
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET-2017-05-2Network Architectures and Services

Incident Handling Systems with Automated Intrusion
Response

Nadine Herold

Dissertation

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Incident Handling Systems with Automated Intrusion
Response

Nadine Herold, M.Sc.

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Bernhard Brügge, Ph.D.

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Carle

2. Prof. Dr.-Ing. Tanja Zseby

Die Dissertation wurde am 12.12.2016 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Informatik am 19.04.2017 angenommen.

Cataloging-in-Publication Data
Nadine Herold
Incident Handling Systems with Automated Intrusion Response
Dissertation, Mai 2017
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN 978-3-937201-59-7
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
DOI 10.2313/NET-2017-05-2
Network Architectures and Services NET-2017-05-2
Series Editor: Georg Carle, Technische Universität München, Germany
c© 2017, Technische Universität München, Germany

ACKNOWLEDGMENTS

Have you tried turn it off and on again?

The IT-Crowd

I am grateful for the support and help I received from certain individuals without whom
this work would not have been possible. I would like to take the opportunity to express
my gratitude.

First of all, I would like to thank Prof. Dr.-Ing. Georg Carle for giving me the
opportunity to join the Chair for Network Architectures and Services and for supervising
the dissertation by giving helpful advices and feedback along the way. I would also like
to thank Prof. Dr.-Ing. Tanja Zseby for her feedback on my work and being my second
assessor and Prof. Bernhard Brügge for chairing the examination committee.

I would like to thank my co-authors for the valuable feedback, collaboration and worth-
while criticism that helped to improve the work we have done together. A sincere thank
you goes to all of them, in particular Stephan-A. Posselt, Dr. rer. nat. Matthias Wachs
and Dr. rer. nat. Holger Kinkelin.

Most parts of this thesis were elaborated in the context of the research projects Sys-
temic Security for Critical Infrastructures (SURF) and Decentralized Anomaly Detection
(DecADe). Both projects has been supported by the German Federal Ministry of Edu-
cation and Research (BMBF) under support code 16KIS0145 (SURF) and 16KIS0538
(DecADe). Additionally, some parts of this work are done in collaboration with Airbus
Group Innovations (AGI). I want to express my gratitude to the individuals working at AGI
supported this thesis.

Last but not least, I thank my family and friends supporting me over several years,
always having a sympathetic ear for my complaints and being on hand with help and advice
anytime.

ABSTRACT

Computer networks are permanently affected from attacks. In addition to hardening and
prevention mechanisms, active incident handling is required to ensure resilience during an
on-going attack. Handling security incidents in real-time is a complex process consisting
of three steps: intrusion detection, alert processing and intrusion response. Those steps
can be further divided into tasks encapsulated into modules. For effective and automated
incident handling, a holistic approach covering the overall process and tightly intertwined
steps are required. Most existing solutions for incident handling merely focus on a ded-
icated step instead of taking the overall process into account. Within this thesis, the
question of how to design and integrate incident handling as a holistic and intertwined
process into computer networks is addressed.

This thesis proposes a holistic Incident Handling System (IHS) that allows interleaved
and collaborative interaction between the incident handling modules. This is achieved
by providing a holistic information model covering all needed information from all steps
as foundation for the collaboration of the modules. The interaction of those modules
is realized using the Blackboard Pattern to structure the incident handling process and
derive an appropriate execution model. The information and the execution model as well
as the partitioning of the incident handling process into modules are aligned with each
other such that the modules can solve the holistic problem of incident handling following
a collaborative and interference-free strategy.

The contribution of this thesis is – besides the overall IHS – the development of the
single modules needed for effective incident handling. As basis for automated intrusion
response, a reliable Intrusion Detection System (IDS) is needed. We propose an anomaly-
based IDS based on Complex Event Processing (CEP), producing only useful alerts for
intrusion response. To answer the question of, which responses are suitable to counteract
a security incident, possible responses are examined and categorized using available tax-
onomies. In order to determine an appropriate point in time to start automated intrusion
response, possible triggers based on our information model are examined and combination
strategies are proposed. To answer the question of which set of available responses is
the optimal one, we provide a response selection approach based on Mixed Integer Linear
Programming (MILP) and provide a proven optimal combination of responses. Finally, we
investigate the question of how to execute responses on the target system. Therefore,
we propose a module to automatically generate a response plan for structured execution
and dynamic deployment of the selected responses.

To show the applicability of our holistic IHS, the overall system as well as the individual
modules are implemented and evaluated. Therefore, we provide different simulations
and an example use case based on a data cabin network using the SOME/IP protocol.
With our evaluation we investigate the applicability and performance of the proposed IHS
for different network settings and attack patterns and show the benefits of integrated,
automated intrusion response.

ZUSAMMENFASSUNG

Vernetzte IT-Systeme unterliegen ständigen Angriffen. Zusätzlich zu Härtung und Prä-
ventionsmaßnahmen ist eine aktive Behandlung von Sicherheitsvorfällen notwendig, um
die Resilienz dieser IT-Systeme auch während eines Angriffs zu erhalten. Eine Echtzeit-
behandlung ist ein komplexer Prozess der sich aus der Erkennung, Analyse und Reaktion
zusammensetzt und sich in weitere feinere Aktivitäten zerlegen lässt. Für eine effektive
und automatisierte Behandlung von Sicherheitsvorfällen ist eine umfassende Sicht auf alle
Teilprozesse, sowie deren Verzahnung ineinander notwendig. Bisherige Ansätze fokussie-
ren sich meist nur auf einen Teilprozess anstatt den vollständigen Prozess zu betrachten.
In der vorliegenden Arbeit wird daher die Frage untersucht, wie ein umfassender Prozess
für die automatisierte Behandlung von Sicherheitsvorfällen gestaltet, umgesetzt und in
bestehende IT-Systeme integriert werden kann.

In dieser Arbeit wird ein umfassendes Incident Handling System (IHS) vorgestellt,
welches die Kollaboration der einzelnen Aktivitäten ermöglicht. Hierfür wird ein umfas-
sendes Informationsmodell vorgestellt, welches alle Informationen, die für die einzelnen
Teilprozesse benötigt werden, abdeckt. Dieses Informationsmodell legt die Grundlage für
das vorgestellte Ausführungsmodell, welches auf dem Blackboard Pattern basiert, und
die kollaborative Zusammenarbeit der einzelnen Module für die jeweiligen Aktivitäten er-
möglicht. Das Informationsmodell, sowie die Strukturierung der Module sind auf einander
abgestimmt, sodass die Behandlung von Sicherheitsvorfällen kollaborativ und frei von Kon-
flikten durchgeführt werden kann.

Neben der Erstellung des IHS werden in dieser Arbeit die einzelnen Module umge-
setzt. Als Basis für die aktive Behandlung von Sicherheitsvorfällen ist ein zuverlässiges
Intrusion Detection System (IDS) notwendig. Im Rahmen dieser Arbeit wird ein Anomalie-
basierter Ansatz unter Zuhilfenahme von Complex Event Processing (CEP) Technologien
vorgestellt. Mögliche Handlungsoptionen für ein IHS werden im Rahmen dieser Arbeit
untersucht und anhand bestehender Taxonomien klassifiziert. Die Entscheidung, wann
automatisierte Reaktionen eingeleitet werden sollen, wird mit Hilfe eines Regel-basierten
Systems umgesetzt. Für die optimale Zusammenstellung möglicher Reaktionen wird in
dieser Arbeit ein Auswahlmechanismus basierend auf Mixed Integer Linear Programming
(MILP) vorgestellt. Für die eigentliche Ausführung konkreter Reaktionen im IT-System
wird im Rahmen dieser Arbeit eine Beschreibungssprache für die strukturierte Ausführung
vorgestellt, die auf dem Zielsystem ausgeführt werden kann.

Um die Anwendbarkeit des vorgestellten IHS sowie der einzelnen Module zu zeigen,
wurden alle benötigten Komponenten implementiert und evaluiert. Neben geeigneten
Simulationen wurde zudem ein exemplarischer Anwendungsfall, basierend auf einem Ka-
binennetz unter Verwendung des SOME/IP Protokolls untersucht. Im Rahmen der Eva-
luation wurde die Performanz des IHS für unterschiedliche Netzwerkkonfigurationen und
Angriffsmuster untersucht und der Nutzen des vorgestellten IHS aufgezeigt.

TABLE OF CONTENTS

1. Introduction . 1
1.1 Problem Statement and Research Questions . 2
1.2 Contributions and Chapter Overview . 4

2. Background. 7
2.1 Basic Terms. 7
2.2 Intrusion Detection Systems . 8

2.2.1 Host vs. Network-Based Detection . 8
2.2.2 Intrusion Detection Methods . 9
2.2.3 Intrusion Detection Message Exchange Format (IDMEF) 10

2.3 Alert Processing . 10
2.4 Structuring Responses . 11

2.4.1 Classification Methods for Responses . 11
2.4.2 Response Properties and Characteristics . 12

2.5 Intrusion Response Systems . 13
2.5.1 Overview and Taxonomies. 13
2.5.2 Steps for Intrusion Response . 15

3. Analysis and System Design . 17
3.1 Requirements . 17

3.1.1 Functional Requirements . 17
3.1.2 Non-Functional Requirements . 18

3.2 System Design Overview . 20
3.2.1 Incident Handling . 20
3.2.2 Blackboard Pattern . 21
3.2.3 Blackboard Pattern for IHSes . 22

3.3 Information Model . 24
3.3.1 Requirements . 24
3.3.2 Information Model Description . 24
3.3.3 Related Work . 28

3.4 Functional Separation. 30
3.4.1 Monitoring and Intrusion Detection . 31
3.4.2 Alert Processing . 31
3.4.3 Intrusion Response . 32
3.4.4 Example for the Interaction of Modules . 34
3.4.5 Garbage Collector . 36
3.4.6 Controller and Control Plan . 36

3.5 Related Work . 37
3.5.1 Execution Models for Incident Handling. 37
3.5.2 Selected Intrusion Response Systems (IRS). 39
3.5.3 Summary, Comparison and Conclusion . 45

Table of contents

3.6 Publication Reference. 46

4. Intrusion Detection . 47
4.1 Analysis . 47

4.1.1 Scalable service-Oriented MiddlewarE over IP (SOME/IP) Proto-
col Description . 47

4.1.2 Possible Attacks on the SOME/IP Protocol and Attacker Model . . 49
4.1.3 Use Case Description . 50
4.1.4 Requirements . 51

4.2 System Design . 52
4.2.1 Complex Event Processing . 52
4.2.2 Proposed System Design . 52
4.2.3 Knowledge as Input. 53

4.3 Implementation . 54
4.3.1 Esper and Event Processing Language (EPL) . 54
4.3.2 SOME/IP – Analyzer and Generator . 54
4.3.3 Malformed Packets . 55
4.3.4 Protocol and System-Specific Violations . 56
4.3.5 Timing Issues . 59

4.4 Evaluation. 59
4.4.1 Requirement Alignment . 60
4.4.2 Test Setup. 60
4.4.3 Time Consumption of Single Rules . 61
4.4.4 Time Consumption of Multiple Rules . 62
4.4.5 Memory Consumption with Multiple Rules . 63
4.4.6 Memory and Time Consumption with Varying Window Sizes. 64

4.5 Related Work . 64
4.6 Publication Reference. 66

5. Responses Identification . 67
5.1 Analysis . 67

5.1.1 Requirements . 67
5.1.2 Response Model . 68
5.1.3 Collection of Responses . 70

5.2 System Design and Use Case . 75
5.2.1 Design Overview. 75
5.2.2 Triggering Responses . 78
5.2.3 Use Case Applicability . 81

5.3 Implementation . 84
5.4 Evaluation. 85

6. Response Selection . 87
6.1 Response Assessment Strategies . 87

6.1.1 Requirements . 87
6.1.2 Proposed Response Assessment Strategy . 88
6.1.3 Related Work . 90

6.2 Analysis . 94
6.2.1 Requirements . 95
6.2.2 Linear Programming . 95
6.2.3 Illustrative Example. 97

Table of contents

6.3 System Model. 97
6.3.1 Definition of Elements and Relations . 98
6.3.2 Illustrative Example. 100
6.3.3 Formulating the Optimization Problem .. 101

6.4 Implementation . 105
6.5 Evaluation. 106

6.5.1 Requirement Alignment . 107
6.5.2 Evaluation Methodology. 107
6.5.3 Evaluation of Solver Performance . 108
6.5.4 Solution Quality . 112

6.6 Related Work . 114
6.6.1 Policy-Based Selection . 115
6.6.2 Basic Cost-Sensitive Approaches . 115
6.6.3 Advanced Cost-Sensitive Approaches . 117
6.6.4 Other Approaches . 118
6.6.5 Summary, Comparison and Conclusion . 119

6.7 Publication Reference. 120

7. Response Execution and Preparation. 121
7.1 Analysis and System Design . 121

7.1.1 Requirements . 121
7.1.2 System Design. 122

7.2 Response Plan Description Language . 124
7.2.1 Targets . 124
7.2.2 Tasklists . 125
7.2.3 Steps . 127
7.2.4 Automated Generation of Response Plans . 129

7.3 Implementation . 130
7.4 Evaluation. 131
7.5 Related Work . 131

7.5.1 Response Execution in IRSes . 132
7.5.2 Network Management and Configuration Solutions 132
7.5.3 Control Flow Definition for Experiments . 133
7.5.4 Summary, Comparison and Conclusion . 134

7.6 Publication Reference. 135

8. Implementation and Evaluation . 137
8.1 Implementation . 137

8.1.1 Backend Implementation . 137
8.1.2 Information Model Representation and Setup . 139
8.1.3 Interfaces, Modules and Controller . 142

8.2 Evaluation. 144
8.2.1 Requirement Alignment . 144
8.2.2 Qualitative Analysis . 146
8.2.3 Blackboard Analysis . 147
8.2.4 Intrusion Response Capabilities Analysis . 151
8.2.5 Use Case Analysis . 160
8.2.6 Security and Threat Analysis . 165

8.3 Publication Reference. 167

Table of contents

9. Conclusions . 169
9.1 Contributions to Research Questions and Key Findings . 169
9.2 Future Work and Further Research Directions . 171

Abbreviations . 173

Glossary. 175

List of Figures . 177

List of Tables . 179

List of Algorithms . 183

List of Equations . 185

Bibliography . 187

1. INTRODUCTION

Computer networks are permanently affected by attack attempts. When hardening and
prevention mechanisms fail, active incident handling is required to ensure service con-
tinuity and resilience during an on-going attack. „The history of cybersecurity shows
that flawless intrusion prevention and perfectly accurate intrusion detection are practically
impossible.“[6] Due to non-interoperable prevention systems and ill-equipped state-of-the-
art Intrusion Detection Systems (IDS) raising high numbers of false positives and negatives
the need for actively defending computer networks arise [6].

Incident handling is a complex process consisting of comprehensive steps: The under-
lying infrastructure to protect (target system) is monitored continuously to observe its
healthiness. IDSes search for signs of intrusions and raise alerts if a security incident is
detected. Those alerts are processed and analyzed to find the root cause of an intru-
sion and extract more meaningful information. This root cause is mitigated by Intrusion
Response Systems (IRS) with suitable responses and identified security flaws are closed.

As nowadays computer networks are complex and the number and variety of security
incidents is constantly rising, incident handling has to be automated. „[. . .] [Computer]
systems [. . .] have reached a level of complexity and the attacks directed at them a level
of sophistication that manual responses are no longer adequate.“[50] Huge and complex
computer networks comprised of heterogeneous subsystems, different operating systems,
vendor specific components, and a large number of diverse devices complicate manual in-
teraction with those networks and impede a comprehensive analysis done by administrators
in case of security incidents.

Growing distribution of services provides an additional challenge and further increases
network complexity. Cloud services that have to be integrated within the own network
infrastructure, the increasing number of users having their own mobile devices, or remote
access for largely distributed power plants are some examples for increasing distribution of
networks. „However, in order to meet the challenges of continuously available trustworthy
services from today’s distributed systems, intrusion detection needs to be followed by
response actions.“[50]

„In addition, the absence of automated response actions can be overwhelming, espe-
cially when dealing with multiple incidents at once.“[100] Automation allows quicker and
less error-prone intervention than manual interaction, stops attacks and prevent the target
system from further damage [123, 168, 172]. „The longer it takes to detect events and
accurately respond to them, the more damage the organization sustains.“[18] Apart from
quicker and efficient responses, automated intrusion response capabilities have additional
benefits, like „responding to incidents systematically so that the appropriate actions are
taken[,] [. . .] use information gained during incident handling to better prepare for han-
dling future incidents and to provide stronger protection for systems and data [. . .] [and]
dealing properly with legal issues that may arise during incidents.“[23]

2 1. Introduction

1.1 Problem Statement and Research Questions

Automated intrusion response is a key element to effectively defend a target system under
attack. Containing the attack, stopping further spreading, and preventing further damage
ensures service continuity and resilience even during an attack. Incident handling combines
intrusion detection, alert processing and intrusion response into a continuous process to
better cope with security incidents and improve IT security as reaction times are shortened.
Especially, systems relying on providing continuous services, like critical infrastructures,
benefit from a continuous process of incident handling. Automating this process as a
whole is challenging as multiple aspects, different functionality and comprehensive views
have to be intertwined tightly to provide cooperative and continuous incident handling.

Considerable effort has been made to improve the single steps of incident handling.
However, a comprehensive solution interleaving single steps and gain a broad view is
missing. Existing partial solutions for incident handling lack in possibilities to interleave
those solutions. Information required in all steps has to be recollected instead of sharing
it in advance. Intermediate results helpful in subsequent steps are lost as only final results
are passed. To enable automated, useful incident handling a collaborative execution model
is required. The overall research objective of this thesis is

How to increase security of computer networks by integrating automated intrusion
response into a holistic Incident Handling System (IHS)?

This overall research objective can be divided further into research questions that are
discussed in more detail in the following.

Research Question RQ1 – What are requirements for an IHS? To answer this re-
search question not only requirements with respect to the overall system but from all single
components are of interests. Requirements for the overall system have to ensure com-
patibility between all needed single steps of the incident handling process. Functional as
well as non-functional requirements have to be determined in order to provide an effective
and useful IHS.

Research Question RQ2 – How to integrate all single steps into an IHS in a con-
tinuous manner? To integrate the single steps of incident handling into a holistic and
continuous process, a suitable execution model is needed that can couple the single steps
of incident handling. This execution model has to follow the requirements identified to
answer Research Question RQ 1. The need to process all steps of incident handling in
a continuous way arises from the need that during an ongoing attack the IHS has to
react to the detected security incident in order to prevent further damage. Waiting times,
discontinuities or interruptions will slow down the system and increase the chance for a
successful attack.

Research Question RQ3 – What information elements are required to support all
steps of incident handling? Besides the execution model required according to Research
Question RQ 2, a suitable information model is required. The single steps of incident
handling rely at least partially on the same information. In order to tightly interleave the
single steps of incident handling into a comprehensive process, the single steps have to

1.1. Problem Statement and Research Questions 3

follow a joint information model to be integrable. The information model has to provide
all knowledge that is needed for the overall process and couple the needed information
elements to allow cooperative interaction between the steps of incident handling.

Research Question RQ4 – How to reliably identify attacks in a stream of packets?
As the detection of a security incident is the first step to enable automated intrusion
response, detection has to be as early and reliable as possible. Detecting attacks within
a stream of network packets is challenging as an attack can be detected as such not
until corresponding packets are identified. For example the absence of a network packet
may indicate an attack recently. Checking for the non-existence of packets within a
stream is one aspect of this research question. Additionally, reassembling connections and
communication between multiple network elements needs to be discussed.

Research Question RQ5 – How to determine when to react? As IDSes produce
false positives and false negatives reacting on single alerts produced by an IDS is not
suitable. Additionally, alerts may be correlated with each other or describe the same
security incident. Therefore, a reasonable processing of alerts raised by IDSes is needed.
Furthermore, determining the correct point in time when intrusion response has to be
triggered is challenging. Reacting to early may result in an ineffective choice of responses
while reacting to late will result in unnecessary damage. A continuous way of processing
alerts and coupling alert processing with the trigger of intrusion response is inevitable.

Research Question RQ6 – What are suitable response options and how to identify
them? After identifying a security incident and triggering intrusion response, the re-
sponse options have to be determined. Hereby, the current network situation has to be
taken into account. This includes amongst others the identification of suitable responses
with respect to the detected attack and the network capabilities with respect to deployed
and available responses.

Research Question RQ7 – How to assess and select an optimal set of responses from
multiple response options? Given a suitable set of response options the subset of those
options that is most effective under the current situation has to be selected. As a security
incident may effect multiple victims, a combination of responses is needed. Responses
may conflict with each other, such that those responses cannot be used in conjunction.
The challenge while answering this research question is to determine a suitable model that
can represent relations between responses themselves and with other related entities.

Research Question RQ8 – How to deploy and execute the selected set of responses
within the target system? After determining the set of responses that has to be exe-
cuted to cope with the security incident those responses have to be deployed and launched.
Therefore, an adequate description language to define the control flow is needed to appro-
priately schedule responses and respect interdependencies between responses. Response
deployment is a challenge as well, as responses may be applicable to multiple network
entities and implementations may change. This last step of the incident handling process
is currently neglected in existing approaches.

4 1. Introduction

1.2 Contributions and Chapter Overview

The contribution of this thesis is the study and development of a comprehensive, collab-
orative and distributed IHS consisting of the following single steps: intrusion detection,
alert processing and intrusion response. The IHS provides an execution and information
model allowing to tightly interleave those single steps and enables continuous processing
during an ongoing attack. As the focus is mainly on automated intrusion response ca-
pabilities, the most important functionality within intrusion response are covered in more
detail to provide enhanced and automated intrusion response.

The contributions, including the mapping to the research questions raised in Sec-
tion 1.1, and the structure of this thesis are summarized in Table 1.1. The structure of
this thesis follows the research questions introduced in Section 1.1. The contribution to
answer a research question can be a model, e.g. an execution model or information model,
a simulation that is based on the implementation of a specific part, or a use case, e.g. a
case study. In case parts of the presented work are already published, the citation is given
for the respective chapter.

Tab. 1.1: Contributions and Structure of this Thesis

C
ha
pt
er

Contributions and Research Questions M
od

el

Im
pl
em

en
ta
ti
on

Si
m
ul
at
io
n

U
se

C
as
e

P
ap

er

RQ1, RQ2, RQ3 – Proposed IHS

3 Collaborative and distributed IHS using a common in-
formation model

• [62]

RQ4 – Intrusion Detection

4 IDS based on Complex Event Processing (CEP) • • • • [63]

RQ5, RQ6 – Suitable Responses and Triggers

5 Response identification including a collection of suitable
responses

• • •

RQ7 – Response Selection Strategies

6 Response selection based on Mixed Integer Linear Pro-
gramming (MILP)

• • • [64]

RQ8 – Response Execution and Deployment

7 Response execution including a response plan descrip-
tion language

• • [162]

RQ2, RQ3 – Proposed IHS

8 Overall system implementation and evaluation • • • [62]

1.2. Contributions and Chapter Overview 5

Chapter 1 gives an introduction into this thesis. The research objective is examined
and conducted research questions are discussed. The contributions of this thesis are
presented and mapped to the research questions and the document structure.

Chapter 2 provides the background for this thesis. Basic terms as well as a short
introduction into the single steps of incident handling namely intrusion detection, alert
processing and intrusion response is given.

Chapter 3 explains the overall design of the proposed IHS. Research Question RQ1
is covered in this chapter as functional and non-functional requirements are examined
and explained. The execution model of the system is provided and answers Research
Question RQ2. To cover Research Question RQ3, the underlying information model is
examined and mapped to the processes of incident handling. This chapter is focusing
on the overall design of the IHS. Parts of this work are already published, cf. [62]. The
following chapters single out the individual steps of incident handling.

Chapter 4 answers Research Question RQ4. We propose a Network-based Intrusion
Detection System (NIDS) that is capable of extracting attacks from a stream of network
packets and identifying attacks on specific protocols by analyzing the communication
between network entities. The design of this NIDS is based on CEP to provide continuous
processing. Parts of this work are already published, cf. [63].

In Chapter 5 we answer Research Question RQ5 and RQ6. Possible responses are
examined due to a literature search and structured according to relevant features and
available taxonomies. Additionally, this chapter shows possibilities on how to trigger re-
sponses appropriately. The interfaces with the overall IHS are examined and the usage of
the information model is shown.

Chapter 6 focuses on Research Question RQ7. We propose a response selection ap-
proach based on MILP optimization. Therefore, an appropriate model is introduced that
covers relations between responses and other required entities. We provide an implemen-
tation and show the applicability of our approach by simulating different input settings.
Hereby, we analyze the influencing factors of our system that increase the problem com-
plexity. Additionally, interfacing with the overall IHS and the usage of the information
model is shown. Parts of this work are already published, cf. [64].

Chapter 7 is concerned with Research Question RQ8. We provide a description lan-
guage for a response plan that specifies the control flow of interacting responses and
allows to specify the interdependencies between responses. Additionally, we provide a re-
sponse execution framework that is capable of deploying and launching responses. We
show, how this system interfaces with our overall IHS and how the information model is
utilized. Parts of this work are already published, cf. [162].

Chapter 8 forges the bridge to Chapter 3 as the proposed overall IHS is evaluated.
Therefore, the system described in Chapter 3 is implemented and all components from
Chapter 5 to 7 are integrated. Using this implementation, the applicability of the proposed
IHS is shown. Parts of this work are already published, cf. [62].

6 1. Introduction

2. BACKGROUND

In this chapter the background for this thesis is examined. First, the basic terms are out-
lined in Section 2.1. Afterwards, an introduction into Intrusion Detection Systems (IDS)
is given in Section 2.2. This includes an overview on IDSes as well as the standardized
alert format, called Intrusion Detection Message Exchange Format (IDMEF). Required
processing steps for alerts generated by IDSes are examined in Section 2.3. Afterwards,
classification methods as well as properties and characteristics of responses are examined
in Section 2.4. The last section, Section 2.5, addresses Intrusion Response Systems (IRS)
including a taxonomy to describe an IRS and the required steps of intrusion response.

2.1 Basic Terms

Computer security was defined by NIST [60] as „the protection afforded to an automated
information system in order to attain the applicable objectives of preserving the Confiden-
tiality, Integrity and Availability (CIA) of information system resources (includes hardware,
software, firmware, information/data, and telecommunications).“ Integrity, availability and
confidentiality are often called security properties. This traditional security properties are
extended by authentication and non-repudiation [90, 143].

A security attack is any malicious action that compromises those security proper-
ties [143]. Attacks can either be active or passive [131], whereat active attacks effect the
target system directly and passive attacks are used to gain information about the target
system. The source or potential of an attack refers to as threat, while risk describes the
likelihood of a successful attack against the target system. A vulnerability describes a
security flaw or weakness within the target system that increases the chance of a success-
ful attack. A detected attack refers to as security incident that may contains multiple
security events and can be comprised of multiple attack steps [131].

Intrusion Detection Systems (IDS) are so-called security services monitoring and an-
alyzing the target system to detect security events. They may combine single security
events to get a bigger picture of what is going wrong in the target system [131]. Intrusion
Prevention Systems (IPS) defend attacks before they can harm the target system, e.g. by
using different hardening mechanisms, access control or firewalls [90]. Attack avoidance
is defined as additional security mechanism, whereas, gained information is made unusable
for an attacker [90].

IDSes can be extended by response capabilities. This means that in case of detect-
ing a security incident a response to counteract the security incident can be triggered.
Responses are also referred to as countermeasures or counteractions. Those systems
are called Intrusion (Detection and) Response Systems (I(D)RS). The most simplistic
response of an I(D)RS is to trigger an alert in case of a detected intrusion that describes
the security incident. A common format for alerts is the Intrusion Detection Message
Exchange Format (IDMEF) [35].

In general, an IDS can be modeled using the Common Intrusion Detection Framework
(CIDF) [152] as shown schematically in Figure 2.1 with four components fulfilling spe-

8 2. Background

cific roles. Event boxes (E-boxes) are generating events based on monitoring the target
system’s state. This may include monitoring log-files, network traffic or communication
relations between single components of the target system. Analysis boxes (A-boxes) cap-
ture events from the event boxes to analyze them and trigger alerts in case of a security
incident. A-boxes can take alerts as inputs for further analysis on a higher level, e.g.
to correlate or aggregate alerts. Data boxes (D-boxes) simply store alerts or events for
forensics or persistence reasons. Response boxes (R-boxes) are consuming alerts including
actions to counteract a security incident.

Monitored Environment (Target System)

E-box E-box

A-box

A-boxA-box

D-box

R-box

Fig. 2.1: General Structure of an IDS According to [152]

As the number of alerts triggered by an IDS may be enormous, alert processing is
introduced to reduce the number of alerts and increase the meaning of a single alert.
Within this work we refer to incident handling as the combination of the three main steps,
namely intrusion detection, alert processing and intrusion response. A system providing
all these single steps is referred to as Incident Handling System (IHS).

2.2 Intrusion Detection Systems

Different methods for structuring and classifying IDSes are available [36, 90, 122, 143].
Among others the location and the detection method are functional characteristics for
IDSes [36]. Both criteria are examined shortly in the following Subsections 2.2.1 and 2.2.2.
As alerts play a central role within intrusion detection the common and standardized format
IDMEF is described shortly in Subsection 2.2.3.

2.2.1 Host vs. Network-Based Detection

The first criterion IDSes can be divided into, is the location an IDS is placed.
A Host-based Intrusion Detection System (HIDS) is directly located on the host that

is monitored. Such a HIDS has access to the system’s resources and information available
on a single host, e.g. log files. In case of an infection of the monitored host, the HIDS

2.2. Intrusion Detection Systems 9

may be compromised by an attacker having root access. The information, such a system
can gain, is very detailed but limited to a single host instance. In case of multiple hosts
in the target system, a HIDS has to be deployed on every single host [36, 90, 122, 143].

SAMHAIN 1 or OSSEC 2 are typical representatives of HIDSes. Both provide a server
instance collecting information from agents deployed on and monitoring every single host.

Network-based Intrusion Detection Systems (NIDS) are deployed across the network
and are monitoring the communication between hosts. They can gain a much more high-
level view on what is going on in the network but have a limited insight into the single
hosts deployed in the target system. An attacker has to attack the NIDS directly in order
to compromise it, those IDSes are more isolated from the target system than HIDSes. A
challenge for NIDSes is the placement of such systems as they need insights in all packets
from the network communication. High-speed networks may be also a challenge to those
systems as such networks enlarge the number of packets to inspect [36, 90, 122, 143].

Snort 3 and Bro 4 are typical representatives of NIDSes.
Hybrid solutions combine both approaches and analyze events from HIDSes as well as

NIDSes to gather more insights into the target system [36].

2.2.2 Intrusion Detection Methods

The second criterion IDSes can be divided into is the method of intrusion detection. The
main assumption of intrusion detection is that in case of an intrusion the observations
differ from legitimate situations [143]. In [36, 90, 122, 143] the detection methods are
split up differently that shows the difficulties arising from defining the scope of detection
methods.

IDSes can be distinguished between knowledge-based and behavior-based methods [36].
The first group uses predefined knowledge for example signatures or rules. Gathering and
maintaining this knowledge can be very difficult and time-consuming, but those systems
provide a low false alert rate. For the second group the assumption is that an intrusion
can be detected as derivation from the normal behavior that is learned during an initial-
ization phase of the system. Those systems suffer from a high false alert rate, changing
legitimate behavior and inappropriate learning sets may contain attacks. On the other
hand side, those systems are capable of detecting new attacks without time consuming
maintenance effort.

Kruegel et al. [90] use the definition of misused-based and anomaly-based methods.
Whereat, misused-based systems follow the paradigm to specify the attack and look for
signs that this attack had happened. This is done using signatures or models. Anomaly-
based systems in contrast define the normal behavior and are searching for deviations.
This may include that mis-configurations are treated as attacks.

Both descriptions overlap and do not clearly distinguish between the features a method
provides. Therefore, the following differentiation will be used for clarification. The input
of an IDS can be categorized as

• Knowledge that has to be available in advance, e.g. protocol specifications

• Observations that have been made about the target system, e.g. traffic dumps

The strategy of what an IDS is observing during its analysis can be categorized as
1http://www.la-samhna.de/samhain/
2http://ossec.github.io/
3https://www.snort.org/
4https://www.bro.org/

http://www.la-samhna.de/samhain/
http://ossec.github.io/
https://www.snort.org/
https://www.bro.org/

10 2. Background

• Observing normal activities

• Observing abnormal activities

That will result in four different classes of detection methods with more precise features
of provided methods.

2.2.3 Intrusion Detection Message Exchange Format (IDMEF)

The Intrusion Detection Message Exchange Format [35] defines a data format as well as
exchange procedures for alerts triggered by IDSes to provide heterogeneous information
among different systems interacting with each other. The format is given in Extensible
Markup Language (XML) due to various reasons listed in [35].

An IDMEF message is either a heartbeat or an alert. A heartbeat provides information
about the analyzer sending the heartbeat, the creation time as well as application-specific
additional data. Whereas, the analyzer is the IDS.

An alert extends this information by the detection time of a security event, the analyzer
time, information about source and target, the classification of the security event and the
assessment information. The analyzer time is the time the analyzer noticed the event.
Both, source and target, may include information regarding the node, user, process and
service that can be determined.

As different analyzers have different detection capabilities, IDMEF defines so-called
core classes as main parts of an alert, namely the analyzer, classification, source, target
and additional data. To be compliant with the CIDF [152], the assessment field provides
the option to define an action to be executed as a response to the security incident. More
detailed information about the structure of IDMEF and provided information can be found
in RFC 4765 [35].

2.3 Alert Processing

In [90] alert processing is defined as the „process that takes as input the alerts [. . .] and
provides a more succinct and high-level view of occurring or attempted intrusions“. Single
alerts are combined into meta alerts also referred to as alert context or hyper alert [106].

First, alerts from different IDSes have to be collected. Even if the deployed IDSes use
IDMEF as alert format, they may provide information using different syntax and semantics.
Therefore, all incoming alerts need to be normalized. Additionally, the alerts have to be
preprocessed to determine the alert time, source and target of the alert as well as the
attack type of the alert. For both steps, normalization and preprocessing, a so-called
ontology database is utilized.

The next step in alert processing is alert fusion, also called aggregation, that combines
duplicates of alerts. According to [90], alerts are fused in case the alert time differs within
a predefined time span t and all other attributes of the alert except the analyzer are
equal. In [176] alert aggregation is defined more generic as grouping alerts that have
similar features. The features and the calculation for similarity are not further specified.
As a measure of similarity the comparison of source, target and attack classification can be
used [40]. According to [34] a combination of those features is sufficient for aggregation.

As false-positive reduction is essential when dealing with alerts, alert processing can
be useful to undertake this task [27]. According to [90], an IDS can either send an alert
in case of a successful attack, an unsuccessful attack attempt or a non-malicious event.
The two later ones have to be filtered out by alert verification.

2.4. Structuring Responses 11

In the attack-thread-reconstruction phase multiple alerts are mapped to an attacker
attacking a single target. This is done by merging alerts with the same source and target.
In the attack session reconstruction host- and network-based alerts are linked together.
A simple way to implement this is linking alerts such that first an attack on a host occurs
that launches a network attack afterwards. In the attack focus recognition hosts being
either source or target are identified. Attacks having a single source but multiple targets
are referred to as one2many and attacks having multiple sources but a single target are
referred to as many2one [90].

To find more high-level alert structures multi-step correlation is used [90]. Hereby,
not the similarity of alerts is crucial but relations due to semantical meanings. A typical
example is malware spreading over the network. Starting from a single host, attacks are
launched to infect other hosts that for their part launch attacks again. Hereby, typical
attack patterns consisting of individual attacks can be observed.

Within the impact analysis the effects of an attack on the target system is determined.
Based on this impact alerts or alert contexts can be prioritized to identify the most urgent
ones. The last step of alert processing is alert sanitization where sensitive data is removed
using pseudonymization and anonymization [90].

2.4 Structuring Responses

Within this section, the goal is to achieve a closer look on responses. First, we examine
possible classification methods for responses in Subsection 2.4.1. Afterwards, we dive into
more details on response properties in Subsection 2.4.2.

2.4.1 Classification Methods for Responses

RFC 2828 [131] defines a countermeasure as „an action, device, procedure, or technique
that reduces a threat, a vulnerability, or an attack by eliminating or preventing it, by
minimizing the harm it can cause or by discovering and reporting it so that corrective
action can be taken.“ In the following the term response will be used in the sense of a
countermeasure in form of a concrete action triggered by an alert reported during the
intrusion detection phase. As the number and variety of possible responses due to a secu-
rity incident is huge, first some basic considerations on responses are done. This includes
extracting possible criteria on how to structure responses from different taxonomies or
ontologies found in literature.

According to [5] a response can either be active or passive. Active responses are used
to minimize the attacker’s impact on the system. In the best case the attack can be
completely mitigated by using those responses. An active response may set the target
system into an unstable state or do some other harm to the system. Therefore, selection of
active responses has to be done carefully. Passive responses only notify other components
without taking further actions. For example, sending an alert is a typical passive response.

In [5] active responses are further divided into proactive and reactive responses. Proac-
tive responses are executed before a security incident occurs, while reactive responses are
triggered after the detection of a security incident. Proactive responses are used for IPSes,
while reactive responses are common in Intrusion Response Systems (IRS). Proactive re-
sponses can also be considered as delayed responses [128]. A proactive response can be
executed during a security incident or after a security incident (recovery) [21]. In [103]
passive responses are referred to as trace-back methods while active responses are referred
to as incident handling strategies.

12 2. Background

In [80] the idea of so called one-shot and sustainable responses is proposed. A one-
shot response is only effective as it is executed, that means its lifetime is limited to a
single attack. After launching the response it will be automatically deactivated after a
certain time. In contrast a sustainable response will stay effective even after the occur-
rence of an attack. Sustainable responses can be divided into defeasible and indefeasible
responses. A defeasible response can be deactivated, while an indefeasible response can
not be deactivated.

In [128] the use of the location where a response is executed is proposed as an ad-
ditional feature to categorize responses. The authors name the attacker machine or the
intruder machine as possible location to execute a response. Additionally, they take the
attack path into account. The authors define that the attack path consists of the starting
point (attacker machine), the firewall point (firewall and routers), the midpoint (interme-
diary machines) and the endpoint (target machine). A response can be executed on all
points of this attack path.

In [177] responses are classified as passive, neutral or positive. It is claimed that every
response has to fall into one of these categories, but no further description is given.

In [103] responses can be executed in one of the following phases: containment,
eradication or recovery. During the containment phase first aid measures are taken to
stop the intrusion from spreading over the whole system. Those actions can be taken
while an attack is ongoing. After containing the attack, the system has to be cleaned up
within the eradication phase to eliminate the attackers access. This may includes changing
passwords or re-build or re-install the compromised systems. The recovery phase deals
with potential data loss occurred during the security incident. Possible activities within
this phase include the restoration of user data from trusted backups or reviewing system
configurations and protection mechanisms. Within this thesis the main focus lays on
containment activities to stop the intrusion.

In [181] response and recovery action are classified as:

• Rollback actions try to bring the components back to a save and secure state.

• Roll-forward actions try to find a new state from which the component can be
operated securely.

• Isolation actions try to perform physical or logical exclusion of the faulty compo-
nents.

• Reconfiguration actions try to switch to spare component or reassign tasks to other
available components.

• Reinitialization actions try to check or record new configuration or update compo-
nents or configurations.

Those basic considerations on responses are used for classification and structuring of
available responses in Subsection 5.1.3.

2.4.2 Response Properties and Characteristics

Despite the possibility to split up responses into different categories, every response has
dedicated properties and characteristics that influence the response model. Some common
properties of responses found in literature are listed in Table 2.1.

The Time To Restore (TTR) describes the time between the detection of a security
incident and bringing the system into service again, measurable in mean (TTRM) and

2.5. Intrusion Response Systems 13

Tab. 2.1: Overview of Metrics to Evaluate Responses

Property Name Description Related Work

P1 TTR Time To Restore [23, 101, 140]
P2 PRT Policy Reaction Time [140]
P3 IRT Incident Response Time [140]
P4 DTC Downtime of critical components [23, 67, 140]
P5 DTT Downtime during critical time-slots [140]
P6 E Effectiveness [23, 67]
P7 comp Complexity or severity [101]
P8 S Error-proneness or likelihood of success [20, 67, 101]

maximum (TTRMa). It is made up of the Policy Reaction Time (PRT) and the Incident
Response Time (IRT) by the following definition

TTR = PRT + IRT = PRT + IRecT + IResT (2.1)

The Policy Reaction Time (PRT) describes, hereby, the time the policy engine needs
to decide what to do. The Incident Response Time (IRT) describes, hereby, the time
between the start of recovery steps (IRecT) and bringing the target system into service
again by appropriate restoration actions (IResT).

The downtime of critical components (DTC) or during critical time-slots (DTT)
describes that important services are not available during the execution of a response. The
effectiveness (E) of a response describes the benefit for the affected entity the response
is executed on. This may be for example the degree of increasing availability gain. The
complexity or severity (comp) of a response describes how difficult it is to execute this
response, e.g. due to additional configuration issues or system complexity. The error-
proneness or likelihood of success (S) describes the likelihood that after execution of the
response the security incident is solved for the affected entity respectively how likely an
error occurs during the execution of the response.

2.5 Intrusion Response Systems

Within this section, the goal is to gain a closer look into IRSes. In Subsection 2.5.1,
we first examine an IRS taxonomy that was extended by different authors in multiple
steps. Afterwards, the single steps of intrusion response are examined in more detail in
Subsection 2.5.2.

2.5.1 Overview and Taxonomies

In [142] a taxonomy for IRSes is presented that was later on extended and visualized [128,
130].

According to [142] IRSes can be split up with respect to the activity of responses they
trigger into active and passive responses. Passive responses notify about the security
incident and provide information about the attack and do not attempt minimizing already
caused or further damage. Traditionally, IDSes provide this passive response capability
by raising an alert in case of an attack. Active systems are more invasive to the target
system and try to minimize the damage or prevent attack steps.

14 2. Background

Another distinction criterion regarding to [142] is the degree of automation that dif-
ferentiates between simple notification systems, manual response systems and automated
intrusion response systems (IRS). A notification system only notifies about the security
incident going on, while a manual response system highlights options that can be done
in order to cope with the ongoing security incident. An automated IRS do not need any
feedback from outside and triggers a response completely automated.

Automated IRSes can be divided further with respect to their ability to adjust into
static or adaptive systems. Static means that the response selection mechanism can either
be static during an ongoing attack or adaptive to changing environmental conditions [142].

The time instance of an automated IRS can either be proactive also called preemptive
or delayed. In case of proactive responses the system tries to forecast a security incident
before happening and to predict how to react. A delayed response is going to be triggered
after an attack is confirmed [142].

Another distinction criterion according to [142] is the cooperation capability of an
automated IRS. An IRS can be a stand-alone system that acts autonomous or it can be
a distributed system that supports cooperation over multiple instances.

A central functionality of an IRS is the response selectionmechanism. In [142] response
selection is divided into static mapping, dynamic mapping and cost sensitive mechanisms.
Static mapping maps a predefined response directly to an alert. With respect to system
complexity and the huge amount of threat scenarios this approach is claimed to be infea-
sible [151]. The enhancement of static mapping is to use dynamic mapping that includes
attack metrics into the response selection. This can be expressed with Event Condition
Action (ECA) rules. This approach is more flexible and the response selection is done
just-in-time when an alert is raised. Cost-sensitive mappings try to balance the damage
a security incident causes and the costs of a response. Hereby, the optimal response can
be determined if the response as well as the damage can be assessed.

In [130] the costs of a response can be modeled with a static, static evaluated or
dynamic evaluated cost model. Within a static response cost model static costs are
assigned to each response. Within static evaluated response cost models the costs of a
response are evaluated beforehand by an evaluation mechanisms for each response. In
contrast dynamic evaluated response cost model take the network situation into account
and determines the response costs online.

With respect to response execution, the authors of [130] distinguish between burst
and retroactive strategies. In burst mode all responses are executed together, while in
retroactive mode response execution is more fine-grained.

In [128] two additional dimensions for classifying IRSes are examined, namely applying
location of responses and the response lifetime. The location, a response can be applied
on, are all parts of the attack path, namely the attacker machine, firewalls and routers,
intermediate machines and the attacked machine. A response can either be sustainable
within the system or has to be deactivated after a certain time.

In [128] risk assessment is examined as a key capability of IRSes that influences the
cost-sensitive mapping within the response selection. Assessment strategies can be based
on service dependency graphs, attack graphs or can be non-graph-based.

In [66] three classes of automated IRSes are identified. Adaptive-based is derived
from [142] and describes systems using a feedback loop evaluation previous responses.
Expert-based systems use metrics to determine a response and association-based systems
are using decision tables.

According to [142] an ideal IRS is automated, proactive, adaptable and cost-
sensitive. [130] suggests additionally, that an IRS should be retroactive and use a online

2.5. Intrusion Response Systems 15

response cost evaluation model. The authors in [128] extend this recommendation by
the elastic property to support response activation and deactivation.

2.5.2 Steps for Intrusion Response

In the previous Subsection 2.5.1 it became apparent that intrusion response has to support
different tasks. This subsection focuses on examining those different steps in more detail
and chronological order.

After a security incident is detected and additional information is gathered during alert
processing, intrusion response has to be triggered. Here, different approaches can be used,
for example, the confidence level of a detected security incident is high enough [141].
Another condition for triggering may be the priority of a security incident exceeding a
certain threshold.

Next, the candidate responses have to be identified. Candidate responses are all
responses that could be potentially used for the given security incident and target system.
This means candidate responses have to be:

• Effective and helpful against a certain security incident and

• Deployed such that the affected entity is covered by the response.

After identifying candidate responses those candidate responses have to be assessed
with respect to certain metrics [128, 130]. This is necessary because from the candidate
responses a certain set has to be selected [142]. This selected set has to be optimal with
respect to the assessed metrics.

After selecting the optimal set of responses a response plan has to be prepared. This is
required in case selected responses have relations like pre- or postconditions or a dedicated
execution sequence needs to be enforced.

Finally, the response plan has to be deployed on the target system [128, 130]. Here,
the execution has to be monitored such that all responses are executed according the
response plan and no errors occur.

During the execution of responses the responses have to be evaluated in terms of
different metrics. Those metrics are a required input for response assessment [128, 130].

16 2. Background

3. ANALYSIS AND SYSTEM DESIGN

In this chapter we present the analysis as well as the system design for our proposed
Incident Handling System (IHS). First, we introduce functional and non-functional re-
quirement an IHS has to fulfill in Section 3.1. In Section 3.2 we introduce the incident
handling process, the underlying pattern, the Blackboard Pattern, used for our system
design and the mapping of this pattern to the incident handling domain. Afterwards, we
examine the underlying information model of our system, including requirements for such
a model and related work in Section 3.3. In Section 3.4 we examine the functional seg-
mentation of the incident handling process and describe our modules for all steps within
the incident handling process in more detail. In Section 3.5 we present related work on
IHSes, provide an overview on existing execution models and frameworks and compare
identified related work against our identified requirements. As the proposed system is
already published in [62], in the last section a publication reference determines the own
contribution to this system (see Section 3.6).

3.1 Requirements

The requirements for an IHS arise from functional and non-functional needs an IHS has
to cope with. Those requirements were identified due to the literature search of available
Intrusion Response Systems (IRS). Some requirements are directly stated in literature. In
this case the reference is given in the description of the requirement. Other requirements
arise from features or shortcomings of available IRSes. First, the functional requirements
are examined in Subsection 3.1.1. In the second subsection, Subsection 3.1.2, the non-
functional requirements are explained.

3.1.1 Functional Requirements

A functional requirement specifies the system’s range of functions and the system’s be-
havior. The functional requirements arise from different areas and are specified in more
detail in the following.

Requirement RF1 – Multiple Intrusion Detection Systems (IDS): The system has
to be able to cope with multiple input sources (e.g. IDSes) generating alerts (cf. [43]).
This is needed as different IDSes can be deployed within a network, e.g. Host-based Intru-
sion Detection Systems (HIDS) or Network-based Intrusion Detection Systems (NIDS).
The need to use multiple IDSes arise from the fact that different locations an IDS can be
placed, leads to different insights into the target system. In order to provide a holistic se-
curity incident report and a knowledgeable response to the security incident, all generated
alerts have to be included into the incident handling process.

Requirement RF2 – Support Alert Processing: The system has to support alert
processing capabilities (cf. [43]). As the number of alerts from different IDSes is enormous
and may differ in terms of their semantical meaning, automated intrusion response cannot
be meaningful without combining alerts together. Otherwise, the automated intrusion

18 3. Analysis and System Design

response will overload the target system with unnecessary responses may not having the
expected success.

Derived from Subsection 2.5.2, where a description of the needed steps of intrusion
response is given, an IHS has to support the following functionalities.

Requirement RF3 – Flexible Triggers for Automated Intrusion Response: The
system has to be able to specify different conditions, intrusion response has to be triggered
on (cf. [141]). This is needed to support different use cases that need a flexible strategy
to describe policies when to use an automated intrusion response. Consequently, not only
the ability to trigger an automated intrusion response is essential, but also the adjustment
ability of the trigger mechanism.

Requirement RF4 – Response Identification: The system has to support multiple
responses that can be mapped to a security incident (cf. [141]). This ensures that different
respond strategies can be implemented, deployed and used simultaneously. This is needed
because the optimal response to use depends on the system state of the target system.
Therefore, a static mapping between attack and response is not sufficient enough.

Requirement RF5 – Cost-Sensitive Response Assessment: The response costs
as well as the attack costs has to be determined by the system (cf. [142]). This is
done using a cost-sensitive approach as described in Subsection 2.5.1. This is needed to
properly identify a suitable response in case more response options are available (cf. RF3).
Additionally, the system has to be able to determine whether or not a response is executed.

Requirement RF6 – Optimal Response Selection: The system has to find an op-
timal solution which responses to use from a given set of candidate responses suitable
for a security incident (cf. [141]). This includes not only to find the most efficient re-
sponses with respect to certain metrics, but interdependencies between responses have
to be considered. For example, responses can conflict with each other, or need pre- or
postconditions that have to considered when trying to find the optimal set of responses.

Requirement RF7 – Response Plan Preparation: The system has to be able to
deploy and coordinate a complex combination of multiple responses. This includes allowing
distributed responses as well as parallel or sequential execution of responses. The system
has to, therefore, consider dependencies between responses, e.g. pre- and post conditions
or conflicting responses. According to this interdependencies between responses a holistic
response plan, combining all responses into a structured control flow of the execution,
needs to be generated.

Requirement RF8 – Response Deployment and Execution: The system has to be
able to retroactively execute and deploy selected responses following the prepared response
plan (cf. RF7). That means the system has to provide mechanisms to communicate with
actors in the response plan and trigger the responses appropriately. Requirement RF7
and RF8 are necessary to achieve a retroactive system as recommended in [130].

3.1.2 Non-Functional Requirements

In contrast to functional requirements non-functional requirements describe criteria to
estimate the system’s operation rather than specifying concrete functionality. Derived
from Subsection 2.5.1 an IHS has to fulfill the following non-functional requirements:

Requirement RNF1 – Automated: The IHS has to be automated such that no
manual intervention is needed and notification capabilities are extended to response ca-
pabilities (cf. [142]). This encompasses all functionality the IHS provides. This is needed
as automated incident handling benefits in terms of speed of reaction that leads to less
damage as a security incident may be stopped.

3.1. Requirements 19

Requirement RNF2 – Adaptable: The IHS has to be adaptable such that during
intrusion response the response plan can be adapted to changing environmental conditions
(cf. [142]). This includes for example to include additional targets into the response plan
or re-select responses as they appear inefficient during execution. This is important as
during an ongoing attack the decision basis may change.

Requirement RNF3 – Comprehensive View: The system has to be able to cope
with multiple targeted hosts or subsystems and consider the security incident as a whole.
Additionally, this includes helping as much as possible compromised network elements
(cf. [165]). Instead of local decisions that may conflict, a global view of the situation
is needed to ensure the effectiveness and efficiency of all selected responses. A global
view can combine all available information about the target system, used policies and the
security incident itself.

Requirement RNF4 – Generality: The system must not be restricted to a single
application domain, but has to be general enough to be used in a flexible manner and
multiple domains (cf. [59]). This does not mean that expert knowledge from specific
domains is not necessary, but the integration of additional fields of application should be
as easy as possible. Therefore, the system design itself must not include any domain
specifics.

Requirement RNF5 – Continuity: The system has to provide a continuous processing
of all required steps of incident handling in order to cope with a continuous on-going
attack. This includes intrusion detection, alert processing as well as intrusion response.
Sequential processes, i.e. the sequence of detection, processing and resolving is fixed, are
not suited. As every step is done one by one and the results of the previous step are the
input of a subsequent step, a bunch of problems occur. First, information get lost from
one step to another and subsequent modules cannot access them anymore. Additionally,
the order of single steps is not clear, as for example an incoming alert can be prioritized
but a correlated alert as well. Another grave issue of such a sequential process is, how to
map an infinite stream of alerts to such systems. This infinite stream arise the need of
continuously processing information that sequential processing cannot afford.

Requirement RNF6 – Active Responses: The system has to disable detected secu-
rity incidents directly even during the attack (cf. [165]). This implies that the responses
that are executed are active and not passive. Furthermore, the supported responses has
to exceed recovery actions reconstructing a safe state after a security incident. The used
responses have to be applied during an attack is ongoing.

Requirement RNF7 – Collaborative: Incident handling covers multiple functional
aspects, namely intrusion detection, alert processing and intrusion response. Within this
processes many tasks have to be executed. All those single tasks rely – at least partially
– on the same information or on intermediate results another task produces. Therefore,
the system has to support collaborative strategies that allow an interaction between all
modules fulfilling such a task. Additionally, a collaboration support allows to run the single
modules across the network to distribute the incident handling process.

Requirement RNF8 – Modularity: All tasks of the single steps of the incident han-
dling process have to be exchangeable. That implies that interfaces and behavior of all
tasks are well-defined and free of interference as well as conflicts. Moreover, the single
modules are not hard-wired with each other or components of the IHS on the one hand.
On the other hand the system design does not rely on a certain implementation of a
module.

20 3. Analysis and System Design

3.2 System Design Overview

The main challenges of the system design for our IHS are to

• Separate and split up the functionality of the incident handling process into separate
modules that are interference free and

• Provide an information sharing component based on an information model to support
collaboration between those modules.

Therefore, we first give a short wrap up of the incident handling process in Sub-
section 3.2.1. Afterwards, we examine a software pattern that suits our need, called
Blackboard Pattern, in Subsection 3.2.2. This pattern is than mapped to our application
domain in Subsection 3.2.3.

3.2.1 Incident Handling

The proposed IHS supports all needed steps of incident handling to cover the whole life
cycle of a security incident, beginning from the detection of a security incident, covering
the analysis, and finally identify, select, and execute appropriate responses.

Intrusion Detection The infrastructure to be secured (target system) is monitored by
different IDSes. This may include HIDSes as well as NIDSes as both systems can deliver
different insights into the target system’s state. Every IDS will generate alerts that are
delivered to the proposed IHS in case an intrusion is detected. The proposed IHS provides
multiple interfaces for those alerts.

Alert Processing The alert processing is first responsible for normalizing the incoming
alerts. This is needed as multiple systems may have an inconsistent naming or description
of the alerts. After normalization the alert is stored in the proposed IHS and is accessible to
other components of alert processing. Steps, like aggregation, correlation or prioritization,
are than done based on the inserted alerts in parallel. Alert processing is responsible to
extract more meaning from single alerts and to identify the underlying security incident of
incoming alerts.

Intrusion Response As soon as the intrusion response process is triggered responses
capable of solving the security incident are identified and bundled. From this set, the
response selection can determine which responses to choose in order to optimize the
resulting costs to cope with the security incident. After determining this optimal set
those responses can be applied to the target system that is secured by the proposed IHS.
During and after execution the selected responses are evaluated. Those results are stored
in the proposed IHS to be accessible for new decisions in terms of response assessment.

Holistic Process In the following we refer to the holistic process as incident handling.
Intrusion detection, alert processing and intrusion response are referred to as steps. Those
single steps can be further divided into single tasks (see Sections 2.3 and 2.5). A com-
ponent executing such a task is referred to as module or knowledge source using the
Blackboard Pattern phrase.

3.2. System Design Overview 21

3.2.2 Blackboard Pattern

We identified the Blackboard Pattern as a suitable design pattern for our IHS as it provides
an information sharing component and autonomous modules collaboratively working on
shared information. Furthermore, this pattern was used for IDSes in earlier work (cf. [32,
33, 102]), but they did not cover alert processing and intrusion response. As this pattern
lays the foundation of our system design, we give a short introduction in the following.

The Blackboard Pattern [17, 91], further examined in [75], is based on the idea to
introduce a shared data structure acting as a global memory. This data structure is
called blackboard. Modules, called domain knowledge sources with different application
and domain-specific knowledge work on the blackboard independently. The goal is to
divide a problem into subproblems, that can be solved autonomous by those modules.
Modules store intermediate and partial results on the blackboard, or combine and delete
information from it. The final solution is produced by the collaboration of those modules.
Communication between modules is exclusively done on the blackboard. The main com-
ponents of the Blackboard Pattern are examined in the following and shown in Figure 3.1
in UML-Notation taken from [91].

Control
selectKnowledgeSource()
configureKnowledgeSource()
executeKnowledgeSource()

Knowledge Sources
name
importance
properties
execCondition()
execAction()

Blackboard
blackboardNodes
access()
update()

Control Plan
planRepresentation
access()
update()

Domain Knowledge Source

updateBlackboard

Control Knowledge Source

updateBlackboard

activates

1+

operates on
1+

operates on
1+

reads reads

Fig. 3.1: Blackboard Pattern in UML-Notation [91]

The processing of information is data-driven. That means the control flow depends on
the blackboard’s current state which is monitored by a controller. When a change on the
blackboard occurs, the controller can activate additional modules for further execution.
Task decomposition and dependency analysis are used to improve the controller [170].

The controller follows a control plan to determine modules. The execution plan can be
provided manually or automatically by so-called control knowledge sources [91]. Control
knowledge sources can adapt the control plan during execution. Using the Reflection
Pattern, the separation between the controller including its control structures and the
modules including their data can be improved [133].

To ensure that only authorized modules access the blackboard, basic security mecha-
nisms are introduced. The verification of modules is done by the controller [109].

22 3. Analysis and System Design

3.2.3 Blackboard Pattern for IHSes

In this section we give an overview of the design of our IHS that uses a blackboard to
share and exchange information between modules. Our system is depicted in Figure 3.2.
Our system is divided into four main functional parts:

1. The blackboard as information sharing component, and modules to execute the
tasks of the incident handling steps:

2. Monitoring and intrusion detection (dotted boxes),

3. Alert processing (solid boxes), and

4. Intrusion response (dashed boxes).

Controller

Response
Identification

Response
Selection

Response
Execution

Response
Evaluation

Aggregation Priorisation Correlation Insert

. . .Interface 1 Interface N

Target System

IDS

IDS

Monitoring

Fig. 3.2: System Overview of the Proposed IHS

The modules for the tasks of all steps of incident handling are depicted in Figure 3.2.
The modules can be distributed across the network as long as they can connect to the
blackboard and the controller can reach the modules. Each module can be available in
different variants, e.g. multiple correlation modules can be used, as long as they follow
the information model.

Blackboard The blackboard of the proposed IHS is the central information sharing
component storing all required information. All modules can access the blackboard by
reading information from or writing information on the blackboard. The blackboard can
be realized as distributed database system accessible from different points in the network.

3.2. System Design Overview 23

The blackboard has to provide an information model to enable information sharing [91].
We propose a graph-based information model where all information elements are repre-
sented as nodes. Connections between different elements are modeled as relations. Both,
nodes as well as relations, may have attributes further describing the entity, see Subsec-
tion 3.3. Providing a graph-based information model follows the recommendation given
in [91] where the blackboard is described as a structured global memory containing objects,
so-called blackboard nodes, linked to each other.

A further important component of a blackboard is the controller. Regarding its con-
trol plan, the controller can intervene the control flow. Modules can be activated or
deactivated to handle changes in the system state, see Subsection 3.4.6.

Monitoring and Intrusion Detection The target system is continuously monitored by
host and network monitoring systems like Zabbix1 or Nagios2. Those systems collect so
called infrastructure information describing the current state of the target system.

Additionally, IDSes like OSSEC3 or Snort4 monitor the target system. In case a security
incident is detected, they produce an alert message. Their capabilities and detection
methods vary heavily and provide different insights into the target system. As it is common
to use multiple IDSes in parallel [32, 99, 102, 178] the different views of the IDSes are
consolidated by alert processing in the subsequent steps.

The infrastructure and alert information is inserted on the blackboard using different
interfaces to support multiple systems. Within this thesis we provide an IDS that can
deliver alerts to our proposed IHS, see Chapter 4 for details.

Alert Processing Collected alerts are handled by alert processing. First, alerts are
associated to infrastructure information on the blackboard to locate and identify the
security incident in the target system. An important goal of alert processing is to reduce
the amount of alerts. This can be achieved by using multiple aggregation methods [34].
Alert correlation allows identifying relationships between alerts like attack paths or root
causes. Prioritizing alerts enables the system to identify urgent security incidents to be
handled immediately.

For the single tasks in the alert processing steps different tools and methods exist that
can be applied independently and simultaneously, see Subsection 3.4.2 for further details.

Intrusion Response Intrusion response utilizes the infrastructure information collected
by monitoring systems and the alerts collected by IDSes. First, suitable response avail-
able on the target system are determined as candidate responses. From those candidate
responses an optimal set is selected to counteract the security incident. The selected
responses are executed on the target system and evaluated by that time. The response
evaluation is needed as response assessment to determine the optimal set of responses,
see Section 3.4.3.

As the main focus of this work is automated intrusion response concrete modules
covering those aspects are presented in Chapters 5 to 7.

1http://www.zabbix.com/
2https://www.nagios.org/
3http://ossec.github.io
4https://www.snort.org

http://www.zabbix.com/
https://www.nagios.org/
http://ossec.github.io
https://www.snort.org

24 3. Analysis and System Design

3.3 Information Model

Within this section, we first examine the requirements that our information model has
to fulfill in Subsection 3.3.1. Afterwards, we present our information model in detail by
providing the description of the information elements as well as relations in between in
Subsection 3.3.2. This includes references to the requirements stated in Subsection 3.3.1
to show that the proposed information model is aligned to the requirements. In Subsec-
tion 3.3.3 we present related work on information models related to the security domain
and compare them against the requirements stated in Subsection 3.3.1.

3.3.1 Requirements

In the following, we subsume the major requirements that lead to the design of our
information model for the blackboard. They arise from the need to combine the steps of
incident handling, namely intrusion detection, alert processing, and intrusion response.

Requirement R1 - Information Separation: All modules have to update or add infor-
mation independently without creating write conflicts resulting in inconsistent information.
Hence, the information stored on the blackboard needs to be segmented in disjoint parts.
The needed information has to be split up in single information elements that can be
processed independently. Consequently, relations between the single information elements
need to be modeled. Those relations may store additional information and have to be
processable independently as well.

Requirement R2 - Completeness: The information model has to provide the required
infrastructure information for all steps of incident handling. This includes all information
required for intrusion detection, alert processing and intrusion response. Additionally, the
information model has to provide all information elements that are needed to model those
steps and the according tasks within the step. The single information elements for the
single steps of incident handling need to be connected to the infrastructure information
available in the information model.

Requirement R3 - Compatibility: Our information model has to be compliant to
standards related to incident handling, e.g. the alert message format Intrusion Detection
Message Exchange Format (IDMEF) [35]. This is needed as existing components build
upon those standards and should be integrable into our proposed IHS. Additionally, relying
on existing standards ensures easier further development as a stable basis is provided.

Requirement R4 - Traceability: The information model has to provide the ability to
trace all tasks of incident handling. Hence, alerts and intermediate results like selected,
and executed responses have to be stored on the blackboard. Tracing the whole process
of incident handling allows the investigation of the process itself. It allows adaptations of
single steps and ensures auditability and reproducibility of all ongoing steps. Furthermore,
additional recovery actions can be executed and tracked easier.

3.3.2 Information Model Description

The information model we provide is graph-based (cf. Requirement R1). This allows a
fine-grained structure of information elements and relations between single information
elements. Our information model is depicted in Figure 3.3. A node, representing an
information element is represented as box. Dotted edges between nodes, express an isA
relation. Dashed edges between nodes, express a has relation. Solid edges between nodes,
express an association relation.

3.3. Information Model 25

A
le
rt

P
rio

rit
y

C
on

se
-

qu
en
ce
s

A
le
rt

C
on

te
xt

So
ur
ce

T
ar
ge
t

A
tt
ac
k

A
na
ly
ze
r

R
es
po

ns
e

A
ct
iv
e

P
as
si
ve

Im
pl
e-

m
en
ta
ti
on

M
et
ric

R
es
po

ns
e

B
un

dl
e

H
os
t-

B
as
ed

Se
rv
ic
e-

B
as
ed

N
et
w
or
k-

B
as
ed

U
se
r-

B
as
ed

Fi
le
-B

as
ed

C
er
ti
fic
at
e-

B
as
ed

N
et
w
or
k

L3
-

N
et
w
or
k

L2
-

N
et
w
or
k

In
te
rf
ac
e

IP
-A
dd

re
ss

P
or
t

M
A
C
-

A
dd

re
ss

D
ev
ic
e

Se
rv
ic
e

P
ro
ce
ss

U
se
r

Fi
le

C
er
ti
fic
at
e

A
le
rt

P
ro
ce
ss
in
g

In
tr
us
io
n
R
es
po

ns
e

In
fr
as
tr
uc
tu
re

In
fo
rm

at
io
n

Fi
g.

3.
3:

In
fo
rm

at
io
n
M
od
el
of

th
e
B
la
ck
bo
ar
d
to

E
na
bl
e
In
fo
rm

at
io
n
Sh

ar
in
g
am

on
g
M
od
ul
es

26 3. Analysis and System Design

To reflect the three types of modules, namely intrusion detection, alert processing,
and intrusion response, our information model is split into three groups of nodes (cf. Re-
quirement R2):

1. Infrastructure nodes (dotted boxes in Fig. 3.3) to link intrusion detection, alert
processing, and intrusion response,

2. Alert processing related nodes (solid boxes in Fig. 3.3) to cover intrusion detection
and alert processing , and

3. Response related nodes (dashed boxes in Fig. 3.3) for intrusion response.

To avoid write conflicts (cf. Requirement R1), modules only write nodes related to
their task. Read access is allowed to all nodes to enable collaboration across tasks (cf. Re-
quirement R2). Updating information element is rare and restricted to single modules.
The main operation done by modules is adding new information elements including their
relations to other information elements.

Infrastructure nodes (dotted box in Fig. 3.3) reflect infrastructure information col-
lected by monitoring tools. A typical network consists of devices (Device node), e.g.
hosts or routers, and subnetworks (Network node). Networks can be switched (Layer2
Network node) or routed (Layer3 Network node). Devices can be split further, using
the isA relation, into Router nodes, Host nodes, Virtual Machine (VM) nodes,
or Server nodes. Typically, a VM is running on a server, such that those nodes are
related to each other. For reasons of clarity and comprehensibility we do not depict this
kind of inheritance in Figure 3.3.

A device can be connected to several layer2 networks via multiple interfaces (In-
terface node) each having a MAC address (MAC node). An IP address (IP node) is
assigned to a MAC address providing access to a layer3 network. Services (Service
nodes) are running on a device and are associated with a port (Port node) of a specific
IP. Services may depend on another service, indicated by the self-reference. A service is
a special process (Process node) that is running on a device. A process can be based
upon multiple files (File node) that are executed or used and stored on a device. Users
(User node) are logged on devices and use services. A user, service and device can be
equipped with a certificate (Certificate node).

Alert processing related information is marked as solid box in Fig. 3.3. An alert (Alert
node) is detected by an analyzer (Analyzer node), e.g. an IDS. Each analyzer has a
certain severity, the security incident is detected with, if an alert is triggered. Therefore,
each analyzer provides a Severity attribute. Each alert is associated with an alert
context (Alert Context node) that combines semantically related alerts. Each Alert
Context node provides a Solved attribute to indicate whether the security incident
was handled successfully (TRUE) or not (FALSE). Additionally, an alert context can be
equipped with a severity that is calculated from the severity of the analyzer providing the
alerts combined within the alert context. Therefore, an Alert Context node provides
a Severity attribute. An alert or alert context can be prioritized using a Priority
node. Prioritization can alternatively be realized as an attribute to improve performance
by reducing the depth of the graph. The relation between an Alert Context node and
the Metric node represents the damage a certain security incident causes. This value is
assessed to estimate the harm of a security incident and to find appropriate responses.

An alert context is associated with a Source, Target, and Attack node (cf. Re-
quirement R3). The source describes the supposed attacker, normally determined by its IP.

3.3. Information Model 27

The target describes the victim in the target system and can be further described by creat-
ing references to infrastructure nodes such as IP, User, Device, Service, or Network
nodes. Each infrastructure node can be assessed regarding its importance for the tar-
get system. Therefore, infrastructure nodes provide a Value attribute. An Attack
node classifies the type of a security incident. Attacks are associated to consequences
(Consequence node) happening in case of success. Attack and Consequence nodes
describe which security incidents our system can handle and are provided by experts.

The last category is response-related information marked as dashed box in Fig. 3.3. A
response (Response) can mitigate certain consequences resulting from an attack. Re-
sponses can either be Active or Passive. Passive responses (sending alerts or notifica-
tions) do not directly mitigate or decrease the damage to the target system, while active
responses (blocking traffic, shutting down hosts) do. As we focus on active responses,
we divided them with respect to the target they influence during execution. We identified
amongst others User-Based, Network-Based, Service-Based, File-Based,
Certificate-Based, and Host-Based responses. This list is not complete but
exceeds the scope of this thesis to identify all possible fine-grained targets. Information
about available responses has to be provided to our system by an expert, knowing the
capabilities of the target system.

Responses may be related to each other in two different relations. Responses can ei-
ther be conflicting (responseconflictswithresponse relation) or depend on each
other (responseispreconditionofresponse relation). The first relation excludes
a combined execution of two responses. The second relation will force that either both
responses are executed or none of them.

For each response different implementations (Implementation node) can be de-
ployed, meaning available, on a device. Additionally, an Implementation node is
related to a device indicating that a device is executing an implementation. As re-
sponses, Implementation nodes can be related with each other described through
conflicts or preconditions. Those implementations have different metrics (Metric node)
describing the implementation. The metrics are used for response selection and assess
an Implementation node with respect to the costs of the response implementation.
A more detailed description on responses and their relations to each other is given in
Subsection 5.1.2. A Bundle node is associated with an alert context and indicates re-
sponse implementations associated with the security incident. This association means that
implementations within this bundle can be potentially applied to the security incident.

A bundle has multiple attributes used for communication between different modules
in the intrusion response process:

• The Executing attribute indicates if the execution of this bundle is ongoing.

• The Active attribute indicates if this bundle is still in use.

• The Prepared attribute indicates whether or not the execution is ready to start.
This attribute is needed to prepare the evaluation of responses during execution.

• The Ready attribute indicates whether or not the execution of a bundle can start.

Additionally, the relation between an Implementation node and a Bundle node
carries supplemental information:

• A Selected attribute indicates whether or not a response implementation was
selected to be executed.

28 3. Analysis and System Design

• A Round attribute indicates when the response implementation was selected.

• A Executed attribute indicates whether or not a response is yet executed.

This design fulfills Requirement R4 as all subtasks of intrusion response are traceable
during the process. Different rounds of execution can be distinguished and the intrusion
response process is transparent.

3.3.3 Related Work

As basis of our information model, the needed concepts can be described as ontologies.
Therefore, available ontologies are investigated in the following to identify the relevant
concepts they provide. First, we examine ontologies build for general purpose within
the security domain in Subsubsection 3.3.3.1. Afterwards, we take a closer look on on-
tologies used in security applications in Subsubsection 3.3.3.2. In Subsubsection 3.3.3.3
we subsume ontologies from other related domains. The last subsubsection, Subsub-
section 3.3.3.4, compares the related work against the requirements stated in Subsec-
tion 3.3.1.

3.3.3.1 Security-Related Ontologies

In [157, 158] an ontology for attacks and intrusion detection is given. The concepts
include amongst others Actor, Attack, Goal and Effects. This work does not provide
possibilities to include infrastructure information describing the target system. Moreover,
response capabilities are not sufficiently represented.

In [108] the first steps for an ontology for the cyber security domain is presented. The
work is not finished, yet, but lacks in inclusion of infrastructure information as well as the
representation of response capabilities.

In [153, 154] an ontology for IDSes is presented. This ontology models aspects like
Hosts, Attack, Consequences and System Components. Some infrastructure information
is included, and the concept of Attacks and Consequences is introduces. This work lacks
of representing response capabilities and alerts.

In [9] an ontology to represent the current security state of a network is presented.
They represent the network with different components such as Hardware, Services or
Users. They model Vulnerabilities in detail and represent Attacks, as well as Effects.

In [111] an ontology for network security attacks is presented. They mainly focus on
attacks itself, and include concepts like Security Properties, different Attacks including
Attack Steps and Vulnerabilities. They provides Attack Profiles consisting of Assets,
Access, Actor, Motive and Outcome and link them to security properties they attack.

3.3.3.2 Ontologies within Applications

In [29] an ontology for alerts describing the IDMEF-Format is given. This ontology is
used in the RED (Reaction after Detection) project. The goal is to instantiate security
policies used in case of a security incident by mapping IDMEF alerts into Organization
Based Access Control (OrBAC) contexts. Therefore, the policy is expressed in form of
an ontology. Additionally, they provide the concept of a Threat Context that is mapped
to the alert classification and a Reaction Focus that is mapped to the source and target
of an alert.

3.3. Information Model 29

In [120] an alert correlation, called ONTIDS framework based on an ontology is pre-
sented. They model the underlying infrastructure (target system), and Attacks, as well
as Attack Contexts. They include concepts like Vulnerability, IDS and Attack Objectives.

In [94] an ontology for an alert correlation framework is presented. This ontology is
capable of reflecting the alert format IDMEF by providing appropriate information ele-
ments. Additionally some basic infrastructure information can be reflected. The concept
of an Attack and Security State is defined. The Attacker as well as the System State is
coupled with the Security State. Nevertheless, this ontology does not provide information
element to reflect intrusion response capabilities. Consequently, chosen responses can not
be tracked for auditing.

In [56] an ontology to model Security Information and Event Management (SIEM)
information and operations is presented. A so-called information class provides concepts
for infrastructure information, like User, Network, or System, and for security related
terms, like Alert, Vulnerability, or Policy. A so-called operation class provides concepts
for Detection, Decision, and Reaction. The intrusion response capabilities of the proposed
ontology are limited such that no tracing of executed responses is possible.

3.3.3.3 Ontologies from Different Domains

In [11] an ontology to represent network infrastructures is presented. This ontology is used
in the proposed IO Tool to scan network infrastructures. They focus on the representation
of the underlying network infrastructure and do not consider security incident or intrusion
response capabilities. Nevertheless, they provide a rich model to present infrastructure
information that can be included in the information model provided in this thesis.

Some related work is focusing on special use cases, domains or attacks. In [160] an
ontology for attacks especially for web services is presented. They focus on a concrete
domain and provide a deeper insight in possible attacks on web services. In [180] an
ontology focusing on attacks in wireless sensor networks is presented. They map attack,
intention, movement, target and result to possible attack scenarios in wireless sensor
networks. In [159] an ontology to classify network Denial of Service (DOS) attacks is
presented. They provide an overview on protocols vulnerable to DOS attacks and link
appropriate attacks to those protocols.

3.3.3.4 Summary, Comparison and Conclusion

A comparison of the generic approaches of the related work is given in Table 3.1. Ap-
proaches focusing on special domains or attacks are not included, as the needed informa-
tion model has to be generic for all scenarios and attacks. Specialized work can be used
to extend our information model with respect to a more detailed view of certain attacks.

This comparison clearly shows that none of the existing information models is a suit-
able foundation for our IHS. Non of the presented approaches covers the requirement of
traceability (cf. Requirement R4). Additionally, the presented approaches do not com-
pletely cover all required information elemente for all steps of the incident handling process
and most often lack within intrusion response capabilities. Some concepts of those in-
formation models are used and influence the proposed information model but can not be
used directly without adaptations.

30 3. Analysis and System Design

Tab. 3.1: Comparison of Related Work Based on the Requirements Stated in Subsection 3.3.1

Approach R
1
–

Se
pa
ra
ti
on

R
2
–

C
om

pl
et
en
es
s

R
3
–

C
om

pa
ti
bi
lit
y

R
4
–

T
ra
ce
ab
ili
ty

Attack Ontology [157, 158] 7 7 7 7

Cyber Security Ontology [108] 7 3 7 7

IDS Ontology [153, 154] 7 7 3 7

Security State Ontology [9] 7 7 3 3

Network Security Ontology [111] 7 7 7 7

RED Ontology [29] 7 7 3 7

ONTIDS [120] 3 3 7 7

IO Tool[11] 3 7 7 7

Alert Correlation Ontology [94] 3 7 3 7

SIEM Ontology [56] 3 3 3 7

Some relevant concepts of the proposed ontologies are utilized as basis for the own
information model. Therefore, parts of the concepts of the presented ontologies are used,
and combined such that they can be used together. Missing concepts were added to
be able to fulfill all needed requirements. Newly added concepts mainly cover infrastruc-
ture information and concepts for intrusion response. The proposed information model
fulfills those requirements, as explained in the description of our information model in
Subsection 3.3.2.

3.4 Functional Separation

In this section we examine the tasks of incident handling in detail and present the modules
implementing the tasks. The modules of our system reflect the knowledge sources of the
Blackboard Pattern. The modules are independent from each other and provide functional
disjoint tasks of incident handling. This segmentation has several advantages:

• Modules can be distributed across the network as no direct communication between
modules is required.

• Modules can be exchanged easily as they implement self-contained tasks.

• Collaboration between modules can be managed easily using a central information
sharing component.

• Additional management of modules can be done easily using a controller, e.g. au-
thentication or module selection.

In the following, we describe the modules in detail and therefore, follow the structure given
from the single steps of the incident handling process. First, monitoring and IDS modules
are covered in Subsection 3.4.1. Alert processing modules are covered in Subsection 3.4.2
followed by modules of intrusion response in Subsection 3.4.3. In Subsection 3.4.4, we

3.4. Functional Separation 31

give a short example to illustrate the functional interaction of the modules covering the
incident handling process. In Subsection 3.4.5 a cleanup module – the garbage collector –
is introduced. As access to the blackboard is managed by the controller, this component
including the control plan are examined in Subsection 3.4.2.

3.4.1 Monitoring and Intrusion Detection

These modules collect infrastructure information about the target system (e.g., IP or MAC
addresses of devices) and store the current state of the target system on the blackboard.
If new information is found, a new instance of the infrastructure node is added on the
blackboard. Edges between the new node and existing nodes are added if needed. If a
change is detected, the corresponding existing node or edge is updated. A continuous
monitoring of the target system ensures that infrastructure information is up-to-date.

Multiple monitoring tools can be used in parallel distributed across the target system.
For example, dedicated tools processing log files, monitoring packet flows or scanning
subnetwork can be deployed. So far, we incorporated a limited set of infrastructure infor-
mation. However, the capabilities of the IHS can be extended and adapted easily to other
needs by adding additional interfaces to the blackboard of the IHS.

In Chapter 4 we propose an IDS that can be used as module within the proposed IHS.

3.4.2 Alert Processing

Alert processing is well covered in this domain and multiple different approaches are avail-
able [19, 26, 28, 40, 43, 44, 94, 106, 156, 169, 176]. The steps of alert processing, we
present in the following, are adapted from the given related work.

Initial Insert Once an IDS raises an alert, the alert is inserted on the blackboard. The
insertion module provides one or more interfaces for available IDSes to receive the alerts.
The insertion proceeds as follows. First, a new Alert node is inserted. The source,
target, and attack classification are extracted from the alert. A suitable Alert Context
node is searched. This means source, target and attack classification match. If existent, a
new edge between alert context and alert is inserted. Otherwise, a new Alert Context
node is created and linked to corresponding Target, Source and Attack nodes.

Within this step an implicit normalization is done. The attack classification itself
is not stored in the Alert Context node but is linked to available Attack nodes.
Additionally, an implicit first aggregation is done. Alerts with the same source, target and
attack classification are combined into an alert context [34]. This aggregation is loss-free
in terms of information lost as alerts remain on the blackboard, but additional information,
the Alert Context node representing the aggregation, is added.

Aggregation Typical systems aggregate alerts in a lossy process. The raw alert infor-
mation, that is the input for aggregation, is discarded, but aggregates are passed. In our
IHS, aggregation is creating edges between existing Alert Context and Alert nodes
with similar features. That may be the same source, target, attack classification, or a
combination of those features. Aggregation with the same target and attack classification
are especially helpful for distributed attacks like distributed DOS attacks. As distributed
attacks have the same target and attack classification, many alerts are combined into a
single Alert Context node. Because of the loss-free aggregation, additional aggrega-

32 3. Analysis and System Design

tion features are possible, e.g., alerts from the same IDS. Alert aggregation can also be
handled using clustering techniques [72, 73, 74].

The aggregation module is triggered after a new Alert Context node is inserted.
The module checks, if the new node can be aggregated with existing Alert Context
nodes. If so, the new node either belongs to an existing aggregate or a new Alert
Context node as aggregate is needed. An edge between the newly inserted Alert
Context node and the Alert Context node representing the aggregate is inserted.

Correlation This module combines multiple different Alert Context nodes. In con-
trast to aggregation, correlation does not focus on feature similarity of alerts or alert
contexts, but tries to find more high-level relations. A typical example is an attack path:
a host is first the target of an attack, then becomes a source of a subsequent attack. For
alert correlation a bunch of possibilities [30, 92, 99, 112, 121, 155, 171, 179] exists, that
can be combined within the proposed IHS.

This module is triggered after a new Alert or Alert Context node is inserted.
The processing procedure is analogous to aggregation, but using correlation rules instead.

Prioritization This module calculates or updates the priority of an Alert or Alert
Context node. If a new priority is added, this new priority value has to be propagated
through connected Alert Context nodes.

Prioritization can be separated into two modules. One module calculates the priority
value of a single alert, for example, considering available infrastructure information like
the importance of affected hosts. This module is triggered after a new Alert node is
inserted. Approaches to calculate priorities for alerts can be found for example in [53, 105].

Another module propagates newly inserted or updated priorities through the Alert
Context node hierarchy, meaning through connected Alert Context nodes. For
propagation, different calculations methods can be applied, e.g., using the weighted av-
erage of all incoming priority values. The priority propagation module is triggered after
updating or adding priority information to an Alert or Alert Context node.

3.4.3 Intrusion Response

To implement automated intrusion response, specialized functionality from a completely
different domain than alert processing is required. However, intrusion response needs the
same infrastructure information as required by alert processing. Additionally, intermediate
solutions from alert processing are helpful for intrusion response.

Response Identification This module examines a set of possible responses mitigating a
specific and open (meaning unsolved) alert context. This is done by combining the avail-
able information as follows. The module follows the edge from the Alert Context node
to the Target node and further to a concrete network entity, e.g., a User, Network,
Service, or IP node. From this entity, edges to Response nodes exists. As the re-
sponses are split up into the targets they influence, only applicable responses are reached,
e.g., a User node is only related to User-Based response nodes. In case a flexible de-
ployment mechanism is available, those responses can be used, even they are not deployed
on the target, as they can be deployed and executed in a single step.

Next, this set of candidate responses is further limited to useful responses. The
module follows the edge from the Alert Context to the Attack node and further
to the Consequence nodes. Finally, we determine responses that mitigate a certain

3.4. Functional Separation 33

consequence by following all edges between the identified Consequence and Response
nodes. This results in a second set of applicable Response nodes.

Calculating the intersection between both calculated sets of responses lead to a set
of candidate responses helpful against certain consequences of an attack and effect the
target of the security incident. Afterwards, this component follows the edges between
all Response and Implementation nodes that are available on the device associated
with the target. For example, a user is logged in on a certain device means that only
response implementations available on this host remain in the candidate set. After de-
termining applicable Response nodes a new Bundle node is added on the blackboard.
The Bundle node is connected to the corresponding Alert Context node and the
previously identified Implementation nodes.

To trigger the response identification module, multiple options are available. Different
infrastructure information can be utilized as trigger, e.g., a highly valuable element in the
target system is affected by an attack. Additionally, alert processing information can be
utilized, e.g., an alert context exceeds a certain priority or number of connected alerts.

In Chapter 5 we describe the response identification module in more detail and provide
possible responses that can be used within the IHS. Additionally, possible triggers for
automated intrusion response are examined.

Response Selection This module selects the most suitable subset of the candidate
responses. It is triggered after insertion or updates of a Bundle node where the Active
attribute is set to TRUE. This module can be implemented using optimization techniques
for optimal solutions or heuristics in case of less relevant threats. For the selection process,
metrics associated with the implementations of the candidate responses are utilized. This
module updates the edges between the Bundle and the Implementation node by
setting the Selected attribute to TRUE. The Active attribute of the Bundle node is
set to FALSE.

In case the selected responses were not efficient against a certain attack, the existing
bundle can be re-used as candidate responses are already identified. The response selection
module only takes responses into account that have not been tried out yet (the Selected
attribute is FALSE). Our approach has the advantage that all intermediate steps are
completely documented on the blackboard, which allows accountability of the IHS. In case
no targets are connected to the Alert Context node, the response selection module
will set the Solved attribute to TRUE. This happens, if an aggregated alert context is in
process, whereas all connected Alert Context nodes have already been solved.

In Chapter 6 we provide a closer look into the response selection module and propose
an approach to find the optimal set of responses to be used for a security incident.

Response Execution This module examines suitable actors able to execute the re-
sponses, generates a response plan and starts coordinated response execution. It is trig-
gered by updates on the Selected property of the edge between an Implementation
node of a response and the corresponding Bundle node. All selected, not yet executed,
responses and the correct sequence of execution are determined. The resulting response
plan is than executed on the target system. Questions like scheduling and coordination of
responses are done by this module. Additionally, this module is responsible for deploying
needed responses on the device that are executing responses in case of a security incident.

After preparing the response plan for a Bundle node the Ready attribute of the
Bundle node is set to TRUE. As the execution starts, the Executing attribute in the

34 3. Analysis and System Design

Bundle node is set to TRUE and is triggered by a Bundle node with the Prepared
attribute set to TRUE. After the execution, the Executing attribute is set to FALSE.

In Chapter 7 we provide a framework to execute multiple responses including a language
to specify the response plan for coordinated and structured execution of responses.

Response Evaluation This module measures response implementations during their ex-
ecution and updates related Metric nodes, e.g. effectiveness or duration. Those metrics
are stored on the blackboard in form of additional nodes related to Implementation
nodes. Those metrics are used for response selection and response assessment. Those
metrics have to be updated after the implementation was used within the response exe-
cution module. Additionally, the Executed attribute of the edges between Bundle and
Implementation node are set to TRUE after their execution.

Additionally, the response evaluation module examines if a response bundle was suc-
cessful to mitigate a security incident. If so, the Alert Context node is closed by
setting the Solved attribute to TRUE. Otherwise, the Active attribute in the Bundle
node is set to TRUE to trigger a new response selection. A response bundle is interpreted
as successful, if no update or insert on the Alert Context node is done during a de-
fined time span. This time span is the duration a response needs to be effective within
the target system. The response evaluation is started after the Executing attribute in
the Bundle node is set to TRUE and stopped after this attribute is set to FALSE.

In order to be able to prepare the evaluation of response implementations, commu-
nication between the response execution module and the response evaluation module is
needed. As the response execution module has generated the response plan, the Ready
attribute of the Bundle node is set to TRUE. The response evaluation module will prepare
everything to be able to measure the implementations during execution. Afterwards, the
Prepared attribute is set to TRUE, to indicate that response execution can be started.
The response execution module will wait until the Prepared attribute is set to TRUE
and than continue with its execution as described above.

3.4.4 Example for the Interaction of Modules

In Figure 3.4 an excerpt of the instance of the information model is given to illustrate the
interaction of modules described in Subsection 3.4.1 to 3.4.3.

The infrastructure information is limited to three different IP-Addresses (IP1, IP2,
and IP3). We assume that two alerts are triggered (AL1 and AL2). Those alerts contain
the same attack type (classification) and target, but are originated from different sources.

The initial insert module will insert both Alert nodes and additionally two Alert
Context nodes (AC1 and AC2) including the relation between the Alert and Alert
Context nodes. The aggregation module identifies AC1 and AC2 to have the same
target of the attack and insert the Alert Context node AC3 including the relations
between AC1 and AC3 and between AC2 and AC3.

The response identification module identifies all suitable candidate responses applicable
to the attack and deployed on the devices connected to the IPs. The response identifi-
cation module does not care about relations between Response or Implementation
nodes, like the Conflict relation between R2 and R3 or I2 and I3. All implementations
connected to these responses are linked to the Bundle node B indicating that B solves
AC3. The inserted Bundle node has initially the following attributes set: Active to
TRUE, Executing to FALSE, Prepared to FALSE, and Ready to FALSE. All relations

3.4. Functional Separation 35

A1

IP1

IP2

IP3

AC1

AL1

AC2

AL2

AC3 B I4

I5

I6

I7

I3

I2

I1

R3

R1

R2

Attack

Sou
rce

Ta
rg
et

A
ttack

Target

Sou
rce

Solves

C
on
fli
ct

Conflict

Fig. 3.4: Interaction of Modules from all Steps of the Incident Handling Process – Example

between the Bundle node and an Implementation node initially have the following
attributes set: Selected to FALSE, Executed to FALSE, and Round to 0.

In Figure 3.4 an excerpt of the blackboards state after the explained steps is shown. Re-
lations between responses and implementations with the infrastructure information are left
out. During further execution the response identification module may append additional
Implementation nodes to the bundle and adds relations between Alert Context
nodes the bundle solves.

The response selection module is triggered after the Active attribute of an Alert
Context node is set to TRUE. The response selection module will select the optimal
subset of implementations to solve the security incident and reset the Active attribute
to FALSE. For example, I2 and I5 are chosen. The edges between I2 and B and between
I5 and B are updated as follows: Selected to TRUE and Round to 1.

An edge between a Bundle and an Implementation node with a Selected
attribute set to TRUE and an Executed attribute set to FALSE triggers the response
execution module. The latest (with the maximum Round attribute) selected and not yet
executed implementations are collected and a response plan is generated. After generating
the response plan, the Bundle is updated as follows: the Ready attribute is set to TRUE.
The response plan is scheduled and waits for its execution.

The response evaluation module is triggered by the Bundle node with the Ready
attribute set to TRUE. This module will set this attribute back to FALSE and arranges
the measurement of the implementations to be executed. When everything is ready, the
Prepared attribute will be set to TRUE.

The Prepared attribute set to TRUE in the Bundle node triggers the response

36 3. Analysis and System Design

execution again. The previously scheduled response plan will now be executed and the
Prepared attribute is set back to FALSE. Before execution the Executing attribute
is set to TRUE. This triggers response evaluation starting the evaluation of the implemen-
tations. After the execution of the response plan is finished, the Executing is set back
to FALSE that is stopping the response evaluation module.

The response evaluation module decides whether or not the executed responses were
helpful or not. If they mitigated the security incident the Solved attribute of AC3 is set
to TRUE. Otherwise, the Active attribute is set to TRUE triggering response selection
again. Additionally, response evaluation will set the Executed attribute on the edges
between the executed implementations to TRUE and renews the values for the metrics of
the implementations.

During the execution of the system the response identification, the response execution,
and the response evaluation module have to hold additional state. In case of the response
identification module, already seen, but unsolved Alert Context nodes are stored, to
reduce querying the blackboard actively. The response execution module has to schedule
its response plan but needs to wait for the response evaluation module. On the other
side, the response evaluation module prepares for measurements and waits for the response
execution module for the final execution. As both modules have to work non blocking, they
have to store the needed information in the meantime they wait for the other module.

3.4.5 Garbage Collector

All modules described so far, only insert or update nodes. Hence, the underlying blackboard
will be soiled by outdated or no longer required information over time. Therefore, a single
dedicated module for garbage collection is needed. The garbage collector uses a fine-
grained rule set to determine which information is still required on the blackboard and for
how long. The rule set depends on the use case as it determines how long a view into the
past is possible. As the garbage collector is the only module allowed to delete information,
no conflicts with other modules occur.

For example, Alert Context nodes with the Solved attribute set to TRUE can be
deleted from the blackboard using the garbage collector. This includes Alert Context
nodes and Alert nodes connected to the solved alert context being a subset of this
alert context. Additionally, connected Bundle nodes as well as all relations between
the bundle and the alert context with each other and other nodes can be deleted as
no module no longer requires this information. As this information is may required for
forensics or accountability reasons this information can be copied to and stored on an
additional longterm storage.

3.4.6 Controller and Control Plan

The controller in the proposed design notifies appropriate modules regarding its control
plan in case information on the blackboard is added or updated by other modules. A
simplistic controller activates all modules and passes detected changes to all modules no
matter what task they implement.

A more sophisticated controller can use publish-subscribe mechanisms to reduce the
amount notifications. A change on the blackboard is noticed by the controller that pub-
lishes the change only to subscribed modules. As the controller needs to select the
subscribers, symmetric publish/subscribe can be used. Thus, the controller can specify
which modules get a notification of the blackboard’s change. This avoids deactivation of

3.5. Related Work 37

modules that must not get informed. Hence, no inconsistencies on the blackboard occur
as aborted modules wrote preliminary results on the blackboard.

Putting the decision logic of responsibilities for particular information into the modules
instead of the controller has certain disadvantages. The decision logic has to be distributed
over multiple modules complicating maintenance. However, a single, isolated module
with a local, limited view, cannot decide about its own responsibilities. Furthermore,
overlapping executions of modules within the same domain might result in inconsistencies.

One challenge using a central control mechanism is to select suitable modules. The
control plan defines under which conditions a module has to be used. Therefore, the
controller determines and interpret the situation first. Second, the controller maintains
knowledge about the capabilities and properties of modules to select the correct ones.

For example, if only a few alerts arrive on the blackboard the work load will be low.
The controller can select modules with extensive analyzing capabilities. If the alert rate
increases, a faster decision is needed. In this example, the controller has to be able to
determine the rate of incoming alerts and needs to assess the work load for the system.
With respect to the assessed expected workload appropriate modules are selected.

3.5 Related Work

In this section related work from different research areas is examined. Existing solutions
focusing on one or more single steps of incident handling are presented in Subsection 3.5.1.
The main focus of this presentation is to examine the underlying processing models of the
existing solutions. We show, why existing execution models are not appropriate for subse-
quent intrusion response. Afterwards, selected IRSes are introduced in Subsection 3.5.2.
First, we introduce fundamental approaches for IRSes either being early work or compre-
hensive frameworks. Secondly, we examine other approaches providing partial solutions
for intrusion response. In Subsection 3.5.3 we compare the fundamental approaches and
frameworks against each other using the requirements identified in Section 3.1.

3.5.1 Execution Models for Incident Handling

Within the related work, we identified the following execution models, examined in more
detail in the following:

• Sequential execution,

• Processing based on Complex Event Processing (CEP),

• Agent-based systems, and

• Systems using an information sharing component.

3.5.1.1 Sequential Execution

Most execution models are sequential [43, 79, 103, 110, 120, 132, 177, 181], i.e., the
sequence of all tasks for intrusion detection, alert processing and intrusion response is
fixed. Every task is done independently and the result of the previous task is input of a
subsequent task. This is problematic as information is discarded between tasks. Hence,
subsequent tasks have less information available. Additionally, the order of tasks is not
deterministic, as alerts or aggregated alerts can be prioritized. Another severe issue is

38 3. Analysis and System Design

processing a virtually endless stream of alerts in a sequential process expecting a finite
input.

Examples: The CIDS framework [43] and other work proposed in [90, 156], describe
tasks of the alert processing step. Tasks are executed in sequence to minimize the amount
of alerts raised by IDSes. The ONTIDS framework [120] proposes an alert correlation
framework combining different information sources. OutMet [132] combines alert correla-
tion and prioritization and represents correlated alerts as directed acyclic graphs. In [176]
alerts gained from agents are correlated into a so-called attack scene. For alert process-
ing they use normalization, aggregation, verification and correlation. In [28] the CRIM
Architecture is presented. The focus lies on alert processing and implements alert cluster-
ing, alert merging, alert correlation and intention recognition. The RED Framework [79]
is examined in Subsubsection 3.5.2.4. ADEPTS [51, 168] is examined in Subsubsec-
tion 3.5.2.5.

3.5.1.2 Techniques based on CEP

To cope with endless streams of alerts, CEP can be used. Systems based on CEP are
capable of processing streams of alerts, and offer a continuous way of alert processing.
The drawback of CEP is the need of pre-defined alert windows defining how long alerts
last in the system. As it is a priori unknown how long alerts are relevant, determining the
window size is challenging.

Examples: In [49], a generic Intrusion Detection and Diagnosis System (ID2S) is
proposed. The system supports alert correlation for detecting and analyzing intrusions in
large-scale critical infrastructures.

3.5.1.3 Agent-Based Systems

More collaborative approaches use agent-based systems. The single steps are done by
autonomous agents but a central master component controlling, managing, and providing
information to the agents is required.

Examples: Emerald [113] is further examined in Subsubsection 3.5.2.2. CSM [166] is
further examined in Subsubsection 3.5.2.1. AAIRS [115] is further examined in Subsubsec-
tion 3.5.2.3. CITRA [124] and IDIP [123] are further examined in Subsubsection 3.5.2.6

3.5.1.4 Information Sharing Component

Some approaches utilize a dedicated component for information sharing to overcome the
central controller with manifold management capabilities. All modules in the systems work
independently without being managed by a central master.

Examples: In [32, 33] an IDS based on learning strategies is introduced. This work
focuses on the pure detection process and collaboration between different detection tech-
niques. SPIDeR [102], an IDS, is based on multiple agents using self-organizing maps, a
neural network technique used in machine learning. The agents perform tasks indepen-
dently and store the results on an information sharing component. In [163] a system to
detect and asses misconfigurations is proposed.

3.5.1.5 Summary

Sequential processes and CEP-based systems suffer from limited possibilities of information
sharing between the single steps of incident handling. Agent-based systems heavily rely on

3.5. Related Work 39

a master component controlling the agents and distribute information. Hereby, most of the
application logic is present within the central master component that needs to perform
important tasks of the IHS. Existing solutions providing a component for information
sharing are immature and do not cover the whole incident handling process.

The presented systems propose partial solutions to incident handling resulting in dif-
ferent issues. The systems cannot be distributed easily across the network as tasks are
not decoupled. The functionality and communication between tasks is tightly coupled
to the proposed system. Hence, single tasks cannot be used as standalone components.
Information sharing and collaboration of those systems are limited and no possibilities of
integrating missing steps of incident handling are proposed.

3.5.2 Selected IRSes

Within this subsection fundamental approaches for IRSes are examined in Subsubsec-
tion 3.5.2.1 and 3.5.2.2 Comprehensive frameworks are presented in Subsubsections 3.5.2.3
to 3.5.2.6. In Subsubsection 3.5.2.7 we introduce other approaches providing a partial
solution to intrusion response or a high-level approach.

3.5.2.1 Cooperative Security Managers (CSM)

In [166] an early Intrusion (Detection and) Response System (I(D)RS) called Coopera-
tive Security Managers (CSM) is introduced. The authors propose to deploy a CSM on
every machine in the network working cooperative and autonomously. A CSM consists
of an intrusion detection component (IDS), an Intruder Handling (IH) component, that
determines actions to execute, and a Security Manager (SECMGR) that tracking users.

Security Managers can communicate with each other in order to appropriatly track
users and examine the current target system state. Within this work, some exemplary
responses are listed and weighted with respect to their impact on the user. They propose
to use the severity as measure to decide which response to use. In case the suspicion level
of a certain action exceeds a certain threshold, a response is executed by the IH module.

As this is an early work within this field it lacks in certain details as no explicit response
selection is done, the cooperation in terms of executing different actions in a cooperative
manner is left out and no response assessment is provided.

3.5.2.2 Event monitoring Enabling Responses to Anomalous Live Disturbance
(EMERALD)

In [113] EMERALD (Event monitoring Enabling Responses to Anomalous Live Distur-
bance), one of the first IRSes, is described. Within this early work the focus is mainly on
distributing monitoring and intrusion detection capabilities. They provide a hierarchical
layered approach based on service analysis, domain-wide analysis and enterprise-wide anal-
ysis. They propose so-called Service Monitors that can be distributed across the network
and monitor different resources. Those resources are abstracted network entities, such
that an individual adjustment to the monitoring target is possible. Each resource includes
Response Handlers executable on the target.

Information, collected by the Service Monitors, can be shared amongst them and is
propagated to the domain monitors and further to the enterprise-wide analysis. This
layering allows to reduce information amongst the hierarchy. A so-called Resolver is the
coordinator of all analysis reports as well as the implementor of all response policies. The
Resolver of EMERALD is described as an expert system invoking responses provided by

40 3. Analysis and System Design

the resources. Furthermore, they describe evaluation metrics a response has to provide
in order to allow a selection. The Resolver uses the threshold and severity metric to
formulate policies for response execution.

This early work lacks in much details, the metrics are not clearly explained. Further-
more, no concrete responses are given and the mapping between response and attack
stays unclear. The focus is mainly on distributed intrusion detection and alert process-
ing instead of intrusion response. Nevertheless, basic concepts of intrusion response are
examined. This early work is further adapted to the domain of critical infrastructure to
detect network traversal attacks [14].

3.5.2.3 Adaptive Agent-based Intrusion Response System (AAIRS)

In [71, 115] the Adaptive Agent-based Intrusion Response System (AAIRS) is proposed.
They provide response adaption by weighting responses with respect to their success prob-
ability in the past. They support multiple IDSes interfaced by Interface Agents maintaining
the false-positive rate of each individual IDS that builds the attack confidence metric and
normalizes incoming alerts from different IDSes. Alerts and confidence metrics are handed
over the Master Analysis Agent determining if a security incident is new or ongoing.

For each new security incident an Analysis Agent is created, for ongoing security
incidents the new information is handed over to the responsible agent. The Analysis
Agent decides what response to use by invoking the Response Taxonomy Agent and the
Policy Specification Agent. Therefore, a response plan consisting of a response goal
and multiple plan steps with associated tactics is created. To create this response plan
the following inputs are used: response goal, confidence and success metric, incident
report and history, available tactics and policies. To further limit responses, the Response
Taxonomy Agent uses the time, implications and type of attack, attacker type and degree
of suspicion. The selected response is handed over to the Tactics Agent consisting of
multiple Implementations that translates a high-level response plan to executable actions
and invokes the Response Toolkit for execution.

This work mostly provides a methodology for intrusion detection and intrusion response
but lacks in much details. For example, the response selection is unclear, no concrete
responses are given and no strategies for alert processing is explained. In [20] the AAIRS
is expanded to be able to deal with uncertainty within the detection process. Therefore,
the false-positive rates of IDSes are calculated more precisely.

3.5.2.4 REaction after Detection (RED)

In [29, 37, 38, 39] the RED architecture (REaction after Detection), approach based
on the OrBAC security model and on ontologies, is proposed. Within their architecture
they provide the following elements. The Alert Correlation Engine receives alerts from the
network and is capable of further diagnosis. The results are send to the Policy Instantiation
Point that instantiates new security policies. Those security policies are sent to the Policy
Decision Point to be deployed. The Policy Enforcement Point or Reaction Enforcement
Point is responsible to enforce those deployed policies. Actions executed within this loop
are called high-level reactions.

Two shortcuts are possible: one from the Alert Correlation Engine into a Reaction
Decision Point into the Reaction Enforcement Point for mid-level actions. Additionally,
the Reaction Enforcement Point can decide and execute low-level actions directly.

To determine which response to take they provide a so-called threat context activation
that maps to a classification of an alert. To determine the reaction focus meaning where

3.5. Related Work 41

to execute, they use the source and target definition of an alert. The Policy Decision
Point takes both as input to determine a suitable response.

In [77] the work done in [78, 79] is integrated in the OrBAC concept to include risk
assessment and cost-based response selection. Within this work the benefit of different
reaction levels is unclear. Moreover, no details for the single components are provided.
Neither suitable actions are proposed nor a concrete strategy for execution is given.

3.5.2.5 ADEPTS

In [51, 168] an automated adaptive intrusion containment and disruption tolerant system,
called ADEPTS, is introduced. They model the spreading of a failure through the system
using an acyclic graph, called I-Graph (Intrusion Graph). Nodes of the graph represent
sub-goals, while edges represent pre- and post conditions of the attack (AND, OR and
Quorum). From the I-graph an attack subgraph is created for every attack instance.

They compute how likely an intrusion goal within the I-Graph can be reached using the
Compromised Confidence Index (CCI). Therefore, they utilize the alert confidence level
and the edges of the I-Graph.

They used a statically determined set of responses from which an appropriate one
is selected. They use responses targeting nodes where the current attack is happening
and most likely will spread to. The Response Control Center storing available responses
within an Response Repository chooses responses applicable to the attack and computes
the Response Index (RI). The RI is calculated by subtracting the Disruptiveness Index
(DI) from the Effectiveness Index (EI) of the response. The response with the highest RI
is chosen for each node.

Within their work they do not consider interdependencies between responses nor pro-
vide a structured response plan or response execution process. They do not consider
alert processing and split up the information they use into the I-Graph and the Response
Repository. Interconnection and interchangeability of separate modules is not possible.

3.5.2.6 Cooperative Intrusion Traceback and Response Architecture (CITRA)
and Intruder Detection and Isolation Protocol (IDIP)

The Cooperative Intrusion Traceback and Response Architecture (CITRA) [124] is based
on the application layer IRS, named Intruder Detection and Isolation Protocol (IDIP) [123].
They structure their system into administrative domains, called IDIP Communities, capa-
ble of detecting and responding to security incidents. Directly connected IDIP systems
are referred to as Neighborhoods. Connections between neighborhoods are referred to as
Boundary Control Devices.

If an intrusion is detected, an IDIP system responds locally. The collected information
and the response decision is spread to the neighborhood. A central entity called Discovery
Coordinator correlates all available information and provides the big picture of the intru-
sion. Additionally, this component is capable of canceling or adding responses. Within
their work they discuss secure communication and trust between the different IDIP Com-
munities and IDIP nodes. An IDIP node can either be the Discovery Coordinator or an
IDIP agent. An IDIP agent provides detection, audit or response functionality.

Within the CITRA framework a simple cost model is used to determine the five basic
responses using thresholds. The systems allows to use those responses as immediate
response. Additionally, administrators can interact with the system manually. They provide
boundary controllers to block traffic of an attack as the only active response. The main
focus is on the traceback of an attacker to the source of the security incident.

42 3. Analysis and System Design

CITRA and IDIP provide limited response capabilities. Most responses are passive and
only one is active. The assessment of responses and attacks is simplistic. The response
selection mechanism is based on thresholds and can not be adapted.

3.5.2.7 Other Approaches towards IHSes

Sequential Approaches Most of the related work within the field of IHSes is based on
sequential execution. Besides already presented frameworks, the following related work,
additionally falls into this category with respect to the execution model.

In [173] a three-layer IRS based on contextual fuzzy cognitive maps (FCM) is pre-
sented. The first layer is used to map incoming alerts to four pre-defined classes of
intrusions, namely DOS, Probing, R2L and U2R taken from [95]. This layer is called
Intrusion Recognition Layer and is implemented using a conceptual graph ontology. This
conceptual graph can represent any knowledge by defining concepts and relations, in this
case relations between possible intrusions and the intrusion class. The second layer, called
Diagnosis Layer, is responsible for providing information about the influence of intrusion
impacts on the target system. They use a fuzzy cognitive map that defines concepts as
nodes and relations between those concepts as weighted relations. This map reflects how
certain attacks will degrade security goals, like data integrity and confidentiality. They
map those consequences to resources within the system using dependency relations bet-
ween resources. The last layer, called Agent Response Layer interfaces with the response
capabilities of the system. They provide specialized agents responsible for one intrusion
class. As the second layer determined the target the response has to be applied on, the
agent in the third layer can execute the response. This system does not provide informa-
tion on how to select a concrete response within the agents. No response nor intrusion
assessment is given. Moreover, the proposed system lacks in details about the knowledge
that has to be provided within the system. Most of this information is expert knowledge
and has to be mapped directly into the system without an information model.

In [76] an IRS for relational databases (RDB) is proposed. The system consists of an
anomaly-based IDS and an anomaly-based IRS. Anomalies are detected based on access
profiles of different roles and users. In order to realize the IRS, they define an Event
Condition Action (ECA) language, whereas the event describes the anomaly occurred
and the action represents the response to be executed under certain conditions. They
propose several responses especially for databases with different severities. They propose
conservative actions having low severity, aggressive actions having high severity and fine-
grained actions having medium severity. Additionally, they propose an administration
model for response policies as well as possible attacks and protection strategies.

In [86] the DSS framework for collaborative response based on Case-Based Reasoning
(CBR) is presented. The process consists of three steps: Protection, Detection and
Reaction. In order to automate this process intelligent agents are deployed for intrusion
detection. The basic idea is to manage case profiles describing who, how, where, and when
a security incident occurs. The CBR-engine is responsible for managing those profiles and
in case of new security incidents mapping them to the most similar case seen before and
triggering the response accordingly. The main focus is on performing the analysis on how
to generate the profile based on log analysis and how to calculate the similarity between
the cases. A structured process to identify possible responses and to match responses and
security incident is not presented, but relies on expert knowledge.

In [150] the RAIM framework, a SCADA security framework for critical infrastructures,
is proposed. The abbreviation RAIM is compsed of the four key components: Real-time

3.5. Related Work 43

monitoring, Anomaly detection, Impact analysis, and Mitigation strategies. Information
is gathered during real-time monitoring. This collected data is used for anomaly detec-
tion. Hereby, different correlation techniques are used to detect the security incident, e.g.
temporal correlation or spatial correlation. Afterwards, an impact analysis examines the
effects to the security incident. Based on those effects, the mitigation strategy is exam-
ined for the most vulnerable part of the system. The main contribution of this paper is
the identification of possible security enhancements based on a vulnerability assessment.
The work lacks in terms of details regarding execution and selection of responses.

In [149] the Risk Assessment for Intrusion Detection with Automated Response (RA-
DAR) Framework is presented. They provide an IDS component, a Risk Assessment
System (RAS), and an IRS. Their main focus is in integrating IDSes with poor detection
capabilities, managing a high false positive rate and try to minimize the execution of
unnecessary responses. Instead they try to execute only effective responses. Therefore,
they provide a huge list of performance metrics used to estimate available IDSes. Within
their RAS they provide mechanisms to evaluate the risk of an attack and the effectiveness
of a response. They provide a list of responses they assume to have automated. Their
selection strategy is restricted to decide which percentage of the intrusion is handled
automated, the rest is handed over to the administrator. They do not provide a selection
mechanism which response to use and they do not cover structured execution of responses
on the target system.

In [110] a holistic system, called REASSESS (Response Effectiveness Assessment), is
proposed combining alert processing and response capabilities. Their system is based on
several stages that are recommended by [23] and follows a sequential execution. Within
their system they name, but not further describe, the following components: IDSes raising
alerts in case of a detected intrusion, alert processing consisting of normalization, aggre-
gation, and correlation, response selection and response execution. Besides their proposed
system is sequential, they do not further describe and cover the single tasks of incident
handling, but focus on the response selection process.

Agent-Based Approaches The number of agent-based approaches is limited. Those
approaches realize the IHS as distributed system, where information is shared among the
agents of the IHS. An issue of such an approach is the amount of information to be shared
amongst the agents. Additionally, those agents need to implement the same functionality,
otherwise the would need to know about what other agent needs which information. The
implementation within the agents is again sequential.

In [148] Kinesis a security incident response and prevention system for wireless sensor
networks is introduced. They utilize distributed components running an IDS and an addi-
tional Kinesis system distributed across the target system. Different information is shared
among the Kinesis entities regarding the security state of the neighbors based on history
data. The response selection is done based on a mixture of a policy-based selection and
response assessment. the execution is done by distributed monitors with free capacities
for execution. For high severity actions, first, a consensus of all Kinesis entities is needed.

Approaches Focusing on Specific Aspects The following approaches provide either
only a high-level description of their IHS or focus on a concrete problem specification.
Therefore, they will not be listed in the final comparison.

In [118, 119] the Generic Authorization and Access Control API (GAA-API) is intro-
duced. Within this work, the authors provide a new policy description language called
Extended Access Control List (EACL) that allows to define access policies before, during,

44 3. Analysis and System Design

and after access to an object. The proposed framework is able to adapt policies during
runtime. They propose how to in-cooperate with an IDS by identifying possible informa-
tion that can be reported by an IDS. This reported information can be included within
the policies specified in EACL. Possible responses within GAA-API are to allow or to deny
access to an object. As this solution is policy-based, we do not include this solution into
our comparison of related work. Additionally, the response capabilities are limited such
that a comparison with more comprehensive solutions is not applicable.

In [88] the use of the OODA loop [13] consisting of the four stages Observe, Orient,
Decide and Act, to model a holistic cyber defense process. The observation phase is
needed to gather information about the underlying target system. This includes active
and passive monitoring, as well as the use of IDSes to gather security relevant information
like alerts. The orientation phase is needed to substantiate the security incident and
identify responses. This includes reducing the amount of messages and information about
the security incident to a manageable amount of events. The decision phase is used
to select an identified response with respect to certain criteria. The action phase will
eventually execute the selected response. Within their work they only map the concept
of the OODA loop to IRSes and describe related work within this phase. They provide
a process-based view on the intrusion detection and intrusion response process on a very
high-level point of view. Their work lacks in concrete implementation strategies for the
single processing steps. They neither provide an underlying information model, nor an
interaction description of their processing steps. As this work is very high-level and lacks
in details, we do not include it in the final comparison of related work.

In [126, 127] alert and response capabilities are modeled using the Department of De-
fense Architecture Framework (DoDAF). This architecture framework provides different
views for different stakeholders and provides models for developing and representing archi-
tecture descriptions. In this work, a very high-level description of services for managing
alerts, responses and both in conjunction is given. The presented works lacks in much
details about the concrete implementation, used mechanisms and strategies. Therefore,
this work is not included within our comparison as this overview does not provide deeper
insights but instead shows how to model known concepts within the DoDAF framework.

In [165] a tracing-based active IRS is proposed. They focuses on strategies to trace
back the attacker in real time to apply better responses. The authors propose some
high-level response strategies but do not propose a whole system to cope with the attack.

Manual Approaches or Recommendations Additionally to automated approaches, some
related work provides partially manual solutions or simply gives recommendations how to
handle incidents. this type of related work is covered in the following.

The NIST Computer Security Incident Handling Guide [23] proposes four stages as
intrusion response life cycle: Preparation, Detection and Analysis, Containment and Erad-
ication and Recovery as well as Post-Incident Activities. The preparation phase includes
preventive tasks as well as the installation of appropriate monitoring and analysis tools.
During detection and analysis a security incident or abnormal behavior is identified and
classified. The security incident is documented and prioritized in this stage. As a last task
a notification has to be send to the people in power. In the third stage a containment
strategy is chosen and evidence is gathered. After identifying the attacker, the eradication
and recovery tasks can be triggered. The post-incident activity is used to document the
security incident and the incident handling process and evaluate the quality of the process.
The whole process is given in form of a textual description and single activities are not
structured. Especially, the third phase is not covered in detail. Moreover, this process is

3.5. Related Work 45

not automated, but describes the business process that has to be done manually.
In [85] a framework for collaborative incident response and investigation, called Palan-

tir, is introduced. This framework is not automated but provides a business process model.
Responsibilities and roles are assigned to groups within the organization. The single steps
to be executed during incident handling are covered in a generic and less detailed manner.
The tool that is provided supports the administrators doing the intrusion response manu-
ally during documentation to ensure traceability of the incident and allow further learning
steps after incident handling.

3.5.3 Summary, Comparison and Conclusion

The IRSes described in Subsection 3.5.2 are compared with respect to the requirements
stated in Section 3.1.

Tab. 3.2: Comparison of Related Work Based on the Requirements Stated in Section 3.1

Approach R
F1

–
M
ul
ti
pl
e
ID

S

R
F2

–
A
le
rt

P
ro
ce
ss
in
g

R
F3

–
T
rig

ge
r
R
es
po

ns
e

R
F4

–
Id
en
ti
fic
at
io
n

R
F5

–
A
ss
es
sm

en
t

R
F6

–
Se

le
ct
io
n

R
F7

–
P
re
pa
ra
ti
on

R
F8

–
E
xe
cu
ti
on

R
N
F1

–
A
ut
om

at
ed

R
N
F2

–
A
da
pt
ab
le

R
N
F3

–
C
om

pr
eh
en
si
ve

R
N
F4

–
G
en
er
al
ity

R
N
F5

–
C
on

ti
nu

ity

R
N
F6

–
A
ct
iv
e
R
es
po

ns
es

R
N
F7

–
C
ol
la
bo

ra
ti
ve

R
N
F8

–
M
od

ul
ar
ity

CSM [166] 3 3 7 3 7 7 7 3 3 7 7 3 7 3 3 7

EMERALD [113] 3 3 7 3 7 7 7 3 3 7 7 3 7 3 3 7

AAIRS [20, 71, 115] 3 3 7 7 7 7 3 3 3 7 7 3 3 7 7 7

RED [29, 37, 38, 39] 3 3 7 7 7 7 7 3 3 7 7 3 7 7 7 7

ADEPTS [51, 168] 3 7 7 3 3 3 7 3 3 7 7 3 3 3 7 7

CITRA [124], IDIP [123] 3 3 7 3 7 3 3 3 3 7 3 3 7 3 3 7

RDB [76] 7 7 7 3 7 7 7 3 3 7 7 3 3 3 7 7

FCM [173] 3 7 7 7 7 7 7 3 3 7 7 3 7 7 7 7

DSS [86] 3 3 7 7 7 3 7 7 3 7 7 3 3 3 7 3

RAIM [150] 3 3 7 7 7 7 7 3 3 7 7 3 7 7 7 7

RADAR [149] 3 7 7 7 3 7 7 7 3 7 7 3 7 3 7 7

REASSESS [110] 3 3 7 7 3 3 3 3 3 7 3 3 7 3 7 3

Kinesis [148] 3 7 7 3 3 3 7 3 3 7 7 7 3 3 3 3

First we would like to point out, that the presented IRSes do not provide a central
component for information sharing. Mostly, they are sequential or agent-based using a
master component with excessive functionality complicating collaboration between the
modules and leading mostly to non-exchangeable modules. The shortcoming of such
executions models are examined and discussed in Subsection 3.5.1. Approaches using
an information sharing component do not provide a full IHS but are limited to intrusion
detection and partially alert processing.

46 3. Analysis and System Design

Moreover, none of the presented approaches is able to fulfill all functional and non-
functional requirements. Most of the presented approaches support the use of multiple
IDSes and are automated, but non of them has a flexible response trigger. They do not
cover how to couple alert processing and subsequent intrusion response such that those
processes are executed in a continuous manner to cope with the continuously incoming
stream of security events occurring during an on-going security incident.

Even if it seams that most of the presented approaches are able to execute responses
(Requirement RF8), most of them lack in details how they achieve response execution but
only name the functionality. A structured execution using a response plan that is prepared
before execution is not discussed in the presented related work. Preparation actions are
limited to intervening responses or mapping selected responses to implementations.

3.6 Publication Reference

Parts of the content of this chapter are already published on WISCS (Workshop on Infor-
mation Sharing and Collaborative Security) 2016 (cf. [62]). The own contribution of this
paper was the idea of the execution and information model, the implementation, and the
evaluation of the proposed system. The presented information model within this thesis
is extended to better integrate the designed modules and includes additional information
elements compared to the presented paper.

4. INTRUSION DETECTION

An Intrusion Detection System (IDS) is the second line of defense after intrusion pre-
vention and hardening mechanisms failed. The quicker an intrusion can be detected, the
more damage may be prevented and the sooner recovery actions can be triggered [143].
intrusion detection includes the identification of the source of an attack, the target of
the attack as well as the classification or type of an attack. In case of a detected intru-
sion, an alert is generated. A standardized format for an alert description is given by the
standardized Intrusion Detection Message Exchange Format (IDMEF) [35].

In this chapter an IDS detecting protocol violations based on Complex Event Process-
ing (CEP) strategies is presented. As an example protocol, the Scalable service-Oriented
MiddlewarE over IP (SOME/IP) protocol was chosen. A short description of this proto-
col, the underlying attacker model as well as a use case description is given in Section 4.1
including the requirements of the system. The design of the IDS is given in Section 4.2.
The implementation details are described in Section 4.3. In Section 4.4 the evaluation
of the proposed IDS is examined and the results are presented. As the proposed IDS is
already published in [63], in the last section a publication reference is given to determine
the own contributions to this system (see Section 4.6).

4.1 Analysis

In this section the SOME/IP protocol is introduced in Subsection 4.1.1. This section
further investigates possibles attacks on this protocol in order to show how different
violations against the protocol specification can be misused in Subsection 4.1.2. As this
work was done in cooperation with Airbus Group Innovations (AGI) their specialized use
case is summed up in Subsection 4.1.3. The requirements arising from the protocol and
the use case are explained in Subsection 4.1.4.

4.1.1 SOME/IP Protocol Description

SOME/IP [7] specifies a middle-ware for Remote Procedure Call (RPC) on top of the
TCP/IP protocol stack, and a serialization format for the messages between RPC clients
and RPC servers. SOME/IP was standardized by the AUTOSAR project and is service-
oriented [161]. It was designed for embedded devices in the automotive domain, but can
also be adapted to the aerospace domain.

The underlying transport protocol can either be the Transmission Control Protocol
(TCP) or the User Datagram Protocol (UDP). A TCP connection as well as a single
UDP packet may contain more than one SOME/IP message. SOME/IP specifies 30491
as dynamic client port. The first server instance should use port 30501. In case more
server instances are active, subsequent ports should be used.

The SOME/IP message format is shown in Figure 4.1. The 32 bit long message ID is
used to distinguish between RPC calls a client can execute on the server instances.

This message ID is composed of

48 4. Intrusion Detection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31bit
In
cl
ud
ed

in
Le
ng
th

Message ID (Service ID [16 bit] and Method ID [16 bit]) [32 bit]

Length [32 bit]

Request ID (Client ID [16 bit] and Session ID [16 bit]) [32 bit]

Protocol Version [8 bit] Interface Version [8 bit] Message Type [8 bit] Return Code [8 bit]

Payload [variable size]

Fig. 4.1: SOME/IP Message Format as Specified in [7]

• A 16 bit service ID to address the service available on a server instance

• A single bit (1 bit) to distinguish between an event (Bit is set to 1) or a method call
(Bit is set to 0)

• And 15 bit event or service ID to distinguish between single events occurred or the
method that has to be called on the server side.

The 32 bit length field covers all subsequent header fields as well as the payload. The
32 bit request ID is used to distinguish between multiple open RPCs initiated from the
client. Therefore, the client can call the same method multiple times without waiting
for an appropriate response. The server on the other hand side can differentiate between
incoming RPCs and map them to the right client.

The request ID is composed of

• A 16 bit client ID to identify a client uniquely over the system, further divided into
a 8 bit prefix and a 8 bit client ID

• And a 16 bit session ID to be able to identify every open RPC

The 8 bit protocol version is currently set to 0x01. The 8 bit interface version describes
the application specific major version of a service interface provided by the server.

SOME/IP supports the different message types that are listed and explained in Ta-
ble 4.1. The 8 bit return codes of a REQUEST, REQUEST_NO_RETURN, and NOTIFI-
CATION have to be set to 0x00 (E_OK) indicating no error occurred. In case of an
error, different error codes can be applied. Those error codes cover for example unknown
services or methods requested by clients, timeouts, wrong message settings e.g. wrong
interface or protocol version, or message types as well as communication issues like the
service is not ready to use or the system is currently not available.

The protocol standard does not specify any security measures, such as authentication
or encryption. Therefore, the devices have no easy way of determining the authenticity
and integrity of messages. This situation facilitates an attacker to compromise a valid
device and execute attacks from inside the network, for example by plugging compromised
hardware into available USB ports within the data cabin. Whether or not a communication
partner is malicious, can not be decided by a device on its own. A central network monitor,
on the other hand, can correlate packets from all devices. If specialized to the SOME/IP
protocol, it may detect attacks and misconfigurations of services.

The SOME/IP standard proposes using security measures of underlying protocols but
not keeping additional overhead in mind that is not feasible in an embedded domain.

4.1. Analysis 49

Tab. 4.1: Supported Message Types of the SOME/IP Protocol

Number Value Description

0x00 REQUEST A RESPONSE is expected.
0x01 REQUEST_NO_RETURN No other message is expected.
0x02 NOTIFICATION Requests a notification service and expects

no message to be returned.
0x40 REQUEST_ACK Can be send optionally as response to

REQUEST.
0x41 REQUEST_NO_RETURN_ACK Can be send as additional information as

response to REQUEST_NO_RETURN.
0x42 NOTIFICATION_ACK Can be send as additional information as

response to NOTIFICATION.
0x80 RESPONSE Is sent as return message for a REQUEST.
0x81 ERROR Is sent as return message for a REQUEST

in case an error occurred.
0xC0 RESPONSE_ACK Can be send as an acknowledgment to a

RESPONSE.
0xC1 ERROR_ACK Can be send as an acknowledgment to an

ERROR.

4.1.2 Possible Attacks on the SOME/IP Protocol and Attacker Model

We analyzed the protocol design described in Subsection 4.1.1 with respect to possible
attacks and identified the following classes of misbehavior that can be a harm to the
SOME/IP protocol:

Malformed Packets are packets whose structure does not comply with the standard.
Such packets may be inserted intentionally by an attacker or by an improperly oper-
ating device. For example, the payload length may be shorter than indicated in the
header, the version number may be different from 1, or an invalid combination of
return code and request ID may be set. Malformed packets can be used to trigger
bugs in the protocol implementation, but can also be used as a covert channel to
exchange information undetected or for protocol fuzzing attacks.

Protocol Violations include all deviations from the specification in a conversation bet-
ween two devices. For example, a regular request with message type 0x00 is
expected to be answered with a single response with message type 0x80. Two
responses to one request violate the protocol, and may indicate a misconfigured de-
vice or the presence of an attacker who tries to impersonate the server and injects
additional packets.

System-Specific Violations are violations of additional, scenario specific constraints,
which are not defined by the standard, but by the system under observation. For
example, in our real-world use case, SOME/IP service discovery is not utilized or
each device offers exactly one service.

50 4. Intrusion Detection

Timing Issues are the subset of system specific violations which are concerned with devia-
tions from the expected packet inter-arrival times. For example, keep-alive messages
may be missing. A sudden increase in the number of messages may indicate a Denial
of Service (DOS) attack.

In this work we focus on the SOME/IP protocol itself and do not include the service
discovery capabilities SOME/IP SD that may introduce security risks of their own.

An IDS is placed in the target system such that it receives all traffic from all devices in
the cabin. With the knowledge of the specification and a live view of the network traffic,
we chose the following attacker as a possible opponent to the proposed system. The
attacker is able to:

• Compromise a known device within the target system. Thus, the attacker has a
valid MAC address, IP address, and service ID,

• Eavesdrop on all traffic within the target system, and

• Send packets to all clients and all servers, and thus impersonate other SOME/IP
devices and services.

All non-attacker devices are assumed to behave according to the specification. If a
device does not comply, it will simply be flagged as a possible attacker.

4.1.3 Use Case Description

This work was done in cooperation with the research department of Airbus Group Inno-
vations (AGI) who explore possibilities to introduce IP-based networks in future airplane
cabins. A simplified structure of AGI’s data cabin network is shown in Figure 4.2. This
network topology is not deployed in today’s airplanes but serve as research platform for
future deployments. The cabin network includes, for example, the smoke detectors, and
the passenger service units with lights, and service buttons. Those devices are included
into single seats or seat rows and represent a single client for each functionality. All de-
vices are coupled using switches lined up to cope with the huge number of single devices.
Those line switches are bundled into the main cabin switch since every communication
has to cross through.

This main cabin switch offers a monitoring port, a Network-based Intrusion Detection
System (NIDS) can be plugged in and all network traffic can go through the NIDS.
Moreover, all servers available are connected to the main cabin switch in order to provide
services for all clients in the network. Communication between servers is not going through
this switch but instead a separate backbone switch is used.

One envisioned network is based on SOME/IP, but without any service discovery
features. Instead, the clients know in advance all possible services and methods offered
by the servers, as well as their MAC and IP addresses. Those services are all located on
the central servers connected to the main cabin switch. The services and methods, each
client is allowed to use, are restricted. Those restrictions include access restrictions to
whole services or are limited to certain methods. All restrictions are known in advance.

Some clients send notifications to specific servers on a regular basis. For those services,
the exact intervals used, as well as the corresponding services and methods, are also known
in advance. Additionally, the servers awaiting those notifications are known.

4.1. Analysis 51

1F

1E

1D

1C

1B

1A

2F

2E

2D

2C

2B

2A

3F

3E

3D

3C

3B

3A

Main Switch

...

Line Switches

Central Servers

s1 s2

IDS

Fig. 4.2: Simplified Airbus Data Cabin Network

4.1.4 Requirements

In the following we describe the requirements an IDS has to fulfill in order to generate
alerts that are the basis for automated intrusion response and to be applicable to our use
case scenario, where a given protocol needs to be analyzed in detail.

Requirement R1 – Protocol Behavior Description: The ability to describe the
protocol behavior is the first requirement. This includes describing packet relations that
are expected as well as packet relations that are not allowed. An example for expected
behavior is that a response will be followed by a request. An example for forbidden behavior
is that an error message is never answered by another error message. Additionally, header
field definitions based on single header fields as well as the combination of header fields
within a single packet need to be addressed.

Requirement R2 – Misbehavior Detection: The system has to detect protocol
misbehavior or anomalies that means deviations from the specified model. The ability to
specify the model of the protocol to observe is stated in Requirement R1. The system
must not rely on attack signatures that have to be updated continuously, but rely on the
complete specification of the expected behavior and specification of the protocol.

Requirement R3 – Continuity: The system has to work in a continuous manner,
meaning processing the incoming data and generate an alert just-in-time. This means that
as soon as an event happens, meaning a packet arrives, the analysis should be triggered
and malicious actions have to be identified. The system should not rely on a block by block
execution, as this introduces blind spots the attacker can misuse to attack the system
unnoticed. As soon as the attack is visible the alert has to be triggered.

Requirement R4 – Low False-Positive Rate: The system should not produce
false-positives as false information will lead to wrong decisions in downstream processes
and unnecessary responses will be taken that overload the system and may lead to wrong
configurations. Learning-based mechanisms to derive a model tend to higher false-positive
rates as they may not have the complete information they need to derive the model
correctly. Explicitly specifying the model according to an available protocol specification

52 4. Intrusion Detection

can overcome this issue. False-positives do not include misconfigurations as they can be
handled in subsequent intrusion response.

Requirement R5 – Usability: Rules for the IDS should be easy to write and deploy
without complex adaptations to the system itself. Adding additional rules should not
require to adapt the system itself or add additional components to the IDS. Writing rules
should be comfortable even for complex relations between single packets within a stream.

4.2 System Design

As the proposed system is based on CEP, first, a short introduction into CEP is given in
Subsection 4.2.1. The proposed system design is presented in Subsection 4.2.2. The re-
quired input providing necessary knowledge to the system is described in Subsection 4.2.3.

4.2.1 Complex Event Processing

CEP is part of the Information Flow Processing (IFIP) domain that comprises distributed
applications that process continuously flowing data from different sources that may be
geographically distributed [25]. This domain is split up into complex event processing
and data stream processing. Data stream processing models this continuously flowing
data as data streams, while complex event processing refers this data as single items like
notifications or events [25].

An event can be treated as any occurrence from the real physical world, e.g. a single
SOME/IP packet in the network. As those events occur in an infinite sequence that
is ordered and linear, such sequences are called stream [10]. CEP describes methods,
techniques as well as tools dealing with events as they occur. This means CEP is real-
time and continuous [41, 98].

CEP is able to extract additional information from events by combining them (Event
Patterns) for example correlating or aggregating them. Those new compositions are
called complex events. Those correlations are often temporal relations, for example the
existence of a later event or the non-existence of such an event [16] or spatial [10].

4.2.2 Proposed System Design

The proposed design is based on the traditional rule-based NIDS architecture. The system
runs on a device which can monitor all traffic in a network, e.g. by using the monitoring
port of a central switch. A knowledge-based approach minimizes the amount of false
positive alerts and is well-suited for tightly specified environments such as aircraft cabins
or internal car communication. The basic idea is to specify and model the expected
protocol behavior, as this information is available within the standardization documents.
Deviations from this specified behavior indicate an attack and is therefore considered as
a security incident.

Inspecting single packets in isolation can only determine whether a message is well-
formed. This includes the correct setting of single header fields as well as the correct com-
bination of header field settings. For example the current protocol version of SOME/IP
has to be set to 0x01. An example for the correct combination of header field settings
would be the following. In case a RESPONSE is sent the error code has to be set to 0x00.
This example may be more complicated but still, only one single message is needed to
verify if a packet fulfills this requirement.

In order to analyze a whole conversation between two devices, information from mul-
tiple packets is needed. To this end, the proposed system feeds the received messages to

4.2. System Design 53

a CEP engine [42] as a stream of events, one event per message. The event is parsed
and reduced to its meta data, i.e. the header fields of the SOME/IP protocol as well
as the underlying protocols. This includes the MAC header information, the Internet
Protocol (IP) as well as TCP or UDP header information. The payload itself is not
part of an event. Of course this scheme is applicable to all protocols providing header
information and not limit to the use of the SOME/IP protocol.

Instead of single events, the CEP engine applies its rule set to a sliding window on the
stream of incoming messages. Such a sliding window can be based upon timing definitions,
e.g. all packets arriving in a certain amount of time, or a simple packet counter. This
means that the view of the CEP has to be limited to a certain amount of packets. The
rules applied to those windows only trigger if the condition they describe is fulfilled within
this window. As the rules are evaluated every time a packet arrives, the system reacts in
a timely manner, meaning just-in-time in case of a security incident. In case the window
is full the last seen event leaves the window if a new event occurs. The rules applied to
the windows may aggregate, join, and group messages in the window allowing to apply
more complex rules than checking only a single packet.

As the window size is an important factor of CEP, as the more events are stored in
a window the more events have to be checked to investigate whether a rule has to be
triggered or not, the window size has to be limited as much as possible. Prefiltering events
that are going to be stored within the event window is be a good option. For example
matching on certain header fields to distinguish whether or not a packet is of interest
limits the size of events that have to be stored for a longer time.

4.2.3 Knowledge as Input

In order to write the rules the system has to apply, two categories of knowledge are
required:

• The protocol specification and

• System or use case related meta data.

The protocol specification is the basis for writing rules as packet sequences and header
fields as well as their combinations are laid down. Additionally, meta data can be used to
render rules more precisely or do some optimizations within the rules.

Within our use case, AGI’s data cabin network, the following information is known
before-hand:

• MAC addresses and IP addresses of all servers

• The offered service and method IDs, and expected message types of each server

• MAC addresses, IP addresses, and client IDs of all clients

• The services and methods of which server a client is allowed to use

• Timing definitions of notifications (whose message type is either NOTIFICATION
or REQUEST_NO_RETURN)

This information allows us to implement more efficient rules, as the window length of
the rules can be shortened. The details are described in Section 4.3.

54 4. Intrusion Detection

4.3 Implementation

A working prototype is implemented in Java to demonstrate the feasibility of the approach.
Esper [46] is chosen as the CEP engine. It accepts rules written in the Event Processing
Language (EPL) [47], a subset of the Structured Query Language (SQL), extended with
features for stream processing. Thus, rules can be written in a familiar, easy-to-learn, high-
level language. Esper and EPL are described in Subsection 4.3.1. The implementation
itself, as well as the SOME/IP packet generator used in the evaluation is described in
Subsection 4.3.2. In Subsections 4.3.3 to 4.3.5, we illustrate how the classes of protocol
violations from Subsection 4.1.2 can be realized with complete EPL examples.

4.3.1 Esper and EPL

Esper [46] is a CEP engine written in Java to analyze series of events. Esper is implemented
as real-time engine, that means an action is triggered in case a predefined condition within
the event stream occurs. Events are represented as Java Objects like Plain Old Java
Objects (POJO) or JavaBeans. EPL is used to define queries that are registered within
the Esper engine to describe the triggering conditions. In case an EPL rule triggers, a
listener class is invoked to execute an action.

In contrast to an in-memory database, Esper does not store the data itself and performs
queries on-top, but stores the queries and let the data flow through the queries. Esper
turns the database concept upside-down, to allow a more continuous execution procedure.

Within Esper, events can be modeled and represented. For an event, representation
types of information are available, called event type. Events can be configured statically
within the configuration at startup or dynamically during runtime. An event is defined
as an immutable record that describes an action or change within the state occurred in
the past. Each event may have different properties characterizing the event itself. Those
properties can be static, dynamic, or even nested.

The feature list of Esper and EPL is extensive, therefore, only a few selected and
used features are examined in short. EPL supports multiple kinds of data windows, for
example sliding windows based on time or length as well as combined windows providing
for example an intersection of multiple windows. Additionally, traditional tables can be
used as global data structures to perform co-aggregation of multiple statements. Esper
allows parallelization for the same and for sub-queries, and is multithread-safe.

4.3.2 SOME/IP – Analyzer and Generator

The implementation consist of the SOME/IP – Analyzer written in Java and using Esper
and of the SOME/IP – Generator for producing SOME/IP Packets written in Python3.
Both components are shortly examined in the following.

4.3.2.1 SOME/IP – Analyzer

For analyzing and event generation, that means transforming a network packet into an
event, two separate threads are used, namely EventSender and Analyzer.

The EventSender can either read the packets to analyze from a network interface or
from a given .pcap file. To be able to interpret SOME/IP packets as events, the network
packets need to be parsed. The network packets are acquired and parsed with the library
jnetpcap. A deserializer for SOME/IP packets was added, since jnetpcap does not
have one. Currently, only UDP packets which contain exactly one SOME/IP packet are

4.3. Implementation 55

supported. The SOME/IP protocol potentially allows containing several SOME/IP mes-
sages in one UDP packet or using a TCP stream. Events representing a single SOME/IP
packet are transformed into a dedicated event class. This event class provides attributes
for all needed header information from the MAC, IP, UDP and SOME/IP headers.

The Analyzer starts the Esper engine and registers the SOME/IP events given as
POJO. Additionally, a rules file defines the rules to be loaded into the engine. For each
rule a listener is instantiated that triggers in case the rules matches. Besides the rules
file the configuration file is read that specifies the predefined knowledge described in Sub-
section 4.2.3. This configuration is given in Extensible Markup Language (XML)
format and defines server and client instances including their MAC and IP addresses.

As the implementation of the used EPL rules is a central part of this work, they are
examined in separate Subsections 4.3.3 to 4.3.5. The implementation of the proposed
system, the rules file, and an example configuration are available on GitHub [136].

4.3.2.2 SOME/IP – Generator

The packet generator is written in Python3 and generates valid SOME/IP packets and in-
tegrates predefined attacks within the valid packet stream. The generator allows to spawn
multiple server, client and attacker instances running in different processes. The attacker
acts as a man-in-the-middle and can execute attacks based on incoming messages. The
attacker can simulate the following attacks:

• sendErrorOnError will send an error message as reply to a previous error

• sendErrorOnEvent will send an error message as reply to a previous notification

• fakeResponse will send a spoofed response message to a client

• disturbTiming will add or remove heart beat messages

• wrongInterface will change the predefined interface information within a valid
packet

• fakeClientID will send packets with a client ID of other valid clients

All server and client instances will behave according to the protocol specification and
their configurations. Clients as well as servers can be configured using two configuration
files given in XML format. Within the device.xml all available devices (server, client
and attacker) are specified by name, type, IP, MAC and sending as well as receiving port.
Within the services.xml all available services are defined including their ID, a method
description and servers offering those services. A detailed description of the Generator can
be found here 1. The implementation of the generator as well as example configurations
are available on GitHub [137].

4.3.3 Malformed Packets

As a first example, a packet is examined in isolation. Checks of the malformed packets
class, for example whether a packet is malformed, or for allowed IP addresses or port
numbers, are implemented this way. The rule of Listing 4.1 fires when the interface
version is not a predefined value.

1http://some-ip-generator.readthedocs.io/en/latest/index.html

http://some-ip-generator.readthedocs.io/en/latest/index.html

56 4. Intrusion Detection

Listings 4.1: Check for Malformed Packets

1 SELECT ∗ FROM SomeIPPacket.win:length(1)
2 WHERE interfaceVersion != INTERFACE

In Line 1 we define the stream and the window size to look at. The stream SomeIP-
Packet contains all SOME/IP packets arriving at the Esper engine. In this case we look
at only one packet at a time, so the window size is 1. In Line 2 we compare the inter-
face version set in the packet with the predefined allowed value. This predefined value is
configured as an Esper internal variable at engine startup.

Using this kind of rules, several checks on packets well-formdness can be done. Those
checks are not limited to only one header field, but can be extended to check for the
correct combinations of header fields.

4.3.4 Protocol and System-Specific Violations

In order to check for protocol or system-specific violations, more EPL features are used. In
the following we will show, how checks for certain changes in the system can be observed
and how conversations can be validated.

4.3.4.1 Checking for Changes

The AUTOSAR standard requires the client ID to be unique within the system. In this
example, we use Esper’s Named Tables to track which client, identified by its IP address,
uses which client ID. One table maps IP addresses to client IDs, another table holds the
reverse mapping from IDs to IP addresses. For each incoming message, both tables are
checked. If the pair of IP address and client ID of the incoming message is not contained
in the tables, it is added to both tables. If there is already a mapping and the mapping
differs, an alert is generated, and the existing mapping is updated.

The query in Listing 4.2 checks whether a device changed its client ID. The comple-
mentary query, checking whether a client ID is used by a different device, is not shown as
only a few adaptations with respect to the checked table are required.

Listings 4.2: Check of Changed Client ID/IP Assignment

1 ON SomeIPPacket s MERGE clientMappingIP cm
2 WHERE (s.srcIP IN (select client_ip FROM clientMappingIP)
3 AND (s.srcIP IN (clientIPs))
4 AND (s.srcIP = cm.client_ip AND s.clientID != cm.client_id))
5 WHEN MATCHED THEN
6 UPDATE SET cm.client_id = setClientID(s)
7 WHEN NOT MATCHED
8 AND s.srcIP NOT IN (SELECT client_ip FROM clientMappingIP)
9 AND s.srcIP IN (clientIPs) THEN
10 INSERT INTO clientMappingIP SELECT s.srcIP AS client_ip, s.clientID AS ←↩

client_id

In Line 1 of Listing 4.2 the SOME/IP event is automatically merged into the named
table created beforehand. In case of a match (cf. Line 5) the new entry is added, if no
match is found (cf. Line 7) the corresponding values are updated and an alert can be
triggered. The query in Listing 4.2 uses the predefined variable clientIPs in Line 3
representing an array with all allowed client IP addresses read from the configuration. In
Line 6 a user-defined function is called, that throws the alert and returns the new client
ID the table is updated to.

4.3. Implementation 57

4.3.4.2 Validating conversations

A sequence of corresponding messages between two devices can be easily analyzed with
EPL. Thus, the system can check for protocol violations. The remaining listings will
implement the following requirements from the SOME/IP standard:

• An error message should not be answered with another error message.

• Notifications should not be answered with an error message.

• Requests have to be answered with either a response or an error message.

• A response should only be sent to answer an open, earlier request.

Currently, the implementation does not handle retransmits.
The rule in Listing 4.3 checks whether an error was answered with another error. To

check whether a notification is replied to with an error, only Line 3 has to be modified to
check for the type ERROR.

Listings 4.3: Check for Correct Error Behavior

1 SELECT ∗ FROM SomeIPPacket(type = ERROR).win:length(1) s1
2 WHERE NOT EXISTS
3 (SELECT ∗ FROM SomeIPPacket(type = REQUEST OR type = ←↩

NOTIFICATION OR type = REQUEST_NO_RETURN).win:length(100) s2
4 WHERE s1.serviceID = s2.serviceID
5 AND s1.methodID = s2.methodID
6 AND s1.requestID = s2.requestID
7 AND s1.srcIP = s2.dstIP
8 AND s1.dstIP = s2.srcIP
9 AND s1.srcMAC = s2.dstMAC
10 AND s1.dstMAC = s2.srcMAC
11 AND s1.srcPort = s2.dstPort
12 AND s1.dstPort = s2.srcPort
13 AND s1.time_stamp > s2.time_stamp
14 AND s2.time_stamp < s1.time_stamp + δ)

For every incoming error (see Line 1) we check for a corresponding request (or other
packet) (Line 3) with the same settings (Line 4 to 12). We use the prefiltering capabilities
of Esper in Line 1 and Line 3 allowing to reduce the stream size of considered events.
In Lines 13 to 14 we check for the timestamps, that means the current timestamp is
greater than the potential match and within the maximum response time of the servers,
δ microseconds. We use a length definition instead of a time definition in Line 3 for the
window size because we are analyzing a captured dump instead of a live capture. Note
that the window size of stream s2 in Line 3 is selected based on the number of incoming
packets as we read the information from a .pcap file. In case we would listen to an
interface, choosing the window size based on times, e.g. the server responding times,
would be more appropriate.

The following statement in Listing 4.4 finds requests that were never answered. Line 11
is an abbreviation for the Lines 4 to 12 in Listing 4.3. The difficulty with checking this
requirement is that events have to be checked after some time has passed. The first
event coming in in the client sending the request, if a request will finally arrive is unknown.
Therefore, we have to assume that after a certain time, no response will arrive anymore.

58 4. Intrusion Detection

Listings 4.4: Check for Missing Responses

1 SELECT ∗ FROM
2 SomeIPPacket.win:length(2) s1,
3 SomeIPPacket.win:length(2) s2,
4 SomeIPPacket(type = REQUEST).win:length(100) s
5 WHERE s1.time_stamp > s2.time_stamp
6 AND s3.type = SomeIPPacket.REQUEST
7 AND s3.time_stamp < (s1.time_stamp − δ)
8 AND s3.time_stamp > (s2.time_stamp − δ)
9 AND NOT EXISTS
10 (SELECT ∗ FROM SomeIPPacket(type = RESPONSE OR type = ERROR).win:←↩

length(50) s4
11 WHERE (s3 corresponds to s4)
12 AND s3.time_stamp < s4.time_stamp)

A request can be answered within a certain time window. Only afterwards the decision
can be made that the request was never answered. Therefore, we utilize the timestamps
of the last two packets that arrived in the stream (s1 and s2) to check for request packets
lying in the past in stream s3. The window we check in the past corresponds to the
maximum response time of the server. This window selection is done in Lines 5 to 8.
In case we find a request in this window, we check if the corresponding response arrived
afterwards (see Lines 9 to 12). Note that in case that no packets arrived so far or no
packets exist in the considered time window the rule will not be triggered.

The last example checks whether a response was sent twice in Listing 4.5.

Listings 4.5: Check for Missing Requests

1 SELECT ∗ FROM SomeIPPacket(type = RESPONSE).win:length(1) s1
2 WHERE NOT EXISTS (
3 SELECT ∗ FROM SomeIPPacket(type = REQUEST).win:length(100) s2
4 WHERE (s1 corresponds to s2)
5 AND s1.time_stamp > s2.time_stamp
6 AND s2.time_stamp < s1.time_stamp + δ))
7 OR
8 ((SELECT COUNT(∗) FROM SomeIPPacket(type = REQUEST).win:length←↩

(50) s
9 WHERE (s1 corresponds to s)
10 AND s1.time_stamp > s.time_stamp
11 AND s.time_stamp < s1.time_stamp + δ)
12 =
13 (SELECT COUNT(∗) FROM SomeIPPacket(type = ERROR OR type = ←↩

RESPONSE).win:length(50) s
14 WHERE (s1 equals s)
15 AND s1.time_stamp > s.time_stamp
16 AND s.time_stamp < s1.time_stamp + δ
17 AND s.time_stamp > minValue)))

The query shown in Listing 4.5 uses an abbreviation for checking if packets are identical
in Line 14. In contrast to the correspondence check, were we check for the answer to a
packet, we check for packets with identical settings. First, we check for every incoming
packet if a requests exists that corresponds to the response (Line 1 to 6) in a given time
window that reflects the maximum server response time.

4.4. Evaluation 59

In case we found corresponding requests, we have to check if those requests were
already answered with responses (Line 8 to 17). As the time window we check can
contain a response that was sent for a previous request not in the checked time window,
we have to limit the scope of requests taking into account to the last response seen.
Otherwise, the query would fail. Therefore, we use the variable minValue in Line 17.

To set minValue to the timestamp of the last response taken into account we use
the following query in Listing 4.6.

Listings 4.6: Helper Query to Set the Minimum Timestamp to be Considered

1 ON SomeIPPacket (type = RESPONSE) AS s1
2 SET minValue = (
3 SELECT MIN(s.time_stamp) FROM SomeIPPacket(type = REQUEST).win:←↩

length(100) s
4 WHERE (s1 equals s)
5 AND s1.time_stamp > s.time_stamp
6 AND s.time_stamp < s1.time_stamp + δ

To ensure that the helper query is executed before the main query, both queries are
annotated with a priority, which tells Esper the execution order of the queries.

4.3.5 Timing Issues

Some components will send notifications to another device at a fixed frequency, for ex-
ample a sensor to a controller. If no message was sent for a predetermined amount of
time, the device may be offline. On the other hand, if the device sends notifications too
frequently, it may indicate a broken device, or a DOS attack by the means of flooding.

In the following example, we show how we can check those timing constraints in EPL.
The rule in Listing 4.7 checks whether messages are sent more often than defined by an
interval δ.

Listings 4.7: Check for Timing Constraints

1 SELECT ∗ FROM SomeIPPacket(clientID = id , methodID = x , serviceID = y).win:length←↩
(1) AS s1

2 WHERE NOT EXISTS
3 (SELECT ∗ FROM SomeIPPacket(clientID = id , methodID = x , serviceID = y).←↩

win:length(2) AS s2
4 WHERE s2.time_stamp < s1.time_stamp − δ)

In Line 1 we filter the stream to only include the specific clients and notifications we
are interested in. We select those messages from a window of size 1 (Line 1), and a
window of size 2 (Line 3), which will also contain the previous message. Line 4 checks
whether more than δ microseconds have passed between those messages. We can add a
rule like this one for each timing constraint in the system specification.

4.4 Evaluation

Within this evaluation section, we first compare our system to the requirements stated
in Subsection 4.1.4 (see Subsection 4.4.1). Further, we provide a performance analysis
as a quantitative analysis covering execution time and memory consumption within this
section. The used test setup for this evaluation is explained in more detail in Subsec-
tion 4.4.2. We evaluated the time consumption of the system using only a single rule

60 4. Intrusion Detection

(see Subsection 4.4.3) and multiple rules in parallel (see Subsection 4.4.4). Finally, we
investigate the memory consumption using multiple rules (see Subsection 4.4.5) and with
a varying window size (see Subsection 4.4.6).

4.4.1 Requirement Alignment

In Subsection 4.1.4 the requirements an IDS has to fulfill if it has to be integrated into
an Incident Handling System (IHS) and if it has to be suitable to our use case are stated.
In this subsection our proposed IDS is compared to this requirements.

Within the proposed IDS the rules given in EPL reflect the protocol behavior of
SOME/IP [7] used exemplary (cf. Requirement R1). In Section 4.3, we have shown
that malformed packets, protocol and system specific violations as well as timing issues
can be reflected using the proposed IDS. This includes validating conversations and check-
ing for changes. The defined expected behavior defined in the standardization documents
can be reflected using the proposed IDS.

The proposed IDS is throwing an alert in case misbehavior is detected (cf. Require-
ment R2). Misbehavior can either presented by violating explicitly forbidden or allowed
actions. This misbehavior is either an attack or a misconfiguration. As both is unwanted
in the target system, attacks as well as misconfigurations can be handled by automated
intrusion response. The underlying model used to detect deviations is explicit, meaning
that no learning phase is required. As no attack signatures but the expected protocol
behavior is specified, rules need only to be adapted if the underlying protocol changes but
not in case of new attacks.

The proposed IDS can detect an attack in a continuous manner (cf. Requirement R3).
As CEP is used and the SOME/IP packets are fed into the system directly, an alert can be
triggered as soon as the attack happens. In case the attack is only visible if an expected
packet can not be observed, the alert is triggered as soon as the attack is clear.

The proposed IDS provides a low false-positive rate (cf. Requirement R4). As long as
the components behave according the protocol no false alert in terms of attacks will be
raised. Besides security incidents a misconfiguration of a network element can be detected
if this misconfiguration leads to a wrong behavior. A distinction between security incident
and misconfiguration can not be detected but a paling IHS can handle a misconfiguration
likewise a security incident as a misconfigured device is unwanted behavior of the target
system as well. Therefore, responses reconfiguring devices or resetting devices need to be
integrated into the IHS.

As the proposed IDS uses EPL the usability is high (cf. Requirement R5). All rules
to reflect the protocol behavior can be reflected using EPL. Therefore, no additional
components or recompilation are needed if new rules are added to the IDS. As EPL is
based on the well-known SQL the language to write rules can be learned easily as complex
structures within the stream of packets can be expressed easily in a known language.

4.4.2 Test Setup

In order to evaluate the proposed system, we utilize our SOME/IP packet generator
written in Python 3. The generator simulates the behavior of multiple clients and servers,
and an attacker performing various attacks. The clients and servers behave according
to the AUTOSAR standard [7]. The attacker is capable of all actions and implements
the attacks described in Subsection 4.1.2 . The implementation of the packet generator,
including configuration, is available on GitHub [137].

4.4. Evaluation 61

For evaluation, we generated a libpcap dump file. This dump contains around 12.000
attacks, with a size of 122.4MB and containing around 1.49 million packets. All figures
show the average over five runs. Memory consumptions were sampled at an interval of
100ms during execution.

The measurements were executed on a Ubuntu 15.10 system with an Intel Xeon E3-
1275v3 CPU at 3.5GHz and 16GB of RAM. As of now, the analyzer is single-threaded.
The reading and parsing of the libpcap dump is executed on a separate thread.

4.4.3 Time Consumption of Single Rules

For each rule, we measure the time needed for analyzing the dump. We calculate the
packet rate and the data rate. As the SOME/IP payload is only a few bytes in our test
case, we assumed a size of 64B per frame, the minimum size of an Ethernet frame.

The time to only deserialize all packets and feed them into Esper, without any rules
being evaluated, is 4.18 s. About 357.000 packets can be deserialized per second which
results in a data rate of 183Mbit/s. Table 4.2 lists the time measurements for each rule.
A graphical representation is given in Figure 4.3a and 4.3b.

0 20 40

Spoofed
Client ID

Wrong
Interface

Disturbed
Timing

Missing
Request

Missing
Response

Error
on Event

Error
on Error

Time in s

Total

Analysis

(a) In Seconds

0 2,000 4,000 6,000

Spoofed
Client ID

Wrong
Interface

Disturbed
Timing

Missing
Request

Missing
Response

Error
on Event

Error
on Error

Time in 1000 Packets per Second

Total

Analysis

(b) In 1000 Packets per Second

Fig. 4.3: Time Comparison for Single Rules

The times we show for analysis’ is the total time measured to analyze the dump
minus the constant deserialization time. Times are given in seconds (s). σ is the standard
deviation of the total time. The packet rate is given in 1.000 packets per second (kpkt/s).
The data rate is given in Megabit per second (Mbit/s). The rule Disturbed Timing is
actually a bundle of 5 separate rules following the definition of Listing 4.7.

Some rules, in particular Listing 4.1 (wrong interface) and Listing 4.7 (disturbed tim-
ing), only have a minor effect on the packet rate, whereas Listing 4.4 (missing response)
has a huge impact. The results of these benchmarks indicate that the execution time of
a rule increases particularly with the number of sub-queries and the window size, which is
to be expected, just like in SQL.

AGI is building a cabin network mock-up for testing experimental devices and proto-
cols. At the moment, the cabin part of the mock-up is equipped with 100Mbit/s lanes.
Therefore, most of the measured rules could handle live monitoring at line rate. The other
rules would overwhelm the monitoring system if the lanes are saturated. This would not
happen during normal operation, but may happen when a device misbehaves.

62 4. Intrusion Detection

Tab. 4.2: Time Consumption per Rule in Seconds

Rule Analysis Total σ kpkt/s Mbit/s

Error on Error (Listing 4.3) 1.36 5.54 0.09 269 137.92

Error on Event (Listing 4.3) 1.23 5.41 0.04 276 141.28

Missing Response (Listing 4.4) 34.25 38.43 0.96 39 19.92

Missing Request (Listing 4.5) 5.80 9.98 0.37 150 76.64

Disturbed Timing (Listing 4.7) 0.49 4.66 0.07 320 163.92

Wrong Interface (Listing 4.1) 0.27 4.45 0.08 335 171.68

Spoofed Client ID (Listing 4.2) 2.03 6.21 0.15 241 123.2

4.4.4 Time Consumption of Multiple Rules

We evaluated the performance of the system when several or all of the rules are enabled.
The results are shown in Table 4.3. A graphical representation is given in Figure 4.4a and
4.4b.

20 40 60

Without
Both

Without
Missing
Response

Without
Missing
Request

All Rules
(measured)

All Rules
(sum)

Time in s

Total

Analysis

(a) In Seconds

100 200

Without
Both

Without
Missing
Response

Without
Missing
Request

All Rules
(measured)

All Rules
(sum)

Time in 1000 Packets per Second

Total

Analysis

(b) In 1000 Packets per Second

Fig. 4.4: Time Comparison for Multiple Rules

As Listing 4.4 (missing response) and Listing 4.5 (missing request) are comparatively
expensive, we first enable all but those two rules (Case 1). Then, we only disable one of
those rules (Case 2 and 3), and finally, all rules are enabled (Case 4).

Tab. 4.3: Time Consumption with Multiple Rules Activated

Considered Cases Analysis Total σ δ kpkt/s Mbit/s

1: without 4.4 & 4.5 5.59 9.76 1.09 0.21 153 78.24

2: without 4.4 12.11 16.29 0.21 0.93 92 46.96

3: without 4.5 42.87 47.05 0.22 3.24 32 16.24

4: all rules 52.95 57.13 0.67 7.52 26 13.36

We are interested in the additional overhead multiple rules may generate. Therefore,

4.4. Evaluation 63

we calculated the difference (δ in seconds) between the sum of the single analysis times
of each rule and the analysis time when these rules were enabled in the same run.

In Case 1, when only inexpensive rules were activated the additional overhead δ was
negligible. When more expensive rules were activated, the overhead increased from 3.7%
of the analysis time (Case 3) to 14% (Case 4).

Regarding the cabin network mock-up, we conclude that the combined data rates
are under the 100Mbit/s maximum data rate. Either, only a subset of the rules can
be enabled, or the traffic has to be pre-filtered to decrease the data rate to the IDS.
Additionally, multiple instances of the IDS can be deployed using a suitable rule subset.

4.4.5 Memory Consumption with Multiple Rules

Another interesting aspect is the memory consumption of single rules as well as in combi-
nation. In Figure 4.5a the results of the memory consumption measurements are shown.
We only plot the resident memory in this figure. Shared memory remains below 20MB
at all times. The single process, which includes the Java runtime and Esper besides the
analyzer, allocates about 7350MB of virtual memory in advance. As this do not change
over time, we do not include it.

As the memory consumption is sampled at fixed intervals, the number of measurements
depends on the running time of the analysis. We only show the first 10 seconds if the
process took longer. Even when all rules were activated, the memory consumption did
not increase after the first 10 seconds.

0 2 4 6 8 10

0

500

1,000

1,500

Time in s

M
em

or
y
C
on
su
m
pt
io
n
in

M
B

All Rules Without 8 and 9
Missing Response Missing Request
Error on Error No Rules

(a) Selected Rules

10−1 100 101 102

500

1,000

1,500

Time in s

M
em

or
y
C
on
su
m
pt
io
n
in

M
B

Window 1 = 100 and Window 2 = 100
Window 1 = 100 and Window 2 = 1.000
Window 1 = 1.000 and Window 2 = 100
Window 1 = 1.000 and Window 2 = 1.000

(b) Varying Window Sizes

Fig. 4.5: Memory Consumption for Different Scenarios

Only the checks for missing requests (Listing 4.5) and responses (Listing 4.4) have
a noticeably higher memory consumption than the other rules. This is the case even if
the remaining other rules are combined with each other. The memory consumption of all
rules combined is barely higher than the memory consumption of using only the single rule
for missing responses (Listing 4.4) or missing requests (Listing 4.5). As expected, rules
with a large window require the CEP engine to keep more packets in memory. However,
windows with equal conditions are shared, so adding more expensive rules of the same
kind does not increase the memory consumption.

64 4. Intrusion Detection

4.4.6 Memory and Time Consumption with Varying Window Sizes

The window size on a stream may have a strong impact on performance if the rule
requires a join on large windows, or performs a sub-query for each element in a window.
The missing response rule (Listing 4.4) works over a large window (Line 4) and performs
a sub-query over another large window (Line 10). We evaluated this rule in Table 4.4.

Tab. 4.4: Time Consumption for Listing 4.4 with Varying Window Size

Query Window Sub-Query Window Total σ

100 100 38.9 0.59

100 1000 39.5 0.49

1 000 100 360.5 4.67

1 000 1000 364.0 4.05

In our dump, the cost of the size of the sub-query window (Line 10) is negligible
compared to the cost of the main query window (Line 4). Esper has to keep all packets
of a window in memory. Figure 4.5b shows the memory consumption for varying window
sizes. Note that the x-axis is set to log-scale.

A large window in a sub-query has a negligible impact when compared to a large window
size on the main query. This is likely because those sub-queries are executed rarely by the
engine. The engine may short-circuit the evaluation of the rule as soon as a where’-clause
of the main query fails, or a match is found if the sub-query has an EXISTS predicate.

As the impact of large windows is significant, the window size should be chosen as
small as possible. Correctly pre-filtering the packet stream allows for smaller windows. In
future work, generic queries like Listing 4.3 may be made more specific to the content of
the stream as for example in Listing 4.7.

4.5 Related Work

A common method for detecting attacks is to collect network traffic and feed it to a
NIDS [90]. Popular IDSes, such as Snort [134] or Bro [15], do not ship rules for SOME/IP
or other sparse protocols, provide particularly no support for use-case-specific requirements
or do not provide an easy and adequate description language for protocols or other require-
ments. Implementing custom rules in Snort, especially when relations between multiple
packets are to be considered, is burdensome. Additionally, Snort is used to define and
specify attack signatures and therefore, describes the unwanted behavior instead of the
expected system behavior. Consequently, Snort rules have to be updated and adapted
for all new attacks. CEP offers a promising alternative for anomaly detection. Those
approaches are examined in the following, followed by model-based approaches.

CEP-Based Approaches The authors of [2, 3, 96] have implemented a specialized
algorithm for detecting port scans on top of a CEP engine. In [52] a general IDS for
detection attack on the network based on CEP is introduced. The authors provide an
attack pattern definition for DOS [52]. In contrast, we apply the CEP paradigm to a wide
variety of protocol-specific issues as we do not specify concrete attacks to look for in the
event stream, but specifying the correct behavior of a protocol and looking for deviations

4.5. Related Work 65

from this behavior. The advantage of this approach is that even unknown attacks can be
detected without adding new rules to the system.

In [10] a solution for object tracking based on CEP for wireless sensor networks is
introduces. The focus of this work is the detection and tracking of objects using multiple
sensors. Even if they claim to propose an IDS no IDS functionality is implemented or
tested within their system.

In [49] a generic Intrusion Detection and Diagnosis System (ID2S) based on CEP
is proposed. The system supports alert correlation for detecting and analyzing complex
intrusion scenarios in large-scale complex critical Infrastructures. This work focuses on
the collection and interpretation of raw attack information to generate a more high-level
view on the network situation rather than detecting protocol misbehavior.

Model-Based Approaches In contrast to model checking [97], the proposed system is
used for testing and analyzing implementations of single network components rather than
verifying the protocol design itself. It does not require a formal model, but behavioral rules
from the standardization documents.

In [125] a specification-based approach towards anomaly detection within computer
networks is proposed. They specify the protocol behavior defined within RFCs or other
specifications using an EFSA (extended finite state automata). An EFSA is similar to a
finite-state machine but transitions can be done based on events and state variables can be
utilized. For each packet a new instance of the state machine is needed and additionally
handed over to all existent state machines. A state machine reaching a finite state is
removed from the list of available state machines. The authors admit many instances
of those state machines will be created. That why they combine their approach with
statistical machine learning techniques. They map statistical characteristics of the packet
stream, like frequency, most common values and value distribution to properties of the
EFSA. This approach does not enable the system to identify misbehavior of the network
entities regarding the protocol definition, but instead deviations from statistical values
regard the protocol.

SYMBEXNET [138, 139] describes a method to verify protocol implementations based
on symbolic execution and rule-based specifications. The idea is to generate special pack-
ets covering a huge code space of the implementation This system is based on replaying
these generated packets and is not designed as an IDS.

Summary, Comparison and Conclusion The requirements stated in Subsection 4.1.4
are mapped to the presented approaches. The results are summarized in the following
Table 4.5. Summing up the related work we can come to the conclusion that common
and used IDSes do not provide an easy specification language for protocol or use case
requirements. Specification-based approaches produce to many instances to be managed
such that their capabilities are limited to statistical analysis. Approaches based on CEP
only specify attacks to look for within the stream of packets, instead of providing rules
for the expected behavior. Protocol verification approaches can not be used for anomaly
detection.

66 4. Intrusion Detection

Tab. 4.5: Comparison of Related Work Based on the Requirements Stated in Subsection 4.1.4

Approach R
1
–

P
ro
to
co
l

M
od

el

R
2
–

P
ro
to
co
l

C
he
ck
s

R
3
–

C
on

ti
nu

ity

R
4
–

Lo
w
Fa

ls
e

P
os
it
iv
e
R
at
e

R
5
–

Si
m
pl
ic
ity

Snort [134] 7 7 3 3 7

Bro [15] 7 7 3 7 7

Port Scan Detection [2, 3, 96] 7 7 3 3 3

Attack Detection [52] 7 7 3 3 3

Wireless Sensors [10] 7 7 3 3 3

ID2S [49] 7 7 3 3 3

State Machines [125] 3 7 3 3 7

SYMBEXNET [138, 139] 7 7 7 3 7

Concluding the related work, the unique features of the presented approach are the
specification of the correct protocol behavior using CEP rules and finding intrusions by
looking for deviation from this modeled behavior.

4.6 Publication Reference

AGI provided the use case of the data cabin network within an airplane, protocol selec-
tion to use SOME/IP and the assumptions of given information used as input for the
proposed IDS. This data cabin network is not deployed within airplanes but serves as re-
search platform for future cabin networks. The content of this chapter is published on
DISSECT (Workshop on Security for Emerging Distributed Network Technologies) 2016
held in conjunction with the Network Operations and Management Symposium (NOMS)
(cf. [63]). The own contribution of this paper is the basic idea of using CEP as method
for protocol behavior checks, the implementation of the overall IDS and an essential part
of the design of the rules as well as the evaluation.

5. RESPONSES IDENTIFICATION

The response identification module is responsible for

• Determining at which point in time automated intrusion response has to be triggered,

• Determine all affected entities, and

• Determine applicable responses (candidate responses) with respect to the affected
entities and the security incident.

To be able to realize this functionality, an underlying model for responses in general is
needed. In Section 5.1 we cover the response model derived from our information model
given in Section 3.3 in more detail. Additionally, we identify requirements the response
identification module has to fulfill in order to realize the listed functionality. Further, we
explore available responses and classify them according to the features and taxonomies
shown in Subsection 2.4.1. In Section 5.2 we introduce the system design of our response
identification module and give a detailed overview on how and when to trigger responses
appropriately. The implementation of our response identification module is presented in
Section 5.3 including how to integrate this module into our Incident Handling System
(IHS) proposed in Chapter 3. Within our evaluation in Section 5.4, we show how our
response identification module aligns to the requirements stated in Section 5.1.

5.1 Analysis

First, we analyze the requirements a response identification module has to fulfill (see
Subsection 5.1.1). Afterwards, a model is deviated from our information model given in
Section 3.3 that covers the important aspects of responses in Subsection 5.1.2. In litera-
ture a huge amount of different responses is available, but those descriptions and listings
are unstructured or domain specific. For selecting appropriate responses, a literature
search was done in Subsection 5.1.3 that structures and examines available responses.

5.1.1 Requirements

To identify suitable requirements for the response identification module the needed steps
of intrusion response (cf. Subsection 2.5.2) and available related work are taken into
account. The following requirements need to be fulfilled for response identification:

Requirement R1 – Flexible Response Triggers: Depending on the use case or
the underlying target system, automated intrusion response is applicable under varying
conditions. The response identification module has to provide the ability to adjust under
which conditions automated intrusion response is applied. Therefore, possible features of
the Alert Context node have to be collected and evaluated against specified rule sets.
The use of triggering responses is proposed in [141].

Requirement R2 – Continuous Execution: During automated intrusion response
the conditions may change. For example, a security incident that is handled by the system

68 5. Responses Identification

is extended by additional information, like additional victims within the target system or
additional consequences observed. The response identification module has to be able
to cope with changing environmental conditions with respect to the ongoing security
incident. To achieve an adaptable Intrusion Response System (IRS) as proposed in [142]
the response identification module has to work continuously.

Requirement R3 – Low Concurrent Response Execution: As it is not suitable to
automatically respond to every single incoming alert, the response identification module
has to balance between a prompt initiation of responses and to find an operation base
as large as possible. This means that the number of entities covered with automated
intrusion response has to be large enough such that synergy effects can appear, e.g.
responses effective for multiple targets.

Requirement R4 – Consider the Target System: To identify the candidate re-
sponses applicable to a security incident, the response identification module has to iden-
tify all affected entities in the target system. This allows automated intrusion response
to cope with the whole security incident instead of responding to single attacks on single
network elements. Therefore, the response identification module needs to filter and com-
bine all targets from the Alert Context node triggering automated intrusion response
including connected Alert Context nodes, either connected as superset or subset.

Requirement R5 – Consider the Security Incident: The response identification
module has to be able to take the concrete security incident into account. The type of
an attack limits the course of actions automated intrusion response has.

Requirement R6 – Identify Applicable Candidate Responses: The response iden-
tification module has to be able to determine all applicable responses that are a course of
action. Therefore, the system has to be able to combine available (cf. Requirement RQ3)
and suitable responses (cf. Requirement RQ4).

5.1.2 Response Model

From the information model (cf. Section 3.3) and the background information on re-
sponses (cf. Section 2.4), we extract the following features for a response model.

Execution Target Each response has a specific target. This means a network entity
it is designed for. The network entity being the target of a response is part of the
infrastructure information of the information model described in Section 3.3. In this model
we presented the following targets, Network nodes, Device nodes, Service nodes,
User nodes, Certificate nodes, Virtual Machine (VM) nodes, Process nodes,
Connection nodes, or File nodes. Those categories can be subsumed from the list
of existing responses prepared from the related work. This information is independent
from the underlying target system and applies to all use cases. This information has to
be provided by an expert designing responses.

For example, a typical response is to restart a system. The system to restart may be
a device or VM, service, process or connection. Other mentioned targets, e.g. a user,
are not applicable. The response has a clear semantical meaning with known output and
implications on the target system. It can not be applied directly to the target system as
different implementations may be possible.

Available Implementations Each generic response has to has at least one concrete
implementation realizing a designed response. A designed response can have multiple re-

5.1. Analysis 69

sponse implementations that differ in certain metrics. A response implementation depends
on the underlying target system as it utilizes the given environment.

Restarting a system can be implemented in multiple ways. For example, restarting a
VM depends on the virtualization solution that is used. Restarting a device depends on
the operating system used. Additionally, restarting a VM can be done by utilizing the
hypervisor or logging on the machine and using the underlying operation system.

Providing multiple implementations for a single response helps to adapt more precisely
to the current situation a response has to be executed. For example, logging on a VM using
ssh and shutdown the VM may be a virtualization agnostic solution, but the targeted
VM has to be reachable and still under control of the operator.

Conflict Relations Responses can be related with each other. An important relation is
the conflict relation expressing that two responses can not be executed together based
on their design. If two responses are conflicting all their implementations are conflicting.
Apart from conflicting responses that express conflicting concepts, implementations of
responses can conflict. Those conflicts are based on the realization of a response.

For example, restarting a VM and restoring a VM are conflicting by design. The
VMs can be restarted with either the old image or a fresh image. Taking both actions
together will result in a non-deterministic state of the target system. Consequently, all
implementations of restarting a VM conflict with all implementations of restoring a VM.

Conflicts can additionally arise from the use case or the target system itself, for exam-
ple, due to resource restrictions. For example, due to resource restrictions on the hosting
server only a limited number of VMs can be migrated at the same time.

Dependency Relations Dependency relations are used to express that before a response
can be executed, some preconditions in form of additional actions are required. Those
additional actions can be considered as responses as well not helping an entity to be freed
from an attack (no execution target). This relation is useful to describe responses in a
more flexible manner as they can be designed more fine-grained. Additionally, responses
can benefit from synergy effects in case multiple responses need the same preconditions.
Precondition actions do not target a network entity, but instead prepare the target system.

Analog to the conflict relation, dependency relations can be applicable to responses or
implementations. In case a response is precondition of another response, one implemen-
tation of the precondition response has to be executed before an implementation of the
response itself.

For example, migrating a VM offering a services can only be done if the routing or load
balancing is adapted and the migration is announced to the users of the service. Instead
of offering a single response that bundles all those single actions, they can be split up into
smaller more manageable parts that are reusable for other responses.

Executing Entity A concrete implementation of a response is executed by a specific
device within the target system. This implies that the response implementation is available
on the executing entity or can be deployed on this entity. This relation is specific to the
underlying target system and is needed in order to eventually execute the response on the
target system, for example a specific firewall or router.

Deployment Target The deployment target describes which entities a response imple-
mentation can reach and effect during execution. In contrast to the execution target

70 5. Responses Identification

describing a potential class of network entities applicable to a response, the deployment
target describes the concrete applicability of a concrete response.

For example, a response targeting a network can be potentially executed on every
network within the target system. But a response implementation has to be deployed on
a network entity that reaches the network, e.g. isolating a concrete network can only be
done by a router (executing target) connected to that specific network. The deployment
target in this case is the isolated network.

Mitigated Consequences A response can mitigate certain consequences occurring as a
result of a security incident. Instead of binding a response to a detected security incident,
modeling consequences allows to re-use responses helpful against the same consequence
resulting from different attacks.

For example, certain attacks can compromise the RAM of a system. A helpful response
is to restart the system as the infection is limited to non-permanent memory. The type
of an attack (classification) does not matter, as only the implications are considered.

Metrics A response implementation is determined by different metrics defining the im-
plementation with respect to different features. Depending on the use case those metrics
may differ. These metrics are used later to determine the optimal subset of responses to
be chosen for execution. For example, the duration of a response or resulting downtime
for affected service can be used as metrics for a response implementation.

5.1.3 Collection of Responses

In this section responses available in literature are examined. Because a huge amount of
responses is available, structuring those responses is challenging as the following problems
appeared within the literature search. Responses are often a loose collection with no
structure. Moreover, they are often described within a limited view and are very domain
specific. No model or generalization is available that would ease the use and description
of responses. In literature a huge amount of duplicates and inconsistent naming appears.
The goal of this section is to structure available responses in order to ease choosing
appropriate responses for different use cases and to instantiate our proposed response
model.

The identified responses are summarized in Table 5.1. A checkmark (3) indicates that
the given characteristic is fulfilled. A cross (7) indicates that the given characteristic is
not fulfilled. A dash (–) indicates that the characteristic is not applicable.

The examined characteristics from Section 2.4 are used for structuring identified re-
sponses and are shortly reviewed in the following:

Response First, we give a description of the response that can be found in column Re-
sponse.

Target The Target-column shows which system entities will be affected by a response
that is executed. A target can be a Network (N), a Host (H), a Virtual Machine (V),
a Service (S), a User (U), a Process (P), a Session (Se) or Connection, a File (F),
a Certificate(C), or the Attacker (A). Due to naming inconsistencies the term Host
will be used analog to the term Device. The same goes for Service, Application
and Software. The distinction between the different targets is subsumed from the
related work and is useful to identify suitable responses for the underlying target
system in order to determine the execution target.

5.1. Analysis 71

Location To describe the location a response can be executed on the definition found in
[128] is used. As short notation T is used for the target machine, M is used for
the mid points, F is used for firewall or router points and I is used for the attacker
(intruder) machine. This information is needed to instantiate the executing entity.

Properties From [5] the distinction in active and passive responses is used. The A-column
indicates whether or not a response can be considered as active. As only reactive
responses are of interests for this thesis the differentiation between reactive and
proactive is set aside. The description of sustainable and indefeasible responses
from [80] is indicated by the S-column and I -column. This information is needed to
decide whether or not a response is applicable to a specific use case. If a response
is not sustainable, than the I -column is not applicable indicated by the dash (–).

Classification The classification given in [181] is described in the C -column. The follow-
ing short notation is used. RB is used for rollback, RF is used for roll-forward, I is
used for Isolation, RC is used for reconfiguration and RI is used for reinitialization.
This information is needed to decide whether or not a response is applicable to a
specific use case.

References This column lists the references the response is listed, described, or exemplary
used.

Some of the presented related work have special concerns, like special use cases, attack
scenarios, or dedicated environments the responses are proposed for. In the following we
shortly list this kind of related work and point out their special concern:

• In [57] the use case of Mobile Money Transfer Service (MMTS) is considered. They
assume an account take-over as concrete attack.

• In [177] the Darpa intrusion detection data set LLDoS 1.0 is considered and for
attacks within this data set exemplary responses are selected.

• In [80] password cracking and partial Denial of Service (DOS) attacks are considered.

• In [77] a DOS attack on VoIP services is explained.

• [76] focuses on database specific responses.

• In [87] some responses for mobile ad-hoc networks are specified and parameterized.

• In [83, 84] a service dependency graph is used to determine the appropriate response
for services under attack.

• In [48] the use case of Advanced Metering Infrastructures (AMI) is described.

72 5. Responses Identification

T
ab
.
5.
1:

Li
st

of
A
va
ila
bl
e
R
es
po
ns
es

Fo
un
d
in

Li
te
ra
tu
re

R
es
po

ns
e

T
ar
ge
t

Lo
ca
ti
on

A
S

I
C

R
ef
er
en
ce

N
H

V
S

U
P

Se
F

C
A

I
M

F
T

Su
sp
en
d
or

ha
lt

7
3

3
3

7
3

3
7

7
7

7
7

7
3

3
3

3
I

[2
1,

76
,
10
3,

12
4,

13
5,

14
2,

17
7]

Sh
ut

do
w
n,

ki
ll,

ab
or
t,

or
cl
os
e

7
3

3
3

3
3

3
7

7
7

7
7

7
3

3
3

7
I

[6
,
8,

21
,
23
,
76
,
83
,
84
,
87
,

10
3,

12
4,

12
9,

14
2,

14
6,

14
9,

16
6,

17
7]

R
eb
oo
t
or

re
st
ar
t

7
3

3
3

7
3

3
7

3
7

7
7

7
7

3
7

–
R
B

[8
,
48
,
12
4,

12
9,

14
2,

14
9,

18
1]

C
ha
ng
e
pa
ss
w
or
ds

7
7

7
7

3
7

7
7

7
7

7
7

7
3

3
3

3
R
I

[7
9,

80
,
10
3,

14
9]

D
is
ab
lin
g,

de
ac
ti
va
ti
on

or
lo
ck

7
7

7
7

3
7

7
7

7
7

7
7

7
3

3
3

3
I

[2
1,

23
,5

7,
87
,1

03
,1

24
,1

29
,

14
2,

16
6]

R
ev
ok
e
or

de
ny

pr
iv
ile
ge
s

7
7

7
3

3
7

7
3

7
7

7
7

7
7

3
7

–
I

[2
1,

76
,
14
2]

C
ha
ng
e
pr
iv
ile
ge
s

7
7

7
3

3
7

7
3

7
7

7
7

7
3

3
3

7
R
C

[8
,
21
,
83
,
84
,
12
9,

17
4]

Q
ua
ra
nt
in
e
or

sa
nd
bo
x

3
3

3
3

3
7

7
7

7
7

7
7

7
3

3
3

3
I

[8
,
21
,
23
,
48
,
76
,
83
,
84
,
87
,

10
3,

12
9,

14
2,

14
6,

16
5]

R
es
to
re

7
3

3
3

7
7

3
3

7
7

7
7

7
3

3
3

7
R
I

[6
,
8,

10
3,

14
2,

14
9,

18
1]

N
o
re
sp
on
se

–
–

–
–

–
–

–
–

–
–

–
–

–
–

7
–

–
–

[5
7,

76
,
12
4,

17
7]

T
ra
ce
ba
ck

7
7

7
7

7
7

7
7

7
3

3
7

7
7

7
7

–
–

[2
1,

48
,
12
4,

14
2,

17
7]

Sc
ru
ti
ni
zi
ng

po
rt
s

7
7

7
7

7
7

7
7

7
3

3
7

7
7

7
7

–
–

[1
77
]

B
lo
ck

or
di
sc
on
ne
ct

3
3

3
3

7
3

3
7

3
7

7
7

3
3

3
3

3
I

[6
,
8,

21
,
23
,
48
,
83
,
84
,
87
,

12
9,

14
2,

14
6,

14
9,

16
5,

17
7,

18
1]

R
em

ov
e,

re
vo
ke

or
fo
rm

at
7

3
3

7
3

7
7

3
3

7
7

7
7

3
3

3
7

I
[8
,
48
,
83
,
84
,
87
,
14
2,

14
9,

17
7]

Se
nd

an
al
er
t,

re
po
rt
,
lo
g,

or
no
ti
fic
at
io
n

–
–

–
–

–
–

–
–

–
–

–
–

–
–

7
–

–
–

[8
,
21
,
48
,
57
,
76
,
12
4,

14
2,

16
6,

17
4,

17
7]

C
on
ti
nu
ed

on
ne
xt

pa
ge

5.1. Analysis 73

T
ab
le
5.
1
–
C
on
ti
nu
ed

fr
om

pr
ev
io
us

pa
ge

R
es
po

ns
e

T
ar
ge
t

Lo
ca
ti
on

A
S

I
C

R
ef
er
en
ce

N
H

V
S

U
P

Se
F

C
A

I
M

F
T

N
ot
ify

ne
ig
hb
or
ho
od

–
–

–
–

–
–

–
–

–
–

–
–

–
–

7
–

–
–

[1
07
]

D
en
y

7
7

7
7

7
7

3
7

7
7

7
7

7
3

3
7

–
I

[5
7]

A
ct
iv
at
e

fil
te
r

(r
ed
uc
e,

sh
ap
e,

dr
op
)

3
7

7
7

7
7

3
7

7
3

7
7

7
3

3
3

3
R
F

[6
,
8,

23
,
48
,
57
,
65
,
77
,
79
,

80
,8

3,
84
,1

24
,1

42
,1

49
,1

72
,

17
4]

A
dd
it
io
na
l

se
cu
rit
y

m
ea
-

su
re
s

7
3
1

3
7

3
2

7
7

7
7

7
7

7
3

3
7

3
3

–
[2
1,

23
,
48
,
57
,
76
,
12
4,

14
2,

14
6,

14
9,

16
5]

Sl
ow

do
w
n
or

de
la
y

7
7

3
7

7
3

3
7

3
7

7
7

7
3

3
7

–
I

[8
,
21
,
13
5,

14
2,

14
6,

17
2]

R
ed
ire
ct

or
ad
ju
st

ro
ut
in
g

7
7

7
7

7
7

3
7

7
7

7
3

3
7

3
3

3
R
F

[2
3,

83
,
84
,
87
,
14
9]

C
re
at
e
ba
ck
up

7
3

3
7

7
7

7
7

3
7

7
7

7
3

7
7

–
–

[2
1,

87
,
14
2]

U
nm

ou
nt

fil
e
sy
st
em

7
3

3
7

7
7

7
7

7
7

7
7

7
3

3
3

3
I

[8
,
83
,
84
]

C
ha
ng
e
ow

ne
r

7
7

3
3

7
3

7
7

7
7

7
7

7
3

3
3

3
R
I

[8
,
83
,
84
]

U
pd
at
e
or

pa
tc
h

7
3

3
3

7
3

7
7

7
7

7
7

7
3

3
3

7
R
F

[4
8,

14
9,

18
1]

U
se

re
du
nd
an
t
sy
st
em

7
3

3
3

7
3

7
7

7
7

7
7

3
3

3
3

3
R
C

[2
3,

48
,
18
1]

P
ro
fil
e
be
ha
vi
or

3
3

3
3

3
3

3
7

7
7

7
7

7
3

7
3

3
–

[4
8]

V
er
ify

A
R
P
ca
ch
es

7
3

3
7

7
7

7
7

7
7

7
7

3
3

7
7

–
–

[6
,
48
]

Ja
m

or
at
ta
ck

th
e
at
ta
ck
er

7
7

7
7

7
7

7
7

7
3

3
7

7
7

3
7

–
–

[4
8]

R
ei
ns
ta
ll,

re
bu
ild
,
or

re
ne
w

7
3

3
3

7
7

7
7

3
7

7
7

7
3

3
3

7
I

[1
03
,
12
9,

14
9]

P
ro
vi
de

sh
ad
ow

sy
st
em

7
3

3
3

7
7

7
3

7
7

7
7

7
3

3
7

–
R
C

[8
,
21
,
14
2,

16
5,

17
2]

W
ar
n
th
e
at
ta
ck
er

7
7

7
7

7
7

7
7

7
3

3
7

7
7

3
7

–
R
C

[2
1]

A
tt
ac
k
th
e
at
ta
ck
er

7
7

7
7

7
7

7
7

7
3

3
7

7
7

3
7

–
R
C

[2
1,

23
]

E
nc
ry
pt

tr
affi

c
7

7
7

3
3

7
3

7
7

7
7

7
7

3
3

7
–

R
C

[7
9]

M
ig
ra
te

7
7

3
3

3
3

7
3

3
7

7
7

3
3

3
3

3
R
C

Li
m
it
re
so
ur
ce
s

7
7

3
3

3
3

3
7

7
3

7
7

7
3

3
3

3
R
F

1
e.
g.

ad
di
ti
on
al
ID
S
,
in
cr
ea
se

au
di
t

2
e.
g.

m
ul
ti
-f
ac
to
r
au
th
en
ti
ca
ti
on

74 5. Responses Identification

5.2. System Design and Use Case 75

5.2 System Design and Use Case

In Subsection 5.2.1 we give an overview of our response identification module. As intrusion
response has to be triggered appropriately, we identify possible triggers that can be derived
from our information model given in Section 3.3 (see Subsection 5.2.2). Afterwards, we
show how our use case given in Subsection 4.1.3 can be treated with respect to applicable
responses in Subsection 5.2.3.

5.2.1 Design Overview

For the design of the response identification module the following challenges occur:

• Determine the point in time automated intrusion response is triggered,

• Identify the highest Alert Context node within the hierarchy,

• Consider changes within the hierarchy of Alert Context nodes during an on-
going security incident,

• Compose Alert Context nodes concerning the same or overlapping targets within
the target system in order to consider the security incident as a whole, and

• Identify the correct applicable responses (candidate responses).

The response identification module is triggered every time a new Alert Context
node appears on the blackboard or the properties of an Alert Context node change.
Each time the response identification module is triggered, a function following the def-
inition of Algorithm 1 is called and the Alert Context node is handed over to. To
react on every single insertion or update of an Alert Context node is not appropriate.
Therefore, some trigger conditions have to be fulfilled (cf. Line 1.3). A closer look on
possible trigger conditions and their combination possibilities is given in Subsection 5.2.2.

Algorithm 1 Response Identification – Main Function

1: procedure incommingNotification(ac)
2: openIssues → {} . currently open issues
3: if trigger(ac) then . trigger condition applies
4: super → getSuperContext(ac) . traverse up
5: for i in super do
6: if i not in openIssues then
7: if max(ilevel) then . superset node
8: openIssues.add(newIssue(i))
9: else

10: openIssues.add(None)

11: else
12: openIssues.i.restartTimer()

13: sub → getSubContext(i) . traverse down
14: for j in sub do
15: if i not in openIssues then
16: openIssues.i → None

76 5. Responses Identification

The Alert Context node handed over to the response identification module, may
be part of a larger Alert Context node hierarchy. This means multiple Alert Con-
text nodes are related with each other, e.g. reflecting aggregated or correlated alerts.
Consequently, the Alert Context node triggering automated intrusion response may
be located at an arbitrary position within the alert context hierarchy. As a security incident
has to be considered as a whole, solving the security incident partially is not suitable. Ad-
ditionally, a relation between multiple Alert Context nodes indicates that they belong
to the same security incident. Therefore, the Alert Context node with no outgo-
ing edges (superset node) connected to the incoming Alert Context node has to be
identified (cf. Line 1.4).

In Figure 5.1 this behavior is depicted. Nodes in the lowest level indicate victims
targeted by the attack that is depicted as Alert Context node. All other nodes above
the lowest level indicate Alert Context nodes that are connected with each other, e.g.
due to aggregation. Within the first step, the marked Alert Context node triggers
automated intrusion response. This Alert Context node has multiple other Alert
Context nodes as super nodes. The response identification module traverses those
Alert Context nodes until a node is found not having incoming edges. This superset
node is the basis to create a new Issue within the response identification module. An
Issue is a specialized Alert Context node combining Alert Context nodes that
are handled together by automated intrusion response.

Fig. 5.1: Hierarchy of Alert Context Nodes During Response Identification

The function in Line 1.4 returns all Alert Context nodes on the way to the superset
node. For each Alert Context node on the path, we check if we reached the superset
node (cf. Line 1.7). If this is the case, we add a new Issue element into the list of open
issues, meaning unsolved alert contexts. Otherwise, we add an empty element for the
Alert Context node used as key. For each Alert Context node on the way to the
superset node we additionally, traverse back down (cf. Line 1.13). This is the last step
depicted in Figure 5.1. Each subset node of the superset node is added as empty entry
for the Alert Context node as open issue. Adding an empty entry into the list of open
issues has the advantage that the system knows, that the Alert Context node is in
process and needs no further treatment (cf. Line 1.6).

Another challenge within the response identification module is to cope with the changes
in the underlying information. Our information and execution model are designed to be
additive. This means, that in case two distinct Alert Context nodes are combined into
a single Alert Context node, the system can not remove relations between those node
and the potentially applied issue. Therefore, the response identification module has to
work with stable Alert Context nodes being superset nodes. Additionally added subset
nodes can be integrated directly by inserting an edge between the Alert Context node
representing the issue and the Alert Context node representing the subset node.

To rely on relatively stable superset nodes, we introduce a timer within the Issue

5.2. System Design and Use Case 77

element. Only if the timer of the issue expires, the callback function (see Algorithm 2)
is executed. The timer is configurable and is started if a new Issue element is initiated
(cf. Line .1.8). In case an update with respect to the issue is noticed, the timer is reseted
as the information base can not be considered as stable enough (cf. Line 1.12).

Within Algorithm 2 representing the callback function that is called for an issue after
its timer exceeded, applicable responses are selected.

Algorithm 2 Response Identification – Callback Function

1: procedure callback(ac)
2: issue → getNonSolvedIssue(ac) . overlapping issues
3: if 6= issue then
4: issue = newAlertContextNode()
5: bundle = newBundleNode()
6: else
7: bundle = getBundle(issue)

8: connect(ac, issue)
9: impls → []

10: sub → getSubContext(ac) . traverse down
11: for i in sub do
12: e → getEffected(i) . get affected entities
13: ie → getImplsEffected(e) . get implementations deployed on affected

entities
14: ia → getImplsAttack(i) . get implementations for attack
15: impls → impls ∪(ie ∩ ia)
16: for i in impls do
17: connect(i, bundle)

To further reduce the amount of issues within the system triggering automated intru-
sion response independently, we first verify that no issue exists with overlapping targets
(cf. Line 2.2). Combining overlapping Alert Context nodes has the additional ad-
vantage that the selection of responses can leverage from synergy effects. A large set
of victims that needs to be freed by automated intrusion response will may benefit from
responses that cover multiple targets at once. Within Line 2.2 we query for an Alert
Context node that is an issue that is not already solved (the Solved attribute is set
to FALSE). If no such issue exist, we create a new Issue node and a Bundle node.
Otherwise, we will use the identified existing issue and its corresponding bundle.

Afterwards, we identify all Implementation nodes that need to be connected to the
Bundle node (cf. Line 2.17). First, we identify all subset nodes of the Alert Context
node (cf. Line 2.10). Within Lines 2.11 to 2.15 appropriate implementations are identified.

For each subset node we identify the affected entities. This is done by following all
edges describing a target relation ending up in an arbitrary infrastructure node. Starting
from this affected entities, all deployed responses are examined. This is done by following
the deployedOn edge between an infrastructure and an Implementation node. This
step acquires all responses that can be executed on the target. Following the relations
from the Alert Context node to the Attack node, further to the Consequences
nodes and the Response nodes will lead to a second set of Implementation nodes
that are connected to the response. Finally the set of applicable implementations is the
union of all intersections of those described sets.

78 5. Responses Identification

5.2.2 Triggering Responses

Intrusion response is not useful as every alert or alert context will trigger the execution of
a response. Therefore, appropriate trigger mechanisms are needed. Within this section we
provide possible triggers for intrusion response that can be derived from our information
model given in Section 3.3. First, possible criteria are listed in Subsubsection 5.2.2.1.
Possibilities to combine the criteria are examined in Subsubsection 5.2.2.2.

5.2.2.1 Decision Criteria

Using the information model given in Section 3.3 we can derive certain criteria that can
be used to launch automated intrusion response. The decision at which point in time to
trigger intrusion response has to be based on an existing Alert Context node (ac) and
related nodes that can be reached from the alert context. Based on the alert context,
the response identification module calculates a Bundle node with applicable response
implementations. Therefore, the Alert Context node has to has properties warranting
executing responses.

Structure of the Alert Context An Alert Context node describes a relation bet-
ween different attacks detected within the target system. The more Alert nodes or
Alert Context nodes are summarized within a single Alert Context node, the
more relevant the alert context may be. Additionally, the higher the hierarchical level of
an Alert Context node the more information is summarized. Consequently, a high
portion of the security incident is covered if this alert context is mitigated. From the
structure of an Alert Context node the following features are relevant for deciding if
a security incident is mitigated:

Number of Alerts: If a predefined number of Alert nodes is obtained that are com-
bined within an Alert Context node, automated intrusion response is triggered
(count(ac .alert)).

Number of Alert Contexts: If a predefined number of Alert Context nodes is col-
lected that are bundled within an Alert Context node, intrusion response is
triggered. Hereby, all incoming edges of the Alert Context node within the
complete hierarchy are of interest (count(ac .ac)).

Alert Frequency: If a predefined rate of alerts per time interval is reached, automated
intrusion response is triggered (frequency(ac .alert)). This value can be determined
using the number of alerts and the timestamp information of the alert. This metric
is used in [149].

Hierarchical Level: If a predefined hierarchical level is reached, intrusion response is
triggered. Hereby, the outgoing edges from an Alert Context node to another
Alert Context node are traversed until an Alert node is reached (ac .level).

Alert Context Priority or Severity Each Alert Context node has a priority indicat-
ing the relevance of the security incident. This information can be used to trigger intrusion
response (ac .priority) as recommended in [141]. Therefore, the Priority node or at-
tribute can be utilized directly by checking whether or not a predefined value is reached.
In an analogous way the severity of an Alert Context can be used (ac .severity). The
severity of an Alert Context node describes the reliability that the detected attack is
no false positive.

5.2. System Design and Use Case 79

Targets Within the Target System Each Alert Context node is related to a target
representing the victim of the security incident. Following the edge between the Alert
Context node and the target different information can be derived, usable as trigger.

Number of Targets: If a predefined threshold of affected entities (targets) is reached,
automated intrusion response is triggered. Hereby, the number of distinct edges
between an Alert Context node including all related Alert Context nodes
is counted (count(ac .target)).

Value of Target: Each network entity within the target system can be assessed to eval-
uate its importance to the target system. Therefore, to each information element
representing infrastructure information, a Value attribute can be added. This at-
tribute can be used for triggering, intrusion response if an Alert Context node
is related to a network entity with a Value attribute higher than a predefined
threshold(ac .target.value). This metric is used for example in [89].

Specific Target: In case an Alert Context node is related to specific predefined
targets (either by name or type of the target), intrusion response can be triggered.
For example, intrusion response is triggered directly if a router or a network nodal
point is target of an attack (ac .target.name or ac .target.type).

Sources of Alert Context The source of an attack can be treated in an analogous
manner as the target of an attack. Additionally, the source can be checked, whether or
not, the source is inside the own network. As insider attackers may have greater impact
than outsider attackers an insider attack has to be handled more quickly.

Attack Types of Alert Context Extracting the attack type of an Alert Context
node can be implemented by following the edge between the Alert Context node and
the Attack node (ac .attack .name). If a predefined attack is related to the Alert
Context or any subset nodes, intrusion response is triggered.

Analyzer Information Each alert as basis of an Alert Context node is provided
by a specific analyzer or Intrusion Detection System (IDS). Using information from the
analyzer detected the security incident, the following criteria can be derived:

Number of Distinct Analyzers: A predefined number of different analyzers detecting
the same security incident independently, can be used as trigger. Hereby, the fol-
lowing edges have to be traversed: from the Alert Context node to all Alert
nodes and from the Alert nodes to their Analyzer nodes (count(ac .analyzer)).

Analyzer Severity: Each analyzer may have a severity indicating how reliable this ana-
lyzer can detect security incidents. Only if an analyzer with a severity that is high
enough (predefined value) has confirmed a security incident, intrusion response is
triggered (ac .analyzer .severity). This metric is used in [149].

Specific Analyzer: Additionally, specific analyzers can be specified (either by name or
type of the analyzer). In case such an analyzer raises an alert the correspond-
ing Alert Context nodes are used for intrusion response (ac .analyzer .name or
ac .analyzer .type).

80 5. Responses Identification

Timestamps-Based Decisions Each Alert node is equipped with a timestamp indi-
cating the freshness of the information. The longer an Alert node resides in the system
the less relevant is the carried information. Therefore, only Alert Context nodes that
are up-to-date are handled with an automated response (ac .timestamp). The threshold
the timestamp can lay in the past has to be predefined.

Potential Damage With each Alert Context node a damage value is associated
using the relation between Alert Context and Metric (ac . < metric >.value). If
the expected damage of a security incident is higher than a predefined value intrusion
response is triggered.

5.2.2.2 Combination of Criteria

Providing the combination of multiple criteria, different use cases can be reflected more
fine-grained and flexible. Each of the presented criteria can be evaluated to TRUE or
FALSE. The result of an evaluated combination has to be either TRUE (start automated
intrusion response) or FALSE (do not start automated intrusion response). Therefore,
Boolean Logic can be used to combine multiple criteria.

To define multiple rules that can be applied to an Alert Context node, the OR
operator is used. If multiple criteria have to hold at the same time, the AND operator
is used. The negotiation is allowed as well. All rules for the bracket usage apply as in
Boolean Logic.

For example, automated intrusion response is triggered in case the priority of an Alert
Context node is higher than 90 or at least 20 different targets are victims of the security
incident and the severity of the Alert Context node is higher than 80%. This rule is
constructed as follows:

ac .priority > 90 ∧ (count(ac .target) ≥ 20 ∨ ac .severity > 0.8)

Each given property is calculable from the Alert Context node that may trigger au-
tomated intrusion response. If the given equation evaluates to TRUE applicable responses
are going to be identified, otherwise not.

Another possibility for combining the listed triggers is to integrate existing approaches.
In [149] a decision tree to determine the response strategy is proposed. This strategy en-
compasses which percentage of the intrusion is handled automatically, while the remaining
part is handled manually. Therefore they utilize the efficiency of an IDS, the alert fre-
quency, and the maximum risk of a security incident. The first two criteria are named as
triggers in Subsubsection 5.2.2.1. The maximum risk needs to be calculated additionally.

Additionally, the work done in [12] can be integrated. They present an algorithm
that decides whether or not, an alert is forwarded to the administrator or is handled
automatically. Therefore, they utilize a cost-sensitive approach to balance the response
costs and the costs of the security incident. The costs of the security incident can be
extracted directly from our information model, as an Alert Context node is associated
with a Metric node, carrying the cost per metric regarding the related security incident.
The costs of the response can be extracted directly from our information model as well
as they are associated with the available implementations a response provides.

5.2. System Design and Use Case 81

5.2.3 Use Case Applicability

In Subsection 4.1.3 the use case of the data cabin network is introduced. This use case
is based on the research department of Airbus Group Innovations (AGI) and describes a
possible future data cabin network not yet deployed in todays aircrafts.

All devices within the data cabin network communicate with the central servers using
the Scalable service-Oriented MiddlewarE over IP (SOME/IP) protocol. Servers as well
as clients are running in a separate VM. For automated intrusion response it is assumed
that those VMs can be controlled from the outside and inside. Additionally, responses
within the network can be executed.

In Subsection 4.1.2 we identified possible attacks on the SOME/IP protocol. In Sub-
section 4.3.3 to 4.3.5 we showed the rules that can identify those attacks. Based on those
attacks, we now identify their consequences in Subsubsection 5.2.3.1 to be compliant with
our information model introduced in Section 3.3 and examine possible responses listed (see
Subsection 5.1.3) in Subsubsection 5.2.3.2. The resulting dependency graph including the
mapping between responses and consequences is shown in Subsubsection 5.2.3.3.

5.2.3.1 Attacks and Consequences

Based on possible attacks on the SOME/IP protocol we can identify the following impli-
cations and consequences:

Malformed Packet A malformed packet (A1) in the target system may indicate the
existence of a hidden channel (Consequence C1). This hidden channel can be used to
exchange information between multiple attacker instances or between the attacker and
external networks. This may lead to an information leakage within the target system.

Additionally, a malformed packet may indicate a misconfigured device (Consequence C2)
left behind from an unsuccessful attack attempt. Misconfigured devices can be handled
as well as a security incident as they lead to unwanted behavior within the target system.

Changed Client ID and IP Mapping A changed mapping between a client ID and an IP
A2) indicates that an attacker tries to impersonate a device. Consequently, the attacker
is located in the internal network (Consequence C3). Attackers located within the target
system have a broader influence within the target system than outsiders.

Further, malicious traffic appears in the target system (Consequence C4). Malicious
traffic may disturb other devices or services within the target system.

Error on Error If an error message occurs as response to another error (A3), this may
be due to a misconfiguration (Consequence C2) or indicates a hidden channel (Conse-
quence C1). Additionally, an attacker may tries to disturb the network by sending malicious
traffic (Consequence C3)

Error on Notification If an error message occurs as response to a notification (A4),
this may be due to a misconfiguration (Consequence C2) or indicates a hidden channel
(Consequence C1). Additionally, an attacker may tries to disturb the network by sending
malicious traffic (Consequence C3)

82 5. Responses Identification

Missing Response If a client does not get a response on a sent request (A5), this may
indicates that the server is overloaded and is unable to respond (Consequence C5) to
incoming requests. In case of a DOS attack the goal of the attacker is to overload the
system such that legitimate requests are not handled anymore.

Missing Request A missing request of a server for a send response (A6) indicates that
an attacker tries to impersonate a service. Consequently, the attacker is located in the
internal network (Consequence C3). Furthermore, malicious traffic appears in the target
system (Consequence C4).

Timing Issue If a client sends to many notifications to the server (A7), this may indi-
cates a DOS to overload the servers (Consequence C5) Additionally, timing issues may
indicate a misconfigured device (Consequence C2).

5.2.3.2 Selected Responses

Possible responses for the use case have to be active and need to target either the network,
a service or a VM. In case the response is sustainable, it has to be infeasible. From the
list of responses given in Subsection 5.1.3 we can derive the following responses according
to the given limitations:

Suspend the VM or Service A VM containing a SOME/IP client or service can be
paused (R1.1). As long as this response is activated, the SOME/IP client or service is
not available in the target system. As we assume that each service and client is running
in a separate machine, no other services or clients are affected directly. Additionally, a
SOME/IP service can be stopped directly (R1.2), instead of stopping the whole VM the
service is running on. Stopping a service or a VM a service is running, indirectly effects
clients using this service.

Reboot the VM or Restart the Service This response is specified analog to Re-
sponse R1.1 and R1.2. For a reboot either the whole VM (R2.1) or the service (R2.2)
can be used. The effect of this response according to other entities within the target
system is limited to the time to reboot or restart the system.

Deny Clients or Service Privileges Denying privileges for clients (R3.1) restricts access
from the single devices in the data cabin network to the central servers located in the
backbone. Denying privileges for services (R3.2) will restrict the access of services on
each other within the backbone network and lead to service limitations for clients.

Block Network, VM, or Service Blocking a whole network (R4.1) will lead to no
communication flows into this network from the inside as well as to the outside. To
restrict communication more flexible, a VM (R4.2) running a client or services can be
blocked from communication or a single service (R4.3) provided within the target system.

Filter Traffic for Network, VM, or Service Instead of blocking all communication,
filtering or shaping traffic from and to a whole network (R5.1), VM (R5.2) or service
(R5.3) can be used. Those responses are less intrusive then Responses R4.1 to R4.3,
and still allow communication between entities even though performance is reduced.

5.2. System Design and Use Case 83

Slow Down VMs As VMs are used, their execution can be slowed down (R6). Conse-
quently, the execution of the client or service running within the VM is delayed and less
traffic is generated. This response can be used, if the amount of traffic has to be reduced.

Unmount File System of a VM To unmount a file system can protect data leakages.
But may lead to unpredictable crashes of services and clients. Therefore, this response
will not be included within possible courses of action.

Use Redundant VM or Service A redundant service or VM can be used to compensate
performance shortcomings in case of a high number of requests. Within the use case we
assume that all available services are known before hand. Therefore, this response is not
considered as a course of action.

Provide Shadow Systems for a VM or Service Shadow systems can be used to trap
the attacker or to relieve the system from overload. Within the use case, we assume that
all available services are known before hand. Therefore, this response is not considered as
a course of action.

Encrypt Traffic of Service Activate encryption for the communication with services
would prevent data leakage that is based on sniffing packets within the network. Within
the use case no encryption is considered, yet. Therefore, this response is not considered
as a course of action.

Migrate a VM The migration of a VM can be used to compensate performance short-
comings in case of a high number of requests in case of performance issues caused due to
the underlying hypervisor. Within the use case, we assume that all VMs are running on
fixed server (one server for the backbone functionality and a second one for all devices).
Therefore, this response is not considered as a course of action.

Limit Resources of VM or Service Limiting the resources of a VM (R7.1) or service
(R7.2) leads to a slower execution of the VM or service and less traffic is generated. This
response can be used if the amount of traffic has to be reduced.

5.2.3.3 Complete Dependency Graph

The dependencies between attacks, consequences and possible responses are illustrated in
Figure 5.2.

As hidden channels (Consequence C1) lead to information leakages, preventing the
system from further losing information is stopping network packets from the target. This
can be done by shutting down the device (Response R1) or blocking all traffic from the
target (Response R4).

A misconfigured device (Consequence C2) can be mitigated by suspending the affected
device (Response R1) or blocking it from the rest of the network (Response R4). In case
the misconfiguration is not sustainable, a reboot of the device (Response R2) may reset
its configuration.

An attacker established in the internal network (Consequence C3) has to be excluded
from the internal network, by either suspending the device (Response R1) or blocking all

84 5. Responses Identification

A1Malformed
Packet

A2Mapping
Changed

A3Error on
Error

A4Error on
Notification

A5Missing
Response

A6Missing
Request

A7Timing
Issue

C1

Hidden
Channel

C2

Mis-
configuration

C3

Internal
Attacker

C4

Malicious
Traffic

C5

Overloaded
System

R1 Suspend
System

R2 Reboot
System

R3 Deny
Privileges

R4 Block
System

R5 Filter
Traffic

R6 Slow
Down VM

R7 Limit
Resources

Fig. 5.2: Dependency Graph of Attacks, Consequences and Responses for the Data Cabin Network
Use Case

traffic from the victim device (Response R4). Additionally, privileges of the device can be
denied (Response R3) to limit the attackers access.

Malicious and disturbing traffic (Consequence C4) can be excluded from the network
by either suspending the device (Response R1) or blocking all traffic from the compromised
device (Response R4).

To handle an overloaded system (Consequence C5) the attacking system can be
blocked by suspend the attacked system during the attack (Response R1) or filter traffic to
the target system (Response R5). If the attacker is an internal attacker the attacker ma-
chine could be slowed down (Response R6) or its resources can be limited (Response R6)
to reduce the attackers power.

5.3 Implementation

Embedding response identification into the IHS is done by providing a dedicated module.
This module is available on GitHub3 as part of the implementation of the overall IHS. This
module is written in Python 3 and follows the algorithmic definition given in Section 5.2.1.

An issue is implemented using a dedicated class definition and is identified by the

3https://github.com/Egomania/BlackboardIDRS

https://github.com/Egomania/BlackboardIDRS

5.4. Evaluation 85

ID of the Alert Context node triggering the initiation of the issue. Additionally, this
class uses Pythons built-in timers, that are realized as threads, to implement the delay the
callback function is called to get a more stable Alert Context node as superset node.
Initially setting the timer and restarting the timer in case of unstable Alert Context
nodes can be set independently.

To traverse up and down the Alert Context node hierarchy, the used queries have
to be adjusted to the underlying database. In case a relational database is used, recursive
queries are needed. A connection between two Alert Context nodes are stored within
a table storing the superset and the subset node referencing the Alert Context table.
In order to rebuild the hierarchy from a given Alert Context node as starting point,
all edges between this start node being a subset node need to be followed. The resulting
superset node is going to be the subset node in the next round. To traverse down superset
and subset nodes have to be exchanged. In Listing 5.1 the query for PostgreSQL is shown.

Listings 5.1: Query to Traverse Up the Alert Context Hierarchy for PostgreSQL

1 WITH RECURSIVE contextTree (fromnode, level, tonode)
2 AS (
3 SELECT id, 0, id
4 FROM alertcontext
5 WHERE id = <start node>
6 UNION ALL
7 SELECT cTree.tonode, cTree.level + 1, context.tonode
8 FROM contexttocontext context, contextTree cTree
9 WHERE context.fromnode = cTree.fromnode)

10 SELECT DISTINCT tonode
11 FROM contextTree
12 WHERE level = (SELECT MAX(level) FROM contextTree);

The return value of the query is only the most upper layer within the hierarchy as the
return value is restricted (see Line 12). The recursive table contextTree is generated
for each query with a different starting value (see Line 1 and 5) temporarily. For each
round of execution the level is incremented (see Line 7). This level reflects the level of
the hierarchy starting from the start node and reflects the recursion depth.

5.4 Evaluation

Within this evaluation, we show that the proposed system is aligned to the requirements
stated in Subsection 5.1.1. A further evaluation of this module is done in the evaluation
of the overall IHS in Section 8.2 as the alert processing modules are required.

The proposed response identification module provides flexible response triggers (cf. Re-
quirement R1). In Subsection 5.2.2 we propose possible triggers that can be derived
from our information model (cf. Section 3.3). Those triggers are based on the Alert
Context node and directly or indirectly connected information elements. Thus, trigger-
ing automated intrusion response purely depends on the alert context itself. Additionally,
single triggers can be combined to provide flexible adaptations to the underlying use case.

The proposed response identification module provides a continuous execution (cf. Re-
quirement R2). As soon as a stable Issue can be generated, subset nodes can be added
continuously. This includes adding additional, not yet established edges between addi-
tional Implementation nodes and the Bundle node connected to the issue. On the
other hand side obsolete Alert Context nodes are neglected.

86 5. Responses Identification

The proposed response identification module ensures that the number of concurrent
response execution processes is low (cf. Requirement R3). Therefore, only stable Alert
Context nodes are used as superset nodes to generate the Issue. Further, Alert
Context nodes with the same or overlapping targets are composed into a single issue.

The proposed response identification module considers the target system (cf. Require-
ment R4). The identified responses only cover responses that are deployed on the set of
affected entities within the target system (see Algorithm 2 in Line 2.12 and 2.13). Those
responses are identified with the aid of those targets connected to the Alert Context
node. Within the implementation a target can be a Device, User or Service node to
be as specific as possible.

The proposed response identification module considers the security incident (cf. Re-
quirement R5). The identified responses only cover responses that are effective against
the attack of the alert context (see Algorithm 2 in Line 2.14). Those responses are gained
by including the Attack node connected to the Alert Context node as well as the
Consequence nodes related to the Attack node.

The proposed response identification module proposes applicable candidate responses
(cf. Requirement R6). The identified responses only cover candidate responses (see Al-
gorithm 2 in Line 2.15). For each affected entity the intersection of applicable (cf. Re-
quirement R4) and effective (cf. Requirement R5) responses is identified. The candidate
responses are combined as the union of those intersections.

6. RESPONSE SELECTION

Response selection describes the process of choosing an appropriate set of responses to
be used in order to counteract the security incident. The selection is based on a set
of candidate responses that are evaluated as effective against a certain attack. Each of
those candidate responses has to be assessed against certain metrics in order to be able
to select the most suitable subset of those candidate responses.

In a first step, possible strategies of response assessment strategies are discussed in
Section 6.1. This includes providing requirements the response assessment has to fulfill,
covering related work and propose an own metric to assess response costs. Within Sec-
tion 6.2 we analyze requirements the response selection module has to fulfill and give a
short introduction into Linear Programming (LP). Additionally, we provide an example to
better illustrate the challenges of response selection. In Section 6.3 we provide a mathe-
matical set-based model compliant to our information model given in Section 3.3 and the
more detailed response model given in Subsection 5.1.2. This model is transformed into
a Mixed Integer Linear Programming (MILP) problem that can be solved using optimiza-
tion techniques. In Section 6.4 we examine our implementation supporting two different
solvers for the optimization problem and two heuristics. The implementation is used in
Section 6.5 to show the applicability of our approach by investigating the influencing fac-
tors with respect to the underlying target system. In Section 6.6 the related work is
examined and compared against the requirements stated in Section 6.2. As this system is
already published in [64], in the last section a publication reference is given to determine
the own contributions to the approach (see Section 6.7).

6.1 Response Assessment Strategies

A central question when selecting appropriate responses is who to assess a single response.
Responses are typically assessed by calculating their costs. For calculating response costs,
the different properties for responses can be taken into account. Those properties are
already examined in Subsection 2.4.2. First, the requirements for a response assessment
strategy are examined in Subsection 6.1.1 Based on this requirements, in Subsection 6.1.2
a response assessment strategy is proposed. In the following Subsection 6.1.3, strategies
to assess response costs are examined and the proposed approaches are compared against
the identified requirements.

6.1.1 Requirements

Within this subsection we cover requirements the cost assessment has to fulfill for re-
sponse selection. The requirements arise from recommendations stated in the related
work or because a more precise estimation is needed. The assessment is restricted to the
assessment of responses. Additionally, the assessment of the damage a security incident
causes is needed to balance the response costs against the damage costs. The assessment
of the damage of a security incident is not covered within this work.

88 6. Response Selection

Requirement R1 – Properties of Responses: The response assessment strategy
should include the response properties given in Subsection 2.4.2. Those properties are
examined from multiple related work ([20, 23, 67, 101, 140]) and are listed in Table 2.1.
The given recommendations do often overlap such that they reflect common possibilities
to assess responses. Those properties describe essential features a response has and are
used as metrics to assess a response. As those properties are not directly comparable with
each other, a response assessment strategy has to combine those features reasonable.

Requirement R2 – Include Dependencies: The response assessment strategy
should reflect the underlying target system. Therefore, the dependencies between system
entities should be reflected. Those dependencies may include services used in the target
system relying on subservices provided across the network. Responses effecting those
subservices may lead to higher costs as they influence other parts of the network indirectly.
This requirement arise from the need to include the underlying target system to make the
response assessment more precise and provide more appropriate estimations.

Requirement R3 – Include Redundancy: Additionally, redundancy aspects should
be covered. Responses effecting network entities having redundant equivalents may lead to
lower costs as the redundant component can be used during the execution of a response.
The reason for this requirement is the same as for Requirement R2, the costs of a response
can be assessed more precisely including information available on the target system.

Requirement R4 – Automated Elicitation: All influencing factors of the assessment
should be determinable in an automated manner. First, this includes that the influencing
factors are specified accurately. Additionally, they should not rely on expert knowledge
estimating the influencing factors. The reason to include this requirement is that relying
on expert knowledge depends solely on the experience of the expert itself. The authors
in [57] point out that such assessments using experts knowledge highly depend on the
estimation quality of the expert and name this as a limitation of their approach.

6.1.2 Proposed Response Assessment Strategy

Our cost metric to assess responses is derived from the properties given in Subsec-
tion 2.4.2. First, we show how our metric is assembled using those properties. After-
wards, we show a use case example on how to calculate the proposed metric within a
service-based environment.

Derivation from Examined Properties One of the most common metric used is the
downtime tgi of component gi as a side-effect of executed responses [23, 67, 140].
In [140], this metric is split up into the downtime of critical components and at criti-
cal points in time. Another prominent metric is the success probability pr of response
r , or its counterpart, the error-proneness (1 − pr), expressing how reliable a response is
to cope with the security incident [21, 67, 101]. The effectiveness er of a response ex-
presses, how exhaustive the security incident is resolved, or how high the improvement of
availability is after applying the response [23, 67]. Other metrics to measure a response
were proposed including the complexity or severity of a response during execution [101].

The metric used for estimations depends on the system and may be fine-tuned towards
special use cases. However, the following cost assessment is a good starting point:

m =
1

pr
·
1

er
·
∑
gi

(tgi · wgi · cgi). (6.1)

6.1. Response Assessment Strategies 89

The first term 1
pr

is the inverse success probability of the response. We assume that
the execution of responses are independent events and factor in the number of executions
to get an expectancy value of 1. The second term 1

er
represents the effectiveness of

a response. We assume that coping with the remainder of the security incident will be
proportional to the calculated costs. The last term includes additional costs: wgi is a
weighting factor which translates the unit and scale of the cost cgi to embed it into the
single cost function. tgi is the duration over which the cost occurs. This is well suited to
resources such as bandwidth and memory.

Determining Costs in a Service-Based Scheme To model and calculate the costs
per downtime for a response, we propose the following service-based scheme. Users or
customers are paying the amount of Uc per time unit to use different Services. The value
Sv of a specific service is the sum of all customer payments for this particular service. To
provide those services, different Subservices are offered by Hosts, which may be redundant
and deployed as Virtual Machine (VM) on a VM server.

Responses can influence those entities during execution. For example, blocking a
single user from a service will affect neither the service as a whole nor the VM server the
host is running on. Blocking connections on a firewall may affect a service as a whole,
or just one host providing the service. Therefore, a special relation between a response
and those entities is needed to reflect this influence. ie,r = inf luences : E × R →
{FALSE, TRUE}, where r is the response and e the entity influenced by this response.

We use relations between the entities service and subservice to model service de-
pendencies. For example, a service may depend on a database and a mail service as
subservices to fulfill its tasks. To model those dependencies we use first-order logic and
express those relations as follows: S = (x)A ∧ (y)B, where S represents the service and
A and B the subservices used. x and y are the degree of dependency. For example
S = (0)A∧ (0)B means that service S fully depends on the functionality of both services.
S = (0.5)A ∧ (0.7)B means that S can provide 50% of it’s functionality in case A is not
available and 70% in case B is not available.

To model redundancy we use the entities subservice and host in an analogous way.
The following formula S = (x)A ∨ (y)B expresses that a subservice S runs on host A
and B with different degrees of efficiency. For example S = (1)A ∨ (0.9)B means that a
shutdown of host A will have no effect, but a shutdown of host B will lead to a service
degradation to 90%. To calculate the response costs rc for a response the following
applies: The response influences a

• User : ruc = Uc

• Service: r sc = Sv

• Subservice: r subc =
∑
Ai
xi · Sjv where Sj depends on Ai and i(r, Ai) = TRUE

• Host: rhc =
∑
Ai
(1− xi)r subc where Ai depends on h and i(r, Ai) = TRUE

• Server : r serc =
∑
h r
h
c where h depends on ser and i(r, ser) = TRUE

At this point, we like to point out that those calculations are independent from the
response selection process and other metrics can be used as well.

90 6. Response Selection

6.1.3 Related Work

The following related work presents possibilities to assess the costs of a response as well
as to assess the potential damage of a security incident. First, we shortly explain how to
integrate the related work into the overall Incident Handling System (IHS) proposed in
this work. Afterwards, we examine the related work by following categories:

• Basic approaches

• Including system information, like the importance of the target of an attack

• Including probabilities, like success probabilities of an attack

• Including Intrusion Detection System (IDS) capabilities

Lastly, we give a comparison and a short summary of the related work and conclude the
findings.

Integration into the Proposed IHS Instead of the proposed response assessment strat-
egy given in Subsection 6.1.2, the following strategies can be integrated into our proposed
IHS. Each presented response assessment strategy can be used as dedicated metric. The
evaluated response costs are stored on the edge between the Response node and the
Metric node. The evaluated costs of the system damage can be stored on the edge
between the Alert Context node and the Metric node.

Basic Approaches In [146] a response cost model is proposed. The response costs are
calculated as follows:

RC = OC + RSI − RG

With OC describing the Operational Costs, RG describing the Response Goodness
(who god a response mitigates a security incident) and RSI describing the Response
Impact on the system. The operational costs have to be determined manually using expert
knowledge. The response goodness is calculated by combining available responses on the
system resources with their weights expressing the importance of a system. The response
goodness is evaluated by selecting applicable responses and compute the goodness of these
responses in terms of the attack.

In [48] a cost model for responses regarding Advanced Metering Infrastructure (AMI)
is given. They propose to calculate the costs of a response as follows:

CAction = CImpact + COperation + CAttack

COperation refers to the operational or managerial costs like costs for recovery, labor,
initiating the response and needed resources. They propose to include the duration of
a response as well, as they assume that the longer a response will last, the higher are
the operational costs. CImpact describes positive as well as negative effects on the se-
curity goals Confidentiality, Integrity and Availability (CIA). CAttack describes the costs
of the attack’s consequences. Additionally, they present how to convert the impact on
the security goals to financial values. They propose to use market pricing, service level
agreements and empirical data for pricing CIA degradations. Their presentation lacks of

6.1. Response Assessment Strategies 91

concrete implementations, how an integrity degradation is determined, how the degree
can be identified, and how to map this to certain costs. Moreover, it is unclear why the
response costs include the attack impact.

In [83] the question whether a response is worthwhile to be executed is discussed.
Therefore, they define the RORI index (Return-On-Response-Investment) as follows:

RORI =
RG − (CD +OC)

CD +OC
=
[ICb − RC]−OC

CD +OC

Where RG describes the Response Goodness, CD the response’ Collateral Damage
and OC the response’ Operational Costs. The response goodness RG can be composed
of ICb − ICa, whereas ICb are the costs of the security incident in case no response
is executed and ICa are the remaining costs of a security incident after a response is
executed. The authors admit, that ICa is hard to determine and therefore propose RC
that represents the combined impact of security incidents and response. OC has to be
determined statically, while RC, ICb and CD are determined on-line. Additionally, they
propose a method to quantify costs for security incidents and responses by using privilege
infection and revocation. Propagations are mapped by service dependencies. In [84] they
had already shown how to propagate CIA within a dependency graph.

In [57] the authors claim to improve the known Return on Response Investment
(RORI). The calculation includes the Annual Loss Expectancy (ALE), the Risk Mit-
igation Level (RM), the Annual Response Costs (ACR), as well as the Annual Infrastruc-
ture Value (AIV). They authors identified that most parameters need to be estimated
appropriate by an expert as a limitation of this solution.

In [67, 68] a graph-based approach for determining costs is introduced. To calcu-
late the response costs the following properties are included: the expected success, the
expected effort, the expected error-proneness, and the expected durability of a response.
They include dependencies between resources and calculate negative impacts of responses
with respect to availability of connected responses. They are able to model different classes
of dependencies using their dependency graph.

In [129] Orcef is introduced and a cost-sensitive approach to balance the response
costs and the cost for a security incident is proposed. They consider the positive as
well as negative effects of a response. To determine the negative effects of a response,
a service dependency graph is utilized. They ascertain the positive impact on the CIA
properties and on the speed of the system. Negative impacts consist of impacts on hosts,
external communication, network, network user, local user and the setup costs. Most of
the required metrics are statically computed parameters. Additionally, they need the value
of the affected resources. This value is determined by an expert’s opinion. The damage
cost of a security incident is statically assigned for their 4 categories, namely U2R, R2L
DOS and PROBE ([95]).

Approaches Including System Importance In [101] a bunch of response metrics for
the AIRS is proposed that are used with respect to the importance of a compromised
system, that can be low, medium or high. They define the Damage Reduction Metric to
balance security incident and attack costs similarly as defined in [141]:

Ii · CIDS ≥ Ir

Whereas, Ii denotes the impact of the security incident, CIDS denotes the confidence
level of an IDS, and Ir denotes the impact of a response. Each single response within

92 6. Response Selection

the set of candidate responses has to fulfill this requirement. Additionally, they propose
a Minimum Cost Metric that does not depend on the success of a response with the
objective to minimize the following equation:

CostT = IR + Costd

Whereas, CostT denotes the Response Costs, IR denotes the impact of a response
during execution, and Costd denotes the deployment costs of a response. For more
valuable attack targets the propose the Highest Severity and Highest Efficiency Metric
that maximizes the response severity and success:

RE · Sabsr ≥ Si
Max{RE · Sabsr }

Whereat, RE is the Response Efficiency calculated from previous executions, Si denotes
the severity of the IDS detected the intrusion, and Sabsr denotes the absolute severity of
a response previously set by the administrator.

In [110] REASSESS (Response Effectiveness Assessment) is proposed. For each re-
sponse its effectiveness is calculated taking negative and positive effects of a response
into account. The negative effects lead from possible service degradation, penalty costs
can arise from Service Level Agreement (SLA) violations and alert priorities are taken
into account. The effectiveness of a response is the difference between its positive and
negative effects. Negative effects are calculated by taking the service reduction and the
importance of a service into account. Positive effects depend on the response success
rate.

In [93, 167] a cost-sensitive method for distributed intrusion response is presented. It
includes the Damage Costs, describing the costs of the security incident, and is quantified
by the criticality (importance of the target) and the lethality (degree of potential damage).
The Response Costs depend on the response mechanism and the Penalty Costs measure
the costs of a false-positive. The Operational Costs are the costs arising due to the use
of IDSes. To determine the response costs fixed values are used that are estimated by
the authors.

Approaches Using Probabilities In [78, 79] the response assessment is based on the
success likelihood of an ongoing attack. The response reducing the success likelihood at
most, is considered as the best response to choose. For this mechanism, an attack graph
is needed. A node in this attack graph represents an observed or expected attack. For
each detected attack, a new instance of the attack graph is instantiated. The root of the
attack represents the attackers objective. The closer the current ongoing attack is at the
root node, the more urgent it is to find a response and the higher is the success likelihood
of an attack. The attack’s success likelihood SL is calculated as follows:

SLx = −20 · log10 ·
MTAOX − 1

MTAOX

Whereas, MTAO is the Mean Time to Attack Objective of attack objective X. The
closer the attacker comes it’s goal in the attack graph the higher is the success probability.

In [141] a cost sensitive model for response selection is proposed. They use utility
theory and compute the expected value (EV) of a response rs to a sequence S as follows:

6.1. Response Assessment Strategies 93

EV (rs) = (P rsucc(S) · SF) + (P rr isk(S) · (−RF))

Whereas, P rsucc(S) describes the probability that a sequence S will occur, P rr isk(S) =
1− P rsucc(S), SF denotes the success factor, and RF denotes the risk factor.

Approaches Including IDS Capabilities In [69] a cost model including false-positives is
considered. They assume that both IDSes and Intrusion Response Systems (IRS) produce
false-positives. The two states on the IDS are: no intrusion or a real intrusion. The three
states on the IRS are: no response, false response and true response. They propose an
Intrusion-Response-Matrix presenting all responses and security incidents available. An
entry in this matrix represents the costs of a response to a certain security incident. They
add an additional row and column to provide information about costs of false-negative
responses and false-positive responses. They need an additional Response-Cost-Matrix as
starting point. Within this matrix experts have to manually assign costs to each response
with respect to the security incident. Afterwards, they recalculate those costs with respect
to false positives. Within this work no real cost assessment was done, but only a refinement
of already manually specified costs.

In [177] two cost-based security metrics characterizing the response and current sit-
uation are introduced: the Maintenance Costs of a response (Costm) and the Costs of
Failures due to an attack (Costf). The first metric (Costm) is composed of the signifi-
cance of a component or service in the network (Ds) and the costs when the response is
executed (Dd). The second metric (Costf) is also based on the significance estimation
(Ds), but instead of Dd the threat degree of the attack (Da) is used. In order to choose
a response the response maintenance costs and costs of an attack should be balanced.
The authors include the uncertainty of IDSes due to false-positives by introducing Penalty
Costs (Costp) for executing responses in case they were not needed. A Partially Observ-
able Markov Decision Process (POMDP) is used to put all things together and maximizing
the reward for changing the system state. The authors do neither describe how to impose
the described metrics nor discussing possible responses that can be implemented and how
to assess them.

In [172] the costs for active and passive responses are calculated in different ways. The
costs of active responses are calculated by summing up the costs arising due to delaying
benign events, the average damage costs of undetected attacks and investigation capacity
per time. The costs of passive responses are calculated by summing up the average damage
costs while an alert is investigated, the average damage costs of undetected attacks and
investigation capacity per time.

Summary, Comparison and Conclusion The requirements stated in Subsection 6.1.1
are mapped to the presented approaches. The results are summarized in the following
Table 6.1.

94 6. Response Selection

Tab. 6.1: Comparison of Related Work Based on the Requirements Stated in Subsection 6.1.1

Approach R
1
–

R
es
po

ns
e

P
ro
pe

rt
ie
s

R
2
–

D
ep

en
de
nc
ie
s

R
3
–

R
ed
un

da
nc
y

R
4
–

A
ut
om

at
ed

E
lic
it
at
io
n

Response Costs [146] 7 7 7 7

AMI [48] 7 7 7 7

RORI [57, 83] 7 7 7 7

Graph-based [67, 68] 3 3 7 3

Orcef [129] 7 3 7 7

AIRS [101] 7 7 7 7

REASSESS [110] 7 3 7 7

Distributed [93, 167] 7 7 7 7

Success Likelihood [78, 79] 7 7 7 7

Utility theory [141] 7 7 7 7

Response-Cost-Matrix [69] 7 7 7 7

POMDP [177] 7 7 7 7

Active and Passive [172] 7 7 7 7

The related work can be structured into basic approaches using mostly predefined val-
ues that need to be evaluated by experts. Those systems mainly provide a mere definition
of response costs based on the costs of a security incident and the positive effects of exe-
cuting a response. Some approaches take the importance of the targeted component into
account, that leads to a more precise estimation, but most often, service dependencies
are not covered. Additionally, approaches including success probabilities of future events
exist. They try to foresee the next steps within a sequence of attacks or rely on additional
knowledge like vulnerability assessment. The last category of related work are response
assessment strategies including IDS capabilities. They include additional knowledge into
the response assessment in order to cope with unreliable IDSes.

Concluding the related work presented in this section against the requirements stated
in Subsection 6.1.1 shows that none solution can fulfill those requirements. The main
problems are the automated elicitation of needed parameters and the reflection of the
properties for responses given in Subsection 2.4.2. The most promising approach [67, 68]
is limited to availability.

6.2 Analysis

Within this section, we first examine the requirements the response selection strategy has
to fulfill (see Subection 6.2.1). As our response selection approach is based on linear
optimization, we give a short introduction into this topic in Subsection 6.2.2. Addition-
ally, we give an illustrative example for response selection and the main challenges in
Subsection 6.2.3.

6.2. Analysis 95

6.2.1 Requirements

The requirements for the response selection module arise from the related work or func-
tionalities found within related approaches. For response selection the following require-
ments have to be fulfilled:

Requirement R1 – Cost-Sensitive Approach: Response selection has to take the
impact of a response as well as the impact of the security incident into account. Responses
that are chosen have to balance those costs. Otherwise, responses that are more expensive
than the damage caused by the security incident are chosen. In this case, taking no action
is more suitable than choosing an expensive response. The recommendation for a cost-
sensitive approach towards response selection is given in [142].

Requirement R2 – Comprehensive View: The selection mechanism has to be able
to take the whole security incident into account. A security incident may consists of
multiple attack steps, or targets. The response selection has to be designed such that
not only a single security incident is covered but multiple related security incidents. The
selection mechanism has to be able to select multiple responses that cover the security
incident when they are executed in combination as no single response may cover multiple
attack steps.

Requirement R3 – Conflict-Free Selection: In case multiple responses are executed
in combination, those responses must not conflict with each other. Conflicting responses
may override each other and the responses do not have the expected impact on the target
system. In [148] existing response plans are post-processed in order to eliminate conflicts
between responses.

Requirement R4 – Preparation Actions: Some responses may require the execution
of some actions to prepare the target system. Multiple responses may use the same
actions for preparation. The response selection mechanism should support to model pre-
and postconditions and take those relations into account during response selection. In
case a response needs an expensive preparation, this response may still an option in case
other responses need this preparation as well.

Requirement R5 – Synergy Effect: The response selection should model responses
that are helpful against a certain attack for more than one victim. For example, a response
targeting a whole subnetwork, may mitigates a security incident for multiple victims.
Whereas, a self-healing response is only helping a single entity. Consequently, a more
expensive response helping multiple victims may be more reasonable than multiple single
self-healing responses helping only a single victim. This requirement is needed in order
to satisfy new network management capabilities, like software-defined networking (SDN),
allowing more options to interact with a network as a whole.

Requirement R6 – Flexible Cost Assessment: The response selection should allow
to exchange the cost assessment for responses as well as the security incident. Response
assessment should, therefore, be decoupled from the selection process and should not
be tightly interleaved. A flexible cost assessment is needed in order to provide an online
response cost evaluation model as recommended in [130].

6.2.2 Linear Programming

LP is a well-known and well-researched technique originating from the field of opera-
tions research. While an LP problem can be solved in polynomial time, the restriction of
(some) variables to integral values makes the problem one of Karp’s 21 NP-complete prob-
lems [81]. Well-known methods to solve LP problems are Basic-Exchange algorithms, for
example the Simplex-algorithm proposed by Dantzig [31], or Interior Point methods [81].

96 6. Response Selection

A beneficial property of these algorithms is the possibility of a warm start-over, where an
optimal solution from a previous solution run can be re-used. This property has a positive
impact on the solution performance when a problem has to be solved repeatedly with
modified matrix coefficients.

To solve an Integer Linear Programming (ILP), first, the corresponding linear problem,
called the relaxation of the ILP, is solved. Based on the optimal solution of the relaxation,
exact methods like Branch and Bound algorithms or Cutting-Plane methods can be applied
to find the integer optimal solution.

In linear optimization, we try to optimize a given objective function subject to certain
constraints. Both, the objective function and the constraints, are formulated as linear
equations. The goal of LP is to maximize or minimize the value of the objective function
within the constraints of the given constraint equations. Geometrically, the linear con-
straints define the feasible region, which is a convex polyhedron. A linear function is a
convex function, which implies that every local minimum is a global minimum; similarly, a
linear function is a concave function, which implies that every local maximum is a global
maximum.

An optimal solution need not exist, for two reasons. First, if two constraints are
inconsistent, then no feasible solution exists: For instance, the constraints x ≥ 2 and
x ≤ 1 cannot be satisfied jointly; in this case, we say that the LP is infeasible. Second,
when the polytype is unbounded in the direction of the gradient of the objective function
(where the gradient of the objective function is the vector of the coefficients of the
objective function), then no optimal value is attained.

The standard form of an LP problem consists of three parts:

• A linear function to be maximized or minimized, called the objective function:

f (x1, x2, x2) = c1x1 + c2x2 + c3x3

• A set of problem constraints in the form:

a11, x1 + a12x2 + a13x3 ≤ b1
a21, x1 + a22x2 + a23x3 ≤ b2
a31, x1 + a32x2 + a33x3 ≤ b3

• A set non-negative variables

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

An LP problem is often described in the matrix form and expressed as:

max{cT x |Ax ≤ b ∧ x ≥ 0}

If the set of non-negative variables is linear, the optimization problem is called an LP
problem. If a subset of these variable are required to be integer (which is including binary
values) the problem is called a MILP problem and if all variables are required to be integer
it is called an ILP problem.

A property of linear optimization is that feasibility and optimality is mathematically
ensured and provable: for every system of linear equalities we can, by looking at the rank of
the extended matrix problem Ab, state if the system of equalities is feasible or infeasible
and if the system has no solution, a unique solution or infinitely many solutions. If a
system has multiple solutions, it is possible to iterate all optimal and all feasible solutions
as described in [82].

6.3. System Model 97

6.2.3 Illustrative Example

In Figure 6.1 an illustrative network topology is shown. The network entities are a firewall
fw , a router r , two switches s1 and s2, and 4 hosts h1 to h4. In this network a Denial of
Service (DOS) attack was detected. This attack affected a service running on host h1
and a service running on host h2.

Router r

Firewall f w

Host h1 Host h2 Host h3 Host h4

Fig. 6.1: Network Topology Example

The firewall has the following options to automatically respond to this attack: it
can block traffic going from or to all hosts of the system (rblock(host)). Additionally,
the firewall can be configured, such that the whole subnetwork, h1 and h2 reside in, is
blocked (rblock(network)). Moreover, host h3 provides a cold-standby for the two affected
services, and can provide one of the services running on host h1 and host h3, but not
both (rmigrate(service)). If the service is running on another host, the router has to be
reconfigured in advance to provide the new routing to this service (rreroute). Host h2 can
reconfigure its own service in order to work correctly even it is under attack by providing
more resources (rreconfigure).

The goal is to find an appropriate selection of responses, such that the DOS attack
is mitigated for both services under attack. Hereby, the self-healing response of host h2
(rreconfigure) is conflicting with the blocking of the firewall (rblock(h2)) as the reconfigu-
ration would be nullified. The adaptations of the routes (rreroute) are a precondition for
migrating the service (rmigrate(service)).

The description of the network, consisting of attacked entities as well as entities
capable of executing a response, and the information about suitable responses as well as
their relations have to be transferred from this informal description to a mathematical
model in order to provide an LP problem. After, introducing our system model the given
example will be mapped to this proposed model (see Subsection 6.3.2).

6.3 System Model

In this section, we define a model of the relationships between network entities (infras-
tructure information) and information elements needed for automated intrusion response
(see Subsection 6.3.1). The idea is that a real-world IRS will generate an instance of
this model from the parameters of a current security incident and available infrastructure

98 6. Response Selection

information. Afterwards, we show in Subsection 6.3.2 how to apply this set-based model
to our example given in Subsection 6.2.3. The automatic transformation of the proposed
model into a MILP problem represented as linear equations of an optimization problem,
which can be solved automatically, is examined in Subsection 6.3.3. The goal is to find the
cheapest combination of responses which mitigates the security incident on all affected
hosts. This problem can be solved using MILP. As a result, the IRS obtains an optimal
subset of responses to execute.

6.3.1 Definition of Elements and Relations

The focus is to determine suitable response strategies in case of a detected security
incident in the target system. These strategies can involve multiple options executable
by different and distributed entities in the target system. Therefore, the goal is to find
the optimal subset of responses from a given set of candidate responses to be executed
by these network entities in order to counteract the security incident. Within this work,
an optimal response strategy involves only necessary responses to counteract the security
incident. In addition, the selected solution generates minimum costs with respect to a
given set of cost metrics. In the following the set-based model is introduced. The used
sets and symbols including a short description are summarized in Table 6.2.

Tab. 6.2: Sets and Symbols Used in the System Model

Symbol Set Meaning

si S Set system entities
ai A ⊆ S Set of entities affected by the security incident
ei E ⊆ S Set of entities executing responses
ri R Set of responses
mi M Set of metrics
TRUE, FALSE B Set of boolean values

c R ×M → R Cost of a response in metric
d M → R Cost of inaction (‘damage’)
x E × R→ B Is response executed by entity?
f A× R→ B Does response ‘free’ entity?
o R × R→ B Do responses conflict?
p R × R→ B Do responses have preconditions?

A network consists of various entities, such as hosts, routers, and firewalls. In this
model, all of these entities are contained in the set S = {s1, s2, . . .}. All network entities
can be identified uniquely.

A subset of the entities is affected by the security incident: A = {a1, a2, . . .} ⊆ S.
All network entities (S) capable of executing a response are contained in the separate set
E = {e1, e2, . . .} ⊆ S.

The set R = {r1, r2, . . .} contains all responses which are available to the IRS. All
responses can be identified uniquely. A response, if successfully executed, will mitigate
the effects of the security incident to one or several entities of A. This is captured by the
function f : A×R→ B. f (a, r) evaluates to 1 for true if r “frees” entity a, and otherwise
to 0 for false. Using this formulation Requirements R2 and R5 can be fulfilled.

6.3. System Model 99

The function x : E ×R→ B describes by which entity a response can be executed. A
response can only be executed by exactly one entity. Thus, the following property holds:

∀r ∈ R :
|E|∑
i=1

x(ei , r) = 1

If another entity can execute an equivalent response, we regard both responses as two
distinguishable responses. For example, rerouting can be done by every router entity within
the target system. This will be reflected in multiple responses dependent on the number of
routers within the network. From function x (executing) the set E describing all entities
that can execute responses can be calculated:

∀e ∈ E : ∃x(e, ri) = 1

A response may itself incur costs when executed. Costs are measured by a set of met-
rics: M = {m1, m2, . . .}. The metrics may be chosen freely by the system administrator.
An example for such a metric is the execution time of a response. The rationale is that
a service may be down while the response is still running. The cost of a response is given
by the function c : R ×M → R. There is also a cost associated with not mitigating the
security incident at all. This is the damage d : M → R, measured using the same metrics
as responses are assessed. The damage limits the effort put into the security incident
mitigation: if the total cost of the selected responses exceeds the damage, it is cheaper
to do nothing. This part of the design fulfills Requirements R1 and R6.

Metrics of different domains are, in general, not comparable. To be able to choose
the “best” responses, we convert and weight all metrics to get a single cost domain with
the range [0,∞).

A response may conflict with another response (cf. Requirement R3). This is the case,
if an entity can only execute one but not both responses, or if the effect of one response
negates the effect of another response. The function o : R × R → B describes which
responses conflict. o is naturally symmetric and non-reflexive, so

∀r1, r2 ∈ R : o(r1, r2) = o(r2, r1) ∧ ∀r ∈ R : o(r, r) = 0

hold. The function is evaluated to true if the given responses conflict, otherwise to f alse.
A response may need another response to be executed in advance (cf. Require-

ment R4). Defining those preconditions allows to provide more flexible and fine-grained
response plans to be defined. If two responses require the same preconditions, synergy
effects can be used and the costs of a response plan can be determined more precisely.
The function p : R×R→ B describes which responses have a precondition relation. The
precondition relation is not symmetric as a response is not a precondition of itself and
non-reflexive as no cycles must occur:

∀r1, r2 ∈ R : p(r1, r2) 6= p(r2, r1) ∧ ∀r ∈ R : p(r, r) = 0

The function is evaluated to true if the given response r1 is precondition of response r2,
otherwise to f alse. A response being a precondition does not necessarily frees entities in
case of a security incident. This means that a precondition r may not appear within the
function f such that ∃a ∈ A(a, r) = 1.

100 6. Response Selection

6.3.2 Illustrative Example

In this subsection we map the example given in Subsection 6.2.3 to the set-based model
given in Subsection 6.3.1.

The set of network entities S = {fw , r, h1, h2, h3, h4, s1, s2} describes all elements of
the network. Attacked network elements are summarized in the set A = {h1, h2}. Network
entities capable of executing a response are described in set E = {fw , r, h2, h3}. The set
of all possible responses that can be executed in this network to cope with the detected
attack is composed as follows: R = {rblock(h1), rblock(h2)rblock(network), rmigrate(h1),

rmigrate(h2), rreroute(h1), rreroute(h2), rreconfigure}.
The next step is to transform the relations between the elements of the sets A, E

and R given in the informal description into the formal function x(e, r), f (a, r) o(r, r),
and p(r, r). Entries, that are not given in these relations explicitly, are evaluated to 0
(f alse), given tuples are evaluated to 1 (true). For function o only one direction is given,
symmetric dependencies are not listed. The relations are listed in the following:

• x = {(fw , rblock(h1)), (fw , rblock(h2)), (fw , rblock(network)), (h3, rmigrate(h1)), (h3,

rmigrate(h2)), (r, rreroute(h1)), (r, rreroute(h2)), (h2, rreconfigure)}

• f = {(h1, rblock(h1)), (h2, rblock(h2)), (h1, rblock(network)), (h2, rblock(network)),

(h1, rmigrate(h1))(h2, rmigrate(h2))(h2, rreconfigure)}

• o = {(rmigrate(h1), rmigrate(h2))}

• p = {(rreroute(h1), rmigrate(h1)), (rreroute(h2), rmigrate(h2))}

As described previously, host h3 can only be used for one service to be migrated. In
consequence, both migration responses are conflicting. As mentioned before, migration
of a service needs reconfigured routes as preconditions.

The last part of the model is to describe the metrics used to determine the best
combination of responses that fulfills the following properties:

• All entities in A are freed from the security incident.

• No conflicting responses are executed.

• Preconditions are included.

• The effort in form of different metrics has to be minimal.

In this example, the duration of the execution and the monetary costs that will arise
if a response is executed, are chosen as metrics. All given responses including metrics,
affected and executing entities are summarized in Table 6.3.

From Table 6.3 it can be seen that more combinations will fulfill the first two properties.
First, the firewall can be reconfigured in a single step (rblock(network)) or in two separate
steps (rblock(h1) and rblock(h2)). Second, a service could be migrated and the other one
can be secured be reconfiguring the firewall. The last option is the self healing process
on host h2 in combination with a migration or firewall configuration. All responses differ
with regard to their metrics, in this case duration and costs. The goal is to chose the
optimal solution with respect to given metrics.

Another observation is that executing two different non-conflicting responses free-
ing the same target, will have no additional benefit. For example, if the service is
migrated from host h1 (rmigrate(h1)) and the firewall is reconfigured for both victims

6.3. System Model 101

Tab. 6.3: Possible Responses with Executing Entities, Effected Entities and Metrics

Response Executing Effected Duration in ms Monetary Costs

rblock(h1) f w h1 1.2 20
rblock(h2) f w h2 1.2 20

rblock(network) f w h2, h1 1.5 30
rmigrate(h1) h3 h1 30 100
rmigrate(h2) h3 h2 30 100
rreconf igure h2 h2 5 10
rreroute(h1) r – 0.5 1
rreroute(h2) r – 0.5 1

(rblock(network)) costs and duration will increase, but the migration is an unnecessary
response. This examples shows, how important a decision process over the overall response
set can be. Responses executed without coordination will lead to inefficient operations
with respect to the entire target system.

6.3.3 Formulating the Optimization Problem

The model from Subsection 6.3.1 describes the network environment, the security incident,
and responses available. The corresponding optimization problem formalizes the following
question:

In a given model instance, which subset from the set of responses available

• Frees all affected entities from a security incident,

• Has minimal cost within the given set of metrics, and

• Has lower cost than the security incident being unmitigated?

When transforming a problem to the form required to solve it as an LP problem, it is
common to distinguish between two kinds of constraints: feasibility constraints and opti-
mality constraints. Feasibility constraints force the solution to be within the constraints of
a valid solution, whereas, the optimality constraints drive the solution into the desired di-
rection of minimization or maximization. The constraints defined in Subsubsection 6.3.3.4
and Subsubsection 6.3.3.5 are explicitly formulated to be linear and directly applicable to
a MILP problem.

6.3.3.1 Input

The different inputs needed for the response selection can either originate from infrastruc-
ture information and policy definitions known in advance (marked with •) or information
extracted from the security incident (marked with ∗) or collected during response execu-
tion (marked with †). From the system model in Subsection 6.3.1, we get the following
inputs to the optimization problem:

• The set of entities in the network: S (•)

• The set of entities affected by the security incident: A (∗)

102 6. Response Selection

• The set of entities capable of executing responses: E (•)

• The set of responses to counter the security incident: R (•)

• The set of metrics responses can be evaluated under: M (•)

• The cost each response has with respect to the metrics: c (†)

• The damage if the security incident is not countered: d (∗)

• Information on which responses are in conflict: o (•)

• The entity a response can be executed on: x (•)

• Information on which hosts a response frees: f (•)

• Information if a response has preconditions: p (•)

This input information has to be gathered from the information model examined pre-
viously in Section 3.3. The set of entities in the network (S) is given as infrastructure
information. Hereby, not only a Device node is a network entity, but includes Service
or User nodes as well. The set of entities affected by the security incident (A) are all
nodes connected with all Alert Context nodes using the alertcontexthastarget
relation. The set of responses to counter the security incident (R) are preselected by the
response identification module and are connected to the Bundle node that is currently
processed by the response selection module. The set of entities capable of executing
responses (E) are all nodes connected with the Implementation nodes of the Bundle
node by the implementationisdeployedondevice relation.

The set of metrics (M), responses can be evaluated under, is stored in the Metric
nodes. The cost each response has with respect to the metrics (c) can be evaluated using
the relation between an Implementation and a Metric node storing the metric value.

The information which responses are in conflict (o) can be gathered by the self-
reference of the Response node (responseconflictswithresponse relation).
The same applies for the information if a response has preconditions (p) using the res-
ponseispreconditionofresponse relation The entity (x), a response can be ex-
ecuted on, can be determined by the relation between the Implementation and the
Device node (implementationisexecutedbydevice relation). The information
if a response frees a target (f) is given by the implementationisdeployedonde-
vice relation between the Implementation node and the target.

6.3.3.2 Output

The solution of the optimization problem states a vector −→n for each response ri ∈ R
whether it should be executed (ni = 1) or not (ni = 0). Since these are integral values,
the problem is a MILP problem. In addition, the solution also offers the total cost ctotal
of all selected responses.

This output has to be mapped appropriately to the information model examined pre-
viously in Section 3.3. As response selection is executed on a certain bundle (Bundle
node) with connected Implementation nodes the relation in-between is utilized. The
Implementation nodes reflect the responses of the optimization problem. As the
output of the optimization problem is the vector of all responses including the selec-
tion decision (selected (true) or not (f alse)) each edge from the Bundle node to an
Implementation node can be queried and the Selected attribute is set appropriately.

6.3. System Model 103

6.3.3.3 Objective Function

The goal of the optimization problem is to minimize the cost of the responses selected to
counter the security incident. Therefore the objective function is defined as:

min(

|R|∑
i=1

|M|∑
j=1

nici ,jwj) = min(n1 · c1,1 · w1 + · · ·+ n|R| · c|R|,|M| · w |M|) (6.2)

= min(n1 · (c1,1 · w1 + · · ·+ c1,|M| · w |M|) + · · ·+
n|R| · (c|R|,1 · w1 + · · ·+ c|R|,|M| · w |M|))

Whereas, ni is a binary variable for each response within the set of candidate responses,
that can either be true or f alse. The metrics for each response are reflected in ci ,j .
Whereas, ci ,j is metric j of response i . Each metric j can be weighted using the parameter
wj . Within the objective function the weights for a certain metric is constant, meaning
the metrics are weighted the same between responses.

6.3.3.4 Feasibility Constraints

Without any feasibility constraints, the optimal solution would be to select no responses
at all. Then, the total cost of the selected responses would be 0. The following feasibility
constraints force the optimization towards a practically useful solution.

All Affected Entities are Freed Every entity affected by the security incident has to be
freed. Such an entity has to be affected by at least one selected (nj = 1) response:

∀a∈A :
|R|∑
j=1

nj fa,j ≥ 1 (6.3)

This constraint ensures that the whole security incident is considered at once, such
that a comprehensive view is provided (cf. Requirement R1). This constraint does not
exclude that an entity is freed due to multiple responses. For example, if a response r1
frees entities e1 and e2 and another response r2 frees entities e1 and e3, both responses
can be applied simultaneously, if not conflicting.

Each Response Can Only Be Executed Once We define that a response r ∈ R, if
executed once, is fully effective and does not need to be executed multiple times:

∀ri∈R : 0 ≤ ni ≤ 1 (6.4)

As responses are defined as binary values, the response can either be set to 0 or 1. In
the first case, the response is not selected in the later one, the response is selected.

Total Cost of Responses Has to Be Below Cost of Damage Based on the damage a
security incident inflicts in the network, we do not want responses to generate more cost
than the security incident itself. Therefore, we add a constraint limiting the cost of the
responses to be below the expected cost of damage:

∀m∈M :
|R|∑
i=1

nici ,m ≤ dm (6.5)

104 6. Response Selection

If no damage is given for a metric mi , it is set to di = ∞. Within this formula, we
assume that for each metric a certain upper bound is given. A selection of responses is
only valid, if all boundaries for all metrics can be adhered. Otherwise, no solution can be
found for the given problem and taking no action is preferred.

No Conflicting Responses are Executed We prevent conflictive responses to be se-
lected at the same time:

|R|∑
i=1

|R|∑
j=1

oi ,jninj = 0 (6.6)

This constraint ensures that either ri or rj can be selected from the set of candidate
responses if they are conflicting, that means the function o(ri , rj) is evaluated to 1 (true).

Execute Preconditions We have to ensure that preconditions of a response are executed
in case the response is selected:

∀(r1,r2)∈p : r1 ≤ r2 (6.7)

This constraint ensures that response r1 will be set to 1, if r2 is chosen. Response r1
reflects the precondition of response r2. Together, with the objective function (see Sub-
subsection 6.3.3.3) and the optimality constraints (see Subsubsection 6.3.3.5) r1 will not
be executed if response r2 is not executed, as this response would be unnecessary.

6.3.3.5 Optimality Constraints

The objective of this optimization problem is to determine the set of responses with
minimal costs fulfilling the feasibility constraints defined in Subsubection 6.3.3.4.

∀m∈M : cmtotal =
|R|∑
i=1

nici ,m ⇒

∀m∈M : cmtotal −
|R|∑
i=1

nici ,m = 0 (6.8)

Based on this formalization, the size of the resulting optimization problem depends on
the size of input sets:

• Number of variables: |M|+ |R|

• Number of constraints: 2|M|+ 2|R|+ |A|

• Number of non-zero elements in the problem matrix:
|A|,|R|∑
i=1,j=1

fi ,j + 2|R||M|+ |M|+ 2
|R|,|R|∑
i=1,j=1

hi ,j

Since the number of metrics is expected to be more or less constant and small, the
size of the problem and its complexity is defined by the number of available responses and
the number of affected entities. Additionally, the number of conflicts and preconditions,
as well as the coverage factor of a response, the number of entities a response frees,
influence the problem size and complexity.

6.4. Implementation 105

6.4 Implementation

To be able to evaluate the applicability and performance of the presented approach, we im-
plement the proposed design and use this implementation for the evaluation in Section 6.5.
The implementation is available on GitHub 1.

The main tasks of this implementation are to generate network environment and
incident scenario datasets, to transform these datasets into a linear optimization problem,
to instrument established MILP solvers to solve this problem and obtain the computed
solution. As storage for all required and generated data, a PostgreSQL database is used.

This functionality is realized by a controller written in Python3. This controller exe-
cutes the following tasks in the given order:

• Check Database for needed tables within the database

• Create a network environment (test data) with respect to given user inputs

• Generate specific incident scenarios by specifying the number of affected entities

• Generates the corresponding optimization problem, as described in Section 6.3

• Instrument solvers to solve the optimization problem

• Store results and measurement data into the database

First, the controller checks if all needed tables are available in the database. This
includes tables to store the network environment as well as meta-data from the single
experiments executed. In case a table is missing, the controller will add the table with
corresponding columns and constraints.

In a next step, the network environment is generated. Within the configuration file of
the controller, it can be specified how many entities, responses and conflicts have to be
generated. Additionally, the maximum coverage factor of a response can be determined.
For each response the coverage factor is selected randomly and uniformed distributed
between 1 and this specified maximum coverage factor. As each response needs costs for
different metrics, within the configuration file the name and the upper bound of the specific
metric has to be specified. For each given metric a randomized value between 0 and 1
using uniformed distribution is assigned to each response that is generated. All generated
incident scenarios are based on this network settings. Therefore, in case different network
settings shall be used, the use of multiple databases is recommended. As the system
supports the automatic setup of a database, no additional effort is needed.

The next step is setting up incident scenarios from the given network environment.
Within the controller’s configuration file the user can specify the following values for
entities, responses as well as conflicts: the upper bound, a start value and a step size.
The controller will determine different incident scenario from those settings, whereas
an incident scenario is defined by the number of infected entities (E), the number of
responses (R) and the number of conflicts (C). For each incident scenario the controller
determines the infected entities by selecting the first entries from the database until
E entries are fetched. Afterwards, the corresponding responses are fetched until the
controller has collected R responses. The controller will only fetch distinct responses
where at least one of the E infected entities benefits from. At last the controller fetches C
conflicts, whereas only conflicts are included between the previously fetched R responses.

1https://github.com/Egomania/ResponseSelection

https://github.com/Egomania/ResponseSelection

106 6. Response Selection

This procedure allows a fine-grained regulation of different influence factors within the
optimization problem.

In the next step the incident scenarios are handed over one after another to the specific
solvers. The solvers to use can be specified within the controller’s configuration file and
are loaded dynamically during runtime. In case new solvers have to be integrated, the
implementation of the new solver has to follow the given interface definition.

The controller interfaces within the current implementation with well-established and
optimized LP solutions: GNU Linear Programming Kit (GLPK)2 and IBM ILOG CPLEX
Optimization Studio (CPLEX)3. To interface with GLPK the controller uses Python-
GLPK4 and pycpx5 to interface with CPLEX.

Solving a MILP problem is often stated as computationally expensive and time con-
suming. To be able to compare the MILP-based approach, the controller additionally
implements two simplistic heuristics to find a solution for the security incident as a point
of reference for the performance of the optimization:

The Cheapest-First-Algorithm orders all available responses with respect to their
cost. For each affected entity, the cheapest response is selected. In case the selected
response covers more than one entity, no response will be selected for the other entities
since they are already covered.

The Coverage-First-Algorithm sorts the available responses with respect to their
coverage. The responses that help the most affected entities are considered first. On a
tie, the cheapest is selected. Responses are drawn as long as there are hosts left which
are not covered. Responses which help only hosts which are already covered are ignored.

The solver module for all supported solvers is capable of creating as well as storing
the problem definition, creating as well as storing the solution and reading previously
generated problem files. The concrete behavior, e.g. not creating a problem but reading
from a description file and storing the results into the database can be configured using the
controller’s configuration file. As the execution can be done multiple times for evaluation
purposes it is recommended to create the problem description first and than execute the
problem solving within a separate run.

In a last step the results of each solver are stored within the database back-end. This
not only includes the concrete results, like which responses are used and what costs are
calculated, but additional meta-data describing the incident scenario that was used or the
specific solver settings, as well as used metrics and boundaries that can be configured as
well. Within the implementation we do currently not support preconditions and weights
for different metrics.

6.5 Evaluation

The goal of this evaluation is to analyze whether the presented approach relying on MILP
is suitable for response selection, how MILP compares to simplistic approaches like heuris-
tics and to determine how different problem properties influence the performance of both
the MILP and heuristic approaches towards response selection. First, we compare our
approach to the requirements stated in Subsection 6.2.1 in Subsection 6.5.1. Afterwards,
we introduce the evaluation methodology in Subsection 6.5.2 that is used within our eval-
uation. Our evaluation considers the performance of our approach (see Subsection 6.5.3)

2https://www.gnu.org/software/glpk/
3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
4http://www.dcc.fc.up.pt/~jpp/code/python-glpk
5http://www.stat.washington.edu/~hoytak/code/pycpx/index.html

https://www.gnu.org/software/glpk/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.dcc.fc.up.pt/~jpp/code/python-glpk
http://www.stat.washington.edu/~hoytak/code/pycpx/index.html

6.5. Evaluation 107

as well as the solution quality (see Subsection 6.5.4).

6.5.1 Requirement Alignment

The approach provided for response selection is cost-sensitive (cf. Requirement R1). The
costs of responses regarding multiple metrics are taken into account. Hereby, the metrics
can be chosen freely. For each metric a boundary exists reflecting the expected damage
of the attack within the target system. To ensure that the response costs are below the
damage, Equation 6.5 is used. Responses are selected according to their costs and are
not mapped statically to a specific security incident.

The approach provided for response selection provides a comprehensive view (cf. Re-
quirement R2). Our response selection approach is not limited to a single victim or a
single attack but is generic in this sense. The security incident is solved as a whole and
not partially. To ensure this behavior Equation 6.3 is used.

The approach provided for response selection provides a conflict-free selection of re-
sponses (cf. Requirement R3). Using Equation 6.6 ensures that only non-conflicting
responses can be used. This equation allows only to use one of two conflicting responses
but not both within the same response plan.

The approach provided for response selection supports preparation actions (cf. Require-
ment R4). To ensure that all preconditions of a responses are executed if the response
itself is executed, Equation 6.6 is used. The costs of the preconditions are also included
within the total costs as preconditions are represented as responses.

The approach provided for response selection supports responses helping multiple vic-
tims at the same time (cf. Requirement R5). For each victim the Equation 6.3 is defined.
A response can be a term within multiple of those equations, reflecting that a response is
effective for multiple victims if this response is selected.

The approach provided for response selection provides flexible cost assessment (cf. Re-
quirement R6). To calculate the costs to solve the security incident, Equation 6.8 is used.
Within this equation, multiple metrics can be used. The metric itself is not bound to the
selection approach and is therefore, exchangeable with other cost assessment strategies
with respect to the response costs. As the damage cost of a security incident is reflected
as boundary for our approach, this assessment is not bounded to our system as well.

6.5.2 Evaluation Methodology

Based on the implementation presented in Section 6.4, we analyze and compare two
important criteria: (a) the performance of the MILP approach and both heuristics and
(b) the quality of the solution (i.e. the cost to counteract the security incident) of all
approaches. We analyze the behavior of the presented MILP approach and both heuristics
in different incident scenarios by increasing problem complexity. We raise the problem
complexity by increasing (one at a time) the

a. Number of responses,

b. Number of entities,

c. Number of conflicts, and

d. Number of entities a response is applicable to (coverage factor)

in the problem while keeping the number of remaining problem parameters fixed.

108 6. Response Selection

We employ seven datasets for network environments with differing average and maxi-
mum response coverage factors as shown in Table 6.4. The response coverage factor g
is the number of hosts a response frees. If not stated differently, dataset D3 is used in
the evaluation since it represents expected average values for responses.

Tab. 6.4: Evaluation Datasets and Response Coverage Factors

Setting D1 D2 D3 D4 D5 D6 D7

avg(g) 1 5 10 15 20 25 50

max(g) 1 10 20 30 40 50 100

In order to avoid overhead from Python bindings and the Python interpreter itself, we
use the command line clients provided by the GLPK and CPLEX solver and give them
generated problem description files in CPLEX format as input.

We execute the evaluation using a system equipped with an Intel Xeon E3-1275 CPU
running at 3.5GHz with 4 physical cores and Hyper-Threading enabled and 16GB of
RAM. The operating system is Ubuntu 15.10 64-Bit with Python 3.4, GLPK 4.55, and
CPLEX 12.6.1. GLPK does not support multiple CPU cores and therefore uses only
one of the CPU cores. CPLEX supports multiple cores and can therefore benefit from
the multicore system used in this evaluation. All test runs are executed five times. In
the remainder of this evaluation, all figures depict the average creation, calculation and
execution time as well as the response costs for each measurement. Additional information
including standard deviation is described in the corresponding text for each measurement.
As CPLEX was measured using its inbound time measurement facility, the resolution
is bound to 0 01s. Therefore, a standard deviation of 0 is the consequence for small
measurements. In such cases, the standard deviation of CPLEX is not listed explicitly.

6.5.3 Evaluation of Solver Performance

To evaluate the applicability of the presented approach and its performance and to be
able to analyze the impact of different problem properties, we evaluate the execution time
based on different input settings with increasing complexity. The execution time of both
solvers includes reading the problem from the file, setting up the optimization problem
and calculating the optimal solution. This evaluation has shown that problem creation
and reading from a file has only negligible impact on the execution time. The execution
time of both heuristics includes the ordering of the data as described in Section 6.4.

6.5.3.1 Increasing Number of Responses

With the first evaluation, we analyze the impact of responses in the incident scenario.
The evaluation starts with 500 responses which is raised up to 5000 responses using a
step size of 500. The number of entities in the scenario is fixed to 500 and the number
of conflicts between responses is 100. The resulting average calculation, creation and
execution time is depicted in Figure 6.2. The standard deviation of the execution time for
all runs of all solvers is shown in Table 6.5. All numbers are accurate to 5 decimal places.

First, we examine the standard deviation of the considered scenario (cf. Table 6.5).
With an increasing number of responses the standard deviation is slightly increasing. Ex-
cept for the first case (500 responses) GLPK has the most stable results. The maximum

6.5. Evaluation 109

Tab. 6.5: Standard Deviation for an Increasing Number of Responses

Responses 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Greedy Cost 0.00012 0.00039 0.00073 0.00056 0.00131 0.00439 0.00326 0.00662 0.0033 0.00477

Greedy Coverage 0.00013 0.00072 0.00053 0.00128 0.00121 0.00193 0.00402 0.00653 0.00459 0.00332

CPLEX - - - - - - - - - -
GLPK 0.00075 0.0004 0.00049 0.00136 0.0004 0.00102 0.0011 0.00183 0.00141 0.00162

standard deviation for all iterations, all approaches and all complexity settings is 0.007 s.
Therefore, the results are very stable.

1,000 2,000 3,000 4,000 5,000

0

5 · 10−2

0.1

0.15

0.2

0.25

Number of Responses

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(a) Creation Time

1,000 2,000 3,000 4,000 5,000

0

5 · 10−2

0.1

0.15

0.2

Number of Responses

T
im
e
in

s
CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(b) Calculation Time

1,000 2,000 3,000 4,000 5,000

0

0.1

0.2

0.3

0.4

Number of Responses
T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(c) Execution Time

Fig. 6.2: Performance with a Varying Number of Responses and a Fixed Number of Entities and
Conflicts

Taking a closer look on the measurement result (cf.Figure 6.2) we can examine the
following observations. The number of responses increases the problem size in multiple
dimensions: with each additional response, the number of terms in the objective function
grows, additional constraints are added (cf. Equation 6.4), and the number of terms in the
constraints increases (cf. Equation 6.3). But still, both the GLPK and the CPLEX solver
are faster than both heuristics. We assume that the reason for this is that both heuristics
are implemented in Python. As both heuristics have to order the list of responses with
respect to costs and in case of the coverage-first algorithm additionally with respect to
the coverage factor, the execution time increases with the number of responses. As both
algorithms are dominated by the search, the growth is expected to be n log(n).

6.5.3.2 Increasing Number of Entities

Next, we analyze the impact of entities in the incident scenario. The evaluation starts
with a number of 100 entities which is raised up to 1000 using a step size of 100. The
number of responses in the scenario is fixed to 5000 and the number of conflicts between
responses is 100. The resulting creation, calculation and execution time is depicted in
Figure 6.3. The standard deviation of the execution time for all runs of all solvers is
shown in Table 6.6. All numbers are accurate to 5 decimal places.

First, we examine the standard deviation of the considered scenario (cf. Table 6.6).
Within this table, no clear trend can be identified. The standard deviation is very small such
that no clear statement is possible. The maximum standard deviation for all iterations, all
approaches and all complexity settings is 0.045 s. Therefore, the results are very stable.

Taking a closer look on the measurement result (cf.Figure 6.3) we can examine the

110 6. Response Selection

Tab. 6.6: Standard Deviation for an Increasing Number of Entities

Entities 100 200 300 400 500 600 700 800 900 1000

Greedy Cost 0.00205 0.0052 0.00833 0.00209 0.0019 0.00452 0.00433 0.00594 0.00612 0.00634

Greedy Coverage 0.00465 0.00427 0.00416 0.00703 0.00998 0.01277 0.01608 0.00492 0.00869 0.01221

CPLEX 0.004 - - 0.004 0.01721 0.0049 0.0049 - - 0.01720

GLPK 0.002 0.0008 0.00316 0.00049 0.00271 0.00271 0.00431 0.00595 0.0026 0.04497

200 400 600 800 1,000

0

0.1

0.2

0.3

0.4

0.5

Number of Entities

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(a) Creation Time

200 400 600 800 1,000

0

2

4

6

8

10

12

Number of Entities

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(b) Calculation Time

200 400 600 800 1,000

0

2

4

6

8

10

12

Number of Entities

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(c) Execution Time

Fig. 6.3: Performance with a Varying Number of Entities and a Fixed Number of Responses and
Conflicts

following observations. The number of constraints increases with the number of hosts
(cf. Equation 6.3). Those constraints may have several terms as they reflect which
response can help which entity.

However, this seems to have a moderate impact on the performance of CPLEX for
small values apart from the measurement with a number of 500 entities. But only after
a number of 800 entities the execution time increases significantly. With CPLEX we
have solver capable of solving the problem faster than both heuristics. In comparison
GLPKs execution time increases significantly with increased problem complexity. In the
final measurement for GLPK with 1000 attacked entities the execution time is many times
higher than with 900 entities.

6.5.3.3 Increasing Number of Conflicts

In this setting, we analyze the impact of conflicts between responses in the incident
scenario. The evaluation starts with a number of 0 conflicts which is raised up to 500
using a step size of 50. The number of responses in the scenario is fixed to 5000 and
the number of entities is 500. The resulting creation, calculation and execution time is
depicted in Figure 6.4. The standard deviation of the execution time for all runs of all
solvers is shown in Table 6.7. All numbers are accurate to 5 decimal places.

Tab. 6.7: Standard Deviation for an Increasing Number of Conflicts

Conflicts 0 50 100 150 200 250 300 350 400 450 500

Greedy Cost 0.02348 0.01297 0.00963 0.00510 0.00367 0.00411 0.00493 0.00177 0.00827 0.00478 0.02020

Greedy Coverage 0.00700 0.03084 0.01521 0.01639 0.00784 0.01473 0.01352 0.02155 0.00766 0.00428 0.01058

CPLEX 0.00490 0.00490 0.00400 - - - 0.00490 0.00400 0.00400 0.00490 0.00490

GLPK 0.00611 0.00496 0.00496 0.00496 0.00276 0.00338 0.00228 0.00859 0.00598 0.00160 0.00136

6.5. Evaluation 111

First, we examine the standard deviation of the considered scenario (cf. Table 6.7).
For CPLEX all measurements are very stable as they have a low standard deviation. For all
other solvers the standard deviation fluctuates, but is very small. The maximum standard
deviation for all iterations, all approaches and all complexity settings is 0.03 s. Therefore,
the results are very stable.

0 100 200 300 400 500

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Number of Conflicts

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(a) Creation Time

0 100 200 300 400 500

5 · 10−2

0.1

0.15

0.2

0.25

Number of Conflicts

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(b) Calculation Time

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

Number of Conflicts

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(c) Execution Time

Fig. 6.4: Performance with a Varying Number of Conflicts and a Fixed Number of Entities and
Responses

Taking a closer look on the measurement result (cf.Figure 6.4) we can examine the
following observations. Comparing the results from this and the previous section, the mea-
surement results look very different. Adding more conflicts leads to an increased number
of constraints (cf. Equation 6.6) but the structure of those constraints is different com-
pared to constraints that are added with a rising number of entities. Constraints describing
conflicts have a limited number of terms and have, therefore, a simpler structure.

This observation is reflected in the measurements, as an increasing number of conflicts
has no significant impact on the execution time of all tested approaches. As a conclusion,
conflicts do not harm performance, as long as only few responses conflict with each other.

6.5.3.4 Increasing Coverage Factor

For this analysis, we use datasets with varying coverage for responses, as listed in Table 6.4.
The maximum value for the coverage factor is increased from 1 to 50 using a step size of
10. Additionally, a maximum coverage factor of 100 is used for the final measurement.
For all tests the number of entities is fixed to 500, the number of responses is fixed to
5000, and a number of 100 conflicts is used. The results are shown in Figure 6.5. The
standard deviation of the execution time for all runs of all solvers is shown in Table 6.8.
All numbers are accurate to 5 decimal places.

Tab. 6.8: Standard Deviation for an Increasing Coverage Factor

AVG Coverage 1 10 20 30 40 50 100

Greedy Cost 0.00190 0.00597 0.00477 0.00663 0.00476 0.00683 0.66970

Greedy Coverage 0.02046 0.00419 0.00332 0.01023 0.01256 0.02307 0.01166

CPLEX 0.00490 - 0.00400 0.00400 0.01470 0.00632 0.01166

GLPK 0.00133 0.00133 0.02576 0.00141 0.00708 0.00708 0.00232

112 6. Response Selection

First, we examine the standard deviation of the considered scenario (cf. Table 6.8).
For CPLEX all measurements are very stable as they have a low standard deviation. For all
other solvers the standard deviation fluctuates, but is very small. The maximum standard
deviation for all iterations, all approaches and all complexity settings is 0.038 s. Therefore,
the results are very stable.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Coverage Factor

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(a) Creation Time

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Coverage Factor

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(b) Calculation Time

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Coverage Factor

T
im
e
in

s

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(c) Execution Time

Fig. 6.5: Performance with a Varying Coverage Factor and a Fixed Number of Entities, Responses
and Conflicts

Taking a closer look on the measurement result (cf.Figure 6.5) we can examine the
following observations. A higher coverage factor for responses leads to a higher number
of terms in the constraints as described in Equation 6.3 as a response will appear more
often within those constraints as the response is capable of freeing a higher number of
entities. An increasing coverage factor has the highest impact on performance within the
evaluation. The time consumption of both heuristics is growing rapidly, but linear with
an increasing coverage factor. From the measurements the behavior of GLPK is unclear
as the time consumption goes up and down without clear trend. CPLEX has one outlier
with a coverage factor of 25. The rest of the measurements show a rising tendency.
Nevertheless, CPLEX performance beats both heuristics and shows that the presented
approach is usable even with complex network environments.

6.5.4 Solution Quality

Besides performance with respect to execution time, another important aspect to consider
is the quality of solutions provided by MILP in comparison to solutions of heuristic solvers.
While the solution provided by MILP solvers is optimal within the given objective function,
the quality of a heuristic need not be optimal in any way. We therefore compare the
provenly optimal solutions provided by the MILP approach and the solutions provided
by the Greedy Coverage-First and the Greedy Cheapest-First heuristic for all scenarios
used for the performance analysis. In Figure 6.6a the number of responses is increased,
in Figure 6.6b the number of entities, in Figure 6.6c the number of conflicts between
responses and in Figure 6.6d the coverage factor of a response is increased.

In the following, we point out the potential cost benefits in case an optimizer instead
of the Cheapest-First heuristic is used. The Coverage-First metric has worse results in all
scenarios than the Cheapest-first metric.

In case the number of responses increases, the average cost saving potential is nearly
33%. At minimum 17.6% costs can be saved, at maximum around 39% are possible.

6.5. Evaluation 113

1,000 2,000 3,000 4,000 5,000

20

40

60

80

100

120

Number of Responses

C
os
ts

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(a) Varying Number of Responses

200 400 600 800 1,000

0

20

40

60

80

100

120

Number of Entities

C
os
ts

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(b) Varying Number of Entities

0 100 200 300 400 500

10

20

30

40

50

60

70

80

90

Number of Conflicts

C
os
ts

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(c) Varying Number of Conflicts

0 10 20 30 40 50

0

20

40

60

80

100

Coverage Factor

C
os
ts

CPLEX Solver GLPK Solver
Greedy Coverage Greedy Cost

(d) Varying Coverage Factor

Fig. 6.6: Cost Evaluation with Increasing Problem Complexity in One of the Following Dimensions:
Number of Responses, Entities, Conflicts, or Coverage Factor

114 6. Response Selection

The percentaged cost saving possibilities slightly decrease during the scenario.
In case the number of entities increases, the average cost saving potential is around

36% and lies between 15% at minimum and 54% at maximum. The percentaged cost
saving potential increases slightly with an increasing number of entities.

In case the number of conflicts increases, the cost saving potential stays nearly con-
stant at around 38%. Within the datasets the optimal solution was rarely impacted with
additional conflicts, but the problem complexity was increased.

In case the coverage factor increases, the percentaged cost saving potential increases
slightly. The first measurement shows, that all approaches find the optimal solution in
case one response can free only one entity. With an increasing coverage factor the cost
calculated drift apart. At minimum a 27%, at maximum 53%, and in average 37% cost
can be saved by using an optimizer.

In summary an average cost saving of 36% is possible for all tested scenarios. The
smallest potential saving is around 15%, which is still a notable amount. The minimum,
maximum and average costs savings of the optimized solution compared to the Cheapest-
First metric is summarized in Table 6.9.

Tab. 6.9: Minimum (min), Maximum (max) and Average (avg) Cost Saving between Optimized
Solution and Cheapest-First Metric in %

Scenario avg max min

Increasing Number of Responses 33.23 38.88 17.56

Increasing Number of Entities 36.25 54.08 15.15

Increasing Number of Conflicts 37.74 37.89 37.65

Increasing Coverage Factor 37.25 52.75 27.45

6.6 Related Work

Response selection is an essential part in the field of IRSes. Different surveys on IRSes
[4, 50, 130] show the evolution IRSes went through with respect to response selection
strategies. Earlier IRSes started with static mappings that connect an alert to a prede-
fined response. Approaches, using static mappings, are examined in more detail in Subsec-
tion 6.6.1. As static mappings are most often based on simple tables, are not a sufficient
solution for complex networks, and cannot cope with environmental changes [151], IRSes
became more flexible using more dynamic response selection strategies.

Later on, cost-sensitive mappings [93] were introduced that use both estimated dam-
age and intrusion costs and try to balance them against each other to find a good solution.
This cost-sensitive approach was improved over time to become more precise in terms of
estimating response costs and damages [145, 146]. Based on these approaches a schema
to estimate potential damage and costs in distributed systems was proposed [167]. In
Subsections 6.6.2 and 6.6.3 those approaches are examined in more detail. Approaches
presented in Subsection 6.6.3 combine cost-sensitive approaches with additional methods,
like graphs or game-theory.

Some other approaches based for example on attack trees or different probabilities
and approaches for particular domains are examined in more detail in Subsection 6.6.4.

However, these approaches lack in finding an optimal solution employing a holistic
approach to counteract the whole security incident. Neither the possibility that a single

6.6. Related Work 115

response can cover more than one network entity nor conflicting responses are respected
by the work described before. A more detailed comparison of the presented approaches
against the requirements given in Subsection 6.2.1 is given in Subsection 6.6.5.

6.6.1 Policy-Based Selection

In [29] the response selection is done via policies specified in Organization Based Access
Control (OrBAC). The systems determines on which components to react and how to
react as well as the granularity of the reaction. The security policy is inferred from the
ontology using rules written in the Semantic Web Rule Language (SWRL) and determine
the action to take in case of an intrusion. The focus of the attack is determined using
the mapping from the Intrusion Detection Message Exchange Format (IDMEF) alert field
source into the specified role attacker.

In [76] a policy following the Event Condition Action (ECA) scheme is used to imple-
ment the policy that select a response. Each rule can be expressed as follows:

Listings 6.1: Event Condition Action (ECA) Rules to Implement Policies

1 On <Event>
2 IF <Condition>
3 THEN <Action>
4 CONFIRM <Confirmation Action>
5 ON SUCCESS <Resolution Action>
6 ON FAILURE <Error−Handling Action>

Policies can be activated, dropped or suspended during lifetime. The policy is claimed
to be protected against several attack, like malicious policy updates or malicious policy
deletion. The Response Action is selected using the Most-Serve-Policy or Least-Serve-
Policy Principle depending on the severity level.

In [124] a set of different policies is introduced to cope with different aspects of
the intrusion detection and intrusion response process. This includes Detection Control
Policies, Core Response Policies, Boundary Control Policies, Vulnerability Policies as well
as Vulnerability Scanning Policies.

In [24] a hybrid framework for data loss prevention and detection is proposed. The
main idea is to identify anomalous behavior of users. In case a transaction is identified as
anomalous the transaction is blocked, otherwise the transaction is accepted. In case no
decision can be made, the transaction is allowed but a warning is generated.

In [86] case-based reasoning is used to identify similar security incident and apply
the same rule set to those identified security incidents. They mainly adapt the firewall
configuration to block IPs with similar misbehavior as previously identified ones.

6.6.2 Basic Cost-Sensitive Approaches

The most cost-sensitive approaches have in common that an action is selected only if the
costs of the response are lower or equal the damage costs. Additionally, most of them
include the confidence level of the intrusion, so that in fact the costs of the response do
not overshadow the benefits. The main idea of the following approaches, is to select one
single response with the lowest cost. To determine the lowest costs, different aspects are
taken into account.

The response selection in [57] is done in the Countermeasure Evaluation step. They
use their metric called RORI (Return on Response Investment) described earlier in Sec-
tion 6.1. In this step, the RORI for the first response on the list is calculated and

116 6. Response Selection

compared to a default RORI, set to zero. If the calculated RORI is higher than this
default value, the response is used instead of the default value. In case of equality the the
one with the lowest ARC (Anual Response Costs) value is selected. In case the calcu-
lated value is lower than the default value, the response is neglected. Using this scheme
the complete list of available responses is tested for selection. The authors themselves
claimed that interdependencies of responses are not considered as limitation. Moreover,
only one response can be selected and the use of multiple responses is not possible.

In [141] the authors determine the optimal response from a set of responses by applying
the following strategy: First, all possible responses are selected by choosing all responses
having costs below the expected damage multiplied with the confidence level of the attack.
From those candidate responses an optimal response has to be chosen. An optimal
response should provide the maximum benefit (high Success Factor) at the lowest risk
(low Risk Factor). They calculate the expected value of a response using the success
and risk factor and select the response with the highest expected value. The approach in
[141] is adaptive in terms of the success factor that is increased in case of a successful
execution but lacks in selecting multiple responses for a distributed security incident. A
similar approach is presented in [147]. The response costs are assessed using the Response
Goodness and the impact of the response on the system. Likewise, simply the cheapest
one is chosen. In [145, 146] a similar approach is presented. The main contribution of
those two works is the improvement of the cost calculation for response costs and the
costs of the security incident.

[151] presents an approach using dependency trees to model network configurations
and a cost model to estimate the effects of responses. A response action is defined as
a set of response items. Response actions can be assessed with an impact evaluation
function and already executed response actions are combined in a response configuration.
Responses are assessed using a penalty function describing the negative impact on the
system a response has during its execution, e.g. downtime of services. Each time a
response has to be selected, all available responses are added to the response configuration
and the resulting impact is calculated. The response action with the lowest negative
impact stays in the response configuration. This allows to reach a local optimum, but not
a global optimum for sure.

In [8] a response agent, called ARB (Automated Response Broker) is introduced. For
response selection they model their target system using a resource type hierarchy and a
system map. The hierarchy structures available system resources and possible responses
executable on those resources. The map reflects dependencies between resources using
a directed graph. Each node in the graph reflects an important system resources and
stores possible responses gained from the hierarchy. Additionally, an activation condition
(list of applicable attacks) and side-effects on other resources are stored. The costs of
a node are partially assigned by the system administrator and reflect the importance of
the resources. Missing node costs are calculated based on the dependencies. The attack
costs are the sum of all costs of the affected nodes, the response benefit are the sum of
costs a response frees, and the response costs, are the sum of costs a response effects
because of side effects. For the selection criterion they chose the Minimax risk criterion.
Additionally, they propose strategies to calculate the costs in case of uncertainty, what an
attacker really did.

In [110] the positive and negative effects of a response are combined to calculate the
effectiveness of a response. The response with the highest effectiveness is chosen. In
case two equal responses are available, an arbitrary one of both is selected.

6.6. Related Work 117

6.6.3 Advanced Cost-Sensitive Approaches

The approaches presented in the following go beyond traditional cost-sensitive approaches.
They do not simply calculate the possible damage of the security incident and the cost
of a single response and chose the cheapest one, but try to model the response selection
strategy in a more complex manner.

In [83, 84] the costs of a response are calculated using a dependency graph. The im-
pact of an attack and a response are compared to choose the best response. The decision
whether a response is in the set of candidate responses is passed to the IRS system when
an attack is detected. The attack impact IVr is evaluated using the Common Vulnerability
Scoring System (CVSS). The investigates the benefits of all candidate responses in case
they would be applied. They support only two classes of responses: component deactiva-
tion, hereby the target resource is made unavailable, and dependency alteration, hereby
only the dependency is made unavailable but not all children of the targeted resource.

In [79] the response with the highest negative effect on the success probability of an
attack is used. First, candidate responses are selected by the use of an anti-correlation
between a response C and an attack A. A response is assumed to be effective against
an attack in case the postcondition of C matches the precondition negation of attack A.
This is modeled with LAMBDA. In the next step all candidate responses are are simulated
and the effect of the success likelihood is determined.

In [181] the so-called Response and Recovery Engine (RRE) implements a game-
theoretic approach for response selection using a multi-step, sequential, hierarchical, non-
zero-sum, two-player stochastic game. An attack-response tree (ART) is used to deter-
mine a security incident and select a response based on Boolean logic. For each step in
the game, a new ART is generated and converted into a Partially Observable Compet-
itive Markov Decision Process (POCMDP). The optimal response is chosen by solving
a POCMDP computed from the ART such that the maximum damage an attacker can
gain in the future is minimized. The proposed approach can be used locally or on a global
basis using global ARTs. As traditional attack trees, ARTs can grow very quickly in huge
and complex networks. Additionally, the knowledge to build up an appropriate ART has
to be provided by experts or system administrators.

In [177] response selection is modeled as Partially Observable Markov Decision Pro-
cess (POMDP) that tries to maximize the reward calculated from the cost and benefit
function. They mainly focus on the uncertainty during intrusion detection. Therefore,
they consider the following cases to be happen during intrusion detection: correct de-
tection, false positive, false negative, normal operation and wrong diagnosis. For those
given cases different costs arise: maintenance costs, failure costs and penalty costs. They
model their system using different observable system states with assigned security prop-
erties. Possible actions including the rewards and transition probabilities are needed for
the proposed model. The goal is then to maximize the reward for an optimal decision
process. The authors admit, that that the accuracy of the model relies on the given expert
knowledge. In addition to this approach, the authors of [174] extend the strategy using
POMDP (AIR_POMDP, POMDP for Automated Intrusion Response). Instead of using
only attack related information as proposed in [177], the system state during runtime
is included to select a more appropriate response policy [174]. This work was further
enhanced in [175], where Hiddem Markov Models (HMM) are used to extend the given
POMDP model to circumvent false responses generated due to false negatives of the IDS.

In [129] the Orcef framework is introduced. They map each incoming alert to an attack
graph and examine possible security defense points. Available responses on those security
defense points are considered as candidate responses. For theses candidate responses

118 6. Response Selection

the response costs are determined. They use fuzzy techniques to calculate the response
cost matrix, to include a set of metrics describing the response costs. They determine
the Pareto-optimal set from the candidate responses to find a tradeoff between positive
and negative effects of a response. Within this proposed selection mechanism, only a
single response can be selected. A combination of responses to counteract the whole
security incident is not possible. Additionally, relations between responses, like conflicts
and preconditions, cannot be reflected.

6.6.4 Other Approaches

Pre- or Post-Processing-based Approaches Within this category of related work, com-
plete response plans are provided instead of selecting a single response. Those approaches
rely on either pre-calculating possible response plans or on iterating over generated re-
sponse plans afterwards.

The work done in [57] is improved by considering a complete response plan [55, 58].
They calculate the RORI of each available response plan and select the most appropriate
one. The drawback of their work is, that all response plans have to be considered has to
be available to the system. That means they have to be calculated in advance.

Kinesis [148] is a security incident response and prevention system for wireless sensor
networks. They combine a policy-based system using ECA rules with a cost-sensitive
approach. First possible responses are examined using the policy definition. In case
of multiple candidate responses, the most cost effective one is chosen. The costs of
a response are calculated based upon the Confidence Index and the Impact Index. In
case multiple alerts are raised, the union of the selected responses is used. In order to
consider dependencies between responses, an Action Precedence Graph (APG) is utilized.
Conflicting actions as well as equivalent actions can be erased. The disadvantage of this
approach is that the dependencies between responses are considered after the generation
of the response set. This procedure does not allow to benefit from synergy effects, in
case a single response covers multiple incidents, but is more costly, than another one.
Additionally, in case a response is excluded from the response set, a new one has to be
found afterwards.

To improve the scope of decision making to more than one goal, timing aspects bet-
ween selected responses were considered by [104]. Therefore, they propose the Intrusion
Detection Alert management and Intrusion Response System (IDAM& IRS) that selects
appropriate responses based on Hierarchical Task Network Planning (HTN). The adminis-
trator has to specify a certain response goal, meaning the goal of the automated intrusion
response. Possible goals are for example, analyze the attack, maximize data integrity, or
minimize costs. Additionally, the goal task needed for the HTN planner, consists of the
intrusion scenario, a response strategy and response key points. Each response goal has
a specific response strategy. Additionally, they define possible response key points, also
called subtasks, like notification, record intrusion, or backup. All defined subtasks are very
high-level and generic. For each response strategy, the subtasks have to be determined.
This process is not further specified, but it seems that this linking has to be done man-
ually. The main goal of the proposed approach is to determine the point in time for the
execution of the responses automatically.

Decisions for Automation or Manual Intervention This category of related work fo-
cuses on deciding whether or not a security incident is handled automatically or manually
by an administrator, rather than selecting responses for automated intrusion response.

6.6. Related Work 119

In [12] the Automatic or Administrator Response (AOAR) algorithm is presented.
Response selection is defined as a resource allocation problem. The interaction between an
IRS and the attacker is modeled as a non-cooperative non-zero sum game. The proposed
system decides whether or not, an alert describing a detected attack is forwarded to the
administrator or not. If the alert is not forwarded to the administrator, the alert is handled
by the automated IRS. They take the cost of the security incident into account, as well
as the costs of possible responses. Additionally, they cope with the uncertainty of IDSes
during the detection of a security incident. The proposed approach only covers the decision
whether or not a security incident is handled automatically or by the administrator.

In [172] a queuing theoretic approach is presented to determine costs of active and
passive responses. They take the IDS capability into account to either be strict or loose
within the decisions to raise an alert. They assume that costs appear during the ongoing
security incident. They propose a model how to calculate the costs of active and passive
responses. Details are given in Section 6.1. They discovered under which conditions an
active response should be preferred over a passive response. Therefore, they take the
IDS configuration into account and consider false positive and false negative alerts. They
neither consider a set of possible responses having dependencies with each other nor an
attack consisting of multiple sub-attacks to be covered.

Domain Specific Approaches Approaches for particular domains or to antagonize spe-
cific attacks were presented: [76] considers requirements of relational database systems;
Routegard [61] focuses on mobile ad-hoc networks and [164] introduces cost-sensitive
response selection for this domain; [144] focuses on counteracting DOS attacks.

6.6.5 Summary, Comparison and Conclusion

The response selection strategies described in Subsections 6.6.2, 6.6.3 and 6.6.4 are
compared against the requirements stated in Subsection 6.2.1. The related work stated
in Subsection 6.6.1 is not included as the Requirement R1 requires the response selection
to be cost-sensitive. The overview of the comparison is given in Table 6.10.

The related work within the field of response selection can be categorized as follows:

• Rule-based approaches (static mappings or ECA rules) [24, 29, 76, 86, 124]

• Cost-sensitive approaches [8, 57, 79, 83, 84, 110, 129, 141, 145, 146, 147, 151]

• Pre- or post-processing-based approaches [55, 58, 148]

• Decide whether or not to respond in an automated manner [12, 172]

Rule-based approaches simply map a single attack classification to a single response.
Basic cost-sensitive approaches try to find the most effective response for a single attack
classification. More advanced cost-sensitive approaches go beyond the basic selection
strategies by combining them with other methods, like graphs or game-theory but they
do not overcome the issue that only a single response is selected. Those classes do not
consider a holistic response plan for multiple security incident. Pre- or post-processing-
based approaches evaluate existing response plans or try to find a suitable response plan
by iterating over the response plan multiple times. In case a huge number of entities in
the network or a huge number of responses, predetermining response plans is not suitable.
Instead of recalculating a non-working response plan, e.g. in case of conflicts, the proposed
approach uses all available knowledge in advance to directly calculating the response plan.

120 6. Response Selection

The last category does not provide responses, but only the decision whether or not an
automated response should be executed.

Tab. 6.10: Comparison of Related Work Based on the Requirements Stated in Subsection 6.2.1

Approach R
1
–

C
os
t-
se
ns
it
iv
e

R
2
–

C
om

pr
eh
en
si
ve

V
ie
w

R
3
–

C
on

fli
ct
-f
re
e

R
F4

–
P
re
pa
ra
ti
on

A
ct
io
ns

R
5
–

Sy
ne
rg
y
E
ff
ec
t

R
F6

–
Fl
ex
ib
le

A
ss
es
sm

en
t

RORI-based [24, 57, 58] 3 7 7 7 7 7

Cost Balancing [141, 147] 3 7 7 7 7 7

Response Configuration [151] 3 3 7 7 7 3

ARB [8] 3 3 7 7 7 7

REASSESS [110] 3 7 7 7 7 7

Dependency Graph [83, 84] 3 7 7 7 7 3

Pre-Conditions [79] 3 7 7 7 7 3

RRE [181] 3 7 7 7 7 3

POMDP [174, 175, 177] 3 7 7 7 7 3

Orcef [129] 3 7 7 7 7 7

Kinesis [148] 3 7 3 7 7 3

IDAM& IRS [104] 7 7 3 3 7 7

Resource Allocation Problem [12] 3 7 7 7 7 3

Queuing Theory[172] 3 7 7 7 7 3

Summing up the related work, we can come to the conclusion that most response
selection strategies only select a single response for a security incident instead of providing
a holistic and structured response plan. Solutions that provide such response plans rely
on pre- or post-processing that is not suitable for a huge number of entities within the
network or a huge number of possible responses.

6.7 Publication Reference

Parts of the content of this chapter are already published on FPS (The 9th International
Symposium on Foundations & Practice of Security) 2016 (cf. [63]). The own contribution
was to provide the underlying set-based model and the basic idea of using LP as selection
mechanism and the implementation as well as the execution of the evaluation and the
corresponding framework. The implementation of the used heuristics and the linkage to
the CPLEX solver are also part of the own contribution. Using pre- and postconditions,
introducing weights as well as embedding the response selection mechanisms into the
overall IHS are not part of the publication.

7. RESPONSE EXECUTION AND PREPARATION

Response execution and preparation describes the task of combining the selected responses
to a response plan that is deployed and executed on the target system afterwards. This
includes the following subtasks:

• Identify executing entities.

• Identify preliminary conditions for each response to be executed.

• Identify the correct order of responses and their preparation actions to be executed.

• Deploy needed responses to appropriate executing entities if needed.

• Execute selected responses and their preparation actions using the generated re-
sponse plan on the target system.

• Ensure that the entire response plan is executed correctly.

In the following the GNUnet Parallel Largescale Management Tool (GPLMT) [162]
is presented as the execution framework to deploy and execute responses on the target
system. The identified requirements for response execution as well as the proposed system
design are examined in Section 7.1. As a major part the design, the response plan definition
language is explained in more detail in Section 7.2. This includes the description of the
language’s elements and the automated generation of response plans build upon this
language definition. The implementation of GPLMT is described in Section 7.3 and gives
a detailed insight into the realization of GPLMT. Within our evaluation in Section 7.4,
we compare our approach to the requirements stated in Subsection 7.1.1. The related
work is examined and compared against the requirements in Section 7.5. As this chapter
is mainly based on GPLMT that is already published (cf. [162]), a publication reference
stating the own contribution is given in Section 7.6.

7.1 Analysis and System Design

Within this section the requirements for response execution are described in Subsec-
tion 7.1.1. Those requirements reflect the needed features of this module and the struc-
ture of the response plan. In Subsection 7.1.2 the system design following the previously
identified requirements is examined.

7.1.1 Requirements

In order to fulfill the subtasks of response execution the following requirements have to
be fulfilled. Additionally, those requirements arise from Requirement RF7 and Require-
ment RF8 of the overall system such that the overall Incident Handling System (IHS) is
retroactive as recommended in [130]. In case a requirement was specified in literature,
this is stated in the description of the requirement.

122 7. Response Execution and Preparation

Requirement R1 – Sequential Execution: The sequential execution of responses
has to be supported (cf. [130]). As some responses may have preconditions, reflected
as additional actions to be taken, the definition of the execution order of determined
responses and their preconditions is essential. Part of this requirement is to keep all
required steps in the response plan synchronized.

Requirement R2 – Parallel Execution: The parallel execution of responses has to
be supported (cf. [130]). As responding to a detected security incident is time critical,
responses should be parallelized as much as possible. Executing suitable responses in
parallel can save time and further damage is prevented as the attack is stopped earlier.

Requirement R3 – Error Handling : Reacting to failure situations during the execu-
tion of the response plan is essential. In case the target system falls into an inconsistent
or insecure state, some options have to be available to return the target system into a
safe state. This means that after detecting a failure during the execution of the response
plan fall-back and cleanup actions need to be triggered.

Requirement R4 – Modularity: Responses and executing entities have to be spec-
ified independently in order to ensure reusability of responses and to separate response
definition from the underlying infrastructure definition. Both have to be combinable in a
simplistic manner in order to ensure confirmability. This requirement is tightly coupled
with an adequate addressing scheme suggested by [87] such that executing entities are
well defined and controllable.

Requirement R5 – Flexible Parameterization: To ensure reusablility and flexibility
within the response description, responses needs to be parameterizable in a flexible manner.
This is also recommended by the authors in [87].

Requirement R6 – Flexible Deployment: In order to execute responses, the ap-
propriate implementation has to be available on the executing entity. This can be done
in advance by deploying all responses to all available entities. Consequently, changing a
response implementation will result in redeploying the changed response on all entities
leading to a high management effort. Therefore, a flexible way of deploying responses
on-demand is needed. An automated deployment is recommended in [110].

7.1.2 System Design

The designed architecture of GPLMT is shown in Figure 7.1. The main parts of this
architecture are the central controller and the maintained data, namely targets, tasklists,
and plans. Both are described in the following.

GPLMT is designed as a stand-alone tool running on the so-called GPLMT controller.
The central GPLMT controller is responsible for orchestrating the whole execution of the
response plan, i.e. scheduling responses, so-called tasks, on the executing entity of the
target system. Executing entities are called nodes in the following. GPLMT manages
a connection from the controller to each single node. GPLMT does not require any
original services on the nodes, but relies on a communication channel available during the
execution of the response plan like Secure Shell (SSH) and possibly other protocols in the
future, to connect to the node and control the execution of the response plan.

A response plan is given in GPLMT’s own high-level description language that is based
on the Extensible Markup Language (XML) (see Section 7.2). This response
plan description has to be generated based on previously selected responses such that it can
be passed to the GPLMT controller. To generate the response plans, the executing entities
have to be specified as targets and responses have to be specified as tasklists. Separating
this information has the advantage that responses can be defined independently from the

7.1. Analysis and System Design 123

Target System

GPMLT
Controller

Plans

Tasklists

Targets

Expert

Fig. 7.1: GPLMT’s Architecture – Overview

node and the underlying target system they are executed on (cf. Requirement R4). Both,
the response and target definition, has to be done by the system administrator having
knowledge about the target system. As the implementation of a response is centrally
stored on the GPLMT controller as tasklist, changing and adding responses can be done
with low management effort and allows flexible deployment (cf. Requirement R6). Build
upon this information the response plan for a concrete security incident can be generated
and executed afterwards.

First, the response implementations, given as tasklists, can be deployed to the execut-
ing nodes (targets). Afterwards, the controller schedules blockwhise parallel tasks until
a synchronization barrier appears within the description that force the execution to wait
until previous tasks are finished. After overcoming this barrier subsequent parallel tasks
can be executed. Such a block of tasklists is called execution block.

Within the description teardowns can be specified that are scheduled after the whole
response plan is finished. Those teardowns can be used for clean-up or reporting tasks.
A teardown definition can be done within an arbitrary location of an execution block, as
those tasks are appended to the scheduler at first place. The response plan is finished
when all execution blocks are executed and all teardowns are finished.

In large infrastructures with many nodes, GPLMT will open a large number of con-
nections. SSH in particularly is resource-intense. The SSH connection setup is compu-
tationally expensive due to cryptography and may overload a low-powered controller or
the physical server hosting a lot of Virtual Machines (VM). A high rate of connection
attempts may stress Intrusion Detection Systems (IDS), and may trigger IDS alerts for
alleged SSH scanning.

GPLMT offers two solutions to limit its resource usage: connection re-use and rate
limiting of connection attempts. GPLMT will tunnel all commands to the same node
through a single control connection, but will still try to reconnect when the connection is
lost. GPLMT optionally delays connection attempts, including reconnects, to not exceed a
configurable number of attempts per interval. This resource limitation option is especially
useful, if the target system is under attack and resources are already working to capacity.

124 7. Response Execution and Preparation

7.2 Response Plan Description Language

The response plan in GPLMT is given as XML compound of three main parts.

Targets define the executing entity (see Subsection 7.2.1).

Tasklists define the response to be executed (see Subsection 7.2.2).

Steps define the response plan combining targets and tasks in the correct control flow
(see Subsection 7.2.3).

The remaining XML description is given in Listing 7.1. The specified elements, namely
targets (Line 4), tasklists (Line 5), and steps (Line 6), are mandatory for each response
plan specification. The targets and tasklists can be included (see Line 3) into the response
plan and have not to be defined for each response plan. Therefore, the definition of the
file and the prefix is mandatory. Within the steps definition, included targets and tasklists
can be accessed using the prefix and the name of the appropriate object.

Listings 7.1: Basic Structure of the Response Plan with GPLMT

1 <?xml version="1.0" encoding="utf-8" ?>
2 <experiment>
3 <include file="..." prefix="..." />
4 <targets> ... </targets>
5 <tasklists> ... </tasklists>
6 <steps> ... </steps>
7 </experiment>

7.2.1 Targets

A target element names a member node, and specifies how to access the node using
node specific configurations. The target defines the executing entity of a response and
can be derived from the infrastructure information of the target system. This may be
the victim of an attack, in case a self-healing response is executed, a network element
responsible for different network operations like a router capable of executing network-wide
responses, or a dedicated execution element within the target system.

The following types of targets are currently supported:

local specifies executions on the GPLMT controller itself.

ssh states, that the nodes can be accessed using SSH. The child elements username
and password may provide credentials. Authentication is ensured through pre-
distributed public keys without pass phrase.

planetlab specifies a PlanetLab node and accepts the PlanetLab-API-URL, the
slice, and the user name as attributes. This supports experimentation setups,
GPLMT can be used for, additionally.

group specifies a nested target definition, creating a set of nodes (and other groups)
addressable as a single target. This ensures a higher reusability of target definitions.

To support parameterization per target, each target definition can contain multiple
export-env elements, which declare an environment variable to be exported. The value

7.2. Response Plan Description Language 125

of this variable is then available to all tasklists executed on the target. In case a response
needs parameters those can be made available to the executing entity using the export
functionality. A typical example of parameters used for responses may be IP-addresses or
host names. This kind of parameterization is equivalent to a global variable that can not
change during the execution of the response plan. Local variables have to be specified
within the steps definition (see Subsection 7.2.3).

In Listing 7.2 an example for the local target (Line 3), an ssh target (Line 6) and a
group target (Line 10) is given. The local target utilizes the export-env functionality
to set the global variable var to the value value-of-var for the whole execution of
the response plan. The ssh target does not require a password definition, as long as
corresponding keys are deployed on the node. Using the group target can be done by
referencing already existing targets, as shown in the example. Alternatively, the group
definition can contain the specification of new targets that can also be referenced in later
group definitions or includes.

Listings 7.2: Example for Local, SSH and Group Target.

1 ...
2 <targets>
3 <target name="my-local-node" type="local">
4 <export-env var="value-of-var" />
5 </target>
6 <target name="my-ssh-node" type="ssh">
7 <user>exampleuser</user>
8 <host>node1.example.com</host>
9 </target>

10 <target name="my-group-node" type="group">
11 <target ref="my-local" type="local" />
12 <target ref="my-ssh-node" />
13 <target name="second-ssh-node" type="ssh">
14 <user>my-user</user>
15 <host>node2.example.com</host>
16 </target>
17 </target>
18 </targets>
19 ...

7.2.2 Tasklists

The tasklist element binds a list of tasks to a name. The tasklist element is
used to represent the concrete response implementation that can be used. For example,
a response to block certain ports may have different implementations with respect to the
underlying operating system, e.g. different tasklists for blocking ports with OpenVSwitch
or IP-tables may exists, or depending on the execution target, e.g. shutting down a service
will also result in a blocked port.

A task element contains one or more of the following predefined commands:

get and put are used to exchange files between the GPLMT controller and the targets.
Those elements are used for the deployment of responses as needed implementa-
tions can be transferred from the controller maintaining the tasklists representing

126 7. Response Execution and Preparation

responses to the executing entities. Additionally, they can be used to collect moni-
toring results from the nodes.

run accepts an arbitrary command to be executed. The commands to be executed
have to match the underlying platform they are executed on. When a target de-
fines additional environment variables, those are passed to the command using the
export-env element.

par and seq elements contain nested lists of tasks. seq will run those tasks in sequence,
whereas par will immediately start all tasks in parallel. This allows a fine-grained
definition of the execution control flow of the response plan and the responses itself.
The first sub-element of a tasklist has to be either par or seq.

call is used to reference a tasklist to be executed. A tasklist can be predefined in the
tasklist section of the current response plan or is included using a separate file. This
allows to better re-use existing tasklists and prevents duplicate code.

The tasklist element accepts the optional attributes cleanup, timeout, and
error, controlling the tasklist’s behavior in case of an error condition. cleanup refer-
ences another tasklist to be executed after the current tasklist, even if the current tasklist
aborts due to an error. This can be used to kill zombie processes and delete temporary
files or to save intermediate results. timeout specifies the maximum amount of time
the tasklist is allowed to execute before it is aborted. This guarantees progress in case a
command loops infinitely or dead-locks. on-error determines how GPLMT continues
when a task fails. The following failure modes are available:

abort-tasklist aborts the current tasklist and continues with the tasklist specified
by the surrounding context or the next tasklist that is scheduled.

abort-step aborts the current step and continues with the next step. Steps are ex-
plained in Subsection 7.2.3.

panic aborts the whole execution of the response plan.

Those failure modes allow to react on errors occurring due to the runtime of a response
plan. As the error correction depends on a concrete implementation of a response those
mechanisms are realized within the tasklist definition.

The parameterization of a single tasklist is done by setting appropriate environment
variables on the executing entity. This can be done in different ways.

• Global variables can be set by using the export-env element within the target
element (see Subsection 7.2.1) and are available during the whole execution of the
response plan.

• Local variables can be set by using the export-env element within the step
or repeat element (see Subsection 7.2.3) and are available for the step they are
defined for. Local variables overwrite global variables.

This allows a flexible parameterization of all taskslist representing a dedicated response
to be executed and fulfills Requirement R5.

In Listing 7.3 an example tasklist is given. Each tasklist definition has to start either
with the par or seq definition to explicitly define whether the execution is parallel or
sequential. First, the script executing the response is loaded to the target (see Line 5).

7.2. Response Plan Description Language 127

Afterwards, the script is executed on the target using the run command (Line 9). Instead
of writing a script executing the response, a tasklist can be used in case the response can
be implemented with available system commands utilized by the run command.

Listings 7.3: Example Tasklist Utilizing put and run Commands.

1 ...
2 <tasklists>
3 <tasklist name="my-tasklist1">
4 <seq>
5 <put>
6 <source>my-response-file.sh</source>
7 <destination>response/my-response-file.sh←↩

</destination>
8 </put>
9 <run>.response/my-response-file.sh</run>

10 </seq>
11 <tasklist>
12 </tasklists>
13 ...

For each response available to the system a tasklist has to be specified that can be
executed on an appropriate target. As tasklists and targets are specified independently, and
needed scripts or files can be transferred to the target, a tasklist has not to be adapted
to every single target, but can be executed on every suitable target the controller can
connect to and has the appropriate access permissions. This allows an easy deployment
and execution of responses across the network without preparing each single network
entity and equip them with different response implementations that may are needed in the
future. Code needed to execute a certain response can be updated and modified on the
GPLMT controller and can then be distributed to the target executing a certain response
on demand.

7.2.3 Steps

The language requires exactly one steps element. It may contain multiple step, syn-
chronize, register-teardown, and repeat elements.

The step element determines which tasklists run on which target. A start time
and a stop time element can be added to schedule a task for later execution. Times
are either relative to the start of the execution of the whole response plan or absolute
wall clock times, allowing to defer a step until night-time when resources are available.
Thus, step elements form the basic building block for orchestrating the response plan.
Additionally, a step element can contain the export-env element as defined for targets.
This is used to define local variables for each step.

Consecutive step elements run in parallel. A synchronize element represents a
synchronization barrier and execution can only continue after currently running steps are
finished. The synchronize element can further be specified by targets to wait for.

The register-teardown element references a tasklist by name that is executed
when steps finishes. This tasklist is always executed, even if errors lead to the abortion
of the response plan. The registered tasklist is intended to contain cleanup tasks and
to transfer logging or monitoring data to the controller. The teardown only needs to be
registered within the same execution block the step that allocates the corresponding
resources is issued.

128 7. Response Execution and Preparation

GPLMT’s response plan definition language offers basic loops within the steps el-
ement: The repeat element loops over the enclosed steps until one of the following
conditions is satisfied:

• A given number of iterations (iterations) are executed.

• A given amount of time has passed (during).

• A given point in time has passed (until).

• A given list of environment variables (listing) is iterated.

These are deliberately simple conditions that only allow for decidable loops, so it can
be easily verified by manual inspection (or programmatically) whether a loop terminates.
The loops do not implicitly wait after the first round of execution. This means, all steps
in the loop are executed in parallel if no synchronize element is used at the end of the
loop or directly after the step definition. Using a synchronize element at the end
of the loop will enforce that a new round in the loop is started after all steps within the
execution block before the synchronization are finished. This allows a higher flexibility in
generating different kind of loops and a more flexible control flow.

In Listing 7.4 an example definition for steps is given. The tasklists to be executed
can be bound to a single target (see Line 3) or to multiple targets (see Line 7). In
the first execution block from the start of the response plan to the first synchronize
command a teardown is registered in Line 5. This teardown is executed at the end of
the response plan and can be used for clean up actions needed for the whole response plan.
The synchronize command can be used as barrier for all targets included in the response
plan as shown in Line 8 or for a subset of targets (see Line 6). The first synchronize
command forces the system to wait until node1 has finished its execution, but node2
is not influenced. That means the execution of node2 may not be finished when the
second execution block is entered.

Listings 7.4: Example Steps Definition Utilizing synchronize and teardown Commands.

1 ...
2 <steps>
3 <step tasklist="tasklist1" targets="node1" />
4 <step tasklist="tasklist2" targets="node2" />
5 <register-teardown tasklist="teardown-tasklist1"←↩

targets="node1" />
6 <synchronize targets="node1" />
7 <step tasklist="tasklist3" targets="node1 node2" />
8 <synchronize />
9 <step tasklist="tasklist4" targets="node3" />
10 </steps>
11 ...

As the target and tasklist definition has to be provided in advance to the system and
is decoupled from the beg control flow, the steps definition is the only part that has to
be generated on demand per security incident. Details about the automated generation
of the response plan is given in Subsection 7.2.4.

7.2. Response Plan Description Language 129

7.2.4 Automated Generation of Response Plans

In order to provide automated intrusion response a response plan adjusted to the security
incident to handle the security incident is needed. The building blocks are the targets,
the response has to be executed on, and the tasklist, describing the response itself.
Using this information an appropriate response plan can be generated that ensures the
correct sequence of execution with respect to preconditions of a response.

To generate a response plan the following two steps are required:

1. Evaluate the correct sequence of execution based on precondition relations (see
Algorithm 3) by extracting the needed information from the underlying blackboard.

2. Use the previously generated dependency graph to generate the steps definition
(see Algorithm 4) and produce a valid GPLMT description.

The correct execution order is determined in Algorithm 3 and a dependency graph is
generated. Each vertex within the dependency graph has an ID reflecting the identifier
of the tasklist to be executed. Each tasklist is identified by its name. Additionally, a
vertex has an Executor property reflecting the identifier of the executing entity. The
executing entity is identified by the name of the target. The preconditions of each tasklist,
representing a response, are stored on the underlying blackboard and are reflected by the
responseispreconditionofresponse relation between responses. This informa-
tion is extracted and an internal dependency graph is generated for further processing.

Algorithm 3 Generate Dependency Graph

1: global G . graph of responses
2: procedure getPreconditionsOfElem(id, v)
3: preconditions ← getImplementationPreconditionsWithExecutor(id) . returns a

list of IDs and executors
4: for all precondition in preconditions do
5: if precondition.ID in G then
6: vPre = G.getVertex(precondition.ID)
7: else
8: vPre = G.addVertex(precondition.ID)
9: vPre.Executor = precondition.Executor

10: relation = G.addEdge(vPre, v) . an edge in the graph reflects the
precondition relation

11: getPreconditionsOfElem(precondition.ID, vPre) . recursive call

Generating a valid GPLMT description is done in a second step. Therefore, a template
can be used that includes the static parts of the description file, namely, the includes to
all available target and tasklist definitions and empty target and tasklist
elements. The generated part of GPLMT is limited to the steps definition that describes
the response plan for the current handled security incident. The previously generated
dependency graph is traversed to find all vertexes that do not have an incoming edge, as
this means that those responses can be executed without prior responses. Those responses
can be combined into an execution block that is separated by a synchronization barrier
(synchronize statement) from the rest of the response plan. As all those vertexes are
going to be deleted, this step is repeated until the dependency graph is empty. Lastly, the
generated execution blocks can be added to the GPLMT description file in the steps
element.

130 7. Response Execution and Preparation

Algorithm 4 Generate Steps Definition

1: procedure createResponsePlan(G)
2: responseP lanTemplate . template to be used with missing steps definition
3: stepsTemplate . template to be used with missing target and task definition
4: while G 6= empty do
5: vertexToDelete = []

6: for all v in G do . traverse over all vertexes
7: if v .inDegree() = 0 then . vertex has no incoming edges
8: vertexToDelete.append(v)

9: task = v .ID

10: target = v .Executor

11: stepsToDo.append(stepsTemplate(task, target)) . generate
steps list

12: steps.append(stepsToDo) . append steps list to steps definition
13: steps.append(synchronize) . add synchronization barrier
14: for all v in vertexToDelete do . delete vertexes including connected edges
15: G.deleteV ertex()

7.3 Implementation

GPLMT is the interpreter of the response plan written in Python 3. The response plan,
given in XML format, is first validated against the schema definition given as rng file
(Regular Language Description for XML New Generation (RELAX NG)). Therefore, the
Python library lxml is utilized. RELAX NG is an XML schema language used to define
XML documents. The schema language provided by RELAX NG is more compact than
XML Schema (XSD).

If the schema validation is successful, the response plan is processed block-wise. An
execution block is defined as all steps definitions above a synchronize statement or
the end of the response plan. Each execution block is read and all contained elements
are prepared to be scheduled. Tear-downs are registered before an execution blocked is
executed to ensure that all tear-downs are registered before the steps they belong to.

In case an execution block contains a loop, a new execution context is created. This
ensures that synchronize statements inside the loop are not influenced by synchro-
nize statements outside the loop. A loop simply schedules steps inside the loop until
the loop condition is reached. As an explicit synchronize statement is available, the
implementation does not provide implicit synchronization after a loop iteration.

For each tasklist a tasklist environment is provided. The tasklist environment
carries the cleanup-tasks that are executed at the end of the tasklist’s execution.

For each task a variable environment is provided. The variable environment carries
all environment variables that are set when a task is executed. This includes variables,
that are set for a specific target using the export-env statement and variables used
in the listings-loop or step definition. As those loops may be nested, the variable
environment is composed of all variables defined until the task is finally executed. Later
definitions overwrite earlier definitions. That means that in case a variable is defined as
global variable and as local variable, the local definition is preferred.

Each task is executed in a single SSH connection. Notably, GPLMT wraps OpenSSH,
so all features of OpenSSH are available via a local OpenSSH configuration file. GPLMT
directly uses OpenSSH’s control master feature to re-use connections to the same node.

7.4. Evaluation 131

To copy files from the GPLMT controller to the nodes controlled with GPLMT, put
and get is implemented. Therefore, native Secure Copy (SCP) is utilized.

7.4 Evaluation

Our approach provides sequential execution of responses (cf. Requirement R1). Within
the tasklist definition the seq command explicitly executes single commands within the
tasklist in a sequential order. Within the steps definition single steps can be executed in
sequence by utilizing the synchronize command.

Our approach provides parallel execution of responses (cf. Requirement R2). Within
the tasklist definition the par command explicitly executes single commands within the
tasklist in parallel. Within the steps definition single steps are executed in parallel implicitly
within an execution block.

Our approach provides error handling (cf. Requirement R3). Each tasklist com-
mand can be used with the on-error declaration. If the tasklist fails, multiple options
can be used for error handling. Hereby, we provide abort the tasklist, the whole step or
the whole response plan. Additionally, clean-up tasklists can be specified.

Our approach decouples responses from targets the responses are executed on (cf. Re-
quirement R4). To provide better modularity, we distinguish between target and tasklist
definitions. The description of the infrastructure information is given within the target
elements, while potential responses are reflected in the tasklist elements. This al-
lows defining both independently and no hard coding of available responses to concrete
executing entities is needed.

Our approach provides parameterization of responses (cf. Requirement R5). We sup-
port local as well as global variables for steps and tasklists. Global variables are specified
within the target element. Local variables are specified within the step element.

Our approach provides a flexible deployment of responses (cf. Requirement R6). This
can be achieved by providing a central response repository stored on the GPLMT con-
troller. Responses, e.g. represented as scripts, can be deployed on the nodes within the
target system using the put command. If a response is not needed on a node anymore,
it can be erased. Changes within the response repository can be done centrally and new
responses can be deployed on the nodes.

7.5 Related Work

In this section related approaches with respect to response execution are examined. Con-
crete approaches within the domain of Intrusion Response Systems (IRS) are limited, as
most often only a high-level definition of the execution itself is given (see [29, 37, 38, 39,
51, 71, 113, 115, 166, 168]). Most often, the proposed systems do not specify a specific
response plan language or give insights in the structure of the response plan. Related work
in the field of IRSes is further examined in Subsection 7.5.1. Another field of interest are
frameworks or solutions focusing on the automated configuration of networks or network
components. Related work within this field is covered in Subsection 7.5.2. Additionally,
structured execution of experiments within different testbed solutions is covered in Sub-
section 7.5.3 as an experiment requires a structured execution as response plans do. The
proposed related work is compared against the requirements listed in Subsection 7.1.1 in
the last subsection (see Subsection 7.5.4).

132 7. Response Execution and Preparation

7.5.1 Response Execution in IRSes

In [87] the problem of initiating responses within a distributed system is addressed. The
authors state the need of an appropriate communication protocol to distribute a response
to different locations in the network. Their focus in this paper are mobile ad-hoc networks
(MANET). They propose the Intrusion Response Message Exchange Format
(IRMEF) extending IDMEF to spread messages of responses to execute within the system.
This format contains amongst others the time the response has to be executed and the
targets that have to apply these response. A locally installed agent will receive this
message. In case it’s address is listed in the targets definition it will execute the response
at the specified time. The proposed communication protocol between those agents and
a console is the Simple Network Management Protocol (SNMP) in Version 3. This
scheme does not allow to schedule more actions in an appropriate manner. For example
no sequential or otherwise timed actions or the interconnection of multiple actions are
possible. The specification of the control flow in more detail is not possible.

In [55, 58] they provide a selection mechanism for existing response plans. Within
their work they do not specify the response plan itself, nor give a definition language for
a structured response plan. They execution part is completely left aside within this work.

Some related work within the field of IRSes only provide a single response to be
executed, such that no coordination between multiple responses is needed, e.g. see [24,
123, 124]. As they cannot cover a security incident effecting multiple network entities
and consisting of multiple attacks, they are no suitable IHS.

7.5.2 Network Management and Configuration Solutions

Responses that are executed on the target system may be reconfigurations of hosts or
network elements. Within this subsection we examine possibilities how a network can be
configured automatically. Therefore, we first examine tools that are used for configuration
management and orchestration. Afterwards, we examine dedicated protocols that can be
used for network configuration. The goal of this analysis is to find suitable foundations
for the response execution module.

Ansible 1 is an open source IT configuration, deployment and management tool. It
is designed to be minimal and does not rely on an agent or client that is installed on
the target machine that is controlled. Machines are managed by default using SSH or
Windows Remote Management (WinRM) as they exist natively on those platforms. To
manage the configuration of components, so-called playbooks are utilized. The playbooks
are written in YAML and define parts that are automated. A playbook is consisting of
mulitple plays defining the automation for a set of hosts, called inventory. Each play
consist of multiple tasks targeting multiple hosts in the inventory.

Within a playbook, tasks are executed in order, and within a play all hosts will execute
the same directives. If the execution fails, the playbook has to be adapted and needs to
be rerun. If blocks are used, error handling strategies can be applied. Ansible provides
multiple different loops that can be used within a playbook. Ansible’s main purpose is to
provide a reconfiguration of machines, other responses have to be included by writing own
modules for Ansible.

Puppet 2 relies on a pull model. For each machine that has to be controlled with
Puppet an agent on the host is required to be installed. The agent pulls configuration
files from a central server and determines changes between the host’s state and the

1https://www.ansible.com/
2https://puppet.com/

https://www.ansible.com/
https://puppet.com/

7.5. Related Work 133

configuration specified. The Puppet language is declaring resources that can be organized
in classes. A resources is typically a single file or package, while a class describes a service
or application. Node classifications are used to apply the classes to and group the nodes.
As the configuration is rolled out to the clients, a synchronization between the clients can
only be done by regulating the polling interval of the clients.

In addition to the configuration management tools, standardized network protocols for
management purposes are available, e.g. Simple Network Management Protocol (SNMP)
and Network Configuration Protocol (NETCONF).

SNMP [22] is mainly used for extracting information about network components, like
routing or device information. Therefore, an extensible information model named Man-
agement Information Base (MIB) is used. Available information is structured hierarchically
and can be extended by vendors, whereas some standard MIBs are defined that have to
be offered at least. Each managed device has to run a SNMP client. For reconfiguration
of specified MIBs, the SET command can be used. To use SNMP as a response execu-
tion module, the surrounding environment has to be implemented. A response execution
module can use SNMP as a configuration possibility, but SNMP itself does not provide
any built-in functionality for describing the control flow of an execution.

Due to the limitations of SNMP regarding the configuration capabilities of compo-
nents, NETCONF [45] has been introduced. NETCONF operates on top of Remote
Procedure Call (RPC) and uses XML for encoding of data and messages. NETCONF
consist of four layers, the content layer holds configuration data, the operations layer
defines who to read and write this data, the message layer provides RPC and the secure
transport layer provides security and reliability. NETCONF can be used to reonfigure
single devices and network elements like routers. It does not provide a framework for
synchronized execution of configurations, but can be integrated, as well as SNMP, into
the proposed response execution module in order to implement tasklists.

7.5.3 Control Flow Definition for Experiments

Various different tools exist to manage and control network experiments. A rather exten-
sive list can be found on the PlanetLab website 3. [70] provides a comprehensive analysis
with respect to quality and usability of such tools, finding most of them not usable or
suitable to be used with respect to today’s network experiments. Many of these tools are
outdated and not available anymore (Plush, Nebula, Plman, AppManager) or were not
even made publicly available at all (PLACS). Some of these tools provide rather basic
functionality to invoke commands on remote nodes (pssh, pshell, vxargs) not supporting
error conditions and error handling as well as orchestrating nodes to perform complex
and synchronized operations. In the following we examine different testbed experiment
tools and frameworks in order to investigate possibilities if those systems can be used as
response execution module.

The Stork project 4 provides a deployment tool for PlanetLab nodes including config-
uration. It is recommended to install Stork on the nodes that are controlled. For response
execution within an existing network, agent software might not always be possible, as
routers or switches may be reconfigured as well. Additionally, policies within the network
may forbid the installation of agent software. Stork is mainly used for package manage-
ment and distribution on a large scale of nodes. This tool lacks fine-grained execution
control to setup more complex execution flows that are needed in order to be useful for

3https://www.planet-lab.org/tools
4http://www.cs.arizona.edu/stork/

https://www.planet-lab.org/tools
http://www.cs.arizona.edu/stork/

134 7. Response Execution and Preparation

response execution.
Gush (GENI User Shell) [1] claims to be an execution management framework for

the GENI testbed. Gush provides extensive methods to define resources but is limited
regarding control flow aspects. Parallel or sequential execution is not possible in a straight
forward manner. Gush is mainly used to define the underlying testbed itself. The control
flow definitions to execute complex execution flows are left to the user as one scripts have
to be written. In addition, Gush is not longer supported 5.

Experimentation frameworks like NEPI 6 [114] provides a scripting interface to known
testbeds, like OMF, PlanetLab or NS-3. Additionally, Linux hosts and OpenFlow can be
included. The main focus of this framework is the interoperability of those resources.
NEPI requires the user to do rather complex adaptations in the source code to extend it
with new functionalities and add support for new platforms. An experiment or a response
plan is a user-defined script, where commands can be executed on resources or monitoring
can be activated. To structure the control flow pure Python has to be used. A simplistic
automated generation of response plans is not possible.

Approaches like OMF [117] focus on the management and operation of network
testbed infrastructures and federation between infrastructures but do not focus on the ex-
periment execution itself. The provide a OMF Experiment Description Language (OEDL)
to specify experiments. This language allows to specify resources within the testbed,
properties, applications, groups and own scripts. They do not provide an easy way of
defining the control flow, but using events than can be used to manage the control flow.

The COCOMA framework 7 [116] focuses on providing an experimentation framework
for cloud based services to control and execute tests for cloud-based services in a controlled
and reproducible manner and to study resource consumption of such services. Within
this framework, the testbed description itself is tightly coupled to the control flow of
the experiment. The framework provides mechanisms to create, monitor and control
contentious and malicious system workload.

In [54] the authors propose an emulated testbed for the domain of cyber-physical
systems. This work focuses more on the testbed implementation and less on the execution
of experiments.

7.5.4 Summary, Comparison and Conclusion

The requirement stated in Subsection 7.1.1 are mapped to the presented approaches
above. The results are summarized in the following Table 7.1.

The response execution capability of the related work in the field of IRSes is limited.
Most of them only describe a generic and high-level behavior of executing responses.
Synchronization between multiple responses or a structured response plan are not covered
within this related work.

5http://gush.cs.williams.edu/trac/gush
6http://nepi.inria.fr/
7http://www.bonfire-project.eu/services/cocoma

http://gush.cs.williams.edu/trac/gush
http://nepi.inria.fr/
http://www.bonfire-project.eu/services/cocoma

7.6. Publication Reference 135

Tab. 7.1: Comparison of Related Work Based on the Requirements Stated in Subsection 7.1.1

Approach R
1
–

Se
qu

en
ti
al

E
xe
cu
ti
on

R
2
–

P
ar
al
le
l

E
xe
cu
ti
on

R
3
–

E
rr
or

H
an
dl
in
g

R
4
–

M
od

ul
ar
ity

R
4
–

Fl
ex
ib
le

P
ar
am

et
er
iz
a-

ti
on

R
5
–

Fl
ex
ib
le

D
ep
lo
ym

en
t

IRMEF [87] 7 7 7 3 3 7

Ansible 3 7 3 3 7 3

Puppet 7 7 3 3 7 3

SNMP 7 7 7 3 7 7

NETCONF 7 7 7 3 7 7

Stork 7 7 7 3 7 3

Gush [1] 7 7 7 3 7 7

Nepi [114] 3 3 3 3 7 7

OMF [117] 7 7 7 3 3 7

COCOMA [116] 7 7 7 7 7 7

Protocols or frameworks for configuration, deployment and network management tasks
provide a solid basis for automated intrusion response. They can be integrated into a
response execution module, e.g. implementing a dedicated tasklist within our approach.
As out-of-the-box solutions they are not well suited, because they do not provide enough
flexibility to describe the desired control flow of the response plan. Those approaches
can be used to directly trigger reconfigurations on single machines or a huge number of
machines treated in the same manner. Nevertheless, tools like Ansible and Puppet are
most close to be useful as response execution module.

Within the domain of testbed experiment control, none of the examined solutions
provide a structured and flexible response plan. Most often, the execution of an experiment
is tightly coupled with the definition of the testbed infrastructure itself. This makes it not
possible to just use the experiment definition as response plan and deploy it on the target
system. Additionally, the definition of the control flow is limited and left to the user by
writing own scripts or code.

7.6 Publication Reference

GPLMT is already published on PAM (Passive and Active Measurement Conference)
2016 in the context of executing experiments on various testbeds (cf. [162]). Within this
work the own contribution encompasses fundamental ideas of the design of the descrip-
tion language for response plans and implementation enhancements within the GPLMT
framework. Embedding GPLMT into the context of incident handling was not part of the
publication as GPLMT was used for experimentation control flow management.

136 7. Response Execution and Preparation

8. IMPLEMENTATION AND EVALUATION

In this chapter we cover the implementation of our proposed Incident Handling System
(IHS) and evaluate the overall system that is proposed. In Section 8.1 we describe the
implementation of the overall IHS. This includes the blackboard implementation, as well as
the implementation of our information model from Section 3.3. All implemented modules
are discussed and linked to previously described module implementations given in Chapter 4
to 7. The evaluation given in Section 8.2, covers the mapping to the requirements an IHS
has to fulfill as discussed in Section 3.1, an analysis of an appropriate blackboard, and a
closer look on the intrusion response capabilities of the system. Additionally, we provide
considerations on security aspects as well as an evaluation of our use case described in
Subsection 4.1.3 and 5.2.3. As parts of this system are already published in [62] in the
last section a publication reference is given to determine the own contributions to this
system (see Section 8.3).

8.1 Implementation

As a proof of concept and basis for our evaluation, we provide a prototype implemen-
tation in Python 3, available on GitHub1. Our implementation requires an underlying
database system as blackboard to hold and persist information. The backend implemen-
tation is examined in Subsection 8.1.1. This encompasses utilized databases including the
needed communication from and to the database. A description of how the information
model of our system described in Section 3.3 is implemented is given in Subsection 8.1.2.
This includes interfacing with the underlying databases and the setup process. The main
components of the proposed IHS structured into interfaces, modules and controllers are
examined in more detail in Subsection 8.1.3. This includes a description how previously
examined modules are integrated.

8.1.1 Backend Implementation

First, we present the supported databases, namely PostgreSQL and OrientDB in Subsub-
section 8.1.1.1. Afterwards, we examine the main important point when using a database
as blackboard, namely the notification mechanisms to provide notifications on changes on
the database, in Subsubsection 8.1.1.2.

8.1.1.1 Supported Databases

We support two different types of databases, namely object-relational and graph-based
databases. As the structure of the blackboard is graph-based, a graph database is naturally
highly suited. We chose OrientDB2 as it provides hooks and triggers. OrientDB supports
object-oriented concepts by providing classes for vertexes and edges that can be extended

1https://github.com/Egomania/BlackboardIDRS
2http://orientdb.com/orientdb/

https://github.com/Egomania/BlackboardIDRS
http://orientdb.com/orientdb/

138 8. Implementation and Evaluation

for the own usage using a schema definition. The query language used for OrientDB is
a dialect of the Structured Query Language (SQL) that provides some additions to work
with graphs but mainly focus on the standard. OrientDB claims to provide Atomicity,
Consistency, Isolation and Durability (ACID) properties. OrientDB can be used as dis-
tributed database and provides linear scalability. Additionally, OrientDB provides complex
data types, like DATE and DATETIME. To interface with OrientDB, pyorient3 is used.

As an alternative, we implement our blackboard based on PostgreSQL4, a widely used
object-relational database. PostgreSQL is compliant to the ANSI-SQL:2008 standard
and supports full subqueries, read-committed and transaction level isolation. Data in-
tegrity features like primary and foreign keys, cascading updates or deletions, check and
unique constraints are supported. PostgreSQL is full ACID compliant. To interface with
PostgreSQL, psycopg25 is used.

8.1.1.2 Notification Mechanism

The main important point from the backend point of view is to provide a channel that can
be used for notifications of changes on the database content that represent the blackboard.
Information about the change as well as the change itself has to be propagated to the
controller or the modules of the IHS. A pull-based mechanism, where all modules regularly
query for information changes, is not suitable as additional load on the database would
be produced and the query window would allow an attacker to misuse this blind spot. To
enable change notification from the blackboard, the underlying database has to support a
notification or trigger mechanism.

OrientDB For OrientDB a native Java Hook is utilized triggering after a new node
or edge is added, updated or deleted. OrientDB provides different built in methods:
onRecordAfterUpdate, onRecordAfterCreate and onRecordAfterDelete.
Those methods are combined within the provided hook. OrientDB calls those methods
with an ODocument value containing the original as well as the new values of the node
or edge. This information together with the operation (update, insert, or delete) and the
ID of the node or edge are sent to the controller.

To reduce the amount of information pushed from the database to the controller, this
hook is configurable to decide which nodes and edges are needed. Within the OrientDB
server configuration the needed tables can be specified and changes are available after
restarting the server.

The database sends the change information on updates, inserts and deletes using a
POST method to push the information to the controller. As OrientDB does not support
after-commit hooks directly, this feature has to be implemented within the modules. The
modules have to actively query the database to wait for the commit.

PostgreSQL In case of PostgreSQL, the built-in NOTIFY command is utilized. This
command sends a notification including a payload to all clients previously executed the
LISTEN command. Hereby, the interprocess communication is possible for all processes
accessing the same database and the same channel. Access restrictions on those channels
are not possible. NOTIFY can be coupled with transactions, such that a notification is
only send after a commit.

3https://github.com/mogui/pyorient
4https://www.postgresql.org/
5http://initd.org/psycopg/

https://github.com/mogui/pyorient
https://www.postgresql.org/
http://initd.org/psycopg/

8.1. Implementation 139

An after-commit hook triggers a function preparing the information to be sent over the
notification channel. For each specified table three different triggers for updating, deletion
and insertion are created using the PostgreSQL CREATE TRIGGER AFTER command.
Those triggers call for each row that has been changed the table_update_notify
function. This after-commit hook can be generated on startup of the IHS in contrast to
the OrientDB Hook, that has to be updated manually.

Within the table_update_notify function the information is prepared using built-
in functionality to generate json files at pg_notify call. PostgreSQL provides variables
to extract the latest operation that triggered the function. Additionally, the original and
new fields of each row can be extracted using PostgreSQL build-in functionality. After
preparing all information including old and new data, the ID of the changed node or edge
and the operation it self, the payload can be send over the appropriate channel. The
controller on the other side only needs a connection to the database to listen on the
channel the notifications are sent to.

8.1.2 Information Model Representation and Setup

First, we introduce how the information model from Section 3.3 is mapped to the imple-
mentation in Subsubsection 8.1.2.1. Afterwards, we examine how to load infrastructure
information in Subsubsection 8.1.2.2 and policy information in Subsubsection 8.1.2.3. The
infrastructure configuration is decoupled from the policy configuration such that both can
be exchanged independently.

8.1.2.1 Representing the Information Model

To represent our information model Python classes are utilized. Each information element
(node) and relation (edge) is represented as a class. Those classes are translated auto-
matically to the database scheme for both database systems. This includes setting up
tables respectively classes, constraints if needed, creating an index on marked fields and
the deletion of unneeded elements. Listing 8.1 shows the structure of those classes.

Listings 8.1: Node Class Example – Service Node

1 class service(node):
2 cluster_id = None
3 mapper = {’name’: ’STRING’}
4 __slots__ = list(mapper.keys())
5 index = [’name’]
6 def __init__ (self, name=None, rid=None, client=False, ←↩

batch=False):
7 if not client:
8 client = self.client
9 node.__init__(self, rid)
10 if self.rid == None:
11 self.createOrGet(client, batch)
12 else:
13 self.getByRid(client, batch)

In Line 1 the inheritance of each class is indicated. The node class provides the
following functions:

140 8. Implementation and Evaluation

getByRid: Queries the table corresponding to the class name and the given identifier
and returns the corresponding instance with all attributes set in the database.

createOrGet: Returns an instance with the given identifier based on the available
attributes. If no applicable database entry exists, a new entry is created.

update: Updates all values given in the instance into the underlying database.

The cluster_id in Line 1 is relevant for OrientDB, as this value determines the
place where the records are stored. This value is set during startup. In Line 3 the attributes
of the class are defined. The attributes are named and the data type is specified. If an
attribute is defined with a leading underscore (_) this attribute is not used for searching an
entry in the database using the createOrGet method. Line 4 suppresses that attributes
can be added dynamically and space for all specified objects is reserved. This allows listing
the attributes within an instance of the object. In Line 5 a list of dedicated fields, an index
has to be created on, can be specified. The identifier (RID) of each instance is provided
with an index automatically. The node class is equipped with a separate connection to
the database. If no other connection is specified, this connection is used (see Line 8).
To create or get a database entry from an instance, the createOrGet method (see
Line 11) or the getByRid (see Line 13) method is used dependent on the delivered
function arguments.

The relations between nodes are defined in the edge class. An example is shown
in Listing 8.2. Additionally, to the node class the foreign keys have to be specified for
PostgreSQL (see Line 5).

Listings 8.2: Edge Class Example – serviceusesip Edge

1 class serviceusesip(edge):
2 cluster_id = None
3 mapper = {’name’: ’STRING’, ’port’: ’INTEGER’}
4 __slots__ = list(mapper.keys())
5 psql = {’fromnode’: ’service’, ’tonode’: ’ip’}
6
7 def __init__ (self, fromNode, toNode, port, client=False, ←↩

batch=False):
8 if not client:
9 client = self.client
10 edge.__init__(self, fromNode, toNode)
11 self.port = port
12 self.createOrGet(client, batch)

8.1.2.2 Infrastructure Configuration

The infrastructure configuration provides the system with the needed infrastructure infor-
mation on startup. Continuously monitoring and scanning the underlying target system
may lead to changes on the blackboard such that the original infrastructure configura-
tion gets outdated. The infrastructure configuration is given in JavaScript Object
Notation (JSON) and contains the following elements: Template nodes, Server
nodes, Network nodes, Device nodes, and Service nodes. Each element to specify
is given as list including the needed attributes. An example how to specify a single device

8.1. Implementation 141

is shown in Listing 8.3. Each device needs to be specified with a name and a corre-
sponding template (see Lines 4 to 5). Additionally, a list of interfaces can be specified
(see Lines 6 to 11). This specification includes the l2 Network and l3 Network
nodes. The l3 Network definition has to correspond with specified networks in the
corresponding section.

Listings 8.3: Infrastructure Configuration – Device Node

1 ...
2 {"device":
3 {
4 "name": "r1",
5 "template" : "router",
6 "interfaces": [{
7 "interface":
8 {"order": 1, "l2": "r1_eth0", "mac": "←↩

1E.00.00.00.00.01", "l3": "productive←↩
", "ip": "192.10.0.1"}},{

9 "interface":
10 {"order": 2, "l2": "r1_eth1", "mac": "←↩

2E.00.00.00.00.01", "l3": "backbone",←↩
"ip": "192.20.0.1"}}

11]
12 }
13 },
14 ...

If an infrastructure configuration is given, the whole configuration file is read on startup
of the IHS and is transfered to the underlying database. Hereby, it is configurable if the
current configuration is deleted before the new configuration is added or not.

Additionally, a stub for GPLMT target definitions can be generated optionally from
the infrastructure configuration. This includes setting up the targets description file and
list all nodes with the given names and host descriptions. An automated key deployment
is not included within this generation.

8.1.2.3 Policy Configuration

The policy configuration provides available responses, as well as their mapping to possible
attacks using their consequences. Attack and Consequence nodes are simply a list
of known values, whereas attacks provide a mapping to the consequences that can occur
in case they are successful. Attack nodes specify all known attacks the system can
cope with and are used for the implicit normalization of incoming alert classifications. A
Response node is defined as follows, (see Listing 8.4).

Each response is identified uniquely by its name (see Line 4). Each response can be
used on a certain group of targets in the target system (see Line 5). The mapping between
responses and potential consequences the response can mitigate is done in Line 6. A list
of implementations (see Lines 9 to 17) defines the device the response is available on.

If a policy configuration is given, the whole configuration file is read on startup of
the IHS and is stored in the underlying database. Hereby, it is configurable if the current
configuration is deleted before the new configuration is added or the new configuration
extends the existing one.

142 8. Implementation and Evaluation

Listings 8.4: Policy Configuration – Response Node

1 ...
2 {"response":
3 {
4 "name": "RateLimiting",
5 "target": ["host", "service"],
6 "responsemitigatesconsequences": ["ad"],
7 "preconditions": [],
8 "conflicts": []
9 "implementations":[{
10 "implementation": {
11 "name": "simpleRateLimiter",
12 "deployedOn": ["h1"],
13 "executor": "r1",
14 "metrics": {"cost": 0.5}
15 }}
16]
17 }
18 },
19 ...

Additionally, a stub for GPLMT tasklists definitions can be generated optionally from
the policy configuration. This includes setting up the taskslist description file and list all
responses with the given names.

8.1.3 Interfaces, Modules and Controller

The main part of the implementation is divided into

Interfaces Interfaces are used to bind external monitoring system, like Intrusion Detec-
tion Systems (IDS) or monitoring systems, gathering infrastructure information and
alerts (see Subsubsection 8.1.3.1).

Modules Modules represent the knowledge sources mapping the functionality of all tasks
within the steps of the incident handling process (see Subsubsection 8.1.3.2).

Controller The controllers manage the access from an to the underlying database repre-
senting the blackboard (see Subsubsection 8.1.3.3).

8.1.3.1 Interfaces

To interface with the system, a basic insert is provided. This Python class maps incoming
alerts to the underlying database. Therefore, the Alert class is defined, consisting of the
message ID, source, target, classification and timestamp information that
can be extracted from IDMEF messages. To be compliant with the Intrusion Detection
Message Exchange Format (IDMEF) standard, users and services can be included
as they can occur within the target definition of an IDMEF message.

For each database that is supported, an insert function has to be defined for the
basic insert. This function expects an instance of the Alert class and an open database
connection. This function creates the new alert entry according to the information stored
in the Alert class. Additionally, an alert context is created or re-used with matching

8.1. Implementation 143

source, target and classification definition. The created Alert node is linked to the
Alert Context node. In case a new alert context has to be created, the Alert
Context node is linked to the source, target and attack elements.

Additionally, a simulator interface and a REST API interface are implemented utilizing
the basic insert. The simulator reads a number of given XML files containing IDMEF
messages. Those messages are parsed, missing attacks, sources and targets are inserted
into the database, and for each alert an instance of the Alert class is created. Those
instances are handed over to the basic insert one after another.

The simulator observes all messages that are passed from the controller to the mod-
ules. Therefore, the simulator registers itself to all available queues. The simulator stops
the experiment when no longer messages occur. Relevant statistics are saved and the
next file is processed.

The REST API interface starts a web server and listens on PUT Requests containing
IDMEF messages. Those messages are parsed, the instances of the Alert class are
created and handed over to the basic insert.

8.1.3.2 Modules

After successfully deploying the schema, the modules are started within the main process
of the IHS. Each module runs in a separate process to support multiprocessing. This
allows the distribution of single modules across the network.

As a monitoring or IDS module, we use our anomaly-based IDS presented in Chapter 4.
Our IDS can interface with the REST API described in Subsection 8.1.3.1.

Our implementation includes for both databases an aggregator, a correlator, and two
priorisation modules for alert processing. As this is only a proof-of-concept implemen-
tation, the functionality of these modules is limited. The aggregator fuses alerts to an
Alert Context node based on equal sources, targets or attack classifications. The
correlator supports checking for attack paths by searching for attacks launched by sources
that were previously a target of another attack. The first priorisation module randomly al-
locates a priority to an Alert node. The second propagates priority information through
connected Alert Context nodes.

For intrusion response, we integrate the following components in form of separate
modules:

Response Identification Module This module implements the response identification al-
gorithms as discussed in Chapter 5.

Response Selection Module This module implements the response selection task as dis-
cussed in Chapter 6. Hereby, we provide a module that extracts the required infor-
mation from the database, passes this information to a solver, generating and solving
the problem, and transfers back the solver’s output to the underlying blackboard.
The information gathered from the blackboard is: the affected entities like Device,
User or Service nodes and not yet selected Implementation nodes connected
to the current Bundle node including the executor of the response implementation,
conflicting responses and preconditions, as well as metrics and damage information.

Response Execution Module This module implements the response execution task dis-
cussed in Chapter 7. Hereby, we provide a module extracting required information to
generate the descriptions for GPLMT. The generated GNUnet Parallel Largescale
Management Tool (GPLMT) file is stored and can be executed by an administrator.

144 8. Implementation and Evaluation

Additionally, we implemented a response evaluation module. This module is triggered
by a Bundle node with a Ready attribute set to TRUE. The response evaluation module
collects all Implementation nodes that are going to be executed and extracts their
Metric nodes. After everything is prepared, the response evaluation module sets the
Prepared attribute to TRUE and waits for the response execution module to set the
Executing attribute to TRUE. This will trigger the response execution module to au-
tomatically trigger the generated response plan. For simulation reasons, the response
execution module simply waits a predefined time span instead of actually executing the
generated GPLMT scripts and the response evaluation module calculates randomly dis-
tributed values between 0 and 1 to update the Metric nodes. The response evalua-
tion module sets the Executed attribute of the edge between the Bundle and the
Implementation nodes to TRUE.

8.1.3.3 Controller

To receive notifications about changes on the blackboard, two different controllers – one
for each database type – are implemented. Those controllers wait for incoming notifica-
tions from the database and notify modules subscribed for the particular information. For
this purpose, Python’s built-in queues are utilized. All modules are triggered to start their
task by receiving notifications from the controller.

The subscription of the modules is done on startup of the system. For each module
and the information element, the module listens to, a separate multiprocessing queue is
initialized. The controller receives a dictionary including the information element as key
and a list of queues a notification for this element has to be sent to. Initializing a queue
for each module ensures that each module will receive the notification and no information
gets lost.

8.2 Evaluation

In this section the overall IHS is evaluated. First, we evaluate that the proposed IHS
fulfills all functional and non-functional requirements for an IHS stated in Section 3.1 (see
Subsection 8.2.1). Afterwards, we provide a qualitative analysis of the access behavior of
the modules of the IHS in order to show that those modules can act conflict-free on the
proposed information model in Subsection 8.2.2. In Subsection 8.2.3, we evaluate which
database system is a suitable blackboard for our IHS. As the main focus of this thesis
are intrusion response capabilities we evaluate the interaction of the related modules
supplementary in Subsection 8.2.4. The use case explained in Subsection 4.1.3 and 5.2.3
is evaluated in more detail in Subsection 8.2.5. In Subsection 8.2.6, we describe a thread
analysis of the system including possible attack vectors on the proposed IHS.

8.2.1 Requirement Alignment

The proposed IHS supports multiple IDSes (cf. RF1). Each IDS generating alerts using
the IDMEF can be used directly with the proposed IHS (see Subsubsection 8.1.3.1).
IDSes providing other formats to exchange information can be integrated by providing an
additional interface to proposed IHS (see Subsection 3.4.1).

The proposed IHS supports alert processing (cf. RF2). The needed information ele-
ments for alert processing are provided within our information model (see Section 3.3).

8.2. Evaluation 145

Additionally, we provide implementations for the following alert processing tasks: prioriti-
zation, aggregation, normalization and correlation (see Subsection 3.4.2 and Subsubsec-
tion 8.1.3.2). To support more comprehensive alert processing tasks, additional modules
can be implemented and added directly to the proposed IHS.

The proposed IHS provides flexible triggers for intrusion response (cf. RF3). In Subsec-
tion 5.2.2 we provide possible triggers for automated intrusion response that are derived
from our information model explained in Section 3.3. They can be used as standalone
triggers or in combination and provide high flexibility to adapt to different use cases.

The proposed IHS supports response identification (cf. RF4). The response iden-
tification module is described in Chapter 5. Multiple responses are examined and can
be implemented using GPLMT tasklist definitions (see Subsection 7.2.2) to be available
for the proposed IHS. Additionally, attacks and consequences are combined with possible
responses for the given use case of this thesis (see Subsection 5.2.3).

The proposed IHS is cost-sensitive (cf. RF5). The response selection proposed for the
IHS relies on assessing the costs of a response as well as the costs of the potential damage
a security incident causes (see Chapter 6). The proposed approach balances those costs
instead of using simplistic mappings between attacks and responses.

The proposed IHS selects the optimal set of responses to counteract the security
incident (cf. RF6). The response selection module is implemented using Mixed Integer
Linear Programming (MILP) and optimizes the set of candidate responses with respect to
different use case specific metrics (see Section 6.3). The solution is, therefore, optimal
in terms of the chosen metrics.

The proposed IHS provides response plans for coordinated response execution (cf. RF7).
In Chapter 7 GPLMT as response execution framework is introduced. GPLMT’s definition
language provides coordinated execution by specifying the control flow of the response plan
(see Section 7.2). GPLMT allows to specify parallel and sequential execution to reflect
pre- and postconditions of responses. Additionally, error behavior can be specified.

The proposed IHS provides response execution capabilities (cf. RF8). As the response
execution module is implemented using GPLMT the specified responses can be executed
directly and in a coordinated manner. The GPLMT controller, therefore, connects to the
executing network entities and executes the defined responses in form of tasklists (see
Subsection 7.1.2).

The proposed IHS is completely automated (cf. RNF1). All modules of the proposed
IHS are completely automated. The response execution module generates the GPLMT
script that can be used for automated intrusion response. At this point human interaction
is possible, but not required as the script can be executed automatically.

The proposed IHS is adaptable (cf. RNF2). Due to continuous execution of the
incident handling process the response plan is adapted and regenerated if the security
incident could not be solved with the given response plan (cf. RNF5).

The proposed IHS provides a comprehensive view (cf. RNF3). Instead of solving
single intrusions determined by alerts, the proposed IHS enables alert processing to find
the comprehensive security incident (see Subsection 3.2.3). The response identification
module combines Alert Context nodes that can be covered together as they target the
same network entities (see Subsection 5.2.1). The response selection module optimizes
the set of candidate responses with respect to the security incident as a whole and takes
synergy effects into account (see Section 6.3).

The proposed IHS is generic (cf. RNF4). The system design is not specific to a certain
use case. The single modules can be used independently from the given instances of the
information element that are available to the system. In order to use the proposed IHS

146 8. Implementation and Evaluation

for a specific use case the system has to be configured appropriately by expert knowledge.
This expert knowledge includes the description of the infrastructure and the policy to be
used (see Subsection 8.1.2).

The proposed IHS provides continuous incident handling (cf. RNF5) in a just-in-time
manner. The response identification module continuously adds new Alert Context
nodes to the Bundle node used for intrusion response (see Subsection 5.2.1). This in-
cludes adding new Implementation nodes used as candidate responses. The response
selection component only includes targets that belong to an unsolved Alert Context
node within the bundle (see Subsection 8.1.3). The response evaluation module ensures,
that only Alert Context nodes are marked as solved that are targeted by a response
implementation (see Subsection 8.1.3). The interaction of those modules ensures contin-
uous incident handling.

The proposed IHS provides active responses to counteract a detected security incident
while it is on-going (cf. RNF6). As soon as a security incident can be identified, the
proposed IHS will be triggered to start automated intrusion response. The proposed
responses are active instead of passive and are not restricted to recovery related responses
(see Subsection 5.2.3).

The proposed IHS is collaborative (cf. RNF7). The proposed IHS is based on the
Blackboard Pattern (see Section 3.2). The needed functionality of the incident handling
process is split up into single modules fulfilling the incident handling in cooperation by
fulfilling their own subtask. The interaction of those modules allows to implement a
complex and comprehensive tasks like incident handling.

The proposed IHS is designed to be modular (cf. RNF8). The functionality of the
incident handling process is split into single tasks (see Section 3.4). For each single tasks
different modules can be implemented, exchanged, and used as long as they follow the
given information model examined in Section 3.3.

8.2.2 Qualitative Analysis

The access behavior of the modules is most essential for the Blackboard Pattern as data
consistency has to be ensured. The blackboard has been designed in a way that most
of the writing behavior is additive and only in some cases updating existing information
elements is necessary. This approach facilitates the access control and reduces the amount
of potential states where inconsistencies can appear.

Infrastructure nodes are updated or inserted by corresponding modules responsible for
scanning and generating the infrastructure data. In case of static data (e.g. IP, Device
or Interface nodes) nodes and relations are updated infrequently. Consequently, the
access to those nodes is rare. Additionally, the modules are separated such that only one
module will update information, while others will only read information.

The same applies to Attack, Response and Implementation nodes. The nodes’
information is only updated in case of a policy refinement; otherwise their information is
only read as input for other modules.

In case of Alert and Alert Context nodes we designed an additive behavior for
updates or inserts. If a new alert is raised by an IDS, a new Alert node is inserted. Aggre-
gation and correlation only add Alert Context nodes or relations between Alert and
Alert Context nodes respectively. The prioritization module updates (re-prioritization)
or adds initial priority information. As only a single module is allowed to change this in-
formation and others are only permitted to read, no inconsistencies can occur.

8.2. Evaluation 147

One crucial action on the blackboard is the deletion of outdated information. This
operation is done on a large amount of nodes and relations. In case an alert processing
module wants to access this data during deletion, inconsistencies may occur. The deci-
sion of deleting information is done by a separate module – the garbage collector. This
allows defining fine-grained strategies for removing information. Additionally, this garbage
collector can store outdated information on long-term storage.

8.2.3 Blackboard Analysis

Within this quantitative analysis, we investigate a suitable database that can be used
as a blackboard for our proposed IHS. First, the test setup is introduced in Subsubsec-
tion 8.2.3.1. In order to evaluate our approach different datasets representing typical but
challenging use cases are identified (see Subsubsection 8.2.3.2). Subsubsection 8.2.3.3
finally shows the results of the evaluation for different test cases.

8.2.3.1 Evaluation Methodology

The usefulness of alert processing has already been proven [156] with common datasets.
Hence we provide a simulation to evaluate our system under typical use cases providing
a challenge to the approach. For this purpose, we generate different datasets containing
IDMEF messages with specific and challenging properties (see Subsubsection 8.2.3.1).
Needed infrastructure information is provided by preprocessing those datasets.

Those datasets are read by our simulator module transferring the single alerts one by
one into the underlying database. After insertion, the simulator waits until all modules
finished their processing and stores relevant statistics. All implemented modules are exe-
cuting their specific tasks as describes previously. Each dataset was generated in different
variants with sizes from 1000 to 5000 alerts using a step size of 500. As the measurements
are stable (see Subsubsection 8.2.3.3), each test was done 5 times.

All variants of each dataset were evaluated under the following three different test
cases.

Test Case 1 (t1): Insert Nodes – For this test case the alerts are pushed into the
blackboard. This includes adding an Alert was well as an Alert Context node
if needed. Additionally, relations between the Alert Context node and the IP
and Attack nodes are inserted. As first only the insertion behavior of our system
is tested, no further analysis steps are performed.

Test Case 2 (t2): Prioritize Nodes – This test case includes the prioritization modules,
to investigate the update behavior of our system. Alerts are added as describes
above, but beyond alert and context information is prioritized. Within this test case
the update behavior of our system is evaluated.

Test Case 3 (t3): Combining Nodes – For this test case all implemented alert pro-
cessing modules are activated to investigate the analysis behavior of our IHS. The
information is pushed into the blackboard as described above and all alert process-
ing modules are working simultaneously on the data. Within this test case a huge
amount of information is requested from the blackboard in order to perform aggre-
gation and correlation.

We executed the evaluation using a workstation equipped with an Intel Xeon E3-1275
quad core CPU with active Hyper-Threading running at 3.5GHz and 16GB of RAM and

148 8. Implementation and Evaluation

a SSD. The operating system was Ubuntu 15.10 64-Bit with Python 3.4.3, pyorient 1.5.2
and psycopg2 2.6.1.

8.2.3.2 Generated Datasets

To describe the properties of our generated datasets, we use the following notation. The
number of unique Alert Context nodes (#unique) describes the number of Alert
Context (#context) nodes not having a context as superset. The number of possibilities
to aggregate same source (sames), target (samet) and attack classification (samec) and
the number of attack paths (paths) are given. For each dataset a database is created
storing used attacks and IP-addresses. The generated datasets are available on GitHub6.

DOS Dataset The DOS dataset simulates a distributed Denial of Service (DOS) attack
with a huge number of sources, i.e., attackers, to a small number of targets, i.e., victims.
The most challenging aspect of this dataset is to build the structure of resulting Alert
Context nodes pointing to a huge number of sources. This results in many relations
between the nodes. We used two different attacks, namely, a port scan as preparation
attack and a DOS attack against the target system resulting in two Alert Context
nodes for an aggregation of attack classifications (samec = 2) for all variants of this
datasets. For this dataset the following with respect to same target and attack path
applies to all variants: samet = 18 and paths = 0. 2018 IP-addresses are stored in the
database. In the following Table 8.1 not yet described properties of the dataset are listed.

Tab. 8.1: Properties of the DOS Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 1198 1834 2497 3175 3828 4455 5089 5694 6273

#unique 207 351 534 717 895 1046 1196 1328 1435

#sames 187 331 514 697 875 1026 1176 1308 1415

Flooding Dataset Within this dataset, a small number of sources execute three different
attacks on a small number of targets. The attacks are port scan, DOS and buffer-overflow,
so samec = 3. The challenge of this dataset is frequent use of the same properties, namely
source, target and attack classification. This occurs when multiple IDSes detect the same
attack at once or a single IDS reports the intrusion multiple times.

This dataset did not contain any attack path, so paths = 0. 35 IP-addresses are
stored in the database. For this dataset the following with respect to same target and
source applies to all variants: samet = 32 and sames = 3. Consequently, as the samec
is also constant for all variants, the number of unique context nodes is 38 for all dataset
variants. In the following Table 8.2 not yet described properties of the dataset are listed.

Attack Path Dataset This dataset simulates a security incident spreading across the
network. First, a small number of sources attacks a huge number of targets to compro-
mises them. The compromised entities finally launch additional attacks. The challenge
of this dataset is identifying a spreading intrusion. To detect this attack huge portions

6https://github.com/Egomania/BlackboardIDRS

https://github.com/Egomania/BlackboardIDRS

8.2. Evaluation 149

Tab. 8.2: Properties of the Flooding Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 315 325 326 326 326 326 326 326 326

of the database have to be investigated by the correlator. The following Table 8.3 lists
the dataset’s properties. The launched attacks are port scans and buffer overflows, while
buffer overflows will result in the take-over of the target that is than the source of a new
attack, so samec = 2. The initial number of attackers is three, so paths = 3. 2003
IP-addresses are stored in the database.

Tab. 8.3: Properties of the Attack Path Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 1378 2124 2883 3727 4516 5271 5901 5894 5797

#unique 379 626 883 1228 1516 1773 1965 1978 1939

#sames 260 372 489 634 745 844 985 990 963

#samet 114 249 389 589 766 924 975 983 971

8.2.3.3 Evaluation Results

Within the evaluation different aspects are of interest. First, we will have a look on the
stability of our measurements by examining the standard deviation of our measurements.
Second, we will examine the alert per second rate of our test cases for all datasets. Lastly,
we will examine the new nodes per second rate as every dataset differs in terms of new
Alert and Alert Context nodes to be inserted.

Measurement Stability In Table 8.4 the average standard deviation of all measurements
for both backends given in seconds (s) is shown. The table denotes the dataset 7 as well
as the test case (t1 to t3).

Tab. 8.4: Average Standard Deviation

Dataset dt1 dt2 dt3 apt1 apt2 apt3 ft1 ft2 ft3

PostgreSQL 0.15 0.34 4.11 0.09 0.45 3.82 0.05 0.05 0.09

OrientDB 1.02 1.48 15.79 1.06 1.59 205.53 0.74 0.99 0.84

The table shows that generally PostgreSQL is more stable than OrientDB, as the
PostgreSQL measurements show small deviations. With raising computational effort of
the test cases, the average standard deviation is increasing.

7dos = d, attack path = ap, flooding = f

150 8. Implementation and Evaluation

Alerts per Second Rate The number of alerts that can be processed per second
(alert/s) is shown in Table 8.5. Hereby, the minimum (min), maximum (max) and aver-
age (avg) values for PostgreSQL (p) and OrientDB (o) are given. The table denotes the
dataset 7 as well as the test case (t1 to t3).

Tab. 8.5: Alerts per Second Rate (alert/s) for PostgreSQL p and OrientDB o

Dataset pmin pmax pavg omin omax oavg

dt1 287.09 354.72 320.75 11.4 19.72 14.73
dt2 228.61 307.27 257.8 8.4 16.24 11.55
dt3 64.97 125.44 86.15 1.37 6.75 3.12
apt1 299.4 355.76 324.76 12.5 19.35 15.13
apt2 230.36 287.86 250.71 8.91 16.23 11.62
apt3 30.80 85.12 49.59 0.51 3.01 1.1
ft1 370.32 396.63 384.58 37.88 50.87 44.77
ft2 318.1 330.31 325.04 15.4 35.29 23.38
ft3 281.78 293.31 287.73 14.13 18.00 16.97

First, it can be observed that the number of alerts that can be processed per second
(alert/s) is decreasing with a higher number of activated modules. While insertion is quite
fast using PostgreSQL, prioritizing nodes is noticeable. More comprehensive analysis like
aggregation and correlation leads to drop down the throughput.

Secondly, it is obvious that the processing rates between OrientDB and PostgreSQL
significantly differ. While PostgreSQL is still able to process alerts within an adequate
time, OrientDB is not suitable for this use case. We assume, that’s because OrientDB
is actively queried to wait for the committed results, as OrientDB only provides an after-
create hook in contrast to PostgreSQL. Additionally, for OrientDB the notifications are
sent via Http Post while for PostgreSQL inbound channels can be used.

Additionally, it is shown that the processing rates differ between the datasets. While
the Flooding dataset has a good throughput, the Path and DOS dataset seam to cause
performance issues. That’s because of their structure leading to a higher number of
Alert Context nodes to be insert.

For Test Case t1 the number of alerts processed per second (alert/s) slightly drops for
the all dataset. For Test Case t2 and t3 the number of alerts processed per second slightly
drops for the Flooding dataset while the rate drops significantly with a rising number of
alerts for the other two datasets.

New Nodes per Second Rate As the datasets results in a different number of new
Alert Context nodes that have to be added, we investigate the rate of new nodes
added to the database per second (node/s). Hereby, new nodes are the sum of Alert
and Alert Context nodes to be added. The results for this part of the evaluation are
shown in Figure 8.1a. Whereat, the x-axis show the number of new nodes and the y-axis
the evaluated rate in log scale.

This representation shows again, that OrientDB cannot combat with PostgreSQL
within our application scenario as blackboard for our IHS. Additionally, the drop down of
the throughput with a rising number of alerts is clearly visible through all datasets and
test cases. This representation shows that the number of new nodes within the Flooding
dataset is significantly lower than for the DOS and Path dataset, as those are structured
such that a high number of Alert Context nodes are produced.

8.2. Evaluation 151

0.2 0.4 0.6 0.8 1

·104

102

103

Number of Nodes

N
od
es

pe
r
Se

co
nd

DOS - Orient DOS - Psql
Path - Orient Path - Psql

Flooding - Orient Flooding - Psql

(a) Test Case t1 –
Insertion

0.2 0.4 0.6 0.8 1

·104

101.5

102

102.5

Number of Nodes

N
od
es

pe
r
Se

co
nd

DOS - Orient DOS - Psql
Path - Orient Path - Psql

Flooding - Orient Flooding - Psql

(b) Test Case t2 –
Updating

0.2 0.4 0.6 0.8 1 1.2

·104

100

101

102

Number of Nodes

N
od
es

pe
r
Se

co
nd

DOS - Orient DOS - Psql
Path - Orient Path - Psql

Flooding - Orient Flooding - Psql

(c) Test Case t3 –
Reading

Fig. 8.1: Evaluation of Different Datasets and Test Cases Using PostgreSQL and OrientDB

Comparing Figure 8.1a and Figure 8.1b a drop down of the throughput is noticeable.
The prioritization of alerts produces therefore, a visible impact on the system. In both
figures the Flooding dataset seams to perform worse than the DOS and Path dataset.
This is because most of the alerts to insert are unique in terms of source, target and attack
classification. This results in a low number of additionally added Alert Context nodes,
but the checks for uniqueness is the same effort as in the other two datasets.

Comparing Figure 8.1b and Figure 8.1c another throughput drop is noticeable. The
additionally added modules produce the main effort within the system. The Flooding
dataset is now performing better than the other two datasets as the checks for new
Alert Context nodes take more time in the DOS and Path dataset as, for example
the number of IPs to check is higher in those two datasets.

Summary and Conclusion This evaluation shows that the PostgreSQL database is more
suitable as a blackboard for our IHS than the OrientDB database. All needed operations –
insertion of information elements, updates, and querying information from the blackboard
– can be done more efficiently using a common relational database instead of the graph
database. For further investigations on intrusion response capabilities we will focus on the
PostgreSQL as this database promises better performance results.

8.2.4 Intrusion Response Capabilities Analysis

Based on our results from Subsection 8.2.3, we further investigate in this subsection the
intrusion response capabilities of our holistic IHS based on the PotstgreSQL database
as blackboard. Therefore, we first introduce our evaluation methodology covering the
test cases in Subsubsection 8.2.4.1. For this part of the evaluation, an infrastructure, as
well as a policy configuration are used as described in Subsubsection 8.1.2.2 and 8.1.2.3.
Both are examined and described in more detail in Subsubsection 8.2.4.2. Based on those
configurations, different datasets are generated that are explained in Subsection 8.2.4.3.
The results of the evaluation are presented in Subsubsection 8.2.4.4 covering the stability
of the measurements and the performance outcomes.

152 8. Implementation and Evaluation

8.2.4.1 Evaluation Methodology

As in the previous section, datasets in different variants containing IDMEF messages are
generated and processed by the simulator module. All variants of each dataset were
evaluated under the following different test cases, whereas more and more subsequent
modules of intrusion response are activated.

Test Case 1 (t1): Alert Processing Capabilities – This test case equals Test Case 3
(t3) in Subsection 8.2.3. The following alert processing modules are acitvated within
this test case: the aggregation module and both prioritization modules. As we do
not have attacks paths within the dataset, the correlator is not used. This test case
represents the baseline for comparisons with the results shown in Subsection 8.2.3.

Test Case 2 (t2): Response Identification Module – In this test case the response
identification module is activated additionally. Possible candidate responses are
gained from the database and the Issue as well as the Bundle nodes are gen-
erated. The response identification module runs with a delay of 10s to wait for a
stable Alert Context node. The trigger rule for the response identification mod-
ule is set to Alert Context nodes of the sameClassification class such that only
aggregated alerts are taken into account that means no Alert Context nodes
produced by the initial insert are considered.

Test Case 3 (t3): Response Selection Module – In this test case the response selec-
tion module is activated additionally. As solver for response selection the Cheapest-
First heuristic is used because all Python-bindings for the CPLEX or GLPK solver
produce unnecessary overhead during the problem generation.

Test Case 4 (t4): Response Execution Module – In this test case the response exe-
cution module is activated additionally. This module is responsible for preparing the
response plan using GPLMT scripts. Those scripts are generated and stored for
later execution. The execution itself, is for simulation purposes, a time delay of 1s.

Test Case 5 (t5): Response Evaluation Module – In this test case the response eval-
uation module is activated additionally. All metrics that need to be updated are
assigned randomly, using Python’s built-in random number generator (random).
Those values are assigned uniformed distributed within the interval [0, 1].

We executed the evaluation using a workstation equipped with an Intel Xeon E3-
1275 quad core CPU with active Hyper-Threading running at 3.5GHz and 16GB of
RAM and a SSD. The operating system was Ubuntu 15.10 64-Bit with Python 3.4.3 and
psycopg2 2.6.1.

8.2.4.2 Generated Policy and Infrastructure

To evaluate the response identification capabilities, an infrastructure and a policy configu-
ration are generated. All test cases described in this section are using those configurations.
Therefore, we shortly describe the generated infrastructure and the corresponding policy.
All important data is listed in Table 8.6.

Our generated infrastructure consists of 5 networks: 3 productive networks hosting
100 hosts each, a service network hosting 7 devices running 10 services and a backbone
network to connect those single networks. Each network has its own dedicated router.
Communication between those networks crosses the backbone network. A single IDS

8.2. Evaluation 153

Tab. 8.6: Basic Information on the Generated Infrastructure and Used Policy

Property Value Property Value

Number of IPs 345 Number of MACs 345
Number of interfaces 345 Number of services 10
Number of networks 5 Number of users 100
Number of devices 312 Number of routers 4
Number of IDSes 1 Number of hosts 300
Number of service hosts 7

Number of attacks 100 Number of consequences 300
Number of responses 1511 Number of implementations 5111

is monitoring each network, that means it has an interface to each dedicated network.
Within the network 100 users are using the services and are logged on arbitrary devices.

We defined 100 different attacks known to the IHS. We defined 300 consequences,
whereas an attack is mapped to a subset of those consequences. Additionally, we gen-
erated 1511 responses and 5111 implementations. Each implementation is assigned to a
response, whereas a response can have multiple, but at least one implementation.

8.2.4.3 Generated Datasets

To describe the properties of our generated datasets, we use the notation described pre-
viously: The number of unique Alert Context nodes (#unique) describes the number
of Alert Context (#context) nodes not having a context as superset. The number of
possibilities to aggregate same source (sames), target (samet) and attack classification
(samec) are given. The purpose and generation methods for those dataset are equal to
the description given in Subsubsection 8.2.3.2.

DOS Dataset We used 10 different attacks for preparation attacks and the DOS at-
tack, resulting in 10 Alert Context nodes for an aggregation of attack classifications
(samec = 10) for all variants of this datasets. For this dataset the following with respect
to same target applies to all variants: samet = 7. The 7 targets of the DOS attack are
the service hosts within the generated infrastructure. 1345 IP-addresses are used from
the database. 345 IP-addresses are the IPs of the own infrastructure, while the DOS
attack is performed by 1000 external IPs. In the following Table 8.7 the not yet described
properties of the dataset are listed.

Tab. 8.7: Properties of the DOS Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 1273 1930 2586 3206 3756 4278 4799 5291 5768

#unique 275 451 621 738 817 872 926 951 973

#sames 258 434 604 721 800 855 909 934 956

#relations 8892 13452 18090 22802 27200 31524 35863 40146 44334

154 8. Implementation and Evaluation

As only a limited number of attacks is performed within this dataset, the number of
responses and implementations is limited. The number of responses to investigate because
of matching consequences is limited to 155. Potentially deployed are only 1195 responses.
Implementations usable because of matching consequences are 1289. Potentially, 5075
are deployed. This limits the effort the response identification module has to afford during
the search for candidate responses.

During the test cases 10 Bundle nodes are calculated for the DOS dataset. This
will result in 10 response plans given as GPLMT descriptions stored on disk. Those bun-
dles include 370 possible responses, as they were identified by the response identification
module. The number of identified responses is equal for all test cases as the number of
targets is limited a low number (7) and the response identification module will compose
the same alert context hierarchy for each Bundle node. In average 46.5 responses are
selected by the response selection module. As the response evaluation module changes
the metrics used for the response selection module the number of selected responses differ
for each run. This indicates that using the response evaluation module, the metrics of
those selected responses are updated with new values, resulting in additional work load,
during response evaluation. The number of relations (#relations) indicates the number
of edges added during processing.

Flooding Dataset For the Flooding dataset we utilized 100 attacks, so samec = 100.
1045 IP-addresses are used from the database. 345 IP-addresses are the IPs of the own
infrastructure, while the attacks are performed by 700 external IPs. Potentially, 300 hosts
of the generated infrastructure could be a victim of an attack. In the following Table 8.8
the not yet described properties of the dataset are listed.

Tab. 8.8: Properties of the Flooding Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 1686 2340 2947 3516 4052 4567 5086 5588 6097

#unique 686 840 947 1017 1052 1067 1086 1089 1097

#sames 294 442 547 617 652 667 686 689 697

#samet 292 298 300 300 300 300 300 300 300

#identified 556 705 850 876 889 846 974 871 938

#selected 443 567 695 706 703 686 776 713 768

#relations 9549 14250 18829 23541 28109 32637 37173 41672 46195

As all available attacks are used in this dataset, the response identification module has
to investigate all responses and their implementations available in the database.

During the test cases 100 Bundle nodes are calculated for the Flooding dataset.
This will result in 100 response plans given as GPLMT descriptions stored on disk. Those
bundles include possible responses (#identified) identified by the response identification
module as listed in Table 8.8. The number of identified responses alters because of differ-
ent reasons. The more alerts are included within the test runs, the more possible responses
can be associated with the Bundle node. Additionally, the response identification module
fuses possible Alert Context nodes with respect to the target. As this fusion is time
triggered due to the waiting time for a stable Alert Context node to use as Issue
the result is not deterministic and different combinations can be possible.

The average of selected values (#selected) per test run are shown in Table 8.8.

8.2. Evaluation 155

As the response evaluation module changes the metrics used for the response selection
module the number of selected responses differ for each run. Additionally, due to the
different number of identified responses the number of selected responses alters as well.
This indicates that using the response evaluation module, the metrics of those selected
responses are updated with new values, resulting in additional work load, during response
evaluation. The number of relations (#relations) indicates the number of edges added
during processing.

8.2.4.4 Evaluation Results

Within the evaluation different aspects are of interest. First, we will have a look on the
stability of our measurements by examining the standard deviation of our measurements.
Second, we will examine the execution time and the alert per second rate of our test cases
for all datasets and their variants. Lastly, we will examine the new nodes and entities per
second rate as every dataset differs in terms of new Alert, Alert Context, and
Bundle nodes to be inserted.

Measurement Stability In Table 8.9 the average standard deviation of all measurements
in percent (%) of the average value accurate to 2 decimal places is shown. The table
denotes the dataset 8 as well as the test case (t1 to t5).

Tab. 8.9: Standard Deviation for all Test Cases (t1 to t5) and Datasets (d) 8 in Percent (%) of
the Average Value

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

t1 for dd 1.35 0.55 2.24 2.17 0.82 0.54 1.42 2.35 1.80

t2 for dd 0.98 2.71 3.81 2.18 2.22 3.42 1.70 0.97 2.27

t3 for dd 0.92 1.82 3.92 1.59 1.93 1.89 1.50 1.16 1.56

t4 for dd 0.55 3.36 3.28 1.12 1.99 1.53 2.06 2.44 1.00

t5 for dd 0.07 0.92 3.31 1.42 1.05 0.77 1.12 0.58 2.48

t1 for df 0.67 2.45 1.32 2.60 1.39 3.73 3.60 2.65 0.96

t2 for df 1.28 1.70 2.70 2.73 2.69 1.18 2.91 2.21 1.43

t3 for df 1.96 0.80 1.22 2.28 4.43 1.65 1.52 1.15 0.98

t4 for df 1.58 1.46 1.39 1.39 1.26 2.79 1.78 1.95 3.16

t5 for df 1.81 0.43 1.11 1.62 0.43 1.51 3.27 2.54 1.61

All deviations are below 5% of the average value of each test run. Only a single
deviation is higher than 4% and 10 additional deviation are above 3%. This indicates
that the measurements are stable and the results are reliable.

Execution Time First, we examine the raw execution time for both datasets. The
results are shown in Figure 8.2, whereas the DOS dataset is determined in Figure 8.2a
and the Flooding dataset is determined in Figure 8.2b. The x-axis shows the number of
alerts within the dataset. The y-axis shows the execution time needed to process the
dataset in average given in seconds (s). The y-axis is given in log-scale with basis 10.

Both figures show that the execution time increases with the number of alerts and the
number of modules activated as expected. In both datasets the response identification

8dos = dd , flooding = df

156 8. Implementation and Evaluation

1,000 2,000 3,000 4,000 5,000

101

102

103

Number of Alerts

T
im
e
in

Se
co
nd
s

Alert Processing Identification
Selection Execution
Evaluation

(a) DOS Dataset

1,000 2,000 3,000 4,000 5,000

101

102

Number of Alerts

T
im
e
in

Se
co
nd
s

Alert Processing Identification
Selection Execution
Evaluation

(b) Flooding Dataset

Fig. 8.2: Execution Time of Different Datasets and Test Cases

module shows a moderate impact on the execution time. The response selection module
shows only a minimal impact on the execution time. As the response selection module is
already evaluated in detail, those results are as expected. The evaluation of the response
selection module itself shows very low execution times (see Section 6.5) compared with
the execution time of the alert processing (see Subsection 8.2.3). The response execution
module shows a moderate impact on the execution time, even if the GPLMT description
files are stored on disk within this module.

The main impact is produced by the response evaluation module. This module has to:

• Update all metrics connected to the selected responses,

• Update all executed responses by setting the Executed attributed within the rela-
tion between the Bundle and Implementation node, and

• Traverse the alert context hierarchy starting from the Issue related to the Bundle
node and set all connected Alert Context nodes to Solved.

Comparing the execution time within the DOS and Flooding dataset, the main impact
is to traverse the alert context hierarchy. Within the DOS dataset the number of selected
responses is lower than in the Flooding dataset. Therefore, updating metrics and the
Executed attribute can not be the main influencing factor. Within the DOS dataset the
alert context hierarchy differs compared to the hierarchy in the Flooding dataset. The
Flooding dataset has much more Bundle nodes than the DOS dataset, as they are based
on Alert Context nodes aggregating alerts with the same attack classification.

Within the DOS dataset, all alerts are combined within a smaller number of Alert
Context nodes of the same classification resulting in more relations between this node
and the Alert Context nodes from the basic insert. This case shows the shortcomings
of a relational database in contrast to a graph-based database, as the hierarchy has to be
reconstructed for each Issue using recursive queries. Those recursive queries are more
expensive in case of the DOS dataset as more Alert Context nodes are included.
Additionally, this shows the importance of an adequate garbage collector transferring
out-dated information to a long term storage and deleting outdated information from the
blackboard in order to reduce the amount of data to be analyzed and processed. A garbage

8.2. Evaluation 157

collector removing solved Alert Context nodes and connected information elements
can reduce the amount of information needed to calculate the alert context hierarchy.

Additionally, the response evaluation module is implemented for simulations purposes
only and therefore uses threads to realize parallel access on the database for different
bundles to evaluate. Python’s threading module does not provide true threads in terms
of concurrency. Therefore, it might be that the recursive query is blocking the execution
of additional threads within the response evaluation module leading to nearly sequential
execution for all recursive queries that need to be executed.

Alerts per Second Rate Next, we examine the rate for alerts that can be processed.
In Table 8.10 the number of alerts that can be processed per second (alert/s) are shown.
The table denotes the dataset 8 as well as the test case (t1 to t5).

Tab. 8.10: Alert per Second for all Test Cases (t1 to t5) and Datasets (d) 8

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

t1 for dd 136 120 104 93 85 80 76 72 68

t2 for dd 89 114 99 91 86 78 73 71 67

t3 for dd 68 97 94 88 84 78 73 71 66

t4 for dd 67 95 89 89 83 77 73 69 67

t5 for dd 5 4 3 2 2 2 2 2 1

t1 for df 112 103 95 87 82 74 69 66 69

t2 for df 46 55 59 62 64 64 61 60 62

t3 for df 42 53 60 67 63 66 64 61 63

t4 for df 22 27 32 39 44 51 51 56 49

t5 for df 21 22 21 18 17 15 15 13 12

The table shows that the rate drops the more modules are activated for each instance
of the dataset. The main impact can be determined for the response evaluation module.
This evaluation shows that for this specific module, a more efficient implementation is
needed, as the rate drops to a level the system can not react quickly enough. The
reasons for this rate drop are already examined in the previous paragraph.

In some cases the rate decreases for specific datasets containing more alerts. This is
because additional alerts may do not cause any additional effort to the system to process
those alerts. For example, alerts, that are plain duplicates of previous ones, need no
complex treatment. Within the Flooding dataset, where the explained behavior can be
observed in multiple instances of the dataset, multiple duplicates are contained. The
duplicates will simply be added to an appropriate Alert Context node and no further
processing within subsequent modules is required.

New Entities per Second Rate Within this evaluation we compare all our measurements
based on the entities that are processed. Hereby, the following entities can be examined:

• New Alert Context nodes per second, this includes the Issue generated by
the response identification module (see Figure 8.3),

• New nodes per second, this includes Alert nodes, Alert Context nodes and
Bundle nodes (see Table 8.11), and

158 8. Implementation and Evaluation

• New entities per second, this includes new nodes and relations between those nodes
(see Table 8.11).

The relations of interest between the nodes are relations from the Alert Context
node to targets (service, host, user, or device), Source, Attack, Alert, and other
Alert Context nodes, for Test Case t1 and, additionally, between Bundle and Alert
Context and Implementation nodes for the other test cases. The number of relations
are listed in Table 8.7 and 8.8.

1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500

0

20

40

60

80

100

120

140

160

180

200

Number of Alert Context Nodes

A
le
rt

C
on
te
xt

N
od
es

pe
r
Se
co
nd

DOS: Alert Processing Identification Selection Execution Evaluation
Flood: Alert Processing Identification Selection Execution Evaluation

Fig. 8.3: Alert Context Nodes per Second Rate for all Test Cases of the DOS and Flooding
Dataset

First, we examine the number of Alert Context nodes that can be processed per
second (node/s). Therefore, all our measurements are shown within one single plot in
Figure 8.3. The x-axis shows the number of Alert Context nodes generated due to
processing the dataset. The y-axis shows the execution time needed to process the dataset

8.2. Evaluation 159

in average given in seconds (s). Within this plot the dominating impact of the response
evaluation module for both datasets is obvious. For the DOS dataset all other modules
are close together. Within the Flooding dataset, the impact of the response evaluation
module is less than in the DOS dataset.

Additional differences of the impact of the modules within those datasets can be
observed. The alert processing modules are a bit faster for the Flooding dataset, as
already shown in Subsection 8.2.3. The response identification, response selection, and
the response execution module are a bit faster on the DOS dataset, because the number
of Bundle nodes to be processed is lower.

Examining the rate conducted of the new nodes or entities results, as expected, in
an equivalent graph as depicted in Figure 8.3 only showing the Alert Context nodes.
Therefore, those calculations are just given in Table 8.11 to show the much higher rates
that can be achieved.

Tab. 8.11: New Nodes (First Part) and New Entities (Second Part) per Second Rate for all Test
Cases (t1 to t5) and Datasets (d) 8

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

t1 for dd 310 274 239 211 192 177 166 156 147

t2 for dd 204 261 227 209 193 173 160 155 143

t3 for dd 156 223 217 203 189 174 162 156 143

t4 for dd 154 219 205 203 187 172 160 151 144

t5 for dd 12 9 7 6 5 4 4 3 3

t1 for df 301 264 235 210 192 172 157 149 153

t2 for df 134 147 153 155 155 151 142 138 141

t3 for df 123 143 155 168 152 155 148 140 143

t4 for df 62 72 82 97 105 121 118 127 111

t5 for df 59 59 53 45 40 36 34 31 28

t1 for dd 1522 1349 1182 1055 966 896 843 793 754

t2 for dd 1029 1309 1139 1055 979 881 819 795 738

t3 for dd 787 1118 1086 1023 961 886 826 800 734

t4 for dd 778 1097 1027 1025 950 875 817 772 743

t5 for dd 62 44 35 29 25 21 19 17 15

t1 for df 1382 1250 1135 1034 961 869 803 764 794

t2 for df 606 695 741 765 778 764 726 709 731

t3 for df 556 674 752 829 762 784 756 722 741

t4 for df 282 341 396 479 528 614 606 656 576

t5 for df 270 280 259 222 201 181 174 158 143

The results in Table 8.11 show the impact of the additional nodes and entities (nodes
and relations). As the number of relations is enormous, the rate calculated on basis of
the new entities inserted during the test runs is significantly higher compared to the rates
calculated on alert or alert context basis.

Roughly a share of 30% (average 30, 832%, standard deviation 1, 23%) of all rela-
tions, are relations between different Alert Context nodes. This shows how highly
connected the Alert Context nodes are. For modules using recursive queries, those
interdependencies have a high impact, as those dependencies have to be resolved during
runtime and are recalculated for each node the hierarchy is required.

160 8. Implementation and Evaluation

Summary and Conclusion Within this section we have shown the interoperability of
our proposed incident handling modules. The response identification, response selection,
and response execution module examined in more detail in previous sections are usable for
a comprehensive IHS. The response evaluation module, used for simulation purposes and
to show how to close the loop within the proposed IHS, needs improvements to evidently
increase its performance.

8.2.5 Use Case Analysis

Additionally, we investigate the use case described in Subsection 4.1.3 and 5.2.3 in more
detail. The goal is to investigate the applicability of our proposed IHS for a real world
scenario. For this analysis we use the same test cases (t1 to t4) as described previously in
Subsection 8.2.4. As we already investigated the shortcomings of the response evaluation
module, we concentrate on the other modules within this part of the evaluation. Therefore,
we focus on a more detailed evaluation of the possible trigger mechanisms of the response
identification module and possible impacts the triggers have. The used infrastructure and
policy as well as the generated datasets for our use case analysis are examined in Sub-
subsection 8.2.5.1. The results of the evaluation are presented in Subsubsection 8.2.5.2
covering the stability of the measurements and the performance outcomes.

8.2.5.1 Generated Policy, Infrastructure and Dataset

Infrastructure Description The simplified infrastructure of the airbus data cabin net-
work is shown in Subsection 4.1.3. For this analysis we used 16 services running separately
in a Virtual Machine (VM). Those services are located in a dedicated network. In a second
network the single devices (VMs) are located. Each of the 200 VMs is equipped with one
interface and one IP address. The VMs run on a single machine that can be used as
executor for certain responses. Additionally, a router connects the network the hosts are
located in and the service network. The IDS is connected to both networks.

Policy Description The attacks, consequences, and responses are used as defined in
Subsection 5.2.3. To suspend or slow down multiple services or devices the VM server can
be utilized. Additionally, the VM server can limit the resources of each VM. The system
can be rebooted by utilizing the VM server or by directly utilizing the corresponding VM.
Privileges can be denied by each service itself or by deploying additional rules on the router.
Systems can be blocked or traffic can be filtered by using the router of the system.

Summary All important data regarding the infrastructure and the used policy is listed in
Table 8.12. Both are imported into the IHS using the Extensible Markup Language
(XML) description given in Subsection 8.1.2.

Dataset As in previous sections, different instances of a dataset containing a varying
number of IDMEF messages are generated. The smallest file contains 1000 alerts, the
biggest contains 5000 alerts, the step size is 500 alerts. From the devices available within
the infrastructure 5 devices are picked to act as internal attackers. All other devices and
services can be potential victims of those attackers. The alerts were generated by simply
choosing an attacker as source, an arbitrary device or service as victim and an attack.
The distribution for the selection was equally distributed.

8.2. Evaluation 161

Tab. 8.12: Basic Information on the Generated Infrastructure and Used Policy

Property Value Property Value

Number of IPs 221 Number of MACs 221
Number of interfaces 221 Number of services 15
Number of networks 2 Number of users 0
Number of devices 218 Number of routers 1
Number of IDSes 1 Number of hosts 200
Number of service hosts 16

Number of attacks 7 Number of consequences 5
Number of responses 7 Number of implementations 237

We used all 7 possible attacks, resulting in 7 Alert Context nodes for an aggre-
gation of attack classifications (samec = 7) for all variants of this datasets. For this
dataset the following with respect to same source applies to all variants: sames = 5. In
the following Table 8.13 the not yet described properties of the dataset are listed.

Tab. 8.13: Properties of the Use Case Dataset

Setting D1 D2 D3 D4 D5 D6 D7 D8 D9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

#context 1168 1588 2007 2360 2739 3063 3388 3621 3939

#unique 231 233 233 233 233 233 233 233 233

#samet 219 221 221 221 221 221 221 221 221

#identifiedC 561 705 740 735 749 731 762 749 747

#selectedC 528 692 706 691 728 700 665 719 709

#identifiedS 692 883 899 922 864 886 861 885 917

#selectedS 622 799 813 833 788 802 783 803 832

#identifiedT 1149 1248 1269 1277 1272 1275 1286 1292 1289

#selectedT 213 215 215 215 215 215 215 215 215

During the test cases 7 Bundle nodes are calculated for the dataset as the same clas-
sification was used as trigger. This will result in 7 response plans generated as GPLMT
descriptions stored on disk. Those bundles include possible responses, (#identifiedC)
identified by the response identification module using alert contexts aggregated with the
same attack classification as trigger and selected (#selectedC) by the response selection
module, as listed in Table 8.13. The respective values using same targets (#identifiedT
and #selectedT) and the same source (#identifiedS and #selectedS) as trigger condi-
tions are listed as well. The number of identified and selected responses alters because of
the same reasons as explained in Subsubsection 8.2.4.3.

8.2.5.2 Evaluation Results

Within the evaluation different aspects are of interest. First, we will have a look on the
stability of our measurements by examining the standard deviation of our measurements.
Second, we will examine the execution time and the alert per second rate of our test
cases for all variants of all datasets. Lastly, we will examine the new nodes and entities

162 8. Implementation and Evaluation

per second rate as every dataset differs in terms of additional nodes to be inserted.

Measurement Stability In Table 8.14 the average standard deviation of all measure-
ments in percent (%) of the average value accurate to 2 decimal places is shown. All
measurements are done 5 times for this evaluation. The table denotes the test case (t1
to t4) and the different trigger settings 9. As for Test Case t1 the response identification
module is not activated this measurement has not assigned a trigger setting. For all other
trigger settings each single test case is listed.

Tab. 8.14: Standard Deviation for all Test Cases (t1 to t4) and Trigger Settings 9 in Percent (%)
of the Average Value

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

t1 0.67 0.54 0.32 0.64 0.47 1.23 1.74 0.32 2.36

t2 for sameC 0.43 3.11 3.66 0.46 0.57 0.76 1.03 0.77 0.52

t3 for sameC 0.46 0.82 1.75 2.82 2.12 0.91 0.87 0.93 0.20

t4 for sameC 0.45 1.98 2.05 1.68 0.59 0.42 0.76 0.58 0.65

t2 for sameS 0.98 1.98 3.34 4.18 0.65 0.73 1.00 0.33 0.67

t3 for sameS 1.03 1.06 2.50 2.56 0.35 0.72 1.71 0.48 0.60

t4 for sameS 0.71 1.43 2.77 3.52 0.49 0.44 0.52 0.32 0.66

t2 for sameT 1.62 2.35 2.68 2.09 1.52 3.57 3.67 4.07 1.54

t3 for sameT 1.35 2.85 1.59 1.81 3.60 2.48 3.76 1.56 3.81

t4 for sameT 0.58 2.01 0.73 1.11 1.07 1.36 2.85 0.62 3.83

All deviations are below 5% of the average value of each test run. Only two deviations
are slightly above 4%, and 10 additional deviations are above 3%. This indicates that the
measurements are stable and the results are reliable.

Execution Time First, we examine the raw execution time for the use case scenario.
The results are shown in Figure 8.4a. The x-axis shows the number of alerts within the
dataset. The y-axis shows the execution time needed to process the dataset in average
given in seconds (s). The y-axis is given in log-scale with basis 2.

As Test Case t1 is the same for each trigger setting, this test case is plotted as base
line. For each trigger setting, the response identification, response selection, and response
execution modules are activated subsequently. For the Trigger Settings sameC and sameS
the number of Bundle nodes identified and added are nearly equal (samec = 7 and
sames = 5). Therefore, the measurements are close together and do not show a high
additional impact compared to the base line. As evaluated before, the additional impact of
the response identification, response selection, and response execution modules compared
to each other is very low.

Using the Trigger Setting sameT the workload for the system is much more higher. As
219 respectively 221 different targets appear within the variants of the dataset. For each
of those aggregated Alert Context nodes, a Bundle node is created and processed
by the response identification module. This results in a higher execution time and shows
the importance of an appropriate trigger condition to have a low number of concurrent
bundles to be processed.

9same source = sameS, same target = sameT , same attack classification = sameC

8.2. Evaluation 163

1,000 2,000 3,000 4,000 5,000

23

24

25

26

27

Number of Alerts

T
im
e
in

Se
co
nd
s

Base Line: AP

Same C: Identification Selection Execution

Same S: Identification Selection Execution

Same T: Identification Selection Execution

(a) Execution Time

0.2 0.4 0.6 0.8 1

·104

26

27

28

Number of Nodes
N
od
es

pe
r
Se
co
nd

R
at
e

Base Line: AP

Same C: Identification Selection Execution

Same S: Identification Selection Execution

Same T: Identification Selection Execution

(b) Nodes per Second Rate (node/s)

Fig. 8.4: Execution Time and Nodes per Second Rate for all Test Cases and Trigger Settings 9

for the Use Case Scenario

Using the given trigger conditions each alert context is solved, as each alert is part of
those Alert Context nodes. Using the same source or attack classification results in
an Issue node fusing much more Alert Context nodes compared to fusing based on
the same target. Relying on Issue nodes that are generated based on a stable Alert
Context node and capable of fusing additional parts into the Issue node are vital for
the systems applicability.

The evaluation shows, that in this case only the trigger condition is the determining
factor for the additional impact on the execution time. The response selection and re-
sponse execution module have a low impact on the execution time, even when the trigger
condition is not optimal, although this implies additional work load for both modules, as
they are triggered more often.

Alerts per Second Rate Next, we examine the rate for alerts that can be processed.
In Table 8.15 the number of alerts that can be processed per second (alert/s) are shown.
The table denotes the test case (t1 to t4) and the different trigger settings 9.

The rates for the trigger using the same attack classification and the same source are
nearly equal as the effort for the system is comparable. Comparing both rates with the last
trigger setting using the same target, shows that this rate is lower, even if the outcome,
all alerts are solved, is the same. This shows again, the importance of an appropriate
trigger condition.

Comparing the results in this evaluation with the previous simulations, shows that the
rates for the use case are much better. That is because the number of responses corre-
sponding implementations and consequences is lower. The simulations use an extensive
policy to show the applicability for larger systems. The use case of the data cabin network
has less response options and is more restrictive than the policy used in the simulations.

As seen before the rates rise with a higher number of alerts and slightly drop for the

164 8. Implementation and Evaluation

Tab. 8.15: Alert per Second Rate (alert/s) for all Test Cases (t) and Trigger Settings 9

#alerts 1000 1500 2000 2500 3000 3500 4000 4500 5000

t1 145 144 152 191 186 181 176 174 168

t2 for sameC 91 119 143 191 186 181 177 175 169

t3 for sameC 83 115 143 176 179 178 173 171 168

t4 for sameC 83 115 142 178 180 179 173 170 166

t2 for sameS 90 115 143 181 186 182 176 174 168

t3 for sameS 79 108 133 162 181 177 172 172 166

t4 for sameS 79 107 136 161 179 178 173 170 168

t2 for sameT 21 24 26 28 29 30 31 34 37

t3 for sameT 21 24 27 28 29 32 32 33 35

t4 for sameT 21 25 27 29 30 32 32 35 36

last datasets. This is because the additional effort for more alerts is lower with a rising
number of alerts. Additional Alert nodes inserted into the system will only lead to
additional edges, and no additional nodes, e.g. alerts are only added to an existing alert
context during aggregation.

New Nodes and Entities per Second Rate Within this evaluation we compare all our
measurements based on the entities that can be processed. As already shown before,
the rate conducted of the new nodes or entities results, as expected, in an equivalent
graph as if only showing the Alert Context nodes, we show only the respective graph
of new nodes. The results are shown in Figure 8.4b. The x-axis shows the number of
nodes inserted during processing the dataset. The y-axis shows the nodes per second rate
needed to process the dataset in average given in seconds (node/s). The y-axis is given
in log-scale with basis 2. As the representation of the new nodes and the new entities
nearly look the same, we limit ourselves to show the behavior for new nodes.

Within Figure 8.4b we see the opposite behavior compared to the execution time. The
number of nodes on the x-axis is slightly different for all trigger settings and the base line.
This is because the number of Bundle nodes differ through the settings. Within the base
line, no bundles are present, the trigger setting based on the same attack classification
and same source are nearly equal. The last trigger setting based on the same target shows
a shift to the right on the x-axis as noticeably more Bundle nodes are generated.

Summary and Conclusion Within the evaluation of the use case, we are able to show
the applicability of the proposed IHS for the given use case of the data cabin network of an
aircraft. Additionally, we investigate the importance of the trigger mechanisms within the
response identification module by showing the impact of amendable trigger settings leading
to a higher complexity and more concurrent response execution processes. Moreover, we
validated the minor impact of the response selection and response execution module even
with non-optimal settings for the trigger conditions in the response identification module.

8.2. Evaluation 165

8.2.6 Security and Threat Analysis

In this subsection possible attack vectors on the proposed IHS are examined and strategies
to cope with those attacks are discussed. We consider the following attack vectors for
our IHS:

• DOS attacks on the IHS are covered in Subsubsection 8.2.6.1

• Compromised or impersonated components are covered in Subsubsection 8.2.6.2

• Data leakage on the blackboard is covered in Subsubsection 8.2.6.3

• Data loss on the blackboard is covered in Subsubsection 8.2.6.4

8.2.6.1 DOS Attacks

A typical challenge for IDSes are DOS attacks flooding the system with alerts and leading
to critical performance decreases. In order to secure the proposed IHS from DOS attacks,
different countermeasures can be applied.

First, the interfaces responsible for insertion of information can be enhanced by apply-
ing prefiltering of incoming information. This mainly targets interfaces for IDSes inserting
new Alert and Alert Context nodes. Single IDSes can be rate limited in order to
ensure that a compromised IDS cannot flood the proposed IHS. In case of corrupted
monitoring modules, those can be rate limited as well.

Additionally, multiple instances of the interfaces or modules can be used in parallel.
Multiple interface instances can balance the load occuring during the insertion of alerts
raised by IDSes. Multiple instances of the modules can balance the load of the system
during processing. In case of using multiple module instances in parallel the controller can
be responsible for distributing the load between the single modules.

Another option for splitting the load between modules of the alert processing step is
to split the rules they process. An aggregation or correlation module is equipped with
a number of different aggregation or correlation rules. For example, the aggregation
module applies rules to aggregate Alert Context nodes with the same target and
Alert Context nodes with the same source, each of those two rules can be applied by
two instance of the aggregation module.

Additionally, the controller itself can be designed to be distributed. Multiple instances
of the controller can be achieved by separating the responsibilities of the controller. This
means that each controller instance is responsible for a certain distinct subset of informa-
tion elements and notifies modules listening to those information elements.

8.2.6.2 Compromised or Impersonated Components

In case a single module or interface of the proposed IHS is compromised wrong information
can be propagated on the blackboard. This can lead to wrong decisions within the incident
handling process. Additionally, compromised modules or interfaces can simply not forward
information to the blackboard. Consequently, the security incident cannot be detected.
Additionally, an attacker may tries to impersonate a certain module in order to disturb
the IHS. The attacker subscribes for information elements stored on the blackboard and
gets notified on changes. The attacker can than actively disturb the execution by adding
or deleting certain information elements stored on the blackboard.

To prevent those attacks the modules and interfaces needs to be authenticated by
the controller, e.g. using remote attestation. Before a module or interface can subscribe

166 8. Implementation and Evaluation

to certain information elements, the modules have to prove their authenticity, e.g. using
cryptographic keys. The controller can than set the appropriate access permissions for the
module or interface. This allows to restrict the access of single modules to information
elements they need for their execution by limiting their access to, e.g. certain tables.
Using authentication mechanisms ensures that only legitimate modules or interfaces can
connect to the blackboard. In case signs of a compromise of a module or interface appear,
the controller can revoke the access rights of the respecting module or interface. The
compromised module is than not able to access the blackboard until the controller allows
access again. Therefore, the prove of authenticity has to be done repeatedly.

In order to cope with a compromised controller, the following strategy can be applied.
Multiple controller instances are used. Those controller instances monitor and observe
each other. In case a compromised controller is detected, a consensus protocol can be used
to determine whether a suspicious controller is compromised or not. If the critical mass
of controllers agree on the compromise of the suspicious controller they can conjointly
exclude this controller by revoking its access rights on the blackboard.

8.2.6.3 Data Leakage on the Blackboard

Each module or interface can potentially read and write all information elements stored
on the blackboard. Due to an intrusion that compromises a module or interface or due
to a failure, information not needed for the execution of a module or interface can leak.
This can be critical as the network topology is stored on the blackboard. For example,
the users that are logged on certain devices are stored on the blackboard, that allows to
track the single users.

To encounter this problem the principle of least privileges has to be enforced. Hereby,
privileges are interpreted as access rights to certain information elements, attributes the
information elements have and relations between information elements. This access of
modules and interface has to be restricted. This can be done by limiting the access of a
certain module or interface directly on the blackboard. The underlying database has to
support multi-user access in order to equip each module with unique credentials. With
respect to the modules or interfaces needs, the access rights to the information elements
has to be restricted to those needed for the module’s execution.

If a module or interface needs a combination of different information elements con-
nected through edges the blackboard has to provide views encapsulating this combined
information element. For example, a module needs the relation between IP nodes and
Device node, it would need to follow the edges from the IP to the MAC node and further
to the Device node. The MAC address is not relevant to the module but needs to be
traversed. The blackboard can than provide a view containing the mapping of IP and
device without information about the MAC address.

8.2.6.4 Data Loss on the Blackboard

Due to attacks on the blackboard itself, information stored on the blackboard may get
lost. For example, the underlying database or the device the database runs on could be
compromised and damaged.

To counteract possible data loss of the blackboard a distributable database can be used
as underlying database system. The data can than be distributed across different multiple
physical locations that are independent from each other such that in case of an attack
only a single instance is affected. For synchronization between the multiple instances
of the database replication or duplication strategies can be used to keep a concurrent

8.3. Publication Reference 167

state of all instances. In case of data loss of single instances the affected database
can be restored using the remaining working instances of the database. Additionally, the
distributed database increases the resilience of the proposed IHS.

8.3 Publication Reference

Parts of the content of this chapter are already published on WISCS (Workshop on
Information Sharing and Collaborative Security) 2016 held in cooperation with NOMS
(cf. [62]). The own contribution of this paper are the design and the implementation
of the proposed IHS. The design and realization of the evaluation are also part of the
own contribution. This chapter includes a more detailed view on the implementation and
evaluation than the paper. The evaluation of the response capabilities and the use case
evaluation was not part of the paper.

168 8. Implementation and Evaluation

9. CONCLUSIONS

Incident handling, consisting of intrusion detection, alert processing and intrusion response,
increases the resilience of IT systems and ensures service continuity even during an on-
going attack. This thesis addresses the following central research objective:

How to increase security of computer networks by integrating automated intrusion
response into a holistic Incident Handling System (IHS)?

This overall research objective can be divided further into research questions that are
answered in this thesis. In the following we will cover the contributions to the single
research questions achieved in this thesis and highlight the key findings ascertain in this
thesis. Afterwards, we discuss possible future work and research directions.

9.1 Contributions to Research Questions and Key Findings

Research Question RQ1 – What are requirements for an IHS? We identify functional
and non-functional requirements for a holistic IHS from analyzing existing IHSes and
collecting explicitly stated requirements from literature. Our analysis of the related work
shows that non of the existing approaches is able to fulfill all identified requirements.
The main issues are spotted in the field of triggering responses in a flexible manner and
structured execution of responses. Additionally, the selection mechanisms are not usable
for multiple responses.

Research Question RQ2 – How to integrate all single steps into an IHS in a contin-
uous manner? To answer this research question, we analyze possible execution models
for incident handling. We identify shortcomings of sequential execution and approaches
based on Complex Event Processing (CEP) or agents. Additionally, we examined the
advantages of systems based on an information sharing component and cover limitations
of existing approaches. Based on this findings we propose a comprehensive and collab-
orative IHS based on the Blackboard Pattern using an information sharing component
and an appropriate execution model. We disassembled the incident handling process into
more manageable modules solving subproblems of the incident handling process and pro-
viding a holistic solution due to collaboration. Those modules are designed to be free of
interference and conflicts to enhance collaboration between these modules. Within our
overall evaluation we are able to show the interoperability of our proposed module and the
applicability of our comprehensive IHS.

Research Question RQ3 – What information elements are required to support all
steps of incident handling? Using the Blackboard Pattern requires an underlying in-
formation model in order to enable the modules to collaborate. Therefore, we analyze
the needed steps of incident handling, namely intrusion detection, alert processing, and

170 9. Conclusions

intrusion response, and identify required information elements. We propose a novel infor-
mation model covering all needed information elements using a graph-based representation
to provide the needed connections between information elements and enable information
sharing between the modules.

Research Question RQ4 – How to reliably identify attacks in a stream of packets?
Within this research question we investigate that the reliability of an Intrusion Detection
System (IDS) is crucial for subsequent intrusion response. Automated intrusion response
can deal with detected attacks as well as misconfigurations, but is partially useful in
case of false alerts. Therefore, we propose an anomaly-based IDS using a rule-based
specification of the protocol behavior. Deviations from the specified behavior are detected
as attacks and will be handled by subsequent intrusion response. We propose a novel IDS
based on CEP and provide a rule set for the SOME/IP protocol that is used in the data
cabin network acting as use case of this thesis. Additionally, our approach is capable of
identifying attacks within a stream of packets as soon as the attack is unambiguous. The
proposes IDS allows to reliably detect attacks just-in-time within a stream of packets.

Research Question RQ5 – How to determine when to react? Based on our informa-
tion model, we derived possible trigger conditions to initiate automated intrusion response.
Those triggers can be calculated based on the collected information and are combinable
in a flexible manner in order to cover multiple different use cases. In our evaluation of the
overall system, we show that the selection of an appropriate trigger mechanisms is crucial
for the efficiency of the overall IHS.

Research Question RQ6 – What are suitable response options and how to identify
them? We identified and classified possible responses an holistic IHS can support due to
a literature search. We provide a classification scheme based on available taxonomies that
eases the identification and selection of responses for specific use cases and environments.
We utilized this scheme for our use case, the data cabin network within an airplane, to
map possible attacks, our IDS is able to detect, to applicable responses with respect to
the requirements of the underlying use case. In our implementation we provide a response
identification module that is capable of identifying effective and available responses based
on the classification and target of a security incident.

Research Question RQ7 – How to assess and select an optimal set of responses
from multiple response options? Given a list of suitable responses, the optimal set
of responses to execute on the target system needs to be selected. We identified rela-
tions between responses including or excluding other responses from the response plan.
To model the response selection process we propose a set-based representation of the
response selection mechanism that can be transferred to a linear optimization problem.
The resulting Mixed Integer Linear Programming (MILP) definition can be solved and the
optimal set is deduced. We provide an implementation using GLPK and CPLEX that
are compared with respect to the solution quality and performance with two heuristics.
We are able to show that the solution quality can be improved by using our MILP-based
approach while the computational effort is still acceptable. Compared to existing ap-
proaches towards response selection, we are able to determine a comprehensive response
plan considering relations between responses instead of only selecting a single response
for a dedicated alert.

9.2. Future Work and Further Research Directions 171

Research Question RQ8 – How to deploy and execute the selected set of responses
within the target system? To answer this research question we propose a response plan
description language to allow a structured execution of selected responses. We provide
an execution framework, called GPLMT, that can be used as central response repository,
allows a flexible deployment of responses and can execute a structured response plan given
in our description language. We integrated this tool into our overall IHS and provide an
automated generation of response plans based on selected responses.

9.2 Future Work and Further Research Directions

Potential future work and further research directions are possible in different areas. In the
following, we examine those areas and spot possible solutions to the identified issues.

Security Related Issues Our evaluation of the overall IHS shows that the security of the
proposed system can be improved. Here, a more detailed analysis of possible attack vectors
is required in order to identify possible issues. Afterwards, additional security measures to
protect the IHS itself have to be integrated into the system. Especially, authentication and
identification mechanisms have to be developed in order to protect the blackboard storing
all the required information and to cope with malicious or misconfigured modules. As may
be privacy-related information is stored on the blackboard, the principle of least privileges
has to be enforced for modules working on the blackboard. Here, an access strategy has to
be elaborated and deployed on the blackboard. Additionally, the communication between
the modules and the blackboard needs to be secured appropriately. Secure and encrypted
channels are required to cope with interception and eavesdropping attempts.

Performance Related Issues With respect to performance some additional measures
can be integrated into the proposed IHS to improve the overall performance. First, the
response evaluation module has to be improved as the evaluation had shown shortcomings
of this module. Additionally, another backend may be more appropriate. Within our
evaluation we show that OrientDB is not suitable as graph-based database, but other
graph-based databases are available that may be more suited than OrientDB. In this field
a more deeper analysis needs to be done. Additionally, all modules do not use caches that
may further improve the performance. Closely related are optimizations with respect to the
querying behavior. The current implementation does not support bulk queries but inserts
or updates each information element within a single query. Of course this is not optimal
and provides space for improvements. A last option for improving the performance is to
exchange the programming language and using a more performant programming language
than Python.

Distribution Related Issues The proposed system was only tested on a single machine.
The design allows to distribute the underlying blackboard as well as the modules across the
network. Therefore, an appropriate communication channel is required. An evaluation with
respect to performance would be needed for the distributed variant of the proposed IHS.
Additionally, the design of a distributed controller can enhance the overall IHS. Methods
to coordinate all distributed components need to be developed and further evaluated.

Feature Related Issues The functionality of our proposed controller is limited. Within
this directions improvements are possible. Our controller does not support symmetric

172 9. Conclusions

publish-subscribe and cannot cope with a more complex control plan. Additionally, security
related features could be added into the controller. Our implementation does not provide
a garbage collector. The design, implementation and evaluation of a suitable garbage
collector is also part of future work. Within the field of alert processing our implementation
is limited. Here, additional modules can be integrated and tested. The same applies within
the field of monitoring and IDSes. Within this fields we see space for improvements as
those topics are out of scope of this thesis.

ABBREVIATIONS

ACID Atomicity, Consistency, Isolation and Durability. 138

AGI Airbus Group Innovations. v, 47, 50, 53, 61, 66, 81

BMBF German Federal Ministry of Education and Research. v

CEP Complex Event Processing. vii, ix, 4, 5, 37, 38, 47, 52–54, 60, 63–66, 169, 170

CIA Confidentiality, Integrity and Availability. 7, 90, 91

CIDF Common Intrusion Detection Framework. 7, 10

CPLEX IBM ILOG CPLEX Optimization Studio. 106, 108–112, 120, 152, 170

DecADe Decentralized Anomaly Detection. v

DOS Denial of Service. 29, 31, 42, 50, 59, 64, 71, 82, 97, 119, 148, 153, 165

ECA Event Condition Action. 14, 42, 115, 118, 181

EPL Event Processing Language. 54–57, 60

GLPK GNU Linear Programming Kit. 106, 108–112, 152, 170

GPLMT GNUnet Parallel Largescale Management Tool. 121–131, 135, 141–145, 152,
154, 156, 161, 171, 177, 181

HIDS Host-based Intrusion Detection System. 8, 9, 17, 20

I(D)RS Intrusion (Detection and) Response System. 7, 39

IDMEF Intrusion Detection Message Exchange Format. 7, 8, 10, 24, 28, 29, 47, 115,
142–144, 147, 152, 160

IDS Intrusion Detection System. vii, ix, 1, 3, 4, 7–10, 13, 17, 20, 21, 23, 26, 28–32,
38–40, 42–44, 46, 47, 50–52, 60, 63–66, 79, 80, 90–94, 117, 119, 123, 142–144,
148, 152, 153, 160, 161, 165, 170, 172, 177

IHS Incident Handling System. vii, ix, 2, 4, 5, 8, 17–24, 29, 31–33, 39, 42, 43, 45, 60,
67, 84, 85, 90, 120, 121, 132, 137–139, 141, 143–147, 150, 151, 153, 160, 164,
165, 167, 169–171, 177

ILP Integer Linear Programming. 96

IP Internet Protocol. 53

174 ABBREVIATIONS

IPS Intrusion Prevention System. 7, 11

IRMEF Intrusion Response Message Exchange Format. 132, 135

IRS Intrusion Response System. 1, 7, 11, 13, 14, 17, 37, 39, 41–45, 68, 93, 97, 98,
114, 117, 119, 131, 132, 134

JSON JavaScript Object Notation. 140

LP Linear Programming. 87, 95–97, 101, 106, 120

MILP Mixed Integer Linear Programming. vii, ix, 4, 5, 87, 96, 98, 101, 102, 105–107,
112, 145, 170

NETCONF Network Configuration Protocol. 133, 135

NIDS Network-based Intrusion Detection System. 5, 9, 17, 20, 50, 52, 64

OrBAC Organization Based Access Control. 28, 40, 41, 115

RELAX NG Regular Language Description for XML New Generation. 130

RPC Remote Procedure Call. 47, 48, 133

SCP Secure Copy. 131

SIEM Security Information and Event Management. 29, 30

SNMP Simple Network Management Protocol. 132, 133, 135

SOME/IP Scalable service-Oriented MiddlewarE over IP. vii, ix, 47–50, 52–57, 60, 61,
64, 66, 81, 82, 170, 177, 179

SQL Structured Query Language. 54, 60, 61, 138

SSH Secure Shell. 122–124, 130, 132

SURF Systemic Security for Critical Infrastructures. v

SWRL Semantic Web Rule Language. 115

TCP Transmission Control Protocol. 47, 53

UDP User Datagram Protocol. 47, 53

VM Virtual Machine. 26, 68, 69, 81–84, 89, 123, 160

WinRM Windows Remote Management. 132

XML Extensible Markup Language. 10, 55, 122, 124, 130, 133, 143, 160

XSD XML Schema. 130

GLOSSARY

Alert Processing

Processing incoming raw alerts using different methods like aggregation, correlation,
and root cause analysis. vii, 2–5, 8, 10, 11, 15, 17, 19–24, 26, 30–33, 37, 38, 40,
41, 43, 45, 46, 85, 143–145, 147, 152, 159, 165, 169, 172

Blackboard Pattern

Software pattern with global information sharing component (knowledge base, black-
board) commonly updated by modules (knowledge sources). vii, ix, 17, 20–22, 30,
146, 169, 177

Candidate Responses

Set of responses applicable to the security incident and deployed on the victim
(target) of an attack. 15, 18, 23, 32–34, 67, 68, 75, 86, 87, 92, 98, 103, 116–118,
145, 146, 152, 154

Incident Handling

Comprehensive process consisting of the three main steps intrusion detection, alert
processing and intrusion response. vii, 1–3, 5, 8, 11, 17–20, 22, 24, 29–31, 37–39,
43–45, 135, 142, 145, 146, 160, 165, 169

Information Element

A single node within the information model representing a single concept. 2, 3, 23,
24, 26, 29, 46, 79, 85, 97, 139, 144–146, 151, 157, 165, 166, 169–171

Infrastructure Information

Part of the information model describing the underlying target system. 23, 24, 26,
28–35, 68, 79, 97, 101, 102, 124, 131, 142, 147

Intrusion Detection

Identifying attacks against the target system by monitoring and analyzing the target
system and generating security events (alerts) in case of a detected attack. vii, 1,
2, 4, 5, 8, 9, 11, 19, 20, 22, 24, 26, 28, 37, 39, 40, 42, 44, 45, 47, 115, 117, 169

Intrusion Prevention

Hardening and securing the target system such that security incidents are prevented
to happen. 1

Intrusion Response

Counteracting a detected intrusion by triggering appropriate responses. vii, 1–5, 7,
8, 13, 15, 17–24, 26–30, 32, 33, 37, 39, 40, 44–46, 51, 52, 60, 67, 68, 75–81, 85,
92, 97, 115, 118, 129, 135, 137, 143–146, 151, 152, 169, 170

176 GLOSSARY

Response Assessment

Evaluating the costs of a single or set of responses to enable response selection and
to compare the response costs against the costs of the security incident. 15, 20,
23, 34, 39, 43, 87, 88, 90, 92, 94, 95

Response Evaluation

During response execution metrics required for response selection and response as-
sessment are collected. 23, 34–36, 144, 146, 152, 154–157, 159, 160, 171

Response Execution

Executing responses on the target system following a predefined response plan. 4,
5, 14, 33–36, 40, 41, 43, 46, 86, 101, 121, 131–135, 143–145, 152, 156, 159, 160,
162–164

Response Identification

Identifying suitable responses applicable to the security incident and deployed on the
victim (target) of an attack as candidate responses. 4, 33–36, 67, 68, 75, 76, 78,
84–86, 102, 143, 145, 146, 152, 154, 155, 157, 159–162, 164, 170

Response Plan

Structured execution plan for responses including the control flow and response
interdependencies. vii, 4, 5, 15, 18, 19, 33–36, 40, 41, 46, 95, 99, 107, 118–132,
134, 135, 144, 145, 152, 154, 161, 170, 171

Response Selection

Identifying the optimal combination of responses from a set of candidate responses.
vii, 4, 5, 14, 20, 27, 33–36, 39–43, 87, 92, 94, 95, 101, 102, 106, 107, 114–117,
119, 120, 143, 145, 146, 152, 154–156, 159–164, 170

Security Incident

A detected attack consisting of one or multiple security events. vii, 1–3, 7, 8, 10–
15, 17–20, 23, 26–29, 33–36, 40–44, 46, 52, 53, 60, 67, 68, 70, 75, 76, 78–81,
86–95, 97–103, 106, 107, 114–120, 122, 123, 128, 129, 132, 145, 146, 148, 165,
170

Target System

The underlying infrastructure that is monitored and protected. vii, 1–3, 7–9, 11,
13, 15, 17–20, 23, 27–29, 31, 33, 34, 39, 42–44, 50, 60, 67–70, 75, 78, 79, 81,
82, 84, 86–88, 95, 98, 99, 101, 107, 116, 121–124, 131, 132, 135, 140, 141, 148,
170, 171

LIST OF FIGURES

2.1 General Structure of an IDS According to [152] . 8

3.1 Blackboard Pattern in UML-Notation [91] . 21
3.2 System Overview of the Proposed IHS . 22
3.3 Information Model of the Blackboard to Enable Information Sharing among

Modules . 25
3.4 Interaction of Modules from all Steps of the Incident Handling Process –

Example . 35

4.1 Scalable service-Oriented MiddlewarE over IP (SOME/IP) Message For-
mat as Specified in [7] . 48

4.2 Simplified Airbus Data Cabin Network . 51
4.3 Time Comparison for Single Rules. 61
4.4 Time Comparison for Multiple Rules . 62
4.5 Memory Consumption for Different Scenarios . 63

5.1 Hierarchy of Alert Context Nodes During Response Identification 76
5.2 Dependency Graph of Attacks, Consequences and Responses for the Data

Cabin Network Use Case . 84

6.1 Network Topology Example. 97
6.2 Performance with a Varying Number of Responses and a Fixed Number of

Entities and Conflicts . 109
6.3 Performance with a Varying Number of Entities and a Fixed Number of

Responses and Conflicts . 110
6.4 Performance with a Varying Number of Conflicts and a Fixed Number of

Entities and Responses . 111
6.5 Performance with a Varying Coverage Factor and a Fixed Number of En-

tities, Responses and Conflicts . 112
6.6 Cost Evaluation with Increasing Problem Complexity in One of the Follow-

ing Dimensions: Number of Responses, Entities, Conflicts, or Coverage
Factor . 113

7.1 GNUnet Parallel Largescale Management Tool (GPLMT)’s Architecture
– Overview . 123

8.1 Evaluation of Different Datasets and Test Cases Using PostgreSQL and
OrientDB .. 151

8.2 Execution Time of Different Datasets and Test Cases . 156
8.3 Alert Context Nodes per Second Rate for all Test Cases of the DOS

and Flooding Dataset . 158

178 LIST OF FIGURES

8.4 Execution Time and Nodes per Second Rate for all Test Cases and Trigger
Settings for the Use Case Scenario . 163

LIST OF TABLES

1.1 Contributions and Structure of this Thesis . 4

2.1 Overview of Metrics to Evaluate Responses . 13

3.1 Comparison of Related Work Based on the Requirements Stated in Sub-
section 3.3.1 . 30

3.2 Comparison of Related Work Based on the Requirements Stated in Sec-
tion 3.1 . 45

4.1 Supported Message Types of the SOME/IP Protocol . 49
4.2 Time Consumption per Rule in Seconds. 62
4.3 Time Consumption with Multiple Rules Activated . 62
4.4 Time Consumption for Listing 4.4 with Varying Window Size 64
4.5 Comparison of Related Work Based on the Requirements Stated in Sub-

section 4.1.4 . 66

5.1 List of Available Responses Found in Literature . 72

6.1 Comparison of Related Work Based on the Requirements Stated in Sub-
section 6.1.1 . 94

6.2 Sets and Symbols Used in the System Model . 98
6.3 Possible Responses with Executing Entities, Effected Entities and Metrics . 101
6.4 Evaluation Datasets and Response Coverage Factors . 108
6.5 Standard Deviation for an Increasing Number of Responses 109
6.6 Standard Deviation for an Increasing Number of Entities 110
6.7 Standard Deviation for an Increasing Number of Conflicts 110
6.8 Standard Deviation for an Increasing Coverage Factor . 111
6.9 Minimum (min), Maximum (max) and Average (avg) Cost Saving between

Optimized Solution and Cheapest-First Metric in % . 114
6.10 Comparison of Related Work Based on the Requirements Stated in Sub-

section 6.2.1 . 120

7.1 Comparison of Related Work Based on the Requirements Stated in Sub-
section 7.1.1 . 135

8.1 Properties of the DOS Dataset . 148
8.2 Properties of the Flooding Dataset . 149
8.3 Properties of the Attack Path Dataset . 149
8.4 Average Standard Deviation . 149
8.5 Alerts per Second Rate (alert/s) for PostgreSQL p and OrientDB o 150
8.6 Basic Information on the Generated Infrastructure and Used Policy 153
8.7 Properties of the DOS Dataset . 153

180 LIST OF TABLES

8.8 Properties of the Flooding Dataset . 154
8.9 Standard Deviation for all Test Cases (t1 to t5) and Datasets (d) in

Percent (%) of the Average Value . 155
8.10 Alert per Second for all Test Cases (t1 to t5) and Datasets (d). 157
8.11 New Nodes (First Part) and New Entities (Second Part) per Second Rate

for all Test Cases (t1 to t5) and Datasets (d) . 159
8.12 Basic Information on the Generated Infrastructure and Used Policy 161
8.13 Properties of the Use Case Dataset . 161
8.14 Standard Deviation for all Test Cases (t1 to t4) and Trigger Settings in

Percent (%) of the Average Value . 162
8.15 Alert per Second Rate for all Test Cases (t) and Trigger Settings 164

LIST OF LISTINGS

4.1 Check for Malformed Packets . 56
4.2 Check of Changed Client ID/IP Assignment 56
4.3 Check for Correct Error Behavior . 57
4.4 Check for Missing Responses . 58
4.5 Check for Missing Requests . 58
4.6 Helper Query to Set the Minimum Timestamp to be Considered 59
4.7 Check for Timing Constraints . 59
5.1 Query to Traverse Up the Alert Context Hierarchy for PostgreSQL . . . 85
6.1 Event Condition Action (ECA) Rules to Implement Policies 115
7.1 Basic Structure of the Response Plan with GPLMT 124
7.2 Example for Local, SSH and Group Target. 125
7.3 Example Tasklist Utilizing put and run Commands. 127
7.4 Example Steps Definition Utilizing synchronize and teardown Com-

mands. 128
8.1 Node Class Example – Service Node 139
8.2 Edge Class Example – serviceusesip Edge 140
8.3 Infrastructure Configuration – Device Node 141
8.4 Policy Configuration – Response Node 142

182 LIST OF LISTINGS

LIST OF ALGORITHMS

1 Response Identification – Main Function 75
2 Response Identification – Callback Function 77
3 Generate Dependency Graph . 129
4 Generate Steps Definition . 130

184 LIST OF ALGORITHMS

LIST OF EQUATIONS

6.1 Cost Function for Response Selection . 88
6.2 Objective Function for Response Selection . 103
6.3 Feasibility Constraint ’freed’ for Response Selection . 103
6.4 Feasibility Constraint ’unique’ for Response Selection . 103
6.5 Feasibility Constraint ’damage’ for Response Selection. 104
6.6 Feasibility Constraint ’conflict’ for Response Selection . 104
6.7 Feasibility Constraint ’precondition’ for Response Selection . 104
6.8 Optimality Constraint for Response Selection . 104

186 LIST OF EQUATIONS

Bibliography

[1] Albrecht, J., and Huang, D. Y. Managing Distributed Applications using Gush. In
Testbeds and Research Infrastructures. Development of Networks and Communities,
T. Magedanz, A. Gavras, N. Thanh, and J. Chase, Eds., vol. 46 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer Berlin Heidelberg, 2011, pp. 401–411.

[2] Aniello, L., Lodi, G., and Baldoni, R. Inter-domain Stealthy Port Scan Detection
Through Complex Event Processing. In Proceedings of the 13th European Work-
shop on Dependable Computing (EWDC ’11) (New York, NY, USA, 2011), ACM,
pp. 67–72.

[3] Aniello, L., Luna, G. A., Lodi, G., and Baldoni, R. A collaborative event processing
system for protection of critical infrastructures from cyber attacks. In Proceesd-
ing of 30th International Conference on Computer Safety, Reliability, and Security
(SAFECOMP) (Berlin, Heidelberg, 2011), Springer Berlin Heidelberg, pp. 310–323.

[4] Anuar, N., Papadaki, M., Furnell, S., and Clarke, N. An investigation and survey
of response options for Intrusion Response Systems (IRSs). In Information Security
for South Africa (ISSA) (2010), pp. 1–8.

[5] Anuar, N. B., Papadaki, M., Furnell, S., and Clarke, N. An investigation and survey
of response options for Intrusion Response Systems (IRSs). In Information Security
for South Africa (ISSA) (2010), IEEE, pp. 1–8.

[6] Atighetchi, M., Pal, P., Webber, F., Schantz, R., Jones, C., and Loyall, J. Adaptive
Cyberdefense for Survival and Intrusion Tolerance. IEEE Internet Computing 8, 6
(2004), 25–33.

[7] AUTOSAR. Specification of SOME/IP Transformer. Tech. Rep. AUTOSAR Re-
lease 4.2.2 UID 660, Standard, AUTomotive Open System ARchitecture, 2015.

[8] Balepin, I., Maltsev, S., Rowe, J., and Levitt, K. Using Specification-Based Intrusion
Detection for Automated Response. In Recent Advances in Intrusion Detection,
G. Vigna, C. Kruegel, and E. Jonsson, Eds., vol. 2820 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, pp. 136–154.

[9] Bhandari, P., and Gujral, M. S. Ontology based approach for perception of network
security state. In Recent Advances in Engineering and Computational Sciences
(RAECS) (March 2014), pp. 1–6.

[10] Bhargavi, R., Vaidehi, V., Bhuvaneswari, P. T. V., Balamurali, P., and Chandra,
G. Complex Event Processing for Object Tracking in Wireless Sensor Networks.
In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT) (August 2010), vol. 3, pp. 211–214.

188 BIBLIOGRAPHY

[11] Birkholz, H., Sieverdingbeck, I., Sohr, K., and Bormann, C. IO: An Interconnected
Asset Ontology in Support of Risk Management Processes. In ARES (2012), IEEE
Computer Society, pp. 534–541.

[12] Bloem, M., Alpcan, T., and Basar, T. Intrusion Response as a Resource Allocation
Problem. In 45th IEEE Conference on Decision and Control (December 2006).

[13] Boyd, J. A Discourse on Winning and Losing. Unpublished set of briefing slides
available at Air University Library, Maxwell, AFB, Alabama (May 1987).

[14] Briesemeister, L., Cheung, S., Lindqvist, U., and Valdes, A. Detection, correla-
tion, and visualization of attacks against critical infrastructure systems. In 8th An-
nual International Conference on Privacy Security and Trust (PST) (August 2010),
pp. 15–22.

[15] Bro. https://www.bro.org/.

[16] Buchmann, A., and Koldehofe, B. Complex event processing. IT-Information Tech-
nology Methoden und innovative Anwendungen der Informatik und Information-
stechnik 51, 5 (2009), 241–242.

[17] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad,
P., and Stal, M. Pattern-oriented software architecture, volume 1: A system of
patterns, 1996.

[18] Butler, J. M. Need for Speed: Streamlining Response and Reaction to Attacks. A
sans whitepaper, infosec reading room, SANS Institute, May 2013.

[19] Carey, N., Clark, A., and Mohay, G. IDS Interoperability and Correlation Using
IDMEF and Commodity Systems. In Information and Communications Security,
R. Deng, F. Bao, J. Zhou, and S. Qing, Eds., vol. 2513 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2002, pp. 252–264.

[20] Carver, C. A., Hill, J. M., and Pooch, U. W. Limiting uncertainty in intrusion
response. In Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security (2001), pp. 5–6.

[21] Carver Jr, C. A. Adaptive agent-based intrusion response. PhD thesis, Texas A and
M University, 2001.

[22] Case, J., Fedor, M., Schoffstall, M., and Davin, J. A Simple Network Management
Protocol (SNMP). RFC 1157, RFC Editor, May 1990.

[23] Cichonski, P., Millar, T., Grance, T., and Scarfone, K. SP 800-61 Rev. 2. Computer
Security Incident Handling Guide. Tech. rep., National Institute of Standards &
Technology (NIST), Gaithersburg, MD, United States, 2012.

[24] Costante, E., Fauri, D., Etalle, S., Hartog, J. D., and Zannone, N. A Hybrid
Framework for Data Loss Prevention and Detection. In 2016 IEEE Security and
Privacy Workshops (SPW) (May 2016), pp. 324–333.

[25] Cugola, G., and Margara, A. Processing Flows of Information: From Data Stream
to Complex Event Processing. ACM Computer Surveys 44, 3 (June 2012), 15:1–
15:62.

BIBLIOGRAPHY 189

[26] Cuppens, F. Managing alerts in a multi-intrusion detection environment. In Proceed-
ings 17th Annual Computer Security Applications Conference (ACSAC) (December
2001), pp. 22–31.

[27] Cuppens, F., and Miege, A. Alert correlation in a cooperative intrusion detection
framework. In Proceedings of IEEE Symposium on Security and Privacy (2002),
pp. 202–215.

[28] Cuppens, F., and Miège, A. Alert Correlation in a Cooperative Intrusion Detection
Framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy
(SP ’02) (Washington, DC, USA, 2002), IEEE Computer Society.

[29] Cuppens-Boulahia, N., Cuppens, F., de Vergara, J., Vazquez, E., Guerra, J., and
Debar, H. An ontology-based approach to react to network attacks. In 3rd Inter-
national Conference on Risks and Security of Internet and Systems (CRiSIS ’08)
(October 2008), pp. 27–35.

[30] Dain, O., and Cunningham, R. K. Fusing a Heterogeneous Alert Stream into
Scenarios. In In Proceedings of the 2001 ACM Workshop on Data Mining for
Security Applications (2001), pp. 1–13.

[31] Dantzig, G. Linear programming and extensions. Princeton Univ. Press, Aug. 1963.

[32] Dass, M., Cannady, J., and Potter, W. D. A blackboard-based learning intrusion de-
tection system: a new approach. In Developments in Applied Artificial Intelligence.
Springer, 2003, pp. 385–390.

[33] Dass, M., Cannady, J., and Potter, W. D. LIDS: A learning intrusion detection
system. In FLAIRS Conference (2003), pp. 12–16.

[34] Dave, B. T., and Jimit Mahadevia, S. Application Profiling based on Attack Alert
Aggregation. Global Journal of Computer Science and Technology 13, 16 (2014).

[35] Debar, H., Curry, D., and Feinstein, B. The Intrusion Detection Message Exchange
Format (IDMEF). RFC 4765, RFC Editor, March 2007.

[36] Debar, H., Dacier, M., and Wespi, A. Towards a Taxonomy of Intrusion-detection
Systems. Computer Networks 31, 9 (April 1999), 805–822.

[37] Debar, H., Thomas, Y., , Cuppens, F., and Boulahia-Cuppens, N. Response: bridg-
ing the link between intrusion detection alerts and security policies. Intrusion De-
tection Systems 3, 3 (2008), 195–210.

[38] Debar, H., Thomas, Y., Boulahia-Cuppens, N., and Cuppens, F. Using Contextual
Security Policies for Threat Response. In Proceedings of the 3rd International Con-
ference Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
R. Büschkes and P. Laskov, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006, pp. 109–128.

[39] Debar, H., Thomas, Y., Cuppens, F., and Cuppens-Boulahia, N. Enabling auto-
mated threat response through the use of a dynamic security policy. Journal in
Computer Virology 3, 3 (2007), 195–210.

190 BIBLIOGRAPHY

[40] Debar, H., and Wespi, A. Aggregation and Correlation of Intrusion-Detection Alerts.
In Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID ’00) (London, UK, UK, 2001), Springer-Verlag, pp. 85–103.

[41] Eckert, M., and Bry, F. Complex Event Processing (CEP). Informatik-Spektrum
32, 2 (2009), 163–167.

[42] Eckert, M., and Bry, F. Complex event processing (CEP). Informatik-Spektrum
32, 2 (2009), 163–167.

[43] Elshoush, H. An innovative framework for collaborative intrusion alert correlation.
In Science and Information Conference (SAI) (August 2014), pp. 607–614.

[44] Elshoush, H. T., and Osman, I. M. An Improved Framework for Intrusion Alert
Correlation. Lecture Notes in Engineering and Computer Science 2197, 1 (2012),
518–523.

[45] Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman, A. Network Configuration
Protocol (NETCONF). Tech. Rep. 6241, Internet Engineering Task Force, June
2011. Updated by RFC 7803.

[46] EsperTech. Complex Event Processing and Event Series Analysis platform, 2015.
http://www.espertech.com/esper/.

[47] EsperTech. Esper Reference. Version 5.2.0, 2015.
http://www.espertech.com/esper/release-5.2.0/esper-reference/html/index.html.

[48] Fawaz, A., Berthier, R., and Sanders, W. Cost modeling of response actions for
automated response and recovery in AMI. In IEEE Third International Conference on
Smart Grid Communications (SmartGridComm) (November 2012), pp. 348–353.

[49] Ficco, M., and Romano, L. A Generic Intrusion Detection and Diagnoser System
Based on Complex Event Processing. In 2011 First International Conference on
Data Compression, Communications and Processing (June 2011), pp. 275–284.

[50] Foo, B., Glause, M. W., Howard, G. M., Wu, Y.-S., Bagchi, S., and Spafford, E. H.
Intrusion response systems: a survey. In Information Assurance: Dependability and
Security in Networked Systems. Spafford EH (ed.). Morgan Kaufmann Publishers:
Burlington, MA, 2008, pp. 377–412.

[51] Foo, B., Wu, Y.-S., Mao, Y.-C., Bagchi, S., and Spafford, E. ADEPTS: adaptive
intrusion response using attack graphs in an e-commerce environment. In 2005
International Conference on Dependable Systems and Networks (DSN’05) (2005),
IEEE, pp. 508–517.

[52] Gad, R., Kappes, M., Boubeta-Puig, J., and Medina-Bulo, I. Employing the CEP
paradigm for network analysis and surveillance. In Proceedings of the 9th Advanced
International Conference on Telecommunications (June 2013), pp. 204–210.

[53] Gehani, A., and Kedem, G. RheoStat: Real-Time Risk Management. In Recent
Advances in Intrusion Detection: Proceedings of the 7th International Symposium
(RAID04), E. Jonsson, A. Valdes, and M. Almgren, Eds. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 296–314.

BIBLIOGRAPHY 191

[54] Genge, B., Siaterlis, C., Fovino, I. N., and Masera, M. A cyber-physical experimen-
tation environment for the security analysis of networked industrial control systems.
Computers & Electrical Engineering 38, 5 (2012), 1146 – 1161.

[55] Gonzalez-Granadillo, G., Alvarez, E., Motzek, A., Merialdo, M., Garcia-Alfaro, J.,
and Debar, H. Towards an Automated and Dynamic Risk Management Response
System. In Secure IT Systems: 21st Nordic Conference, NordSec 2016, Oulu,
Finland, November 2-4, 2016. Proceedings (Cham, 2016), B. B. Brumley and
J. Röning, Eds., Springer International Publishing, pp. 37–53.

[56] Gonzalez Granadillo, G., Ben Mustapha, Y., Hachem, N., and Debar, H. An
ontology-driven approach to model SIEM information and operations using the
SWRL formalism. International Journal of Electronic Security and Digital Forensics
7 4, 2-3 (2012), 104–123.

[57] Gonzalez Granadillo, G., Débar, H., Jacob, G., Gaber, C., and Achemlal, M. In-
dividual Countermeasure Selection Based on the Return On Response Investment
Index. In Computer Network Security, I. Kotenko and V. Skormin, Eds., vol. 7531 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 156–170.

[58] Granadillo, G. G., Motzek, A., Garcia-Alfaro, J., and Debar, H. Selection of Mit-
igation Actions Based on Financial and Operational Impact Assessments. In 2016
11th International Conference on Availability, Reliability and Security (ARES) (Aug
2016), pp. 137–146.

[59] Gresty, D., Shi, Q., and Merabti, M. Requirements for a general framework for
response to distributed denial-of-service. In Proceedings 17th Annual Computer
Security Applications Conference (ACSAC) (December 2001), pp. 422–429.

[60] Guttman, B., and Roback, E. A. SP 800-12. An Introduction to Computer Security:
The NIST Handbook. Tech. rep., National Institute of Standards & Technology,
Gaithersburg, MD, United States, 1995.

[61] Hasswa, A., Zulkernine, M., and Hassanein, H. Routeguard: an intrusion de-
tection and response system for mobile ad hoc networks. In IEEE International
Conference on Wireless And Mobile Computing, Networking And Communications
(WiMob’2005) (2005), vol. 3, pp. 336–343.

[62] Herold, N., Kinkelin, H., and Carle, G. Collaborative Incident Handling Based on the
Blackboard-Pattern. In Proceedings of the 2016 ACM on Workshop on Information
Sharing and Collaborative Security (New York, NY, USA, 2016), WISCS ’16, ACM,
pp. 25–34.

[63] Herold, N., Posselt, S. A., Hanka, O., and Carle, G. Anomaly detection for
SOME/IP using complex event processing. In NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium (April 2016), pp. 1221–1226.

[64] Herold, N., Wachs, M., Posselt, S.-A., and Carle, G. An Optimal Metric-Aware
Response Selection Strategy for Intrusion Response Systems. In Foundations and
Practice of Security: 9th International Symposium, FPS 2016, Québec City, QC,
Canada, October 24-25, 2016, Revised Selected Papers, F. Cuppens, L. Wang,
N. Cuppens-Boulahia, N. Tawbi, and J. Garcia-Alfaro, Eds. Springer International
Publishing, Cham, 2017, pp. 68–84.

192 BIBLIOGRAPHY

[65] Hooper, E. An Efficient and Intelligent Intrusion Detection and Response System
using Virtual Private Networks, Firewalls and Packet Filters. International Journal
of Security and Its Applications, IJSIA 1, 1 (July 2007), 25–34.

[66] Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., and Anwar, S. Intrusion response
systems: Foundations, design, and challenges. Journal of Network and Computer
Applications 62 (2016), 53 – 74.

[67] Jahnke, M., Thul, C., and Martini, P. Graph based Metrics for Intrusion Response
Measures in Computer Networks. In 32nd IEEE Conference on Local Computer
Networks (LCN) (October 2007), pp. 1035–1042.

[68] Jahnke, M., Thul, C., and Martini, P. Comparison and Improvement of Metrics for
Selecting Intrusion Response Measures against DoS Attacks. In Sicherheit (2008),
Citeseer, pp. 381–393.

[69] Jalal Baayer, B. R. New Cost-Sensitive Model for Intrusion Response Systems
Minimizing False Positive. IJMER - International Journal of Modern Engineering
Research 2, 5 (October 2012), 3473–3478.

[70] Jaros, M. Distribution and orchestration of network measurements on the planetlab
testbed. Bachelor’s thesis, Technische Universität München, Chair for Network
Architectures and Services, 4 2015.

[71] Jr, C. C., Hill, J. M. D., Surdu, J. R., Member, J. R. S., Pooch, U. W., and
Member, S. A Methodology for Using Intelligent Agents to provide Automated
Intrusion Response. In In Proceedings of the IEEE Systems, Man, and Cybernetics
Information Assurance and Security Workshop (2000), pp. 6–7.

[72] Julisch, K. Mining alarm clusters to improve alarm handling efficiency. In Proceed-
ings of the 17th Annual Computer Security Applications Conference (ACSAC 2001)
(2001), IEEE, pp. 12–21.

[73] Julisch, K. Clustering Intrusion Detection Alarms to Support Root Cause Analysis.
ACM Transactions on Information and System Security (TISSEC) 6, 4 (November
2003), 443–471.

[74] Julisch, K., and Dacier, M. Mining Intrusion Detection Alarms for Actionable Knowl-
edge. In Proceedings of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’02) (New York, NY, USA, 2002), ACM,
pp. 366–375.

[75] Kaisler, S. Software Paradigms. Wiley, 2005.

[76] Kamra, A., and Bertino, E. Design and Implementation of an Intrusion Response
System for Relational Databases. IEEE Transactions on Knowledge and Data En-
gineering 23, 6 (2011), 875–888.

[77] Kanoun, W., Cuppens-Boulahia, N., Cuppens, F., and Dubus, S. Risk-Aware Frame-
work for Activating and Deactivating Policy-Based Response. In 4th International
Conference on Network and System Security (NSS) (September 2010), pp. 207–
215.

BIBLIOGRAPHY 193

[78] Kanoun, W., Cuppens-Boulahia, N., Cuppens, F., Dubus, S., and Martin, A. Suc-
cess Likelihood of Ongoing Attacks for Intrusion Detection and Response Systems.
In International Conference on Computational Science and Engineering (CSE ’09)
(August 2009), vol. 3, pp. 83–91.

[79] Kanoun, W., Cuppens-Boulahia, N., Cuppens, F., Dubus, S., and Martin, A. Intel-
ligent response system to mitigate the success likelihood of ongoing attacks. In 6th
International Conference on Information Assurance and Security (IAS) (Aug 2010),
pp. 99–105.

[80] Kanoun, W., Samarji, L., Cuppens-Boulahia, N., Dubus, S., and Cuppens, F.
Towards a Temporal Response Taxonomy. In Data Privacy Management and
Autonomous Spontaneous Security, R. Di Pietro, J. Herranz, E. Damiani, and
R. State, Eds., vol. 7731 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 318–331.

[81] Karp, R. Reducibility among combinatorial problems. In Complexity of Computer
Computations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[82] Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., and Gurvich, V. Generating
All Vertices of a Polyhedron Is Hard. Discrete & Computational Geometry 39, 1-3
(2008), 174–190.

[83] Kheir, N., Cuppens-Boulahia, N., Cuppens, F., and Debar, H. A Service Dependency
Model for Cost-Sensitive Intrusion Response. In Computer Security – ESORICS
2010, D. Gritzalis, B. Preneel, and M. Theoharidou, Eds., vol. 6345 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, pp. 626–642.

[84] Kheir, N., Debar, H., Cuppens-Boulahia, N., Cuppens, F., and Viinikka, J. Cost
Evaluation for Intrusion Response Using Dependency Graphs. In International Con-
ference on Network and Service Security (N2S ’09) (June 2009), pp. 1–6.

[85] Khurana, H., Basney, J., Bakht, M., Freemon, M., Welch, V., and Butler, R.
Palantir: A Framework for Collaborative Incident Response and Investigation. In
Proceedings of the 8th Symposium on Identity and Trust on the Internet (IDtrust
’09) (New York, NY, USA, 2009), ACM, pp. 38–51.

[86] Kim, H. K., Im, K. H., and Park, S. C. DSS for computer security incident response
applying CBR and collaborative response. Expert Systems with Applications 37, 1
(2010), 852 – 870.

[87] Klein, G., Rogge, H., Schneider, F., Toelle, J., Jahnke, M., and Karsch, S. Re-
sponse Initiation in Distributed Intrusion Response Systems for Tactical MANETs.
In European Conference on Computer Network Defense (EC2ND) (October 2010),
pp. 55–62.

[88] Klein, G., Tolle, J., and Martini, P. From detection to reaction - A holistic approach
to cyber defense. In Defense Science Research Conference and Expo (DSR) (August
2011), pp. 1–4.

[89] Kotenko, I., and Stepashkin, M. Analyzing network security using malefactor action
graphs. International Journal of Computer Science and Network Security 6, 6
(2006), 226–235.

194 BIBLIOGRAPHY

[90] Kruegel, C., Valeur, F., and Vigna, G. Intrusion Detection and Correlation - Chal-
lenges and Solutions, vol. 14 of Advances in Information Security. Springer, 2005.

[91] Lalanda, P. Two complementary patterns to build multi-expert systems. In Pattern
Languages of Programs (1997).

[92] Lee, S.-H., Lee, H.-H., and Noh, B.-N. A Rule-Based Intrusion Alert Correlation
System for Integrated Security Management. In Proceedings of the 4th International
Conference on Computational Science (ICCS 2004), M. Bubak, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004, pp. 365–372.

[93] Lee, W., Miller, M., Stolfo, S. J., Fan, W., and Zadok, E. Toward cost-sensitive
modeling for intrusion detection and response. Journal of Computer Security 10
(2002), 2002.

[94] Li, W., and Tian, S. An ontology-based intrusion alerts correlation system. Expert
Systems with Applications 37, 10 (2010), 7138 – 7146.

[95] Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., and Das, K. Analysis and
Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation. In Proceedings
of the 3rd International Workshop on Recent Advances in Intrusion Detection (RAID
’00) (London, UK, UK, 2000), Springer-Verlag, pp. 162–182.

[96] Lodi, G., Aniello, L., Di Luna, G. A., and Baldoni, R. An Event-based Platform for
Collaborative Threats Detection and Monitoring. Information Systems 39 (January
2014), 175–195.

[97] Lowe, G. Towards a completeness result for model checking of security protocols. In
Proceedings of 11th IEEE Computer Security Foundations Workshop (June 1998),
pp. 96–105.

[98] Luckham, D. The power of events, vol. 204. Addison-Wesley Reading, 2002.

[99] Manganiello, F., Marchetti, M., and Colajanni, M. Multistep Attack Detection
and Alert Correlation in Intrusion Detection Systems. In Information Security and
Assurance, T.-h. Kim, H. Adeli, R. Robles, and M. Balitanas, Eds., vol. 200 of
Communications in Computer and Information Science. Springer Berlin Heidelberg,
2011, pp. 101–110.

[100] Mansour, Y. An Early Malware Detection, Correlation, and Incident Response
System with Case Studies. GIAC (GCIA) Gold Certification Version1.0, SANS
Institute, January 2014.

[101] Mateos, V., Villagrá, V. A., Romero, F., and Berrocal, J. Definition of response
metrics for an ontology-based Automated Intrusion Response Systems. Computers
& Electrical Engineering 38, 5 (2012), 1102 – 1114.

[102] Miller, P., and Inoue, A. Collaborative Intrusion Detection System. In 22nd Inter-
national Conference of the North American Fuzzy Information Processing Society
(NAFIPS) (July 2003), pp. 519–524.

[103] Mitropoulos, S., Patsos, D., and Douligeris, C. On Incident Handling and Response:
A state-of-the-art approach. Computers & Security 25, 5 (2006), 351 – 370.

BIBLIOGRAPHY 195

[104] Mu, C., and Li, Y. An intrusion response decision-making model based on hierar-
chical task network planning. Expert Systems with Applications 37, 3 (2010), 2465
– 2472.

[105] Mu, C. P., Li, X. J., Huang, H. K., and Tian, S. F. Online Risk Assessment
of Intrusion Scenarios Using D-S Evidence Theory. In Proceedings of the 13th
European Symposium on Research in Computer Security (ESORICS08), S. Jajodia
and J. Lopez, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 35–48.

[106] Ning, P., Cui, Y., Reeves, D. S., and Xu, D. Techniques and Tools for Analyzing
Intrusion Alerts. ACM Transactions on Information and System Security 7, 2 (May
2004), 274–318.

[107] Nojiri, D., Rowe, J., and Levitt, K. Cooperative response strategies for large scale
attack mitigation. In Proceedings of DARPA Information Survivability Conference
and Exposition (April 2003), vol. 1, pp. 293–302.

[108] Obrst, L., Chase, P., and Markeloff, R. Developing an Ontology of the Cyber
Security Domain. In STIDS (2012), P. C. G. da Costa and K. B. Laskey, Eds.,
vol. 966 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 49–56.

[109] Ortega-Arjona, J. L., and Fernandez, E. B. The secure blackboard pattern. In
Proceedings of the 15th Conference on Pattern Languages of Programs (2008),
ACM, p. 22.

[110] Ossenbühl, S., Steinberger, J., and Baier, H. Towards Automated Incident Handling:
How to Select an Appropriate Response against a Network-Based Attack? In 9th
International Conference on IT Security Incident Management IT Forensics (IMF)
(May 2015), pp. 51–67.

[111] Peter, A. S., S, P., and Ekert, L. V. An Ontology for Network Security Attacks. In
In Proceedings of the 2nd Asian Applied Computing Conference (AACC’04) (2004),
Springer-Verlag, pp. 317–323.

[112] Porras, P. A., Fong, M. W., and Valdes, A. A Mission-Impact-Based Approach
to INFOSEC Alarm Correlation. In Recent Advances in Intrusion Detection: Pro-
ceedings of th 5th International Symposium (RAID 2002), A. Wespi, G. Vigna, and
L. Deri, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 95–114.

[113] Porras, P. A., and Neumann, P. G. EMERALD: Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances. In National Information Systems Security
Conference (October 1997).

[114] Quereilhac, A., Lacage, M., Freire, C., Turletti, T., and Dabbous, W. NEPI: An in-
tegration framework for Network Experimentation. In 19th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM) (September
2011), pp. 1–5.

[115] Ragsdale, D., Carver, C., Humphries, J., and Pooch, U. Adaptation techniques for
intrusion detection and intrusion response systems. In IEEE International Confer-
ence on Systems, Man, and Cybernetics (2000), vol. 4, pp. 2344–2349.

[116] Ragusa, C., Robinson, P., and Svorobej, S. A Framework for Modeling and Exe-
cution of Infrastructure Contention Experiments. In 2nd Internation Workshop on
Measurement-based Experimental Research, Methodology and Tools (2013).

196 BIBLIOGRAPHY

[117] Rakotoarivelo, T., Ott, M., Jourjon, G., and Seskar, I. OMF: A Control and
Management Framework for Networking Testbeds. In ACM Operating Systems
Review (OSR) (1 2010), pp. 54–59.

[118] Ryutov, T., Neuman, C., Dongho, K., and Li, Z. Integrated Access Control and
Intrusion Detection for Web Servers. IEEE Transactions on Parallel and Distributed
Systems 14, 9 (September 2003), 841–850.

[119] Ryutov, Tatyana and Neuman, Clifford and Kim, Dongho. Dynamic authorization
and intrusion response in distributed systems. In Proceedings of the DARPA Infor-
mation Survivability Conference and Exposition (2003), vol. 1, IEEE, pp. 50–61.

[120] Sadighian, A., Fernandez, J., Lemay, A., and Zargar, S. ONTIDS: A Highly Flexible
Context-Aware and Ontology-Based Alert Correlation Framework. In Foundations
and Practice of Security, J. L. Danger, M. Debbabi, J.-Y. Marion, J. Garcia-Alfaro,
and N. Zincir Heywood, Eds., Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2014, pp. 161–177.

[121] Sadoddin, R., and Ghorbani, A. Alert Correlation Survey: Framework and Tech-
niques. In Proceedings of the 2006 International Conference on Privacy, Security
and Trust: Bridge the Gap Between PST Technologies and Business Services (PST
’06) (New York, NY, USA, 2006), ACM, pp. 37:1–37:10.

[122] Scarfone, K., and Mell, P. Guide to Intrusion Detection and Prevention Systems
(IDPS). Special publication 800-94, National Institute of Standards and Technology
(NIST), February 2007.

[123] Schnackenberg, D., Djahandari, K., and Sterne, D. Infrastructure for intrusion de-
tection and response. In Proceedings DARPA Information Survivability Conference
and Exposition (DISCEX ’00) (2000), vol. 2, pp. 3–11.

[124] Schnackengerg, D., Holliday, H., Smith, R., Djahandari, K., and Sterne, D. Coop-
erative Intrusion Traceback and Response Architecture (CITRA). In Proceedings
of DARPA Information Survivability Conference and Exposition II (DISCEX ’01)
(2001), vol. 1, pp. 56–68.

[125] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., and Zhou, S.
Specification-based Anomaly Detection: A New Approach for Detecting Network
Intrusions. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security (CCS ’02) (New York, NY, USA, 2002), ACM, pp. 265–274.

[126] Shahrah, A. Y., Hossain, M. A., and Alghamdi, A. S. A collaboration architecture
for distributed smart surveillance systems based on DoDAF 2.0. In International
Joint Conference on Computer Science and Software Engineering (JCSSE) (May
2012), pp. 305–310.

[127] Shahrah, A. Y., Hossain, M. A., and Alghamdi, A. S. Alert-response for distributed
surveillance: DODAF-based services and systems. In 16th International Conference
on Advanced Communication Technology (February 2014), pp. 949–954.

[128] Shameli-Sendi, A., Cheriet, M., and Hamou-Lhadj, A. Taxonomy of intrusion risk
assessment and response system. Computers & Security 45, 0 (2014), 1 – 16.

BIBLIOGRAPHY 197

[129] Shameli-Sendi, A., and Dagenais, M. ORCEF: online response cost evaluation
framework for intrusion response system. Journal of Network and Computer Appli-
cations 55 (2015), 89–107.

[130] Shameli-Sendi, A., Ezzati-jivan, N., Jabbarifar, M., and Dagenais, M. Intrusion Re-
sponse Systems: Survey and Taxonomy. IJCSNS International Journal of Computer
Science and Network Security 12, 1 (January 2012).

[131] Shirey, R. W. Internet Security Glossary. Internet RFC 2828, May 2000.

[132] Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., and Muttukrishnan, R.
OutMet: A new metric for prioritising intrusion alerts using correlation and outlier
analysis. In IEEE 39th Conference on Local Computer Networks (LCN) (September
2014), pp. 322–330.

[133] Silva, O., Garcia, A., and Lucena, C. The Reflective Blackboard Pattern: Archi-
tecting Large Multi-agent Systems. In Software Engineering for Large-Scale Multi-
Agent Systems, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, and J. Castro,
Eds., vol. 2603 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 73–93.

[134] Snort. https://www.snort.org/.

[135] Somayaji, A., and Forrest, S. Automated Response Using System-call Delays. In
Proceedings of the 9th Conference on USENIX Security Symposium (SSYM’00)
(Berkeley, CA, USA, 2000), vol. 9, USENIX Association.

[136] SOME/IP Analyzer. https://github.com/Egomania/SOME-IP_Analyzer.

[137] SOME/IP Generator. https://github.com/Egomania/SOME-IP_Generator.

[138] Song, J., Cadar, C., and Pietzuch, P. SymbexNet: Testing Network Protocol
Implementations with Symbolic Execution and Rule-Based Specifications. IEEE
Transactions on Software Engineering 40, 7 (2014), 695–709.

[139] Song, J., Ma, T., Cadar, C., and Pietzuch, P. Rule-Based Verification of Network
Protocol Implementations Using Symbolic Execution. In 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN)
(July 2011), pp. 1–8.

[140] Sowa, A., and Fedtke, S. Metriken - Der Schlüssel Zum Erfolgreichen Security und
Compliance Monitoring: Design, Implementierung und Validierung in der Praxis.
Vieweg + Teubner Praxis. Vieweg+Teubner Verlag, 2011.

[141] Stakhanova, N., Basu, S., and Wong, J. A Cost-Sensitive Model for Preemptive
Intrusion Response Systems. In 21st International Conference on Advanced Infor-
mation Networking and Applications (AINA ’07) (May 2007), pp. 428–435.

[142] Stakhanova, N., Basu, S., and Wong, J. A Taxonomy of Intrusion Response Sys-
tems. International Journal of Information and Computer Security 1, 2 (January
2007), 169–184.

[143] Stallings, W. Network Security Essentials: Applications and Standards. William
Stallings books on computer and data communications technology. Prentice Hall,
2007.

198 BIBLIOGRAPHY

[144] Sterne, D., Djahandari, K., Wilson, B., Babson, B., Schnackenberg, D., Holliday,
H., and Reid, T. Autonomic Response to Distributed Denial of Service Attacks.
In Recent Advances in Intrusion Detection, W. Lee, L. Mé, and A. Wespi, Eds.,
vol. 2212 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001,
pp. 134–149.

[145] Strasburg, C., Stakhanova, N., Basu, S., and Wong, J. A Framework for Cost
Sensitive Assessment of Intrusion Response Selection. In 33rd Annual IEEE Inter-
national Computer Software and Applications Conference (COMPSAC ’09) (2009),
vol. 1, pp. 355–360.

[146] Strasburg, C., Stakhanova, N., Basu, S., and Wong, J. S. Intrusion Response Cost
Assessment Methodology. In Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security (ASIACCS ’09) (New York,
NY, USA, 2009), ACM, pp. 388–391.

[147] Strasburg, C. R., Stakhanova, N., Basu, S., and Wong, J. S. The methodology for
evaluating response cost for intrusion response systems. Technical Report TR08-12,
Iowa State University, 2008.

[148] Sultana, S., Midi, D., and Bertino, E. Kinesis: A Security Incident Response and
Prevention System for Wireless Sensor Networks. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems (SenSys ’14) (New York, NY,
USA, 2014), ACM, pp. 148–162.

[149] Tanachaiwiwat, S., Hwang, K., and Chen, Y. Adaptive intrusion response to min-
imize risk over multiple network attacks. ACM Trans on Information and System
Security 19 (2002), 1–30.

[150] Ten, C.-W., Manimaran, G., and Liu, C.-C. Cybersecurity for Critical Infrastruc-
tures: Attack and Defense Modeling. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans 40, 4 (July 2010), 853–865.

[151] Toth, T., and Kruegel, C. Evaluating the impact of automated intrusion response
mechanisms. In Proceedings of the 18th Annual Computer Security Applications
Conference (2002), pp. 301–310.

[152] Tung, B., Staniford-Chen, S., Porras, P., Kahn, C., Schnackenberg, D., Feiertag,
R., and Stillman, M. The Common Intrusion Detection Framework - Data Formats.
Internet-draft, Internet Engineering Task Force, March 1998.

[153] Undercoffer, J., Joshi, A., and Pinkston, J. Modeling Computer Attacks: An Ontol-
ogy for Intrusion Detection. In Recent Advances in Intrusion Detection, G. Vigna,
C. Kruegel, and E. Jonsson, Eds., vol. 2820 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 113–135.

[154] Undercoffer, J., and Pinkston, J. Modeling computer attacks: a target-centric
ontology for intrusion detection. In Proceedings of the 2002 UMBC Center for
Architectures for Data-Driven Information Processing Research Symposium (2002).

[155] Valdes, A., and Skinner, K. Probabilistic Alert Correlation. In Recent Advances in
Intrusion Detection (RAID 2001) (2001), no. 2212 in Lecture Notes in Computer
Science, Springer-Verlag.

BIBLIOGRAPHY 199

[156] Valeur, F., Vigna, G., Kruegel, C., and Kemmerer, R. Comprehensive approach to
intrusion detection alert correlation. IEEE Transactions on Dependable and Secure
Computing 1, 3 (July 2004), 146–169.

[157] van Heerden, R., Irwin, B., Burke, I. D., and Leenen, L. A Computer Network
Attack Taxonomy and Ontology. IJCWT 2, 3 (2012), 12–25.

[158] van Heerden, R., Leenen, L., and Irwin, B. Automated classification of computer
network attacks. In International Conference on Adaptive Science and Technology
(ICAST) (Nov 2013), pp. 1–7.

[159] Varshovi, A., and Sadeghiyan, B. Ontological classification of network denial of ser-
vice attacks: basis for a unified detection framework. Scientia Iranica. Transaction
D, Computer Science & Engineering, Electrical 17, 2 (2010).

[160] Vorobiev, A., and Han, J. H. J. Security Attack Ontology for Web Services. In
2006 Semantics, Knowledge and Grid, Second International Conference on (Nov
2006), pp. 42–42.

[161] Völker, L. SOME/IP – Die Middleware für Ethernet-basierte Kommunikation.
Hanser automotive networks (November 2013).

[162] Wachs, M., Herold, N., Posselt, S.-A., Dold, F., and Carle, G. GPLMT: A
Lightweight Experimentation and Testbed Management Framework. In Passive
and Active Measurement: 17th International Conference, PAM 2016, Heraklion,
Greece, March 31 - April 1, 2016. Proceedings, T. Karagiannis and X. Dimitropou-
los, Eds. Springer International Publishing, Cham, 2016, pp. 165–176.

[163] Wagner, M. O. W. Gefahrenerkennung in Konfigurationen verteilter Systeme. Dis-
sertation, Technische Universität München, München, 2016.

[164] Wang, S.-H., Tseng, C., Levitt, K., and Bishop, M. Cost-Sensitive Intrusion Re-
sponses for Mobile Ad Hoc Networks. In Recent Advances in Intrusion Detection,
C. Kruegel, R. Lippmann, and A. Clark, Eds., vol. 4637 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2007, pp. 127–145.

[165] Wang, X., Reeves, D. S., and Felix, S. Tracing Based Active Intrusion Response.
In In Journal of Information Warefare (2001).

[166] White, G., Fisch, E., and Pooch, U. Cooperating security managers: a peer-based
intrusion detection system. IEEE Network 10, 1 (1996), 20–23.

[167] Wu, Y., and Liu, S. A Cost-Sensitive Method for Distributed Intrusion Response. In
12th International Conference on Computer Supported Cooperative Work in Design
(CSCWD) (2008), pp. 760–764.

[168] Wu, Y.-S., Foo, B., Mao, Y.-C., Bagchi, S., and Spafford, E. H. Automated Adap-
tive Intrusion Containment in Systems of Interacting Services. Computer Networks
51, 5 (April 2007), 1334–1360.

[169] Xiao, F., Jin, S., and Li, X. A novel data mining-based method for alert reduction
and analysis. Journal of networks 5, 1 (January 2010), 88–97.

200 BIBLIOGRAPHY

[170] Yongyong, S. Decision Algorithm for Multi-Agent Intelligent Decision Support Sys-
tem based on Blackboard. Information Technology Journal 12, 21 (2013), 6235–
6240.

[171] Yu, D., and Frincke, D. Improving the quality of alerts and predicting intruder’s next
goal with Hidden Colored Petri-Net. Computer Networks 51, 3 (2007), 632–654.

[172] Yue, W. T., and Çakanyıldırım, M. A cost-based analysis of intrusion detection
system configuration under active or passive response. Decision Support Systems
50, 1 (2010), 21 – 31.

[173] Zaghdoud, M., and Al-Kahtani, M. S. Contextual Fuzzy Cognitive Map for Intrusion
Response System. International Journal of Computer and Information Technology
(IJCIT) 2, 3 (May 2013), 471–478.

[174] Zan, X., Gao, F., Han, J., Liu, X., and Zhou, J. A hierarchical and factored POMDP
based automated intrusion response framework. In 2nd International Conference on
Software Technology and Engineering (ICSTE) (October 2010), vol. 2.

[175] Zan, X., Gao, F., Han, J., Liu, X., and Zhou, J. NAIR: A novel automated in-
trusion response system based on decision making approach. In IEEE International
Conference on Information and Automation (ICIA) (June 2010), pp. 543–548.

[176] Zang, T., chun Yun, X., and 0002, Y. Z. A Survey of Alert Fusion Techniques for
Security Incident. In WAIM (2008), IEEE, pp. 475–481.

[177] Zhang, Z., Ho, P.-H., and He, L. Measuring IDS-estimated attack impacts for
rational incident response: A decision theoretic approach. Computers & Security
28, 7 (2009), 605 – 614.

[178] Zhu, B., and Ghorbani, A. A. Alert correlation for extracting attack strategies.
International Journal of Network Security 3, 3 (2006), 244–258.

[179] Zhu, B., and Ghorbani, A. A. Alert correlation for extracting attack strategies.
International Journal of Network Security 3, 3 (2006), 244–258.

[180] Znaidi, W., Minier, M., and Babau, J.-P. An Ontology for Attacks in Wireless
Sensor Networks. Research Report RR-6704, INRIA, 2008.

[181] Zonouz, S., Khurana, H., Sanders, W., and Yardley, T. RRE: A Game-Theoretic
Intrusion Response and Recovery Engine. IEEE Transactions on Parallel and Dis-
tributed Systems 25, 2 (February 2014), 395–406.

ISBN 978-3-937201-59-7

9 783937 201597

ISBN 978-3-937201-59-7
DOI 10.2313/NET-2017-05-2

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Title
	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Problem Statement and Research Questions
	Contributions and Chapter Overview

	Background
	Basic Terms
	Intrusion Detection Systems
	Host vs. Network-Based Detection
	Intrusion Detection Methods
	Intrusion Detection Message Exchange Format (IDMEF)

	Alert Processing
	Structuring Responses
	Classification Methods for Responses
	Response Properties and Characteristics

	Intrusion Response Systems
	Overview and Taxonomies
	Steps for Intrusion Response

	Analysis and System Design
	Requirements
	Functional Requirements
	Non-Functional Requirements

	System Design Overview
	Incident Handling
	bb
	bb for ihs

	Information Model
	Requirements
	Information Model Description
	Related Work

	Functional Separation
	Monitoring and Intrusion Detection
	Alert Processing
	Intrusion Response
	Example for the Interaction of Modules
	Garbage Collector
	Controller and Control Plan

	Related Work
	Execution Models for Incident Handling
	Selected irs
	Summary, Comparison and Conclusion

	Publication Reference

	Intrusion Detection
	Analysis
	some Protocol Description
	Possible Attacks on the some Protocol and Attacker Model
	Use Case Description
	Requirements

	System Design
	Complex Event Processing
	Proposed System Design
	Knowledge as Input

	Implementation
	Esper and epl
	some – Analyzer and Generator
	Malformed Packets
	Protocol and System-Specific Violations
	Timing Issues

	Evaluation
	Requirement Alignment
	Test Setup
	Time Consumption of Single Rules
	Time Consumption of Multiple Rules
	Memory Consumption with Multiple Rules
	Memory and Time Consumption with Varying Window Sizes

	Related Work
	Publication Reference

	Responses Identification
	Analysis
	Requirements
	Response Model
	Collection of Responses

	System Design and Use Case
	Design Overview
	Triggering Responses
	Use Case Applicability

	Implementation
	Evaluation

	Response Selection
	Response Assessment Strategies
	Requirements
	Proposed Response Assessment Strategy
	Related Work

	Analysis
	Requirements
	Linear Programming
	Illustrative Example

	System Model
	Definition of Elements and Relations
	Illustrative Example
	Formulating the Optimization Problem

	Implementation
	Evaluation
	Requirement Alignment
	Evaluation Methodology
	Evaluation of Solver Performance
	Solution Quality

	Related Work
	Policy-Based Selection
	Basic Cost-Sensitive Approaches
	Advanced Cost-Sensitive Approaches
	Other Approaches
	Summary, Comparison and Conclusion

	Publication Reference

	Response Execution and Preparation
	Analysis and System Design
	Requirements
	System Design

	Response Plan Description Language
	Targets
	Tasklists
	Steps
	Automated Generation of Response Plans

	Implementation
	Evaluation
	Related Work
	Response Execution in irs
	Network Management and Configuration Solutions
	Control Flow Definition for Experiments
	Summary, Comparison and Conclusion

	Publication Reference

	Implementation and Evaluation
	Implementation
	Backend Implementation
	Information Model Representation and Setup
	Interfaces, Modules and Controller

	Evaluation
	Requirement Alignment
	Qualitative Analysis
	Blackboard Analysis
	Intrusion Response Capabilities Analysis
	Use Case Analysis
	Security and Threat Analysis

	Publication Reference

	Conclusions
	Contributions to Research Questions and Key Findings
	Future Work and Further Research Directions

	Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Algorithms
	List of Equations
	Bibliography

