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Abstract

Low-rank approximation is a linear dimensionality reduction technique with countless ap-
plications in data analysis and signal processing. A standard algorithm for finding the best
low-rank approximation according to the Euclidean distance measure is the well-known
Principal Component Analysis, which offers a closed-form solution to the problem, based
on the assumption that additive disturbances are Gaussian-distributed. However, this makes
the approach vulnerable against large outliers in the data. To leverage the issue, Robust
Low-Rank Approximation methods have been developed that are tailored to the low-rank
and sparse data model instead, which assumes that disturbances may have arbitrary mag-
nitude but occur only at few positions. The low-rank constraint is commonly addressed
either through nuclear norm minimization or by factorizing the low-rank matrix. In this
work a factorization model with orthogonality constraints is considered through which the
orthogonal factor represents a basis of the subspace to be found while the other one repre-
sents the coordinates of the low-rank approximation in this subspace. This resolves scaling
ambiguities and allows to identify every subspace estimate one-to-one with an element of
the Grassmannian, the manifold of low-dimensional subspaces. The sparsity of the residual
error is commonly enforced with the `1 norm because it is the closest convex relaxation to
the ideal `0 measure. As it is known that non-convex sparsity measures are a closer `0-
approximation and thus offer enhanced sparsifying behavior, this thesis proposes to replace
the `1 norm by a non-convex sparsifying function based on the extension of the `p norm
to 0 < p < 1. In contrast to the `1 norm, the proposed smoothed `p-norm loss function is
differentiable and allows for gradient-based optimization. Its practical use is investigated in
three related Robust Low-Rank Approximation problems.
Firstly, an algorithm for Robust PCA from incomplete observations is proposed, which

achieves increased robustness against outliers in the data. Due to the employed factorization
model the proposed loss function is minimized in alternating manner on the Grassmannian
and in Euclidean space, respectively, using efficient Conjugate Gradient methods with sub-
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sampled backtracking line-search to solve the individual optimization problems. Compared
to other state-of-the-art algorithms on simulated data, the proposed method is able to re-
cover the underlying subspace even in cases where competing methods fail as the data does
not fulfill the ideal low-rank-and-sparse-assumption. In a real-world video segmentation ex-
periment the method is used to separate foreground elements from a dynamic background
in an unsupervised manner. The proposed method reduces ghosting artifacts and achieves
fast processing times compared to competing approaches.

Secondly, a Robust Subspace Tracking algorithm is developed that also uses the proposed
smoothed `p-norm loss function to enforce sparsity on the residual error of the approxima-
tion. The method exploits the manifold setting to update the subspace model incrementally
with every new data sample, while avoiding the introduction of additional slack variables
or Lagrangian multipliers. This allows to deal with dynamic subspaces that vary over time.
Based on this idea, the pROST method has been developed, which is a specialized algo-
rithm for online video segmentation in realtime using GPU acceleration. The evaluation of
the method on a public benchmark reveals superior behavior for certain types of dynamic
backgrounds.
As a third contribution, a Robust Low-Rank Approximation method with additional

structural constraints is presented, which is more robust to outliers and scales better to large
dimensions than existing factorization-based approaches. For the special application of Time
Series Analysis, an efficient online method is proposed that is based on structured low-rank
approximation with Hankel structures. By reusing previous estimates, the method achieves
improved efficiency compared to randomly initialized structured low-rank approximation.
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Chapter 1.

Introduction

Nowadays, we live in a world of data. For a long time, data acquisition was limited by
the cost and quality of sensor hardware such as digital cameras, whereas today even cheap
hardware like the sensors of smartphones allow to capture high-quality data. While compu-
tational power and storage was expensive and required immobile acquisition platforms such
as a desktop computer, a virtually unlimited amount of data can be recorded and stored to-
day by mobile devices like smartphones or wearables, be it for private, public or commercial
use. With the advent of social networks and the rise of electronic commerce, a new kind of
data besides digital media such as pictures or videos is of growing importance, which is user
data. Practically every use of an online device leaves behind a trail of user data, containing
information about people’s habits, their preferences and their interests. As skeptical as
one should be about the constant recording of electronic actions and interactions and their
possible use or abuse, it would be naive and also impossible to try to reverse this trend of
evermore increasing data acquisition. While it is important to discuss about what to do and
what not to do with recorded data, a more technical question from an engineering point of
view is how to manage the massive amounts of data. Not only is data recorded more and
more often, letting the amount of data samples increase, but also the dimensionality of the
data, i.e. the size of the samples or the number of features, grows larger and larger. This
makes it difficult to process data, a phenomenon often labeled as the Big Data problem.
Unlike ever before, this development asks for effective and efficient methods of extracting
relevant information out of seemingly unfathomable sets of data. But there is hope, because
even if the dimension of data often appears to be very high from the outside, the under-
lying factors are commonly much simpler and less dimensional. Dimensionality reduction
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Chapter 1. Introduction

techniques aim at identifying these latent variables and at reducing the complexity of data
while maintaining the relevant information.

1.1. Low-Rank Approximation problems

Considering that every data sample of an input matrix Xm×n is an element of an m-
dimensional vector space, a linear dimensionality reduction method searches for a low-
dimensional subspace of dimension k < m (often k � m) in which the data can be rep-
resented. As the full representation L of the approximation in the surrounding space is a
low-rank matrix with rank (L) ≤ k, the problem of determining this subspace and the coor-
dinates of the approximated data points is a Low-Rank Approximation problem. Depending
on the application and on the assumptions on the data, different norms may be chosen to
measure the residual error X −L and thus the distance between the original data and the
approximation. The following overview lists the low-rank approximation problems discussed
in this thesis. An explanation of subspaces and norms can be found in Appendix A.1.

Low-Rank Approximation with Euclidean distances

An intuitive and often-made assumption is that the underlying low-rank representation of
the data points is contaminated by i.i.d. Gaussian noise, i.e. the energy of the disturbance
is evenly spread across all dimensions. The optimum distance measure for this assumption
is the Euclidean or `2 distance, motivating the minimization problem

min
rank(L)≤k

‖X −L‖2F . (1.1)

This problem is commonly identified with Principal Component Analysis (PCA) [69],
which searches for an orthogonal basis that spans the subspace of the closest approximation
in Euclidean sense and which also computes the coordinates of the data in this subspace.
A closed-form solution exists, based on the Singular Value Decomposition (SVD)

X = UΣV > (1.2)

where U and V are m×min (m,n) and, respectively, n×min (m,n)-dimensional matrices
with orthogonal columns and Σ is a diagonal matrix containing the singular values in

2



1.1. Low-Rank Approximation problems

descending order of magnitude. It is well-known that the best approximation of rank k in
Euclidean (`2) sense is provided by the truncated SVD of X

L = UkΣkV
>
k (1.3)

with Uk and Vk denoting the truncation of the respective matrices to the first k columns
and Σk being a matrix that contains only the first k singular values on its diagonal [36].
This convenient solution makes PCA a simple and easily applicable tool for a wide range of
applications and explains its omnipresent appearance.

Matrix Completion

So far it has been assumed that the input data is fully observed, i.e. all entries of X are
known. However, in some applications this is not the case, as e.g. partial entries of a
database may be missing. The problem of reconstructing the missing entries of a matrix
while assuming that the matrix has low rank is known as Matrix Completion and can be
formally stated as

min
rank(L)≤k

‖PΩ (X −L)‖2F , (1.4)

where PΩ is a linear measurement operator

PΩ (X) =

Xij if (i, j) ∈ Ω

0 otherwise
(1.5)

and Ω is the index set containing tuples (i, j) corresponding to the row and column position
of the revealed matrix entries.
The problem has received considerable attention, e.g. for its use in collaborative filtering

tasks where a data set is partly observed by several entities and the goal is to reconstruct
it from the incomplete measurements. As one of the most prominent examples this appears
in recommender systems for music or video streaming services. Given the ratings that users
have assigned to certain products, the goal is to anticipate the users’ attitude towards items
they have not rated yet, as to improve the quality of recommendations for other products
and to increase the user activity on the platform. In 2006 the company Netflix initiated a

3



Chapter 1. Introduction

competition to improve the results of their existing recommendation system, which is now
known as the Netflix Challenge. Although the targeted improvement was not met within
the competition [5], the initiative inspired many new thoughts on the problem.

Robust Low-Rank Approximation

The results on how well missing data can be reconstructed from noise-corrupted mea-
surements using the low-rank assumption have inspired further investigations in this field.
Specifically, the Low-Rank Approximation problem has been extended to non-Gaussian dis-
turbances that have an arbitrarily large magnitude but occur only at a few coordinates. As
these entries are not in line with the measurements at other coordinates they are dubbed
intra-sample outliers. Such disturbances may cause the affected data points to lie signifi-
cantly far away from the dominant subspace in Euclidean sense and thus from non-affected
samples, making the affected samples inter-sample outliers. As the two phenomena com-
monly go hand in hand, the term outliers will be used throughout the thesis to denote the
occurrence of defective measurements, while inter-sample outliers are referred to as outlier
samples whenever the distinction is important. Similarly, the term inlier (sample) will de-
note a measurement that is in line with other measurements. A data model with additive
outliers is

X = L+ S with rank (L) ≤ k and ‖S‖0 � mn, (1.6)

where the number of non-zero entries in the outlier matrix S is measured using the `0 norm1.
Matrices with few non-zero entries are known as sparse matrices and the data model in (1.6)
has become popular as the low-rank-and-sparse data model. Accordingly, the low-rank-and-
sparse decomposition aims at decomposing a given matrix blindly into the sum of a low-
rank and a sparse component. This approach is a robustified version of the PCA problem
(1.1) in terms of robustness against spurious outliers of large magnitude in the data set.
While common PCA assumes that errors in the data set are Gaussian distributed (i.e. the
disturbance is homogeneously spread across all dimensions), the errors in (1.6) affect only
few entries of the data but concentrate all energy on these entries. It is quite intuitive that

1Technically, the `0 measure is only a pseudo norm, see Appendix A.1.2. It will nevertheless be referred to
as the `0 norm throughout this work, while keeping in mind the limitations of the concept.
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1.1. Low-Rank Approximation problems

common PCA will lead to suboptimal results in the presence of large outliers, as the `2-loss
aims at distributing the residual error across all directions.
The ideal Robust PCA problem can be stated as

min
rank(L)≤k

‖X −L‖0 . (1.7)

Minimizing the `0 norm and thereby solving (1.7) is an NP-hard problem for which no
closed-form solution exists [30].
If the data set is only incompletely observed on an index set Ω, (1.7) can be restated as

min
rank(L)≤k

‖PΩ (X −L)‖0 , (1.8)

which implies that the sparsity of the residual error is only enforced over the set of observable
coordinates. This problem is referred to as Robust Matrix Completion, although the
term Robust PCA often encompasses also the case of incomplete observations.

Subspace Tracking

In a static environment all data samples are available at the time of processing, even if
their entries may only be partially observed. As a consequence, the low-rank approxima-
tion problems (1.1) and (1.7) are batch algorithms that process all data samples at once.
However, cases may occur where the size of the data set is prohibitively large, such that
batch algorithms cannot process them due to memory limitations. When data is captured
one sample at a time, the delay introduced by accumulating a batch of data samples before
processing them may become unacceptable. Or the underlying distribution of the samples
is not stationary but the statistics change over time, so that older and newer samples cannot
be jointly processed. To resolve all these cases, Subspace Tracking methods have been de-
veloped. As the name indicates, they learn a low-dimensional subspace incrementally over
time and can track temporal changes in the subspace. Formally, given a sequence of data
samples X := {x(t) ∈ Rm | t = 1, . . . , T} the minimization problem

min
L

T∑
t=1

∥∥∥x(t) − l(t)
∥∥∥2

2
(1.9)
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x1 x2 x3 x4 x5
x2 x3 x4 x5 x6
x3 x4 x5 x6 x7
x4 x5 x6 x7 x8
x5 x6 x7 x8 x9


(a) Hankel matrix


x5 x4 x3 x2 x1
x6 x5 x4 x3 x2
x7 x6 x5 x4 x3
x8 x7 x6 x5 x4
x9 x8 x7 x6 x5


(b) Toeplitz matrix


x5 x4 x3 x2 x1
x1 x5 x4 x3 x2
x2 x1 x5 x4 x3
x3 x2 x1 x5 x4
x4 x3 x2 x1 x5


(c) Circulant matrix

Figure 1.1.: Three examples of linear matrix structures

searches for a sequence of vectors L := {l(t) ∈ Rm | t = 1, . . . , T} that minimizes the
sample-wise distance to the input sequence. Replacing the metric with the `0 norm leads to
the Robust Subspace Tracking problem. The difference to previously discussed problems
is that the low-rank approximation samples l(t) do not necessarily all lie in the same subspace
as the columns of L do in (1.1) or (1.7), respectively. Instead, the subspace can vary over
time, so that two subsequent approximation vectors l(t) and l(t+1) lie in different yet related
subspaces. Therefore, with each new data sample the subspace estimate is updated. This
makes Subspace Tracking an efficient and flexible tool for online low-rank approximation
under varying conditions.

Structured Low-Rank Approximation (SLRA)

Structured matrices play an important role in various Signal Processing applications such
as System Identification and Time Series Analysis. Prominent linear matrix structures are
e.g. Hankel, Toeplitz or Circulant matrices, which are visualized in Figure 1.1. While the
Hankel structure enforces identical elements on its antidiagonals, (i.e. subsequent columns
are shifted upwards by one element), the other two have identical elements on the diagonals
(i.e. the columns are shifted downwards), with the Circulant matrix having the additional
constraint that elements vanishing from the last row reappear in the first one after shifting.
In some applications it is of interest to find a low-rank approximation of these structured

matrices, e.g. to determine the inner dynamics of a Linear Time Invariant (LTI) system
by approximating its Hankel-structured impulse response with a low-rank Hankel matrix.
Considering a set S of matrices fulfilling certain linear structural constraints, then the
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1.2. Formulation of the research problem

Structured Low-Rank Approximation (SLRA) problem writes as

min
rank(L)≤k

‖X −L‖2F subject to L ∈ S . (1.10)

Again, the norm of the residual between X and L may be measured with respect to the
`2 or the `0 norm, with the latter describing a Robust SLRA problem. Generally, there
is no efficient closed-form solution to (1.10) regardless of the distance measure. Given an
intermediate solution, it is possible to find the closest structured matrix and, if the residual
is measured with the `2 norm, to solve the low-rank approximation task in closed form via
PCA. However, it is also quite obvious that low-rank approximation in general does not
maintain a given matrix structure and, on the other hand, the projection onto the space of
structured matrices does not preserve the low-rankness of a matrix. Therefore, a feasible
low-rank approximation algorithm should minimize the residual while respecting both the
low-rank and the structural constraint at the same time.

1.2. Formulation of the research problem

The development of efficient methods for Robust Low-Rank Approximation problems has
been intensively studied in the past years, driven on the one hand by the general focus
on sparse data models and, on the other hand, by the evermore growing demand for un-
derstanding large amounts of data through extraction of latent factors in an unsupervised
way. There is a general tendency in the community to prefer convex approaches before non-
convex approaches, as convexity allows to prove algorithmic properties like convergence or
recovery guarantees. For Robust Low-Rank Approximation problems based on the low-
rank-and-sparse data model, this has been the major incentive to address the low-rankness
with nuclear norm minimization and to employ the `1 norm to enforce sparsity on the
residual error of the approximation. At the same time, however, it has been observed that
non-convex approaches are often feasible and effective in practice and surpass the results of
convex methods in real-world applications. This is the main incentive to investigate such
approaches and to further tweak their performance. For example, factorizing a low-rank
matrix instead of minimizing the nuclear norm guarantees an upper bound on the approx-
imation and is much more memory-efficient, even if the overall approach of optimizing the
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factors becomes non-convex. While the estimation of the best rank is a separate topic and
outside the scope of this work I will cover the following aspects in my thesis:

Robust PCA

The vast majority of existing approaches employ the `1 norm as a sparsifying function,
as it is the closest convex approximation of the practically infeasible `0 norm. However,
previous results have shown that non-convex sparsifying functions allow for an even better
sparsifying behavior than the `1 norm. In this thesis I investigate whether Robust Low-Rank
Approximation with non-convex `0-surrogates is feasible in practice, as to push the limits of
robust subspace recovery. For the static setting I develop a Robust PCA algorithm that is
efficient in terms of both computation and memory. The aim is to exploit the benefits of a
non-convex sparsity measure while observing good convergence behavior despite the general
risks of non-convex methods such as premature termination in suboptimal solutions.

Robust Subspace Tracking

Imposing orthogonality constraints on one of the factors in the factorization model comes
at the cost of some computational overhead, as the optimization of this variable is no longer
in Euclidean space but on the Grassmann manifold. In practice, however, this is not a
significant drawback, since efficient solvers are at hand. Moreover, the manifold setting
allows to update an existing approximation gradually by moving between elements on the
Grassmannian, which makes the algorithm much more flexible in an online application and
which furthermore requires less memory compared to a batch algorithm. I investigate if
a Robust Subspace Tracking approach using a two-factor data model and a differentiable
non-convex `0-surrogate loss function is feasible without introducing further slack variables,
keeping the algorithm as simple as possible. The method should be able to learn a subspace
sample by sample from highly outlier-contaminated observations. As Robust PCA has been
shown to perform well in the task of foreground-background segmentation of video data, I
develop a real-time video segmentation method based on Robust Subspace Tracking using
a non-convex `0-surrogate cost function.
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Robust Structured Low-Rank Approximation

Low-Rank approximation using a factorization approach has successfully been extended to
the structured case, in which the admissible set of solutions is limited to those matrices that
follow certain structural constraints. Yet, the structured problem is much less studied than
the unstructured case, especially considering the robustification against outliers. Therefore
I investigate how to employ a non-convex `0 surrogate cost function as a data fitting term
in order to find meaningful structured low-rank approximations even if the observed data
contains large outliers. At the example of Time Series Analysis using low-rank Hankel
matrices I furthermore examine how to benefit from the setting on the Grassmannian in
the structured case. Precisely, how a previously found low-rank approximation can reduce
the complexity of finding a structured low-rank approximation for related data in a similar
way as for the subspace tracking problem in the unstructured case.

1.3. Contributions

This thesis investigates the Robust Low-Rank Approximation problem for static and tem-
porally evolving subspaces and and its extension to structural constraints. All presented
methods share the common approach of restricting the rank of the approximation with a
factorization approach, while using a smoothed `p-norm cost function to enforce sparsity on
the residual error. The experimental results of this thesis show that extending the `p norm
to the case 0 < p < 1 leads to a closer approximation of the ideal `0 norm and makes the
approach even more robust against large outliers in the data. The smoothing parameter
makes the cost function differentiable and allows for an efficient alternating minimization
approach without additive slack variables. Imposing orthogonality on one of the factors lets
this factor represent an orthogonal basis of the subspace to be found, whereas the other
factor then contains the coordinates within this subspace. Optimization on the Grassmann
manifold resolves ambiguities of the factorization as it establishes a one-to-one identification
between a point on the manifold and a specific subspace.
For the static low-rank approximation problem, the Grassmannian Robust PCA

(GRPCA) method is proposed, which reconstructs an underlying low-dimensional structure
in the data from incomplete measurements, even when the low-rank and sparse assumptions
on the data are not exactly met. An iterative shrinkage of the smoothing parameter allows
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for quick progress during the optimization. Furthermore, it is observed to reduce the risk
of premature termination in local optima, which is an alleged weak point of non-convex
approaches. Due to the factorization approach and the absence of additional slack variables
the method requires a minimum amount of memory, as only the actually observed data
and the commonly thin matrix factors need to be stored. A subsampled conjugate gradient
algorithm together with a selective matrix-matrix product reduce the computational effort
of evaluating the cost function and computing the gradient, which lets the algorithm scale
well to large dimensions.

Due to the manifold setting on the Grassmannian, a Robust Subspace Tracking method
can be laid out that can deal with temporally varying subspaces. Using a two-factor data
model allows for efficient subspace and coordinate updates. The beneficial properties of the
proposed sparsifying function transfer to the online setting and allow to track subspaces
in conditions where `1-based methods fail. A method for real-time video segmentation of
real-world video scenes is presented, which achieves promising results for certain kinds of
dynamic backgrounds on a video segmentation benchmark.

As a third contribution, the robustification of the structured low-rank approximation
problem is studied, which extends the previously studied problems to the case of additive
structural constraints. The Grassmannian Robust Structured Low-Rank-Approximation
(GRSLRA) algorithm is proposed, which employs an efficient Augmented Lagrangian Mul-
tiplier scheme with alternating conjugate gradient optimization that scales well to large
dimensions. Minimizing the residual error according to the smoothed `p-norm cost function
allows to find a meaningful structured low-rank approximation in challenging scenarios, such
as system identification from outlier-contaminated impulse responses. Finally, a fast and
robust method for online time series forecasting using Hankel-structured low-rank matrices
is developed, which again exploits the manifold setting.
All algorithms presented in this work have been implemented in Python using the NumPy

framework. Following the good practice of reproducible research, the source code of the
algorithms and the scripts and parameter settings for all conducted experiments are publicly
available for download at https://github.com/clemenshage. The experiments have been
conducted inside a virtual environment on a desktop computer with a 3.3 GHz quad core
CPU and 16 GB of RAM running Ubuntu 16.04.
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1.4. Thesis Outline

1.4. Thesis Outline

After a first motivational overview on low-rank approximation problems has been laid out
in this chapter, Chapter 2 takes a closer look at the prior art of solving the respective prob-
lems and gives an overview about relevant approaches in literature that have motivated the
development of the methods presented in this work. Chapter 3 reviews the geometry of the
optimization problems in this work and outlines the methods employed for solving them in
an efficient way. The three main chapters 4 through 6 investigate three different Robust
Low-Rank Approximation problems and how to solve them using a smoothed `p-norm cost
function while exploiting the manifold geometry of the Grassmannian. Chapter 4 presents
the Grassmannian Robust PCA (GRPCA) method and compares its subspace reconstruction
performance and its computational efficiency to several state-of-the-art methods, mainly on
simulated data but also in a real-world video segmentation experiment. Chapter 5 considers
the case of time-varying subspaces and presents a framework for addressing the Robust Sub-
space Tracking problem. Besides some experimental results on simulated data, a great part
of the chapter is dedicated to the practical application of real-time video segmentation using
the pROST (`p-norm Robust Online Subspace Tracking) algorithm. Finally, Chapter 6 in-
vestigates the scenario of low-rank approximation with additional structural constraints and
presents the Grassmannian Structured Low-Rank Approximation (GRSLRA) algorithm, to-
gether with a robust and efficient scheme for Online Time Series Analysis using low-rank
Hankel matrices, which are evaluated on system identification and time-series forecasting
tasks.
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Chapter 2.

Related Work

2.1. Matrix Completion

The matrix completion problem (1.4) is an NP-hard problem and cannot be solved efficiently
in this form. But it has been shown that solving a relaxed version of the problem allows to
recover the missing data under mild conditions. Candès and Recht [21] restate the problem
as

min ‖L‖∗ subject to PΩ (L) = PΩ (X) (2.1)

with the nuclear norm (A.9) as the convex relaxation of the non-convex rank constraint.
They also derive a lower bound for the required number of samples to guarantee exact data
recovery. One important assumption on the data is made, namely that the singular vectors
(i.e. the columns of U and V if X = UΣV >) must be sufficiently spread. This means
that the energy must not be concentrated on one single entry as it would be the case for a
canonical basis vector ei that contains a 1 at position i and zeros elsewhere. A coherence
measure in this sense is proposed and a bound is derived on how incoherent both row and
column space must be to maintain recovery guarantees. To solve the problem, a semidefinite
program (SDP) is proposed. Unfortunately, standard SDP solvers such as SeDuMi do not
scale well to higher dimensional problems, which limits the feasibility of this approach to
small dimensions.
The singular value thresholding technique (SVT ) proposed by Cai et al. [17] is based on

the same convex relaxation, but it allows to tackle large-scale problems. As the name of
the method indicates, the first step in the approach consists of computing the SVD and
soft-thresholding the singular values of the optimization variable, i.e. setting all singular
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values to zero if they are smaller than a certain threshold. In a second correction step, the
residual error of the intermediate solution is scaled with a suitable step size and added to the
optimization variable. These two steps are iteratively performed until convergence, while
monotonously shrinking the step size parameter after each iteration. It needs to be noticed
that the soft thresholding in SVT differs from the hard thresholding in the truncated SVD
(1.3), where a fixed number of singular values are annihilated regardless of their value. Soft
thresholding controls the magnitude of the residual error at the cost of losing control over
the actual rank of the approximation. In contrast, hard thresholding sets an upper limit
for the rank while minimizing the residual error in `2 sense. The difference between both
methods becomes even more relevant when additive Gaussian noise is considered [20]. In
this scenario, either the rank is minimized for a given bound ε on the noise via

min rank (L) subject to ‖PΩ (X −L)‖2F < ε (2.2)

or, if the rank should be bounded instead of the residual error, the residual error of the
approximation is minimized as in the original Matrix Completion statement (1.4).
A simple way of guaranteeing an upper bound on the rank of the approximation is to

use the bilinear factorization model L = AY , in which a low-rank matrix L ∈ Rm×n

with rank (L) ≤ k is modeled as the product of two rectangular matrices A ∈ Rm×k and
Y ∈ Rk×n, respectively. Recht et al. [71] state the matrix completion problem using bilinear
factorization as

min
A,Y

1
2

(
‖A‖2F + ‖Y ‖2F

)
subject to PΩ (AY ) = PΩ (X) . (2.3)

They propose to solve the problem with an alternating minimization approach in which one
variable is fixed while optimizing the other, and vice versa. Although the two subproblems
may be convex, the overall optimization problem is non-convex [71]. Thus it is hard to
prove the success of the method, which might depend on the initialization of the factors.
Nevertheless, the factorization approach has gained a lot of interest, especially in Big Data
applications. On the one hand, alternating minimization can be faster than nuclear norm
minimization approaches, and on the other hand the memory footprint can be reduced
tremendously as only the two factors need to be stored instead of the whole low-rank
matrix. This makes the approach applicable to large scale problems such as the data set of
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the Netflix challenge [54]. In the context of recommender systems, one of the factors can
be interpreted as the latent factors or features of the rated items while the other matrix
contains the user-specific weightings or coefficients.

Cabral et al. [15] analyze the relation between the factorization model (2.3) and the
convex relaxation (2.1) and find that the factorization method achieves equivalent results
compared to the nuclear norm relaxation if the rank is chosen large enough. Also, in the
case where the actual rank of the data is known the reconstruction is generally better using
the factorization approach.
Jain et al. [49] have presented a detailed investigation on the convergence behavior of

alternating minimization methods for the Matrix Completion problem. They conclude that
if the data is well-conditioned, global optimality of this type of methods can be guaranteed.
Specifically, not only must the underlying subspace be sufficiently incoherent as already
discussed for the convex relaxation approaches [23, 21] but the incoherence property must
hold for each intermediate iterate in the alternating minimization process. Furthermore,
they propose to subsample the observation set randomly in each step as the support of
the original observation set Ω might be far from being uniformly distributed. Although
the two factors in Equation (2.3) are unconstrained, in practice it is often useful to impose
additional constraints, such as sparsity for sparse PCA or nonnegativity for Nonnegative
Matrix Factorization (NMF). For the matrix completion problem Jain et al. [49] propose
to orthogonalize one of the factors after each alternating minimization step as means of
regularization.
This regularization issue has been discussed by Dai and Milenkovic [28], stating that

the factorization AY is not unique as a different factorization (AM)
(
M−1Y

)
with any

invertible k × k-Matrix M could be found. Therefore, they propose the factorization UY
instead, with U ∈ Stm,k being an element of the set of k-dimensional orthogonal frames in
m-dimensional space, i.e. U>U = Ik. Moreover, U in this case is not just an orthogonal
matrix but needs to be understood as a representation of the unique subspace that is spanned
by its columns. Such a unique subspace again is an element of the Grassmannian, the
manifold of k-dimensional subspaces in m-dimensional space. They minimize the residual
error ‖PΩ (X −UY )‖2F via alternating minimization as proposed by Recht et al. [71], only
that the minimization over U is performed via gradient descent on the Grassmannian.

The spectral matrix completion method OptSpace by Keshavan et al. [52] starts from
an initial guess of the low-rank component obtained via hard singular value thresholding,
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i.e. truncated SVD. After this projection the found row and column spaces (i.e. the matrices
containing the left and right singular values) are refined with a gradient descent algorithm
on the Grassmannian as well. In a subsequent report [51] a rank estimation technique is
proposed that searches for a significant drop in the distribution of singular values as to
estimate the dimension of the subspace.

Boumal and Absil [9] build upon the approaches by Dai and Milenkovic [28] and Keshavan
and Montanari [51], respectively, and propose the cost function

min
U ,Y ∈Rk×n

1
2 ‖PΩ (W � (X −UY ))‖2F + λ1

2 ‖Y ‖
2
F −

λ2
2 ‖PΩ (UY )‖2F , (2.4)

where W is a weighting matrix that weighs the element-wise residual error of the recon-
struction through Hadamard multiplication, and the other terms regularize the magnitude
of the entries in the low-rank approximation. Note that the magnitudes of the entries of U
are inherently bound by the orthogonality constraint. In this specific formulation the full
computation of UY is avoided, as only the entries within the observation set need to be
evaluated. This reduces the theoretical complexity of the algorithm significantly if only a
few entries are observed. It needs to be noted, however, that selecting the specific entries in
a practical implementation creates a large overhead compared to highly-optimized matrix-
matrix computation routines. The authors propose a Riemannian trust-region method [1]
for matrix completion on the Grassmannian, which outperforms competing methods like
SVT [17] or OptSpace [53].

Lastly, the matrix completion problem has also been tackled as an optimization problem
on the Riemannian manifold of fixed-rank matrices, such as the LORETA method by Shalit
et al. [74] or the similar approach of Meyer et al. [65], which has been further improved
by Vandereycken [79] by replacing the gradient descent with a conjugate gradient descent
method. The fixed-rank approach relates to the special case of the factorization approach
where both factors are bound to have full rank, e.g. arising from a symmetrically partitioned
SVD like in the balanced factorization model [65]. As a downside, this restricts the space of
possible solution to matrices whose rank is exactly k, so that approximations with a rank
strictly lower than k are outside the feasible set.
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2.2. Robust PCA

Over the course of the past years, the term Robust PCA has more and more been associated
with the low-rank-and-sparse data model (1.6), largely sparked by the work of Candès et al.
[19]. Yet, it needs to be mentioned that earlier approaches towards robustifying classical
PCA exist, cf. [29, 46, 50, 55, 77].
Using the `1 norm as a convex relaxation of the `0 norm and relaxing the low-rank

constraint with the nuclear norm, Candès et al. [19] state the convex program Principal
Component Pursuit as

min
L,S
‖L‖∗ + λ ‖S‖1 s.t. X = L+ S, (2.5)

which aims at blindly decomposing X into the sum of a low-rank matrix L and a sparse
matrix S. At first sight it seems that the problem of recovering L and S from the mixture
is highly ill-posed, as more values need to be recovered than the number of measurements.
Also, in contrast to the missing entries in the matrix completion problem, the number and
position of the sparse outliers in the Principal Component Pursuit are unknown a priori.
Nevertheless, using a similar incoherence principle as for matrix completion, successful re-
covery can be guaranteed under mild conditions, cf. also the work of Chandrasekaran et al.
[23]. Intuitively, the reconstruction of a low-rank matrix will only be successful if the left
and right basis vectors are sufficiently distant from the canonical basis vectors, resulting
in a low-rank component that is dense. Vice versa, the support of the sparse components
is assumed to be random in this data model and thus the sparse component cannot be
low-rank.
A detailed investigation of the problem and its relations to matrix completion is also

provided by Wright et al. [81], who propose an iterative thresholding algorithm derived from
the SVT method [17]. However, as pointed out by Candès et al. [19], iterative thresholding
techniques are quite slow. Instead, they propose to solve problem (2.5) with the Augmented
Lagrangian Multiplier (ALM) [6] type method by Lin et al. [60] due to its faster convergence.
In this approach, the side condition in Equation (2.5) is integrated into the Lagrangian
function

‖L‖∗ + λ ‖S‖1 + 〈Λ,X −L− S〉+ µ
2 ‖X −L− S‖

2
F , (2.6)
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and the problem becomes an alternating minimization over L, S and the Lagrangian pa-
rameter Λ, which has been proposed in a similar way by Yuan and Yang [84]. All three
separate optimization problems can be solved in closed form. The optimization over L is
done by soft-thresholding the singular values of the term X−S+ 1

µΛ, which can be under-
stood as removing the estimate of the sparse outliers from the data and reducing the rank
of this term. The update for S on the other hand is performed by thresholding the entries
of X − L+ 1

µΛ, which extracts large entries in the residual error of the low-rank approxi-
mation. The overall problem can either be solved by alternating between the optimization
of L and S until convergence before updating Λ and µ, which is referred to as the exact
ALM method (EALM ). Or just one optimization step is performed for optimizing L and
S, respectively, before updating Λ. This variant is known as the inexact ALM (IALM ),
leading to similar solutions in practice at lower computational cost. Remarkably, the value
for the parameter λ weighing between low-rank and sparsity does not need to be tuned, but
it can be fixed as λ = 1√

n
, where n is the dimension of the square input matrix X.

After Robust PCA with incomplete observations

min
rank(L)≤k

‖PΩ (X −L)‖0 (2.7)

had already been discussed in [19], the authors of SpaRCS [80] extend the problem even
further by considering more general linear measurement operators than the canonical one
used for matrix completion. The algorithm iteratively updates the estimation of L and S,
borrowing ideas from from compressive sampling [66] and matrix completion [57] for the
particular estimation steps.
As for matrix completion, there also exist Robust PCA methods that bound the dimen-

sion of the subspace approximation instead of performing convex relaxation on the rank.
The greedy algorithm GECO [73] reconstructs a data set iteratively based on SVD while
increasing the rank of the approximation in each step. Zhou and Tao [85] consider the data
model X = L + S + N with an additive Gaussian noise term N . Their GoDec method
alternates between estimating a low-rank component of bounded rank via hard-tresholding
of the singular values and detecting sparse outliers of known cardinality with a hard thresh-
olding step on the entries of the residual. A significant speedup is achieved by replacing
the singular value truncation step with bilinear random projections. Mateos and Giannakis
[64] describe Robust PCA from a viewpoint that is very closely related to traditional PCA.
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While the low-rank component in the low-rank-and-sparse model (1.6) is assumed to be
centered around zero, the optimization problem in [64]

min
m,U ,Y ,S

∥∥∥X −m1>n −UY − S∥∥∥2

F
+ λ ‖S‖0 (2.8)

incorporates an explicit estimation of the mean vectorm. As the data is assumed to contain
outliers albeit at unknown positions (S initialized with all zeros), the initial estimation of
m is performed by computing the coordinate-wise median over the outlier-contaminated
samples. The subsequent alternating minimization procedure starts by removing the mean
and the detected outlier entries from the input data, computing the principal components
Y , updating the subspace estimate via SVD and thresholding the residual to find outliers in
the data. Finally, the mean is computed over the data after removing the newly estimated
outliers and the process is repeated. The outlier estimation step via soft thresholding as
described in Algorithm 1 in [64] corresponds to relaxing the `0 norm in Equation (2.8) with
the `1,2 norm, thereby regarding the columns of X either as inlier samples or as outlier
samples that must not be considered for the subspace estimation. The authors stress that
other surrogates for the `0 norm could be considered in order to improve the sparsity of S.
As this makes the overall problem non-convex, they propose to run their convex approach
first and then to refine their solution using a concave `0-surrogate term with an iteratively
reweighted least squares scheme as proposed in [22]. Shen et al. [75] state the problem as

min
A,Y ,Z

‖PΩ (X −Z)‖1 subject to AY −Z = 0 . (2.9)

Their LMaFit method solves the problem with a combination of the method of Alternating
Directions and the Augmented Lagrangian Multiplier (ALM) method. The Lagrangian
function

L (A,Y ,Z,Λ) = ‖PΩ (X −Z)‖1 + 〈Λ,AY −Z〉+ β
2 ‖AY −Z‖

2
F (2.10)

is optimized via alternating minimization overA,Y ,Z, followed by updating the Lagrangian
multiplier Λ. Although the factors are not restricted a priori, A is orthogonalized via QR
decomposition after each iteration to stabilize the approach. The method starts with an
initial (over-estimated) value for the rank and subsequently tries to estimate the actual rank
from the R factor of the (sorted) QR decomposition. The non-convex nature of the problem
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and especially the varying estimate of the rank make a convergence analysis difficult. How-
ever, experimental results illustrate that LMaFit surpasses IALM [60] and the very similar
but computationally more expensive approach by Yuan and Yang [84]. Recently, Cambier
and Absil [18] have presented a robust matrix completion method on a fixed-rank manifold,
which is a robustified version of the `2-based matrix completion algorithm by Vandereycken
[79]. The modified cost function combines the restriction of the `1-penalized residual to
the set of observed entries with an `2 regularization over the entries where the data is not
observed, as proposed also in [9]. As the `1 norm is not differentiable, it is replaced by
the smoothed function

√
µ2 + x2. In a similar manner as the Huber loss function [45], it

resembles the `1 norm whenever x2 is large while being smooth around zero. The smoothing
parameter is initialized with a large value for fast initial convergence and shrunk after each
iteration.

2.3. Subspace Tracking

Subspace Tracking has been an active field of research for many years with applications
predominantly in the field of signal processing [27]. An important task here is to determine
a signal’s covariance matrix, which is commonly estimated by averaging over the outer
product of T samples, such that Ĉ(t) = ∑T

τ=0 x(t−τ)x
>
(t−τ). Thus, the estimate of the

covariance matrix and with it the underlying subspace of the signal are updated with every
new sample. A computationally efficient algorithm is the PAST algorithm [83], which tracks
a subspace by minimizing the error between an accumulated number of samples and their
projection onto this subspace. In order to account for recent samples more than for samples
in the past, the sum of the individual errors is weighted with a forgetting factor. Although
the projection onto the signal subspace does not include any orthogonality constraints,
the authors report that the resulting basis is observed to be close to orthogonal. In their
GROUSE method, Balzano et al. [4] solve the minimization problem

min
U(t)∈U ,y(t)∈Rk

∥∥∥PΩ(j)

(
x(t) −U(t)y(t)

)∥∥∥2

2
(2.11)

at every time instance t. They consider a partial observation of the data vectors on an
index set Omega(t) (here, PΩ represents the one-dimensional case of Equation (1.5)). In
the same way as for the Matrix Completion algorithm by Dai and Milenkovic [28], U(t) is
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an orthogonal frame that spans the subspace in which the data sample lies at time instance
t, while y(t) are the coordinates in this subspace. The search space for U(t) is limited to a
set U , which encompasses the neighborhood of the previously estimated subspace estimate
on the Grassmannian. In practice, the search space is restricted by limiting the admissible
step size for the update of the subspace. As Balzano et al. [4] point out, the problem
of estimating this subspace while sampling the data incompletely column by column is
equivalent to the Matrix Completion problem if the actual underlying subspace is time
invariant. However, other than in [28], the optimization of U in GROUSE is a column-wise
stochastic gradient descent on the Grassmannian, which can be even more randomized in
the batch case by randomly permuting the columns of the input data. While the accuracy
of GROUSE in the matrix completion task lies in the range of competing state-of-the-art
methods, the method is computationally much more efficient as it avoids the computation
of matrix decompositions such as QR or SVD. In the case where the subspace is changing
over time the algorithm is able to follow these changes, which is demonstrated by tracking
suddenly changing or rotating subspaces.

Similar to GROUSE, the PETRELS algorithm [25] tracks a subspace over time from in-
complete observations with an `2 measure for penalizing the residual error x(t) −A(t)y(t).
The algorithm also alternates between estimating the coefficient vector y of the current sam-
ple using the previously estimated subspace and adjusting the subspace estimate A based
on the past observations, but no orthogonality constraints are imposed on A. Thus, the
minimization of the projection error during the coordinate update requires the computation
of the pseudo-inverse of A, whereas an orthogonal frame such as U in GROUSE generally
allows the much simpler solution y = U>x. The subspace update of PETRELS

min
A∈Rm×k

T∑
τ=1

βT−τ
∥∥∥PΩ (x(t−τ) −Ay(t−τ)

)∥∥∥2

2
, (2.12)

seems more complex than the update in GROUSE as well, as it considers not only the
current sample but the past T observations, which are weighted with a discounting factor
β < 1. Yet, the authors show that due to the quadratic loss function the estimation of
the subspace A(t) can be written as a recursive update of the previous estimation A(t−1).
Furthermore, the estimation can be performed independently on the rows ofA, which allows
to parallelize the operation. As a result, PETRELS achieves similar complexity as GROUSE
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and performs similarly well on matrix completion tasks, while the authors claim superior
performance in terms of adaptation speed for subspace tracking. But it is disputable whether
this is actually due to ”barriers in the search path on the Grassmannian” as Chi et al. [25]
state (cf. also the discussion in [28]) or whether a suboptimal step size has been chosen for
the gradient descent of GROUSE in these experiments.

Robust Subspace Tracking

One of the first discussions on robustifying Subspace Tracking against outliers in the data
is presented by Li et al. [58]. In this approach, the subspace is learned incrementally by
updating an estimate of the covariance matrix with each new input vector and determining
the dominant subspace via Eigenvalue Decomposition. While this inherently minimizes
the squared projection error, the authors investigate the possibility of robustifying their
incremental PCA by introducing a weighting step. Before updating the subspace with the
new data sample the residual error of the projection on the past estimate of the subspace
is computed and the input sample is weighted according to this residual. Experimental
results show that their robust incremental PCA is a viable approach for video segmentation.
Due to the incremental approach, the low-rank background model can adapt to persistent
changes in the scene while the robust weighting helps to reduce ghosting artifacts from
sparse foreground objects.
Qiu and Vaswani [70] take on Robust Subspace Tracking from a compressed sensing

perspective with their ReProCS method. Given an initial estimate of the current subspace,
they try to eliminate the low-rank component from the mixture by projecting the data
onto the orthogonal complement of the subspace. When the estimate is close to the actual
subspace, all that is left is to reconstruct the sparse outlier entries from a noisy observation.
Temporal changes in the subspace are accounted for by updating the estimation with a
recursive PCA approach. Comparing their approach to Candès et al. [19], the authors of
ReProCS state that their algorithm is not only able to operate online, but also that it
can conceptually deal with sparse outlier matrices that are not full rank and with a low-
rank component of higher rank. However, the initial estimate of the subspace can only be
estimated offline from outlier-free samples.
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Mateos and Giannakis [64] extend their Robust PCA approach to Robust Subspace Track-
ing by restating their cost function in vectorized form with a weighting factor β as

min
m,U ,y,s

T∑
t=1

βT−t
∥∥∥x(t) −m−Uy − s(t)

∥∥∥2

2
+ λ

∥∥∥s(t)

∥∥∥2

2
. (2.13)

Whenever a new sample appears, a soft thresholding step classifies the sample either as an
inlier sample (s(t) = 0) or as an outlier sample. In the latter case, a line-search method
estimates its entries. Then the coefficient vector y is updated in a similar way as for the
PAST algorithm [83]. The subspace estimate U is updated with a recursive least-squares
and, as the authors report, commonly keeps its orthogonality as reported in [83]. Finally,
the mean vector is re-computed as a weighted average over the past observations’ means. An
experimental evaluation of the method on outlier-contaminated data proves the increased
robustness against outliers in comparison to the `2-based methods GROUSE [4] and PAST
[83].
He et al. [42] present GRASTA, a robustified version of GROUSE that uses the `1 norm

instead of the `2 norm in the loss function (2.11). Using a similar regularization as the
LMaFit [75] approach for Robust PCA, the Augmented Lagrangian function to be minimized
for the partial observation PΩ (x) of a new sample turns out as

L (U ,y, s,λ) = ‖s‖1 + λT (PΩ (x)− PΩ (Uy + s)) + ρ

2 ‖PΩ (x)− PΩ (Uy + s)‖22 (2.14)

with the temporal indices omitted for clarity. The subspace-representing matrix U is op-
timized with a single gradient descent step on the Grassmannian, in a similar way as for
the GROUSE method. The remaining variables, however, cannot be optimized in closed-
form. Instead, a separate optimization loop is proposed, in which the respective variables
are optimized in an alternating manner before updating the subspace again. In contrast to
GROUSE, the step size for the subspace update in GRASTA cannot be fixed but needs to be
selected adaptively, as to guarantee full converge to a feasible stationary solution while still
being able to follow changes in the subspace. Experimental results on simulated data show
that the method is suitable to track subspaces in the presence of large outliers in the data.
GRASTA is furthermore evaluated on a real-world video segmentation task to confirm that
the method is capable of updating its background model dynamically in an online setting.
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2.4. Structured Low-Rank Approximation

The term Structured Low-Rank Approximation (SLRA) describes the general problem of
finding a low-rank approximation that preserves matrix structures. While this understand-
ing generalizes to any linear structure, the restriction of the problem to certain specific
structures has a much longer history. Toeplitz matrices, for example, play an important
role in Signal Processing, where SLRA is used as a tool for denoising [26]. Hankel structures
on the other hand appear in Linear Time Invariant (LTI) system theory, where denoising
and model reduction problems can be written as SLRA with Hankel constraints. The sys-
tem theory with Hankel matrices has inspired many methods for Hankel-SLRA, such as the
Singular Spectrum Analysis (SSA) proposed by Broomhead and King [12]. The method
is quite simple, as it computes a low-rank approximation of a Hankel-structured matrix
followed by a so-called diagonal averaging step, the orthogonal projection onto the space
of Hankel matrices. Generally, this projection will not maintain the low-rank property
established before, so the resulting outcome will likely have a rank higher than targeted.
Cadzow’s Method [16] alternates between these two steps until the algorithm converges to
a solution that is indeed low-rank and structured. However, as stated in [26] the solutions
produced by this approach can in practice be far away from the actual optimum. In fact,
there are no guarantees of finding an actually meaningful approximation to the data. Chu
et al. [26] themselves present a method that uses various equality constraints to solve the
SLRA problem for the special case of symmetric Toeplitz matrices, but an extension to
the general SLRA problem is not explicitly provided. Markovsky [61] considers SLRA with
affine matrix structures and gives a comprehensive overview of existing SLRA approaches
with real-world use-cases. In the discussed problems the fit between the data and the ap-
proximation is predominantly computed with the standard `2 norm, but an extension to
weighted low-rank approximation is outlined, which eventually leads to an SLRA algorithm
that can deal with missing data [63]. A toolbox for SLRA is presented in [62] that solves a
wide range of SLRA problems with (mosaic) Hankel structure. The solver aims at finding
a matrix R ∈ Rm−k×m that minimizes

min
R∈Rm−k×m

(
min
x̂∈RN

‖x− x̂‖2w subject to RXS = 0
)
, (2.15)
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where x is a given data vector that produces a structured matrix XS ∈ S and ‖·‖2w denotes
the weighted `2 norm. The feasibility of the approach arises from the fact that the inner
minimization problem can be solved in closed form for a given R. As all matrices R with
the same row space produce the same solution for the inner minimization problem, this
invariance carries over to the outer minimization problem, which is in fact an optimization
problem on the Grassmannian [62]. Ishteva et al. [48] review existing SLRA approaches and
find that the factorization model (as discussed for unstructured low-rank approximation
problems) has gained rather little attention in the community. They consider structured
input XS and propose a cost function for SLRA that joints the structural and low-rank
constraint, resulting in the problem

min
A∈Rm×k,Y ∈Rk×n

∥∥∥x− S†vec (AY )
∥∥∥2

w
+ λ ‖AY −ΠS (AY )‖2F (2.16)

where x is the given data vector, vec (·) denotes the column-wise vectorization of a matrix,
S† denotes the orthogonal projection of a vectorized arbitrary matrix onto the underlying
data vector of the closest structured matrix and ΠS (·) denotes the orthogonal projection of
an arbitrary matrix onto the set of structured matrices (see Section 6.1 for a more detailed
derivation). The dimension of the two matrix factors is an upper bound on the rank of
the approximation, so that the resulting low-rank matrix L = AY has a rank of at most
k. The first term of Equation (2.16) controls the element-wise data fit between the input
data and the approximation with a weighted `2 norm, in order to ensure that the found
approximation is close to the input. The second term, on the other hand, penalizes the
distance between the low-rank approximation and its element-wise quadratic distance to
the closest structured matrix. Ergo, it vanishes if the low-rank approximation fulfills the
structural constraints of S. The optimization procedure alternates between minimizing the
cost function over A and over Y , respectively, while the individual optimization problems
can be stated as least-squares problems. Whenever an intermediate solution has been found
(i.e. the progress in minimizing the cost function falls below a certain threshold) the penalty
parameter λ is increased. The overall procedure is terminated if λ is sufficiently large for
the low-rank approximation to fulfill the structural constraint.
As previously discussed for unstructured low-rank approximation, algorithms based on

the `2 norm bring along an inherent vulnerability against outliers in the data, which has led
to the advancement from PCA to Robust PCA in the unstructured case. Ayazoglu et al. [3]
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have therefore proposed to extend this concept to structured matrices with their Structured
Robust PCA (SRPCA). Precisely, they extend Lin et al. [60]’s Robust PCA approach by the
additional constraints that both the low-rank approximation and the sparse outliers have
to meet a certain structure SL and SS , respectively. The objective reads as

min
L,S

∑
i

wiσi(L) + ‖WSS‖1 + 1
2 ‖WFS‖2F subject to X = L+ S, L ∈ SL, S ∈ SS

(2.17)

where wiσi denote the weighted singular values and WS and WF are weighting matrices.
The mixture of `1- and `2-regularization of S in Equation (2.17) differs from classic Principal
Pursuit (2.5) but also from noisy Robust PCA [85] in that the entries are forced to be
both sparse and small in magnitude, thus possibly containing both Gaussian noise and
large outliers. Furthermore, S should be structured, which makes it even more difficult to
predict the result of the interplay of the two norms. As all experiments in [3] are conducted
with WF = 0, it seems reasonable to disregard the third term in the cost function, or to
replace it by ‖X −L− S‖2F as to allow for additive Gaussian noise. The SRPCA problem
is solved with an augmented Lagrangian multiplier approach that joints the side condition
X = L+S as in the unstructured case, cf. [60]. The structural constraint for L is taken care
of by replacing it with an unstructured variable J and adding the constraint that J = LS

where LS is always a structured matrix. The same procedure is undertaken with the sparse
component S, resulting in a Lagrangian function with three Lagrangian multipliers and a
sum of nine terms in total. As the authors report, the resulting problem is convex and can
be solved with conventional convex optimization tools. However, as typically the case for
Semidefinite Programming routines, the memory requirements can be prohibitive even for
comparably small problems. The performance of the Robust SLRA approach by Ayazoglu
et al. [3] is demonstrated on several experiments using Hankel structures. In the Target
Location Prediction task, the goal is to forecast a trajectory based on its previous temporal
development, which is a classic time series analysis problem applied to the vision setting.
Similarly, the structured matrix completion problem can be used to match tracklets, and
outliers can be removed from a trajectory by composing a Hankel matrix and performing
Robust SLRA.
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Chapter 3.

Optimization on the Grassmannian

In this work the factorization model L = UY with an m × k-dimensional matrix U and
Y ∈ Rk×n will be employed in order to account for the low-rank constraint rank (L) ≤ k.
In order to fix the scaling of one of the factors and to allow that the upper limit k on the
rank is always attainable, the columns of the factor U are constrained to be orthogonal,
i.e. U>U = Ik. Thereby, they form an orthogonal basis of the subspace which is to be found,
whereas the entries of Y are the coordinates within this subspace. In order to measure the
residual error between input data X and a low-rank approximation, an entry-wise loss
function

f : Rm×n → R, X 7→ f (X) (3.1)

is considered, which is assumed to be differentiable and separable, i.e. the overall residual
error is the sum of the residual errors in the respective coordinates. Using this function, the
low-rank approximation problem can be written as

min
U ,Y

f (X −UY ) . (3.2)

This chapter addresses the questions of how to deal with ambiguities in the factorization
model and how to minimize a separable loss function efficiently over the respective variables.
Imposing orthogonality constraints on U acts as a regularizer for the scaling and guarantees
that the upper bound on the rank can always be achieved during an alternating optimiza-
tion scheme between U and Y . Minimizing the loss function over U with respect to the
orthogonality constraints requires certain tools of Manifold Optimization, which will be laid
out in this chapter. Precisely, a conjugate gradient method on the Grassmannian will be
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derived, which is the manifold of k-dimensional subspaces. The general idea of manifold
optimization [34] is to examine the set of possible solutions to a given problem and, given
that this set has a manifold structure, to derive a geometric description of the manifold.
Starting at some element and taking a reasonably sized step along some direction on this
manifold, one reaches an element which yields a lower value of the cost function. Repeat-
ing this process, a locally or even globally optimal solution to the problem is eventually
found. The main difficulties are that many concepts of the common Euclidean space such
as directions and angles are generally not defined on a manifold. A variety of literature has
therefore been dedicated to the field of Geometric Optimization. For topics exceeding the
derivation of the Grassmannian CG method, the interested reader is referred to the work of
Edelman et al. [32] and Absil et al. [2]. Some specific insight on Grassmannian optimization
and a discussion of conjugate gradient methods on the Grassmannian are provided in [47].

3.1. Stiefel and Grassmann manifolds

Stiefel manifold

While the orthogonal group

O(m) := {Q ∈ Rm×m | Q>Q = Im} (3.3)

describes all quadratic orthogonal matrices, the set of all rectangular m × k matrices with
orthogonal columns is known as the Stiefel manifold

Stk,m := {U ∈ Rm×k | U>U = Ik}. (3.4)

The Stiefel manifold can be derived as a Riemannian submanifold of Rm×k and leads to the
topology described by Absil et al. [2]. Thereby, elements of Stk,m are uniquely identified with
an m× k-dimensional matrix U as in Equation (3.4). The Stiefel manifold is endowed with
the standard inner product 〈A,B〉 = tr

(
B>A

)
inherited from the surrounding Euclidean

space. For a submanifold M that is embedded in a surrounding space (e.g. a sphere in
Euclidean space) it is straightforward to define a tangent space TXM that contains the
tangent vectors to all curves running through X ∈ M (e.g. a tangent hyperplane to a
sphere). At this particular point, the tangent space is a local vector space approximation of
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the manifold and allows to define distances and directions according to the chosen metric,
since they are not defined on the manifold itself whenever the manifold is not a vector space.
One can furthermore derive the projection of vectors from Euclidean space onto the tangent
space and, respectively, the normal space, its orthogonal complement [2, 32].
Besides the definition as an embedded submanifold, Edelman et al. [32] investigate the

derivation of the Stiefel manifold as a quotient manifold

Stk,m := O(m)/O(m− k). (3.5)

In this definition one element of Stk,m is represented by an equivalence class

{
Q

[
Ik 0
0 Qm−k

]
, Qm−k ∈ O(m− k)

}
(3.6)

of all matrices out of Om whose first k columns are identical. As Absil et al. [2] state,
the concept of tangents of a quotient manifold is much more abstract in comparison to
the intuitive geometry of embedded submanifolds. If [X] is an element of the quotient
manifold, the tangent space of [X] can be derived by partitioning the tangent space at
X into the directions within the equivalence class and those across equivalence classes.
The former, i.e. the directions that are tangent to the equivalence class and that lead to
other representatives of the same equivalence class, are contained in the vertical space. Its
orthogonal complement is described as the horizontal space and contains only the directions
that lead to other equivalence classes. As a consequence, the inherited metric (being the
orthogonal group metric in the definition (3.5)) must be restricted to the horizontal space
only, which represents the tangent space of the quotient manifold [32].
For the Stiefel manifold the quotient manifold perspective seems overly complex, as the

embedded submanifold definition allows for a more efficient representation with a unique
mapping from matrices to Stiefel elements. Moving along to the Grassmannian, however, the
benefits of the quotient manifold derivation will become more obvious as the representation
of its elements is less straightforward.
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Grassmann manifold

The columns of a Stiefel element U span one specific k-dimensional subspace within m-
dimensional space. But it is quite obvious that the same subspace could be spanned as well
by a different (rotated) basis Ũ := UQ with Q ∈ O(k). Consequently, a low-rank matrix L
that can be factorized into L = UY can equivalently be factorized into Ũ Ỹ := LQm Q

TY .
This motivates the definition of an equivalence class

[U ] := {UQ | Q ∈ O(k)} . (3.7)

A specific k-dimensional subspace is then represented uniquely by one particular equivalence
class. The set of all k-dimensional subspaces is known as the Grassmann manifold or
the Grassmannian, named after the mathematician Herrmann Günther Graßmann1 and is
denoted by Grk,m.
Edelman et al. [32] define the Grassmannian as a quotient manifold Stk,m/O(k) aris-

ing from the division of the Stiefel manifold (in the definition (3.5)) by the k-dimensional
orthogonal group, so that

Grk,m := {[U ] | U ∈ Stk,m} (3.8)

with the equivalence relation (3.7). This representation has the advantage that only m× k-
dimensional matrices appear in practical computations involving elements of the Grass-
mannian. Yet, one needs to keep in mind that the stored representation is just one possible
representative out of all the equivalence class members.
Whenever a unique matrix representation is required, the Grassmannian can alternatively

be defined as

Grk,m := {P ∈ Rm×m | P = UU>, U ∈ Stk,m}, (3.9)

where P is an m × m-dimensional orthogonal projector that projects a vector x ∈ Rm

onto a specific k-dimensional subspace. If k � m, however, which is the case in many
1Graßmann (1809 - 1877) studied these concepts around 1840 as an autodidact and developed ground-
breaking concepts of Linear Algebra in his book Ausdehnungslehre. However, his work was not respected
at the time due to its abstract notation. Rumor has it that his publication was used by his publisher
as waste paper. When similar concepts finally became en vogue in the 1860s and 1870s Graßmann had
already resigned all his mathematical work.
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practical applications, a submanifold embedding of Grk,m in Rm×m inflates the dimensions
of the problem tremendously. A possible way to alleviate the issue besides resorting to
the quotient manifold definition is to develop efficient retractions, which provide a local
transformation of a manifold optimization problem to an equivalent problem on its tangent
space, cf. [2].
On a side note, a third definition of the Grassmannian arises from deriving it as a quotient

manifold of the orthogonal group via O(m)/ (O(m)×O(m− k)). However, the resulting
representation with m ×m equivalence classes is similarly memory-consuming as working
with projectors.

3.2. Quotient geometry of the Grassmannian

In the following, the geometry of the Grassmannian as a quotient manifold will be recalled,
starting with the metric that is inherited from the Stiefel manifold. If the Stiefel manifold is
derived as a quotient manifold from the orthogonal group, it inherits the orthogonal metric,
which is not equivalent to the Euclidean metric. However, as Edelman et al. [32] state, the
necessary restriction of the orthogonal group metric to the horizontal space at U ∈ Stk,m
leads to a metric that again is equivalent to the Euclidean metric. Thus the standard inner
product holds in the tangent space of the Grassmannian, which simplifies its description.
The tangent space of the Grassmannian Grk,m at a point [U ], which is the horizontal space
at U ∈ Stk,m, can be described as

T[U ] Grk,m := {H ∈ Rm×k | U>H = 0}, (3.10)

where H represents any possible tangent direction. An element Z ∈ Rm×n from the sur-
rounding space can be projected onto the tangent space T[U ] Grk,m via

ΠT[U ] Grk,m(Z) = (Im −UU>)Z. (3.11)

Moving across the manifold requires a description of its geodesics, which are the shortest
paths from one element on the manifold to another one (such as great circles on a sphere).
The generic way of computing the geodesics involves the matrix exponential, which is costly
to evaluate in practice. Following the derivation in [32] instead, the geodesics emanating
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from a point [U ] on the Grassmannian can efficiently be computed as

γ[U ](t,H) = (UVH cos(ΣHt) +ΘH sin(ΣHt))V >H , (3.12)

with ΘHΣHV
>
H being the compact Singular Value Decomposition of a tangent direction

H ∈ T[U ] Grk,m.
Knowledge of the geodesics also allows to derive a formula for the parallel translation

between tangent spaces. Since the directions are not defined on the manifold itself but only
within the tangent spaces at distinct points on the manifold, comparing two directions at
different points on the manifold requires to transfer one direction along the geodesics to the
respective tangent space of the other. For the quotient manifold definition, Edelman et al.
[32] derive the translation of an element G from the tangent space at [U ] in the direction
H ∈ T[U ] Grk,m as

τ[U ] (G, t,H) = G− (ΘH (Ik − cos(ΣHt))−UVH sin(ΣHt))Θ>HG (3.13)

with t ∈ R defining the length of the path along the geodesic (3.12) 2.

Cost functions and their domains

After the geometry of the problem has been identified, the individual cost functions for the
alternating minimization of the overall objective (3.2) can be defined. The cost function for
the optimization with respect to U can be stated as

fU : Stk,m → R, U 7→ f (X −UY0) (3.14)

with a fixed set of coefficients Y0. Vice versa, considering a fixed U0 ∈ Stk,m the cost
function for Y is

fY : Rk×n → R, Y 7→ f (X −U0Y ) (3.15)

As discussed above, U is an element of the Stiefel manifold, but it only serves as a matrix
representation of the equivalence class [U ] ∈ Grk,m. In order to resolve the ambiguities of

2On a side note, if the transported direction coincides with the direction of transport, (3.13) simplifies to
τ[U ](H, t,H) = (ΘH cos(ΣHt)−UVH sin(ΣHt))ΣHV

>
H .
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the factorization model, fU is actually optimized on the Grassmannian instead of the Stiefel
manifold. Therefore, the optimization strategy consists of alternating between the separate
minimization problems

min
[U ]∈Grk,m

fU (U) (3.16)

and

min
Y ∈Rk×n

fY (Y ) . (3.17)

3.3. Gradient and Conjugate Gradient Descent on the
Grassmannian

What follows is an explanation of how to solve the optimization problem (3.16) on the
Grassmannian. The derived concepts of tangent space, projection onto the tangent space
and geodesics allow for a simple Gradient Descent (GD) method. As a first step, the Eu-
clidean gradient ∇fU (U) of the cost function with respect to U is computed. Following
Edelman et al. [32], its projection onto the tangent space at [U ] is equivalent to the Rie-
mannian Gradient and to the projection onto the column space of U⊥, the orthogonal
complement of U . This again can efficiently be performed by subtracting all parts of the
gradient that are in the column space of U via

G := (Ik −UU>)∇fU (U) . (3.18)

Starting at an initial point
[
U (0)

]
, one can now reduce the cost function (3.14) by walk-

ing along the geodesics (3.12) in the direction H := −G, the opposite direction of the
Riemannian gradient. The procedure is outlined in Algorithm 3.1.
GD methods are computationally cheap compared to second order methods that also

consider the Hessian of the cost function. Thus they are a practical tool for unconstrained
non-convex optimization in high dimensions. However, it is also known that GD methods
exhibit slow convergence speed under certain circumstances, e.g. when the directions of two
subsequent steps are almost opposing each other in badly conditioned problems [76]. This
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Algorithm 3.1 Gradient Descent on the Grassmannian

input U0

Initialize U := U0

repeat

Evaluate gradient of the cost function ∇f (U)

Compute Riemannian gradient G via Eq. (3.18)

Set search direction H = −G

Compute reduced SVD of H for geodesics

Determine step size t with Alg. 3.2

Update U ← U(t) via Eq. (3.12)

until converged

output Û

can be overcome by considering the Conjugate Gradient (CG) method [43] instead, which
will be employed to solve the majority of problems within this work.
The general idea of CG methods is to improve the effectiveness of the individual op-

timization steps by choosing in each iteration a search direction that is conjugate to the
previous search directions. In the original derivation of CG as a method for minimizing
linear quadratic forms of the kind x>Ax, the term conjugacy means A-orthogonality with
respect to the symmetric and positive-definite matrix A. The search direction is then ob-
tained by computing the momentary negative gradient and subtracting all parts that are
not conjugate (i.e. A-orthogonal) to the previous search directions. For a general and not
necessarily convex cost function, conjugacy is commonly understood with respect to the
second derivative. Since the explicit computation of the second derivative is costly, vari-
ous gradient-based update rules have been proposed instead and have been adapted to the
manifold setting. In this work the direction for the CG algorithm on the Grassmannian is
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obtained via the update rule

H(i+1) = −G(i+1) + β(i)τ(H(i)) (3.19)

with

β(i) = 〈G(i+1), (G(i+1) − τ(G(i)))〉
〈τ(H(i)), (G(i+1) − τ(G(i)))〉

, (3.20)

where τ(·) is an abbreviated notation of the transport τ[U (i)]
(
· , t(i),H(i)

)
.

Many different options exist for updating β in (3.19). The particular choice (3.20) is
an adaptation of the original Hestenes-Stiefel formula [43], and it is used throughout the
work due to its favorable convergence behavior. Figure 3.1 serves as an illustration of the
problem’s geometry and its relevant elements, especially the the progression of projecting
the gradient of the cost function onto the current tangent space and transporting it along
the geodesics into the tangent space of the subsequent subspace estimate.

Step size selection

The remaining question is how the best step size t can be determined in practice. Finding
the optimum step size in an unconstrained optimization method is a whole field of research
on its own and countless sophisticated methods have been proposed to solve it, cf. [67].
For the CG methods in this work the step size is determined with the backtracking line
search algorithm listed in Algorithm 3.2. Starting with an initial value tstart, the step size t

Algorithm 3.2 Backtracking line search on the Grassmannian

Choose tstart > 0, c, ρ ∈ (0, 1) and set t← tstart

repeat

t← ρt

until fU
(
γ[U ](t,H)

)
≤ fU (U) + c t tr

(
G>H

)
(Armijo-Goldstein condition)

Choose step-size t(i) := t

35



Chapter 3. Optimization on the Grassmannian

Grk,m

[
U (i)

]

[
U (i+1)

]
γ[U (i)](t,H

(i))

T[U (i)]

T[U (i+1)]

∇fU
(
U (i)

)
G(i)

H(i)

τ[U (i)]
(
G(i), t(i),H(i)

)

Figure 3.1.: Illustration of the Conjugate Gradient Descent method on the Grassmannian
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is reduced in each iteration by multiplying t with a factor ρ with 0 < ρ < 1. A preliminary
step of length t is undertaken by walking along the geodesics (3.12) in order to compute the
cost function at γ[U ](t,H). The Armijo-Goldstein condition is evaluated to check whether
the step size t leads to a sufficient decrease in the cost function or whether the investigated
step size is too large. Its evaluation requires the inner product between the Riemannian
gradient G and the search directionH defined in the tangent space at [U ] and a parameter
0 < c < 1. Unless the step size passes the Armijo test, the step size is further reduced.
An overview of the Conjugate Gradient Descent on the Grassmannian is listed in Algo-

rithm 3.3. The CG consists of several repetitions, each time employing the Backtracking Line

Algorithm 3.3 Conjugate Gradient Descent on the Grassmannian

input U0

Initialize U := U0

repeat

Evaluate gradient of the cost function ∇fU (U)

Compute Riemannian gradient G via Eq. (3.18)

Compute β via Eq. (3.20) and update search direction H via Eq. (3.19)

Compute reduced SVD of H for geodesics and transport

Determine step size t with Alg. 3.2

Update U ← γ[U ](t,H) via Eq. (3.12)

Compute transported directions τ(G) and τ(H)

until converged

output Û

Search (Algorithm 3.2) to find the optimum step size. After each iteration, the search direc-
tion is updated using the Hestenes-Stiefel update rule (3.19). As pointed out by Shewchuk
[76], the convergence can be sped up with periodic restarts, i.e. through resetting the search
direction after a certain number of iterations. Formally, β(i) = 0 whenever i mod j = 0
for some j ∈ N∗, so that H(i) = −G(i) for these iterations. The CG method is considered
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converged when the step size returned by the line search falls below a certain threshold
tmin, but it may also be reasonable to terminate the algorithm prematurely after a certain
number of iterations have been undertaken.

Optimization of Y with Euclidean CG

The minimization of fY (3.15) in Euclidean space is a much simpler problem than the
minimization of fU on the Grassmannian, and the procedure follows straightforwardly from
Algorithm 3.3. Starting at an iterate Y with cost fY (Y ) and taking a step of length
t in the search direction H (obtained from the Euclidean gradient G and the previous
search direction), the resulting cost for the new iterate is fY (Y + tH). In the line search
procedure, the step size is slowly shrunk by setting t← ρt until a new iterate is found that
reduces the cost function significantly by means of fulfilling the Armijo-Goldstein condition

fY (Y + tH) ≤ fY (Y ) + c t tr
(
G>H

)
(3.21)

with c > 0.

3.4. Conjugate Gradient Descent with subsampled line
search

The main computational effort of first-order line search methods besides the computation
of the gradient lies in the repetitive evaluation of the cost function in order to determine
an appropriate step size. As Nocedal and Wright [67] describe, a trade-off has to be found
between maximizing the reduction of the cost function per step on the one hand and min-
imizing the effort of determining a favorable step size that allows such a reduction on the
other hand. If the focus is on fast processing time, a fixed step size should be selected.
However, this comes at the risk of slowing down the convergence by selecting unnecessarily
small or overly large steps and thereby achieving suboptimal progress in minimizing the
cost function. On the contrary, high control over reducing the cost function is achieved
with a backtracking line-search that guarantees sufficient decrease, e.g. according to the
Armijo-Goldstein condition. An even more elaborate measure would be to check for the
Wolfe conditions that also involve the magnitude of the gradient [67]. In practice, the com-
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putational effort of the backtracking line search is strongly depending on the selection of
the initial step size and the contraction parameter ρ. While some rules for selecting these
parameters exist (see e.g. [67]), the values are often tweaked and selected empirically. The
smaller a value is chosen for ρ, the faster one step of the line search is performed as fewer
step sizes need to be evaluated before eventually reaching a good estimate. But with in-
creasing granularity of the search it may happen that the closest feasible step size misses
the optimum step size, so that the actually achieved improvement is suboptimal. As a
trade-off between speed and accuracy, ρ can be varied throughout the optimization [67].
For example, it may be chosen quite small in the beginning of the alternating minimization
and may be increased towards termination, which allows to make quick but coarse progress
in the beginning and an optimum solution can still be reached in the end. Regarding the
initialization of the step size, since the step sizes of subsequent CG iterations are often in
the same range, it is reasonable to initialize the line search only slightly larger than the
previous step size, instead of initializing with the largest possible step size in every step.
Yet, after some steps a full search over the whole admissible range should be performed
again.

Separable cost function and subsampling

The loss function (3.1) has been assumed to be separable, i.e. for an m × n-dimensional
input X the value of the function is computed by summing over the contribution in every
single entry. In order to make the function invariant to the dimensions of the problem, the
separable cost function will be considered as

f(X) = 1
mn

m∑
i

n∑
j

g(Xij), (3.22)

where g(x) is a scalar function evaluating the residual error at one particular coordinate.
As a result, the objective of the optimization problem is to minimize the reduction of the
residual error averaged over all coordinates. This opens up the question whether it may be
possible to estimate the reduction in the cost function from a subset of coordinates, as this
could considerably reduce the computational effort of evaluating the cost function during
the line search. For this purpose, the individual contributions g(Xij) will be regarded in the
following as mn independent and identically distributed (i.i.d.) random variables following
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the unknown distribution of the residual error of the approximation. In this case, the above
stated averaged sum over the individual observations is an estimate of its expected value,
and the goal is to find a low-rank approximation that leads to a residual error distribution
with minimal expected value. How well the expected value can be approximated from a
subset of coordinates depends on the size of this subset and on the distribution of the
residual error.

Sparsifying cost function as a Bernoulli parameter estimator

As discussed in Chapter 1, the ideal sparsity measure is the `0 norm, which takes on the
value 0 only if its argument is zero and 1 otherwise. Averaging over the dimensions of the
problem, one obtains the cost function

f0 : Rm×n → R, X 7→ f0 (X) = 1
mn
‖X‖0 (3.23)

which measures the density of the input. Minimizing this function should lead to a solution
with a maximum possible number of entries that are zero. Taking on a stochastic point of
view, the entry-wise contributions (0 if Xij = 0 and 1 otherwise) shall be regarded as the
outcome ofmn independent Bernoulli experiments with a common but unknown probability
p of an entry being 1. As a consequence, the loss function (3.23) estimates the expected
value of a Binomial distribution B(nm, p) divided by the number of experiments, which
again is the Bernoulli parameter p. Assuming now a set of coordinates Ψ with |Ψ | < mn,
evaluating the cost function (3.23) only on this subset leads to a subsampled estimation of
the Bernoulli parameter, which shall be denoted by pΨ .
The first question now is how big a subsampling set Ψ needs to be so that pΨ is close

to p with high probability. Or, vice versa, considering a fixed set Ψ of cardinality |Ψ | on
which the Bernoulli parameter pΨ is estimated, how close is pΨ to the actual parameter p.
This is equivalent to the question how well the function value f0 (X) can be approximated
by subsampling the function as f0 (PΨ (X)). For |Ψ | sufficiently large, pΨ is a Gaussian-
distributed random variable with mean p and variance p(1−p)

|Ψ | . On the one hand, this means
that the estimator is unbiased, i.e. the estimation is exact on average. On the other hand,
if p was known a priori, one could compute the number of samples required to guarantee
that pΨ lies within a certain error margin (p− ε, p + ε) with a confidence of (1− α) where
0 < α < 1. However, as p is not known a priori, it must be replaced by an estimate p∗ in
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the computation of the cardinality

|Ψ | ≥
(
zα/2
ε

)2
p∗(1− p∗), (3.24)

with zα/2 being obtained from the cumulative distribution function of the standard dis-
tribution and depending on α (e.g. zα/2 ≈ 1.96 for α = 0.05, i.e. 95% confidence that
p − ε < pΨ < p + ε). Quite intuitively, the required sample size grows with the desired
confidence and resolution of the estimation, and whenever p cannot be estimated an up-
per bound is computed by selecting p∗ = 0.5. It is important to notice that the required
cardinality of Ψ is independent of the dimensions of the problem, i.e. the success does not
depend on the sampling rate but on the absolute amount of samples.

Letting p(i) and p(i+1) denote the parameters of the Bernoulli distribution corresponding
to the distribution of zeros and nonzeros in two matricesX(i) andX(i+1), the actual progress
in minimizing the cost function from iteration i to i+ 1 is

δ := f0
(
X(i)

)
− f0

(
X(i+1)

)
= p(i) − p(i+1). (3.25)

The estimated progress on the other hand, predicted from observation on the subset Ψ only,
is computed as

δΨ := f0
(
PΨ

(
X(i)

))
− f0

(
PΨ

(
X(i+1)

))
= p

(i)
Ψ − p

(i+1)
Ψ , (3.26)

which is equivalent to the difference between the estimated parameters of the respective
Bernoulli distributions.
Choosing the new iterate X(i+1) based on its sparsity on Ψ saves a lot of computational

effort compared to computing the full sparsity pattern, but comes at the cost of reduced
control on the actual overall progress. The chances that the new iterate is actually sparser
than the previous one (i.e. P (δ > 0)) depend on |Ψ | and δΨ . If the error margin for the
estimation of p(i)

Ψ and p(i+1)
Ψ is restricted to ε < δΨ/2 and both parameters lie within this

margin with a confidence of (1 − α), then P (δ > 0 | δΨ > 2ε) = (1 − α)2. This means
that if the cost function is significantly reduced on a sufficiently large subset of coordinates,
the probability of erroneously increasing the cost function over all coordinates becomes
very small. As a result, the separability of the sparsifying function allows to estimate the
overall sparsity on a coordinate subset instead of evaluating all coordinates. This leads to a
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constant complexity for evaluating the cost function during the line search, which lets the
overall approach scale well to large dimensions.

Practical applicability

Obviously, the result is based on several assumptions that may be violated in a real-world
application. It has been discussed that the ideal `0 norm does not allows for a feasible
minimization approach, which is why it is replaced in practice with a surrogate loss function.
As a consequence, the cost function will be a suboptimal estimator of the sparsity. Also, the
residual error of the individual coordinate entries may be statistically dependent and may
be differently distributed depending on the nature of the data. Also, if additional Gaussian
noise is present the residual error will not follow a Bernoulli distribution. Despite all these
issues it has been observed empirically that for the optimization of fU and fY evaluating
the cost function only on a subset Ψ is sufficient to find a reasonably good step size. This is
likely due to the Armijo rule acting as a safeguard to prevent insufficiently small progress
δΨ on Ψ , which would raise the probability of an increase in the cost function evaluated
on all observable coordinates. Most importantly, experimental results support the finding
that the success of the method is only depending on the absolute cardinality of Ψ and not
on the sampling rate, i.e. for sufficiently large dimensions it is independent of the overall
dimension of the data.
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Grassmannian Robust PCA

It is well known that common PCA is susceptible to outliers in the data, as the residual error
‖X −L‖2F between the data and the low-rank approximation is measured in the `2 sense.
Due to the squared loss function, large entries in the residual are suppressed while small
errors are tolerated, thus spreading the residual error across all coordinates. This is the
optimal strategy for a low-rank plus Gaussian noise data model X = L+N as all entries
are evenly likely to be affected by noise and the noise energy is spread. But for the low-
rank-and-sparse data model X = L+S, the ideal loss function would be ‖X −L‖0, as the
`0 norm enforces as many entries as possible in the residual to become exactly zero, while
ignoring the magnitude of the non-zero entries. As discussed in Section 2.2, the `0 norm is
commonly replaced by the `1 norm, as it is the closest convex `0 surrogate, with convexity
being a crucial prerequisite for convergence analysis and recovery guarantees [19]. But by
no means this implies that non-convex low-rank approximation methods are infeasible, with
the convergence analysis by Jain et al. [49] being a prominent counterexample that shows
that the (non-convex) factorization method is a viable approach for matrix completion.
As a matter of fact, all optimization methods on the Grassmannian are inherently non-
convex problems as the Grassmannian is a non-convex set. The observation that non-convex
penalties like the `p norm with 0 < p < 1 recover sparser solutions than the convex `1 norm
([56, 35]) has been the main incentive to investigate the use of non-convex `0-surrogate loss
functions for Robust PCA on the Grassmannian [38].
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Figure 4.1.: Visualization of the normalized `p norm for scalar input for different values of the parameter p

4.1. Smoothed `p-norm loss function

The general `p norm (cf. Section A.1.2) with p ≥ 1 is defined as an entry-wise norm for
vector or matrix-valued input. In the following, an element-wise sparsifying cost function
will be derived, which is based on the extension of the `p norm to 0 < p < 1. To ease the
notation, the function will be derived for the scalar case and will later be extended again
to vectors and matrices.
In search of an ideal sparsity measure, Fan and Li [33] postulate that its derivative should

be infinite at zero (or next to zero in case that the measure is not differentiable at zero)
and should vanish for great input values. While the `2 norm exhibits quite an opposite
behavior, the `1 norm comes closer to this ideal definition, which explains its sparsifying
behavior. Yet, lowering the value of p below 1 lets the `p norm fulfill these conditions even
better as can be seen from Figure 4.1. In contrast to the `2 norm, which is steep on the
outer end and shallow around zero, the `1 norm has constant slope everywhere. For p < 1,
the slope of the `p norm is shallow for large values and steep around zero. In the same
way as the `1 norm, the `p norm is not differentiable at zero, which hinders its use as a
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loss function for a gradient-descent based optimization problem. To leverage this issue, a
smoothing parameter µ can be introduced so that a smoothed version of the `p norm

gp,µ(x) =
(
x2 + µ

) p
2 , 0 < p < 1, µ > 0, (4.1)

is obtained, which is differentiable everywhere while approaching the actual `p norm in the
limit µ→ 0. Its derivative is

g′p,µ(x) := d

dx
gp,µ(x) = p x

(
x2 + µ

)( p2−1)
. (4.2)

In order to put the smoothed `p norm in perspective to the `1 and `2 norms for varying
µ, the offset resulting from introducing µ must be subtracted. As the input is commonly
normalized to a magnitude range of [0, 1] the function must be scaled so that it meets the
`1 and the `2 norm at 1. The normalized smoothed `p norm

ḡp,µ(x) := gp,µ(x)− gp,µ(0)
gp,µ(1)− gp,µ(0) , (4.3)

fulfills ḡp,µ(0) = 0 as well as ḡp,µ(1) = 1 and its derivative is straightforwardly computed as

ḡ′p,µ(x) := 1
gp,µ(1)− gp,µ(0) g

′
p,µ(x) . (4.4)

Figure 4.2 compares the normalized smoothed `p norm for p = 0.1 and various values for the
parameters µ to the `2 and `1 norm. The dominance of the smoothing parameter around
zero creates a convex region, whose width depends on the particular value of µ. Beyond the
point of inflection the function is concave and the function becomes more and more shallow
on the outer end. A quick computation reveals that the points of inflection are at

d2

dx2 ḡp,µ(x) = 0 ⇔ x = ±
√

µ

1− p. (4.5)

For the special case p = 1, the smoothed `p norm is closely related to the Huber loss function
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Figure 4.2.: Comparison between `2 norm, `1 norm and normalized smoothed `p-norm loss function with
p = 0.1 and varying parameter µ

[45], which is defined piece-wise as

Lτ (x) =


1
2x

2 |x| ≤ τ,

τ
(
|x| − 1

2τ
)

otherwise
(4.6)

i.e. it is quadratic around zero and has constant slope for input values beyond a certain
threshold τ .

Beyond making the loss function differentiable everywhere, the smoothing parameter
serves a second purpose with regard to additive Gaussian noise. Consider a data model
X̃ = L+ S +N with L and S as before and N being a dense noise matrix whose entries
are i.i.d according to N (0, σ2

N ), the normal distribution with zero mean and variance σ2
N . It

becomes obvious that the strict low-rank-and-sparse decomposition cannot model additive
Gaussian noise well. While a low-rank estimate L̂ can only contain a portion of the noise
that lies in the signal subspace, a matrix S = X−L̂ resulting from enforcing sparsity on the
residual cannot embody dense noise either, as it would not be sparse anymore. However,
if the loss function is convex in a small area around zero and has a shallow slope for large
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arguments, the residual Ŝ can contain some entries of large magnitude and many entries
that are almost zero, which exactly corresponds to S + N . In this scenario sparsity is
measured by counting the number of entries that are smaller than a given threshold τ ,
which should be chosen according to the estimated noise level. Assuming Gaussian noise
as before, then almost all noise is inside (−3σN , 3σN ). Thus, the smoothing parameter µ
should be chosen such that the point of inflection (4.5) for the smoothed `p norm is at
τ = 3σN . For 0 < p < 1, this is achieved with

µopt = (1− p)τ2 = 9(1− p)σ2
N . (4.7)

Empirical results show that it is beneficial to initialize µ with a larger value (such as
µstart = 0.1) as the `2-behavior of the cost function can speed up the convergence of the
algorithm in the beginning. As long as sufficient progress is made in reducing the cost
function the parameter µ is held constant. And whenever the algorithm is slowly converging
to a local optimum (i.e. the progress in reducing the cost function falls below a certain
threshold) the parameter is shrunk by updating µ ← cµµ for a fixed 0 < cµ < 1. The
process of shrinking µ is repeated until µ reaches a pre-defined minimum value µend, so that
the desired trade-off between noise tolerance and sparsity is achieved.
Apart from the `p norm, many other non-convex `0 surrogates could be thought of,

discussed among others by Gasso et al. [35]. Experimental results in [38] indicate that their
performance as sparsifying functions for Robust PCA is not substantially different from
the discussed smoothed `p norm (4.3) [38], which is why all experiments in this work are
conducted with this particular choice.

4.2. Algorithmic description

In Chapter 3 the Low-Rank Approximation problem has been discussed in a generic way in
order to simplify the deduction of the CG method on the Grassmannian. It is now time to
extend the problem to the case of incomplete observations, to concretize the cost function for
the Robust PCA problem and to describe how to solve it with an alternating minimization
scheme.
As discussed for the `2 case in Section 2.1, low-rank approximation can be used to fill in

missing entries in a given data set. Assume that the data X ∈ Rm×n is observed only on
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an index set Ω, then PΩ (X) contains only the observed entries of X. Therefore, the loss
function f (X −UY ) and its gradient need to be restricted to the observed coordinates Ω,
leading to a Robust Matrix Completion problem with the cost function f (PΩ (X −UY )).
Apart from this restriction on the index set, the algorithms for Robust PCA and Robust Ma-
trix Completion are identical. Therefore, the term Robust PCA in this chapter encompasses
both cases.

4.2.1. Alternating minimization scheme

The proposed scalar smoothed `p-norm loss function (4.3) shall be employed as an entry-
wise sparsifying function for Robust PCA. The overall loss is thus obtained by evaluating
the entry-wise contributions and summing over all dimensions

hµ : Rm×n → R, X 7→ hµ (X) = 1
mn

m∑
i=1

n∑
j=1

ḡp,µ (Xij) . (4.8)

To improve the legibility, the cost function parameter p is omitted in the final cost function
(4.8). This also relates to the fact that the smoothing parameter µ is varied throughout
the optimization, while p is held constant. Letting Eij denote the matrix with entry 1 at
position (i, j) and zeros elsewhere, the gradient of the separable loss function can be written
as

∇hµ (X) = 1
mn

m∑
i=1

n∑
j=1

ḡ′p,µ (Xij)Eij . (4.9)

For the case of incomplete observations, whenever (i, j) /∈ Ω then the respective entry of
∇hµ (X) is zero. Using the smoothed `p-norm loss function as a sparsity measure, the
Robust PCA objective writes as

min
U∈Stk,m,Y ∈Rk×n

hµ (PΩ (X −UY )) . (4.10)

It will be solved by alternatingly minimizing the two separate loss functions

fU : Grk,m → R, U 7→ hµ (PΩ (X −UY0)) (4.11)
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with fixed coordinates Y0 and U being the representative of the equivalence class [U ], and

fY : Rk×n → R, Y 7→ hµ (PΩ (X −U0Y )) (4.12)

with a fixed basis U0. The respective Euclidean gradients are

∇fU (U) = ∇hµ (PΩ (X −UY0))Y >0 (4.13)

and

∇fY (Y ) = U>0 ∇hµ (PΩ (X −U0Y )) . (4.14)

Algorithm 4.1 lists the alternating minimization scheme for the proposed Grassmannian
Robust PCA (GRPCA) method. The initialization of U and Y depends on the size of the
data set. If it is feasible to compute the reduced SVD of an (m×n)-dimensional matrix X0

with PΩ (X0) = PΩ (X) then U0 can be selected as the first k left singular vectors of X0

and the coefficient matrix is naturally initialized as Y0 = U>0 X0 to complete the `2-low-rank
approximation. Alternatively, a random orthogonal m×k matrix can be chosen as U0, then
Y0 = 0. The range for the parameter µ is defined a priori, as well as the shrinkage rate cµ.
At the beginning of each iteration, a subset Ψ is randomly drawn from the observation set
Ω, on which the subsampled line search (cf. Section 3.4) will be performed. Firstly, the loss
function for U is minimized with a subsampled CG method on the Grassmannian. Then,
based on the updated subspace estimate the estimate of Y is refined with a subsampled CG
method in Euclidean space. After both factors have been updated the relative progress in
decreasing the cost function is measured as

δ(i+1) :=
hµ
(
PΩ

(
X −U (i)Y (i)

))
− hµ

(
PΩ

(
X −U (i+1)Y (i+1)

))
hµ
(
PΩ

(
X −U (i)Y (i))) (4.15)

with
(
U (i),Y (i)

)
and

(
U (i),Y (i+1)

)
denoting the pair of variables before and, respectively,

after the optimization. This time the cost function is evaluated not just on Ψ as in the
line search but over Ω. If the relative progress is insufficient, the smoothing parameter µ is
shrunk to overcome the risk of premature termination in a local optimum. Consequently, a
new iteration is performed unless µ is smaller than the minimum value µend or a maximum
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Algorithm 4.1 Alternating minimization scheme for GRPCA

Input: PΩ (X)

Initialize U = U0, Y = Y0

Choose 0 < cµ < 1, µstart and µend, initialize µ = µstart

while µ ≥ µend do

Randomly draw Ψ ⊆ Ω

U ← arg min
[U ]∈Grk,m

fU (U) (4.11)

Y ← arg min
Y ∈Rk×n

fY (Y ) (4.12)

if δ < δmin then

µ← cµµ

end if

end while

Outputs:

L̂ = UY

Ŝ = X − L̂
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number of iterations has been performed. In this case the algorithm terminates and the
low-rank approximation may be computed as well as the sparse residual, which (depending
on the application) might be thresholded in a post-processing step to separate between large
outliers and Gaussian noise.

4.2.2. Input normalization

As discussed in Section 4.1, the proposed loss function is convex in a small region around zero
and concave otherwise, with the point of inflection depending on the selection of parameters
p and µ. In contrast to the `1 norm, which has a constant slope everywhere, the sparsifying
behavior of the smoothed `p norm depends on the magnitude of the entries in the residual
X − L and thereby on the scale of the input data. Furthermore, linear subspaces always
pass through the origin (cf. Section A.1.1), so that only centered subspaces can be modeled.
Thus, if a non-centered subspace of dimension k should be found, the dimension needs to
be increased to k + 1 to account for the offset. Especially in the case of concentrated data
with a large offset the first basis vector of the low-rank approximation will represent the
offset itself. If one wishes to avoid this issue, the mean vector can be computed over all
samples a priori and the data can be centered by subtracting the mean from every column.
For the low-rank-and-sparse data model, however, centering the data is not that trivial. As
the data model explicitly assumes outliers in the input, it is likely that these outliers will
distort the mean estimation. An alternative way of centering the data in this scenario is to
compute the median in each direction/ feature and to subtract the resulting median vector
from every sample [64]. Subsequently, the data can be scaled to a range that meets the
parameterization of the cost function, which intuitively is the range [−1, 1]. Naively, the
scaling factor would be chosen so that the largest entry in the input data is scaled to a
magnitude of 1. But since outliers are assumed to be present, a more robust choice is to
scale the data according to the magnitude at a certain percentile. Assuming that the low-
rank-and-sparse data model is the sum of an approximately Gaussian-distributed low-rank
component and sparse outliers, the scaling should be chosen according to the statistical
properties of a Gaussian distribution N

(
0, σ2). Assuming that almost all data is contained

within 3σ, the targeted normalization is 3σ = 1. This means that a robust scaling to the
targeted range [−1, 1] can be achieved by scaling the data so that the 68th percentile of the
input magnitudes is scaled to a height of 0.33.
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After a linear subspace estimate has been fitted to the centered and scaled data the
resulting low-rank matrix is upscaled again and the median vector is added. As the explicit
computation of L can be computationally demanding, the scaling is applied only to the
coordinates Y . To reverse the centering process, the subspace basis U is augmented with
the median vector and the augmented basis is orthogonalized again.

4.2.3. Memory efficient processing for Big Data analysis

With growing dimension of the problem, the limiting factor for running Algorithm 4.1 is the
requirement for computing and storing them×n low-rank estimate L = UY . For |Ω| � mn

it is thus reasonable to store only the actually observed entries of X and the factors U
and Y instead of storing the full matrix L = UY with zeros at (i, j) /∈ Ω. Regarding
the computational expense, the theoretical complexity of computing Lij = u>i,:yj for all
(i, j) ∈ Ω is O(|Ω|r) and thus much smaller than O(mnr). In principle, this allows for a
significant speedup of a selective matrix product compared to the full matrix multiplication,
cf. [9]. Yet, it must be remarked that a conventional full matrix multiplication is a highly
optimized operation compared to a prototype implementation of a selective matrix product.
Therefore, in a practical implementation of Algorithm 4.1, the actual runtime of the selective
matrix multiplication for the specific use-case is compared against the standard matrix
product and a decision is made in favor of the faster version.

4.3. Evaluation on simulated data

Experiments on artificial test data are essential in order to measure the performance of
the algorithm, to compare it against competing methods and to evaluate the influence of
the algorithm’s parameters. The way how test data is generated and how the recovery
abilities of Robust PCA algorithms are evaluated varies across the literature, with the main
differences being the dimensions of the problem, the subspace dimensions, the sparsity, the
magnitude of the outliers as well as the presence or absence of additive Gaussian noise, and
lastly, the percentage of revealed entries for incompletely observed data (Robust Matrix
Completion). As a common baseline, all evaluations assume the low-rank-and-sparse data
model (1.6) and the general evaluation procedure is the following:
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1. Choose dimensions m,n and rank k

2. Generate rank-k matrix L

3. Generate sparse matrix S

4. Generate additive Gaussian noise matrix N (optional)

5. Compute test data X = L+ S +N

6. Draw random observation set Ω and reveal measurements PΩ (X) (optional)

7. Run Robust PCA algorithm and retrieve low-rank estimate L̂

8. Evaluate the reconstruction error e
(
L, L̂

)

Dimensions

Test data is often created as a square matrix, i.e. m = n with the dimensions for Robust
PCA varying from a few hundred rows and columns [75] to several thousands [19], thereby
slowly approaching the memory limitations of a desktop computer. For Robust Matrix
Completion the dimensions may be much higher as only a small percentage of entries needs
to be stored. However, processing Big Data requires some modifications in the algorithm,
see the remarks in Section 4.2.3. While large dimensions are interesting for measuring
the computational performance of an algorithm, the recovery ability of an algorithm is
commonly only depending on the relation k/m between rank and problem dimensions.

Low-rank component L

The low-rank rank component is commonly generated as the product of two matrices V ∈
Rm×k and W ∈ Rk×n, whose entries are i.i.d. Gaussian. Candès et al. [19] propose the
distribution N

(
0, 1

m

)
(or, respectively, N

(
0, 1

n

)
), resulting in a low-rank matrix with very

small entries. A more popular choice for the entries of V ,W is the standard distribution
N (0, 1) [85, 75]. In order to determine which scenarios can be recovered by Robust PCA
algorithms, the inner dimension of the product i.e. the relative rank k/m is commonly varied
over the course of multiple experiments.
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Sparse component S

The second decisive performance measure besides the relative rank is the outlier density ρS of
S, whose support is generally drawn at random except for special cases in which e.g. some
columns are considered to be more corrupted than others [24]. The distribution of the
nonzero entries of S varies across the literature. Candès et al. [19] choose a (−1, 1) Bernoulli
distribution due to its mild behavior while proving recovery bounds. However, it this is not
a very realistic scenario as the outliers surpass the entries of L by several magnitudes, cf. the
discussion in [75, 38]. This would allow for a naive reconstruction approach that detects
outliers from their magnitude and simply removes them in a pre-processing step. Zhou
and Tao [85] and Waters et al. [80] choose a standard distribution, whereas Shen et al. [75]
additionally scale the entries of S so that they are in the same magnitude range as the
entries in L. The maximum density at which successful recovery is possible is a common
performance measure in the literature.

Additive Gaussian noise N

While no additive Gaussian noise is considered in the original work of Candès et al. [19],
the authors state that it would certainly be interesting to evaluate its influence on the
recovery guarantees. The GoDec method [85] has explicitly been designed with additive
Gaussian noise in mind, and its performance is evaluated with N ∼ N (0, 0.001). Shen
et al. [75] choose a noise level relative to the norm of the low-rank component, so that
‖N‖2F / ‖L‖

2
F = 0.01.

Observation set Ω

In the classical Robust PCA problem all entries are revealed and the loss function is eval-
uated at all positions, i.e. |Ω| = mn. If |Ω| < mn on the other hand, the problem is a
Robust Matrix Completion problem in which missing entries of a low-rank matrix are to
be recovered in the presence of sparse outliers. The recovery guarantees derived by [19] are
based on the assumption of random sampling, thus the sampling positions (i, j) ∈ Ω are
always drawn randomly. As a general observation throughout the literature, the required
percentage of observed entries for successful subspace reconstruction grows with the relative
rank of the data and the outlier density. In [85], different bounds |Ω| are empirically mea-
sured for the GoDec method and the performance is compared to other matrix completion
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algorithms [53], but since S = 0 the results cannot be compared with the Robust Matrix
Completion setting where S 6= 0. He et al. [42] evaluate their Robust Subspace Tracking
algorithm GRASTA on a static setting with sampling rates from 0.1 to 1.0. Shen et al. [75]
investigate similar sampling rates with two distinct sparsity rates and measure the maxi-
mum possible rank for the respective scenarios. An even more detailed analysis is presented
for SparCS [80], where the recovery performance for various scenarios is measured while
gradually varying |Ω|/mn and |S|/|Ω|.

Reconstruction error

If the ground truth for the low-rank component is known, then the accuracy of a Robust
Low-Rank Approximation algorithm can be evaluated. An intuitive measure for the recon-
struction quality is the Root Mean Square Error

eRMSE
(
L, L̂

)
:=

∥∥∥L− L̂∥∥∥
F√

mn
, (4.16)

which measures the average entry-wise Euclidean distance between the two matrices rela-
tive to their dimensions. As the full computation of the low-rank matrix can be costly or
even impossible due to memory limitations, Boumal and Absil [8] propose an efficient way of
computing the RMSE from the factorized low-rank matrices. The distance can be computed
at the cost of a 2k-dimensional QR decomposition and does not require to carry out the ma-
trix multiplication, which allows to evaluate the performance of Low-Rank Approximation
methods in large-scale experiments.
Dividing the Frobenius distance by the Frobenius norm of the ground truth, the relative

error

erel
(
L, L̂

)
:=

∥∥∥L− L̂∥∥∥
F

‖L‖F
(4.17)

is obtained. The advantage over eRMSE (·) is the tolerance against variations in the scaling
of the entries of L. A third measure only involving the basis and not the coordinates is the
maximum subspace angle

esub
(
U , Û

)
:= arcsin

(
σmax

(
U − ÛÛ>U

))
(4.18)
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proposed by Björck and Golub [7]. As both matrices have orthogonal columns, the singular
values cannot exceed a value of 1, which corresponds to a maximum angle of 90 degrees.
Whenever the two bases coincide perfectly, on the other hand, all singular values and thus
also the subspace angle are zero.

4.3.1. Phase transitions in rank and sparsity

A common experiment for measuring and comparing the performance of Robust PCA algo-
rithms are phase transitions in rank and sparsity. The goal of the experiment is to determine
under which conditions an algorithm is able to recover a matrix of varying rank in the pres-
ence of outliers of varying density. In other words, it is determined how far the statistics of
a data set may diverge from the ideal low-rank-and-sparse data model before the recovery
performance of the inspected algorithm breaks down.
Fur this purpose, test data is generated according to the data model proposed by Shen

et al. [75], which is chosen due to the balanced magnitudes of the low-rank and the sparse
component. The dimensions are chosen as m = n = 200. Both the relative rank k/m

and the outlier density ρ are varied in the range [0.01, 0.6]. All entries are revealed and
no additive Gaussian noise is considered. Like in the original evaluation [75], a trial is
considered successful if the relative reconstruction error is in the range of 10−8. To achieve
this requirement, the parameter settings of the proposed GRPCAmethod in this experiment
are chosen in favor of reconstruction accuracy. The cost function parameters are p = 0.1 and
µend = 10−16, while µ is initialized with µstart = 0.1. Whenever the relative progress falls
below δmin = 0.01, µ is reduced by a factor of cµ = 0.5. The line search in the CG does not
use subsampling and the parameters are conservatively chosen as ρ = 0.9 and δmin = 10−6

with a maximum of 10 CG iterations. As the rank estimation problem is outside the scope
of this work, it is assumed that the true rank is known a priori. The algorithm is initialized
with a random orthogonal frame U0 and with Y0 = 0.

Figure 4.3 shows the phase transitions of the proposed method (4.3f) in comparison to
competing state of the art methods, whose MATLAB implementations have been obtained
from the respective authors’ web pages1. Unsurprisingly, the phase transitions for LMaFit

1http://lmafit.blogs.rice.edu (LMaFit & IALM )
https://sites.google.com/site/godecomposition/code (GoDec)
https://sites.google.com/site/hejunzz/grasta (GRASTA)
https://people.stanford.edu/lcambier/rmc (RMC )
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(a) Phase transitions for LMaFit [75]
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Figure 4.3.: Phase transitions in rank and sparsity for GRPCA in comparison to state-of-the-art Ro-
bust PCA algorithms. White: Relative Reconstruction Error below 10−8, Black: Relative Reconstruction
Error above 10−1
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(Figure 4.3a) and IALM (Figure 4.3b) are in line with the original comparison by Shen
et al. [75], because the exactly same data model is used for this evaluation. As mentioned
by the authors, the factorization approach of LMaFit leads to a wider range of scenarios
that can be reconstructed than the nuclear norm approach of the IALM method. In defense
of IALM, it needs to be stressed that the algorithm is practically parameter-free and, in
contrast to all other competitors in this evaluation, does not require an a priori estimate
of the rank. The GoDec method is known to be a fast and well-scaling algorithm due to
the use of random projections. However, in addition to the rank estimate the algorithm
requires an estimate of the outlier cardinality, which is why the actual cardinality is fed into
the algorithm. To further maximize the performance, the stopping criteria are tweaked for
higher accuracy, i.e. the maximum number of iterations is doubled and the error_bound

parameter is lowered from 10−3 to 10−8. Despite these efforts, the algorithm fails to reach
the required relative error, especially when the outlier density is large. Figure 4.3d illustrates
the phase transitions for GRASTA, which covers about the same range of scenarios as IALM
with a slightly reduced maximum accuracy. It needs to be mentioned that the algorithm is
actually designed for subspace tracking, which renders a comparison against explicit batch
processing methods a bit unfair. An algorithm that is very similar to the proposed method
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Method (Parameter settings) Processing time (seconds)
LMaFit 0.05
IALM 0.27
GoDec (default) 0.27
GoDec (high accuracy) 0.40
RMC (default) 1.46
GRPCA (default) 1.91
GRASTA 2.30
RMC (high accuracy) 3.78
GRPCA (high accuracy) 6.69

Table 4.1.: Run time comparison for state-of-the-art Robust PCA algorithms. Noise-free test data generated
according the model of Shen et al. [75] with dimensionsm = n = 200, rank k = 20 and outlier density ρ = 0.1

is the Robust Matrix Completion (RMC ) method by Cambier and Absil [18]. The cost
function is a smoothed variant of the `1 norm, whose smoothing parameter is shrunk in
the course of the optimization. While the authors propose a shrinkage rate of 0.05 and a
maximum number of seven iterations until termination, the parameters have been adjusted
in order to increase the accuracy and to make it even more comparable to GRPCA. Precisely,
the shrinkage rate is set to 0.5 as well and the algorithm is run until complete convergence,
i.e. until the improvement in minimizing the cost function is less than 10−16. RMC covers a
greater range of scenarios than other competing methods, which indicates that an approach
with a smoothed cost function and a shrinkage scheme for the smoothing parameter leads
to increased performance compared to other approaches that employ an `1 norm without
smoothing. Yet, comparing the results to the phase transitions for GRPCA (Figure 4.3f) it
becomes obvious that the borders of Robust Subspace recovery can be pushed even further
with the proposed smoothed `p-norm loss function with p = 0.1 as a sparsity measure.
Yet, this precision comes at the cost of increased computational effort, as a comparison
of the particular runtimes of the methods in Table 4.1 reveals for the scenario with both
the relative rank and the outlier density set to k/m = ρ = 0.1. The fastest method is
LMaFit with a mere 0.05 seconds of processing time. The next fastest methods are IALM
(0.27 seconds) GoDec, which takes 0.4 seconds (0.27 seconds with the authors’ parameters).
The algorithms that use manifold optimization require some more time: the non-optimized
MATLAB prototype implementation of GRASTA requires 2.3 seconds and RMC with the
parameter set tweaked towards increased reconstruction accuracy has a computation time
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of 3.78 seconds (1.46 seconds with the original parameter set). Finally, GRPCA finishes
last with 6.69 seconds of processing time. To conclude, the proposed method surpasses the
competing manifold optimization methods regarding the reconstruction accuracy and covers
the widest range of scenarios of all compared methods. For practical use, however, it may
be reasonable to sacrifice some of the accuracy in favor of a faster processing time.

4.3.2. Runtime and optimum choice of the shrinkage parameter µ

The runtime of GRPCA depends on the range of the cost function parameter µ and its
shrinkage rate. The following experiment sheds some more light on the influence of µ on
the minimization process and justifies the heuristic (4.7) proposed in Section 4.1 of selecting
the final value µend according to the estimated noise level. A low-rank-and-sparse data set
is created as before, with k = 20 and ρ = 0.1. This time, however, a Gaussian noise matrix
N is added whose entries are i.i.d. according to N

(
0, σ2) with a standard deviation of

σ = 0.05. During the normalization procedure (cf. Section 4.2.2) the data and with it the
noise is scaled down by a factor α, so that the standard deviation of the noise after scaling
is σ̃ := σ/α. As discussed in Section 4.1, the optimum value for µ is therefore computed as
µopt = 9 (1− p) σ̃2. For m = n = 200 and k = 20, the scaling α ≈ 14 is obtained. With
the choice p = 0.1, the optimum terminal value of the smoothing parameter turns out as
µopt = 9 (1− 0.1)

(
0.05
14

)2
≈ 10−4.

In order to determine whether this is actually the optimum choice for the smoothing
parameter, the algorithm is run several times with varying values for µend, while the progress
in minimizing the relative reconstruction error over the number of iterations is observed.
Figure 4.4 illustrates the progress. While the initial value µstart = 0.1 allows for a quick
and rough approximation, the value of µ is halved whenever the relative progress falls below
δmin = 10−4. As long as µ > µopt, the shrinkage causes the algorithm to reduce the relative
reconstruction error further. However, once the optimum value for µ has been reached, a
further decrease is not beneficial. Even worse, it can possibly even lead to a suboptimal
approximation result.

4.3.3. Evaluation of cost function parameter p

One major objective of this experimental section is to evaluate the effectiveness of employing
an `p-norm loss function with 0 < p < 1 on the Robust PCA problem. Therefore, the above
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Figure 4.4.: Progress in minimizing the Relative Reconstruction Error over the number of iterations for
varying minimum values µend of the smoothing parameter µ

conducted experiment is reproduced with different settings for the cost function parameter
p, ranging from 0.1 to a maximum value of 1.0. This time, the focus is on efficient processing
at a reasonably good accuracy, which means that a trial is considered successful when the
relative reconstruction error is below 10−4. The following parameters have been chosen
to achieve a good trade-off between reconstruction accuracy and computational efficiency:
During the step size estimation, the cost function is subsampled with |Ψ | = 104. Whenever
the relative progress in reducing the cost function is less than 0.01, µ is reduced by a factor
of 0.2, down to a minimum value of 10−8. The shrinkage parameter ρ for the respective
CG methods is initialized with 0.1 and subsequently raised to a final value of 0.9, so that
the initial progress is quick but coarse and high precision is reached at termination. Also,
the CG is terminated either after 10 iterations or if the relative progress is less than 10−4.
Figure 4.5 depicts the respective phase transitions for various values of p. Clearly, the lower
p is chosen, the smaller the reconstruction error in challenging scenarios, which shows the
effectiveness of the proposed cost function. For p = 1.0, the smoothed `p-norm loss function
resembles the cost function of the RMC algorithm [18]. As a consequence, also the phase
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(d) p = 1.0

Figure 4.5.: Phase transitions in rank and sparsity for the proposed GRPCA method for varying cost
function parameters p. White: Relative Reconstruction Error below 10−4, Black: Relative Reconstruction
Error above 10−1
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transitions (Figures 4.3e and 4.5d, respectively) are very similar, considering the different
reconstruction threshold.
While the changed parameter setting slightly reduces the reconstruction accuracy, it al-

lows for much faster computation. For the above mentioned scenario (k/m = ρ = 0.1),
GRPCA now requires 1.91 seconds at p = 0.1 and 1.70 seconds at p = 1.0. As can be seen
from Table 4.1, this lands the proposed method in the range of the competing methods
GRASTA and RMC with regard to computational complexity, while allowing for successful
reconstruction in a broader range of scenarios.
The benefit of the proposed cost function becomes even more obvious when outliers of

excessively large magnitudes are considered. Candès et al. [19] consider such data in their
evaluation of the IALM method, whose phase transitions have been reproduced and are
displayed in Figure 4.6c. Shen et al. [75] report that LMaFit fails to separate the low-rank
and the sparse component in such scenarios, and similar behavior has also been observed
for the RMC method [18]. As before, this relates directly to the behavior of the proposed
method for p = 1.0, whose poor reconstruction performance is illustrated in Figure 4.6b.
But in the case where p = 0.1, a much wider range of scenarios can be recovered again, and
the proposed method surpasses the coverage of the IALM method.

4.3.4. Robust Matrix Completion

In order to evaluate the reconstruction performance from incompletely observed data, the
previously conducted experiment is repeated, this time revealing only a certain percentage
of entries. Figure 4.7 shows the phase transitions for the reconstruction from 80% down to
20% of the entries. In general, the range of scenarios decays with the observability of the
data. Furthermore, the reduced number of observed data points limits the dimensionality of
the subspace more than the robustness against outliers. For scenarios where the rank is less
than 10% of the dimension (k < 0.1m), the reconstruction is still successful in the presence of
up to 40% outlier density, even if only 20% of the data is revealed. Comparing the proposed
GRPCAmethod with the RMC algorithm, however, it seems that the advantage of using the
smoothed `p-norm cost function seems to vanish with lower sampling rates. While the range
of recovered scenarios is wider for 80% revealed entries (Figure 4.7a versus Figure 4.8a), the
coverage of both methods is very similar at 20% (Figure 4.7a versus Figure 4.8b).
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Figure 4.6.: Phase transitions in rank and sparsity for the proposed GRPCA method for varying cost
function parameters p on a data set with outliers of large magnitude. White: Relative Reconstruction Error
below 10−3, Black: Relative Reconstruction Error above 10−1
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Figure 4.7.: Phase transitions in rank and sparsity for the proposed GRPCA method for varying fractions
of observed entries. White: Relative Reconstruction Error below 10−4, Black: Relative Reconstruction Error
above 10−1
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Figure 4.8.: Phase transitions in rank and sparsity for RMC for varying fraction of observed entries. White:
Relative Reconstruction Error below 10−4, Black: Relative Reconstruction Error above 10−1

4.3.5. Computational complexity and memory requirements

Robust PCA methods that minimize the nuclear norm (such as e.g. IALM ) are mostly
based on the Singular Value Decomposition. Assuming without loss of generality that
the input X is a squared m ×m matrix, the computation of an SVD has the complexity
of O(m3). Although some approaches manage to reduce the complexity by computing
partial SVDs to O(m2k) [41], a way towards efficient algorithms should circumvent SVDs
of large matrices altogether [75]. The main cost of a first-order optimization method like
the proposed alternating CG method lies in the evaluation of the cost function and the
computation of the gradient, which both require the computation of the matrix product
UY with complexity O(m2r). Notice that the computation of the Grassmannian geodesics
(Equation (3.12)) requires an SVD of the search direction, but since the dimensions of the
direction are m × k, the order is O(k2m), which for k � m and large m is much smaller
than O(m2k).
Considering that the step size is determined with a backtracking line search method (Al-

gorithm 3.2), the optimization involves many evaluations of the cost function. As motivated
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Figure 4.9.: Run time comparison for GRPCA with full cost function evaluation and subsampled conjugate
gradient with |Ψ | = 104, respectively, for squared input of varying dimension m

in Section 3.4, restricting the computation to a subpartition of the coordinates is an effec-
tive way to make the line-search more efficient. Figure 4.9 shows the computation times
for GRPCA for quadratic input with dimensions ranging from m = 100 up to m = 104.
In the default setting, the cost function is evaluated on all coordinates, while the subsam-
pling approach approximates the cost function on a subpartition of the coordinates with
|Ψ | = 104. For small data sets, the subsampling advantage is small or non-existent, but
for larger data sets the computation time is reduced significantly, as the smoothed `p-norm
cost function needs to be evaluated only on a small fraction of the coordinates during the
line search. Yet, it also becomes obvious that for large data sets not the evaluation of the
cost function drives the complexity, but the computation of the matrix product UY , which
is required to compute the actual decrease in the cost function and the gradient for the
next iteration. Thus, as mentioned in Section 4.2.3, it can be cheaper to employ a selective
matrix-matrix product (smmprod) routine to compute PΨ (UY ) for the line search and to
compute PΩ (UY ) without actually carrying out the full product, whenever the data is
incomplete observed with |Ω| � m2. Figure 4.10 showcases the efficiency of this approach
for large matrix dimensions, |Ψ | = 104 and |Ω| = 0.1m2. To test the accuracy of the ap-
proximation, the RMSE is computed according to Equation (4.16). In all experiments an
RMSE in the range of [10−5, 10−4] has been observed, regardless of the problem dimension
and with no observable difference between subsampling or fully computing the cost function
during the line search. Empirically, it has been found that a subsampling set with |Ψ | = 104

is sufficiently large to approximate the sparsity of cost function to the required precision in
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Figure 4.10.: Run time comparison for GRPCA with full cost function evaluation, subsampled conjugate
gradient with |Ψ | = 104 and additional selective matrix-matrix product, respectively, for squared input of
varying dimension m, sampled at a rate of |Ω|

m2 = 0.1

all conducted experiments. The algorithm benefits significantly from an efficient implemen-
tation of the cost function, the gradient and the selective matrix-matrix product in custom
extensions written in C. The computational complexity scales approximately linear with
the cardinality of the sampling set Ω, which has also been observed in the related approach
by Cambier and Absil [18]. Regarding memory requirements, the factorization approach is
known to be much more efficient than nuclear norm based approaches, as only the factors
U and Y need to be kept in memory. Subsampling the data set allows to even tackle prob-
lems with the full L surpassing the available memory in size, as only the actually observed
coordinates need to be stored and processed. All this lets the presented approach scale well
to large data sets and makes it an effective approach for processing Big Data.

4.4. Application on Video Segmentation

In order to illustrate the performance of the proposed GRPCA method on real world data,
an experiment on Video Segmentation is conducted. The segmentation problem aims at di-
viding a video recording of a scene into background and foreground objects. Unfortunately,
there is no universally accepted definition of what a foreground object in a video is, mostly
because human vision is depending on a lot of contextual information. An intuitive defi-
nition, however, is to characterize the background as persistent elements of a scene, whose
information content does not increase over the course of a prolonged observation, whereas
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the foreground elements are the parts of a scene that continuously bring in new information
to the scene and thus raise the focus of attention of a human observer. While this distinction
can very easily made by humans, it is a highly challenging task for a machine. The reason
for this is that an imaging sensor of a camera is only sensitive to changes in the intensity
level of pixels on an image sensor, but not every intensity change makes a pixel belong to a
foreground object in the scene.
The simplest background model is to subsume all static parts of a video in a single back-

ground image. This image can then be subtracted from the subsequent video frames, which
is why this kind of video segmentation approach is often referred to as background subtrac-
tion. While this simple solution achieves surprisingly good results in static environments,
applying this method to scenes with more challenging backgrounds results in a lot of false
positives (i.e. background parts erroneously detected as foreground). Thus, a more elab-
orate background model needs to be found that is capable of modeling dynamics in the
background, such as illumination changes, repetitive motion in objects or jitter resulting
from a shaking camera. What unites these phenomena are the limited complexity of the
underlying dynamics and a certain temporal coherence and persistence. The foreground
objects on the other hand typically appear sparse in both space and time, i.e. they occupy
only a fraction of the scene and are present in this location only for a short period of time.
The key idea is thus to divide a video sequence into a low-dimensional component that
can deal with a dynamic background of limited complexity and into a sparse component
containing the foreground objects in the scene.

4.4.1. Principles of video segmentation using Robust PCA

As part of a system for human activity recognition, Oliver et al. [68] introduced video seg-
mentation via PCA. As Bouwmans [10] report, such approaches show great advantages over
competing methods whenever backgrounds are dynamic and include illumination changes.
To visualize the process and to furthermore motivate the use of Robust PCA, a toy example
is considered that represents a moving foreground object in front of a background with vary-
ing brightness. Consider a video sequence containing of n frames with m pixels each, then
a data matrix X ∈ Rm×n is obtained by vectorizing the frames and concatenating them.
Figure 4.11 visualizes this process for a schematized video scene that consists of only three
frames of nine pixels each. Taking a closer look at the image sequence it can be observed
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Figure 4.11.: Vectorized video sequence containing n frames with m pixels each (m = 9, n = 3)

that one black pixel is present in all three frames but at different positions. The remaining
pixels in each frame are all gray and have the same intensity in frame #1 and #3 but take
on a darker tone in frame #2. So technically, the intensity of every pixel changes from frame
to frame. Yet, the intuitive subjective perception of the video sequence is that of a moving
black dot in front of a uniform and grayish background, which is sometimes brighter and
sometimes darker. The data matrix obtained by vectorizing and concatenating the frames
is a 9 × 3 matrix and has full rank k = n = 3. Without the black pixels, however, the
first and third columns are identical and the second is just a scaled version, which would
constitute a matrix of rank 1. The goal of segmenting the video sequence is therefore to
recover the one-dimensional background L and to subtract it from X, so that X−L is zero
everywhere except for the positions of the black foreground pixels. As discussed previously,
the standard tool for computing low-rank approximations is PCA, and Figure 4.12 shows
the decomposition of the video sequence. Precisely, the `2-rank-one approximation obtained
by PCA is shown in Figure 4.12b, while the residual is visualized in Figure 4.12c. It needs to
be mentioned that only the magnitude of the residual is relevant because a dark foreground
element on a bright background is equally relevant as a bright foreground element on a dark
background. As targeted, the first and third column of the reconstructed background are
identical and the second column is a scaled version. However, due to the quadratic loss
function the black dots do not vanish completely, as PCA tries to distribute the residual
error evenly across all entries in the matrix. As a consequence, artifacts appear at other
positions, which becomes even more clear if the background and foreground matrices are
unraveled again into a sequence of frames, as displayed in Figure 4.13. The quadratic er-
ror causes the foreground objects to leak into the background model, resulting in so-called
ghost images, i.e. foreground objects appear in the background at times and positions when
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(a) Input X (b) Rank-1 approx. LPCA (c) Residual |X −LPCA|

Figure 4.12.: Rank-one approximation of a simplified video sequence with common PCA

Figure 4.13.: Frame-wise reconstruction of the video segmentation results obtain from common PCA.
left/above: background, right/below: foreground
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(a) Input X (b) Rank-1 approx. LRPCA (c) Residual |X −LRPCA|

Figure 4.14.: Rank-one approximation of a simplified video sequence with Robust PCA

they are not present in the original sequence. As a consequence, these effects also appear
in the residual, which is nonzero at all positions. Determining an appropriate threshold to
extract the position of the foreground objects is nearly impossible, making common PCA a
suboptimal tool for foreground-background segmentation.

The key to success is to employ Robust Low-Rank Approximation techniques that are
tailored for the low-rank-and-sparse data model (1.6). Figure 4.14 shows the decomposition
of X with Robust PCA into a rank-1 component containing the background and a sparse
component with the estimated foreground. As the residual error between the video sequence
and the low-rank approximation is enforced to be sparse, the foreground pixels do not leak
into the background. Thus no ghost images appear and the background is reconstructed
perfectly. As the entries in the sparse matrix are created by subtracting the background from
the input sequence, their intensity depends on the intensity of the obscured background at
that position. Generating a foreground sequence is thus a two-stage process, which involves
thresholding the residual to determine the support, followed by applying a binary mask on
the original input to single out the foreground elements. As an inherent drawback of the
method, foreground elements cannot be recovered if they have the same (or very similar)
intensity as the background model. But this is not specific to PCA or Robust PCA but to
any background subtraction approach.
As a conclusion from this toy example, Robust PCA offers substantial advantages over

common (`2) PCA when applied to video segmentation. This makes video segmentation an
ideal application to showcase the performance of Robust PCA methods.
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(a) Frame # 1806 (b) Frame # 1813 (c) Frame # 1820

Figure 4.15.: Frames # 1806, 1814 and 1820 of the escalator sequence.

4.4.2. Real-world example

A data set that is often used to visualize the video segmentation performance of Robust PCA
algorithms is the data set by Li et al. [58]. The data set contains RGB image sequences from
surveillance cameras in different environments. The majority of the data set, such as the
popular hall sequence (appearing in the evaluation of IALM [19], LMaFit [75], GoDec [85]
and GRASTA [42]), considers backgrounds that are static except for occasional illumination
changes. Pleasing results have been obtained for these scenarios, but it can be argued that
modeling static backgrounds is rather simple and does not challenge the full potential of
Robust PCA approaches on video segmentation, even if some attempts have been undertaken
to increase the difficulty of the task (cf. the artificial panning experiment in [42]). An
arguably more challenging sequence within the data set is the escalator sequence, of which
three frames are depicted in Figure 4.15. The sequence contains the surveillance capture
of a somewhat crowded indoor environment with three continuously running escalators.
Intuitively, the goal of the video segmentation is therefore to capture the repetitive motion
of the escalators while separating out the people riding them and walking in and out of
the scene. The following evaluation aims to evaluate the segmentation performance of
the proposed GRPCA method for varying values of the cost function parameter p and to
compare the best configuration to competing Robust PCA methods. The video sequence is
converted to grayscale images and is processed at full resolution (160× 130 pixels) and full
length (3417 frames), resulting in an input of dimension 20, 800 × 3417. To visualize the
results of the comparison, the frames #1806, #1813 and #1820 have been picked. On the
one hand, the temporal distance between the frames relates to the observed period length
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of about 21 frames for the escalator movement. On the other hand, this observation instant
captures the largest human crowd in the sequence, as the original frames of the sequence
in Figure 4.15 indicate. Empirically, the rank of the approximation has been chosen as
k = 4 and a detection threshold τ of 20 intensity levels has been selected. The smoothing
parameter µ is computed according to the heuristic in Equation (4.7) using the value for
the detection threshold τ . As the heuristic would lead to a value of µ = 0 in the degenerate
case p = 1.0, µ is instead computed for a value 0.9.
The background frames in Figure 4.16 illustrate that the GRPCA method is successful at

capturing the dynamics of the escalator. However, for large values of p the large crowd on
the right escalator produces ghost images in the background model, whereas ghosting can
be suppressed for lower values of p without deteriorating the dynamic background model
for the escalators.
Moving along to the comparison of the competing methods in Figure 4.17, the IALM

method (second row) captures the dynamics very well but also produces the highest level
of ghosting. This indicates that the heuristic of Candès et al. [19] for the selection of the
parameter λ weighing between the low-rank of the approximation and the sparsity of the
residual may be suboptimal for suppressing ghosting artifacts. The third row shows the
result for LMaFit, which is somewhat similar to the result of GRPCA for p = 1.0 with
some ghosting. Finally, the GoDec manages to suppress the ghosting artifacts well, likely
profiting from the additional bound on the cardinality of the residual (i.e. an estimate of
‖S‖0), which is empirically selected as 3% of the overall number of pixels.

For a last subjective evaluation, the extracted foreground elements for frame # 1813 are
visualized in Figure 4.18. While GoDec directly returns an estimate of the sparse residual
(due to the additive Gaussian noise term in the data model), the residual for the other
methods is obtained by subtracting the background estimates from the input. Following
the procedure outlined in Section 4.4.1, the residual X − L is thresholded at τ = 20
intensity levels to extract the sparse foreground elements and the resulting binary mask is
post-processed with a 3 × 3 median filter. The final foreground frame is then obtained by
masking the input frame to extract foreground pixels. Comparing the results in Figure 4.18
visually, one observes that GRPCA captures the largest number of foreground pixels. This
includes some details of the escalator steps, but also the reflection of some people on the
glass wall next to the escalator. While there should be no discussion that the former is a false
positive, the second would likely also count as a false positive, even though the reflection of
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(a) bg frame # 1806, p = 1.0 (b) bg frame # 1813, p = 1.0 (c) bg frame # 1820, p = 1.0

(d) bg frame # 1806, p = 0.7 (e) bg frame # 1813, p = 0.7 (f) bg frame # 1820, p = 0.7

(g) bg frame # 1806, p = 0.4 (h) bg frame # 1813, p = 0.4 (i) bg frame # 1820, p = 0.4

(j) bg frame # 1806, p = 0.1 (k) bg frame # 1813, p = 0.1 (l) bg frame # 1820, p = 0.1

Figure 4.16.: Background estimates for frames # 1806, 1814 and 1820 of the escalator sequence, obtained
using GRPCA with varying cost function parameter p.
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(a) bg frame # 1806, GRPCA (b) bg frame # 1813, GRPCA (c) bg frame # 1820, GRPCA

(d) bg frame # 1806, IALM (e) bg frame # 1813, IALM (f) bg frame # 1820, IALM

(g) bg frame # 1806, LMaFit (h) bg frame # 1813, LMaFit (i) bg frame # 1820, LMaFit

(j) bg frame # 1806, GoDec (k) bg frame # 1813, GoDec (l) bg frame # 1820, GoDec

Figure 4.17.: Comparison of background estimates for frames # 1806, 1814 and 1820 of the escalator
sequence. From top to bottom: GRPCA with p = 0.1, IALM, LMaFit, GoDec
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(a) foreground frame # 1813, GRPCA (b) foreground frame # 1813, IALM

(c) foreground frame # 1813, LMaFit (d) foreground frame # 1813, GoDec

Figure 4.18.: Comparison of foreground estimates for frame # 1813 of the escalator sequence. From top
left to bottom right: GRPCA with p = 0.1, IALM, LMaFit, GoDec
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Method Processing time in seconds
GRPCA 140
LMaFit 170
GoDec 435
IALM 1750

Table 4.2.: Run time comparison of state-of-the-art Robust PCA algorithms for foreground-background
segmentation of the escalator video sequence (dimensions 20, 800× 3417)

a person has the same properties as the person itself. Also, the last digit of the time stamp
in the upper left is detected as a foreground object. This illustrates how ambiguous such a
comparison can be and makes it difficult to draw general conclusions about the superiority
of one approach above the other.
What can be measured and compared well, on the other hand, is the run time of the

respective algorithms, listed in Table 4.2. Here, the proposed method is the fastest with
about 140 (at p = 0.1) to 170 (at p = 1.0) seconds, LMaFit is in the same range with about
170 seconds, GoDec requires 435 seconds and, lastly, IALM requires 1750 seconds, which
supports the observation of Shen et al. [75] that factorization approaches are much more
efficient for large scale data than methods employing nuclear norm minimization.
To summarize, the proposed GRPCA method is able to perform the foreground-

background segmentation of a video of 3417 frames at a resolution of 160 × 130 within
about two to three minutes, which is slightly faster than competing factorization-based
models, while being a magnitude faster than a nuclear-norm-minimization approach. The
proposed smoothed `p-norm loss function leads to improved robustness against ghosting
artifacts while still being able to capture repetitive motion of dynamic backgrounds.
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Chapter 5.

Robust Subspace Tracking on the
Grassmannian

The setting discussed in Chapter 4 assumed an underlying subspace being constant over
time, whereas in this chapter the case of temporally evolving subspaces will be discussed.
A sequence of data points x(1),x(2), . . . ,x(n) will be considered, with x(j) ∈ Rm denoting a
single data sample at time j, which is assumed to follow the data model

x(j) = l(j) + s(j), l(j) = V(j)w(j),
∥∥∥s(j)

∥∥∥
0
� m (5.1)

with V denoting a k ×m-dimensional orthogonal frame, w ∈ Rk and s ∈ Rm being sparse.
The data model resembles the low-rank-and-sparse data model from Equation (1.6), in
which n samples of m-dimensional data X ∈ Rm×m are assumed to be the sum of a low-
rank matrix L ∈ Rm×n with rank (L) ≤ k and a sparse matrix S ∈ Rm×n with ‖S‖0 � mn.
Considering a constant V in Equation (5.1), the data models are equivalent. However, it
will be assumed in the following that V and thereby the underlying subspace of l(j) may
vary over time.
To address this problem, a Robust Subspace Tracking algorithm will be presented that

learns a subspace incrementally, while being robust against outliers in the observed data
samples. As outlined in Section 3.1, a k-dimensional subspace inm-dimensional surrounding
space may be represented with an element U ∈ Stk,m of the Stiefel manifold. Although this
matrix representation is not unique in general, a subspace can uniquely be identified with
an element of the Grassmannian, which is the equivalence class [U ] ∈ Grk,m, see Section 3.2.
Therefore, if the underlying subspace of an observed data set changes gradually over time
this can be identified with a trajectory across the Grassmann manifold.
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5.1. Algorithmic Description

The Robust Subspace Tracking problem searches for a sequence of vectors l̂(1), l̂(2), . . . , l̂(n)

that minimize the sample-wise residual error between x(j) and l̂(j) at every time instance.
Following the data model in Equation (5.1), a vector l̂(j) will be modeled as the product of
an m × k-dimensional Stiefel matrix U ∈ Stk,m with a k-dimensional vector y ∈ Rk, such
that l̂ = Uy. As the residual error is assumed to be sparse, the smoothed `p-norm loss
function from Equation (4.8) will be employed as a sparsifying function. A sample may be
observed either fully or partially on the current observation set Ω(j), so that the loss function
to be minimized over U and y for every sample j writes as hµ

(
PΩ(j)

(
x(j) −Uy

))
.

At first glance, the problem seems ill-posed as infinitely many solutions exist that achieve
a residual error of zero, e.g. u1 = x/ ‖x‖2 and y = e1. To avoid such trivial solutions
and to make the rank constraint and the whole subspace tracking process meaningful, the
admissible set of solutions forU(j+1) must be reduced to a neighborhood U around a previous
subspace estimate

[
U(j)

]
. Recalling the discussion on matrix representations of subspaces

in Section 3.1, it becomes obvious that U should be defined on the Grassmannian. The
neighborhood is implicitly defined by limiting the admissible distance between

[
U(j)

]
and[

U(j+1)
]
. Only a single gradient step on the Grassmannian is taken for updating U , while

bounding the step size by selecting a small value tstart for the backtracking line search
algorithm (Algorithm 3.2). The coordinates y, on the other hand, are updated just as in
the batch case with a CG method on the full Rk, which may take several CG iterations.
Yet, the tracking algorithm alternates just once per sample between updating U and y. A
detailed description of the procedure can be found in Algorithm 5.1.
The algorithm reads and processes one data sample at a time, which reduces the memory

requirements tremendously, as the biggest storage requirement is now the m× k matrix U
with k commonly being small. A good way of initializing the tracking algorithm is to accu-
mulate a certain number of samples and to run the batch GRPCA algorithm (Algorithm 4.1)
in order to provide a first subspace estimate as a starting point of the tracking algorithm.
But it is also possible to start the tracking algorithm without any initialization samples, so
that the subspace is learned incrementally. The estimation of y can be initialized in various
ways: If no assumptions on y can be made a priori, y is either initialized randomly or with
all zeros. This, however, requires a larger number of CG iterations for the minimization of
the residual to fully converge. In some applications (e.g. video segmentation) it is reasonable
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Algorithm 5.1 Alternating minimization scheme for Robust Subspace Tracking

Input: Partially observed data sequence PΩ(j)

(
x(j)

)
, j = 1, . . . , n

Optional: Choose set of init samples and initialize U with Alg. 4.1

Or: Initialize U randomly

Choose smoothing parameter µ according to noise level

for every new sample x(j+1) observed on Ω(j+1) do

Update y(j+1) = arg min
y∈Rk

hµ
(
PΩ(j+1)

(
x(j+1) −U(j)y

))
Update U(j+1) = arg min

[U ]∈Grk,m
hµ
(
PΩ(j+1)

(
x(j+1) −Uy(j+1)

))
with single-step gradi-

ent descent on Grk,m (Alg. 3.1)

Compute low-rank estimate l̂(j+1) = U(j+1)y(j+1)

end for

Outputs:

l̂(j), j = 1, . . . , n

ŝ(j), j = 1, . . . , n, ŝ(j) = x(j) − l̂(j)
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to assume that subsequent coordinate vectors y are close to each other, especially whenever
the input samples are similar. In this case the previous estimate of y should serve as a
starting point for the next estimation based on the new input sample, as this likely leads to
much faster convergence than random initialization. Lastly, if it is known that subsequent
estimates of y are not close to each other but the outlier density in the current input is
low, it may be reasonable to initialize the CG method with y0 = U>(j)x(j+1), which are the
coordinates of the orthogonal projection of the current input sample onto the previously
found subspace. Both the cost function and its gradient follow straightforwardly as the
special case n = 1 from Equation (4.12) and Equation (4.14), respectively, and the mini-
mization via CG is performed in the same way as the minimization of Y in the batch case.
Apart from the dimensions the only difference is that the subsampling approach proposed
in Section 3.4 is not reasonable in the tracking case, because the optimization alternates
only once per sample between U and y, so that the estimate of the coordinates is final
after the CG optimization. In general, this also forbids to terminate the optimization of y
prematurely, which is why the CG method is commonly run until a reasonable convergence
level is attained. The convergence is observed through evaluating the relative progress in
decreasing the cost function, which is computed analogously to the relative progress in the
batch case, Equation (4.15). The optimization of y is considered converged if the relative
progress reaches a threshold of 10−8. On the upside, the dimension of y is commonly very
small and typically allows for quick convergence in practice. This is a great advantage in
comparison to the related method GRASTA. As the GRASTA method approaches the Ro-
bust Subspace Tracking problem with an augmented Lagrangian multiplier scheme, three
variables need to be updated in an Alternating Minimization process in order to update the
coordinates of the subspace, whereas in this approach one variable is sufficient.
After the coordinates of the current data sample in the previously determined subspace

have been found, the subspace representative U is updated by minimizing the cost function
fU (U) = hµ

(
PΩ(j+1)

(
x(j+1) −Uy(i+1)

))
, which uses the updated coordinates. Following

Algorithm 3.1, the search direction on the manifold needs to be determined from the pro-
jected Euclidean gradient of the cost function. Computing the geodesics (3.12) requires
an SVD of the search direction, which is the costliest part of a gradient descent on the
Grassmannian in the batch case. However, as mentioned by Balzano et al. [4], comput-
ing an actual SVD can be avoided in the tracking setting, which will be illustrated in the
following. Assuming without loss of generality that all entries are observed and omitting
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the temporal indices for ease of notation, the negative Riemannian gradient (i.e. the search
direction for a gradient descent) writes as

−g =
(
I −UU>

)
∇hµ (x−Uy) y> =: ay>, (5.2)

which is a rank-one matrix and allows for a simple Singular Value Decomposition

σuv> with σ := ‖a‖2 ‖y‖2 , u := a

‖a‖2
, v := y

‖y‖2
, (5.3)

which does not involve any costly computation.
Once all the required ingredients are derived, the subspace is updated with a single

gradient descent step on the Grassmannian. Subsequently, the current low-rank estimate
l̂ = Uy is computed and the next input vector is read.

5.2. Evaluation on Simulated Data

The evaluation of the GRPCA method in Section 4.3 has shown under which circumstances
employing a smoothed `p-norm as a loss function outperforms competing methods based
on the `1 norm. As the proposed method for Robust Subspace Tracking follows the same
principles and uses the same cost function to measure the residual error, the main goal of
the following evaluation on simulated data is to investigate how well the results transfer to
the tracking case and what influence the choice of the cost function parameter p has in an
online setting. No initialization phase with GRPCA is performed in the experiments, but
the low-rank approximation is performed on a sample-by-sample basis. As the main focus
of this chapter is on a practical application and realtime processing, the parameters for the
following experiments have been chosen in favor of fast convergence speed at reasonably
good accuracy.
The first experiment uses the data model proposed by He et al. [42] for evaluating the

GRASTA method on a stationary subspace identification task. Data samples are generated
via

x(j) = Uy(j) + s(j) + n(j) (5.4)

where U is a random Stiefel matrix, the coordinates y are randomly distributed according
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Figure 5.1.: Progression of relative error during the online identification of a static subspace of dimension
k = 5 within surrounding dimension m = 500 from 10% of samples with 10% sparse outliers, evaluated for
different values of cost parameter p

to N (0, 1), s contains sparse outliers and n is additive Gaussian noise with σ2 = 10−5. As
the coordinate vectors are drawn independently, there is no temporal coherence in the data,
so that an initialization with a previous estimate would not be beneficial, which is why the
minimization y is initialized with an all-zero vector.

Robust Subspace Tracking with sparse outliers and missing data

In the first scenario a problem of dimension m = 500 with rank k = 5 is considered, the
outlier density is chosen as 0.1 and |Ω|/m = 0.1, i.e. 10% of the entries are observed. A total
of n = 5000 samples are generated according to the data model (5.4) and they are processed
one at a time to determine the subspace. The maximum step size of the gradient descent
for updating U is limited by initializing the line search with tstart = 1. Algorithm 5.1 is run
with varying values for the cost function parameter p, which together with the noise level
determines the choice of the smoothing parameter µ. As the heuristic proposed in Section 4.1
would lead to an infeasible value µ = 0 whenever p = 1, a value for µ corresponding to
p = 0.9 has been selected instead. The progression of minimizing the relative error over
the number of observed samples is visualized in Figure 5.1. The experiment shows that the
subspace is reconstructed in all cases up to a certain accuracy, while the speed of convergence
slows down the lower p is chosen. The processing time is about 40 ms per sample regardless
of the value for p. This could lead to the conclusion that the (smoothed) `1 norm is always
a better choice in a tracking scenario than p < 1. Yet, recalling the results of Chapter 4, it
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Figure 5.2.: Progression of relative error while tracking subspaces of dimension k = 5 within surrounding
dimension m = 50 with 60% dense outliers, with rapid subspace change at j = 15000, evaluated for different
values of cost parameter p

has been observed that this norm may be a suboptimal choice whenever the low-rank-and-
sparse assumptions are not exactly met. Therefore, another experiment with dense outliers
and a moderate rank is considered.

Robust Subspace Tracking with changing subspace and dense outliers

For this experiment, two data sets of length n
2 = 20, 000 are created. Again, the data

model (5.4) is used, but the surrounding dimensions are reduced to m = 50 while raising the
rank to k = 10 and setting the outlier density to 50%. The two data sets are concatenated,
resulting in one overall data set with an abrupt subspace change at j = n

2 +1. All entries are
revealed. He et al. [42] have shown that an `1-based robust subspace tracking method can
reconstruct a subspace even with dense outliers, but they investigated a data model with a
relative rank of k/m = 0.01, whereas in this experiment k/m = 0.2. The results in Figure 5.2
demonstrate that the proposed robust subspace tracking method fails to reconstruct the
subspace with p = 1.0, while lower values for p such as 0.7 or even 0.4 allow for successful
reconstruction. However, an overly small choice p = 0.1 slows down the convergence such
that the subspace cannot be identified before it is changing again. The processing time
again is independent of p with about 80 ms per sample.

The conducted experiments on simulated data indicate that the proposed robust sub-
space tracking algorithm is capable of learning a low-dimensional subspace online from
incompletely observed and outlier-contaminated data. As for the Robust PCA case, the
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tracking algorithm is able to resolve a broader range of scenarios whenever a small value is
chosen for the cost function parameter p. Yet, an overly small value for p slows down the
convergence of the tracking algorithm.

5.3. pROST - A specialized Robust Subspace Tracking
algorithm for real-time background separation in video

The following section, which is based in great parts on the publication [72], describes the
pROST algorithm. The smoothed `p-norm Robust Online Subspace Tracking method for
real-time background subtraction in video has been developed in order to evaluate the pre-
sented robust subspace tracking algorithm on a video segmentation benchmark. As the name
of the method suggests, an explicit constraint was to achieve realtime performance, i.e. to
be able to read, process and segment video frames at a rate of at least 25 frames per second
on a standard computer. For this purpose an efficient implementation of the proposed sub-
space tracking method using GPU acceleration has been prepared. The original code for the
publication [72] was written in C/C++ and used the CUDA framework as well as some spe-
cialized libraries, see Hage et al. [39] for more details. Meanwhile, a second implementation
has been prepared in Python and is available at https://github.com/FlorianSeidel/GOL.
The new implementation uses the widely-popular libraries NumPy, SciPy and the GPU-
supporting library Theano. It is therefore easier to install and to configure than the former
implementation at the cost of slightly reduced computational performance.

5.3.1. Motivation

In Section 4.4.1, the principles of background subtraction via Low-Rank Approximation have
been introduced and discussed, and it became obvious that a classical PCA approach is not
able to model outliers well. In the practical context of background modeling, the following
problems can be specified: Firstly, in common PCA undue weight is given to the foreground
elements when fitting the background model to camera frames during the segmentation
process. This limits the admissible size of foreground objects and can only be overcome
by employing additional workarounds such as adaptive thresholding [82]. Secondly, images
containing foreground objects can lead to corruption of the background model and ghosting
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artifacts. Batch-processing large video sequences assumes a static statistical distribution of
the data and may result in tremendous memory requirements.
Experimental results in Section 4.4.2 have demonstrated that the proposed GRPCA al-

gorithm addresses the first two problems, as the algorithm is capable of reconstructing a
subspace in the presence of a great number of outliers and of learning a background model
without requiring a clean observation of the background. Be that as it may, the third prob-
lem remains unsolved, as the algorithm processes the whole video sequence at once. Besides
the memory issue, a batch algorithm lacks flexibility in uncertain real-world conditions.
For example, it might not be feasible to observe a scene in all possible lighting or weather
conditions during an initial training phase. Thus, the algorithm must be able to adapt the
background model dynamically. One of the first attempts of modeling backgrounds dy-
namically with a PCA-like approach has been proposed by Li [59], who present an iterative
PCA algorithm with a weighted cost function as an outlier treatment for foreground objects.
Instead of learning a PCA model and updating the eigenvectors, Subspace Tracking on the
Grassmannian identifies a learned background model with a single point on the manifold
and is able to gradually track a change in the model by moving along the manifold. Balzano
et al. [4] developed a Grassmannian Subspace Tracking method GROUSE and subsequently
developed the robust counterpart GRASTA by replacing the `2 norm with the `1 norm. The
pROST algorithm [72] tries to push the robustness against outliers even further by employ-
ing a smoothed `p norm and is especially designed for the video segmentation problem.

5.3.2. Description of the algorithm

The processing steps of pROST follow the algorithmic framework of the proposed robust
subspace tracking method in Algorithm 5.1. That is, the algorithm reads and processes one
sample (one vectorized image frame) at a time. Firstly, the optimum coordinates within
the previously estimated subspace are obtained. Due to the coherence of subsequent video
frames the previous estimate for y serves as a good initialization, such that the coordinate
update can typically be achieved within few CG iterations. Subsequently, the subspace
estimate is refined with a single gradient step along the geodesics on the Grassmannian. As
video segmentation does not only require an estimate of the background l in the current
frame, the foreground has to be reconstructed explicitly by thresholding the residual error
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x− l and extracting the actual foreground frame from x with a binary mask. Further pre-
and post-processing steps tailor the algorithm to the video segmentation task.

Weighted smoothed `p-norm cost function

The pROST algorithm is designed with background subtraction for video streams in mind,
and thus the cost function can be optimized for this setting. In video data it is sensible to
assume that corresponding pixels in consecutive frames are likely to have the same label.
This knowledge can be used to further increase the robustness of the residual loss. The idea
is to reduce the contribution of labeled foreground pixels to the residual error by introducing
additional pixel weights wi ∈ R+, whose magnitudes depend on the labels assigned to the
pixels in the previous frame. If the pixel was previously labeled a foreground pixel and is
therefore likely to remain a foreground pixel in the current frame, the weighting should be
small to avoid foreground objects compromising the background. In the reverse case, if the
pixel was labeled a background pixel before, the weight should be equal to one to allow for
model maintenance. In this way the algorithm avoids erroneously fitting the background
model to already known foreground objects and it can focus on fitting the background model
to the scene background instead. This extension to the cost function further eases to learn a
background from corrupted training data and to deal with large foreground objects. pROST
enforces a sparse residual error with the weighted smoothed `p-norm cost function

hµ,w : Rm → R+,x 7→
m∑
i=1

wi
(
x2
i + µ

) p
2 , 0 < p < 1, (5.5)

The loss function is not normalized since pROST operates at constant resolution and pro-
cesses full video frames, so that the number of entries is always constant. Depending on the
pixel-wise foreground/background classification, the weights are assigned at the end of each
iteration as

wi =

1 if |xi − u>i y| < τ

ω else
, (5.6)

where ω is the weight for the foreground pixel reconstruction error. In order to be able to
slowly incorporate foreground pixels into the background, ω should be set to a small but
non-zero value.
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RGB channels

If colored video is available, it is clearly advantageous to use the information provided in
the color channels, especially to cope with the problem of camouflaging (cf. Section 4.4.1).
In pROST, a colored and vectorized video frame of m pixels is represented as a vector

x =


xR

xG

xB

 ∈ R3m, (5.7)

where the i-th entry of xR,xG,xB ∈ Rm is given by the respective channel value at pixel i.
The background is accordingly represented by a matrix

U =


UR

UG

UB

 ∈ Stk,3m . (5.8)

The pixel i is classified as foreground if the difference between the reconstructed background
of either of the channels surpasses a certain threshold τ , i.e. if

max{|xi − u>i,:y|, |xi+m − u>i+m,:y|, |xi+2m − u>i+2m,:y|} ≥ τ. (5.9)

Pre- and post-processing

A sliding average is computed for every pixel and the resulting mean image is subtracted
from each frame before pROST is applied. This means the algorithm has to model only
the varying parts of a scene, which has proven beneficial especially for capturing dynamic
backgrounds. Furthermore, the images are scaled to the range [0, 1]. To achieve fast and
uniform processing, all videos are resampled to an internal resolution of 120 × 901. This
concerns only the resolution of the segmentation masks, which can be upscaled again to the
full resolution such that the input sequence can be segmented at full scale. After processing
the frame and thresholding the residual |x−l|, a 3×3 median filter is applied to the resulting

1The C++ / CUDA implementation presented in [72] achieved realtime performance on a resolution of
160× 120 frames, which shows that the perks of having an easy-to-use Python / Theano implementation
come at the cost of losing some computational performance
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foreground segmentation mask. This serves to fill small holes and to get rid of small clusters
of erroneously labeled pixels.

Initialization phase

Often times, algorithms for background subtraction require an initialization phase in which
the background is learned. A major advantage of the robust subspace tracking approach
is that the algorithm can learn a subspace online, i.e. no batch initialization is required.
Furthermore, a subspace can be learned robustly from samples containing outliers, i.e. the
related background subtraction method does not require a separate learning phase in which
the non-obscured background is observed. The algorithm is initialized with a random sub-
space representative U ∈ Stk,3m. Subsequently, the background subspace is learned one
frame at a time. Even though an initialization phase is not required it is useful in practice
to start with a comparatively large step size tinit and to reduce the step size gradually, down
to a value tonline, which is kept for the online updates. The initial step size should be chosen
quite high (tinit ∈ [10−4, 1]) to facilitate quick initialization, while the latter should be cho-
sen quite small (tonline ∈ [10−7, 10−4]) in order to restrict the search range for [U ], cf. the
discussion in Section 5.1. During this initialization period, the step size for the subspace
update at the j-th frame are defined by the step-size rule

t = max{e−αjtstart, tmin}, (5.10)

where α is a parameter controlling the shrinkage rate for the step size reduction. Whenever
an initialization phase is defined by an exact number of frames Jinit, the parameter α can
be calculated as

α =
− log

(
tonline
tinit

)
Jinit

. (5.11)

5.3.3. Evaluation on the changedetection.net benchmark

One of the main difficulties with comparing different background subtraction methods has
been the lack of an accepted benchmark. Various data sets exist (e.g. [58] and [78]) that
provide video sequences and few manually segmented test images. However, the lack of
pixel-level ground truth for whole video sequences has led to rather subjective evaluation
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as criticized in [13]. The authors overcome the cumbersome task of hand-segmenting video
sequences by providing an artificially rendered scene, which allows a very detailed and
precise segmentation. But although the animation is claimed to be close to photo-realistic
the overall visual impression and statistics are fundamentally different from real video.
In order to establish a benchmark on real-world video sequences, the changedetection.net

data set [37] has been introduced. The data set consists of six categories of videos and
provides ground truth for each frame. Categories vary from strictly static (baseline) over
dynamic backgrounds to shaking cameras (jitter), scenes with particular objects changing
positions (intermittent object motion) and sequences of thermal images. The ground truth
contains information about background and foreground objects as well as their boundaries
and shadows (specifically evaluated in the shadows category).
For the evaluation of pROST on the changedetection.net benchmark, one overall set of

parameters needs to be chosen. Obviously, this trade-off leads to suboptimal results as some
scenarios require a different parameter setting than others. What follows is a brief discussion
of the parameter settings and their influence while a much more detailed evaluation can be
found in [72].

Subspace dimension

The admissible dimension k of the subspace defines the inner dimensions of the optimization
variables and thereby the size of the search space for the optimization problem. As this
defines the computational complexity, k should be chosen as small as possible, while still
offering sufficient degrees of freedom for modeling complex backgrounds. Empirical results
show that k can be chosen very small if the background is static, while a value of about 10
to 15 is required for complex dynamic backgrounds.

Initial and online step sizes

The choice of the step size defines how fast the subspace tracking algorithm adjusts to
changes in the background model. Large step sizes come with the advantage of fast adapta-
tion to changes in the background and allow to learn high-dimensional backgrounds within
few frames. But fast adaptation also increases the risk of foreground objects leaking into
the background, as foreground objects are never ideally sparse in space and time. They
often appear in the same position over the course of several frames, which in combination
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with large step sizes leads to the aforementioned issues like foreground leaking and ghost
images. The temporal threshold for the transition from foreground to background (i.e. how
long does an element have to be present in the scene to blend into background) highly
depends on human perception, which is why the step size needs to be hand-tweaked. But
even manual selection is difficult if one setting must be defined that should fit both static
backgrounds that are constant over time as well as scenes with dynamic backgrounds or
foreground-background transitions. For the initialization phase, tinit = 5× 10−3 is selected
and the online step size is chosen to be tonline = 10−4. This allows the algorithm to learn
a background rather quickly in the beginning and leads to a reasonable trade-off between
background adaptation speed and leakage of slowly moving foreground objects.

Foreground weighting parameter

The pixel weighting in Equation (5.6) adds a second time scale to the subspace tracking
algorithm. While the overall progress in learning and adjusting a background model is
controlled by the step size t, the foreground weighting parameter ω offers additional control
on how fast foreground objects are incorporated into an existing background model. The
pixel weighting has a large effect on the algorithm’s capability of dealing with highly dynamic
complex backgrounds. An empirical value of ω = 5×10−5 allows learning such backgrounds
from input sequences that are heavily corrupted with foreground objects, while still being
able to incorporate such foreground objects into a background model if they are persistent
over an extended period of time.

Detection threshold

As the classification between foreground and background is a binary decision, the optimum
value for the detection threshold of foreground objects can be determined as to maximize
the overall F-score across the categories. For pROST the value τ = 0.15 has been selected,
which corresponds to about 40 intensity levels for 8-bit unsigned integer input. Again,
the optimum threshold depends on the statistics of the video sequence, especially on the
intensity difference between foreground and background objects.
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Cost function parameters

In contrast to the `1 norm, the freedom of choice for the parameters p and µ in the smoothed
`p-norm cost function offers additional control over the required robustness against outliers
in the data. As shown in the experimental evaluation of Chapter 4 and Section 5.2, a
lower value for p leads to increased robustness against outliers, but it also slows down the
convergence of the subspace tracking algorithm. This is why a moderately low value of
p = 0.25 has been chosen. The value for the smoothing parameter µ is set to µ = 0.01
following the heuristic (4.7) and according to the choice for p, the threshold τ and the
intensity range after scaling.

5.3.4. Results and discussion

In order to compare the results of pROST with the segmentation ability of a state-of-
the art algorithm for Robust Subspace Tracking, the GRASTA algorithm [42] has been
evaluated on the changedetection.net benchmark. The authors’ MATLAB implementation
has been slightly adjusted in order to be able to process the sequences from the benchmark.
GRASTA is intended to work with gray scale images, whereas pROST works with RGB
color images. To make a comparison possible, GRASTA has been modified to work with
such images. The subspace dimension is set to be k = 15 and video is segmented at a
resolution of 160× 120. The algorithm performs an initialization phase in which an initial
background model is learned from a batch of training images. Within this phase, the
respective initialization frames at the beginning of the sequences are processed in random
order, three times in a row. The default parameters of the MATLAB implementation are
used, except for the detection threshold and the percentage of pixels used for updating the
subspace during the tracking stage. The demo implementation suggests to use 10% of the
pixels, but as the realtime constraint is still met with more pixels, 25% are reveled to allow
for a fairer comparison with pROST, which observes and processes full frames. While He
et al. [42] suggest a threshold of τ = 0.1 for segmenting the normalized image frames, the
best observed value on the changedetection.net benchmark is 0.2, which has therefore been
selected. As a post-processing step, the obtained segmentation masks are filtered by a 3× 3
median filter.
The changedetection.net data set comes with an evaluation tool, which computes the fol-
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Table 5.1.: Results per category for pROST on the changedetection.net benchmark.
Category Recall Specif. FPR FNR PWC Prec. F-score
baseline 0.842 0.9937 0.0063 0.159 1.16 0.818 0.829
camera jitter 0.769 0.9872 0.0128 0.231 2.04 0.734 0.748
dynamic background 0.731 0.9952 0.0048 0.269 0.66 0.597 0.618
interm. object motion 0.516 0.9317 0.0683 0.484 8.52 0.474 0.413
shadow 0.754 0.9791 0.0209 0.246 2.99 0.624 0.677
thermal 0.429 0.9872 0.0128 0.571 4.15 0.794 0.526
overall 0.674 0.9790 0.0210 0.327 3.25 0.673 0.635

lowing seven statistical measures (FG=foreground, BG=background) from the segmentation
masks:

• Recall: Out of all FG pixels, how many have been estimated as FG

• Specificity: Out of all BG pixels, how many have been estimated as BG

• False Positive Rate: Out of all BG pixels, how many have been estimated as FG

• False Negative Rate: Out of all BG pixels, how many have been estimated as FG

• Percentage of Wrong Classification: Out of all pixels, how many have been classified
incorrectly

• Precision: How many pixels estimated as FG are actually FG pixels

• F-score: Harmonic mean between Precision and Recall

For some of the videos, the segmentation is evaluated only for certain regions of interest
(ROI), while for others the whole image is evaluated. The evaluation starts after a certain
number of frames, which can be used for initialization. However, these training samples
have the same foreground-background distribution as the ones used for evaluation and can
therefore contain foreground objects. One overall score is computed as well as separate
scores for each category. All reported results are conveniently accessible on the website of
the benchmark. The detailed results for pROST in the current Python implementation and
for GRASTA are listed in Table 5.1 and Table 5.2, respectively. As the performance is
evaluated per category, the subsequent discussion of the results is structured in the same
way.

94



5.3. The pROST algorithm

Table 5.2.: Results per category for GRASTA on the changedetection.net benchmark.
Category Recall Specif. FPR FNR PWC Prec. F-score
baseline 0.609 0.9926 0.0074 0.391 2.13 0.740 0.664
camera jitter 0.622 0.9282 0.0718 0.378 8.36 0.354 0.434
dynamic background 0.701 0.9760 0.0240 0.299 2.61 0.262 0.355
interm. object motion 0.311 0.9842 0.0158 0.689 6.32 0.515 0.359
shadow 0.608 0.9554 0.0446 0.392 6.09 0.536 0.529
thermal 0.344 0.9851 0.0149 0.656 6.13 0.726 0.428
overall 0.533 0.9702 0.0298 0.467 5.27 0.522 0.461

Baseline

The baseline category contains videos with static backgrounds and foreground objects mov-
ing on different time scales throughout the sequences. This is clearly the simplest scenario
and could already be modeled quite well by naive subtraction of a static background image.
As a consequence, all algorithms in the benchmark including pROST perform very well.
One minor flaw of pROST is the incorporation of very slowly moving foreground objects,
which could easily be dealt with by selecting smaller values for the step size t and the
weights ω. Such a parameter setting, however, would severely decrease the performance for
dynamic backgrounds.

Camera Jitter

The backgrounds in the camera jitter category mainly consist of static elements. But due
to the shaking (jittering) movement of the camera the actually captured backgrounds are
highly more dynamic than the previous category. This is the category in which pROST
achieves better results than the majority of the competition, as it ranks 9th out of 40
methods when comparing the F-score. The jittery nature of the subspace can be learned
quickly and accurately and the foreground objects are well extracted. Figure 5.3 illustrates
the segmentation result for pROST on the badminton sequence.

Dynamic Background

The dynamic background category contains videos whose background contains dynamic el-
ements such as water surfaces, fountains or waving trees. As the experiment in Section 4.4
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(a) Input frame (b) Background estimate

(c) Segmentation ground truth (d) Segmentation estimate

Figure 5.3.: Input, ground truth and segmentation result of pROST for frame # 1150 of the badminton
sequence from the changedetection.net benchmark
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demonstrates, pROST is well-suited to model repetitive motion, and the learned back-
grounds in the dynamic background category actually contain repetitive motion. However,
the kind of backgrounds contained in this particular category of the benchmark exhibit
higher-dynamic or quasi-random movement, as the movement is mostly influenced by wind.
As a result, their dynamics are too complex and their movements are too erratic to be
modeled well by repetitive motion. It needs to be remarked that the F-score of pROST
varies tremendously throughout the sequences within this category, reaching a top value of
0.93 for a sequence in which a canoe on a river crosses the scene, and a low of 0.12 in a
sequence with a car passing a scenery of water fountains in the far distance. In the latter
case, the distinction between foreground and background is arguably non-trivial, even for a
human observer.

Intermittent Object motion

While most foreground objects in other categories are moving about in the scene on a com-
parably fast timescale, in this category the foreground objects exhibit intermittent motion.
This means that they are placed into the scene but stay at a fixed position for some time
before being relocated or removed again. As previously discussed, pROST distinguishes be-
tween foreground and background objects solely based on their temporal evolution. Yet, the
segmentation in this category requires additional contextual information about the changes
in the scene, which is why the method performs rather poorly here. Whenever an object
remains at a certain position for a longer period, pROST slowly incorporates it into the
background model, which results in false negative errors in this category. Even worse, when
the object is being moved again after having been incorporated in the background, the re-
sulting innovation is handled by pROST in the same way as a suddenly appearing foreground
object. This phantom object is erroneously classified as foreground (false negative error)
until it slowly vanishes again by being incorporated into the background model. This is a
model-specific problem and could only be overcome by considering additional information
about the texture of the object or by tracking the development of objects in the scene.

Shadow

As the name of the category suggests, the shadow category evaluates whether an algorithm
can differentiate between a foreground object and the shadow it casts. The category contains
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several sequences with static backgrounds and foreground objects, whose shadows should
explicitly be detected and classified as a third entity besides foreground and background.
Such a distinction is not implemented in pROST, so that the resulting segmentation is
similar to the baseline videos, with the occasional shadows being falsely classified as either
foreground or background, depending on their relative intensity compared to the actual
background.

Thermal

Lastly, the thermal category contains sequences recorded with an infrared light camera. The
grayscale videos are of much lower contrast than the conventional videos, which leads to a
comparably poor recall value in this category, i.e. many foreground pixels remain undetected.
A simple way to compensate for the low contrast could be to lower the detection threshold,
but that again would increase the rate of false positives in all other categories. Furthermore,
as the scenes are all static, a step size adjustment as discussed for the baseline category could
likely decrease the risk of leakage.

Conclusion

Overall, pROST achieves an F-score of about 0.65, whereas other state of the art methods
achieve results reaching from about 0.5 to about 0.85, which lands pROST at the middle to
lower end of the spectrum. It is important to note, however, that it is possible to achieve
better performance in every single category by tuning the parameters individually to the
specific task. The comparison with GRASTA shows that the proposed adjustments for the
specific task of background segmentation are highly effective, as the overall F-score is raised
by 0.17 points, which is almost half way from GRASTA’s performance to the top of the
benchmark. The performance of pROST is best whenever the input matches the low-rank-
and-sparse data model well, i.e. when the background has limited dynamics, and when the
foreground objects are actually sparse in space and time. The more these constraints are
violated (erratic movements in the background, foreground objects being persistent in the
scene for a longer time), the more the performance of pROST deteriorates. Compared to
competing methods, pROST is especially well at learning the dynamic backgrounds caused
by camera jitter in steady presence of a large number of foreground objects. A general
drawback of the approach is the lack of contextual information, which might alleviate the
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problems of relocated objects. Furthermore, camouflaging remains an inherent problem even
if the joint processing of the color channels improves the performance compared to grayscale
image processing. All in all, the pROST algorithm proves that Robust Subspace Tracking
with a smoothed `p-norm cost function is a viable approach on video segmentation, and
an efficient implementation on the GPU allows processing videos at a reasonably detailed
internal resolution.
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Chapter 6.

Robust Structured Low-Rank
Approximation on the Grassmannian

The robust low-rank approximation methods discussed so far ensure that the rank of the
approximation is bounded and that the residual error between the input and the approxima-
tion is minimal according to a particular metric. This chapter investigates the case where
an additional constraint is considered, which furthermore requires the low-rank approxima-
tion to have a pre-defined structure, such as e.g. Hankel or Toeplitz matrices. This chapter
contains the derivation of an algorithm for Robust Structured Low-Rank Approximation,
which uses the same factorization model with orthogonality constraints and the smoothed
`p-norm loss function as the methods presented in the previous chapters for the unstruc-
tured robust low-rank approximation problems. It is shown how the manifold setting allows
to speed up the online analysis of time series via Structured Low-Rank Approximation with
Hankel matrices.

6.1. Linear matrix structures

In order to work with structured matrices, these structures need to be defined together
with instructions on how to construct and describe such matrices, and how to find the
closest structured matrix to an unstructured one. An intuitive derivation of these concepts
can be found e.g. in the work of Ishteva et al. [48], who propose a structured low-rank
approximation method based on the factorization model with an `2-based loss function.
As their method is closely related to the method proposed here, a similar notation for the
structural constraints will be used.
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A matrixX ∈ Rm×n belongs to the set S if it follows a certain number of linear structural
constraints. That is, there exists a mapping from the N entries of a data vector x ∈ RN to
the m× n entries of the structured matrix, which will be denoted as XS . To describe this
mapping, a set of binary m × n matrices {S1,S2, . . . ,SN} is defined, with Sl containing
ones at the positions where the entry xl of the data vector appears in the structured matrix
XS and zeros elsewhere, so that the structured matrix can be composed as

XS =
N∑
l=1

xiSl . (6.1)

By vectorizing and concatenating the structural matrices, the structuring operator

S :=
[
vec (S1) vec (S2) . . . vec (SN )

]
∈ Rmn×N (6.2)

is obtained. Let vec−1 (·) denote the inverse process of reordering an mn-dimensional vector
into an m × n matrix, then the structuring process in Equation (6.1) can be simplified to
writing XS = vec−1 (Sx). The knowledge of S furthermore allows to compute the closest
structured matrix to an existing one in terms of the Frobenius norm, i.e. to solve

min
XS∈S

‖XS −X‖2F (6.3)

in closed form. As shown in [48], the orthogonal projection ΠS (X) with respect to the
standard inner product can be computed via

ΠS (X) := vec−1
(
SS†vec (X)

)
. (6.4)

The Moore-Penrose pseudoinverse

S† :=
(
S>S

)−1
S> (6.5)

of S computes the l-th entry of the data vector x of the structured matrix XS as a least-
squares approximation of the particular entries ofX on the support of the structural matrix
S(l).
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Example: Hankel structure

The introduced concepts shall be illustrated at the example of a Hankel-structured matrix
XH with dimensions m = n = 2. As Hankel matrices have identical elements on the
antidiagonals, the binary structural matrices constituting H are

S1 =
[
1 0
0 0

]
,S2 =

[
0 1
1 0

]
,S3 =

[
0 0
0 1

]
. (6.6)

Let S be the structuring operator resulting from vectorizing and stacking S1 through S3 and
consider a data vector x =

[
a b c

]>
∈ R3. A Hankel matrix XH can then be constructed

as

XH = vec−1 (Sx) = vec−1




1 0 0
0 1 0
0 1 0
0 0 1



a

b

c


 = vec−1




a

b

b

c



 =
[
a b

b c

]
.

To visualize the projection onto H, consider an arbitrary unstructured 2 × 2 matrix

A =
[
a b

c d

]
with vec (A) =

[
a b c d

]>
, then the data vector of the closest Hankel-

structured matrix can be computed as

x = S†vec (A) =


1 0 0 0
0 1

2
1
2 0

0 0 0 1



a

b

c

d

 =


a
b+c

2
d

 . (6.7)

Finally, after multiplying again with the structuring operator and reordering the entries,
one obtains the orthogonal projection of X onto the space of Hankel-structured matrices

ΠH (A) = vec−1
(
SS†vec (A)

)
=
[
a b+c

2
b+c

2 d

]
. (6.8)

As a result, the orthogonal projection onto the set of Hankel-structured matrices is equiv-
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alent to averaging over the anti-diagonals of a matrix (appearing as the diagonal averaging
step in the SSA method [12]).

6.2. Alternating minimization framework

As discussed in Chapter 4, the factorization approach for Low-Rank Approximation restricts
the search space of possible approximations to those solutions that have an inherent upper
bound on the rank. Ishteva et al. [48] investigate this approach in the context of structured
low-rank approximation and propose the Structured Low-Rank Approximation by Factor-
ization method (abbreviated in the following as SLRAbyF), which searches for the closest
structured low-rank approximation in `2 sense. As observed among others by Chu et al.
[26] and Markovsky [61], there exists no general description of the topology of structured
low-rank matrices and thus no viable approach that optimizes directly on the intersection
of the two spaces. Using the concepts discussed in the previous section, however, structural
constraints can be enforced on any low-rank approximation L = UY by introducing the
structural penalty term

1
mn ‖UY −ΠS (UY )‖2F , (6.9)

which penalizes the residual error between a low-rank matrix and its projection onto the
space of structured matrices. This residual, which is equivalent to the projection ΠS⊥(UY )
onto the orthogonal complement of S, vanishes only if UY fulfills the structural constraints
of S.
While the structural constraint guarantees to find a structured low-rank matrix, a data

fitting term is still required to ensure that the found approximation is close to the original
data (cf. the discussion of Cadzow’s method [16] in [26]). In principle, a separable loss
function that sums the entry-wise residual error between input X and structured low-rank
approximation L can be employed for this purpose. However, this does not take into account
the number of positions at which the entries of the data vector appear in the full structured
matrix. Thus, whenever some entries of the data vector appear more often in the structured
matrix than others, the data fit is biased towards these entries unless additional weights are
introduced. Another point is that whenever the input X is already structured (i.e. X ∈ S),
fitting L toX over the whole coordinate set is unnecessarily more expensive than minimizing
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the residual error based on the difference x − l of the underlying data vectors. Therefore,
the robust loss function (4.8) from Chapter 4 is replaced by

hµ
(
PΩ

(
x− S†vec (UY )

))
, (6.10)

which measures the discrepancy between the input data vector x and the least-squares fit
to the entries of UY , which for UY ∈ S is the underlying data vector of the structured
low-rank approximation. The residual is evaluated only on the index set Ω with |Ω| ≤ N ,
where N is the length of the data vector x. Ishteva et al. [48] propose to join the two
constraints with an Augmented Lagrangian Multiplier (ALM) method [6].
The augmented Lagrangian function of a Robust Structured Low-Rank Approximation

problem with the proposed smoothed `p-norm loss function writes as

L (U ,Y ,Λ) =

hµ
(
PΩ

(
x− S†vec (UY )

))
+ 〈Λ, 1

mn (UY −ΠS (UY ))〉+ ρ
2mn ‖UY −ΠS (UY )‖2F .

(6.11)

The general idea of the ALM scheme is to start with a small value for the parameter ρ and
to alternate between the optimization problems

min
[U ]∈Grk,m

fU (U) , min
Y ∈Rk×n

fY (Y ) and min
Λ∈Rm×n

fΛ (Λ) (6.12)

with the separate cost functions defined as

fU : Grk,m → R, U 7→ L(U ,Y0,Λ0), (6.13)

fY : Rk×n → R, Y 7→ L(U0,Y ,Λ0) and (6.14)

fΛ : Rm×n → R, Λ 7→ L(U0,Y0,Λ), (6.15)

respectively, whereU0,Y0 andΛ0 describe intermediate estimates forU ,Y andΛ, which are
held constant during the optimization of other variables. After each iteration the parameter
ρ is increased until the side condition holds up to a certain accuracy. While the simpler
penalty method ensures the side condition only for ρ → ∞, the augmented Lagrangian
multiplier allows to terminate the algorithm much sooner in practice [6].
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The optimization of fU and fY are performed in the same way as for the unstructured
low-rank approximation problem. Assuming that the input is fully observed, the respective
gradients can be derived as

∇fU (U) = [−vec−1
(
(S†)>∇hµ

(
x− S†vec (UY0)

))
+

1
mn ((Λ0 −ΠS (Λ0)) + ρ (UY0 −ΠS (UY0)))] Y >0

(6.16)

and

∇fY (Y ) = U>0 [−vec−1
(
(S†)>∇hµ

(
x− S†vec (U0Y )

))
+

1
mn ((Λ0 −ΠS (Λ0)) + ρ (U0Y −ΠS (U0Y )))]

(6.17)

with the full derivation given in Appendix A.2. As for the unstructured case, missing
observations appear as a zero entry in the gradient of the loss function.
Algorithm 6.1 outlines the proposed Grassmannian Robust SLRA approach, abbreviated

as GRSLRA. The algorithm considers a partial observation PΩ (x) of the data vector with Ω
denoting the observation set. Besides the data vector, the algorithm requires a description
of the structure S. U is initialized randomly, and Y is initialized with all zeros. The
weighting factor ρ is initialized sufficiently small (e.g. ρ = 1), so that the data fitting term
is the dominant term at the beginning of the optimization and the approximation stays
close to the input data with respect to the used distance measure. As proposed by Ishteva
et al. [48], the optimization consists of an inner loop and an outer loop. In the inner loop, a
low-rank approximation L = UY is found by alternatingly optimizing over U and Y until
the process converges to an intermediate solution. Subsequently, the Lagrangian Multiplier
is updated with a single update step, ρ is increased and the process is repeated until ρ is
large enough to guarantee that the structural side condition holds up to a certain accuracy.
The data vector is then obtained via the projection onto the structure S.

Apart from the added structural constraint, the inner low-rank approximation problem
differs from the algorithm for the unstructured case in three main aspects: Firstly, the cost
function is always evaluated over Ω as subsampling the line search is neither applicable
nor required due to the different nature of the residual error. Secondly, empirical results
show that the parameter µ can be held constant during the approximation as ρ is altered
whenever the inner loop converges to an intermediate solution. Thirdly, the criterion for
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Algorithm 6.1 Alternating minimization scheme for Grassmannian Robust SLRA

Input: PΩ (x), structural constraints of S

Choose cρ > 1

Initialize U0,Y0, ρ = ρstart

while ρ ≤ ρend do

while δ > δmin do

U ← arg min
[U ]∈Grk,m

fY (Y ) (6.13)

Y ← arg min
Y ∈Rk×n

fU (U) (6.14)

end while

Λ← Λ− ρ
mn (UY −ΠS (UY ))

ρ← cρρ

end while

Outputs:

l̂ = S†vec (UY )
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convergence of the alternating minimization needs to be modified, as the second term in
the Lagrangian funtion (6.11) may lead to a non-monotone decrease of the cost function.
Ishteva et al. [48] resolve this issue by observing the progress in the column space of the first
factor instead, which is somewhat questionable as the SLRAbyF method does not consider
orthogonal columns. For the GRSLRA method, on the other hand, the subspace angle

δ(i+1) := esub
(
U (i),U (i+1)

)
(6.18)

following the definition (4.18) is a meaningful measure due to the imposed orthogonality
constraints. Following the recommendation of Ishteva et al. [48], cρ is adaptively chosen
between (1.5, 100) according to the iteration count of the inner loop, so that the overall
number of iterations depends on the convergence speed of the inner loop. Typically, con-
vergence is slow in the beginning (i.e. when the data fitting term dominates) and is fast
whenever ρ becomes large. Thus, finding a good initial estimate for U and Y is crucial in
order to speed up the algorithm. Certain structures allow to reuse previous estimates for
initialization, as will be outlined in the following.

6.3. An efficient algorithm for Online Time Series Analysis

Time Series Analysis is closely related to the System Identification problem. Let

ẋ(t) = Ax(t) + b u(t), y(t) = c>x(t) (6.19)

be the state-space model of a Single-Input-Single-Output (SISO) Linear Time Invariant
(LTI) system. According to Ho and Kalman [44], the minimum realization of an LTI sys-
tem of degree k allows to represent the stationary impulse response written as a Hankel-
structured matrix as

YH =



c>b c>Ab c>A2b . . .

c>Ab c>A2b . .
.

c>A2b . .
.

...


. (6.20)
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Thus, system identification is the task of estimating a low-rank Hankel matrix that explains
the observed impulse response. In principle, the mapping

Rk×k × Rk × Rk → H, (A, b, c) 7→ YH (6.21)

would allow for a direct approach of finding such a low-rank Hankel matrix. But not only
would such a model lead to an excessively large number of unknowns. The exponential
development of the system matrix A on the main diagonal would render such an approach
infeasible in practice, which is why the above discussed approach is to be preferred. Once
an LTI system has been identified, the future development of its impulse response can be
predicted, which is why the forecasting of arbitrary time series is often formulated as a
system identification problem [61]. In an online setting, a time series is not observed and
analyzed as a whole but a sliding window of reasonable length is considered, stretching
from the current point in time to a fixed number of previous observations. SLRA can
be employed to identify the system by finding a low-rank Hankel-structured matrix whose
data vector is a close approximation of the given observation window. Considering now two
subsequent overlapping observations of a time series, the question is how the two subsequent
systems obtained by performing SLRA are related. If the time series is the actual noise-free
impulse response of an LTI system, the systems identified from subsequent observations
must be identical as the system is known to be time-invariant. Regarding the problem
from a factorization point of view, whenever U spans the subspace of the first low-rank
Hankel matrix X(j), then the subsequent low-rank Hankel matrix X(j+1) lies in the same
subspace, i.e. U(j) = U(j+1). The coordinate vectors (i.e. the columns of Y ), on the other
hand, are shifted by one column to the left, as the next data point only affects the last
column of X(j+1) and therefore also of Y(j+1). Assuming that the systems are equal, this
last column must lie in the previously estimated subspace and the structural constraint
must hold, so that the entries can be filled in based on the previous columns, which renders
the approach obsolete if the system is time-invariant and observed without noise. Under
real-world conditions, however, subsequently observed impulse responses will lead to slightly
different systems due to additive noise. Also, the dynamics of the underlying system may
change over time, in which case the system becomes a Linear Time Varying (LTV) system.
In this setting, system identification can be used to find an LTI system that explains the
time series for that particular observation window, conceptually similar to the linearization
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of a nonlinear function at a given point. Whenever the observation window is shifted, the
subsequent low-rank Hankel matrix will correspond to a different subspace. Yet, due to the
large overlap of the data vectors it may be assumed that the subspaces are closely related.
Recalling the original motivation of finding a good initialization for the factors U and Y
in subsequent SLRA problems, this similarity should be exploited to boost the convergence
speed of Algorithm 6.1 in an online setting.
Algorithm 6.2 outlines a method for efficient Online Time Series Analysis using Grassman-

nian Robust SLRA. The algorithm reads a window of 2m− 1 samples length, the minimum

Algorithm 6.2 Efficient Online Time Series Analysis using GRSLRA

Input: PΩ (x), Input length N , Hankel structure Hm×m

Initialize U randomly and Y = 0k×m
for j = 2m− 2 : N − 1 do

PΩ(j+1)

(
x(j+1)

)
= PΩ (x [j − 2m+ 3 : j + 1])

Initialize Alg. 6.1 with U0 = U(j) and Y0 = [Y(j)[ : , 2 : m− 1] | 0k]

Run Alg. 6.1 to obtain U(j+1),Y(j+1) and l̂(j+1)

end for

required amount of samples for an m×m-dimensional Hankel matrix. While U is randomly
initialized in the first iteration, the GRSLRA method is subsequently initialized with the
previous estimate for U . In a similar way as for the proposed Robust Subspace Tracking
method in Chapter 5, the step size for the update of U is restricted to the neighborhood
of
[
U(j)

]
. This reduces the angle between subsequent subspace estimates, which speeds up

the convergence. Y is initialized with a shifted version of the previous estimate, so that
the first m − 1 columns of the initialization Y0 correspond to columns 2 to m of Y(j) and
the m-th column of Y0 is all zero. In the first iterations of Algorithm 6.1 the parameter ρ
is small, making the first term of the Lagrangian function (6.11) the dominant term in the
respective cost functions. This can be interpreted as lifting the structural constraint and al-
lows to reach a different structured low-rank matrix in a different subspace. Yet, due to the
limitations on the step size for the update of U and the initialization of Y , the new solution
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will be close to the former one and is commonly found within few iterations compared to a
random initialization of Algorithm 6.1. In the following, several experiments on simulated
and real-world data will be conducted to examine the performance of the GRSLRA method
and the proposed algorithm for online time series analysis.

6.4. Experiments on System Identification and Time Series
Forecasting

The first experiment is the identification of a SISO LTI system with the GRSLRA method.
For this purpose, an impulse response is randomly generated according to the state-space
model (6.20) with rank k = 5. The vectors b and c ∈ R5 are drawn as normalized random
vectors and the system matrix A ∈ R5×5 is a random symmetric positive definite matrix
with all singular values equal to one, i.e. the system is neither damped nor attenuated. The
goal is to identify the system from a sequence of length N = 80 samples and to forecast the
next Nf = 20 samples using the estimated system model. The dimensions of the Hankel
matrix are chosen as m = 20 and n = N + Nf − m + 1 = 81. As before, the rank is
assumed to be known. The observation of the impulse response is considered to be noisy
and incomplete as PΩ (x) with x := y + s + n, where y is the actual impulse response of
the LTI system, s is a sparse vector of density 0.05 whose nonzero entries are randomly
drawn as ±1 with equal probability. The entries of the noise vector n are i.i.d. according
to N (0, σ2) with σ = 0.05. Only half of the entries are revealed, i.e. |Ω| = 40. The cost
function parameter p = 0.1 is chosen and µ is set according to the noise level, following the
heuristic (4.7). The convergence threshold for the subspace angle is chosen as δmin = 1◦ for
the inner loop of Algorithm 6.1. Whenever more than 3 iterations were required during the
inner loop, cρ = 1.5 is chosen to increase the structural constraint parameter ρ, otherwise
cρ = 100. The parameter is varied between ρstart = 1 and ρend = 108. The proposed
method is compared against a custom Python implementation of the SLRAbyF method
[48]. The sparse least-squares problems are solved with the scipy.sparse.linalg.lsqr()

routine, which is about five times faster than solving the same problem in MATLAB using
the backslash operator.
The result of the system identification experiment is visualized in Figure 6.1. While the

ground truth impulse response is drawn in gray, the actual measurements are visualized with
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Figure 6.1.: Results for the identification of a SISO LTI system. Gray: Noise-free impulse response, Black:
Sample points of the impulse response with additive Gaussian noise and sparse outliers at a sampling rate
of 0.5 for t ∈ [0, 50]. Red: Low-Rank approximation with SLRAbyF (`2 data fit). Green: Robust Low-Rank
approximation with the proposed GRSLRA method.

black dots. The GRSLRA method reconstructs and forecasts the impulse response quite
well despite the missing observations, the noise and the injected outliers. The reconstruction
with SLRAbyF [48], on the other hand, overfits against the outlier-contaminated entries,
leading to an inaccurate prediction.

Performance comparison

The presented method is quite similar to the SLRAbyF method as the cost function is
identical up to the used metric in the data fitting term. As shown by Ishteva et al. [48],
the `2 distance allows to solve the minimization problems over the two matrix factors in
closed form, making the approach quite fast for small dimensions. The system identification
task is solved by SLRAbyF in about 2.5 seconds, whereas the proposed GRSLRA method
requires about 10 seconds. For larger dimensions, however, the proposed method scales much
better than SLRAbyF. Doubling the dimensions of the problem (m = 40, n = 160, Nf =
40), the runtime of GRSLRA increases by five seconds, whereas SLRAbyF now requires
30 seconds. Scaling the dimensions by a factor of 10, GRSLRA is still able to find a
meaningful approximation within a minute, while the problem becomes impossible to solve
in acceptable time with the SLRAbyF method. The reason for the inferior scaling is that the
structural constraint appears in the optimization problem in form of the m × n projection
matrix ΠS , which mainly defines the dimension of the least-squares problem. GRSLRA
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also requires the computation of the projection to evaluate the cost function, but performs
it much more efficiently by multiplying v := S†vec (UY ) first and then multiplying Sv
at a cost of O (mnN) each, which for N � mn is much cheaper than executing the full
multiplication of complexity O

(
m2n2). Ishteva et al. [48] explicitly state that the proposed

method is suitable for small dimensions only and that an efficient implementation is subject
to further research. For large scale problems the apparent benefit of a closed-form solution
becomes a drawback compared to a first-order optimization method such as the proposed
GRSLRA algorithm.

Online System Identification of LTI / LTV systems

In order to demonstrate how the GRSLRA method can benefit from a good initialization,
two experiments on online system identification are carried out. In the first experiment, a
noise-free observation of an LTI system’s impulse response is considered. Data is created as
previously, only that all entries are revealed and the actual impulse response y is observed,
so that the smoothing parameter µ = 10−4 is chosen. A sliding window of length 2m−1 with
m = 20 is considered and the goal is to forecast the system’s impulse response three samples
into the future. Figure 6.2a shows the actual impulse response as well as the prediction,
from which only the furthest predicted sample is drawn. The angle between subsequent
subspace estimates U(j) and U(j+1) is drawn in Figure 6.2b, as to visualize the progress
of learning the subspace over the course of several approximations. The algorithm requires
some time to identify the system, which leads to incorrect predictions of the impulse response
in the beginning. Once the system is identified, however, the impulse response is correctly
predicted up to some numerical fluctuations, and the subspace remains almost constant.
The initial iterations take up to one second, while as soon as the system is identified the
processing time per iteration goes down to 0.3 seconds.
In a second experiment, the impulse response of a Linear Time Varying (LTV) system is

considered. The data is generated according to the state space model

ẋ(j+1) = A(j)x(j) + b>u(j)

y(j) = c>x(j)
(6.22)

with b, c ∈ Rk being normalized random Gaussian vectors and A(j) ∈ Rk×k being a tempo-
rally varying system matrix that fulfills the differential equation Ȧ = ZA with Z> = −Z
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(b) Progression of the angular subspace error

Figure 6.2.: Online identification of a Single-Input-Single-Output Linear Time Invariant system
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(b) Progression of the angular subspace error

Figure 6.3.: Online identification of a Single-Input-Single-Output Linear Time Varying system

and the initial condition A(0) = Ik. For a better visualization of the experiment the tem-
poral scale is changed and the beginning of the observation is shifted by setting

A(j) = e0.002(j+200)Z . (6.23)

The degree of the system is chosen as k = 5 and the first 200 samples of the impulse re-
sponse are considered. The parameters are chosen as for the previous task and the results
are displayed in Figure 6.3a and Figure 6.3b, respectively. As before, the algorithm requires
several iterations to identify the system and to make a meaningful prediction of the impulse
response. In contrast to the LTI system, the dynamics of the LTV system vary over time,
so that the LTI approximation needs to be adapted slightly, even after a meaningful ap-
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proximation has been found. This can be seen from the repetitive spikes in the evolution of
the subspace angle. The runtimes are in the same range as for the LTI experiment, which
shows that the initialization with a previously found solution successfully reduces the re-
quired number of iterations of GRSLRA, even if the underlying dynamics of the time series
require constant updates of the subspace.

Time Series Forecasting on Real-World Data

In order to investigate the performance on real-world data, the proposed online time series
forecasting method is evaluated on a time series forecasting task. It is compared with
SLRAbyF and the forecast routine in MATLAB with a 12 month seasonal ARIMA(0,1,1)
model1. The time series is the well-known Airline Passenger data set from [11], which
contains the development of airline passenger counts in the USA in the years between 1949
and 1960. The upper bound on the rank of the approximation is chosen as k = 8, and
the goal is to forecast 6 samples from 2m − 1 samples with m = 18, which corresponds
to projecting the monthly amount of passengers half a year into the future from observing
the past three years. The cost function parameters for the GRSRLA method are selected
as p = 0.1, allowing for high robustness against large outliers (despite not being present in
this data set) and a moderate value of µ = 0.03 for the smoothing parameter, as real-world
data is obviously contaminated with a certain level of noise. The forecasting results are
visualized in Figure 6.4. In general, all three methods perform quite well in this task, with
ARIMA reaching the best accuracy at a relative error of 0.07, SLRAbyF following in second
place with a relative error of 0.12 and GRSLRA finishing in the same range as SLRAbyF
with a relative error of 0.14. Considering the run times, SLRAbyF is the slowest method
with an average processing time of 1.7 seconds per sample, while ARIMA is twice as fast
with 0.8 seconds on average. Finally, GRSLRA is the fastest with about 0.4 seconds on
average, which proves the high efficiency of the method.
To show that the proposed robust cost function is beneficial on a data set that is less

well-behaving than the classical one, a second experiment on airline passenger data is consid-
ered. For this purpose, the system-wide (domestic and international) number of passenger
enplanements in the USA for the years 1996 − 2014 has been obtained from the American
Bureau of Transportation Statistics [14]. This data is obviously more challenging, as it

1http://mathworks.com/help/econ/forecast-airline-passenger-counts.html
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Figure 6.4.: Six-month forecast of monthly airline passenger data from the years 1952-1960 based on a
3-year observation period. Actual data and predictions using GRSLRA, SLRAbyF and a seasonal ARIMA
model, respectively

contains an unexpected drop in passenger counts after the 9/11 events. Figure 6.5 shows
the data set and the six month forecasts of the three compared methods with the same
experimental setup and choice of parameters as before. Again, the ARIMA forecasting
routing shows a good performance. Despite the error of predicting a second post-9/11 drop
in the subsequent year, it reaches an overall relative error of 0.08. The SLRAbyF method is
even more severely affected by the unexpected notch, which is likely due to the non-robust
`2 measure. The prediction for the years 2002 and 2003 become highly unstable, leading to
an overall relative error of 0.16. Due to the more robust loss function, the GRSLRA method
suffers less from the outliers than SLRAbyF and reaches an overall relative error of only
0.08, just like ARIMA. The computation times are similar to the previous experiment with
GRSLRA requiring an average of 0.5 seconds, ARIMA being slightly faster than previously
with 0.6 seconds and SLRAbyF trailing the comparison with 1.5 seconds per prediction.
Overall, the accuracy of SLRA-type methods is worse or equal than ARIMA, which

however requires an initial estimate of the seasonality. It can be seen that the proposed
GRSLRA approach performs equally well as the `2-based SLRAbyF method whenever no
outliers are present. In the presence of outliers, however, the proposed method demonstrates
increased robustness, even when the assumptions of the low-rank-and-sparse data model are
not exactly met. The proposed algorithm for online time series analysis benefits from an
efficient initialization with previously found subspace and coordinate estimates. As a result,
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Figure 6.5.: Six-month forecast of monthly airline passenger data from the years 1999-2014 based on a
3-year observation period. Actual data and predictions using GRSLRA, SLRAbyF and a seasonal ARIMA
model, respectively

it operates much faster than repeated estimation with SLRAbyF and slightly faster than
the standard forecasting routine with a seasonal ARIMA model in MATLAB.
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Chapter 7.

Conclusion

This thesis deals with three problems and related applications that are based on the low-
rank-and-sparse data model. Namely, three non-convex approaches to Robust PCA, Ro-
bust Subspace Tracking and Robust Structured Low-Rank Approximation are presented.
The collected results indicate that the methods achieve better results than related convex
methods, both in terms of computational and memory efficiency and concerning robustness
against deviations of the data from the ideal low-rank and sparsity assumptions. To address
the low-rankness, the algorithms discussed in this thesis employ the factorization approach
with orthogonality constraints on one of the factors. This regularizes the problem in terms
of scaling ambiguities and attainability of the upper bound of the rank. Furthermore, it
offers an intuitive model with one matrix representing the basis of the low-dimensional sub-
space to be found and the other one the coordinates within this subspace. The resulting
geometry of the problem has been discussed and first-order line search methods for solving
optimization problems on the Grassmannian have been developed. In order to reduce the
computational effort of the cost function evaluation, an efficient subsampling heuristic has
been proposed that is applicable to separable sparsifying functions. Sparsity is enforced on
the residual error with an effective smoothed non-convex `0-surrogate loss function, which is
based on the extension of the `p norm to the case 0 < p < 1, with the parameter p control-
ling the slope of the cost function. The function approximates the behavior of the `0 norm
for large inputs while the introduction of a smoothing parameter µ makes the function dif-
ferentiable and convex in a small region around zero, leading to a certain robustness against
additive Gaussian noise. A heuristic for choosing an appropriate value for µ is provided,
which depends on the value for the cost function parameter p and the estimated noise level
in the data.
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Using a differentiable loss function, a Grassmannian Robust PCA algorithm has been
presented to find a meaningful low-rank approximation in the presence of large outliers in
the data. The optimization is performed with an alternating minimization scheme over the
two matrix factors using a conjugate gradient method without additional slack variables
on the Grassmannian and in Euclidean space, respectively. For a small choice of the cost
function parameter p, the method is able to reconstruct an underlying subspace in the
presence of outliers even in scenarios where other state-of-the-art methods fail because the
low-rank and/or the sparsity assumption only hold to a certain extent. In contrast to `1-
based factorization methods, the reconstruction performance is not breaking down when the
outlier magnitude becomes overly large. The algorithm is able to reconstruct subspaces from
incomplete observations, even though the advantage of the non-convex sparsity measure
seems to be less significant at low sampling rates. The proposed cost-efficient subsampled
line search and the inherent memory efficiency of the factorization approach let the algorithm
scale well to large dimensions and allow for low processing times. This is demonstrated in
a real-world video segmentation experiment, where the task is to determine a dynamic
background model and to extract foreground objects via background subtraction. While
the algorithm faster than competing methods, the proposed loss function is shown to be
useful at suppressing ghosting artifacts.
For the online setting, a Robust Subspace Tracking algorithm has been proposed that

uses the same concepts as in the batch case but learns a subspace incrementally. For every
new sample, a single small gradient step on the Grassmannian is taken in order to allow the
subspace to slowly evolve over time, while the coordinates are subsequently found with a
CG method. Experimental results show that the general findings of the previous evaluation
for the static scenario carry over to the tracking case. Yet, it is observed that choosing a
small value for the cost function parameter p slows down the convergence speed of the track-
ing method. As a consequence, a trade-off needs to be found between maximum sparsity
enforcement and convergence speed. The presented pROST method is an adaptation of the
Robust Subspace Tracking algorithm that is specialized to the task of video segmentation.
Through its efficient implementation with GPU acceleration, the method achieves realtime
segmentation at a reasonable internal resolution. The evaluation on a public benchmark
demonstrates that the method is capable of learning and maintaining dynamic backgrounds
in the steady presence of foreground objects. Yet, the general limitations of a purely spatio-
temporal approach become obvious as some tasks cannot be solved well without additional
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contextual information, and the varying time scales of foreground objects throughout the
categories make it difficult to determine one parameter setting that fits all scenarios.
Furthermore, a robustification of the factorization-based Structured Low-Rank Approx-

imation problem is addressed. The Grassmannian Structured Low-Rank Approximation
algorithm builds upon an existing Lagrangian multiplier scheme but measures the residual
error with a smoothed `p norm loss function instead of the Euclidean distance in order to
make the approach robust against outliers in the data. Furthermore, the proposed frame-
work with a CG algorithm lets the algorithm scale better to large dimensions than the
existing framework based on least-squares optimization. Experimental results show that
the method is capable of identifying an LTI system from a subsampled noisy and outlier-
contaminated observation of its impulse response. Finally, an efficient online method for
the prominent application of time series analysis is presented and evaluated, which gains
enhanced efficiency compared to repeated re-initialization by reusing previously determined
low-rank Hankel approximations. A comparison with an `2-based method and a MATLAB
forecasting routine on real-world time series demonstrates the practical applicability of the
proposed method and its tolerance against large outliers in the data.
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Appendix A.

A.1. Subspaces and Norms

A.1.1. Vector spaces and subspaces

Considering a set of data samples with m features each, every sample is a vector within the
vector space Rm, which constitutes itself by axioms deducted from the concepts of vector
addition and scalar multiplication. A set V of vectors in Rm is a linear subspace within the
vector space Rm if the following conditions are satisfied:

• V contains the all-zero vector 0m

• If a ∈ V then ca ∈ V for all c ∈ R (closure under multiplication)

• if a, b ∈ V then a+ b ∈ V (closure under addition)

A basis of a linear subspace V is the smallest possible set of vectors that span this subspace.
Vice versa, given a matrix U the subspace V = span(U) is the set of all vectors that lie in its
column space. If U contains k orthogonal columns of length m, then V is a k-dimensional
subspace in m-dimensional surrounding space.

A.1.2. Vector and matrix norms

Given a vector space V , a norm describes a mapping g : V → R, i.e. every element x ∈ V
is assigned a real number. While a seminorm is constituted by the two conditions

g (αx) = |α| g (x) (homogeneity) (A.1)

g (x+ y) ≤ g (x) + g (y) (triangle inequality) (A.2)
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for vectors x,y ∈ V and scalar α, a norm also fulfills the third condition

g (x) = 0 if and only if x = 0 (separation). (A.3)

The `p norm of a vector x ∈ Rm is defined as

‖x‖pp :=
m∑
i=1
|xi|p, p > 0 (A.4)

and it fulfills all three necessary conditions of a norm for p ≥ 1.
A well-known and intuitively used norm is the Euclidean norm

‖x‖22 :=
m∑
i=1

x2
i , (A.5)

which is also referred to as the `2 norm as it is the special case k = 2 of the `p norm (A.4).
Analogously, one can derive the `1 norm

‖x‖1 :=
m∑
i=1
|xi|, (A.6)

as the special case k = 1, which is also known as the Manhattan norm.
Whenever p is in the range 0 < p < 1, the measure becomes concave and is not a true

norm any longer, as the triangle inequality (A.2) does not hold.
Another measure that has gained a lot of attention in the context of Compressive Sensing

[31] is the `0 norm

‖x‖0 = ”number of nonzero entries in x”. (A.7)

The norm can be interpreted as the limit p→ 0 for (A.4), where every entry of x contributes
to the sum with a 1 except when the entry is exactly zero. Clearly, the `0 norm fulfills neither
(A.1) nor (A.2) and is thus not a proper norm, which is why it is often referred to as a pseudo
norm in the literature.

All discussed vector norms can be extended to entry-wise matrix norms. The entry-wise
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A.2. Gradient derivation for the Robust SLRA problem

`p norm for matrices writes as

‖X‖pp :=
m∑
i=1

n∑
j=1
|Xij |p, p > 0 (A.8)

from which the other entry-wise matrix norms can straightforwardly be deducted. It needs
to be remarked that the entry-wise `2 norm obtained by summing over all squared entries of
a matrix X is identified as the squared Frobenius norm ‖X‖2F , and it must not be confused
with the spectral norm ‖X‖2, which measures the maximum singular value of X.
Finally, the nuclear norm

‖X‖∗ =
n∑
i=1

σi(X) (A.9)

of a matrix X denotes the sum over its singular values. It often appears in the context of
rank-minimization problems.

A.2. Gradient derivation for the Robust SLRA problem

The cost functions of the GRSLRA algorithm in Chapter 6 result from minimizing the
Lagrangian (6.11) over the respective parameters. The separate cost functions are obtained
by considering the Lagrangian function with the other variables fixed. Assuming w.l.o.g. that
the data is fully observed, the cost function fU can be stated as

fU (U) = hµ
(
x− S†vec (UY0)

)
+ 1

mnvec (Λ0)>
((
Imn − SS†

)
vec (UY0)

)
+ ρ

2mn

∥∥∥(Imn − SS†) vec (UY0)
∥∥∥2

2

= hµ
(
x− S†

(
Y >0 ⊗ Im

)
vec (U)

)
+ 1

mnvec (Λ0)>
((
Imn − SS†

) (
Y >0 ⊗ Im

)
vec (U)

)
+ ρ

2mn

∥∥∥(Imn − SS†) (Y >0 ⊗ Im) vec (U)
∥∥∥2

2
.

Let

AY :=
(
Imn − SS†

) (
Y >0 ⊗ Im

)
.

Using the definition (A⊗B)> = A> ⊗B> for the transpose of a Kronecker product, the
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transpose is obtained as

A>Y = (Y0 ⊗ Im)
(
Imn − SS†

)
.

Since
(
Imn − SS†

)
is a projector,

A>YAY = (Y0 ⊗ Im)
(
Imn − SS†

) (
Y >0 ⊗ Im

)
.

For a differentiable function f : Rm×n → R, the following relation holds between an
arbitrary direction H ∈ Rm×n and the Euclidean gradient ∇f (X):

lim
t→0

d

dt
f (X + tH) = 〈∇f (X) ,H〉.

The gradient with respect to U can thus be derived as follows:

lim
t→0

d

dt
fU (U + tH)

= lim
t→0

d

dt
hµ
(
x− S†

(
Y >0 ⊗ Im

)
(vec (U) + t vec (H))

)
+ 1
mnvec (Λ0)>AY (vec (U) + t vec (H))

+ ρ
2mn (vec (U) + t vec (H))>A>YAY (vec (U) + t vec (H))

= −
(
∇hµ

(
x− S†vec (UY0)

))>
S†
(
Y >0 ⊗ Im

)
vec (H)

+ 1
mnvec (Λ0)>AY vec (H)

+ ρ
mnvec (U)>A>YAY vec (H)

:= 〈vec (∇fU (U)) , vec (H)〉

The vectorized gradient is therefore

vec (∇fU (U)) =− (Y0 ⊗ Im) (S†)>∇hµ
(
x− S†vec (UY0)

)
+ 1

mn (Y0 ⊗ Im)
(
Imn − SS†

)
vec (Λ0)

+ ρ
mn (Y0 ⊗ Im)

(
Imn − SS†

) (
Y >0 ⊗ Im

)
vec (U) ,
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A.2. Gradient derivation for the Robust SLRA problem

which finally leads to the gradient

∇fU (U) = [−vec−1
(
(S†)>∇hµ

(
x− S†vec (UY0)

))
+

1
mn ((Λ0 −ΠS (Λ0)) + ρ (UY0 −ΠS (UY0)))] Y >0

In a similar manner, the gradient for the cost function

fY (Y ) = hµ
(
x− S† (In ⊗U0) vec (Y )

)
+ 1

mnvec (Λ0)>
((
Imn − SS†

)
vec (U0Y )

)
+ ρ

2mn

∥∥∥(Imn − SS†) vec (U0Y )
∥∥∥2

2

with respect to Y can be derived as

∇fY (Y ) = U>0 [−vec−1
(
(S†)>∇hµ

(
x− S†vec (U0Y )

))
+

1
mn ((Λ0 −ΠS (Λ0)) + ρ (U0Y −ΠS (U0Y )))]
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