent sets.

As the the concept of coherence is now sufficiently well understood, there open up

several opportunities for future research. In many applications, it is interesting not only

to identify coherent structures in a given time interval, but to influence the coherence

ratio and the areas coherent structures cover.

In this sense a natural next step is to try to control and optimize the coherent struc-

tures. For ocean fluids that could be to optimize the flow rate for a fluid via suppressing

coherence or trapping oil films inside coherent structures.

Concerning plasma physics a next step should be a further investigation of plasma

physics models including thorough parameter studies. In the long run, the control

of coherence in plasma physics is of great interest. Especially in fusion power plant

construction, the confinement of particles inside the reactor and the mixing therein is

important for a profitable operation.

110



List of Figures

2.1 Logistic map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Frobenius-Perron and Koopman operator . . . . . . . . . . . . . . . . . . 18

3.1 Butane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Coherent pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Diffusion, discrete time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Double gyre, field lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Double gyre, spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Double gyre, singular vectors . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Double gyre, coherent partition . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Bickley jet, field lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Bickley jet, spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Bickley jet, singular vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Bickley jet, coherent partitions . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Quadruple gyre, field lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Quadruple gyre, singular vectors . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Quadruple gyre, coherent partition . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Fluid example, singular vectors . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Fluid example, coherent partition . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Fluid example 2, singular vectors . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Fluid example 2, coherent partition . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Fluid example 2, spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Koopman operator family . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Frobenius-Perron operator family . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Fluid example 1, singular vector . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Double gyre, spectrum for family . . . . . . . . . . . . . . . . . . . . . . . 89

111



LIST OF FIGURES

5.5 Double Gyre, data-based coherent partition . . . . . . . . . . . . . . . . . 89

5.6 Bickley jet, spectrum for family . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Bickley jet, data based coherent partition . . . . . . . . . . . . . . . . . . 91

5.8 Martha’s vineyard, drifters . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Martha’s vineyard, spectrum for family . . . . . . . . . . . . . . . . . . . 93

5.10 Martha’s vineyard, data based coherent partition . . . . . . . . . . . . . . 94

6.1 Two-stream instability, density . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Two-stream instability, spectrum . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Two-stream instability, singular vectors . . . . . . . . . . . . . . . . . . . 98

6.4 Two stream instability, coherent partitions . . . . . . . . . . . . . . . . . . 98

6.5 Bump-on-tail instability, initial distribution . . . . . . . . . . . . . . . . . 99

6.6 Bump-on-tail instability, spectrum . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Bump-on-tail instability, coherent partitions . . . . . . . . . . . . . . . . . 101

6.8 Bump-on-tail instability 2D×2D, spectrum . . . . . . . . . . . . . . . . . 102

6.9 Bump-on-tail instability 2D×2D, coherent partitions . . . . . . . . . . . . 102

6.10 Bump-on-tail instability 2D×2D, reduced coherent partitions . . . . . . . 103

6.11 Diocotron instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.12 Diocotron instability, coherent partitions . . . . . . . . . . . . . . . . . . . 105

6.13 Streaming Weibel instability, spectrum . . . . . . . . . . . . . . . . . . . . 107

6.14 Streaming Weibel instability, coherent partition . . . . . . . . . . . . . . . 108

112



Appendix

113





Motivation for the exponential time-differencing scheme

We motivate an exponential time-differencing scheme for stiff systems as introduced

in [Cox and Matthews, 2002]. To begin with, we consider the one-dimensional time

dependent ODE

ut = cu+ F (u, t), (.1)

where c ∈ R is constant and F (u, t) represents nonlinear or forcing terms. We derive an

alternative formulation of .1 via first multiplying with the integrating factor e−ct and

then integrating from t0 to t1 = t0 + h:

e−ctut =e−ct(cu+ F (u, t))∫ t1

t0

e−cτutdτ =

∫ t1

t0

e−cτ (cu+ F (u, τ))dτ

ue−cτ |t1t0 +

∫ t1

t0

uce−cτdτ =

∫ t1

t0

e−cτ (cu+ F (u, t))dτ

e−ct1u(t1)− e−ct0u(t0) +

∫ t1

t0

uce−cτdτ =

∫ t1

t0

cue−cτdτ +

∫ t1

t0

e−cτF (u, t)dτ

e−ct1u(t1) =e−ct0u(t0) +

∫ t1

t0

e−cτF (u, t)dτ

u(t1) =ect1e−ct0u(t0)+

ect1
∫ h

0
e−c(τ+t0)F (u(t0 + τ), t0 + τ)dτ

u(t1) =echu(t0) + ech
∫ h

0
e−cτF (u(t0 + τ), t0 + τ)dτ.

This formula is exact and the integrating scheme depends on the approximation of the

integral. The simplest approximation is assuming F (u, t) to be constant on [t0, t1]. We

hence can compute

ech
∫ h

0
e−cτF (u(t0 + τ), t0 + τ)dτ = echF

∫ h

0
e−cτdτ

= echF (−1

c
e−cτ )|h0

=
F

c
(ech − 1),

and the etd1 scheme then reads

u(t1) ≈ echu(t0) +
F

c
(ech − 1).
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In the same manner higher order schemes can be derived, e.g. the fourth order et-

drk4 scheme, see [Cox and Matthews, 2002]. Furthermore this result can be directly

generalized for systems of ODEs, whose linear part is a diagonal matrix L

ut = Lu+ F(u, t),

L ∈ Rn×n is diagonal, e.g. a discretized Laplacian. The etd formulation then becomes

u(t1) = eLhu(t0) + eLh
∫ h

0
e−LτF(u(t0 + τ), t0 + τ)dτ.

In Chapter 4 we use an version of an etdrk4 scheme from [Kassam and Trefethen, 2005],

which elegantly treats a cancellation problem occurring in a naive formulation of etdrk4

by means of a contour integral approximated by the trapezoidal rule. The corresponding

Matlab function is shown in the next section.

MATLAB code for the quadruple gyre example

1 function u = etdrk4(t0, m, h, L, v, u)

2

3 % compare kursiv.m in AK Kassam and LN Trefethen

4 % "FOURTH -ORDER TIME -STEPPING FOR STIFF PDEs"

5 % SIAM Journal on Scientific Computing , 2005

6

7 L = L(:); eL = exp(h*L); eL2 = exp(h*L/2); t = t0;

8 M = 16; r = exp(1i*pi*((1:M) -0.5)/M);

9 R = h*L*ones(1,M) + r(ones(size(u,1) ,1) ,:);

10 Q = h*real(mean((exp(R/2) -1)./R,2));

11 f1 = h*real(mean((-4-R+exp(R).*(4 -3*R+R.^2))./R.^3,2));

12 f2 = h*real(mean(( 4+2*R+exp(R).*( -4+2*R))./R.^3,2));

13 f3 = h*real(mean ((-4-3*R-R.^2+ exp(R).*(4-R))./R.^3,2));

14

15 for j = 1:m

16 Nv = v(t,u); a = eL2.*u + Q.*Nv;

17 Na = v(t+h/2,a); b = eL2.*u + Q.*Na;

18 Nb = v(t+h/2,b); c = eL2.*a + Q.*(2*Nb-Nv);

19 Nc = v(t+h,c);

20 u = eL.*u + Nv.*f1 + (Na+Nb).*f2 + Nc.*f3;

21 t = t+h;

22 end
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1 % computation of coherent sets for a quadruple gyre system

2 %

3 % Andreas Denner and Oliver Junge , TUM , 2015

4

5 M = 15; x = 2/M*(0:M-1) ’; [X,Y] = meshgrid(x); % collocation points

6 D = 1i*ifftshift (-(M-1) /2:(M-1) /2) ’; % derivative in frequency space

7 Dy = D*ones(1,M); Dx = -ones(M,1)*D’;

8 ep = 0.02; L = ep ^2/2*( Dy.^2+Dx.^2); % Laplace operator

9

10 %% vector field

11 dl = 0.25; om = 2*pi;

12 f = @(t,x) dl*sin(om*t).*x.^2 + (1-2*dl*sin(om*t)).*x;

13 df = @(t,x) 2*dl*sin(om*t).*x + 1-2*dl*sin(om*t);

14 g = @(t,x,y) sin(pi*f(t,x)).*cos(pi*f(t,y)).*df(t,y);

15 w = @(t,v) -1/2*(Dx.*fft2(-g(t,X,Y).*ifft2(v))+Dy.*fft2(g(t,Y,X).*ifft2(v)) +

fft2(-g(t,X,Y).*ifft2(Dx.*v))+fft2(g(t,Y,X).*ifft2(Dy.*v)));

16 v = @(t,x) reshape(w(t,reshape(x,M,M)),M^2,1);

17

18 %% intial values

19 N = 5; % number of basis functions

20 U0 = zeros(M,M,M,M);

21 for k = 1:M, for l = 1:M, U0(k,l,k,l) = 1; end , end

22 Y0 = U0(:,:,[1:(N-1) /2+1,(M-1) -((N-1)/2-2):M], ...

23 [1:(N-1)/2+1 ,(M-1) -((N-1)/2-2):M]);

24

25 %% time integration / construction of transfer operator

26 t0 = 0; t1 = 10.25; m = 50; h = (t1-t0)/m;

27 P = zeros(M^2,N^2);

28 for l = 1:N

29 for k = 1:N

30 y0 = reshape(Y0(:,:,k,l),M^2,1);

31 P(:,N*(l-1)+k) = etdrk4(t0,m,h,L,v,y0);

32 end

33 end

34 [UU ,S,VV] = svd(P); diag(S); % compute singular values and vectors

35

36 %% plot singular vectors

37 figure (1); clf; p = 128; [Xp ,Yp] = meshgrid (2*(0:p-1)/p);

38 for j = 2:5

39 subplot(2,2,j-1)

40 v = reshape(VV(:,j),N,N);

41 vp = zeros(p);

42 vp([1:(N+1)/2,p-(N-1) /2+1:p],[1:(N+1)/2,p-(N-1) /2+1:p]) = v*p^2/N^2;

43 vp = ifft2(vp ,’symmetric ’);

44 vp=vp/max(max(abs(vp))); %normed for same colorbar

45 surf(Xp ,Yp,vp), shading flat , view (0,90), caxis([-1 1]), axis equal , hold on,

axis off , axis tight

46 end
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