
IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 1

Control Plane Latency with SDN Network
Hypervisors: The Cost of Virtualization

Andreas Blenk, Arsany Basta, Johannes Zerwas, Martin Reisslein, and Wolfgang Kellerer

Abstract—SDN network hypervisors provide the functionalities
needed for virtualizing software-defined networks. Hypervisors
sit logically between the multiple virtual SDN networks (vSDNs),
which reside on the underlying physical SDN network infrastruc-
ture, and the corresponding tenant (vSDN) controllers. Different
SDN network hypervisor architectures have mainly been explored
through proof-of-concept implementations. We fundamentally
advance SDN network hypervisor research by conducting a
model-based analysis of SDN hypervisor architectures. Specifi-
cally, we introduce mixed integer programming formulations for
four different SDN network hypervisor architectures. Our model
formulations can also optimize the placement of multi-controller
switches in virtualized OpenFlow-enabled SDN networks. We
employ our models to quantitatively examine the optimal place-
ment of the hypervisor instances. We compare the control plane
latencies of the different SDN hypervisor architectures and
quantify the cost of virtualization, i.e., the latency overhead due
to virtualizing SDN networks via hypervisors. For generalization,
we quantify how the hypervisor architectures behave for different
network topologies. Our model formulations and the insights
drawn from our evaluations inform network operators about
the trade-offs of the different hypervisor architectures and help
choosing an architecture according to operator demands.

Index Terms—Integer linear program, network hypervisor ar-
chitecture, network virtualization, software defined networking,
virtual software defined network embedding.

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

NETWORK Virtualization (NV) enables multiple virtual
networks, each specifically tailored to the demands of a

particular set of network services or end-user applications, to
operate on a shared underlying physical network substrate [1].
Software Defined Networking (SDN) is an emerging paradigm
that introduces flexible operation and programmability into
communication networks [2]. By combining NV and SDN,
virtual SDN networks (vSDNs) can be created on a given
physical SDN network. Tenants can program their vSDN
resources via open network interfaces and protocols, e.g.,
OpenFlow [2], and run their own vSDN controllers. For
instance, for Network Function Virtualization (NFV), vSDNs
can be used to flexibly interconnect virtual network functions
and to control their network traffic via SDN [1].

To allow multiple network operating systems to run in par-
allel, so called SDN network virtualization hypervisors have

Please direct correspondence to M. Reisslein.
A. Blenk, A. Basta, J. Zerwas, and W. Kellerer are with the Chair

of Communication Networks, Technical University of Munich, 80290 Mu-
nich, Germany (e-mail: andreas.blenk@tum.de; arsany.basta@tum.de; jo-
hannes.zerwas@tum.de; wolfgang.kellerer@tum.de).

M. Reisslein is with Elect., Comp., and Energy Eng., Arizona State Univ.,
Tempe, AZ 85287-5706, USA (e-mail: reisslein@asu.edu).

been introduced [3]–[5]. SDN network virtualization hypervi-
sors [6], which we refer to as hypervisors for brevity, operate
as an intermediate layer between SDN network infrastructures
and vSDN controllers. SDN network hypervisors present the
vSDN controllers with virtual SDN networks (vSDNs), which
are composed of virtual SDN switches. The vSDN controllers
are connected via the hypervisors to their vSDN switches
(cf. Fig. 1(a)). As hypervisors operate transparently to vSDN
controllers, each vSDN controller only sees its corresponding
vSDN switches. Accordingly, hypervisors do not limit tenants
to the application-controller interfaces provided by traditional
SDN controllers, e.g., ONOS [7] or OpenDaylight [8]. With
hypervisors, tenants can still use conventional SDN network
interfaces/protocols, e.g., OpenFlow, to control their vSDNs.
Thus, as tenants are not limited to special implementations,
they can choose freely from all available SDN controller
implementations and extend them according to their needs.

In SDN networks, good control plane performance, such as
low control plane latency, is important for achieving high net-
work performance. For instance, high control plane latencies
may lead to long flow set-up times, which are detrimental for
many services, e.g., for DNS requests. In non-virtualized SDN
networks, the Controller Placement Problem (CPP) tackles the
question of how many controllers are needed and where to
place them in the network in order to achieve a high network
performance. While SDN controllers connect directly to the
SDN infrastructure, hypervisors serve as controllers to the
underlying substrate network in virtualized SDN networks.
As the paths between tenant controllers and the vSDNs have
to traverse the hypervisor instances, tenants may experience
longer controller to switch connections. These longer paths
introduce control plane latency overhead, which we call the
cost of virtualization. As hypervisors are mostly implemented
in software, they can be flexibly placed in the network, e.g.,
at data center locations. Efficient virtualizaton of SDN net-
works requires sophisticated techniques for placing hypervisor
instances in the network. Only proper hypervisor placement
provides vSDN tenants with the best possible performance.
We call this the k-Network Hypervisor Placement Problem
(k-HPP) in this article. The k-HPP answers the question of
how many hypervisor instances k are needed and where the
hypervisor instances should be placed in the network.

While some hypervisor architectures rely only on basic SDN
features, some hypervisors can make use of special switch
functionalities, e.g., the functionality to support multiple con-
trollers, the so-called multi-controller feature. Multi-controller
switches can simultaneously connect to multiple SDN con-
trollers, i.e., multiple hypervisor instances. Multi-controller

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 2

switches may improve control plane performance, e.g., re-
duce control plane latency. However, multi-controller switches
may demand additional synchronization between distributed
hypervisor instances. For instance, hypervisor instances may
need to synchronize flow table access or to carefully plan the
allocation of available flow table space. Thus, the placement
of multi-controller switches needs to be carefully planned. We
refer to this planning problem as the Multi-controller Switch
Deployment Problem (McSDP) in this article.

SDN network virtualization hypervisors can be implemented
and operated in either a centralized (k = 1) or distributed
(k > 1) manner [6]. Due to the variety of existing hyper-
visor architectures and their ability to make use of special
network functionalities, the k-HPP cannot be simply solved
by referring to solutions of the SDN Controller Placement
Problem (CPP) [9]. The k-HPP is fundamentally different from
the CPP due to the following aspects: (1) the existence of
multiple vSDNs with individual demands, e.g., for control
plane latency; (2) the functionality of hypervisor instances
to serve as intermediate nodes between multiple vSDN con-
trollers and the underlying physical SDN network, i.e., the
SDN network to controller connections need to traverse the
hypervisor instances; (3) the ability of hypervisor architectures
to make use of the multi-controller feature of SDN nodes
(switches) for minimizing control plane latency.

Our main contribution in this article is the in-depth study of
the fundamentally new k-HPP for four different SDN network
hypervisor architectures with respect to control plane latency.
We provide mathematical mixed integer programming models
for the four architectures. Our models jointly solve the McSDP
and the k-HPP. We investigate the determination of the best
locations of hypervisor instances and multi-controller switches
with our models for real network topologies and a wide
range of vSDN requests. We analyze the trade-offs among
four hypervisor latency objective metrics. We also closely
examine the impact of virtualization on the individual SDN
network requests. Furthermore, we analyze the benefits of a
priori optimization of the locations of the vSDN controllers.
Specifically, we investigate the impacts of three different
controller placement strategies on the k-HPP and McSDP. The
current study substantially extends the preliminary conference
paper [10] which presented results for the placement of a sin-
gle hypervisor instance (k = 1) for single-controller switches
only; in contrast, we examine in detail the general k-HPP with
multi-controller switches in this paper.

The remainder of this paper is structured as follows. The
needed background and an overview of related work are
presented in Section II. In Section III, we introduce the four
SDN network hypervisor architectures, which we examine in
depth in this paper. In Section IV, we provide mathematical
formulations of the k-HPP and the McSDP. In Section V, we
provide mathematical models to solve the k-HPP and McSDP
based on mixed integer programming. The evaluation set-up is
explained in Sec. VI, while results are presented in Sec. VII.
Conclusions and future work are outlined in Section VIII.

II. BACKGROUND & RELATED WORK

A. Background

1) Software Defined Networking & Multiple Controllers
Feature: Software Defined Networking (SDN) decouples the
control plane from the data plane of forwarding hardware, e.g.,
routers or switches. The control plane runs logically central-
ized in SDN controllers. SDN controllers run in software, thus,
can be flexibly deployed on commodity hardware, i.e., servers.
OpenFlow [11] is one protocol that enables the communication
between SDN controllers and the networking hardware, i.e.,
SDN switches.

OpenFlow 1.2 [12] introduced and defined the multiple
controllers feature. The multiple controllers feature allows
switches to simultaneously connect to multiple SDN con-
trollers. In non-virtualized SDN networks, the feature can be
used for controller fail-over or load balancing. The number
of controllers that a given switch simultaneously connects to
may be limited [13]. The OpenFlow specification [12] defines
an OFPCR_ROLE_EQUAL mode, in which all connected con-
trollers can fully access and control the switch resources. The
OFPCR_ROLE_EQUAL mode requires the SDN controllers to
synchronize the management of the switch resources. In this
article, we analyze how the multiple controllers feature can be
used to reduce the control plane latency of vSDNs. Specifi-
cally, we distinguish between single-controller switches, which
can connect to one SDN controller (hypervisor instance) at a
time, and multi-controller switches, which use the multiple
controllers feature to connect simultaneously to multiple SDN
controllers (hypervisor instances).

2) SDN Network Hypervisors: SDN network hypervi-
sors [6] sit between vSDN controllers and the underlying
physical SDN network, as illustrated in Fig. 1(a). Similar to
SDN controllers, they are mostly implemented in software.
Each hypervisor instance implements the entire virtualization
stack. That is, each hypervisor instance can virtualize a part of
the underlying physical SDN network. Distributed hypervisor
instances may need to synchronize their states, e.g., for load
balancing purposes. The impact of the synchronization load
is outside the scope of this article, and is a direction for
future work. In general, a hypervisor instance provides the
following virtualization functions: abstraction (virtualization),
translation, and isolation [6]. Hypervisors abstract the un-
derlying physical SDN network, i.e., they provide all neces-
sary information for operation to the vSDN controllers, e.g.,
topology information. Tenant controllers need to connect to
hypervisor instances to access their virtual network resources,
i.e., virtual SDN switches. Further, a vSDN controller can
connect to multiple hypervisor instances. Since all tenant
control traffic has to pass through hypervisor instances, the
hypervisor instances become a critical component of vSDNs.

B. Related Work

We review main research areas related to the virtualization
of SDN networks in this section and distinguish our present
study on SDN hypervisor placement from related work.

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 3

1) Facility Location Problem: As indicated by [9], the
general facility location problem (FLP) is the general problem
behind the SDN controller placement problem. Similarly, the
k-HPP can be related to the hierarchical facility location
problem. The task of the hierarchical facility location problem
is to find the best facility locations in a multi-level network.
The facilities at higher levels have to serve the facilities
at lower levels, while customers need to be served at the
lowest level. A similar layering can be applied to the k-HPP.
Tenant controllers need to connect to hypervisor instances,
while hypervisor instances need to connect to SDN switches
at the lowest level. Different variations, adaptations to real
problems, and overviews of the FLP are provided in [14]–
[18]. The unique feature of the k-HPP is the differentiation of
groups of customers, i.e., individual vSDNs, which need to be
specifically operated by their corresponding tenant controllers.

2) SDN Controller Placement: The SDN Controller Place-
ment Problem (CPP) for non-virtualized SDN networks has
been initiated in [9]. The CPP targets the question of how
many controllers are needed and where to place them. Using
a brute-force method, [9] evaluated the impact of controller
placement on average and maximum latency metrics for real
network topologies. The authors concluded that five controllers
are sufficient to achieve an acceptable control plane latency
for most topologies. As different optimization objectives, e.g.,
load and delay, are critical for the operation of SDN networks,
multi-objective optimization approaches have been applied to
the CPP [19]. The framework in [19] uses simulated annealing
to analyze the CPP for different network topologies with
respect to multiple objectives, e.g., latency and resilience. As
real SDN networks have node and link capacity constraints,
mathematical models for solving the CPP with node and link
capacity have been studied in [20], [21]. Considering capacity
constraints during planning protects SDN controllers from
overload situations. Distributed SDN controllers can be orga-
nized in a hierarchy to achieve resilience [22]. The study [22]
provides an algorithm and performance comparisons for k-
center and k-median-based algorithms. Further CPP research
either considers different metrics, e.g., resilience or load
balancing [23]–[25], or incorporates different methodologies,
e.g., clustering. A dynamic version of the CPP, where the rate
of flow setups varies over time, has been studied in [26].

In the present study, we solve the CPP a priori for maximum
or average latency objectives and use the CPP solution as an
input to our optimization. This two step optimization allows
us to analyze the impact of the vSDN controller placement on
the hypervisor placement.

3) Virtual Network Embedding: The embedding of virtual
to physical network resources is an integral part of network
virtualization. There are many algorithms to solve the VNE
problem [27]. Some VNE algorithms consider technology
aspects of the infrastructure, e.g., flexible path splitting [28]. In
general, VNE research mostly neglects the control part when
virtualizing networks, i.e., neglects the connections from the
tenants to their resources. Only a few studies have incorporated
the control (node) while embedding the virtual networks. For
instance, [29] uses heuristic algorithms (greedy, simulated
annealing) to optimize the vSDN embedding for a balanced

load or for latency. The embedding also considers the impact
of placing the SDN controller; however, the hypervisor in-
stances are not taken into account while embedding the virtual
resources. Generally, when not considering the control plane,
existing VNE algorithms can be directly applied to efficiently
solve the mapping of vSDN resources [28], [30]. However, to
the best of our knowledge, the VNE research to date has not
incorporated the full design and optimization of the control
plane, i.e., the controller and hypervisor embedding, which is
particularly important for virtual SDN network embedding.

III. SDN NETWORK HYPERVISOR ARCHITECTURES

In this section, we introduce four hypervisor architecture
categories. We categorize the architectures into centralized
architectures and distributed architectures. We further sub-
classify the distributed architectures into architectures op-
erating with single-controller SDN switches or with multi-
controller SDN switches. In addition, we consider distributed
hybrid architectures that combine single- and multi-controller
SDN switches. A single centralized hypervisor instance (at a
single location) provides the virtualization functionality in a
centralized architecture. In contrast, in a distributed hypervisor
architecture, multiple hypervisor instances that are distributed
over multiple locations realize the virtualization functionality.
We denote the number of hypervisor instances by k and the
number of multi-controller switches by M .

A. Centralized Network Hypervisor Architecture

The centralized SDN network hypervisor architecture (k =
1) deploys only a single hypervisor instance (at a single
location) for SDN network virtualization. Virtual SDNs can
be provided by running this single hypervisor instance at
one physical network location. FlowVisor [3] is an example
of a centralized hypervisor architecture. In this article, the
centralized hypervisor architecture works with SDN switches
(network elements) compliant with the OpenFlow specifi-
cation [12]. OpenFlow specification [12] compliant SDN
switches do not provide any specialized functionalities to
support virtualization. In case a virtualization functionality
cannot be provided by OpenFlow compliant switches, the
hypervisor has to provide the functionality. This implies that
special virtualization functionalities need to be implemented
outside the OpenFlow switch domain.

Fig. 1(a) shows an exemplary centralized hypervisor archi-
tecture set-up. The hypervisor instance connects down to three
physical SDN switches (nodes, network elements) and up to
two vSDN controllers. The upper left physical SDN switch
provides a virtual switch for the left tenant. The upper right
and lower middle physical switches host two virtual switch
instances for each tenant. The single centralized hypervisor
instance is the SDN controller of all physical SDN switches.
All control traffic of the vSDNs has to pass through this
single hypervisor instance. From the switches, the hypervisor
forwards the control traffic towards the corresponding vSDN
controller. The control plane latency of such centralized SDN
hypervisor architecture has already been modeled and ana-
lyzed via simulations in [10]. In this paper, we compare the

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 4

V VV

SDN-CSDN-C

H

VV

(a) Centralized architecture, k = 1

V VV

SDN-C2SDN-C1

H

V

H

Control domain Control domain

V

(b) Distributed architecture + single-
contr. SDN switches, k > 1,M = 0

V VV

SDN-C2SDN-C1

VV

HH

Shared control domain

(c) Distributed architecture + multi-
controller SDN switches, k >
1,M = |V|

V VV

SDN-C2SDN-C1

H

V

H

Shared control
domain

V

Control domain Control domain

(d) Distr. hybrid arch. with single-
and multi-contr. SDN switches,
k > 1, 0 < M < |V|

Fig. 1. Illustration of four hypervisor architecture categories (characterized by number of hypervisor instances k and number of multi-controller switches
M) for an example SDN network with two virtual SDN networks (vSDNs). The blue and orange color differentiate the two vSDNs. A hypervisor instance
(location) is represented by a hexagon. The square dashed boxes represent the control domains in case of multiple hypervisor instances. A circle, labeled with
”V”, is a vSDN switch (node) hosted on a larger box with rounded edges, which represents a physical SDN switch (node). The solid lines between these
boxes represent the data plane connections, i.e., the edges of the physical SDN network. A dashed line represents a connection between an SDN controller
(SDN-C) and a hypervisor instance “H”. A double solid line represents a physical connection between a hypervisor and a physical SDN switch.

centralized architecture to the distributed architectures and
additionally investigate the impact of the network topology.

B. Distributed Network Hypervisor Architecture for Single-
controller SDN Switches

For scalability reasons, a hypervisor can be distributed into
multiple (k, k > 1) hypervisor instances that are distributed
over multiple (k) locations in the network. Suppose that the
SDN switches can only connect to one hypervisor instance at
a time (M = 0). Accordingly, the physical SDN network is
split into multiple control domains, whereby one hypervisor
instance is responsible for a given domain. An example for a
distributed SDN hypervisor architecture operating with single-
controller SDN switches is FlowN [31].

An example distributed architecture with two hypervisor
instances is illustrated in Fig. 1(b). The SDN switches are
controlled by k = 2 hypervisors. The left hypervisor instance
controls the upper left SDN switch, while the right hypervisor
instance controls the other SDN switches. Accordingly, the
SDN switches are split into two distinct control domains. Each
SDN switch connects to either one of the k = 2 hypervisor
instances. Note that one hypervisor instance can connect to
multiple controllers (as illustrated for the right hypervisor
instance). As the virtual switch instances of the left SDN
controller 1 (colored in blue) are in different control domains
of the hypervisors, SDN controller 1 connects simultaneously
to two hypervisor instances.

C. Distributed Network Hypervisor Architecture for Multi-
controller SDN Switches

The distributed network hypervisor architecture for multi-
controller switches realizes the SDN virtualization via mul-
tiple separated hypervisor instances (k > 1), similar to
Section III-B. However, all |V| physical SDN switches can
now simultaneously connect to multiple hypervisor instances
as all switches support multiple controllers (i.e., M = |V|).
As a result, there is no separation of the control domain
of the SDN switches as each switch can be simultaneously
controlled by multiple hypervisor instances. An example for

the distributed hypervisor architecture with multi-controller
SDN switches is DITRA [32]. With DITRA, a given physical
SDN switch can simultaneously connect to multiple hypervisor
instances. DITRA [32] operates with legacy SDN switches that
support the multi-controller feature, as it was introduced with
OpenFlow version 1.2 [12]. That is, DITRA does not require
extensions of the switch hardware.

While each physical SDN switch is only connected to
a single hypervisor instance in Fig. 1(b), Fig. 1(c) shows
two hypervisor control connections for each physical SDN
switch. The multi-controller feature allows an SDN switch
to connect to multiple different hypervisor instances during
operation. However, as switch resources, e.g., switch CPU and
flow tables, are shared and not strictly isolated, coordination
between the different hypervisor instances may be necessary.

D. Distributed Hybrid Network Hypervisor Architecture

In general, it may not be necessary for all SDN switches to
support the multiple controllers feature to achieve a specific
optimization objective. Furthermore, due to the hardware lim-
itations for supporting multiple controllers and the additional
coordination overhead, thorough planning of an SDN network
is important. The result of such planning could be that only
some of the switches implement or use the multi-controller
feature, while others are supporting or operating only the
single-controller mode. This leads to the fourth hypervisor
architecture category, namely a distributed architecture that
operates on hybrid SDN networks. We define a hybrid SDN
network as an SDN network that simultaneously uses single-
controller and multi-controller SDN switches.

Fig. 1(d) illustrates an example of the distributed hybrid
architecture. While the upper left switch connects only to the
left hypervisor instance and the upper right switch connects
only to the second hypervisor instance, the lower middle
switch (M = 1) connects to both hypervisor instances. Thus,
the control domain of the lower middle switch is shared by
both hypervisor instances. We can separate the shared and
non-shared control domains, as illustrated in Fig. 1(d). The
switches of the non-shared control domains operate in single-

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 5

controller mode, i.e., they connect to only one hypervisor
instance. Specifically, our model provides the capability to pre-
scribe a maximum permissible number M of multi-controller
SDN switches for a given network topology. The solution of
our optimization problem formulation provides the optimal
number of multi-controller SDN switches and the separation
of the SDN network into different control domains.

IV. PROBLEM SETTING FOR k-NETWORK HYPERVISOR
PLACEMENT PROBLEM (k-HPP) AND MULTI-CONTROLLER

SWITCH DEPLOYMENT PROBLEM (MCSDP)

The k-Network Hypervisor Placement Problem (k-HPP)
extends the Network Hypervisor Placement Problem (HPP),
where only k = 1 network hypervisor is placed to connect
virtual data plane switches to their corresponding vSDN con-
trollers. We also introduce the Multi-controller Switch Deploy-
ment Problem (McSDP), which determines the number and
the locations of multi-controller enabled switches. This section
first introduces the setting for these problems by defining the
notation for the physical SDN network and the vSDN requests.
Then, we introduce the mathematical definition of the k-HPP
and the McSDP.

A. Network Models

The input of the k-Network Hypervisor Placement Problem
is given by the set of vSDN requests R, which are to be
fulfilled with a given physical SDN network graph G(V, E).

1) Physical SDN Network Specification: Table I summa-
rizes the notation for the physical SDN network. The network
is modeled as a graph G(V, E) with physical SDN switches
(network nodes) v ∈ V connected by undirected edges e ∈ E .
The potential hypervisor nodes (locations) are given by the set
Φ. They are a subset of V , i.e., Φ ⊆ V . The latency λ(e) of an
edge e is computed from the geographical distance between
the two network nodes that are connected via edge e (the
transmission bit rate (capacity) of the edge is not considered).
The edge latency λ(e) is used for evaluating the latency of
network paths. The set P contains the shortest paths of the
network between any network node pair. A shortest path is
denoted as (s, t) ∈ P . The distance, i.e., the latency, of a
shortest path is denoted by d(s, t). Furthermore, the function
d(s, v, t) gives the latency of the shortest path connection
between nodes s and t via node v. This value is calculated
as the sum of d(s, v) and d(v, t).

2) Virtual SDN Network (vSDN) Request: Table II summa-
rizes the notation for the vSDN requests R. A vSDN request
r ∈ R is defined by the set of virtual SDN network nodes
Vr and the vSDN controller cr. The physical SDN switch of
a vSDN network node is given by the function π(vr), i.e.,
π(vr) ∈ V . All vSDN network nodes need to be connected to
their controller instance cr. The location of the controller is
also chosen among the available network node locations, i.e.,
π(cr) ∈ V . Note that we assume a vSDN to operate only one
SDN controller in this paper, i.e., we do not consider multiple
SDN controllers for a given vSDN.

TABLE I
NOTATION FOR PHYSICAL SDN NETWORK G

Notation Description
G(V, E) Physical SDN network graph
V Set of physical SDN switches (network nodes), i.e., node

locations
v Physical SDN switch (network node) v ∈ V
E Set of physical network edges
e Physical edge e ∈ E
Φ Set of potential hypervisor nodes (locations) with Φ ⊆ V
λ(e) Latency of edge e, with λ(e) ∈ R+

P Set of pre-calculated shortest paths between all network
node pairs

(s, t) Shortest path between two network nodes s and t, with
(s, t) ∈ P

d(s, t) Latency (distance) of shortest path (s, t) ∈ P
d(s, v, t) Latency (distance) of path connecting nodes s and t while

traversing (passing) node v.

TABLE II
NOTATION FOR VIRTUAL SDN NETWORK (VSDN) REQUESTS R

Notation Description
R Set of vSDN requests
r Virtual network request r ∈ R
Vr Set of virtual nodes of vSDN request r, r ∈ R
vr Virtual network node vr ∈ Vr

π(vr) Mapping from virtual node vr to its physical host switch
(network node) v, i.e., ∀r ∈ R : π(vr) : Vr → V

cr Virtual controller node of vSDN request r, r ∈ R, with
π(cr) ∈ V

B. k-Hypervisor Placement Problem (k-HPP)

Table III specifies the input of the k-HPP. For a given
physical SDN network G and set of vSDN requests R, a
prescribed number k of hypervisor locations need to be chosen
among all potential hypervisor locations Φ. The result of such
an optimization problem is the set of selected hypervisor
locations H. The set H specifies the hypervisor locations
on the network, i.e., the locations where the hypervisors are
actually placed. In real networks, those hypervisor locations
could be data center locations, which are connected to the
network topology at given network locations v ∈ V .

C. Multi-controller Switch Deployment Problem (McSDP)

We denote M for the number of multi-controller SDN
network nodes. We note that in our problem formulation,
we do not specify which physical SDN switches specifically
support the multi-controller feature. Instead, solving our prob-
lem formulation determines which switches should support
multiple controllers (hypervisors). An alternative input setting
of our problem formulation could include a predetermined set
of switches supporting the special multi-controller feature. In
case M = 0, no physical SDN switch supports the multi-
controller feature, i.e., no SDN switch can simultaneously
connect to multiple hypervisor instances. For 0 < M < |V|,
a subset of the physical SDN switches supports multiple
controllers. In case M = |V|, all physical SDN switches
support multiple controllers.

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 6

TABLE III
PROBLEM INPUT FOR k-HPP AND MCSDP

Notation Description
G Physical SDN network
R Set of virtual SDN network (vSDN) requests
k Number of hypervisor nodes to be placed
M Number of physical SDN switches (network nodes) sup-

porting multiple controllers

TABLE IV
BINARY DECISION VARIABLES FOR k-HPP AND MCSDP

Notation Description
xH(h) =1, if a hypervisor is placed at potential hypervisor node

(location) h ∈ Φ; 0, otherwise
xR(vr, h, cr) =1, if vSDN node vr ∈ Vr is connected to controller cr

via hypervisor node (location) h ∈ Φ; 0, otherwise
xV,H(v, h) =1, if physical SDN node v ∈ V is controlled by

hypervisor node h ∈ Φ; 0, otherwise
xM(v) =1, if physical SDN node v ∈ V is controlled by multiple

hypervisor instances, i.e., if multiple node to hypervisor
(controller) connections exist; 0, otherwise.

V. MIXED INTEGER PROGRAMMING FORMULATION FOR
k-HPP AND MCSDP

A. Decision Variables

Table IV specifies the binary decision variables of the mixed
integer programming formulation of the k-HPP and McSDP.
The variable xH(v) determines whether a hypervisor is located
at the network node (location) v ∈ Φ. Note that after having
solved the model, the variables xH(v) specify the set H of
hypervisor nodes, specifically, H = {v ∈ Φ : xH(v) = 1}.
For a request r ∈ R, the variable xR(vr, h, cr) is set to one if
the vSDN node vr ∈ Vr is connected to the vSDN controller
cr via the hypervisor node (location) h ∈ Φ. Note that if a
path xR(vr, h, cr) is set to one, then a hypervisor needs to
be placed at the potential hypervisor node (location) h. The
variable xV,H(v, h) indicates whether physical node v ∈ V is
controlled by the hypervisor instance placed at location h ∈
Φ. The variable xM(v) indicates whether the multi-controller
feature is deployed and used at physical node v ∈ V . In case
of a multi-controller SDN switch, i.e., where xM(v) = 1, the
variable xV,H(v, h) for a given node v ∈ V is possibly one
for multiple hypervisor nodes (locations) h ∈ Φ.

B. Objective Functions

We focus on objective functions that seek to minimize
the control plane latency. In particular, we introduce four
latency metrics, namely maximum latency Lmax, average la-
tency Lavg, average maximum latency Lavgmax, and maximum
average latency Lmaxavg. Average and maximum latency are
traditional metrics from the related SDN controller placement
problem; we extend these metrics for the k-HPP. Note that
when optimizing for Lmax, Lavgmax, and Lmaxavg, additional
variables and constraints are needed. These variables and
constraints are subsequently introduced when the metrics are
presented. As these variables and constraints are objective
specific, they are not described in the general constraints Sec-
tion V-C. We investigate a model without capacity constraints
in this study. The incorporation of capacity constraints, such

as data rate and node capacity (e.g., CPU or memory capacity)
are planned for future work.

a) Maximum Latency: The maximum latency for a con-
sidered hypervisor placement is the maximum latency of all
utilized shortest paths from all requests r ∈ R. Recall that the
binary decision variable xR(vr, h, cr) indicates (i.e., is equal
to one) when the path from vr via h to cr is used. Thus, the
maximum latency of all paths that have been selected to fulfill
the requests r ∈ R is given by

Lmax = max
r∈R, vr∈Vr, h∈Φ

xR(vr, h, cr)d(π(vr), h, π(cr)).

(1)
Minimizing the latency metric Lmax involves minimizing a
maximum over sets, which is not directly amenable to some
solvers. The maximum over sets can be readily expressed as
an equivalent constrained minimization problem. Specifically,
we can equivalently minimize Lmax defined through the con-
straints

Lmax ≥ xR(vr, h, cr)d(π(vr), h, π(cr)),

∀r ∈ R, ∀vr ∈ Vr, ∀h ∈ Φ.
(2)

The resulting objective function is

minLmax. (3)

b) Average Latency: The average latency is the average
of all path latencies of all vSDNs that connect the virtual
network nodes with the vSDN controllers of the respective
vSDNs. For a vSDN request r, there are |Vr| vSDN nodes
that need to be connected to the vSDN controller cr. Thus,
for a set of requests R, there are overall

∑
r∈R
|Vr| paths and

the average latency is

Lavg =
1∑

r∈R
|Vr|

∑
r∈R

∑
vr∈Vr

∑
h∈Φ

xR(vr, h, cr)d(π(vr), h, π(cr)).

(4)
Note that this metric does not differentiate between the vSDNs.
Here, no additional variable or constraint are needed, thus the
average latency objective function is

min Lavg. (5)

c) Average Maximum Latency: The average maximum
latency for a given hypervisor placement is defined as the
average of the maximum latencies for the individual vSDN
requests r ∈ R. First, the maximum path latency for each
vSDN request r is evaluated. Second, the average of all max-
imum path values is evaluated, i.e., the sum of the maximum
path latencies is divided by the total number of vSDN requests
|R|.

Lavgmax =
1

|R|
∑
r∈R

max
vr∈Vr, h∈Φ

xR(vr, h, cr)d(π(vr), h, π(cr)).

(6)
In order circumvent the maxima over sets, we define con-
straints for the maximum latency of each given vSDN request
r ∈ R:

Lrmax ≥ xR(vr, h, cr)d(π(vr), h, π(cr)), ∀vr ∈ Vr, ∀h ∈ Φ.
(7)

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 7

The objective function then minimizes the average of the Lrmax

over all requests |R|:
min

1

|R|
∑
r∈R

Lrmax. (8)

This objective function provides a relaxed average latency
towards a better maximum latency per vSDN. Note that this
objective function differentiates between vSDNs.

d) Maximum Average Latency: The maximum average
latency is defined as the maximum of the average latencies
for the individual vSDNs. First, the average latency of each
requested vSDN request r ∈ R is determined. Second, the
maximum of these averages is evaluated, i.e.,

Lmaxavg = max
r∈R

1

|Vr|
∑
vr∈Vr

∑
h∈Φ

xR(vr, h, cr)d(π(vr), h, π(cr)).

(9)
This metric corresponds to the maximum of the vSDN average
latencies, i.e., the maximum latencies are relaxed per vSDN
towards a better overall maximum average latency. Minimizing
the maximum over the set R is equivalent to minimizing
Lmaxavg defined through the constraints

Lmaxavg ≥
1

|Vr|
∑
vr∈Vr

∑
h∈Φ

xR(vr, h, cr)d(π(vr), h, π(cr))

∀r ∈ R.
(10)

The objective function then minimizes Lmaxavg:

minLmaxavg. (11)

C. Constraints

We proceed to introduce the constraints for the k-HPP and
McSDP.

a) Hypervisor Selection Constraint: We ensure that the
number of placed hypervisor instances (i.e., the number of
selected hypervisor nodes (locations)) is equal to k:∑

h∈Φ

xH(h) = k. (12)

b) Virtual Node Path Selection Constraint: Each virtual
node vr ∈ V of each vSDN request r ∈ R must be connected
to its corresponding controller cr via exactly one hypervisor
node h. This means that per virtual node vr per request r,
exactly one path has to be used:∑

h∈Φ

xR(vr, h, cr) = 1, ∀r ∈ R ,∀vr ∈ Vr. (13)

c) Hypervisor Installation Constraint: We place (install)
a hypervisor instance at location h (i.e., set xH(h) = 1) if at
least one virtual node vr is connected to its controller cr via
the hypervisor location h (i.e., if xR(vr, h, cr) = 1). At the
same time, at most

∑
r∈R
|Vr| virtual nodes can be connected via

a given hypervisor location h to their respective controllers.
Thus,∑
r∈R

∑
vr∈Vr

xR(vr, h, cr) ≤ xH(h)
∑
r∈R
|V r|, ∀h ∈ Φ. (14)

d) Physical Node to Hypervisor Assignment Constraint:
We let a hypervisor node (location) h control a physical SDN
switch (network node) v, if a path is selected to connect a
virtual node vr to its controller cr via h (i.e., if xR(vr, h, cr) =
1) and additionally, this virtual node is hosted on v, i.e.,
π(vr) = v. Thus:

xR(vr, h, cr) ≤ xV,H(π(vr), h), ∀r ∈ R, ∀vr ∈ Vr, ∀h ∈ Φ.
(15)

e) Multiple Hypervisors Constraint: We determine the
physical SDN switches v ∈ V that can be controlled by
multiple hypervisors, i.e., the switches v (with xM(v) = 1)
that support multiple controllers. For a given physical multi-
controller SDN switch v ∈ V (with xM(v) = 1), the number
of controlling hypervisors must be less than or equal to the
total number of hypervisor nodes k, if the switch hosts at
least one virtual SDN switch (which needs to be connected
to its controller). On the other hand, for a physical single-
controller SDN switch v ∈ V (with xM(v) = 0), the number
of controlling hypervisors must equal one, if the switch hosts
at least one virtual SDN switch. Thus, for an arbitrary physical
SDN switch (node) v ∈ V (irrespective of whether v is a
single- or multi-controller SDN switch), the total number of
controlling hypervisor instances (locations) must be less than
or equal to [1− xM(v)] + kxM(v). Thus,∑
h∈Φ

xV,H(v, h) ≤ [1− xM(v)] + kxM(v), ∀v ∈ V. (16)

We note that some solvers may unnecessarily set some
xV,H(v, h) to one for a hypervisor node h, even though
network node v does not host any virtual node vr that is
connected to its corresponding controller cr via hypervisor
node h. This is because the solver can find a valid minimal
latency solution while setting some xV,H(v, h) unnecessarily
to one. We circumvent this issue by forcing xV,H(v, h) to
zero if no corresponding path for this hypervisor instance was
selected:
xV,H(v, h) ≤

∑
r∈R

∑
{vr ∈ Vr :

v = π(vr)}

xR(vr, h, cr), ∀v ∈ V,∀h ∈ Φ.

(17)
f) Multi-controller Switches Constraint: We limit the

number of special multi-controller SDN switches that are
physically deployed in the network:∑

v∈V
xM(v) ≤M. (18)

Note that via this constraint the four different architectures,
as introduced in Section III, can be modeled, optimized, and
analyzed. Setting M = 0 forces all xM(v) to zero. Accord-
ingly, there are no physical multi-controller SDN switches in
the network, i.e., a physical SDN switch node can only be
controlled by one hypervisor node. Thus, shared control do-
mains, i.e., one node being controlled by multiple hypervisor
nodes, are not possible.

VI. EVALUATION SET-UP

We extended our Python-based framework from [10] with
our new models introduced in this paper. The framework

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 8

TABLE V
EVALUATION SETTINGS

Parameter Values

Network topology Abilene, Quest, OS3E, Bellcanada,
Dfn

Ratio of multi-controller switches
Mr

0, 0.25, 0.5, 0.75, 1

No. of vSDN requests |R| 1, 3, 5, 7, 10, 15, 20, 40, 70, 100

No. of virtual nodes per vSDN
|Vr|

Uniformly distributed 2, . . . , 10

No. of virtual SDN controller cr
per request r

1

Virtual SDN controller placements
(CP)

random (rnd), average (avg), max-
imum (max)

Virtual node locations π(vr) Uniformly selected from v ∈ V
HP objectives max, maxavg, avg, avgmax

Runs per set-up 200

uses Gurobi as solver for the MIP formulation. In this paper,
the evaluation focuses mainly on the latency analysis, i.e.,
the hypervisor placement (HP) latency values (defined in
V-B) and the latency values of the individual vSDN requests
(defined in Sec. VII-B). Following [9], we use real network
topologies to evaluate the architectures. The evaluation settings
are summarized in Table V.

A. Substrate Networks

The performance evaluations focus initially on the hy-
pervisor instance placement for the Internet2 Open Science,
Scholarship and Services Exchange (OS3E) network topology.
The OS3E network is a well known research network with
OpenFlow capability. The OS3E network has 34 nodes and
about 41 edges. The geographical node locations are used
to calculate the latency of the network edges. We neglect
additional latency, e.g., due to nodal processing. We conduct
general topology evaluations for the Abilene, Quest, Bell-
canada, OS3E, and Dfn networks [33].

B. Virtual SDN Network (vSDN) Request

For a given vSDN request r, the number of vSDN nodes,
i.e., |Vr|, is randomly determined by a uniform distribution
between 2 and 10. The vSDN node locations are chosen
randomly among all physical locations V . The number of
vSDN nodes per physical node is limited to one per request.
The number of vSDN controllers per request r is set to one. In
order to evaluate the impact of the virtual controller placement
(CP) on the hypervisor placement (HP) latency, we consider
three vSDN CPs, namely random (rnd), average (avg), and
maximum (max). Random CP selects the node location π(cr)
of the vSDN controller of a given request r randomly among
all physical node locations V . The average and maximum
CPs [9] optimize the controller location for the locations
of vSDN switches Vr. The potential controller locations are
always the set of physical node locations V . For a given
request r ∈ R, the maximum CP minimizes the maximum
control latency of all virtual switches Vr to their corresponding
controller cr. The average CP minimizes the average control

latency for all controller cr to switch connections per vSDN
request. As we are interested in the study of a priori CPs, the
vSDN controller locations are optimized a priori and fed as
input into the MIP models.

C. Architecture Comparison

For all architectures, we assume that all network nodes can
host a hypervisor node, i.e., Φ = V . The number of hypervisor
nodes k and the number of multi-controller switches M
determine the type of hypervisor architecture. The centralized
architecture, see Section III-A and Fig. 1a, is characterized
by k = 1 and M = 0, i.e., each switch has only one
controller (hypervisor) connection. Note also that k > 0 and
M = 0 corresponds to the distributed architecture operating
on single-controller switches (see Section III-B and Fig. 1b),
while 0 < M < |V| corresponds to the hybrid architecture
(Section III-D, Fig. 1d) and M = |V| represents the dis-
tributed architecture where only multi-controller switches are
deployed (cf. Section III-C, Fig. 1c). We set M through the
ratio Mr = M/|V| = 0, 0.25, 0.5, 0.75, 1 that specifies the
maximum number of network nodes supporting the multi-
controller feature. For instance, Mr = 0.5 corresponds to
M = 17 multi-controller switches that can be placed inside
the OS3E network. We initially compare all four SDN network
hypervisor architectures in terms of the HP latency metrics
defined in Section V-B. All latency results will be given in
kilometers [km]. Subsequently, we analyze the latency values
of the vSDN requests in order to evaluate the impact of virtu-
alization. We then show through a generalized topology-aware
analysis how the architectures behave for varying network
topologies. Every optimization setup was executed 200 times
to achieve statistically reliable results.

VII. EVALUATION RESULTS

A. Impact of Hypervisor Placement (HP) on Latency Metrics

We first present and discuss a compact representation of
the results for varying number of vSDN requests |R| and in-
creasing number of hypervisor instances k in Fig. 2. Based on
our observations we then conduct a more detailed evaluation of
selected set-ups in Fig. 3 to clearly illustrate the effects of dif-
ferent architecture attributes, namely multi-controller switches,
number of hypervisor instances k, and controller placements
(CPs). In order to evaluate the virtualization overhead, i.e.,
the cost of virtualization, in terms of additional control plane
latency, we conclude the OS3E evaluation by investigating the
individual request latencies of the vSDN requests in Figs. 5–7.
Finally, we provide an analysis of five different substrates in
Figs. 8–10 to assess how our observations may be generalized.

1) Severe impact of number of vSDN requests and hyper-
visor instances on HP latency metrics: Figures 2a–d provide
a compact representation of the HP latency metrics for every
combination of number of hypervisors k and number of vSDN
requests |R|. We consider the random CP strategy in order
to focus on the impact of the parameters k and |R|. The
figures show heatmaps of the latency values averaged over
200 independent runs. The lowest latency value is represented

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 9

1 2 3 4 5 6 7 8 9
k

1
3
5
7

10
15
20
40
70

100

|R
|

3750
4000
4250
4500
4750
5000
5250
5500

Lmax [km]

(a) minLmax

1 2 3 4 5 6 7 8 9
k

1
3
5
7

10
15
20
40
70

100

|R
|

2400
2700
3000
3300
3600
3900
4200
4500
4800

Lmaxavg [km]

(b) minLmaxavg

1 2 3 4 5 6 7 8 9
k

1
3
5
7

10
15
20
40
70

100

|R
|

3520
3600
3680
3760
3840
3920
4000
4080
4160

Lavgmax [km]

(c) minLavgmax

1 2 3 4 5 6 7 8 9
k

1
3
5
7

10
15
20
40
70

100

|R
|

2200
2300
2400
2500
2600
2700
2800
2900
3000

Lavg [km]

(d) minLavg

Fig. 2. The heatmaps show the latency values (in kilometers [km]) averaged over 200 independent runs. Light yellow represents high latency values, while
dark red represents low latency values. For each subfigure, the numbers of vSDN requests |R| are indicated on the left, the numbers of hypervisor instances
k on the bottom, and the heatmap scale for the latencies on the right. Fixed param.: no multi-controller switches Mr = 0, random controller placement (CP).

in black color and the highest latency value in bright yellow
color. Red represents intermediate latency values.

When only a single vSDN is considered (|R| = 1), increas-
ing the number of hypervisor instances k does not reduce any
of the resulting latency metrics. When only a single hypervisor
instances is considered (k = 1), the latencies are significantly
increasing with increasing number of vSDN requests |R|. On
the other hand, for multiple requested vSDNs (|R| > 1), we
observe from Fig. 2 that increasing the number of hypervisor
instances k generally reduces the latencies.

The number of requested vSDNs |R| plays an important
role when optimizing the HP. For small |R|, a small number of
hypervisor instances k suffices to achieve optimal placements.
In order to investigate the impact of k, M (Mr), and the CP
in more detail, we set |R| = 70 for the subsequent evaluations
as this setting has shown a clear effect of increasing k on the
HP latencies.

2) Increasing the number of hypervisor instances k min-
imizes latency metrics differently: Figures 3a–d show the
impact of the number of hypervisors k, the number of multi-
controller switches M , and the virtual CPs on the achieved
latencies. Each figure shows the result of one HP objective.
Further, the random CP is compared to the best CP, i.e., either
average or maximum CP, which achieved the best results in the
conducted simulations. For each metric, the 95% confidence
interval of the mean value over 200 runs is shown.

We observe from Figs. 3a–d that additional hypervisor
instances generally reduce the latency objectives for all set-
ups. This decrease of latencies with increasing k is consistent
with the observations from Figs. 2a–d, which considered
increasing k for a range of numbers of vSDN requests |R|
(and Mr = 0). Notice in particular, the continuous drop of
Lavg in Fig. 2d.

However, we also observe from Figs. 3a–d that for in-
creasing k there is typically a point of diminishing returns,
where adding hypervisor instances does not further reduce the
latency. This point of diminishing returns varies according to
latency objective and CP. For instance, the point of diminishing
returns ranges from k = 2 for random CP with the Lmax

objective and M = 34 (Fig. 3a), to k = 9 for Lavg (Fig. 3d).
That is, the convergence point differs strongly among the
set-ups. Thus, in case of changing the operation goal of a
hypervisor deployment, e.g., for Mr = 0 from Lmaxavg to
Lavgmax, a re-optimization of the HP may be necessary as a
different number k of hypervisors may be needed for achieving

an optimal latency value (e.g., from k = 5 for Lmaxavg to
k = 9 for Lavgmax with random CP).

3) More multi-controller switches demand less hypervisor
instances for an optimal solution: Figs. 3a–d also show that
the all objectives benefit from multi-controller switches. This
means that, increasing the number of multi-controller switches
M decreases the number of hypervisor instances k required for
an optimal solution. Further, the point of diminishing returns
is affected. For instance, for Lmax with random CP (Fig. 3a),
k = 2 hypervisor instances achieve the lowest latency when
M = 17 or 34, instead of k = 5 for M = 0. Lavg shows a
more significant benefit of multi-controller switches over all
k (Fig. 3d). This is shown by the non-overlapping blue solid
(M = 0) and red dashed (M = 34) lines. To conclude, with
respect to all objectives, only 50 % of switches need to support
the multi-controller feature in order to achieve an optimal HP,
as it is shown by the overlapping green dotted (M = 17) and
red dashed (M = 34) lines.

4) The best controller placement strategy depends on the
hypervisor latency objective: Figs. 3a–d indicate that opti-
mized CP significantly decreases the values of all latency
metrics, in some cases by more than 50 %. For instance, for
the objective Lmax, the latency is reduced by nearly 42 %
from an average value of 5 ·103 km to 2.9 ·103 km (Figs. 3a).
The optimized CP also improves the centralized architecture
(k = 1) for the Lmax, Lavg, and Lavgmax objectives. For
Lmaxavg, however, an optimized CP does not significantly
reduce the latency of the centralized architecture (k = 1).
Furthermore, the best CP strategy depends on the HP objective.
The maximum CP achieves the most pronounced latency
reduction for the Lmax and Lavgmax latency objectives. For
Lavg and Lmaxavg, the average CP shows the best performance
improvement.

5) The average/maximum controller placements demand
more hypervisors for an optimal solution: In addition to
reducing the latency values in general, the maximum and
average CPs affect the point of diminishing returns with
respect to the number of hypervisor instances k (Figs. 3a–
d). Also, the number of multi-controller switches M impacts
the convergence point per HP objective. For the Lmaxavg,
Lavgmax, and Lavg objectives, there is a small gap between
M = 0 and M = 34. However, for Lmax, there is a
pronounced gap between M = 0 and M = 34; and only
for k = 9 hypervisor instances do the M = 0 and M = 34
curves converge. For the Lmaxavg objective, the convergence

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 10

1 2 3 4 5 6 7 8 9
k

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

L
m

ax
[k

m
]

×103

M=0,rnd
M=17,rnd
M=34,rnd

M=0,max
M=17,max
M=34,max

(a) minLmax

1 2 3 4 5 6 7 8 9
k

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

L
m

ax
av

g
[k

m
]

×103

M=0,rnd
M=17,rnd
M=34,rnd

M=0,avg
M=17,avg
M=34,avg

(b) minLmaxavg

1 2 3 4 5 6 7 8 9
k

2.0

2.5

3.0

3.5

4.0

4.5

L
av

gm
ax

[k
m

]

×103

M=0,rnd
M=17,rnd
M=34,rnd

M=0,max
M=17,max
M=34,max

(c) minLavgmax

1 2 3 4 5 6 7 8 9
k

1.5

2.0

2.5

3.0

3.5

L
av

g
[k

m
]

×103

M=0,rnd
M=17,rnd
M=34,rnd

M=0,avg
M=17,avg
M=34,avg

(d) minLavg

Fig. 3. Latency values (95 % confidence intervals over 200 runs, in kilometers [km]) obtained with the different latency minimization objectives Lmax,
Lmaxavg, Lavgmax, and Lavg as a function of number of hypervisor instances k. The number of multi-controller switches is M = 0 (Mr = 0, solid lines),
M = 17 (Mr = 0.5, green dotted lines), and M = 34 (Mr = 1, red dashed lines). The controller placement (CP) strategies are random (square boxes),
maximum (crosses), and average (triangles).

point is also only reached for k = 9 hypervisor instances.
When comparing all latency values for k = 1, only Lmaxavg

benefits neither from optimized CP nor from multi-controller
switches. This effect can be explained by the examination of
the individual latencies of the vSDN requests, as conducted in
the next subsection.

B. Analysis of the vSDN Requests’ Control Plane Latency—
The Cost of Virtualization

Before analyzing the impact of the HP on the individual
vSDN requests, we first examine the impact of the CP on
the individual requests without virtualization. This means that
we calculate for each request the best possible latency values,
which are determined by the CP. Without virtualization, the
connections between the requested switches and controllers do
not have to pass through any hypervisor instance. We define
the maximum request latency

LV N,CPmax (r) = max
vr∈Vr

d(π(vr), π(cr)) ∀r ∈ R (19)

and the average request latency

LV N,CPavg (r) =
1

|Vr|
∑
vr∈Vr

d(π(vr), π(cr)) ∀r ∈ R. (20)

Note that these are the definitions of the request latencies
without any virtualization. For calculating the latencies with
virtualization LV N,HPavg (r) and LV N,HPmax (r), d(π(vr), π(cr))
needs to be replaced by d(π(vr), h, π(cr)), i.e., by the distance
of the paths via the used hypervisor instances. We omit the
request specification ’(r)’ in the following to avoid notational
clutter.

Figs. 4a–b show the LV N,CPavg and LV N,CPmax CDFs for the
random, average, and maximum CPs without virtualization
(i.e., no HP). In general, they show the best possible request
latencies that can be achieved for each request. Virtualization,
i.e., hypervisor placement, will achieve in the best case the
latency values as shown by the figures. The maximum and the
average placement strategy reduce the request latency values
LV N,CPavg and LV N,CPmax . The average CP achieves the lowest
latency values for LV N,CPavg , while the maximum CP achieves
the lowest latencies for LV N,CPmax . Interestingly, the results of

0 2 4 6

LVN,CP
avg [km] ×103

0.0

0.2

0.4

0.6

0.8

1.0

P(
X
≤

L
V

N
,C

P
av

g
)

rnd
avg
max

(a) Average request latency

0 2 4 6
LVN,CP

max [km] ×103

0.0

0.2

0.4

0.6

0.8

1.0

P(
X
≤

L
V

N
,C

P
m

ax
)

rnd
avg
max

(b) Maximum request latency

Fig. 4. Cumulative distribution functions of average (P (X ≤ LV N,CP
avg))

and maximum (P (X ≤ LV N,CP
max)) latencies for direct virtual switch

to controller connections of individual requested vSDNs r ∈ R, without
traversing hypervisors. The controller placement (CP) strategies are: random
(blue solid line), average (green dotted line), and maximum (red dashed line).

the maximum CP are close to the average CP for LV N,CPavg .
The reason is that the maximum CP places the controller in the
middle of the longest path between two virtual SDN switches
to reduce LV N,CPmax . This is in most case a central position of
the vSDN, which leads also to low LV N,CPavg values.

Figures 5a–h show the impact of CPs and the number of
hypervisor instances k on the request latencies LV N,HPmax and
LV N,HPavg . Each figure shows the behavior for a given HP
objective. For distributed architectures (k > 1), we set the
number of multi-controller switches to M = 17 as the hybrid
architecture has already optimal HP latency values.

1) Adding hypervisor instances may increase the re-
quest latency with maximum-based objectives: For the
maximum-based latency objectives, namely Lmax, which
considers the maximum of all individual path latencies
d(π(vr), h, π(cr)), vr ∈ Vr of all requests r ∈ R (see
Eqn. (1)), and Lmaxavg, which considers the maximum of the
average vSDN (request) latencies (see Eqn. (9)), we observe
from Figs. 3a, b, e, and f mixed behaviors. For instance,
for the maximum CP, which achieves generally the lowest
individual maximum request latencies LV N,HPmax , additional
hypervisor instances are beneficial for the Lmax objective,
but may increase latencies for the Lmaxavg objective. Simi-
larly, additional hypervisors increase the request latencies for
several other combinations of CP and request latency metric
in Figs. 3a, b, e, and f. This is because the maximum-based

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 11

1 2 3 4 5 6 7 8 9
k

2.5

3.0

3.5

4.0

4.5

L
V

N
,H

P
m

ax
[k

m
]

×103

rnd
avg

max

(a) Obj. minLmax, req. lat. LV N,HP
max

1 2 3 4 5 6 7 8 9
k

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

L
V

N
,H

P
m

ax
[k

m
]

×103

rnd
avg

max

(b) minLmaxavg, req. lat. LV N,HP
max

1 2 3 4 5 6 7 8 9
k

2.0
2.5
3.0
3.5
4.0
4.5
5.0

L
V

N
,H

P
m

ax
[k

m
]

×103

rnd
avg

max

(c) minLavgmax, req. lat. LV N,HP
max

1 2 3 4 5 6 7 8 9
k

2.0
2.5
3.0
3.5
4.0
4.5
5.0

L
V

N
,H

P
m

ax
[k

m
]

×103

rnd
avg

max

(d) minLavg, req. lat. LV N,HP
max

1 2 3 4 5 6 7 8 9
k

2.0

2.5

3.0

3.5

4.0

L
V

N
,H

P
av

g
[k

m
]

×103

rnd
avg

max

(e) minLmax, req. lat. LV N,HP
avg

1 2 3 4 5 6 7 8 9
k

1.5

2.0

2.5

3.0

3.5

4.0
L

V
N
,H

P
av

g
[k

m
]

×103

rnd
avg

max

(f) minLmaxavg, req. lat. LV N,HP
avg

1 2 3 4 5 6 7 8 9
k

1.5

2.0

2.5

3.0

3.5

4.0

L
V

N
,H

P
av

g
[k

m
]

×103

rnd
avg

max

(g) minLavgmax, req. lat. LV N,HP
avg

1 2 3 4 5 6 7 8 9
k

1.5

2.0

2.5

3.0

3.5

4.0

L
V

N
,H

P
av

g
[k

m
]

×103

rnd
avg

max

(h) minLavg, req. lat. LV N,HP
avg

Fig. 5. Mean values and 95 % confidence intervals of average (LV N,HP
max) and maximum (LV N,HP

avg) latencies for virtual switch-hypervisor-controller
connections of individual vSDNs r ∈ R. For each HP latency minimization objective, the impact of k hypervisor instances and the controller placement (CP)
are depicted: random CP (blue boxes), average CP (red triangles), and maximum CP (green crosses). Fixed param.: Mr = 0.5 multi-contr. switches.

latency objectives Lmax strive to minimize the maximum path
latency over all requested vSDNs (see Eqn. (1)). For this, it
relaxes the maximum request latency LV N,HPmax (r) and average
request latency LV N,HPavg (r) for some vSDN requests in order
to improve the maximum latency over all requests. Similar,
Lmaxavg strive to minimize the maximum average request
latency LV N,HPavg (r) over all requested vSDNs (see Eqn. (9)).
Thus, a single vSDN request, namely the vSDN with the
longest virtual node-hypervisor-controller path (for Lmax) or
the highest average request latency (for Lmaxavg) governs
the optimal latency objective value. For the remaining vSDN
requests, i.e., the requests that do not affect the objective,
the responsible hypervisors may not be placed optimally with
respect to LV N,HPmax and LV N,HPavg . Therefore, some vSDN
requests may experience increased latencies when adding
hypervisors in order to improve the optimal latency objective
value, as demonstrated by Figs. 3a, b, e, and f. We plan to
propose an algorithm that addresses this issue in future work.

2) Average-based latency objectives always benefit from
additional hypervisor instances: We observe from Fig. 5c,
d, g, and h that for the average-based latency objectives
Lavgmax and Lavg, the individual requests always benefit
from additional hypervisor instances, i.e., from increasing k.
Through the averaging over all path lengths (Lavg) or the
maximum path lengths of all vSDN requests (Lavgmax), the
average-based latency metrics consider all vSDN requests and
exploit additional hypervisor instances to achieve lower la-
tency objectives and lower individual vSDN request latencies.
We also observe from Figs. 5c, d that the maximum CP
achieves the lowest maximum request latencies LV N,HPmax while
the average CP achieves the lowest average request latencies
LV N,HPavg (Figs. 5g, h). Overall, the objective Lavg (Figs. 5d,
h) achieves the lowest request latencies LV N,HPmax and LV N,HPavg .

3) Significant request latency trade-offs among all objec-
tives can be observed: In order to achieve their optimization

0 2000 4000 6000

LVN,HP
avg [km]

0.0

0.2

0.4

0.6

0.8

1.0

P(
X
≤

L
V

N
,H

P
av

g
)

minLavg

minLavgmax

minLmaxavg

minLmax

CPP

(a) Average request latency (HP)

0 5000 10000
LVN,HP

max [km]

0.0

0.2

0.4

0.6

0.8

1.0

P(
X
≤

L
V

N
,H

P
m

ax
)

minLavg

minLavgmax

minLmaxavg

minLmax

CPP

(b) Maximum request latency (HP)

Fig. 6. Cumulative distribution functions of average (P (X < LV N,HP
avg)) and

maximum (P (X < LV N,HP
max)) individual vSDN request latencies with HP

(virtualization); LV N,CP
max and LV N,CP

avg show the request latencies without
virtualization (cf. Fig. 4). Fixed param.: k = 9 hypervisors, Mr = 0.5 multi-
contr. switches.

goal, the objectives lead to trade-offs among the request
latencies LV N,HPmax and LV N,HPavg . We illustrate these tradeoffs
for the hybrid architecture (M = 17) with k = 9 hypervisor
instances. The following observations hold in general also for
most other set-ups. As depicted in Fig. 6a, the Lavg objective
achieves the lowest request latencies. We observe a clear
tradeoff between the Lavgmax and Lmaxavg objectives with
respect to LV N,HPavg . As expected, Lmaxavg pushes down the
maximum average latency among all requests, thus, achieving
lower latencies for the upper 20 % of the requests. By pushing
down the individual maximum path latencies over all requests,
Lavgmax pays more attention to the individual paths, i.e.,
controller to switch connections, of the requests. Consequently,
Lavgmax accepts larger values for 20 % of the requests in order
to improve the latency of the 80 % remaining requests.

Fig. 6b shows again important trade-offs among all ob-
jectives. Although Lmax minimizes the maximum request
latency, it accepts overall worse request latencies than Lavg

and Lavgmax. Further, the minLmaxavg curve illustrates the
model’s working behavior when optimizing for Lmaxavg.
While minimizing Lmaxavg pushes the maximum average

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 12

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
m

ax

(a) minLmax

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
m

ax

(b) minLmaxavg

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
m

ax

(c) minLavgmax

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
m

ax

(d) minLavg

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
av

g

(e) minLmax

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
av

g

(f) minLmaxavg

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
av

g

(g) minLavgmax

k=
1,

rn
d

k=
2,

rn
d

k=
5,

rn
d

k=
9,

rn
d

k=
1,

av
g

k=
2,

av
g

k=
5,

av
g

k=
9,

av
g

k=
1,

m
ax

k=
2,

m
ax

k=
5,

m
ax

k=
9,

m
ax

100

101

R
V

N
av

g

(h) minLavg

Fig. 7. Boxplots for the maximum and average latency overhead ratios RV N
max and RV N

avg (Eqs. (21) and (22)) for OS3E network. An overhead ratio of
one corresponds to no overhead, i.e., a zero cost of virtualization. The blue boxes show the upper 75 % quartile and the lower 25 % quartile. The green
filled squares show the mean and the red line the median. In case the upper and the lower quartile are equal, the whiskers reach the maximum outlier value,
shown via blue dashed lines. The black crosses indicate the outliers that do not fall into the 1.5 times interquartile range of the whiskers. For each figure,
k = 1, 2, 5, 9 hypervisor instances are compared for the controller placement (CP) strategies (rnd, max, avg). Y-axes are scaled logarithmically.

latencies of all requests down (Fig. 6a), it relaxes the request
latencies LV N,HPmax towards higher values (Fig. 6b).

4) Controller placement strategy and additional hypervisor
instances can significantly reduce virtualization overhead:
Having observed that the different latency objectives provide
generally varying trade-offs between the request latencies, we
now analyze the virtualization overhead per vSDN request in
detail. In order to investigate how much overhead virtualization
adds to the request latency, we introduce metrics that reflect
the virtualization overhead ratio, i.e., the cost of virtualization.
We define the maximum latency overhead ratio

RV Nmax(r) =
LV N,HPmax (r)

LV N,CPmax (r)
∀r ∈ R (21)

and the average latency overhead ratio

RV Navg (r) =
LV N,HPavg (r)

LV N,CPavg (r)
∀r ∈ R. (22)

A request is affected by virtualization if an overhead ratio
is larger than one. An overhead ratio of one means that the
request latency is not increased by virtualization.

For analysis, the distributed hybrid architecture (k > 1,
M = 17) is chosen as it has shown an optimal performance
for the HP latency objectives. We selected k = 1, 2, 5, 9
to provide a representative set to illustrate the impact of
using additional hypervisor instances. Figs. 7a–h represents
the latency overhead ratios of all latency objectives. Boxplots
depict how additional hypervisor instances and the CP impact
the overhead ratios. As shown by Fig. 7, for some vSDN
requests the controller latency is up to 15 times higher. The
random CP has the lowest virtualization overhead. This is
because the random CP has already relative high latencies
LV N,CPavg and LV N,CPmax , see Fig. 4.

Generally, we observe from Fig. 7 that the objectives
Lavgmax and Lavg achieve the lowest overheads. Specifically,
RV Nmax, the objectives Lavgmax and Lavg achieve decreasing
latency overheads as more hypervisor instances are deployed,
i.e., k is increased. More than 75 % of the requests (Fig. 7c
and Fig. 7d) achieve an overhead ratio RV Nmax = 1, i.e., their
maximum latencies are not increased at all by virtualization,
when k = 5 or 9. In contrast, the maximum-based latency
objectives Lmax and Lmaxavg exhibit again the mixed behavior
for increasing k as observed in Sec. VII-B1.

For RV Navg , the objectives Lmaxavg, Lavgmax, and Lavg

benefit from additional hypervisors for all CP strategies.
To conclude, with a moderately high number of hypervisor
instances (k = 5 or 9), the average-based latency objectives
Lavgmax and Lavg have demonstrated the lowest overhead
ratios, irrespective of the CP strategy. Thus, when individual
request latencies need to be optimized, the objectives Lavg and
Lavgmax should be chosen over Lmax or Lmaxavg.

C. Analysis of Different Substrate Network Topologies

We now examine the impact of different network topologies.
The goal of this examination is to determine whether some
of the observations and conclusions from the OS3E network
can be generalized to other network topologies. We focus
on the Lavg HP latency minimization objective as it has
generally achieved low latency values so far, including for
the individual request latencies LV N,HPmax and LV N,HPavg . The
substrate topologies have varying numbers of network nodes
and links. We set the number of requested vSDNs to |R| = 70
to allow for a close comparison to the preceding detailed
analysis. Throughout, we present the results as relative values,
i.e., the performance gain of a specific feature is compared

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 13

1 2 3 4 5 6 7 8 9
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
L a

vg
k=

1

Abilene
Quest
os3e

Bellcanada
Dfn

(a) Mr = 0

1 2 3 4 5 6 7 8 9
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
L a

vg
k=

1

Abilene
Quest
os3e

Bellcanada
Dfn

(b) Mr = 1

Fig. 8. Latency reduction due to adding hypervisor instances for different
substrate topologies (indicated by line styles and colors). Multi-controller
ratios Mr = 0 and Mr = 1 are compared for average CP.

0.00 0.25 0.50 0.75 1.00
Mr

0.00

0.05

0.10

0.15

G
L a

vg
M

r=
0

Abilene
Quest
os3e

Bellcanada
Dfn

(a) k = 2, average CP

0.00 0.25 0.50 0.75 1.00
Mr

0.00

0.05

0.10

0.15

G
L a

vg
M

r=
0

Abilene
Quest
os3e

Bellcanada
Dfn

(b) k = 9, average CP

Fig. 9. Relative latency reduction due to increasing ratio Mr of multi-
controller switches in 0.25 steps for different topologies (indicated by line
styles and colors). Distributed architectures are compared for k = 2 and 9
hypervisor instances for average CP.

to a baseline set-up, in order to facilitate comparisons across
different network topologies.

1) Impact of adding hypervisor instances: We start to
examine the impact of adding hypervisor instances, i.e., we
evaluate the latency reduction (performance gain) GLavg

k=1 =
1 − Lavg(k = x)/Lavg(k = 1). Lavg(k = x) denotes the
HP latency for x hypervisor instances and Lavg(k = 1) is the
latency of the centralized architecture. A higher ratio indicates
a better objective improvement (latency reduction). Figs. 8a–b
show the ratios when using the average CP for up to k = 9
hypervisor instances. The latency reduction can reach 40 %,
even without (Mr = 0) multi-controller switches (Fig. 8a).
As already seen for the OS3E topology, the improvement
slowly converges from k = 5 onward. This also holds for
the distributed architectures, where all switches (Mr = 1) can
operate in multi-controller mode (Fig. 8b).

2) Impact of adding multi-controller switches: We proceed
to examine the performance gain from adding multi-controller
switches. We evaluate the relative performance gain (latency
reduction) GLavg

Mr=0 = 1−Lavg(Mr = x)/Lavg(Mr = 0) when
increasing the ratio (proportion) of multi-controller switches
from Mr = 0 to Mr = x = 0.25, 0.5, 0.75, 1. We focus on
k = 2 and 9 hypervisor instances. When Mr = 0.5(50 %)
multi-controller switches are deployed, an architecture with
k = 2 hypervisor instances can achieve up to 8 % per-
formance gain (Fig. 9a). Generally, larger topologies (Dfn)
benefit more from the multi-controller feature than smaller
topologies (Abilene). The point of diminishing returns of the
considered topologies ranges from Mr = 0.25 to 0.5. For
k = 9 hypervisor instances, the performance gain is slightly
lower than for k = 2 instances. Again, larger topologies, such
as Dfn, benefit more from the deployment of multi-controller

1 2 3 4 5 6 7 8 9
k

0.0

0.1

0.2

0.3

0.4

0.5

1
−

L
m

ax
(m

ax
)/

L
m

ax
(r

nd
)

Abilene
Quest
os3e

Bellcanada
Dfn

(a) Lmax, maximum CP

1 2 3 4 5 6 7 8 9
k

0.0

0.1

0.2

0.3

0.4

0.5

1
−

L
av

g(
av

g)
/

L
av

g(
rn

d)

Abilene
Quest
os3e

Bellcanada
Dfn

(b) Lavg, average CP

Fig. 10. Latency reduction due to maximum and average CP relative to
random CP for different topologies (indicated by line styles and colors) for
k = 1, . . . , 9 hypervisor instances for Mr = 1.

switches than smaller topologies.
3) Impact of controller placement CP strategies: Finally,

we investigate the performance gains due to CP strategies. We
evaluate the relative performance gain of the maximum and
average CP versus the random CP. We allow all network nodes
to provide the multi-controller feature (Mr = 1). Figs. 10a–b
show the performance gain for Lmax and Lavg as a function
of the number of hypervisor instances k. The maximum CP
leads to performance gain over all topologies between 0.3 and
0.5. In both cases, the point of diminishing returns is k = 4,
which would be the preferred number of hypervisor instances
in those set-ups.

VIII. CONCLUSION

When virtualizing software-defined networks, the control
plane latency plays an important role for the performance
of the individual virtual SDN networks (vSDNs). In partic-
ular, when providing programmability and virtualization in
future communication networks, such as Internet of Things
and 5G networks [34], [35], low control plane latencies are
important. In this article, we have investigated the hypervisor
placement, i.e., the placement of the hypervisor instances
that provide the virtualization functionality. We have de-
fined mixed integer programming models for a centralized
and three distributed SDN network virtualization hypervisor
architectures. Furthermore, we have investigated the impact
of multi-controller switches that can simultaneously connect
to multiple hypervisor instances. For evaluation of the four
modelled architectures, we have investigated the impact of
the hypervisor placement on the control plane latencies of the
entire network as well as individual vSDNs. We have identified
the control plane latency overhead due to the requirement
that the SDN switch to controller connections traverse a
hypervisor instance for virtualization. This latency overhead
represents the cost of virtualization. We have observed that
virtualization can add significant control latency overhead
for individual vSDNs. However, we have also shown that
adding hypervisor instances and using flexible multi-controller
switches can significantly reduce the hypervisor latencies for
a range of different substrate network topologies. Overall,
the introduced optimization models provide network operators
with a formal mechanism to rigorously examine the trade-
offs of SDN hypervisor placement and multi-controller SDN
switch usage for vSDNs.

Important directions for future research include the exten-
sion of the hypervisor placement study to a wider set of

IEEE TRANS. ON NETWORK AND SERVICE MANAGEMENT, SPECIAL ISSUE ON MANAGEMENT OF SOFTWARIZED NETWORKS 14

performance metrics. For instance, to reduce energy consump-
tion, vSDN assignments can be consolidated on hypervisor
instances at runtime. As such consolidations would modify
established control plane paths, thorough planning and op-
timization of such consolidation operations are needed to
avoid control plane interruptions. Moreover, a high number of
assigned vSDNs per hypervisor may overload the hypervisor
CPU. Thus, load balancing schemes may need to balance
the number of physical switches, virtual switches, and tenant
controllers that are assigned to a given hypervisor. While
this study found that multi-controller switches reduce the
hypervisor control plane latency, their use for reliability or load
balancing has not yet been investigated, presenting important
future work directions.

When extending the network model from Sec. IV-A to
limited link (edge) capacities, a packet-based optimization
may become necessary. For instance, packet-level congestion
probelms may need to be addressed, e.g., through traffic
shaping. As network virtualization allows for flexible dynamic
adaptation of virtual networks at runtime, runtime updates of
hypervisor instances are another important research direction.
More specifically, new hypervisor placement models should be
developed to dynamically plan and optimize the hypervisor
placements as the virtual network demands fluctuate over
time. Such optimization models might require considering the
different migration and state synchronization techniques that
are needed when adapting placements at runtime.

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No 647158 - FlexNets).

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surv. & Tut., vol. 18, no. 1, pp.
236–262, Jan. 2016.

[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan.
2015.

[3] R. Sherwood, et al., “Carving research slices out of your production
networks with OpenFlow,” ACM SIGCOMM CCR, vol. 40, no. 1, p.
129, Jan. 2010.

[4] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow,
and G. Parulkar, “OpenVirteX: a network hypervisor,” in Proc. Open
Networking Summit, Santa Clara, CA, Mar. 2014.

[5] A. Blenk, A. Basta, and W. Kellerer, “HyperFlex: An SDN virtualiza-
tion architecture with flexible hypervisor function allocation,” in Proc.
IFIP/IEEE IM, Ottawa, Canada, May 2015, pp. 397–405.

[6] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for Software Defined Networking,” IEEE
Commun. Surv. & Tut., vol. 18, no. 1, pp. 655–685, Jan. 2016.

[7] P. Berde, et al., “ONOS: Towards an open, distributed SDN OS,” in
Proc. ACM Workshop HotSDN, 2014, pp. 1–6.

[8] OpenDaylight, “A linux foundation collaborative project,” 2013.
[Online]. Available: http://www.opendaylight.org

[9] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM CCR, vol. 42, no. 4, p. 473, Sep. 2012.

[10] A. Blenk, A. Basta, J. Zerwas, and W. Kellerer, “Pairing SDN with
network virtualization: The network hypervisor placement problem,” in
Proc. IEEE NFV-SDN, San Francisco, CA, Dec. 2015, pp. 198–204.

[11] N. McKeown, et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM CCR, vol. 38, no. 2, p. 69, Mar. 2008.

[12] ONF, “OpenFlow Switch Specifications 1.5,” pp. 1–205, Decem-
ber 2014, https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.5.pdf.

[13] “HP Switch Software OpenFlow v1.3 Administration Guide K/KA/WB
15.17,” June 2015. [Online]. Available: http://h10032.www1.hp.com/
ctg/Manual/c04656675

[14] K. Aardal, M. Labbé, J. Leung, and M. Queyranne, “On the two-
level uncapacitated facility location problem,” INFORMS Journal on
Computing, vol. 8, no. 3, pp. 289–301, Aug. 1996.

[15] A. Klose and A. Drexl, “Facility location models for distribution system
design,” European J. Operational Res., vol. 162, no. 1, pp. 4–29, 2005.

[16] H. Pirkul and V. Jayaraman, “A multi-commodity, multi-plant, ca-
pacitated facility location problem: formulation and efficient heuristic
solution,” Comp. & Op. Res., vol. 25, no. 10, pp. 869–878, 1998.

[17] S. Guha, A. Meyerson, and K. Munagala, “Hierarchical placement and
network design problems,” in IEEE FOCS, Redondo Beach, CA, Nov.
2000, pp. 603–612.

[18] R. Z. Farahani, M. Hekmatfar, B. Fahimnia, and N. Kazemzadeh, “Hi-
erarchical facility location problem: Models, classifications, techniques,
and applications,” Comp. Ind. Eng., vol. 68, no. 1, pp. 104–117, 2014.

[19] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel,
and M. Hoffmann, “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. on Netw. and
Service Manag., vol. 12, no. 1, pp. 4–17, March 2015.

[20] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in Software Defined Networks,” IEEE Communications
Letters, vol. 18, no. August, pp. 1339–1342, Aug. 2014.

[21] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in Software Defined Networks,” IEEE Communications
Letters, vol. 19, no. 1, pp. 30–33, Jan. 2015.

[22] Y. Jimenez, C. Cervelló-Pastor, and A. J. Garcı́a, “On the controller
placement for designing a distributed SDN control layer,” in Proc. IFIP
Networking, Trondheim, June 2014, pp. 1–9.

[23] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev,
and P. Tran-Gia, “Specialized heuristics for the controller placement
problem in large scale SDN networks,” in Proc. ITC, vol. 12, no. 1,
Ghent, Belgium, Sep. 2015, pp. 210–218.

[24] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for Software-Defined Networks,” China
Communications, vol. 11, no. 2, pp. 38–54, Feb. 2014.

[25] L. F. Muller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P.
Barcellos, “Survivor: An enhanced controller placement strategy for
improving SDN survivability,” in Proc. IEEE GLOBECOM, Austin, TX,
2014, pp. 1909–1915.

[26] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in Proc. CNSM, Zurich, Oct. 2013, pp. 18–25.

[27] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4th Qu., pp. 1888–1906, 2013.

[28] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding,” ACM SIGCOMM CCR, vol. 38, no. 2, p. 17, Mar. 2008.

[29] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Computer
Communications, vol. 45, pp. 1–10, June 2014.

[30] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[31] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” IEEE Internet Computing, vol. 17, no. 2,
pp. 20–27, March 2013.

[32] A. Basta, A. Blenk, H. Belhaj Hassine, and W. Kellerer, “Towards a
dynamic SDN virtualization layer: Control path migration protocol,” in
Proc. CNSM, Barcelona, Spain, Nov. 2015, pp. 354–359.

[33] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE JSAC, vol. 29, pp. 1765–1775, Oct.
2011.

[34] N. Omnes, M. Bouillon, G. Fromentoux, and O. Grand, “A pro-
grammable and virtualized network & IT infrastructure for the internet of
things: How can NFV & SDN help for facing the upcoming challenges,”
in Proc. IEEE ICIN, Feb. 2015, pp. 64–69.

[35] E. Hossain and M. Hasan, “5G cellular: Key enabling technologies
and research challenges,” IEEE Instrumentation & Measurement Mag.,
vol. 18, no. 3, pp. 11–21, Jun. 2015.

