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Abstract

Instrument detection and pose estimation has attracted great interest in
retinal microsurgery. Automatic detection of the instrument parts and estimating
the instrument pose promote many applications to guide the surgeon in the
operation room. One important application is the automatic positioning of
Optical Coherence Tomography (OCT) scans to estimate the distance between
the detected instrument tip and the retina to minimize the damage during
the surgery. There are many other applications that employ the pose of the
instrument such as activity recognition and surgical workflow analysis. This
work addresses the problem of detecting the instrument parts (tips and/or the
joint point) to estimate the pose and provide the OCT device with the required
parameters to position its scans accordingly. At first, we detect the instrument
tip along with shaft orientation. Then, we move to detect the three parts, which
are two forceps tips and the joint point. Finally, we detect, in addition to forceps
parts, the shaft orientation, and hence, we get all parameters needed for OCT
positioning.

The primary contributions of this work are fourfold. In the first, we
propose to use color information in conjunction with geometric structure of
the instrument shaft to localize the instrument tip and the shaft’s orientation.
In the second approach, we propose a discriminative method to detect the
instrument connecting point and the orientation. In this method, Convolutional
Neural Network (CNN) is designed to detect the instrument parts separately,
while a regression forest is trained to work on top of the CNN predictions in
order to localize the joint point and estimate the instrument orientation in one
step. The forest is trained on joint structural features of multiple instrument
parts. In our third contribution, we formulate the problem as a regression
task to predict the locations of the instrument left and right tips in addition
to the joint point in 2D images. We introduce a new pipeline to incorporate
only the reliable parts in the localization process. For that end, the training
in this pipeline is done in a heuristic way by associating the features of
the samples in the vicinity of the instrument parts with guiding information
to improve the localization accuracy. Additionally, the pipeline integrates a
module for the automatic recovery which is needed in cases of low images
quality and instrument disappearance. In the fourth contribution, a Conditional
Random Field (CRF) model of the instrument is proposed. This model employs
the regression forest for unary detections which represents the confidence of
each hypothesis in the image space. Prior information is modeled as potential
functions to express the kinematic constraints of the instrument structure. The
model predicts the locations of each part of the instrument as well as the
shaft orientation. Therefore, this work presents different techniques to assist the
surgeon in minimally invasive procedures. These techniques are not limited to
retinal microsurgery but also can be applied to laparoscopic surgery.
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Zusammenfassung

Das Erkennen und die Lageschätzung von chirurgischen Instrumenten
ist von großem Interesse im Bereich der retinalen Mikrochirurgie, denn das
automatische Erkennen von Instrumententeilen und das Einschätzen der Pose
ist die Grundlage vieler computergestützter Hilfestellungen für den Chirurgen
während einer Operation. Zu den wichtigen Anwendungen gehört das
automatische Positionieren der optischen Kohärenztomografie (OCT), welches
das Einschätzen des Abstandes zwischen der detektierten Instrumentenspitze
und der Retina ermöglicht und somit das Risiko einer Verletzung durch
unabsichtlichen Kontakt minimiert. Weitere Anwendungsmöglichkeiten
sind die Aktivitätserkennung und die objektive Arbeitsablaufanalyse im
Operationsraum. Diese Dissertation behandelt das Detektionsproblem der
Referenzpunkte des chirurgischen Instrumentes, gegeben durch die Spitzen
und deren Verbindungspunkt, um die Pose abzuschätzen und dadurch dem
OCT Gerät die für das Positionieren der Abtastung benötigten Parameter
zu liefern. Im ersten Schritt wird nur die Instrumentenspitze und dessen
Orientierung detektiert. Danach konzentrieren wir uns auf die Erkennung von
den drei Referenzpunkten, die durch die zwei Spitzen und das Verbindungstück
gegeben sind. Schließlich wird zusätzlich zu den genannten Punkten auch die
Orientierung des Schafts erkannt, um alle benötigten Parameter für die OCT
Positionierung zu bekommen.

Der wesentliche Beitrag dieser Arbeit ist vierfältig: zunächst schlagen
wir vor, die Farbinformation in Verbindung mit der geometrischen Struktur
des Instrument Schafts zu benutzen, um die Instrumentenspitze und die
Orientierung des Schafts zu schätzen. Im zweiten Ansatz schlagen wir eine
diskriminative Methode vor, um den Verbindungspunkt und die Orientierung
des Instruments in einem Schritt zu ermitteln. In dieser Methode wurde
ein Convolutional Neural Network (CNN) entworfen, um die einzelnen
Instrumententeile zu lokalisieren. Basierend auf den CNN Vorhersagen
wurde ein Regression Forest trainiert, der die Verbindungsstelle und die
Orientierung des Instruments in einem Schritt lokalisiert. Der Forest wurde
auf gemeinsamen strukturellen Merkmalen der mehreren Instrumententeile
trainiert. Im dritten Beitrag dieser Arbeit formulieren wir das Problem
als Regressionsaufgabe, um zusätzlich zu den Verbindungspunkt auch
die zwei Instrumentenspitzen in den 2D Bildern zu vorauszusagen. Wir
stellen eine neue Algorithmen-Pipeline vor, in der nur zuverlässige Teile
eingebunden werden. Um dies zu erreichen, wurde das Training in dieser
Pipeline auf heuristische Weise durchgeführt, in dem die Merkmale der
Stichprobe in der Nähe der Referenzpunkte mit leitenden Informationen
assoziiert wurden, welche die Lokalisierungsgenauigkeit verbessern. Weiterhin
wurde ein Modul für die automatische Korrektur integriert, das im Falle
von schlechter Bildqualität und Instrumentenverschwinden notwendig
ist. Im vierten Beitrag wird ein Conditional Random Field (CRF) Modell
vorgestellt. In diesem Ansatz werden Regression Forests für eine unäre
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Detektion eingesetzt, die die Wahrscheinlichkeit jeder Hypothese im Bildraum
repräsentieren. Vorinformation werden als Potential Functions modelliert,
um die kinematischen Nebenbedingungen der Instrumentenstruktur
auszudrücken. Dieses Modell sagt die Position jedes Referenzpunktes des
Instruments sowie die Schaftorientierung voraus. Daher präsentiert diese Arbeit
verschiedene Techniken, um den Chirurgen in minimal-invasiven Verfahren zu
unterstützen. Diese Techniken sind nicht auf retinale Mikrochirurgie beschränkt,
sondern können auch auf laparoskopische Chirurgie angewendet werden.
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Chapter 1

Introduction

Retinal Microsurgery is among the most delicate operations, in which
a micro-precision handling is required in tasks such as retinal membrane
peeling. Carrying out such surgeries requires manipulating retina surface with
medical instruments such as vitrectomy or forceps. An efficient feedback for the
distance between the instrument tip and the retina is a demanding requirement
to minimize tissue damage caused by unintentional touch of retina. This
distance can’t be estimated from only microscopic optical images. Advances
in computer science, mathematics and physics over the last decades have
stimulated the development of new imaging technologies such as Optical
Coherence Tomography (OCT). This imaging technology has been equipped and
integrated with nowadays generation of ophthalmic surgical microscopes. The
usage of OCT technology in these microscopes has allowed for the visualization
of sub-retinal structure information [11] and the segmentation of the retinal
anatomical layers [62] which are less than 10µm thick. Moreover, OCT imaging
allowed for the development of retinal pathologies diagnosis. The capabilities
of OCT imaging can benefit as well retina treatment and surgery in many cases.
One of the research fields which attracts a lot of attention over the last years is
the estimation of the instrument depth information. Extracting such information
constantly over time requires assistance of instrument detection and tracking
algorithms to localize landmarks for OCT device. However, the development
of such algorithms is still a challenging task due to the complex operation
environment as well as to the structure-less characteristic of the instrument itself.
In this thesis, we address the problem of medical instrument detection, tracking
and pose estimation in retinal microsurgery. Our ultimate goal is to estimate the
instrument joints coordinates in 2D image space. Extracting these coordinates
in real time performance paves the way for many applications to guide surgical
interventions.

In this chapter, we begin first with medical background about retinal diseases
and microsurgery. Next, OCT imaging for retinal microsurgery is presented with
the motivation and problem statement. Finally, we list the contributions of this
work and give the outline for the overall structure of this thesis.
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1.1 Medical Background

Microsurgery has been applied as treatment operation for many eye diseases
affecting the retina. Epiretinal membrane (EM), which is also called macular
pucker, is one of those diseases caused by aging process, diabetes, previous
trauma or post vitreous detachment (PVD) [122]. EM has been described for
the first time by Iwanoff [54] in 1865 who showed that this ocular pathology
affected 7% of the population who are over 50 years old. To explain the effect of
this pathology, let’s consider the eye structure shown in shown in Figure 1.1.
The vitreous is the transparent gel that fills the blank space in the center of
the eyeball between the lens and retina. As time goes by, changes in vitreous
can cause a number of problems in the eye including wrinkling of the retina.
The wrinkling is due to a membrane covering the surface of the retina. This
membrane is formed as a result of immune system response which forces the
retinal cells to converge in the macular area. The membrane, which is attached
to the surface of the retina, has a tendency to contract. Therefore, it causes the
retina to wrinkle and results in distortions of vision within the macula area
which has the finest details of vision. The distortions can change the perceived
objects dimensions and create a field dependent aniseikonia [18] which cannot
be treated with optical glasses [93]. The treatment of EM is accomplished by
removing or peeling the surface membrane by microsurgery. The first step in
this procedure is to replace the vitreous, and then the surgeon, with fine forceps,
can grab the edge of the membrane delicately and remove it from the eye. In
cases where the membrane edges are difficult to be recognized, a cut on the
thickest part of the membrane is created with micro-vitreoretinal blade [99].
Hence, the created cut is used as the starting point for the peeling operation
which is performed by forceps instrument. The movement of the forceps during
peeling should be in a circular fashion in order not to damage the retinal tissue.
This treatment would enable the retina surface to get smooth back and improve
the vision again. Even though surgery is not usually recommended due to its
complications such as bleeding in the eye and cataracts [5], it is the only effective
solution when distortions of vision are severe.

Figure 1.1: Human eye cross-sectional view
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1.2 Retinal Microsurgery

Microsurgery is the treatment of small parts of the human body which the
surgeon can’t access with naked eyes. Handling these parts requires high optical
magnification which performed using high-precision microscopes. For retinal
microsurgery as shown in Figure. 1.2, surgeon places microscope lens on top of
eye’s lens, and retinal surface can be seen through these lens. The manipulation
of retinal tissue is carried out by hand-held instrument which could be a forceps
or vitrectomy.

Figure 1.2: Retinal Microsurgery carried out on pig’s eye at Zeiss Labaratory

Retinal Microsurgery starts by the creation of three access ports, labeled
P1, P2 and P3 in the white area of the eye as shown in Figure 1.3 (Left). The
first one P1 is called the infusion port which used to pump fluid into the eye
to replace the vitreous removed from it. The other two access ports, P2 and P3,
are used to access retina tissue into the vitreous cavity. They allow to remove
vitreous from the eye as well as to access the macula and the rest of the retina.
Surgeon uses one of the ports to insert light pipe, while the other port is used to
insert the peeling instrument. High resolution microscope lens are placed on top
of eye lens where under high magnification the surgeon can access the posterior
area of the eye. In this area, the surgeon can see through microscope the retina
tissues and vessels as shown in Figure 1.3 (Right), and peel the target membrane
off the eye. After the completion of the peeling operation, the ports are easily
removed and the eye is sealed up without any sutures. The most delicate part
of this surgery is the peeling operation which requires a special care to access
retina surface. To increase safety and minimize retina damage, instrument depth
information should be maintained over surgery time. Therefore, the assistance
of OCT imaging would be the promising technique to accomplish such a task.

1.3 Optical Coherence Tomography (OCT)

Optical Coherence Tomography (OCT) is a powerful imaging modality
which can generate cross-sectional images with high resolution for small size
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Figure 1.3: Left: Human eye interior view, Right: Posterior image after looking
through microscope lens placed on top of eye lens

tissues. It is a non-invasive imaging technique which uses near-infrared light
with high penetrating abilities into the scattering medium. This allows it to
capture fine details in the range of micrometers of tissue structure. Having
these features, OCT is widely used in different applications for ophthalmology
including early diagnosis, detection and tracking of diseases.

A typical OCT imaging system is shown in Figure. 1.4. It consists mainly of
light source, beam splitter, reference mirror and photo detector [9]. The working
principle is based on low coherence interferometry [87]. The source emits a
light beam to the object being imaged. Once the light reaches the beam splitter,
it is splitted into two paths: one towards the reference mirror and the other
to the object. Most of the light is scattered once hitting the object. However,
the reflected lights from both paths are collected on a photo detector which
shows the interference pattern. This pattern shows a high interference signal
when the reflected beams from both paths have traveled roughly the same
optical length. The profile of such signal, called A-scan, shows the location of
structures within the object of interest along one axial dimension. Obtaining a
cross-sectional image, called B-scan, can be achieved by getting A-scans for a
series of object’s samples. The formation of the axial A-scans and cross-sectional
B-scan depends on the OCT imaging system. The first widely used system is
called Time Domain system (TD-OCT), in which the reference mirror is moving
in a linear way to change the reference optical path. This setup would allow
the detection of structures at different distances by matching their optical path
length with the adjustable reference path. Therefore, the detected signal consists
of a combination of a DC component and an interference component carrying
depth information of the sample being imaged. The other system is called
Fourier Domain OCT (FD-OCT). In this imaging system, there is no need to
move the reference mirror or any other part, and the photo detector is replaced
with a spectrometer. This allows for higher speed imaging in comparison with
TD-OCT systems.

1.4 Motivation

While OCT imaging can be applied to stationary tissues to get depth
information, applying it to a moving instrument requires using detection
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Figure 1.4: OCT imaging system

and tracking algorithms in advance. These algorithms have been addressed
from different perspectives based on surgery type, available modalities, and
number of used cameras (i.e. Monocular or stereo). Numerous studies for
robotic-assisted surgery [4, 7, 101, 110, 38, 123] have been done to track medical
instruments for minimally invasive procedures. Using stereo camera [119] has
been also employed for instrument tracking in laparoscopic surgery to handle
the limitations of the single view imaging. The equipment in recent ophthalmic
surgical microscopes allows the usage of OCT images in additional to the optical
ones. Even though most of the instrument detection and tracking methods
[67, 105] can provide visual assistance during surgery by localizing instrument
tip, still these methods tend to fail at real in-vivo surgery. Additionally, they
can’t extract all parameters required for the full benefit of OCT scans in
order to achieve minimally invasive procedures. The current trend to minimize
retina damage during surgery is to integrate OCT with reliable and real time
instrument detector. OCT device requires prior extraction of some reliable points
on the instrument body serving as landmarks for OCT imaging scans. The
benefit of these scans is to have depth information at the landmarks locations
in the 2D microscopic images. Therefore, a tangible feedback is given during
surgery about the distance between the retina tissue and the instrument’s part
being scanned. To elaborate the interaction between OCT scans and real time
detector, Let us consider Figure 1.5. The function of the real time detector is
to estimate the coordinates of the points A, B, and C, labeled as cross signs in
Figure 1.5 (Left), in the 2D image space. Therefore, the estimated coordinates
are given to the OCT device in order to position the OCT scans accordingly.
Figure 1.5(Left) shows two OCT B-scans. The first one, labeled with white color,
passes through the detected points A and B, and the corresponding OCT depth
image is shown in Figure 1.5 (Right:Top). It is obvious that the two jumps in the
horizontal intensity profile along the retina surface correspond to the instrument
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two tips A and B, which also reflect the distances from each tip to the retina
surface. The second depth image shown in Figure 1.5(Right:bottom) is associated
with the blue OCT B-scan in Figure 1.5(Left). Here the jump in the retinal
surface intensity profile reflects the distance between the connecting point C
and the retina surface. Therefore, augmenting the scene with depth information
for the most interesting points to the surgeon requires reliable, robust and real
time detection algorithms. The more landmarks we can extract using specific
detectors, the more reliable estimated depth information we get, and hence,
the safer the procedure is. In this thesis, different approaches are proposed for
medical instrument detection and tracking in order to initialize and to work
interactively with the OCT imaging. While the tracking and detection algorithms
run on microscopic 2D images, OCT scans give the third dimension which is
a promising way towards minimally invasive procedures. Furthermore, in this
thesis, the proposed methods go beyond tracking of a single point in 2D images
to more complicated task which is the pose estimation of articulated forceps
used in the peeling operation. The pose estimation would give the coordinates
of different joints of the forceps and estimate the state of the instrument (i.e.
open or close). Most importantly, it localizes the instrument tips which grab the
surface membrane from the retina. Finally, the ultimate goal of these approaches
is to step forward in the direction of computer-assisted surgery to minimize the
unintentional damage during retina surgery.

Figure 1.5: (Left) Microscopic Image with two OCT scans and three detected
points labeled in cross signs, (Right) OCT depth information along each OCT
scan.

1.5 Problem Statement and Challenges

In this thesis, we address the problem of medical instruments detection,
tracking and pose estimation in retinal microsurgery. We regard this problem
as the first and most important step in the process of estimating the distance
between the instrument parts and the retina. Once the instrument joints
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have been detected in real time, the OCT device would position the B-scans
automatically to the detected target, and the depth would be estimated and
presented to the surgeon during live surgery. However, detecting the instrument
joints in the 2D image space is the most challenging issue in this framework.
These challenges are due to many factors:

Illumination variation : Illumination variation has complex effects on the image
of an object[24]. In retinal microsurgery, light pipe is completely controlled by
the surgeon who directs it towards different parts of the retina. Moreover, the
distance between the light pipe and the retina changes continuously according
to the movement of the surgeon’s hand. The changes in the light conditions
introduce spurious edges and result in large variations which are extremely
difficult to learn or analyze. Figure 1.6 shows different light conditions which
result in light reflections along the instrument body and different appearance of
the retinal surface.

Cluttered non-static background : The presence of vessels, optical disk,
light pipe, instrument shadow and retinal lesions turn to have a significant
influence on the performance of most existing detection and tracking algorithms.
Moreover, continuous movements of both the background and the instrument
complicate the creation of separate model for each. Additionally, the movement
in the background is not only due the internal fluid movements, but also the
eyeball itself is free to move in the eye cavity during surgery which makes the
retina movement out of control.

Instrument modelling : The medical instrument can be described as a
texture-less object [72] which doesn’t have a fixed geometric shape like for
example human face. Modelling structure-less object is more difficult and it
is of high interest in machine vision [51, 70, 76, 97]. In contrast with human
face detection, medical instruments consists of edges and corners which can
appear at any orientation and with different opening degrees as shown in
Figure 1.6. This doesn’t suppose any clear geometric shape of the instrument
at hand. Moreover, the instrument is moving in 3D space during surgery while
we can access only 2D images. Hence, some parts might be occluded based on
the rotation of the instrument in the 3D eye space which makes modelling the
instrument very complicated task. In addition of being structure-less object,
metallic instrument body could be highly affected by light reflection that causes
some parts of the instrument to be totally invisible. Missing parts of the object
would make the detection task more challenging in general.

In this thesis, most of the proposed methods address the problem of tracking
the instrument relying on tracking by detection. Even though intensity-based
tracking approaches [67, 88] of instrument have attracted special attention in
medical imaging, still we believe tracking by detection turns to be the most
promising solution in computer-assisted surgery. Unlike intensity-based tracker,
tracking by detection algorithm can handle the manual initialization problem
with no need of surgeon’s input. This is regarded as a key advantage to bring like
these computer-assisted techniques into existence. To highlight this advantage,
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Figure 1.6: Different instruments appearances of different surgeries

let us consider the influence of manual initialization on the progress of the
in-vivo surgery. Figure 1.7 shows retinal microsurgery done on pig’s eyes at
Zeiss laboratory which shows how busy the surgeon is during the operation
time. In normal retinal microsurgery, surgeon uses both hands to hold with one
the light pipe and with the other the peeling instrument while accessing the
retina through microscope lens. Moreover, he uses his foot for turning the light
on/off, switching the OCT on/off, changing light filters, turning the keratoscope
on/off, ... etc. Therefore, manual initialization introduces a serious problem from
the clinician’s prospective which requires interrupting the surgeon to provide
more input information at the expense of other tasks. Hence, it represents
overhead and stress for the surgeon and prolongs the operation time. Robust and
reliable computer-based assistance is a very demanding requirement to keep the
surgeon focusing on the tasks at hand without interruption.

This thesis introduces efficient solutions for instrument pose estimation by
detecting the instrument joints using state of the art computer vision methods
and tracking these joint over time without interrupting the surgeon.

Figure 1.7: Different views for the same pig’s eye surgery at Zeiss laboratory

1.6 General Applications

Real time detection and tracking of medical instrument joints can pave
the way for advanced computer-aided support. One example is the automatic
positioning of the intraoperative OCT (iOCT) during the in-vivo retinal surgery.
In the current framework, surgeon has to position manually OCT B-scans to the
position of interest. Automatic positioning allows OCT scans to follow specific
parts of the instrument constantly and with no need for human intervention.
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Since the potential damage during the peeling operation occurs as a result of
instrument tips touch to the retina, following the tips has more interest for
minimally invasive procedures. Therefore, the localization of the instrument
tips rather than the instrument connecting point enables the estimation of
the distance between the instrument tips and the retina tissue. Additionally,
visualizing this distance to the surgeon has a significant impact to minimize
the damage in this delicate operation. This distance can be visualized close to
the instrument tips [91] so the surgeon doesn’t need to switch between different
displays. Furthermore, estimating the instrument orientation can optimize for
positioning the OCT scans to achieve the maximal benefit of OCT imaging.

Robot-assisted vascular microsurgery [47, 55] is another interesting area to
benefit from the instrument tip detection and pose estimation. In this kind of
microsurgery, it is required to place a 2 – 3 µm glass micropipette inside retinal
vessels (20 – 130 µm). The micropipette must remain in the vessel for up to few
minutes in order to inject drugs or take pressure measurement after the insertion
[55]. While many commercial manipulators are available, the eye geometry
doesn’t accept their use [82, 49]. Integrating the instrument tip detection in 2D
images together with depth information using iOCT gives the tip coordinates
in the 3D eye space. Therefore, it can guide the micropipette insertion into the
target vessel. This can be accomplished by defining the intended depth to go
into the vessel to the robot after positioning the micropipette appropriately to
that vessel. The solutions presented in this thesis are easy to integrate with robot
software and can’t be hampered by the eye geometry.

Understanding the scene and activities during surgery has attracted special
attention in interventional imaging. Activities understanding can’t be achieved
by detecting only a single point of interest like for example the instrument tip
or the connecting point. Therefore, the aim of the pose estimation is to give
an understanding of the big picture and to relate the detections of different
parts to each other. Therefore, pose estimation can identify a specific state of the
instrument required to perform a certain task during surgery. For example, the
knowledge of the positions of the two forceps tips and the forceps connecting
point provides us with the forceps opening degree. Following the estimated
opening degrees over time helps in understanding the activity being done by the
forceps (i.e. grabbing, releasing... etc.). Moreover, pose estimation applications
can be extended from understanding the scene to deciding the appropriate
action based on the activity.

Surgical workflow analysis is another application of instrument tracking
and detection algorithms. Retina microsurgery passes through different phases
from the beginning of the operation till the end. In certain phases, the surgeon
might not need any instrument. Being able to recognize the appearance
and disappearance of the instrument can assist in automatic detection and
identifying of certain phases of the surgical workflow.

1.7 Contributions

To achieve our objectives, we introduce a number of novel methods for
instrument detection, tracking and pose estimation in real in-vivo retina
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microsurgery. The primary contributions can be summarized as follows:

• We investigated the problem of medical instrument tracking in real
time. We make use of the metallic characteristic of the instrument to
propose color-based segmentation approach. Once the segmentation is
done, geometric constraints are imposed to localize the instrument tip
and the orientation of the shaft. A database of hundreds of images was
created from real retina microsurgery for the purpose of results evaluation.

• We focus on the problem of instrument detection by employing the
powerful detection capabilities of the deep learning. The instrument is
regarded as an articulated object where a probability map is obtained
for each of its parts using deep learning-based discriminative model.
Moreover, the orientation of the instrument shaft is predicted from the
estimated maps by regressing the shaft end points.

• We investigated the problem of instrument pose estimation. We define the
pose here to be the positions of the instrument joints in the 2D images. A
discriminative Hough-based model is proposed to regress the instrument
joints. To this end, training the model is done in a heuristic way so at
testing time only reliable samples can participate in the joints predictions.
Tracking is implicitly done by doing the predictions at the video frame
rate speed while making use of the temporal information.

• The problem of the pose estimation is defined in different way so we
can predict not only the joint coordinates but also we can estimate
the orientation of the shaft. A novel CRF-based model is proposed to
localize the instrument joints relying on part-base detectors and geometric
2D instrument structure priors. With this model, most of the important
parameters for the OCT device are predicted. Therefore, instrument joints
can be scanned with properly oriented OCT B-scans.

1.8 Thesis Outline

We provide an overview of each chapter of this thesis along with the related
published or under submission work.

Chapter 2. We present the machine learning background of this thesis. In
particular, we go through random forests, deep learning, and conditional
random fields (CRFs) which form the base of our proposed algorithms.

Chapter 3. We give an overview of the work done in the area of instrument
detection, tracking and pose estimation. The achievements and limitations of
these methods are discussed.

Chapter 4. In this chapter, a color based segmentation method is introduced.
The method localizes the instrument tip and orientation by imposing geometric
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constraints to optimize for the instrument tip in the segmentation map. Related
work:

• Alsheakhali, M., Yigitsoy, M., Eslami, A., Navab, N. (2015, March).
Surgical tool detection and tracking in retinal microsurgery. In SPIE
Medical Imaging (pp. 941511-941511). International Society for Optics and
Photonics.

• Alsheakhali, Mohamed, et al. "Real Time Medical Instrument Detection
and Tracking in Microsurgery." Bildverarbeitung fuer die Medizin 2015.
Springer Berlin Heidelberg, 2015. 185-190.

Chapter 5. In this chapter, the deep learning is used to detect each part of the
articulated instrument. The detection maps are employed to refine the results
based on joint structural information of the defined parts. A regression forest is
used for this refinement after being trained from joint structural features. Related
work:

• Alsheakhali, Mohamed, Abouzar Eslami, and Nassir Navab. "Detection
of articulated instruments in retinal microsurgery." 2016 IEEE 13th
International Symposium on Biomedical Imaging (ISBI). IEEE, 2016.

Chapter 6. In this chapter, the deep learning is used to regress the instrument
joints coordinates within the 2D image space. A new deep network is proposed
to model the pose estimation as a regression deep learning.

Chapter 7. The work of this chapter aims at estimating the pose of the
instrument. The Hough forest is employed for this purpose by re-implementing
the classification and regression phases of this forests in a cascade way. In this
way, we can integrate our scheme to activate the automatic recovery process
after any tracking failure. Only reliable parts are involved in the training and
testing processes to cast votes during the prediction of the joints coordinates.
Related work:

• Alsheakhali, Mohamed, Abouzar Eslami, Hessam Roodaki, and Nassir
Navab. "Instrument Pose Estimation Using Reliable Part-Based Voting in
Retinal Microsurgery". The 8th International Conference on Information
Processing in Computer-Assisted Interventions (IPCAI) (submitted)

Chapter 8. In this chapter, we model the dependencies between the instrument
joints using Conditional Random Field (CRF). In this model, the random
forest is used as the part-based detector (i.e. unary potentials). Higher order
dependencies are implemented to model the translation, rotation and scale
changes of the instrument. The CRF model is trained in this work to infer the
configuration of the instrument which is considered the estimated pose.

• Alsheakhali, Mohamed, Abouzar Eslami, Hessam Roodaki, and
Nassir Navab. "CRF-Based Model for Instrument Detection and Pose
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Estimation in Retinal Microsurgery". Computational and Mathematical
Methods in Medicine, vol. 2016, Article ID 1067509, 10 pages, 2016.
doi:10.1155/2016/1067509.

Chapter 9. We conclude our work by presenting our findings, the limitations of
the proposed methods and our suggestions for future work.
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Chapter 2

Machine Learning Background

Machine learning has become one of the most essential sources of
information technology and data analysis. The demand for machine learning
has grown over the last decades according to the increasing amount of data
becoming available from clinical and industrial devices. The analysis of data
became a necessity to understand the behavior of any system and to extract the
most significant piece of information influencing its performance. To that end,
machine learning algorithms find a mapping from input signals to output values
[21]. As an example from medical applications, images of cells represented
by intensity values can be considered as input data along with their labels
(e.g. has a disease or not), where machine learning algorithm task is to find a
mapping between intensity values and existence of that disease. Direct mapping
from input to output is often a very complex task [31]. The complexity comes
from the potential non-linear mapping required to accomplish the task at hand
and the embedded noise into the input samples. Moreover, defining the most
discriminative features is not an easy task and has a high impact on the accuracy
of the mapping techniques. Furthermore, mapping might require handling
missing or unbalanced input data. This is why using linear mapping can’t
always discover the relation between input and output. Therefore, non-linear
and complex mapping functions are needed to be trained.

Generally, machine learning algorithms use training set to find the
appropriate mapping. The training set consists of n input vectors X =
{x1, x2, ...., xn} along with optional output vectors Y = {y1, y2, ...., ym}. During
training, the mapping parameters, which is also called the model parameters,
are adapted to optimize the mapping between input training data and output
vectors [21]. This mapping has the form Yi = f (Xi). The quality of this trained
model can be identified by applying the mapping function with the trained
model parameters on new unseen samples. Those samples are called the testing
set and the ability to map inputs from testing set to the correct associated outputs
determines the generalizability of the model.

Machine learning algorithms can be categorized into many groups. However,
the mostly used algorithms are related to either supervised or unsupervised
learning. In supervised learning [21], each training sample is associated with
an output vector. This vector can be a set of labels e.g. (color, digit, healthy
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or not,.... etc), where each label is a discrete value which we are interested to
predict during testing new samples. This type of supervised learning is called
classification. On the other hand, when the output has a continuous value to
be predicted, then the problem is defined as a regression problem. A regression
example could be the prediction of the location of tumor within the image space
or to predict the area or the volume of a certain organ of human body.

In unsupervised learning [21], the training data has only the data inputs
without association with any output vectors. Unsupervised learning has
different applications, such as data clustering and density estimation of the
input data. Clustering algorithms try to discover the similarities between input
samples and group them accordingly. During testing, new samples are assigned
to one group based on only their features similarity. For density estimation
algorithms, estimating the distribution of the input within the feature space is
the main objective.

Additionally, there are other categories using unlabeled data in supervised
learning problems. This is called semi-Supervised learning [124] where part
of the data is labeled. The learning algorithm tries to cluster the unlabeled
data with the guidance of the labeled samples. Combining unlabeled samples
with small amount of labeled data in one learning algorithm can produce more
improvement in the detection accuracy [27].

In this thesis, different supervised learning algorithms have been employed
for classification and regression problems. We focus on Random Forests
[25] for classification and regression in this work. Basically, Random Forests
model the posterior distributions using the extracted hand-crafted features,
and they are presented in section 2.1. Automatic feature extraction using
Convolutional Neural Networks (CNNs) [59] has also been investigated.
CNNs, which are types of artificial neural networks, are designed to find a
non-linear representation of the input data relying mainly on convolutional
operations. CNNs are presented in details in section 2.2. In most machine
learning applications, the outputs of classifiers or regressors can be integrated
with graphical models to impose geometrical constraints on a certain object.
Conditional Random Fields (CRFs), which are types of probabilistic graphical
models, are used in this thesis to model the kinematics of the instrument.
Modelling and inference using CRFs are explained in section 2.3.

2.1 Random Forests

2.1.1 Introduction

In the last few years, Random Forests [25] have been applied in many
different tasks, including classification, regression, semi-supervised learning
and density estimation, where their achieved performance has been proven to
be the state-of-the-art in many applications. Random Forests gain their power
from its ability to combine several weak learners into one strong learner. Each
weak learner is working on random subsets of the whole available dataset
during model training stage. Weak learners are trained independently from each
other and can run in a parallel way. Moreover, relying on several such learners
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gives Random Forests the ability to generalize the trained model. Furthermore,
injection of randomness during training makes these forests robust and highly
scalable to large datasets and improves the generalization feature. Basically, a
Random Forest is an ensemble of several de-correlated decision trees (weak
learners), which will be covered in the following section.

2.1.2 Decision Trees

Decision trees can be defined as "a set of questions organized in a hierarchal
manner" [32]. The decision tree can be seen as an acyclic graph where the
direction of data flow is from the root node to the leaves. The goal of the
decision tree is to find a relation between observations and output classes. It
divides the observations into subgroups where each subgroup is used to build a
local model characterized by the class distribution in this group which is called
the posterior distribution. Each internal node stores a decision function which
can be a simple test question. Depending on the answer of that question, the
input data sample goes down to either left or right node. At the new node, a new
test is applied and the data sample continues going down until a terminal node
is arrived which is called a leaf node. Each leaf node stores the class distribution
of the samples arrived this node during the training stage. For example, Let’s
consider the decision tree shown in Figure 2.1 where the input features are
denoted by F = (x1, x2) ∈ R2. At testing time, each sample passes down to a
particular leaf node based on the values of x1 and x2. The leaves nodes store
the distribution of three classes. Therefore, the output of the decision tree for
each sample is either the whole distribution or only the class which has the
maximum probability in that distribution. In this case the random forest is
called classification random forest.

Figure 2.1: Decision Tree Example: At each node a question is asked and the
samples go either left or right until a leaf node is reached. The leaves store class
distribution.

Formally, we define an input data sample as a multi-dimensional vector v =
(x1, ..., xd) ∈ Rd. At each internal node, a decision function, parametrized by θi,
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is applied on the features vector v and based on the outcome of the decision
function which is given by:

h(v, θi) = [v.ϕ > τ ] ∈ {0, 1}, (2.1)

the input sample chooses which direction to follow towards the terminal node.
This implies that dim(v) = dim(ϕ) and ϕ specifies the shape of the splitting
function. This function can be a hyperplane which functions as a threshold to
separate the samples based on the entire features. In other cases, the splitting
considers only a subset of features especially when the input features vector is
sparse. This thresholding decision divides the input space S at each internal node
into two disjoints output spaces SL and SR.

At testing time, given an unknown data sample described by its feature
vector v, the classification of the data sample starts by using the decision
function at the root node to direct the sample down. After arriving a terminal
node by following a certain path depending on the outcome of different decision
functions, the class posterior is calculated depending on the samples distribution
stored at the arrived leaf node.

At the training stage, a set of input data samples with their known outcome
(i.e. class labels in classification forest) is presented to the tree. This set is called
the training set. At this stage, the nodes receives this set needs to learn the
parameter θi. For this end, A set of decision functions θj is generated, either
following predefined rules, or by random assignment of θj from a range of
possible values. Each decision function θj is evaluated using objective function
to quantify how good this function is to split the data samples. The best decision
function is the one which maximizes the objective function for this set of
samples. This decision function is stored at the internal node to be used later for
testing new samples. As denoted in [32], the most common form of the objective
function employs the concept of entropy and information gain. The entropy of a
discrete variable X with b outcomes is given by:

H(X) = –
n∑

i=1

p(xi).logbp(xi). (2.2)

The information gain of splitting the data set S arriving the parent node using
the split θi is calculated based on the entropy equation and given by:

IG(S, θi) = H(S) –
∑

s∈{SL,SR}

|s|
|S|

H(s), (2.3)

where SL and SR are the two subsets formed by using the split θi, and each
subset goes to one subtree of the parent node. For regression forest, the gain
is calculated in different way based on the variability of the outcome which will
be explained with more details in Chapter 7. Decision trees use the information
gain to find the best split at each internal node. Once the parameters of best
splits are computed and stored, an unknown input sample can be classified
following equation 2.1. These learned parameters are the optimal within the set
of randomly drawn decision functions. However, it doesn’t mean that it will
give the optimal classification results for the whole dataset. Moreover, if the data
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used for training is not linearly separable, the learned parameters might not be
the optimal. Therefore, to improve the learning to find the optimal parameters,
more complex decisions functions are used. These complex decision functions
could use arbitrary lines in 2D for linear data separation, or conic sections [32]
for non-linear data separation. However, a single classifier might not be robust
or even sufficient for classification process. Collecting classification results from
different classifiers learned from other randomly drawn subsets of data gives
more confidence and robustness. Therefore, the concept of the random forests is
presented in the following section.

2.1.3 Random Forests Concept

A random forest is an ensemble of T independent decision trees. It has
been applied in many applications like face recognition [117] and achieved
large success. In random forest ensembles, randomness is introduced during
the training of each tree (weak classifier). Next, two popular ways of injecting
randomness into trees are presented [32]:

1. Randomized node optimization: The parameters of the decision function,
as mentioned before, can be drawn randomly from a range of possible
thresholds. In this case, each tree node optimizes the parameters by testing
a subset of the entire range of thresholds. The amount of randomness for all
nodes in the tree can be controlled using a hyper-parameter, which should
be the same for all trees in the forest.

2. Randomized training set sampling: In this way, randomness is introduced
to the training data set instead of the decision function. Therefore, each tree
can build a weak model by training only from a subset of the entire training
set. Each subset is drawn randomly from the entire dataset. Bagging is one
possible approach following this way and achieved high training efficiency
[32].

Random forest uses several weak classifiers trained using any of the
randomness ways so that the overall output of classification or regression
process can be defined using all weak classifiers jointly. The output can be
computed either by averaging the individual tree posteriors:

p(c|v) =
1
T

T∑
t=1

pt(c|v), (2.4)

or by multiplying the trees outputs:

p(c|v) =
1
Z

T∏
t=1

pt(c|v), (2.5)

where Z is a normalization factor, and T is the number of trees in the Random
Forest [32].
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Trees depth and the number of trees in a Random Forest are the most
influencing hyper-parameters on the prediction accuracy. A higher number of
trees leads to better prediction accuracy. However, it increases the computations
cost [20]. Therefore, selecting the appropriate number of trees should
compromise between the accuracy and speed requirements. Tree depth is
an important hyper-parameter for generalization and to avoid problems like
over-fitting and under-fitting. This parameter is highly connected with the
minimum number of samples required for splitting. A higher value of the
minimum number of samples leads to smaller trees. Therefore, this would
reduce the prediction accuracy and at the same time reduce the risk of
over-fitting [20]. Random Forest has another hyper-parameter which is the
sufficient gain to stop splitting of the samples. This parameter ensures sufficient
homogeneity level in the class labels arriving that node which helps to avoid
over-fitting problem.

In this thesis, Random Forests are used as a classification model for medical
instrument part-based detectors. Moreover, it is used to regress the instrument
joints in the pose estimation problem. In both cases, hand-crafted features are
used as the input feature vector. In the next section, we present an automatic
feature extraction tool which called Convolutional Neural Network (CNN).

2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is the most popular form of deep
learning. It provides levels of abstraction and representation of data in deep
architectures. In medical microsurgery, this abstractions can be understood as
categories (i.e. "Instrument tip", "Open state", "Peeling operation", ...etc) or as
features which represent the mapping of the input data as shown in Figure 2.2.

Here, the input could be an image or a patch of the image where the task of
CNN network is to map this form of input to the features representation. The
mapping starts at low level representation, which transform the input image to
a feature vector representing the edges and corners amount in small patches in
the image as shown in Figure 2.2. On top of this representation, higher level
representation of the features is implemented where it transform the edges and
corners information into more complicated structure-based representation of
the image. At the highest level, objects and activities are identified. The main
advantage of CNN and deep learning in general is the automatic discovery of
abstractions from low level features to high level representations without the
need of manual feature engineering [16].

2.2.1 Basic Concepts

CNNs follow the concept of artificial neural networks which are inspired by
biology and mimic the human brain functionality [74]. As the human brains are
made up of neurons connected with each other to do some tasks, neuron is the
basic component or building block of the neural network. The structure of a
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Figure 2.2: Instrument Example illustrating the concept of deep learning
architectures.

single neuron is shown in Figure 2.3 where it has the input xi and computes the
output z as follows:

z = f (
3∑

i=1

wixi + b), (2.6)

where the parameters wi are the weights, b is the bias and f (.) is a nonlinear
activation function [21]. The output z of the neuron is also called activation.
Therefore, every input xi is weighted, afterwards, the weighted inputs are
summed up together with the bias. The function f (.) is then applied to the
accumulated value to get the final output z. The importance of using nonlinear
function is to be able to find nonlinear mappings between input features vector
and the desired output. The most common choices of nonlinear activation
functions are the logistic sigmoid function:

f (x) =
1

1 + e–x (2.7)
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Figure 2.3: Illustration of a single neuron.

or the tangent function:

f (x) = tanh(x) =
ex – e–x

ex + e–x (2.8)

A neural network consists of a combination of neurons, where the output of
one neuron serves as input to others in the next layer as shown in Figure 2.4.
This model is called multi-layer perceptron or feed-forward neural network, in
which the neurons are arranged into layers. In this model, the neurons of each
layer are fully connected with the neurons in the next layer without forming
any cycles or loops. The bias units are labeled with ” + 1” and parametrized
with bi which add small shift values to the input weighted combinations and it
is not part of the network inputs. Only xi’s are considered the input layer, z is
the output and all the layers in between are called hidden layers. The output z is
computed depending on the values of the xi inputs, bias values, and the network
parameters wi. For example, in the perceptron model in Figure 2.4, the output z
is given by:

z = f (
3∑

i=1

w(2)
i a(2)

i + b(2)), (2.9)

where a(2)
i are the activations of the hidden units in the second (hidden) layer

and b(2) is the bias at this layer. Each a(2)
i value is computed based on the bias

and inputs from the previous layer. To clarify this, we show how to compute
each of a(2)

i values. For example a(2)
1 is given by:

a(2)
1 = f (

3∑
i=1

w(1)
1i x(1)

i + b(1)
1 ), (2.10)

a(2)
2 and a(2)

3 can be computed in the same way. Substituting the values of a(2)
i

into equation 2.9 gives the final output z in terms of the input xi and the network
parameters (W, b). In this example, W(1) ∈ R3×3, W(2) ∈ R1×3, b(1) ∈ R3 and
b(2) ∈ R1.
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Figure 2.4: Example of multi-layer perceptron.

The process of computing the output of this network is called forward
propagation[58] due to the way that inputs are forwarded from one layer to the
next one through the network until the output is calculated. The example of the
multilayer perceptron in this section can be generalized to any number of hidden
layers between the input and output layers. Therefore, deep architectures are
characterized by adding multiple hidden layers, and at each layer different
number of neurons can be chosen. The deeper the network is, the higher the
number of network parameters would be used. Those parameters, in most
cases, are randomly initialized and need to be updated in each iteration during
network training. Gradient descent and error backpropagation is the most
common algorithm to learn the parameters in neural networks.

2.2.2 Gradient Descent and Error Backpropagation

The main issue in neural networks is the number of parameters θ = (W, b)
and how to define suitable parameters values for a specific problem [21]. One
approach to learn the network parameters is called gradient descent and error
propagation. The concept of this approach is to compute the error between
the desired network output and the actual output of the model. This error is
propagated back through the network to update the weights according to the
gradient descent algorithm.

Regarding the network error computation, an appropriate error function is
designed to measure the difference between the desired and actual outputs,
where the objective of the training is to minimize the defined error function. Let
us denote this error function by E(θ). One option to find the best parameters is to
differentiate the error function and solve for the equation ∇E(θ) = 0. However,
this option doesn’t work when the error function has many local minima which
makes it a non-convex problem [21]. Therefore, iterative numerical methods
can be the alternative option to find a good solution. In neural network, initial
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parameter vector θ(0) is chosen, and after each step this vector is updated by:

θ(t+1) = θ(t) + ∆θ(t), (2.11)

where t is the iteration step [58] and ∆θ(t) is the update value. Among the
different approaches proposed to find this update value, gradient descent
computes it to be a small step in the direction of the negative gradient and is
given by:

θ(t+1) = θ(t) – α∇E(θ(t)) (2.12)

where α > 0 is called the learning rate and it controls the step size towards the
minimum. After a number of iterations, the parameters θ are enough updated so
a minimum (possible solution) is reached. The concept of the gradient descent
algorithm is illustrated in Figure 2.5. The value of the derivative ∇E(θ(t)) at
both points A and B in Figure 2.5 leads to move θ value in the direction of
the greatest decrease of the error function. Since the derivative at point A is
negative, this would increase θ value, hence, it would move to the minimum
peak. On the other hand, the positive derivative at point B would decrease θ
value and force it to move towards the minimum peak too. The step size that
θ follows towards the minimum peak depends on the learning rate α. A small
value of α leads to a good convergence of the algorithm but with higher number
of iterations which makes the convergence slow. On the other hand, with too
large value, the algorithm might diverge and never reach the minimum peak
[65, 17]. In a simple gradient descent algorithm, the entire training dataset is
used in order to compute the error function E(θ). Therefore, the computation of
E(θ) is needed for each step to compute the new values of the parameter vector
θ(t+1), which is computationally expensive process. In contrast, single training
sample, instead of the entire dataset, is used to evaluate E(θ) using stochastic
gradient descent algorithm. This sample is chosen either by random selection or
by cycling through the dataset.

Backpropagation: The backpropagation algorithm computes the gradients of
the error function E(θ) with respect to all network parameters. The gradients
are used by the gradient descent to update the parameters values. Assuming
that we have the training dataset samples X = {x1, x2, ...., xn}, along with their
corresponding output labels vector Y = {y1, y2, ..., yn}, the sum of squares error
function can be defined as:

E(θ) =
1
2

n∑
i=1

‖yi – zθ(xi)‖2 (2.13)

where zθ(xi) is called the actual output of the feedforward network, and yi is
the desired output. The idea of the backpropagation algorithm is to compute
an error term for each neuron to express its responsibility of any error in the
output. This error is easy to compute for the output layer by measuring the
difference between the actual and desired outputs as given in equation 2.13. The
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Figure 2.5: Example explaining the concept of gradient descent.

error is propagated one layer back to compute the error at that layer based on
backpropagation error formula [21]:

σ
(l)
j = f̂ (z(l)

j )
∑

k

w(l+1)
kj σ

(l+1)
k (2.14)

where σ(l)
j is the jth error at layer l and f̂ (.) is the inverse of the function f (.) at the

same layer. The error is back-propagated until it reaches the first layer. Therefore,
the derivative of the error function with respect to the network parameters for
the network in Figure 2.4 can be given by:

∂E
∂wij

=
∂E
∂z

∂z
∂ai

∂ai

∂wij
(2.15)

where the derivatives ∂z
∂ai and ∂ai

∂wij
can be directly computed by referring to

Eq. 2.9 and Eq. 2.10. After computing the derivative of the error function with
respect to each network parameter at the current iteration, the parameters are
updated for the next iteration by:

wij = wij – α
∂E
∂wij

(2.16)

The bias vector b(i) is updated in the same way, and this update process is
repeated for a number of iterations until the best parameters which minimize
the error function are obtained.
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2.2.3 Convolutional Neural Network Concept

A Convolutional Neural Network (CNN) consists of at least one
convolutional layer followed by the standard multilayer perceptron network.
A CNN is designed as an extension of the neural networks in terms of the
types of layers being used in the network. However, it follows the same
working principles to find the optimal network parameters to minimize the
error function. The architecture of the CNN is designed to take the advantage of
working on 2D input data. This is achieved by using small-size kernels applied
to the 2D images to produce different representation of the input. The output of
applying these kernels can be followed by a form of pooling operators which
results in translational invariant features. Applying a series of convolutional
and pooling layers produces a new nonlinear representation with smaller size
than the input. This representation can be fed into a normal neural network and
trained with less number of parameters, which is a great advantage of using
CNN. The reason behind this reduction of the number of parameters is due
to processing the input with small kernels instead of applying fully connected
layers directly.

The input to a CNN network is a r×c×h image where r×c are the width and
height of the image and h is the number of image channels, e.g. an RGB image
has h = 3 and a gray image, as shown in Figure 2.6, has h = 2. Assuming that the
first convolutional layer has k filters (or kernels) of size n× n, the output would
be k feature maps, each is obtained by convolving the input image with one filter.
The size of each feature map is (r–n+1)×(c–n+1). The parameters to be optimized
at each convolutional layer are the weights w1, w2, ..., wn×n of the k feature maps.
The output of the first convolutional layer is subsampled with mean or max
pooling layer. The pooling is performed over p × p contiguous regions in the
output feature maps where only the maximum or the average of each region is
kept in the output images. The pooling layer doesn’t influence the number of
feature maps but it reduces their sizes by 1

p times in each dimension if the stride
step equals p. The aim of the pooling layer is to make the features invariant to
small translations and to reduce the image size. The reduction in the image size
would reduce significantly the amount of processing computations needed at
the next layer while preserving the important features during subsampling. Next
to the first convolution and pooling layer, a number of layers can still be added
depending on the problem at hand. These layers also can be a combination of
convolution, pooling, normalization or rectified nonlinear units.

Generally, the more convolutional layers we add to the network, the higher
computation time is needed to process the image and the more parameters are
required. Once the feature maps sizes get small enough after a certain number
of convolution and pooling layers, those maps are processed by fully connected
layers as shown in Figure 2.6. Unlike the convolutional layers, fully connected
layers have higher number of parameters but need less computation.

2.2.4 CNN Layers Types

CNNs support many layers types implementations which form the basic
blocks of the network architecture:
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Figure 2.6: A Convolutional Neural Network with one convolution layer, one
pooling layer, two fully connected layers, and output layer of four classes.

Convolutional Layer:

This is the main layer of CNNs and computes the convolution of the input

image x ∈ RH×W×D with a bank of K filters f ∈ RH
′×W

′×D×K to produce output

y ∈ RH
′′×W

′′×K as follows [116]:

yi,j,k = bi,j,k +
H

′∑
h=1

W
′∑

w=1

D∑
d=1

fh,w,d,k · xi+h,j+w,d (2.17)

where bi,j,k is the bias. The values of the K filters are initialized randomly or based
on a certain distribution. The size of the output image depends on the padding
way and stride step of the convolution operation.

25



CHAPTER 2. MACHINE LEARNING BACKGROUND

Spatial Pooling Layer :

It computes the average or the maximum response of a group of contiguous
features in a feature map x within a patch P as follows [116]:

yi,j,d =
1

H′W′

∑
16h6H′ ,16w6W′

xi+h,j+w,d, (2.18)

or
yi,j,d = max

16h6H′ ,16w6W′
xi+h,j+w,d, (2.19)

where P has the size of H
′ × W

′
. Pooling aims at preserving the dominant

feature within a set of contiguous features. This has the advantage of making
the features invariant to small translation variations. Moreover, depending on
the chosen pooling stride, the size of resultant feature maps is much smaller than
the size of the input maps. Therefore, less processing computations are needed
at next layers.

Local Response Normalization :

It performs cross-sectional normalization where it is applied at each spatial
location and to groups of feature maps as follows [116]:

yi,j,d = xi,j,d

(
k + α

∑
u∈G(u)

x2
i,j,u

)–β

, (2.20)

where k,α,β are hyper-parameters and G(u) ⊂ {1, 2, ..., D} is a corresponding
subset of input feature maps. This operator produces an output image with the
same size as the input map.

Batch Normalization:

Batch normalization works in different way from other CNN blocks. It
peforms normalization across images or feature maps in a batch. Let us assume
the batch has T images or feature maps, then x, y ∈ RH×W×K×T, w ∈ RK, b ∈ RK

and the output feature map is computed as [116]:

yi,j,k,t = wk
xi,j,k,t–µk√
σ2

k + ε
+ bk, (2.21)

where µk and σ2
k are the mean and variance across the maps in a batch and

computed as:

µk =
1

HWT

H∑
i=1

W∑
j=1

T∑
t=1

xi,j,k,t, (2.22)
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σ2
k =

1
HWT

H∑
i=1

W∑
j=1

T∑
t=1

(xi,j,k,t – µk)2, (2.23)

Rectified Linear Unit (ReLU):

This activation function has been proven to be more robust than sigmoid and
hyperbolic tangent functions [46, 77] and it is defined as:

yi,j,k = max(0, xi,j,k), (2.24)

where x is the input to the neuron at location (i, j) of feature map k and y is the
corresponding output. This unit is used to avoid gradient vanishing problem
[52]. This problem is defined as the difficulty found in training and parameter
tuning of neural network using gradient-descent methods and backpropagation.
In this problem, the parameters of the network are updated based on their
contribution in the output error. With normal sigmoid and hyperbolic tangent
functions, the output at each layer is limited into a small output range (i.e. [0 1]
for sigmoid and [-1 1 ] for hyperbolic tangent). Therefore, large changes in input
will be mapped to a small range in the output. This problem becomes worse by
adding more layers on top of each other. As a result, the gradient will be very
small at the output layer regardless of the amount of input changes especially at
early layers. Therefore, the network training will be very slow in updating the
parameters at early layers.

This problem can be avoided by using activation function which doesn’t limit
the output to a small range of values. Since ReLU activation function has this
property, it is considered a good solution for gradient vanishing problem as well
as it shows more practicality than other activation functions in this orientation.

Dropout:

Dropout is a technique to address the problem of overfitting in deep neural
networks. Overfitting can happen as a result of limited training data or high
connectivity in the fully connected layers [100]. In fully connected layers, the
output of each neuron in one layer is connected as input to each neuron
in the next layer. In this case, training of the network would be slow and
some dominant neurons might have influence on other neurons which leads to
overfitting problem. Dropout is introduced to reduce the influence of a single
node by switching off one or more neural network nodes during training. In
this case, the learned weights of the nodes become in-sensitive to the weights
of the other nodes. Therefore, dropout helps the network to generalize better. It
switches the nodes off by removing it temporarily from the network, together
with all of its input and output connections. Simply, each neuron is kept in the
network with a probability p and removed with a probability 1 – p. The process
of switching a neuron on/off is independent of other neurons. Therefore, when
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the dropout is applied, the activity in Eq.2.10 becomes:

a(2)
1 = f (

3∑
i=1

w(1)
1i p(1)

1i x(1)
i + b(1)

1 ), (2.25)

where p(1)
1i are the retention probabilities of neurons at the first layer, which

are regarded as gating 0 – 1 Bernoulli variable [10]. At test time, there is no
dropout and all the neurons are involved in decision making. However, Eq.2.25
incorporates a retention probability p for each neuron. This probability is used to
scale-down the outgoing weights of that neuron proportionally to the retention
period.

Dropout forms a regularization term which can significantly increase
generalization possibilities for a wide variety of classification problems
compared with other regularization methods. Moreover, it can be generally
applied to other graphical models such as Boltzmann Machines [95].

These blocks of deep learning network make it a powerful training tool with
high capabilities to handle overfitting, gradient vanishing and other problems.
Furthermore, CNNs have the ability to model wide range of variations in
scale, rotations and light changes in data. A CNN network has been designed
in this thesis to detect different parts of an articulated medical instrument.
However, in most cases, we need post-processing techniques to cope with false
detections. Therefore, relying on geometrical constraints would further improve
the performance. This leads us to introduce Conditional Random Fields (CRFs)
as powerful graphical models to apply such these constraints.

2.3 Conditional Random Fields

An articulated object can be defined as a set of N parts, where each part
corresponds to a random variable yi. These parts are related to each other
based on the structure of the object. Hence, the purpose of the object pose
estimation is to employ the relations between different parts to predict the vector
y = (y1, y2, ..., yN) of random variables from the observations x. The observed
random variable xi can be considered as the received signals or extracted
features. In the context of medical imaging applications, in particular the medical
instrument pose estimation, those observations are extracted as features from
different parts forming the medical instrument. The dependencies between
these parts (random variables) are encoded using probabilistic graphical model
(PGM). More specific to the task of pose estimation of the medical instruments,
the goal of the PGM is to infer a particular pose y among the hypothetical
poses in a huge search space. Each pose y is represented by a set of 2D image
coordinates.

There are many types of graphical models [57] used to represent the relations
between dependent and/or independent random variables. One class of these
models, which has been applied in pattern recognition and machine learning
applications, is called Conditional Random Field (CRF). Given an observation x
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of the random variables y, CRFs model the conditional distribution p(y|x). For
many applications, modelling using CRF has many helpful properties [14]:

1. Modelling using CRF is a problem-specific task, which means
the definition of dependencies between the random variables and
observations are varying according to the problem.

2. Unlike generative models, CRFs, which are discriminative models, don’t
require the estimation of the joint probability distribution p(y, x) which is a
difficult task.

3. The model doesn’t rely on prior model p(x) of the observations, where the
dependencies between features make it also a difficult task to build such a
prior model.

Therefore, a CRF offers a computational efficient solution among the
graphical models, in additional to its simple structure. The main three parts of
designing and using CRFs are modelling, inference, and parameters estimation.

2.3.1 Graphical Modelling

A graphical model is a way to express conditional or joint multivariate
probability distributions. It brings together probability and graph theories in
a powerful framework for statistical modeling. This is why it is also called
probabilistic graphical models PGM. It expresses the conditional dependencies
between random variables and the relations between these random variables
and the observations. Based on the type of these relations, the type of the
graphical model is defined which can be one of many types such as Bayesian
networks (directed graphical model) or Markov Random Fields (undirected
graphical model). The type of the graphical model defines the distributions by
means of a graph G = (V, E), where V is the set of vertices which correspond to
random variables and E is the set of edges denoting dependencies between the
variables as shown in Figure. 2.7.

Figure 2.7: Graphical Model: An undirected graphical model that would
correspond to the medical instrument joints.
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Following the notation in [102], we define the probability distribution p
over the random variables V = X ∪ Y, where X is the input random variables
observations, and Y is the output random variables. In our work, the domain of
each random variable would be the 2D pixel coordinates within the image plane.
The image space forms a discrete output domain Λ that each output variable’s
state is derived from. Let us assume an assignment xi of the observations X is to
assign a value to the ith variable of X. Furthermore, xa can denote an assignment
to a subset of the observation X, where a ⊂ X. The probability distributions
can be expressed as a product of factors which define the interactions between
random variables. Assuming the factor is represented by Ψa(xa, ya), then the
distributions p(x, y) in an undirected graphical model or CRF can be defined in
terms of these factors F = {Ψa(xa, ya)}, where Ψa : Λ|a| → <+, and can be written
as [102]:

p(x, y) =
1
Z

∏
a

Ψa(xa, ya), (2.26)

The constant Z is called the normalization factor or the partition function and
defined as:

Z =
∑
x,y

∏
a∈F

Ψa(xa, ya) (2.27)

The computations of Z is in general intractable [57] and used to transform all
the real values of the factors into probabilities and many algorithms have been
proposed for approximating it. Each potential function is assumed to have the
form:

Ψa(xa, ya) = exp
{∑

k

λa,kfa,k(xa, ya)
}

, (2.28)

for some real-valued parameters λa,k, and a set of feature functions fa,k(xa, ya).
This form defines a specific distribution over V from the exponential family
which parameterized by λa,k. The feature function fa,k(xa, ya) models the
dependencies between random variables and observations and it can be defined
in different ways including indicator functions. Moreover, the factorization of
the distribution in 2.26 can be expressed in a different form called the factor
graph.

A factor graph is a way to represent the factorization of the probability
distributions p by a mean of graph form. The graph here has the triplet (V, E, F)
representation as shown in Figure 2.8, where the variables describing the factor
fa,k are included in the graph. In this type of graphs, the random variables
are represented by circle nodes and the factors by box nodes. The factors or
potential functions show the dependencies between random variables, while
the edges show the variables involved in these dependencies or relations. Each
potential function can operate on any number of random variables. The number
of variables connected at the factor box defines the type of the potential function,
which can be unary, binary or higher order.
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Figure 2.8: Factor Graph: This graph is a representation of the undirected graph
model shown in Figure 2.7. The circles are random variables and the black
boxes are potential functions or factors representing the dependencies between
variables.

A conditional probability distribution p(y|x) for a factor graph G over random
variables Y and observations X is considered a Conditional Random Field
(CRF) iff for any assignment x, the distribution p(y|x) satisfies the Markov
property with respect to the graph G: p(Yv|X, Yw, w 6= v) = p(Yv|X, Yw, w ∼ v),
where w ∼ v means that w and v are neighbors in G [61].

The defined conditional distribution by a set of factors F = {Ψa} that belong
to G can be written as :

p(y|x) =
1
Z

∏
Ψa∈G

exp
{ K∑

k=1

λa,kfa,k(xa, ya)
}

(2.29)

where K is the number of feature functions for each factor {Ψa}. These factors
are partitioned to cliques in order to estimate the parameters of each factor. A
clique in the graph G is a set of vertices connected with each other such that
they form a complete subgraph in G [22]. Using the maximal clique rule, the
factor graph G is partitioned into C = {C1, ....., CQ}. Each clique Cq corresponds to
set of factors having some feature functions {fq,k(xt, yq)} parameterized by λq,k ∈
RK(q), where K(q) is the number of feature functions in a clique q. Based on clique
factorization, the conditional random field distribution can be written as:

p(y|x) =
1

Z(x)

∏
Cq∈C

∏
Ψc∈Cq

Ψc(xc, yc;λq) (2.30)

where the normalization function Z(x) is defined as:

Z(x) =
∑

y

∏
Cq∈C

∏
Ψc∈Cq

Ψc(xc, yc;λq). (2.31)

Finally, each factor Ψc can be written as:

Ψc(xc, yc;λq) = exp

{ K(q)∑
k=1

λq,kfq,k(xc, yc)

}
. (2.32)
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Based on Eq.2.30, a conditional random field (CRF) is described by a set
of potential functions along with their parameters λ = {λq,k}, where λ ∈ RD.
In the context of medical applications, instrument pose estimation is specified
by means of potential functions where the parameters λ are assumed to be
estimated before starting the inference step of the final predictions of the
instrument joints coordinates in the image space. Inference in CRFs is also
related to energy minimization problems. However, predicting the instrument
joints coordinates for the random variables in CRFs requires finding the
maximum posterior probability which is equivalent to energy minimization [78].

2.3.2 CRF’s Potential Functions

The potential functions as shown in Figure 2.8 are designed to model the
dependencies between random variables Y and observations X. In other words,
they model the relations between hidden and output variables which could
differ from one application to another. Within the context of medical instrument
pose estimation, many functions have been designed to model unary, binary,
ternary and quaternary factors. The unary potential functions generally used
to model the relation between input observations X and output variables Y
(i.e. the relation between the appearance of image patches and the existence of
any instrument part). In this thesis, we denote the unary functions by φi(yi, x).
Binary potential functions are designed in this work to model the relations
between output variables Y. Some of these functions are used to model the
temporal information by means of parts movements between frames. Others
are used to model connectivity along gripper parts of the instrument to give
preference for some hypotheses in order to localize the tips more precisely. We
will denote the binary functions by ψi,j(yi, yj). Ternary potential functions, which
is denoted by ψi,j,k(yi, yj, yk) in this thesis, have been modelled to impose more
constraints on the output random variables Y to increase the robustness of the
proposed model in cases of highly cluttered background. Finally, we modeled
also a quaternary potential function denoted by ψi,j,k,l(yi, yj, yk, yl), and as an
example for this potential type is the modelling of the instrument parts rotations
distribution. Pictorial structures [40] can be seen as a variant of the potential
functions, but still they model the relations between the graph variables by
different representation. Graphical models represent the first step in modelling
using CRFs, the next steps are inference and parameters estimations which are
presented next.

2.3.3 Output Variables Inference

The prediction of the output variables Y of the conditional random field
is called inference. Inference is performed on the factor graph using the
probabilistic graphical model to predict the output variables Y based on the
observations X. The factor graph can be employed in two different methods to
predict variables:

1. Maximum aposterior (MAP) inference: the goal of this inference is
to predict the labels of the output random variables Y based on the
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observations X and the learnt parameters λ. In this inference, the labels
that maximize the posterior probability of Eq. 2.30 are obtained by:

ŷ = argmax
y

p(y|x,λ). (2.33)

In medical instrument pose estimation, ŷ is the predicted instrument
joints vector, which also represents the most probable configuration of the
instrument pose based on MAP inference.

2. Probabilistic inference: the goal of this inference is to estimate the
partition function Z(x) and also the marginal distributions of the factors.
Therefore, this inference turns the problem to marginalization instead of
maximization. The marginalization in this type of inference is obtained by:

∑
y

p(y|x,λ), (2.34)

and would estimate all the marginals of instrument in terms of the
instrument parts.

Many algorithms have been proposed to address the inference problem
for general factor graphs. In this case, the problem is known to be NP-hard
[98]. As a CRF is based on modelling the problem using factor graph, it
can use the inference algorithms that are applied in graphical models in
general [57]. However, the complexity of the graph has a high impact on
the inference algorithms efficiency and the convergence time to find the
optimal solution. Therefore, imposing more constraints on the graph structure
would reduce the inference complexity and make the problem tractable. For
the exact inference problem, the most commonly used algorithms are the
forward-backward algorithm [83] and Viterbi algorithm [42]. However, the exact
inference algorithms can be applied only to graphs without loops which have
tree structures.

In graphs with loops, exact inference can be inefficient and computationally
expensive even though it is possible after transforming the graph into a
tree-structure one. Junction tree algorithm [63] can be used for this kind
of transformations to enable exact inference for predictions. However, the
transformations made by [63] rely on clustering the variables into huge
clusters which requires exponential time to infer the solution. To solve the
exact inference problem and make it possible for real time applications, the
approximate inference has been used. Many algorithms have been proposed in
the literature for approximate inference [57]. Most of the algorithms proposed
in this regard can be categorized mainly into either Monte Carlo or variational
algorithms. Monte Carlo algorithms, such as Markov Chain Monte Carlo
(MCMC) methods [57], are computationally expensive and based on sampling
to find an approximations of the distribution of interest. Formulating the
inference problem as an optimization problem is a part of the variational
methods and an approximation of the solution is found by minimizing an
energy function. A well known variational algorithm is belief propagation which
also can estimate exact solution for tree-structured graphs using max-product
algorithm [57]. However, for loopy graphs, an approximate solution is estimated
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which is not guaranteed to be the optimal one. For medical instrument pose
estimation, due to the use of smaller number of random variables than being
used for human pose estimation, we choose evolutionary algorithms [92]. These
algorithms combine the sampling and solving optimization problem to find an
approximate solution with real time performance. A well known algorithms
from the evolutionary algorithms are the genetic algorithms [92, 48] which
are used in this thesis for instrument pose inference. Genetic algorithms use
mechanisms inspired by biological evolution including reproduction, mutation,
recombination, and selection. The first step in these algorithms is to encode
the chromosomes or individuals. A set of configurations are sampled and
encoded as genes of chromosomes to build the initial population. The quality
of each individual is computed based on fitness function which assigns to
each individual a probability of survival in the next population. This function
forms our optimization function which the algorithm is designed to maximize.
The optimization of this function requires producing of a new generation
and selecting of the best individuals (highest probabilities). After the selection
process is done, crossover is applied between pairs of individuals to generate
new offspring. This operation swaps some genes between the individuals
after selecting crossing points for recombination. The swapping operation can
produce some offsprings with higher survival probabilities than their parents.
These offsprings are considered better solutions. Therefore, these algorithms
run in an iterative way until they produce the best solution or stop after a
fixed number of iterations. To avoid trapping at a local maximum, mutation
process is applied with certain probability after crossover operator by changing
values of some genes. Changes can be done in a random or heuristic way to
ensure convergence during optimization. Evolutionary algorithms perform well
approximations for all types of problems because no constraints are imposed on
the fitness landscape.

The task of inference comes after modelling the problem using factor graph
and estimating the parameters λ. Next, parameter learning is presented.

2.3.4 Parameter Learning

Parameter Learning in CRF is also called parameter estimation. These
parameters, λ in Eq. 2.30, should be selected to maximize the similarity between
the conditional probability distribution and the true distribution. To measure
the similarity between two distributions, Kullback-Leibler (KL) divergence
[60] is used. Following the notation in [102], we denote the training samples
D = {x(i), y(i)}i=1,...,N, and they are assumed to be independent and identically
distributed (i.i.d). There are many ways to estimate the parameters in CRF
model:

Maximum Likelihood : Maximum Likelihood can be used to learn CRF
parameters from training dataset in a probabilistic manner. The concept of
this way is to maximize the training data samples that fit a certain model.
The likelihood can be replaced with log-likelihood since the log function is
monotonically increasing and can’t change the location of the maximum points.
The log-likelihood, which is called also the conditional log-likelihood, can be
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written as:

L(λ) =
N∑

i=1

log p(y(i)|x(i);λ). (2.35)

By substituting the conditional probability distribution from Eq. 2.29 into
Eq. 2.35 and adding the regularization function Z(x), we get a differentiable
function L(λ). This function has no closed form solution due to the difficulty
in computing Z(x), which requires each single training instance. However,
it can be optimized in an iterative ways using gradient descent methods or
Newton’s method [19]. Newton’s method has more computational cost due to
the computations of the Hessian matrix at each iteration. Less computational
methods can be used for Hessian approximations such as BFGS [19] and
Limited-memory BFGS (LM-BFGS) [68]. In general, for complex graphs with
high orders dependencies, the computations become more expensive, and the
likelihood optimization might not be possible. Many other approximations of it
have been proposed like surrogate likelihood [103].

Margin-based estimation : This is another common way to estimate the
parameters λ of CRF. Again, assume we are given a set of training samples
D = {x(i), y(i)}i=1,...,N of unknown distribution of CRF. Furthermore, assume a loss
function ξ which computes the difference between the predictions ȳ of the labels,
and their corresponding ground-truth y for a training instance. The parameters λ
are learned in a way to minimize the loss function ξ(y, ȳ). The loss function ξ can
be minimized using structural risk minimization [114]. A regularized empirical
risk can be written as:

R(f ) +
C
S

N∑
i=1

ξ(y(i), f (x(i))) (2.36)

where the first term is the regularization term which helps to avoid overfitting
during training, and the second term is the empirical estimation of the expected
risk. To estimate the parameters λ, we need to find a good estimator function
f which minimizes the loss function ξ. Structured support vector machine
(S-SVM) training [113] is considered a feasible choice for the solving the
minimization in Eq. 2.36. The regularization constant C > 0 is a hyper-parameter.
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Chapter 3

Related Work

The problem of medical instrument detection and tracking has been
addressed in diverse research areas for different types of surgeries. Among
these surgeries, retinal microsurgery is still the most delicate and challenging
one. The challenges are mainly due to the limited accessibility to the retina
tissue which should be accessed using only tiny instrument through microscope
lens. Moreover, the small size of the instrument, the eye geometry and the
complications in the surgery environment prevent the usage of special sensors
for tips localization. Therefore, a heavy burden is put on processing the images
obtained from different imaging devices (e.g. optical or OCT devices) to assist
surgeons by visual localization of the instrument tips or by augmenting the
scene with important information such as the distance of the instrument tips to
the retina.

Different approaches have been proposed to tackle the detection and tracking
problems. While some approaches formulate the problem as an intensity-based
tracking, many other approaches employ dedicated detectors for certain parts
of the instrument. Pose estimation techniques can be seen as another task
working on top of detection and tracking algorithms. In this chapter, state of
the art approaches from each category are presented with their achievements
and limitations.

3.1 Intensity-Based Instrument Tracking

In this category, the instrument is detected and tracked based on color
information [37, 36, 79] of the instrument and the artificial markers [50,
121], or even by tracking intensity values without transforming the image
into other color models. Richa et al. [86] proposed to use weighted mutual
information with gradient-based tracking [34] to track instrument through a
stereo microscope. The joint probability matrix of the mutual information is
weighted to make the similarity measure invariant to illumination changes
during the search for the instrument tip. In their experiments, a fixed reference
image and static background are assumed and only vitrectomy instrument is
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used for evaluation. In other tracking algorithms [84], intensity values have been
employed to find alignment parameters between target and reference images.
After a good match is found, new patches are added to a database to be used for
online tracking. The algorithm allows growing the region of interest to discover
new regions and to make the tracking more robust. However, the algorithm can
only localize a bounding box around the instrument tip in laparoscopic images.

Online learning [67] has achieved state-of-the-art performance on retinal
and laparoscopic surgeries. This work builds up a database of positive and
negative samples of the target instrument during its movement. The instrument
is tracked by a modified work of Lucas Kanade tracker [71]. Moreover, the
tracker is enforced by intensity-based cascade detectors for fast recovery after
tracking loss. The algorithm has the ability to localize only the center point of
forceps instrument. However, the algorithm can’t validate the created database
and can’t guarantee that intensity-based detectors would work properly in case
of significance changes of illumination. Moreover, the performance is highly
dependent on good initialization after the disappearance of the instrument.

Active Testing [45, 108] has been employed to model the instrument tracking
and detection in a unified framework[106]. The basis for this method is to
model the instrument localization as a sequential entropy minimization problem
to estimate 3DOF parameters required to localize the instrument tip. During
the parameters optimization phase, the instrument appearance and intensity
values have been highly used to build the trained models. Even though the
method shows high accuracy of instrument tip prediction on eye phantoms,
no evaluation has been carried out on real in-vivo retinal surgery. Moreover,
the huge amount of training required to build different distributions limits the
method’s applicability and generalization.

Riete et al. [85] proposed a solution to track Large Needle Driver (LND)
tool by making use of the landmarks on the tool surface. Color, location and
Gradient-based features have been associated with the landmarks for training
random ferns. The 3D locations of the instrument are retrieved by matching
the features tracks in the stereo camera using normalized cross correlation.
The method achieves high localization accuracy for LND tools. However, the
tracking can’t run at the video frame rate due to the computational cost of
extracting all these features. Moreover, the occlusions of some landmarks due to
the instrument rotation might result in high localization error. Another approach
[3] was proposed for articulated tool tracking in 3D laparoscopic images, in
which the color information is used for instrument parts segmentation. The
segmented regions are described by different statistical models in order to
estimate the pose of the instrument in the 3D space. Optical flow is used for
pose tracking from image to another. The approach has also the limitations of
expensive feature extraction and its sensitivity to the light changes.

Generally, intensity-based tracking or color-based detectors can be fast and
accurate for estimating the instrument pose. However, some changes in the
instrument or background appearance have severe impact on the tracking
and lead to frequent tracker loss. Therefore, a high burden is put on good
re-initialization after tracking failures. Furthermore, combining features from
different color models [85, 2, 3] makes the tracker slower than required for real
in-vivo surgeries.
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3.2 Instrument Tracking by Detection

Tracking by detection algorithms have the advantage of being able to
handle instrument disappearance since the re-initialization is no longer
treated differently. However, the time complexity depends on the detector
complications.

Sznitman et al. [105] proposed to integrate gradient-based tracker with
machine learning based detector. The detector computes the sums of the oriented
edges for positive and negative samples to train the deformation in instrument
shape. On the other hand, the tracker is used to favor close detections to the
last predicted instrument position. Even though their approach achieved the
state-of-the-art accuracy in predicting the forceps connecting point location, it
is unable to detect the forceps tips which are of more interest from clinician
prospective for minimally invasive surgery.

Further improvement using the same set of features as in [105] has been
proposed in [107]. The instrument is modelled as an articulated object where
all the instrument parts are located linearly in a raw. The algorithm employs
gradient boosted regression trees as an iterative optimization way to stop the
algorithm early and reduce the computation time. Random Sample Consensus
RANSAC [41] algorithm is used to fit a line through these detections and to
estimate the instrument tip location. The algorithm shows good performance on
vitrectomy instruments in retinal, pelvic and spine surgeries. However, it doesn’t
have any mechanism to handle forceps instrument to localize its two tips.

Chen et al. [29] uses structural and geometric features as the input vector for
spiking neural network [35]. Gabor kernel is used to extract features at specific
orientations using Laplacian of Gaussian (LoG) of the input image. The method
is used to localize the instrument tip in laparoscopic images and achieved
high detection accuracy. However, using the proposed network for instrument
detection doesn’t satisfy real time requirements.

The main challenging issue for the tracking by detection algorithms is to
find the discriminative features which can be extracted at the video frame rate.
Moreover, the refinement process on top of detections parts to localize the
instrument joints coordinates has to meet the real time requirements as well.
Generally, tracking by detection methods are slower than other methods and
more challenging exists to make them running at the video frame rate. In this
thesis, most of the proposed solutions follow this category since they provide
more robust ways to avoid tracking failures in this delicate microsurgery.

3.3 Instrument Pose Estimation

The process of pose estimation aims to find 2D or 3D coordinates of
instrument joints. It can be considered as a separate problem. However, most
of the proposed methods employ it on top of tracking or detection operations.

A database of a 3D CAD model of the forceps was generated in [8], and the
likelihood to the projected contour of the microscopic image is extracted to find
a match from the database to estimate the forceps pose. The proposed method
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employs color information and was evaluated only on synthetic data. Therefore,
it is complicated to extract these contours in real in-vivo surgery having cluttered
background and severe light changes. Instrument pose in [3] was estimated on
top of intensity-based classifier output. This output is a set of segmented regions
used to fit distribution models to estimate the 3D pose of the tool.

Rieke et al. [88] proposed to use intensity-based tracker [109] to locate a
bounding box around the instrument. The tracker predicts the translational
parameters to update the position of the bounding box. Within this box,
the instrument joints are predicted using random forest [15]. The approach
also achieved high accuracy rate in joint localization, but it cannot recover
automatically after the tracker is lost. Moreover, the tracker needs a huge amount
of training samples to handle changes in the instrument appearance.

3.4 State of the Art Techniques Summary

Table 3.1 shows a summary and comparisons among the state-of-the-art
techniques in terms of whether they are able to localize instrument joints
(one tip, Left tip, right tip, joint point), run at real time, work without
manual initialization, handle forceps instrument and estimate the instrument
orientation.

The table shows that the majority of the algorithms can’t localize the left and
right tips of forceps instrument despite of using forceps instrument for their
evaluation. On the other hand, Rieke et al. [88] proposed the only approach
used to localize these tips at real time performance, but they are missing
the automatic re-initialization module to handle tracking loss. Therefore, in
this thesis, the proposed solutions to the pose estimation problem are built
on top of special detectors to localize forceps joints in real time while still
being able to handle tracking loss problems. The ultimate goal of the proposed
methods is to find a feasible solution to work on real in-vivo surgeries. While
most of the proposed methods have not been validated on real surgeries, our
proposed methods are evaluated on real retinal and laparoscopic surgeries in
addition to publicly available datasets for quantitative comparisons with other
state-of-the-art methods.
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Table 3.1: Methods Comparisons :(T = tip, LT = left tip, RT = right tip, JP=
joint point, VT = work on vitrectomy, FC = work on Forceps, I = automatic
Initialization, O = estimate orientation, R = real time)

Method T LT RT JP I VT FC O R

Richa et al. [86] X X X X

Reiter et al. [84] X X X

Reiter et al. [85] X X X X X X

Baek et al. [8] X X X X

Rieke et al. [88] X X X X X X X

Li et al. [67] X X X X

Allan et al. [2] X X X X X

Allan et al. [3] X X X X X

Sznitman et al. [105] X X X X X
Sznitman et al. [107] X X X X X X X

Sznitman et al. [106] X X X X X

Pezzementi et al. [79] X X X X

Chen et al. [29] X X X
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Chapter 4

Color Information and
Geometric Modelling

4.1 Introduction

Instrument Detection and tracking in retinal microscopic surgery is a crucial
part for the minimal invasive procedures due to the aforementioned challenges
in the introduction chapter. The first approach towards detection and tracking
of the instrument is to consider color information to segment it from the other
objects in the background. As mentioned earlier in this thesis, artificial markers
have been used for detection and tracking instruments in laparoscopic datasets
[111] which requires a colored strip to be placed on the instrument shaft.
The predefined color information is used to facilitate image segmentation and
therefore to localize the instrument tip and the orientation of the shaft. Color
information of natural landmarks has also been employed in other work [2]
for articulated instrument modelling in laparoscopic surgery. However, using
artificial or natural markers on forceps instruments used in retinal membrane
peeling is quite difficult due to the tiny size of the instrument (i.e. 0.5mm in
diameter). Moreover, most of the color based approaches [2, 3] need to extract
color-based features from different channels to localize the instrument in 2D
images. Therefore, these approaches don’t meet real time requirements. Hence,
their time complexity prevents their usage for medical applications which
require real time processing capabilities.

On the other hand, depending only on the geometry of the instrument
[118, 106, 79] definitely requires a prior shape information to be modelled. This
information imposes some kind of constraints on the background, instrument
entry point, shaft length, type of instrument or light changes. Some of these
constraints can not be satisfied at real in-vivo surgery. As a result, such
approaches might not be applicable in such surgeries. Moreover, changes in 2D
retinal images from one image to another under severe light changes and gripper
movements are often difficult to be modelled as a linear transformation. This is
why most of the trackers fail in real surgery. Therefore, more complicated or
deformation transformations are required to model the changes in the geometry
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and appearance of instrument over time.

In this Chapter, both of color information and the geometry of the rigid part
of the instrument are used in a new approach. The time complexity required
by the color-based methods [2, 3] is avoided by relying only on one color model
instead of combining color information from different channels of different color
models. Therefore, to compensate for less color information, the geometry of
the instrument rigid part is used for the optimization of the tip and orientation
estimation.

(a) RGB Image (b) L channel

(c) a channel (d) b channel

Figure 4.1: RGB image with its L*a*b* Transformation

Herein, a new approach is proposed to detect and track the tool tip in
microscopic images in real time surgery in a more precise fashion. We define
the tool tip position as a point on the tool centerline where it touches the
retinal tissues (shown in Figure. 4.1(a) as point A ). The L*a*b* transform [53]
is used mainly for the segmentation process as shown in Figure. 4.1, because it
highlights the perceptual uniformity of the instrument which is characterized as
a textureless object. Moreover, the nonlinear relations of L, a* and b* channels
are applied to mimic the nonlinear response of the eye. Therefore, the uniform
changes in the perceived color in the eye can be obtained by uniform changes of
components in the L*a*b* color space. The structural information is considered
to reduce the search space and to optimize for the potential instrument segment
location in real time. Once the instrument segment is detected in a frame, the
instrument centerline and the instrument tip are extracted and propagated to
the next frame to make the detection and tracking much faster and accurate.

4.1.1 Instrument Segmentation

Based on experimental observations in L*a*b* color space, the instrument is
included in a small range of the lowest intensity values of the a* channel within
the retina region as shown in Figure 4.1 (c). Applying a thresholding function
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(a) Thresholded a* channel (b) Refined a* Channel

Figure 4.2: Color information extracted from a* channel

Figure 4.3: Edge Image

to filter out intensity values larger than 10% of the maximum intensity value
of a* channel gives the results shown in Figure.4.2(a). It shows that most of the
instrument pixels are preserved in addition to some parts of the background. It
is also worth noting the disappearance of the instrument shadow in this filtered
image. This would avoid the confusion in detection between the instrument
and its shadow. Moreover, more background’s clutter can be removed easily by
subtracting a thresholded L* channel from the image in Figure.4.2(a) to produce
the refined a* channel as shown in Figure.4.2(b).

4.1.2 Structural Information Integration

The refined a* channel gives an image with many segmented objects. Prior
information in different ways to give preference for some segments against
others can be incorporated. Many of these segments could be discarded if
they are not aligned with strong edges, or even if they aligned with bended
edges, this is why the structural information with the refined a* channel need
to be integrated. The gradient of the green channel is used to get structural
information, and after thresholding, it gives the output shown in Figure.4.3
which is called the edge image. The thresholding is important to eliminate the
contribution of the background and other eye components in the edge image.
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(a) (b)

(c)

Figure 4.4: (a) The detected Hough lines in the Edge image. (b) The same
Hough lines obtained from the edges image and superimposed on the refined
a* channel.(c) The tool model where the mid-line should lay on each Hough
line.

From the edge image in Figure.4.3 and the refined a* channel in Figure.4.2(b),
the instrument object could be defined without resorting to the intensity values
by just applying the probabilistic Hough transform [13] to detect the lines in
the edge image as shown in Figure.4.4(a). The strongest 150 linear segments are
extracted and superimposed on the refined a* channel as shown in Figure.4.4(b).
At each line, an instrument model as shown in Fig.4.4(c) is fit to find the
instrument edge line. The model consists of two areas, where all white pixels in
one area are given positive weight while the white pixels in second area are given
a negative weight. The selected instrument edge line is the one which maximizes
the cost function F given by Eq. 4.1.

F = w1 ∗
∑

p∈A1

X(p) + w2 ∗
∑

p∈A2

X(p) (4.1)

where w1 and w2 are the weights given to the white pixels p of the refined a*
image X located in A1 and A2, respectively. If the value of w1 is positive and w2
is negative, then Eq. 4.1 detects the right side of the tool shaft. The negative value
of w2 is chosen to penalize the existence of the white pixels on the right side of
the Hough lines. The yellow line in Figure. 4.4(b) is the detected line based on
Eq. 4.1, and the white segment aligned to it is considered the instrument object.

4.1.3 Instrument Tip and Centerline Detection

The instrument centerline can be detected easily if the detected left and right
instrument edges were parallel. Unfortunately, in most cases they are not parallel
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due to the quality of the a* channel which is affected by fast motion, image blur
and the large illumination changes. As a result, the detected edges are not well
aligned to the actual instrument edges. Some cases are depicted in Figure. 4.5. To
overcome misalignment problem and to find the instrument centerline, it would
be more robust to rely on the instrument segment itself aligned to one of the
detected instrument edge line. For this end, the centers of masses for a bunch
of lines {Li}m

i=1 perpendicular to the detected line by Eq. 4.1 are computed which
produce m ∈ R candidate points. The center of mass (XLi ,YLi) for each line Li is
calculated based on:

XLi =
1
n
∗

n∑
j=1

xj, YLi =
1
n
∗

n∑
j=1

yj (4.2)

where n is the number of white pixels along one line Li orthogonal to the
instrument edge line, and xj and yj are the coordinates of these pixels. The
instrument centerline is found by fitting a line to the m computed points using
RANSAC [41]. The resultant line is the tool centerline. It forms a signal where the
transition from the foreground to the background is the instrument tip position
in case of using a vitrectomy instrument, but if the instrument has a forceps
shape then the transition point is the connecting point and further processing is
required to find the instrument tip position. The processing in this case is to start
from the detected connecting point and find the connected components around
the centerline on both sides. The farthest point in the connected component from
the connecting point is kept, and the projection of this point perpendicularly on
the centerline is the instrument tip position.

Figure 4.5: Some cases where the instrument detected edges are not parallel.

4.1.4 Instrument Tip Tracking

Once the instrument centerline and the instrument tip are detected in the
current frame, this information is propagated to the next frame. Therefore, there
is no need to process the entire frame each time. Assuming the instrument tip
position Pt and the instrument slope St have been detected at frame t, then the
search for the candidate Hough lines at frame t + 1 is limited to the lines within a
rectangular box centered at Pt and tilted according to St. These candidates lines
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are filtered out again to get rid of the ones which have a large slope difference
from the instrument slope detected at the previous frame based on eq.4.3.

|S(i)
(t+1) – St| < ε (4.3)

Where S(i)
(t+1) is the i-th candidate line at frame t + 1, and ε is a small value

chosen empirically to be around 0.2.

4.2 Experiments and Results

This algorithm is implemented using C++ and OpenCV installed on a
machine with Core-I7, 2.8GHz CPU, and it runs at 23 fps.

4.2.1 Retinal Microscopic Datasets

Two microscopic datasets for real human eye surgery have been used in order
to validate the technique. The Datasets are captured by Carl-Zeiss Lumera 700
microscope, and 400 (1080X1920) images have been manually annotated for each
dataset. The annotation includes the instrument tip position, and one point on
the centerline of the shaft to calculate the instrument slope. The images were
resized to one fifth of their original size during processing, while the validation
and visualization both consider the original size. Fig.4.6 shows the detected
instrument tip and centerline for samples from both datasets.

Figure 4.6: Random samples from different datasets with different conditions.
The first top row is from the first dataset where the red component is prominent
and the instrument is evenly illuminated. The second bottom row is from the
second dataset where the green component is prominent, and the instrument is
unevenly illuminated
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4.2.2 Datasets Evaluation.

The model size is chosen empirically with width of 7 pixels on each side
and height of 140 pixels. The weights w1 and w2 in Eq. 4.1 were chosen to
be 1 and -5 respectively. The tracking box has the size of 20x80 pixels. The
percentage of the images where the tool tip is correctly detected as a function of
the accuracy threshold is calculated. For each accuracy threshold T1, we consider
the percentage of the images in which the detected instrument tip is at distance
less than or equal to T1 pixels from the actual position based on the ground truth.
This threshold varied from 5 to 50 pixels. From Figure.4.7, it can be noticed that
the instrument tip positions have been correctly detected in 90 percent of the
images within a threshold of only 20 pixels for the first dataset, which shows
the high accuracy in detection. For the second dataset, the detection error is a
bit higher due to the large illumination variations and the unevenly illuminated
parts of the instrument, in addition to the nature of the images which are blurred
in comparison with the first dataset.

Figure 4.7: Instrument tip detection accuracy measurements.

Figure 4.8: Instrument centerline detection accuracy measurements.

Figure.4.8 shows the accuracy of our method in detecting the centerline of
the instrument. Another accuracy threshold T2 has been defined as the angular
difference in degrees between the actual slope measured based on the ground
truth and the detected slope of the instrument. The results show that in 90
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percent of the images, centerlines were detected with angular error smaller than
6 degrees for the first dataset, and 12 degrees for the second dataset.

4.3 Conclusion

Herein, a new real time approach for the detection and tracking of the
medical instrument in retinal microsurgery is presented. The approach detects
the instrument tip position with high accuracy and without maintaining prior
information about the instrument’s gripper part. The results show the efficiency
of using this approach to handle cases that contain not only the instrument but
also blood vessels, instrument shadow and light pipe. The approach also works
well regardless of blurring effects, and small lightning changes.

The datasets which used for evaluation exhibit most of the challenges
issues. However, the ability of L*a*b* transform to mimic the human eye
perception way makes this approach an effective one to discriminate between
the instrument and other components like its shadow and the light pipe. Even
though these components have similar geometry, color information can filter
them out. However, the quality of the a* channel has an impact on the accuracy
of the approach, and the accuracy gets lower in case of low light reflection on the
instrument body. This means at severe illumination changes or no light focusing
on the instrument, the segmentation of the instrument might not be reliable
and have a negative impact on the tip detection. This leads us to investigate
more robust techniques to cope with light changes and to sustain the accuracy
detection of the current approach.

In next chapter, we investigate the performance of Convolutional Neural
Networks (CNN) as a discriminative model to detect the instrument parts at
the first step.
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Chapter 5

Using Deep Learning for
Articulated Instrument
Detection

5.1 Introduction

In the previous chapter, the problem of instrument detection and tracking
has been addressed relying on color information as our main features while
the geometry structure is used to optimize for the instrument tip location
and centerline estimation. In retinal microsurgery, the unexpected appearance
changes and extreme deformation of the instrument makes the tracking a
challenging task. Moreover, most of the hand-crafted features used to address
the problem of instrument detection are a combination of intensity-based and
simple structure features. These features might not be the perfect ones to cope
with the unexpected changes during the surgery. Therefore, finding the optimal
and most discriminative features plays the most essential role to enhance
the practicality of the proposed method. To that end, we address the same
problem in this chapter using deep learning to learn representation from raw
data using non-linear transformations [16]. The most popular architecture for
realizing deep learning is Convolutional Neural Networks (CNN) which has
been applied in many applications in computer vision, speech recognition and
natural language processing (NLP). In the field of computer vision, CNNs have
been proposed for challenging problems, such as classification [59, 56, 73],
regression [75], localization [26], detection [104], segmentation [94, 69, 90],
feature extraction [28, 96], crowdsourcing [1] and pose estimation [112, 80, 66].
State-of-the-art results have been achieved using CNN in these tasks.

In the proposed approach a CNN is used to detect an articulated instrument.
The network is trained and employed as a feature extractor to map the
appearance of instrument parts to the appropriate class label. Testing the input
image using this trained network produces a probability map for each part of
the articulated instrument. The maps localize the potential instrument parts in
the 2D image space and they are employed in a CRF model as unary potentials

51



CHAPTER 5. USING DEEP LEARNING FOR ARTICULATED INSTRUMENT
DETECTION

outputs. Therefore, the search space for the instrument parts in 2D images can
be limited to only seeds points of the highest probabilities in these maps. Hence,
many approaches can work on the reduced space to predict the instrument
joints. To preserve the robustness of the approach against illumination changes,
structural information of the seeds points are employed to model the binary
potentials in the CRF model. Therefore, instrument parts detection and the
refinement of the final joints localization are integrated in a CRF model where
the inference predicts the instrument center point coordinates and estimates
instrument orientation in one step.

In the next section, the problem is formulated as a CRF inference problem.
Next, the CNN architecture for unary potentials is presented and followed by
modeling the pairwise potential and regularization term. Finally, we show the
achieved results on public and Zeiss datasets.

5.2 Problem Formulation

The proposed approach models the instrument configuration Y as a simple
graphical model using a CRF of two random variables where each variable
Yi ∈ Y corresponds to instrument part’s coordinates. The two parts used in
this approach are the instrument’s center point and the instrument’s shaft.
Considering now an instance of the observation x ∈ X (i.e. instrument part
features), and an instrument configuration y ∈ Y, the posterior becomes:

P(y|x, P) =
1

Z(x)

n∏
i

φ
conf
i (yi, x) ·

∏
(i,j)∈E

ψstruct
i,j (yi, yj, xi, xj) ·

∏
(i,j)∈E

ψ
Temp
i,j (yi, yj, P)

(5.1)

where Z(x) is the normalization factor, n is the number of instrument’s parts
and E is the edge connecting between one sample from the instrument’s center
part hypotheses and another sample from the shaft’s hypotheses. Next, we
define each term in Eq.5.1 with more details.

Figure 5.1: The designed CNN: Filters sizes = 5x5, Pooling size= 2x2. The
numbers of features channels are 20 at layer 1 and 50 at layer 2.

5.2.1 Unary Potentials Using CNN

The unary potentials function φ
conf
i (yi, xi) in Eq. 5.1 is designed to give a

score for each pixel in the image indicating the confidence to which part it
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belongs based on the observations. To detect each part and get a probability of its
detection confidence, we use a modified LeNet [64] as a multiclass detector. The
network is learned from examples S = {pi, ci}N

i=1 , where pi is an r× r image patch,
N is the number of training patches and ci ∈ {1, ..., C} is a class label. Below, we
describe the layers of our designed network shown in Figure. 5.1.

Input Layer: The input patch size to the network is 28 × 28 where each patch
has an associated label. We use different label for each of the instrument center
part, instrument shaft part and background. Samples of these parts are shown
in Figure. 5.2.

Figure 5.2: Patches samples of size 28 × 28, where each row was chosen from a
different class: center, shaft, and background respectively.

Convolutional layer C1: The input patch is processed by convolutional kernels
of size 5 × 5 to produce feature maps of size 24 × 24 pixels. Each unit in each
feature map is connected to a 5 pixels cell in the input. We use at this layer 20
feature maps where one kernel produces one map using convolution operation
with the input image. C1 layer contains 520 trainable parameters. The kernels at
this layer are trained to capture low-level features like edges and corners.

Pooling layer S1: This layer is the first sub-sampling layer with 20 feature maps
of size 12 × 12. Each unit in each feature maps is connected to 2 × 2 cell in the
corresponding feature map in C1 and the unit value is set to the maximum value
in that cell. The cells in this network are non-overlapping. Therefore, feature
maps have half the size of feature maps at C1 layer.

Convolutional layer C2: This layer works directly on pooling layer S1 output
with convolution kernels of size 5×5. The number of feature maps is 50 and each
unit of each map is connected to 5 × 5 cell in the corresponding location in S1
layer. Therefore, each map size is 8 × 8 and the number of trainable parameters
at this layer is 25050. In contrast to C1 layer, C2 layer filters are trained to capture
higher-level features in the object like curvatures or other structural components.

Convolutional layer S2: Sub-sampling is applied again on the C2 feature maps
to generate the same number of feature maps but with half the size (4× 4). Max
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Figure 5.3: (a) Instrument example. (b) CNN output example

pooling is used which is functioning similar to S1 layer pooling.

Fully connected layer: This layer has 500 neurons and connected to each
neuron in the output layer. Therefore, a new representation is obtained for the
image patch based on the trainable weights of the entire network.

Output layer: We use softmax loss function to normalize the network output
which consists of three neurons. The output zi corresponding to neuron i is given
by:

zi = P(y = ci|x) =
e(
∑

j wija
(l)
j +bi)∑3

k=1 e(
∑

j wkja
(l)
j +bk)

(5.2)

where x is the input patch, a(l)
j is the jth neuron in the last layer preceding the

output layer and wij is the weight along the connection between a(l)
j and the

output neuron zi. Each output zi estimates a probability of belonging to a class
ci. Therefore, softmax function serves as a normalization function as well as
nonlinear operator. The error function used in this network is the multi-class
cross-entropy error which is given by:

E(θ) =
m∑

i=1

k∑
j=1

δy,jln(zj) (5.3)

where m is the number of patches, k is the number of classes and δy,j is the
Kronecker delta [21]:

deltay,j =
{

0 if (y 6= j)
1 if (y = j) (5.4)

Once the error function is computed, the error is back-propagated into the
network to update the weights. The network is trained from image patches to
generate three probability distribution maps such that one map for each class.
The background probability map is discarded, while some candidates with high
probabilities are sampled from both the instrument’s center probability map
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(white color pixels in Figure. 5.3. (b)) and the instrument’s shaft probability
map (gray color pixels in Figure. 5.3 (b)) to form some instrument configurations
hypotheses.

5.2.2 Pairwise Potentials

The pairwise potential function ψstruct
i,j (yi, yj, xi, xj) is designed to model

the relation between the instrument’s two parts. To that end, we use the
structural information associated with each configuration (yi, yj), where yi are
the coordinates of a sample selected from the instrument’s center probability
map and yj are the coordinates of a sample from the shaft candidates’ map.
Each configuration can be described by the joint features of its two parts. The
descriptor for each instrument part is a feature vector extracted from a window
centered at the corresponding coordinates in the colored image. To model the
relation between the instrument’s parts, we train a regression random forest
on the joint HOG features of the two samples constituting the configuration.
In the training phase, two points are annotated in each image as shown in
Figure. 5.4 and the descriptor of the configuration is constructed from two
patches around each of the points P1 and P2. Figure. 5.4 shows a positive and
correct configuration of the instrument, while the negative configurations are
chosen from random points from the background. During the testing phase,
K configurations are randomly sampled from the highest probabilities of the
unary distributions. Each configuration (yi, yj) is tested with the regression forest
and the output represents the likelihood to the instrument structure. We can
formulate the pairwise potential function using Eq.5.5.

ψstruct
i,j (yi, yj, xi, xj) =

1
B

B∑
b=1

Sb(xyi , xyj ) (5.5)

where B is the number of trees in the forest, (xyi , xyj ) are the extracted features of
the configuration (yi, yj), and Sb is the prediction assigned to the features from
one tree. The predictions from all B trees are aggregated into a probabilistic
manner to express the pairwise probabilities.

5.2.3 Regularization Term

The regularization term ψ
Temp
i,j (yi, yj, p) in Eq.5.1 is a pairwise potential

function designed to prevent far jumps in detection and to give favor to a new
configuration with a small difference in orientation from the detection in the
previous frame P . We assume a Gaussian distribution over the orientations of
the K sampled configurations at the frame, estimate the parameters µ, and σ of
this distribution, and propagate them from one frame to the next to give favor
to small changes in the orientation. The regularization term is given in Eq.5.6.

ψ
Temp
i,j (yi, yj, P) = N (α(yi, yj)|µp,σp) (5.6)
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Figure 5.4: Regression Random Forest Model learned on joint features of point
pairs which represent a configuration

where α(yi, yj) is the orientation of one sampled configuration and (µp,σp) are
the estimated orientation and the standard deviation at the previous frame
respectively. Finally, one configuration out of K sampled ones which maximizes
the posterior probability given by Eq. 5.1 is chosen by heuristic iterations
through the best candidates.

5.3 Experiments and Results

The experimental validation of the proposed algorithm is carried out on
two different Retinal Microsurgery (RM) datasets: the first one is a public fully
annotated dataset of three sequences of retinal surgery [105] . The second one
is a new dataset, referred to as Zeiss dataset, comprising three real in-vivo
RM surgeries with 1500 manually annotated images at 1920x1080 resolution
each. These images are resized to one fourth of their original size for faster
processing. The CNN is trained on the first half of the images from each
sequence, where the patch size of 50× 50 pixels is extracted for each instrument’
part and from the background and resized to the CNN input size, as shown in
Figure. 5.2. The learning rate of the network is empirically chosen of 0.001. The
stochastic gradient descent uses batch size of 100 patches to update the network
parameters in each iteration where the number of iterations is set to 100. The
regression random forest is trained on the HOG features extracted from pairs
of 32 × 32 patches from the first half of the images. For the positive samples,
one patch is centered at the instrument’s center point, while the other at a point
located at the instrument shaft centerline. The patches of the negative samples
are chosen randomly from the background. The number of trees in the random
forest is set to 20, and the candidates number K is set to 1000. The performance
of the algorithm is evaluated by means of two different metrics: Accuracy
Threshold score used by Sznitman et al. [105], and Angular Threshold score used
in [6]. The accuracy threshold score gives pixel-wise prediction quality of the
center point of the instrument, while the angular threshold expresses the quality
of estimating the orientation in terms of degrees. Once the instrument center is
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detected, the detection is bounded to a small Region of Interest (ROI) around
the center. The re-initialization is done automatically by gradually expanding
the ROI when some parts are missing in the detection.

Figure 5.5: Results for each sequence of the public dataset when trained and
tested on separate sequences. The bounding box is centered on the detected
instrument’s center.

5.3.1 Public Dataset

This dataset consists of three sequences of retinal microsurgery with total of
1170 images of 640 × 480. Augmentation of the training images is carried out
by simple translation and rotation of the input patches and no downsampling
is done on the images. We compare our method with state-of-the-art methods:
MI [12], MICCAI15 [88], MICCAI12 [105], SCV [81], and SSD. We use accuracy
threshold values as defined in [105] where the threshold varies from 15 to 40
pixels. At each threshold T, all predictions of center points coordinates within
T pixels from its ground truth locations are considered correctly detected. First,
we evaluate the algorithm for every sequence separately by training the CNN
on the first half of the sequence and testing on the second half. The results are
shown in Figure. 5.5. Then the training and testing are done on the full dataset
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by training another CNN on the first halves of all sequences, and testing on
the rest and the results are shown in Figure. 5.6. It shows the robustness of the
proposed method which can work on the full dataset as good as on the separate
sequences. The approach can correctly predict the center joint coordinates in 90%
of the images at threshold of 20 pixels which is the instrument shaft diameter.
Moreover, it shows comparable results to the state-of-the-art methods in terms of
the detection accuracy. The most important part which influences the accuracy of
the final predictions is the unary detections. These detections are produced from
CNN trained from 50% of the data and validated on the remaining samples. We
noticed from our experiments that the convergence of the energy function is very
good as shown in Figure. 5.7 and the error remains at low value from epoch 60
to the end of the experiment.

The results in Figure.5.8 show the performance of our approach when
varying the angular threshold from 3 to 24 degrees. First, each sequence was
tested separately, and then the whole dataset was tested. The results show that
in 90% of the images the centerline of the instrument is extracted with an angular
deviation of less than 10 degrees as shown in Figure.5.8.

Figure 5.6: The results for the full dataset, when learned on the first halves from
each sequence and tested on the second halves

5.3.2 Zeiss Dataset

Zeiss dataset represents more challenging cases where the images include
clear appearance of vessels and instrument shadow in addition to the cluttered
background. Moreover, it has severe light changes within each sequence of the
set. We evaluate our approach by training on the first halves of the first two
sequences and testing on the second halves in addition to the third unseen
sequence. Since the average diameter of the tool shaft is 50 pixels for this dataset,
we evaluate the pixel-wise prediction accuracy using thresholds values between
40 and 100 pixels. The angular threshold varies from 5 to 45 degrees. Some
samples of the results from each of the sequences are shown in Figure.5.10.
The result in Figure.5.9 shows the accuracy of our approach in detecting the
instrument center. It shows that in 83% of the images the instrument center
point has been correctly predicted within a threshold of 50 pixels. Moreover,
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Figure 5.7: The objective function and error curves after each epoch of CNN
training from the full public dataset

Figure 5.8: The results based on the Angular Threshold for both cases

the performance of the approach on the unseen sequence is very similar to
the other sequences. Therefore, the approach shows its ability to generalize for
other datasets. The angular threshold results for shaft orientation estimation
are shown in Figure.5.11. Since the algorithm gives a favor to small changes in
orientation, following the true orientation is slower than expected when there is
fast motion, which accounts for high angular error in some cases compared to
the public dataset. However, for the first and the third sequences, the centerline
of the instrument is extracted with an angular deviation less than 20 degrees
in 90% of the images. On the other hand, sequence 2 has more fast motion
which influences the performance of the regularization term only. The designed
CNN shows very good convergence of the objective function as well as the error
remains at low levels starting from the training epoch number 40 as shown in
Figure. 5.12. The results demonstrate that for most epochs the error is less than
0.1 and the energy function approaches zero.
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Figure 5.9: The results for the full Zeiss dataset.

Figure 5.10: Samples of the results showing the detected joint point and
estimated centerline.

5.4 Conclusions

In this chapter, a new approach has been presented for instrument center
point detection and orientation estimation. The approach employs a CNN
network for unary detections which are embedded into a CRF posterior function
in a probabilistic manner. Some samples from the unary maps are used and
their combinations are tested using regression forest to express the pairwise
potential probabilities for the CRF model. The temporal information has been
integrated into the model as a regularization term to ensure smoothness in
instrument tracking from one frame to another. The approach demonstrates high
performance in detecting the instrument center point and estimating the shaft
orientation in challenging cases with severe light changes. However, using CNN
for unary detections requires big amount of data for training and can achieve
the real time requirements on GPU-based microscopes. Therefore, reducing the
amount of data and maintaining the real time performance on CPU machines
open up new prospects of advancement with this approach. Hence, considering
the instrument as an articulated object and imposing more constraints on the
relations among its parts are the most important messages we got from this
method. In next chapters, we will see how to make use of this conclusion and
employ the part-based detections in more efficient ways.
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Figure 5.11: The angular thresholds results for the full dataset.

Figure 5.12: The objective function and error curves after each epoch of CNN
training from the full Zeiss dataset
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Chapter 6

Deep Architecture for
Instrument Pose Estimation

6.1 Introduction

In this chapter, we pursue the utilization of deep learning architectures for
the benefit of pose estimation in medical surgery. While the network designed
in the previous chapter is used for part-based detection, here we focus on
modelling our problem as a deep learning regression task working on the
entire image. The main idea is to learn representations from the entire image
in order to regress the coordinates of many instrument parts within the image
space. The motivation of this work is to reduce the computation costs of using
patch-based processing which requires processing thousands of patches in a
sliding window way through CNN pipeline in order to classify each patch.
Therefore, this work aims to estimate the instrument pose by localizing the
instrument articulation points using only one forward propagation of the input.
However, being able to predict many parameters relying only on a single-patch
input requires the network to be deep enough to understand the relations
among different image components. Using such deep regression networks has
achieved state-of-the-art results for human pose estimation problem [112, 80,
66] and automated mitosis detection [30]. Moreover, regression CNN have
demonstrated a good performance in estimating 2D/3D registration parameters
[75].

In this chapter, we focus on the pose estimation of medical forceps instrument
and model it as a regression problem. Deep regression CNN is employed for this
task to train a model in end to end way to predict the locations of the instrument
articulation points. Once trained, the network is fed with the entire image or a
region of interest (ROI) containing the whole body of the instrument to estimate
the pose in a single forward propagation step.

In the next sections, we present the designed regression CNN and evaluate
its performance on different sequences from different real surgeries.
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Figure 6.1: Deep convolutional architecture for instrument pose estimation:
Convolutions use different kernel sizes as indicated inside each box.

6.2 Problem Formulation

In this section, we introduce a new CNN architecture to model the pose
estimation as a regression problem. The input to the network is an image
x : Ω→ R and the output is a real valued vector y = (y1, y2, ..yN) of N instrument
joints, where yi ∈ R2 is the coordinates of a single joint in the 2D image space.
Given a training dataset {(xk, yk)}K

k=1 of K samples, the goal of the CNN is to
find a representation function φ(.) that minimizes the difference between the
ouput of the regression loss function and the desired output vector y using
backpropagation [65] and stochastic gradient descent [23]. The learnt parameters
θ of the mapping function φ(.) represents the network parameters needed to
produce the output ŷ given the input x as:

ŷ = φ(x; θ), (6.1)

where ŷ is the estimated output vector representing the instrument pose. The
network architecture used for this task is shown in Figure 6.1, where the input is
an image and the output pose vector has three joints coordinates labeled in cross
signs and overlaid on the input image.

Next, we present the details of the network architecture and the used loss
function for our regression task.

6.2.1 Deep Network Architecture

The input to the network is an image of 100 × 100 pixels and is convolved
at the first layer with 20 kernels of 7 × 7 pixels to produce 20 feature maps each
has the size of 94 × 94 pixels. The output of the convolution is normalized and
goes through pooling and ReLU units to produce images of size 47 × 47 pixels
which are indicated on the first block in Figure 6.1. In the second block, we use
again convolution, pooling and ReLU units with the same parameters as used in
the former layers to produce 50 feature maps of sizes 20× 20 pixels. Next blocks
have different units as illustrated in Figure 6.1 and at the end, a fully connected
layer of 4000 neurons is integrated and connected to each neuron of the output
layer.
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6.2.2 Loss Function

The function of CNNs is to find a non-linear representation of the input
image x. To that end, we set the number of the output neurons at the last layer
to be equal to the number of coordinates we want to regress, and we use the L2
[112] loss function given in eq. 6.2 to compute the error between predicted and
estimated joints coordinates.

E(θ) =
1
2

K∑
k=1

(yk – φ(xk; θ))2 (6.2)

This loss function is differentiable and the error can be easily computed and
back-propagated using chain rule [83] as we explained in chapter 2.

6.3 Experiments and Results

Regression CNN has been validated on two different Retinal Microsurgery
(RM) datasets: the first one is a public fully annotated dataset of three sequences
of retinal surgery [105]. The second one is a Zeiss dataset, comprising three real
in-vivo RM surgeries with 1200 manually annotated images. The learning rate
of the network is empirically set to 10 × 10–6 and the momentum to 0.9. The
stochastic gradient descent uses batch size of 100 patches to update the network
parameters in each iteration where the number of iterations is set to around 150.
The performance of the algorithm is evaluated by means of two different metrics:
Accuracy Threshold score used by Sznitman et al. [105] as explained in previous
chapter and the strict Percentage of Correct Parts (strict PCP) [39] which is a
quality measure of the prediction of a part of an articulated object. The part is
correctly predicted if the distances between its two predicted joints and their
corresponding ground truth coordinates are less than a threshold α.R, where R
is the ground truth part length, and α is a fraction of that length. The algorithm
is implemented using MatConvNet [115] and takes 2 – 3 hours to train each
network, and 0.05 seconds to test each image on a normal i7 personal computer.

6.3.1 Public Dataset

This dataset consists of three sequences of retinal microsurgery with total of
1170 images of 640 × 480. Training and testing are done on cropped patches
around the forceps connecting point with size 100 × 100. The purpose is to
evaluate the quality of the joints localization within the specified patches of
the designed network. We compare our method with state-of-the-art methods:
MI [12], MICCAI15 [88], MICCAI12 [105], SCV [81], and SSD. We use accuracy
threshold values as defined in [105] where the threshold varies from 15 to 40
pixels. First, we evaluate the algorithm for every sequence separately by training
the CNN on the first half of the patches and testing on the second half. The
results are shown in Figure. 6.2. Then the training and testing are done on the
full dataset by training one more CNN on the first halves of all patches, and
testing on the rest and the results are shown in Figure. 6.3. In both cases, we
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Figure 6.2: Results for each sequence of the public dataset, when learned and
tested on separate sequences.

compare the detection accuracy of the instrument center point which shows
comparable results to the others. However, the performance of our algorithm
on the second sequence doesn’t show very good results due to the length of
this sequence. With only 100 patches, which is half of the sequence length,
the network can’t be well-trained to recognize all variations in test patches.
In sequence 1, our approach achieves state-of-the-art performance, where the
center point is correctly detected in 98% of the patches at accuracy threshold of
20 pixels. However, in the third sequence, we achieved the third score which can
be attributed to the noise existing in the background of the testing patches which
were not modelled in the training process. Therefore, as the network localizes
the joints based on the entire image, existing of such noise would fire the wrong
neurons and deactivate the right ones. Moreover, the pooling layer keeps the
maximum or the average of the signals in block-wise manner, which might
increase the dominance of the noisy signals in the subsequent layers. Therefore,
it would have a negative influence on the final pose estimation. The objective
function convergence of our model for the full dataset is shown in Figure 6.4
which proves that there is no overfitting in our model and the error remains
constant at low values after 50 epochs.
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Figure 6.3: Accuracy Thresholds results for testing the model that trained from
all sequences

Figure 6.4: The objective function and error curves after each epoch of CNN
training from the full public dataset

Strict PCP scores for detecting the left and right gripper parts for separate
and full datasets are depicted in Table 6.1, which shows very good results on
the first and third sequences while the performance is not that high for sequence
2 due to the aforementioned reasons. However, our network shows promising
results to localize not only the center point but also the two tips of the forceps.
The results demonstrate that at α = 0.5, which is used in human pose estimation
comparisons, the parts are correctly detected in all images of the first and the
third sequences, and in 70% of the second sequence.

6.3.2 Zeiss Dataset

Zeiss dataset consists from three sequences where the images are captured
at 1920 × 1080 resolution. Due to the huge image size, cropped image around
the instrument center point with size 400× 400 pixels are produced and resized
to the standard size of our regression CNN input. We evaluate our approach
by training on the first halves of the three sequences and testing on the second
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Table 6.1: Strict PCP scores for different α values for public dataset sequences.

Seq1 Seq2 Seq3 Full
α Left Right Left Right Left Right Left Right

0.30 70 74 19 19 64 80 17 47
0.35 83 87 24 24 82 87 30 56
0.40 91 92 34 34 94 95 38 64
0.45 96 96 47 47 98 99 50 73
0.50 100 100 70 70 100 100 61 79
0.55 100 100 96 96 100 100 71 83

Figure 6.5: the results for the full dataset, when learned on the first halves from
each sequence and tested on the second halves.

halves. Since the average diameter of the instrument shaft is 50 pixels for this
dataset, we evaluate the pixel-wise prediction accuracy using thresholds values
between 40 and 100 pixels.

Some samples of the results from each of the sequences are shown at the
top left part of Figure.6.5. The result in Figure.6.5 shows the accuracy of our
approach in detecting the instrument left, right, and center point. It shows
that in almost all images of the three sequences, instrument center point has
been correctly predicted within a threshold of 50 pixels. Moreover, at the same
threshold, the network can correctly localize the instrument left and right tips in
80% and 93% of the images respectively. The high performance of the proposed
network is emphasized by strict PCP scores, given in Table 6.2, which achieves
correct left and right parts localization in around 97% and 93% of the images
respectively. Moreover, Figure 6.6 proves the good performance of the networks
which converges very well during training starting from the fiftieth epoch.
The prediction error of some joints reduced from 50 pixels at the beginning of
training to around 5 pixels at the last epoch.
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Table 6.2: Strict PCP scores for different α values for Zeiss dataset sequences.

Seq1 Seq2 Seq3
α Left Right Left Right Left Right

0.30 71 65 98 97 69 98
0.35 74 68 24 24 72 100
0.40 78 71 100 100 79 100
0.45 85 74 100 100 91 100
0.50 95 78 100 100 95 100
0.55 99 87 100 100 100 100

Figure 6.6: The objective function and error curves after each epoch of CNN
training from the full Zeiss dataset

Generalization ability of such networks is limited to the amount of training
samples and the amount of variations that should be augmented in the training
samples. We tested our trained model on fourth unseen sequence with different
background structures, and we observed that the strict PCP has scores of 57%
and 60% for the left and right parts prediction at α = 0.5. This result proves
that modelling background variation should be considered in augmenting our
training samples in order to maintain the performance as high as it is on
the other three sequences. However, modelling the background variations is a
challenging task due to the existence of vessels and other structures which can
appear in different orientations, locations and scales. This is why part-based
CNN networks, which doesn’t need background modelling, has the tendency
to be more accurate and less sensitive to the noise. However, the accuracy of the
proposed network is very promising and can be improved further by learning
more background variations.
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6.4 Conclusions

We presented a new regression CNN architecture that can localize the
instrument joints within an image patch using one forward propagation
step. The network regress the instrument coordinates in real time speed and
achieves good localization accuracy within a given patch. However, for full
utilization of this network, it needs to be integrated with tracking algorithms
to be constantly provided with the proper patch, or the patch in the next
frame should be extracted based on the pose predicted in the current frame.
Furthermore, re-initialization scheme is still needed to handle tracker deviations
and instrument disappearance at real time performance.
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Chapter 7

Instrument Pose Estimation
Based on Reliable Hough
Voting

7.1 Introduction

In the previous chapter, the problem of 2D instrument pose estimation
within patches containing the entire instrument body has been investigated. In
such holistic approach, the image patch should be extracted in advance from
the entire big image using other detection or tracking methods. The idea of
combining tracking or detection algorithms with pose estimation is to provide
the surgeon with a convenient and robust method which can continuously
follow the moving instrument at the video frame rate. This has the potential
to minimize the operation time by minimizing the human intervention needed
to handle tracking failure. Holistic approaches are characterized by their ability
to predict the locations of instrument joints relying on the complete data of
image patches. Therefore, considering the complete data for predictions at
testing time introduces some difficulties to handle occlusions and noisy data
[15]. Hence, the potential of such methods to generalize for unseen datasets
from different surgeries can be low. Moreover, the detection accuracy achieved
using holistic deep architecture in previous chapter is lower than part-based
detection accuracy in chapter 5. In retinal microsurgery, where the precision of
micro-millimeter is a demanding requirement, part-based approaches tend to
be more promising solution as they are less sensitive to the noise. Moreover,
these approaches can easily incorporate prior information to constrain the final
prediction of the joints [120].

In this chapter, a new part-based approach is proposed to detect, track,
and estimate the pose of forceps instrument with the ability to automatically
handle tracking failures. In this work, the localization of the instrument joints
doesn’t rely on the direct output of parts classification process, but it depends on
combining guidance information from all detected instrument parts. Therefore,
the proposed approach introduces a new form of the Hough Forest [43] that
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incorporates unlabeled reliable samples in the instrument joints localization
process, and uses the classification statistics in the recovery process. In normal
Hough forest, both classification and voting (regression) processes are trained
using the same features samples. Each of these samples is associated with a
class label. At testing time, each non-background classified pixel casts a vote.
Having a large number of misclassified pixels creates a noise in the voting
map and has the potential to generate a global maximum of voting at incorrect
joints positions. The contribution of this work is to motivate the majority of the
classified pixels to cast reliable votes to the right joints. This can be achieved
by training the voting process of Hough forest in different way from the
classification process. In the votes training process, samples in the neighborhood
of the ground truth points are incorporated since they can cast reliable votes for
the correct instrument joints coordinates even though they are not associated
with any class label. The features of these samples are associated with different
displacements votes to the ground truth coordinates. Therefore, at testing time,
similar features can cast reliable votes regardless of the assigned label. This
has the potential to create a global maximum of votes at each instrument
joint coordinates and minimize the impact of non-reliable voters. Moreover, the
proposed algorithm aims to remove the need of manual reinitialization after any
tracking failure while being able to localize not only the forceps connecting point
but also its two tips.

Next, we present the basics of Hough forests, then the details of our proposed
framework of the classification and regression processes to learn Hough votes is
presented. Finally, we show the results on retinal and laparoscopic datasets and
compare the performance of our approach to the state-of-the-art methods on
publicly available retinal dataset.

7.2 Hough Forest

Hough forests are special type of random forest, in which the trees are
constructed from a set of patches {Pi = {Ii, ci, vi}}, where Ii is the appearance
of the patch or the features extracted from it, ci is the class label associated with
the patch, and vi is the patch offset or the vote of that patch for a certain object
in the image [44]. The patches are collected from labeled dataset, where the
class label is set to zero for the background patches, and non-zero for object
patches. During training, each leaf node stores a proportion of the object patches
arrived to this node and a list of their corresponding offsets. At test time, these
offsets are used as votes to the object position in the Hough map. Therefore, this
map is treated in a probabilistic manner to find the peak votes values which
indicate the location of the target object in the original image. Hough forest
presents a powerful tool for object detection and localization such as human
detection [44, 43]. In these applications, the target object has sufficient structural
information extracted from various parts to cast votes for the centroid of that
object. However, for forceps joints localization, only limited amount of samples
can cast reliable votes to the joints coordinates. Moreover, the forceps joints need
to be detected in a very delicate microsurgery where the accuracy is a crucial
issue. To get higher detection accuracy, the training is performed in a heuristic
way by associating selective samples from the joints vicinity with different votes.
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7.3 Proposed Method

The ultimate goal of our proposed approach is to predict the instrument’s
joints coordinates which represent the instrument pose in 2D image space. These
joints are the two tips and the connecting point. The motivation of the proposed
pipeline in Figure. 7.1 is based on the following observations:

1. In medical applications with strong illumination changes, intensity-based
tracking or detection tends to fail. Structural information on the other hand
provides more reliable features to track. Therefore, we don’t rely on any
intensity-based features for both classification and voting.

2. Most of the false positive detections of instrument joints are occurring
around the true positive ones. Hence, more reliable predictions can be
extracted if these false detections are involved correctly in the voting
process. To achieve this, features of some points sampled from the regions
expected to have those detections are employed in the voting training.

Therefore, our approach splits the training of the classification and voting
processes into two phases. This enables us to augment the dataset with more
variations for robust voting training. Moreover, the statistics of the classification
process are utilized for triggering automatically the recovery process. The
proposed method starts by classifying image pixels to detect the most reliable
points within a Region of Interest (ROI) of the image. The detected points are
used to cast votes to the instrument joints coordinates. The final pose estimation
is the aggregation of votes on three 2D Hough voting maps, one for each joint.
The details for each step will be given in the next sections.

7.3.1 Forceps Joint Classification

The goal of this step is to classify the pixels in an image as either eligible
to vote for the instrument joints coordinates or non-eligible. The eligibility of
each point is estimated based on the features extracted from a patch centered
at that point. These features should also be similar to one of the instrument
joints’ features. Since the instrument parts are the most reliable structures to
vote for their locations, the eligible pixels are considered the ones classified as
instrument joints pixels, while the non-eligible ones are the background pixels
which include vessels, instrument shaft, and other non-relevant structures. As
shown in Fig. 7.1, a random forest [25] is used as a multiclass classifier, which
is trained from samples {Pi = {xi, ci}} where xi denoting the features extracted
from a gray-scale image patch around any of the instrument joints along with
the corresponding class label ci ∈ {1, 2, ..., C}. C is the number of classes used
in training. In our method, we are interested in forceps instrument used in
membrane peeling operations, and we chose the class labels to be left joint (tip),
right joint (tip), connecting joint, and the background. The features extracted
from each patch are Histogram of Oriented Gradients (HOG) [33] features. It is
worth to note that only three points are annotated in each image as shown in
Figure. 7.1, while all other pixels are considered theoretically background pixels.
Therefore, to handle unbalanced data in the training phase, we choose random
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Figure 7.1: The whole pipeline of the proposed method.

samples for the background patches such that the numbers of foreground and
background samples are equal. In the testing process, only pixels from the
ROI are tested to be assigned class labels. The output is reliable points of the
classification process which are classified as non-background points. Moreover,
the reliable points start voting directly using the same extracted features as
explained in the next section.

7.3.2 Pose Estimation

Given an input Z which is a set of points Z : {zi ⊂ R2, i = 1, 2, ..k} representing
the reliable detections coordinates after the classification process, where k is the
number of these detections, the output of the pose estimation is O = {Ji : Ji ⊂
R2, i = 1, 2, 3} which represents the three coordinates of the instrument joints.
To get more accurate votes, the training of the pose estimation is done based on
uniform sampling of features from the vicinity of the instrument joints.

Training samples generation

Based on the observation that most of the false positive detections are around
the true positives, a regression forest is trained from the ground truth annotated
joints and other unlabeled nearby points to increase the reliability of voting in
the pose estimation process. Given an image I from the training set along with
its annotation vector g = 〈g`, gr, gc〉 where the vector elements represent the
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2D coordinates of the left, right, and center joints respectively, we define three
regular grids of n sampling coordinates S = {si}

n
i=1, si ∈ R2. Each grid is centered

at one element of g as shown in Fig. 7.1. A sample si from the grids is described
by HOG features which denoted as Fi and extracted from a patch centered
at the coordinates of that sample. The regression forest is trained from all the
three grids samples, where the features at each sample si is associated with a
three dimensional vote vector vi = si – g = 〈si – g`, si – gr, si – gc〉. This vector is
expressed as a displacement vector connecting si to the three elements of the
annotation vector g. The training data extracted from m images are combined to
create the data samples D = {Fi, vi}

n×m
i=1 which form the input to the regression

forest. It is obvious that the sampled coordinates are located in a region where
many instrument joints detections are expected to occur there. However, these
detections can still vote accurately based on their features. Moreover, the
samples are collected from images having instruments with different scales,
rotations, opening degrees and lighting conditions.

Voting Training

During training, each internal node of the trees selects the feature which
maximizes the Information Gain (IG), and splits the samples set Dp arriving to
the parent node of each tree into two subsets Dl and Dr that goes to the left, and
right child respectively. The Information Gain (IG) is obtained as:

IG(Dp, Dl, Dr) = H(Dp) –
∑

k∈{l,r}

|Dk|
|Dp|

H(Dk) (7.1)

where H(Dk) is the entropy of all vi in Dk, and is obtained based on votes
uncertainty as:

H(Dk) =
∑

j∈{l,r,c}

|Dk|∑
i=1

‖vi,j – µj‖2 (7.2)

where |Dk| is the number of elements in Dk, vi,j is the value of the jth dimension of
vi, and µj is the mean of all vi,j in Dk. Consequently, the node stores the feature
which maximizes the information gain, associated with the threshold used for
splitting. The tree continuously splits the samples and grows down until at least
one of the following stopping criteria is satisfied:

1. the maximum depth of the tree is reached;

2. the number of samples |Dp| is insufficient for further splitting of the data;

3. the information gain of the best split is too small;

4. the samples in |Dp| cast homogeneous votes which is measured using the
variance of votes.
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In this case, the node is considered as a leaf node and stores the mean and
the standard deviation of each dimension of all vi that reached this node.

Votes Accumulation

At testing time, given an image I, we start by classifying its pixels to either
instrument joints, or background pixels. Starting from the root node of each
tree, a non-background pixel ŝi is tested again based on its already extracted
features from a patch around it to cast a vote. The final vote v̂i associated with
a patch centered at coordiante ŝi in the image is aggregated by taking the 20
percent of the predictions with the lowest standard deviations from all trees, and
averaging the corresponding learned means. The pose estimated by the vote v̂i
is ĝ = 〈ĝ`, ĝr, ĝc〉 = ŝi – v̂i, which is a three dimensional vector, one for each
instrument joint. Therefore, three 2D Hough vote maps are used to accumulate
the votes from all patches classified as an instrument part in the image. Each
Hough map is considered as an integral image, and divided into cells, where
each cell accumulates the votes within it. The cell with maximum number of
votes is considered the instrument joint. Hence, the final pose estimation is the
2D coordinates of the maximum cells from the three Hough maps.

7.4 Tracking and Recovery

At testing time, the ROI is set to the whole image at the first frame. Once the
instrument pose is estimated in an image, the ROI shrinks to a small size (i.e. one
fourth of the image size) around the instrument center point. In classification
phase, only pixels within the ROI are tested. The tested pixels are sampled
from a grid with small spacing between grid points. These spacing specify the
density of pixels sampling during testing. The number of pixels classified as
an instrument joints is maintained for each joint. If any joint is missing in the
classification process, the recovery process is triggered automatically. Joints are
missing in either:

1. poor image quality due to image blurring or fast motion,

2. partial or fully occlusions by light pipe or microscope lens, or

3. non-existence of the instrument in the image.

Those cases occur very rarely during retinal peeling operation. However, our
method can recognize these cases and automatically launch recovery process
by gradually expanding the ROI with higher grid spacing. Increasing the grid
spacing allows sampling of fewer pixels in order to reduce feature extraction
time and hence satisfy the real time requirement. The grid spacing size is set to
2 pixels initially, and increased to 3 in the recovery process.
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Figure 7.2: Accuracy Thresholds performance: The results for the three
sequences when each trained from half of the images and the testing was done
on the second half.

7.5 Experiments and Results

The proposed approach has been evaluated on two Retinal Microsurgery
(RM) datasets. The first is a publicly available one [105], and the second is
referred to as Zeiss dataset. The performance of the algorithm was evaluated
using two different metrics. The first is the accuracy threshold score defined
by Sznitmann et al. [105] which is a pixel-wise measure of the quality of the
joints predictions in terms of mean square error. The second metric is the strict
Percentage of Correct Parts (strict PCP) [39] which is a quality measure of the
prediction of a part of an articulated object. The algorithm is implemented
in C++ and runs at 18-fps on a normal Core–i7 personal computer. For the
classification forest, we use 50 trees with maximum depth of 25, while for pose
estimation we use 20 trees with maximum depth of 30. The HOG features bin
size is 9, and the patch size is 50x50 pixels. Additionally, the integral images are
used for fast feature extraction in training and testing. Each grid size, which used
in sampling coordinates during votes training, is 15x15 pixels. Additionally, the
minimum number of samples |Dp| is set to 25, the minimum gain is 0.001, and
the homogeneity of the votes is computed based on the standard deviation of
the votes.

77



CHAPTER 7. INSTRUMENT POSE ESTIMATION BASED ON RELIABLE
HOUGH VOTING

Figure 7.3: Accuracy Thresholds performance: The results for the three
sequences when trained from the first halves of the images together and tested
on the second halves.

Figure 7.4: Strict PCP scores for the full dataset using our proposed method and
TPOS.

7.5.1 Public Dataset

The public dataset has three different sequences of in-vivo vitreoretinal
surgeries. It comprises 1171 images with resolution of 640x480 pixels. The
sequences are different in terms of the lighting conditions, presence of the
shadows, and the amount of noise in the background. We compared the
performance of our method on these sequences to the state-of-the-art methods
TPOS [88], ITOL [67], DDVT [105], SCV [81], MI [12] , and SSD. For fair of
comparison, the same setup as in the state-of-the-art methods has been followed
in training and testing. We use the accuracy threshold to measure the prediction
accuracy of the center point with thresholds between 15 and 40 pixels. Our
method is evaluated firstly on each sequence separately by training on the first
half of each sequence and testing on the second half of the same sequence. From
the results in Figure. 7.2, we see in more than 96% of the images the center
point is detected with error less than 20 pixels. Hence, this method demonstrates
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Figure 7.5: Four sequences from Zeiss dataset with different instrument types
and different light conditions.

comparable results to the state-of-the-art methods with the advantage that no
manual initialization is needed. Secondly, we evaluate on the full dataset by
training on the first halves of all sequences, and testing on the second halves.
In this case, the regression forest is trained from more reliable features extracted
from the joints neighborhood. Hence, our method performs slightly better than
the other methods and achieved high prediction accuracy where in 95% of the
full dataset images the center point was detected with error less than 20 pixels
as shown in Figure. 7.3. In Figure. 7.4, we compare the performance of our
method with TPOS [88] using strict PCP score, by training on the first halves
of the full dataset and testing on the second halves. The strict PCP scores for
detecting the left (LP) and right (RP) gripper parts of the forceps are shown in
Figure. 7.4, where at α = 0.5 (which used in human pose estimation comparisons)
our approach achieves scores of 89%, and 87% for the left and right parts,
respectively, while TPOS achieved 84%, and 75% for the same parts. Therefore,
in term of the strict PCP scores, our method outperforms the state-of-the-art
method TPOS on the full dataset, which goes in line with the generalization
ability and robustness of the proposed method.

7.5.2 Zeiss Dataset

This dataset has four sequences of fully annotated images. The images are
acquired by a Carl-Zeiss Lumera 700 operating microscope with a resolution of
1920 x 1080 pixels at 25 fps scans. Each sequence has 600 images taken from
real in-vivo surgeries, where we use only 200 images of each sequence for
training, and test on the remaining. The images resolution was downsampled
to one fourth of the original size to reduce time complexity and achieve real
time performance. The images include forceps instruments with different types.
They are taken in different lighting conditions and with various microscope
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Figure 7.6: Accuracy Thresholds performance: The results of the four sequences
when each was trained from half of the images and tested on the second half.

zooming factors. Additionally, they contain more challenging issues like the
clear appearance of the blood vessels and instrument shadow as shown in
Figure. 7.5. Since the instrument diameter is 50 pixels, we evaluate our approach
with accuracy thresholds in the range from 30 to 100 pixels. The evaluation is
done firstly on separate sequences, by training on only the first 200 samples,
and testing on the remaining 400 images from the same sequence. The results in
Figure. 7.6 show the percentage of correct predictions of the left, right, and center
joints for each sequence separately. Then we evaluate using the full dataset as
we did in the public dataset and the accuracy thresholds scores for each joint
are depicted in Figure. 7.7. The method shows its ability to work robustly on
the full datasets as well as on separate sequences. For generalizability purpose,
we use the model of the full dataset to test our method performance on two
unseen sequences, shown in Figure. 7.8. No sample of these sequences is
included in the training and they are taken from different surgeries. Each of these
sequences has 400 images. The accuracy threshold scores are shown in Figure.
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Figure 7.7: Accuracy Thresholds performance: The results for the four sequences
when trained from the first halves of the images together and tested on the
second halves.

7.9, and Figure. 7.10, which show high detection accuracy for most of the joints.
However, for sequence 6, due to high light reflection on the right tip, its detection
accuracy slightly decreased. The strict PCP scores for the full dataset is shown
in Figure. 7.11. The left and right parts of the forceps are detected correctly at
α = 0.5 in 92% of the images.

7.5.3 Laparoscopic Dataset

Finally, we show that our approach can be applied as well for laparoscopic
dataset. This dataset comprises 1000 images and available on YouTube1. In this
dataset, two forceps instruments are used to perform the surgery, where one of
them is just for fixation and with static pose while the other does the peeling

1https://www.youtube.com/watch?v=IVp1sgjQ5To
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Figure 7.8: Two unseen sequences from Zeiss Dataset, each sequence was taken
from different surgery.

Figure 7.9: Threshold accuracy for detecting left, right, and center points of the
instrument in sequence 5

operation. To evaluate our approach on this dataset, the first half of the images
are used for training, while the second half for testing. The challenges in this
dataset are mainly the extreme changes in the instrument structure which were
not seen in the training images. Moreover, the background is more cluttered with
other structures. The evaluation is performed on the non-static forceps using
also accuracy thresholds and strict PCP with different values of α. The threshold
values are chosen from 15 to 40 pixels since the forceps shaft width in this dataset
is 20 pixels. Figure. 7.12 (b) shows a good performance of our method to detect
each joint and estimate the final pose. The results show that in more than 70%
of the images, the tips are detected with error less than 20 pixels. Detecting
the center point of this forceps is more challenging due to the severe changes
and the expandable nature of the joint point. However, in 60% of the images,
it is detected with error less than 20 pixels. The strict PCP scores are shown in
Figure. 7.12 (c) for the left and right gripper parts of the forceps.

7.6 Discussion

The proposed method demonstrates promising results in retinal
microsurgery to detect not only the connecting point of the forceps, but
also its two tips. The accuracy of this method has been obtained using few
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Figure 7.10: Threshold accuracy for detecting left, right, and center points of the
instrument in sequence 6

Figure 7.11: Strict PCP scores for the full Zeiss dataset.

samples for training, and relying only on structural features. Unlike other works
done in this field, our method uses only one third of the data for training, and
the performance is shown on the other two thirds in additional to new unseen
sequences. Evaluating in this way is more convenient from the clinician’s
perspective who expects to use the trained model for other new and longer
surgeries. According to the availability of the ground truth annotations, we
used 600 images from each sequence for quantitative evaluation. However,
the approach runs on longer sequences with the same performance. Moreover,
the method is able to recover automatically in cases of low quality images or
missing of any forceps joint during the classification process. This implies that
our approach can handle outliers cases like fast motion of the instrument, and
working very close to the boundary of the image. In these cases, the recovery
process might result in some inaccurate predictions to handle these outliers
instead of interrupting tracking and initialize manually to start over. This is
why the methods TPOS [88] and ITOL [67] perform slightly better on the third
sequence of the public dataset in which the instrument geos in and out at least
2 times. These methods don’t have automatic recovery scheme and resort to the
manual initialization to handle like this situation while our algorithms can cope
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Figure 7.12: (a) a qualitative example of the estimated pose for laparoscopic
dataset, (b) pixel-wise accuracy of predictions for each of the three forceps joints,
(c) strict PCP scores for left and right gripper parts predictions.

with it at the expense of few inaccurate detections. For the same reason, in term
of the PCP scores, TPOS [88] performs better at α = 0.20 while for most other
values of α our method outperforms theirs. We compared with only TPOS, since
they are the only ones who predict the joints coordinates during tracking.
The setup of the retinal microsurgery allows the use of only one instrument
during the operation. However, our method can be easily extended to detect
and track multiple instruments without incurring extra computational time.
This can be achieved by processing the resultant Hough maps to localize K
maxima in each. Processing the Hough maps in this way can be seen as a post
processing step and it doesn’t change the main pipeline.
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7.7 Conclusions

A new approach is presented in this paper to detect, track, and estimate the
pose of forceps instrument. The algorithm exploits reliable unlabeled samples
in the voting training process of the Hough forest, and selects reliable voters
to predict the instrument joints coordinates during testing time. In this way,
the algorithm reinforces the creation of global maximum of voting close to
the joints coordinates. Moreover, the new implementation allows the benefit
of classification statistics in automatic triggering of the recovery process. The
approach demonstrates the ability to generalize to unseen and long sequences
of in-vivo surgery and runs at real time performance. Comparing to the
state-of-the-art methods, our method shows comparable results with no need
of manual reinitialization.
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Chapter 8

CRF-Based Model for Forceps
Pose Estimation

8.1 Introduction

In the last chapter, the instrument pose is defined as the 2D coordinates of
the two tips of the left and right gripper’s parts of the forceps and its center
joint coordinates. In many applications, the orientation of the instrument shaft
plays an important role to direct the OCT B-scans in a certain direction. In the
work of Hessam et al. [91], an OCT scan along the instrument shaft has been
employed for augmenting the scene with depth information of the instrument
tip. Having reliable information about the shaft orientation can be exploited in
numerous applications such as augmented reality and actions understanding.
Moreover, it optimizes the positioning of the OCT B-scans for the full benefit
of OCT imaging. Estimating instrument orientation could be integrated with
Hough voting algorithm developed in the last chapter to localize instrument
shaft. However, it requires adding new Hough map to accumulate the votes
for shaft as well as it would allow the shaft candidates detections to vote for
the other instrument parts. According to the homogeneity and low structural
variations along the instrument shaft, the involvement of shaft part in the
Hough voting process would create a lot of noisy votes and negatively influence
the other Hough maps for the other joints. This is simply due to the high
similarity existing among the shaft samples features. These samples need to
be associated with different displacement vectors to be involved reliably in the
voting process. Associating similar features with different output vectors would
be a source of confusion in supervised machine learning. Therefore, shaft’s
samples have been excluded from the training process in order not to involve
non-reliable voters which might deteriorate the detection accuracy of the other
joints. Subsequently, the shaft orientation would not be estimated using this
voting scheme. This motivates us to step up our efforts to include the instrument
orientation in the pose estimation while maintaining the accuracy of predicting
the other three instrument joints as done in the Hough voting in the last
chapter. Hence, it leads us to model the instrument detection, tracking and pose
estimation in a different way. The new solution in this chapter models the pose
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estimation problem as a Conditional Random Field (CRF). Our contribution is to
consider the relations and dependencies among the instrument parts to impose
kinematic constraints on the parts detections hypotheses. Different modules
are used to model these relations which are regarded as our prior information
of the instrument structure. Therefore, the algorithm maintains the part-based
detection as in the Hough voting and integrates it with the prior information
modules within the CRF framework. The modules are implemented to capture
the translation, rotation, and scale changes among the parts.

In this chapter, we start with the problem formulation which gives the big
picture of our designed CRF model. The basic designed modules are explained
next. Then, we show how to use all components together in the inference process
using genetic algorithms to estimate the final pose estimation. Finally, we show
the performance of our algorithm on retinal and laparoscopic images.

8.2 Problem Formulation

In this work, medical instrument is modelled as a multi-part articulated
object where each part can be detected separately. Depending on the used
features, parts detections using most of machine learning classifiers can result
in a large number of false detections especially for structure-less objects like
medical instruments. However, these detections, including the true positive
ones, form a new and reduced search space within the 2D image space which
represents instrument part’s hypotheses space. Therefore, the sought targets are
just specific instrument part detections within the reduced space, such that these
detected parts would represent the instrument pose. Prior information about
the instrument parts and the relations between them are integrated on top of
these detections together in one model in order to filter out the vast majority
of false detections and to end up with the optimal instrument configuration.
Prior instrument information can include the relative lengths of the parts, the
angles between them, the gripper length, the possible movements of the joint,
the possible changes of the current state, ... etc. Given different prior information
models which expressed as probabilistic distributions and different potential
instrument configurations, then the ultimate goal of our approach is to optimize
for the best configuration (instrument pose as shown in Figure 8.1. (Left)) which
maximizes the likelihood of the distributions of the prior models. To that end, the
instrument in our method is modeled as a CRF of n random variables, and the
factor graph of this model is shown in Figure 8.1.(Right). Each random variable
Yi corresponds to an instrument part, and the edges among these variables
denote conditional dependence of the parts which can be described as a physical
constraint. The instrument pose is given by the configuration Y = (Y1, Y2, .., Yn)
where the state for each variable Yi ∈ Λi represents the 2D position of the
instrument part, and is taken from the discrete space Λi ⊂ R2. Consider an
instance of the observation x ∈ X that corresponds to instrument parts features, a
reference pose P and an instrument configuration y ∈ Y , the posterior is defined
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as:

p(y|x, P) =
1

Z(x, P)

n∏
i

Φ
Conf
i (yi, x).ΦTemp

i (yi, Pi) ·
∏
(i,j)

ΨTemp(yi, yj, Pi, Pj)

·
∏

(i,j)∈ETrans

ΨConn(yi, yj) ·
∏

(i,j,k)∈ERLen

ΨRLen(yi, yj, yk)

·
∏

(i,j,k)∈ECons

ΨCons(yi, yj, yk) ·
∏

(i,j,k,l)∈ERot

ΨRot(yi, yj, yk, yl) (8.1)

where Z(x, P) is the partition function, and ΦConf (yi, x) is the unary score
function. ETrans, ERLen, ECons, and ERot are the graph edges that model the
kinematic constraints among the instrument parts using different potentials
functions. ΨConn is a binary potentials functions to model the distances changes
among the forceps gripper’s end points based on the connectivity between the
forceps center point and each of the tips. ΨRLen, and ΨCons are ternary potentials
functions to ensure consistency in the relative length of the left and right parts
of the gripper, and whether they can be bounded by a small region in the image.
The rotation potential function ΨRot is defined to estimate the configuration
likelihood based on the distribution describing the proper angles among the
instrument parts. Once the forceps hypothetical parts are detected, different
configurations from these hypotheses within a defined Region of Interest (ROI)
are evaluated with the potential functions to select one configuration. This
configuration is the one maximizing the posterior given in eq. 8.1 and it
represents the forceps pose.

Next subsections, we present the unary potential which used to define
some probable coordinates for instrument parts, followed by different types of
potential functions to impose kinematic constraints on the instrument parts and
represent our prior model of the instrument.

Figure 8.1: (Left) Target pose estimation, (Right) The factor graph for the Forceps:
4 variables (left (L), right (R), center (C), and shaft (S)) are used with different
types of constraints are presented with different edge colors: black (translation),
green (rotation), red (relative length), and blue (consistency)
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8.2.1 Unary Potentials

The unary potential functions are designed to give a score for each
instrument part hypothesis. Each hypothesis has a confidence value which is a
probability assigned to the pixel in 2D images to express its degree of belonging
to a specific instrument part. A regression forest is trained on histogram of
oriented gradients (HOG) features for this purpose and regarded as a multiclass
detector. The output of the regression forest is a class label prediction for each
hypothesis and a confidence value. The number of class labels is set to the
number of random variables in the CRF plus one for the background. The
confidence value for each instrument part hypothesis is defined in eq.8.2.

ΦConf (yi, x) =
1
T

T∑
j=1

πj(x) (8.2)

where T is the number of trees in the forest, πj(x) is the probability assigned
by one tree to yi to express its belonging to a specific instrument part. The
probability is given based on testing the features x associated with yi. The term
ΦTemp(yi, Pi) favors joints hypotheses which are close to the last inferred joint Pi
based on the spatial distance between them, as given by eq.8.3.

ΦTemp(yi, Pi) = e
–‖yi–Pi‖

2
2

2 (8.3)

Moreover, the temporal information is maintained for the orientation of each
instrument part. Each part is defined by its two end joints, and eq.8.4 is included
to penalize large changes in the part orientation in two consecutive frames.

ΨTemp(yi, yj, Pi, Pj) = e
–‖α(yi ,yj)–α(Pi ,Pj)‖

2
2

2 (8.4)

where α(yi, yj) is the angle formed by the vector ~yi – ~yj with x – axis of the
coordiantes system.

Figure 8.2: Connectivity modeling using Bézier curves where the dashed lines
are orthogonal vectors and the position of the control point p is placed along one
of those vectors with different displacements from the center point.

8.2.2 Binary Translation potentials

The distance between the tips and the center point changes at different scales
and orientations. The translation potentials model these translations of the left
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and the right tips to the center point by measuring the connectivity between the
hypotheses of the instrument parts involved in the translational edges as shown
in Figure.8.1(Right). For example, given one hypothesis yi of the left part and
one hypothesis yj of the center part detections, the connectivity between them is
computed along different quadratic Bézier curves controlled by the position of
the control point P ∈ R2, as shown in Figure.8.2. The curve in each image can be
described using:

C(P)
yi,yj (t) = (1 – t)2yj + 2(1 – t)tP + t2yi, 0 6 t 6 1 (8.5)

where the control point P is placed along the orthogonal vector to the vector
(yi, yj) to get similar curvatures to most of the available grippers shapes. The
displacement of the point P to yj specifies the shape of the curve connecting

yi and yj. By denoting this curve simply as C(P)
yi,yj , the probabilistic connectivity

along each curve is given by the following equation:

Conn(C(P)
yi,yj ) =

1
k2

S∑
j=1

|sj|2 (8.6)

in which k is a normalization factor. The curve is assumed to consist of S ∈ R
segments. Each segment sj is a connected component of pixels along one curve.
The connected components are extracted from the binary image created by
thresholding the gradient image of the input microscopic image. The points
yi and yj are overlaid on the binary image and considered strongly connected
if at least one of Bézier curves aligned to the gripper edges curvature. This
curve might consist of zero (not connected hypotheses where C

yj
yi (P) is set to

ε for numerical stability), one or many segments. Changing the position of P
by different ∆p values enables the algorithm to handle various types of forceps
with different curvatures along the gripper. The connectivity measure in eq.8.6 is
modeled to favor longer segments and penalize short ones in order to be robust
in case of noisy images. The translation potential function keeps the maximum
probability among all curves and it is defined in eq.8.7. A higher value of this
probability means stronger connectivity, and higher potential of the hypotheses
to belong to the gripper end points.

ΨConn(yi, yj) = max
∆p

(C(P+∆p)
yi,yj ) (8.7)

The connectivity along the left and right parts of the gripper are calculated in the
same way but with different positioning of the control point P.

8.2.3 Ternary Potentials

The relative length function ΨRLen is used to model the relative length
between the left and right gripper parts as a Gaussian distribution, and is given
in eq.8.8. The function is designed to increase the algorithm robustness in case
of false detections of structures like vessels near the instrument tips. The model
parameters µRLen

i,j,k and σRLen
i,j,k are estimated from the ground truth. Moreover, the
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gripper length should be consistent with shaft length in the ROI from which
the configurations are selected. Hence, the consistency function ΨCons ∈ {1, ε} is
modeled to favor selected gripper parts with lengths less than half the size of the
ROI side length. Otherwise, the output of the function is a small probability (ε)
to penalize this configuration. In this way, the inconsistent combinations of parts
hypotheses are penalized.

ΨRLen(yi, yj, yk) = N ((|yi – yj|, |yi – yk|)|µRLen
i,j,k ,σRLen

i,j,k ) (8.8)

yi, yj, and yk are center, left, and right hypothesis respectively and they are
chosen randomely from a specified ROI to initialize the optimization process
as will be explained later.

8.2.4 Quaternary Rotation Potential

Any configuration y of the instrument forms an angles triple θ = {θi, i =
1, 2, 3} among its parts treated as random variables. The rotation potential in
eq.8.9 models the relations between these random variables as a mixture of
two multivariate Gaussian distributions. One distribution models the relation
among the variables when the instrument is closed or is about to be closed,
while the other distribution is for the open instrument with different degrees.
The parameters for each distribution (the mean µRn

i,j,k,l and the covariance ΣRn
i,j,k,l)

are estimated from the ground truth, where n = 1 for one distribution and n = 2
for the other.

ΨRot(yi, yj, yk, yl) =
2∑

n=1

N ((θ)i,j,k,l|µ
Rn
i,j,k,l, ΣRn

i,j,k,l) (8.9)

yi, yj, yk, and yl are left, center, right and shaft hypothesis respectively.

8.2.5 Inference of the Instrument Pose

We used genetic algorithms [92] to infer an approximate solution which
maximizes the posterior equation as:

ŷ = argmax
y

p(y|x, P) (8.10)

The most important parts of the genetic algorithms are the representation of
the chromosomes and the definition of the fitness function. Each chromosome
consists of four genes < yi, yj, yk, yl > representing one instrument configuration
selected from the hypotheses space. The fitness function is set to the posterior
function given in eq.1, which depends on the prior models p(y) of the instrument
and the initial hypotheses probabilities given by the regression forest. The
inference algorithm which is summarized in Algorithm 8.1 starts by random
generation of 1000 configurations Y which considered the initial population.
Among those configurations, the crossover is applied pairwise by interleaving
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the genes at specific index to generate more variations from the current
population. However, to enable the algorithm skipping local maxima during
optimization, mutation operation is employed to replace random genes with
others from the neighborhood. New configurations are created and evaluated
using the fitness function. The configurations with highest scores are survived
to the next generation. The solution is obtained after a fixed number of iterations
or no convergence in two successive generations. In this case, the configuration
with the highest score represents the instrument pose.

input : Y: List of configurations (Y(j) : j = 1, ....N), each Y(j) represents one
chromosome
P(y): Prior model of the instrument
H: Hypotheses probabilities for each configuration yj

i in Y
output: Y(i): Final configuration or the estimated pose

begin
S for i← 1 to iterations do

for j← 1 to Y.size do

Y(ind1) ← Y
[
random_configuration({1 ... Y.size})

]
Y(ind2) ← Y

[
random_configuration({1 ... Y.size})

]
crossover_index← random_position({1...Yj.size})
crossover(Y(ind1), Y(ind1), crossover_index)
Mutation(Y(ind1))
Mutation(Y(ind2))
scores(2×j) ← fitness_evaluation(Y(ind1), P(y), H)
scores(2×j+1) ← fitness_evaluation(Y(ind2), P(y), H)
population← population ∪ Y(ind1) ∪ Y(ind2)

end
Y← select_top_N_configurations(Y, population, scores)
Y(i) ← argmax

Y
(Y|scores)

if (Y(i) = Y(i–1))break
end

end

Algorithm 8.1: Inference Algorithm

Once the pose is estimated in the first frame, a reduced Region of Interest
(ROI) is defined around the instrument center point to limit our detection space
in the next frames. This ROI is expanded gradually when any instrument part is
missing in the unary detections, or when the confidence from the inferred pose
is low. Low confidence of the final solution after optimization happens when
either: (1) low likelihood of the rotation distributions, or (2) the consistency
potential output being small (ε). These cases mean either the solution cannot
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have the normal forceps shape, or it has been formed from false detections
in ROI, which requires the re-initialization to be triggered automatically by
expanding the ROI.

8.3 Experiments and Results

The experimental validation of the proposed method is carried out on three
different microsurgery datasets. The first is Zeiss dataset, which consists of
eight sequences of surgeries performed on human eyes with frame resolution
of 1920 × 1080 pixels, downsampled to one fourth of the original size. The
downsampling is done to reduce the amount of processing and achieve the
real time requirements without affecting the detection accuracy. The second
dataset is publicly available [105] with 1171 images of 640 × 480 pixels. No
downsampling is performed on this dataset. The third dataset is a laparoscopic
surgery dataset with 1000 images available on YouTube 1. The proposed
algorithm is evaluated by estimating the pose of one of the instruments present
in the laparoscopic surgery since the other instrument has a fixed pose. The
performance of the algorithm was evaluated using three different metrics: (1)
Accuracy threshold score defined by Sznitmann et al. [105] to measure the
pixel-wise detection accuracy for each instrument joint, (2) the strict Percentage
of Correct Parts (strict PCP) [39] for gripper parts detection accuracy, and (3)
the angular threshold score defined in [6] to measure the accuracy of estimating
the shaft’s orientation. The algorithm runs at 15-fps for public and laparoscopic
datasets and 18-fps for Zeiss datasets on a normal personal computer. For the
regression forest 50 trees with maximum depth of 25 are used. The HoG features
bin size is set to 9 and the patch size is 50× 50 pixels.

Table 8.1: Strict PCP scores for α = 0.5 on Zeiss Dataset

Zeiss Seq’s Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8
#Testing Images 590 400 400 400 200 400 200 200

Left PCP 91 99 98 98 92 85 96 75
Right PCP 93 99 99 99 93 94 97 76

8.3.1 Zeiss Dataset

The algorithm has been evaluated on 8 sequences as shown in Figure.8.3,
where each sequence is taken from different surgery with different conditions.
To achieve maximum reliability in clinical use, only 200 images from the first
4 sequences were used for training. The testing was done on the remaining
images from each sequence in addition to 4 other unseen sequences to prove
the generalizability of the algorithm. The number of testing images from each
dataset is listed in Table 8.1. Each training frame has 4 annotated points: left
and right tips, center point and a point on the shaft centerline. 200 samples from

1http://www.youtube.com/watch?v=IVp1sgjQ5To

94



CHAPTER 8. CRF-BASED MODEL FOR FORCEPS POSE ESTIMATION

Figure 8.3: Eight samples from each sequence of Zeiss dataset with pose
estimation

the training images are manually clustered to open and close states to estimate
the parameters of the rotation Gaussian distributions. Since the instrument shaft
diameter is 50 pixels, we evaluate using values between 20 and 80 pixels for
the accuracy threshold. Figure.8.4 shows the percentage of correctly predicted
locations for different joints of the instrument. The results show that in 90% of the
testing images the tips are detected with less than 50 pixels (the shaft diameter)
error. Moreover, the instrument center point is correctly detected in 85% of the
images at the same threshold. The strict PCP scores of the left and right gripper’s
parts for α = 0.5 (which used for human pose estimation evaluation) for each
sequence are depicted in Table 8.1.

The results demonstrate the high accuracy of localizing not only the joints
but also the gripper parts, which are correctly detected in more than 90% of
the entire dataset. Therefore, this proves the robustness of the algorithm and its
ability to generalize to new sequences.
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Figure 8.4: The accuracy threshold scores for left, right and center points
respectively

Figure. 8.5 shows the performance of our algorithm to estimate the
orientation of the shaft while varying the angular threshold from 3 to 24 degrees.
It is evident that in about 90% of the images, the orientation is detected with
deviation less than 15 degrees.

8.3.2 Public Dataset

The proposed method was compared with state-of-the art methods:
MC-15 [88] , MC-14 [107], MC-12 [105], SCV [81], MI [12] and SSD. The
evaluation includes two sequences of the public datasets. The third sequence
is omitted, as in [107], due to its short length which makes it ill-suited for
training purposes. In the first experiment, the training is done on the first half
of each sequence separately and testing was on the second half. The detection
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Figure 8.5: Angular Threshold scores for Zeiss sequences.

Figure 8.6: Threshold accuracy for each of the public sequences separately

accuracy of the center point is shown in Figure.8.6 which shows comparability
of the proposed method to the state-of-the-art methods with the advantage of
not requiring manual re-initialization. For example, at threshold of 20 pixels (
the shaft diameter), the center point are detected correctly in more than 95% of
the images in both cases. PCP scores show that the left gripper part is correctly
detected in 97% and 93% of the images in sequence 1 and sequence 2 respectively,
and the right part is correctly detected in 95% of the images in both sequences.
The comparison in Table 8.2 with state-of-the-art method MC-15 [88], which is
the only method that can locate the forceps tips, shows the comparability of our
approach with the advantage of no manual re-initialization is required to handle
tracking failures. Moreover, the accuracy threshold scores for detecting the two
tips of the forceps in each sequence are depicted in Figure.8.8.

In the second experiment, the training is performed on the full dataset (the
first two halves of the two sequences together) and the testing is done on the
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Figure 8.7: Threshold accuracy for laparoscopic dataset

Figure 8.8: Accuracy threshold for different forceps joints of the public (full and
separate sequences) and laparoscopic (Lap) datasets.

second halves. The performance of detecting forceps tips and forceps center
point is shown in Figure.8.8 labeled with the prefix Full. The left and right
gripper parts are correctly detected in 89% of the images of the entire dataset.
The strict PCP scores for both experiments are listed in Table 8.2 and compared
to MC-15.

8.3.3 Laparoscopic Dataset

We compared our performance with MC-15 [89], MC-12 [105], ITOL [67],
MF [67] and DT [67]. Similar to these methods, training is done on the first half
of the dataset, and the testing on the second half. Comparing the performance of
our method in detecting the center point with the other methods using accuracy
threshold is shown in Figure.8.7. It is obvious that our method outperforms most
state-of-the-art methods, and achieves similar results to ITOL which is mainly
an intensity-based tracking method and impractical for live surgery due to the
required manual initialization. The accuracy threshold scores of detecting each
tip is shown in Figure.8.8 while all other methods can’t detect them in this
challenging dataset. The PCP scores for detecting left and right gripper parts
are 89% and 90% respectively as shown in Table 8.2 which demonstrate high
detection accuracy of both gripper’s parts .

Figure.8.9 shows the performance of our algorithm to estimate the
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Figure 8.9: Angular Threshold scores for Public and Laparoscopic sequences

Table 8.2: Strict PCP scores for α = 0.5 on Public and Laparoscopic(Lap) datasets

Proposed MC-15
Public/Lap Seq’s Seq 1 Seq 2 Full Lap Seq 1 Seq 2 Full Lap

Left PCP 97 93 89 89 95 97 N/A N/A
Right PCP 95 95 89 90 97 95 N/A N/A

orientation of the shaft for the public and laparoscopic datasets. The results show
that the orientation is detected with deviation less than 12 degrees in 90% of the
public images and 83% of the laparoscopic images.

8.4 Results Discussion

The proposed approach showed high accuracy of instrument joints
localization in real time performance. This accuracy is attributed to modelling
the dependencies between instrument parts as CRF model, while other methods
don’t consider these dependencies and rely only on individual parts detection.
These dependencies are built on top of random forest outputs trained using only
gradient-based (HOG) features to serve as unary detections functions. Unlike
other intensity-based tracker methods, relying on HOG features makes our
approach robust enough to illumination changes during surgery. Moreover, it
reduces the amount of training samples needed for training large changes in
instrument appearance. This is why, in the first dataset, our algorithm needs
only 200 samples from only 4 sequence and it is able to run on testing images
with 3 times the size of the training ones. Furthermore, the algorithm has
been evaluated on 4 unseen sequences from different ophthalmic surgeries and
its performance proves its capabilities to work on new sequences as well as
the performance on the training data. Practically, it can run on even longer
sequences since there is no need to train more samples to account for new
illumination changes. Moreover, relying on detected structural parts using HOG
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features brings new advantage to our method which is being able to sense some
confidence signals. This feedback is employed for automatic recovery process,
which is missing in most other methods, to localize again the instrument after
its disappearance without surgeon’s intervention.

The results also presented high PCP scores on most of Zeiss retinal sequences.
However, in sequence 8, the PCP score is not as high as the other sequences
due to the blurriness of the images which makes the detection of the gripper
edges very difficult. Hence, the connectivity potential function would not be
able to give fair preferences to the sampled configurations in this case. Hence,
the accuracy is a little bit affected due to missing the contribution of one of the
potential functions of our CRF model. Coming to the public dataset, PCP scores
of our method show comparable results to MC-15 [88]. However, the advantage
of our approach over it is the ability to work without stopping on these
sequences, while in sequence 2, MC-15 [88] needs two manual re-initialization to
handle instrument disappearance from the scene. Herein, we want to highlight
a very important point which is handling outliers during surgery. Unlike
MC-15 [88] and ITOL [67] which don’t have any scheme to handle outliers,
our algorithm builds its recovery process on top of structural parts detections
in order to handle outliers cases which can interrupt the surgery if they
couldn’t be handled immediately. Those outliers compose of images without
instrument, images with blurred instrument and images with partial occlusions
in which the instrument is very close to the Field of View (FoV) boundary. Our
algorithm implements some potential to recognize these cases and activate the
recovery process automatically. Despite of its importance and feasibility, the
recovery process is required to handle all challenging cases which might result
in inaccurate predictions occasionally. These inaccurate predictions influence the
accuracy only during outliers handling, but generally the algorithm can recover
easily and maintain the performance of the state-of-the-art methods.

Comparing on laparoscopic dataset, our approach outperforms MC-15 [88]
by at least 20% at most of the accuracy thresholds in localizing the instrument
center point and achieves very close performance to ITOL [67]. However, ITOL
can’t detect the forceps two tips as well as it is just intensity-based tracking
algorithm. Hence, our algorithm tends to be more robust and practical for real
surgeries due to its ability to localize the instrument left and right tips with high
accuracy.

One more important strength point of the proposed approach is the ability
to estimate the orientation of the instrument shaft. Unlike other approaches,
the orientation is treated as a part in our CRF model, and this characteristic
makes our approach successful one for the full integration with OCT imaging
to position OCT scans according to given coordinates and orientation. The
angular threshold results show also high accuracy in estimating the instrument
orientation in all sequences of the different datasets.

8.5 Conclusions

We presented a new approach for localizing the forceps tips and center
point as well as estimating the orientation of its shaft. The approach models
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the instrument detection, tracking and pose estimation as an inference problem
using CRF model. It models the relations between instrument parts and
maintains confidence values to know whether to keep tracking by detection or
to trigger the recovery process automatically. The performance of the proposed
approach has been evaluated on retinal and laparoscopic surgeries using three
different metrics. One great advantage of the approach over state of the art
methods is the ability to handle tracking failures in real time. Such circumstances
occur often in real complex datasets and waste a lot of operation time. The
algorithm generates all parameters needed for OCT device in order to position
OCT scans automatically in real surgery since it locates not only the instrument
tips, but also the instrument orientation. Experimental results demonstrate the
efficiency, robustness and accuracy of our method in real in-vivo scenarios and
its ability to work on long videos. Comparisons with the state of the art methods
on public and laparoscopic datasets demonstrate comparable results with the
advantage that no manual re-initialization is needed.
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Chapter 9

Conclusion and Outlook

9.1 Summary and Findings

This thesis is devoted to the study of medical instrument detection, tracking
and pose estimation in real delicate microsurgery. We investigate the problem
of instrument pose estimation in 2D images to introduce new computer-assisted
solutions. The main objective of the proposed solutions is to pave the way for
the utilization of the intra-operative Optical Coherence Tomography (iOCT) in
retinal microsurgery. Therefore, the proposed algorithms aim to find the OCT
device parameters for the correct positioning of its light beams. Those beams
consist of a set of lines with specific orientation where each line hits a specific
point of interest in the retina 2D image. Once these points have been scanned in
2D images, their distances to the retina surface are estimated, which represent
the third dimension inside the eyeball space.

Initially, in Chapter 4, we rely on color information together with a simple
model of the rigid part of the instrument. The approach demonstrates a
promising real time solution on real in-vivo surgeries to estimate the orientation
of the instrument shaft in addition to predicting the tip coordinate. In chapter
5, the powerful capability of deep learning in object detection is employed to
model the instrument as an articulated object. A CNN network is used as a
discriminative model to localize the probable locations of instrument’s parts.
A regression forest is trained on joint structural features (i.e. HOG) to work
on top of CNN predictions. The approach shows high detection rate on public
and real in-vivo videos for real in-vivo surgery. Moreover, the technique can
extract precisely the joint point of forceps instrument in addition to estimate the
required orientation. CNNs have been further employed in chapter 6 to regress
the locations of the instrument joints within the image space.

In Chapter 7, we prove the robustness of relying on HOG features not only for
classification, but also for regressing the instrument joints coordinates in in-vivo
operations. A Hough forest is trained from unlabeled samples in the vicinity
of the annotated points to enforce voting to be close to the instrument joints
during regression. The algorithm localizes the two tips of forceps instrument
in addition to the center point. Furthermore, it shows its practicality on long
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real surgeries and comparability to the state-of-the-art methods with no need
for manual initialization to handle tracking failures.

In Chapter 8, we develop a CRF model for instrument pose estimation. The
approach models the relations between the instrument parts and uses discrete
optimization to find the best configuration to express the instrument pose. The
inference process localizes not only the tips coordinates but also the instrument
orientation which is a very important step to orient the OCT B-scans during
surgery. It achieves the real time requirements and shows also high prediction
accuracy on public, laparoscopic and retinal microsurgery.

9.2 Limitations

We work on the problem of instrument pose estimation in complex and
delicate operations. Our experiments and evaluation is done on real datasets
collected from clinical partners using Carl-Zeiss microscopes. The initial idea of
using color and geometric modelling is working when the light is focused close
to the instrument body. Although this condition is satisfied in most cases, still
the movement of the hand-held light tube remains uncontrollable, which makes
relying on color information not fully reliable. Therefore, this leads us to use
CNN to explore discriminative features of different parts of the instrument in
chapter 5 and chapter 6. These methods demonstrate better results and works on
larger number of real videos. However, speeding up feature extraction in CNNs
for real time applications requires GPU implementation. Therefore, it needs
GPU-equipped microscopes. As a compromise, feature engineering is used to
model the instrument structure. The extracted features are chosen to be robust
enough to the light changes during surgery. This is why we rely on HOG features
in chapter 7 for both classification and regression processes. Despite of being
discriminative enough for the instrument joints, HOG features create a broad
detection map for the instrument shaft. Hence, only the two forceps tips and the
joint point can be estimated using Hough forests.

Finally, In chapter 8, the proposed technique can predict the instrument two
tips, center joint point and the orientation using CRF model. However, prior
information of the instrument structure is very simple and might not be very
efficient to handle cases of partial occlusions and low quality images due to lens
distortion and fast motion. However, these are common problems for part-based
object detection methods in computer vision.

9.3 Future Work

We proposed a number of techniques to address the problem of detection,
tracking and pose estimation of medical instrument in retinal microsurgery.
However, we have not solved all problems related to the challenges that might be
faced in real surgery. We still believe that the work can be improved in different
ways. Relaying on deeper architectures of deep learning has the potential to
advance the problem of instrument pose estimation. Regardless of the time
complexity needed by deep learning, the advance in hardware technology in the
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future can lead to abroad spread of deep learning applications in medical fields.
Moreover, more complex models can be integrated into our CRF model to cope
with partial occlusions. It is worth here to mention that any new model to solve a
particular problem can be easily integrated in our proposed CRF model. Finally,
online learning has been attracting a lot of attention in medical applications
over the last few years. We believe that online learning of structural changes
or instrument’s shape transformations over time can reduce the amount of data
required for training and increase the robustness of tracking.
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Appendix A

Instrument Type Detection
Using CNN

State-of-the-art methods for instrument detection, tracking and pose
estimation have not employed instruments type as prior information to enhance
the performance of such methods. Having the instrument type as prior
information during the surgery allows the integration of different type-specific
detection algorithms where the selection among them is done automatically. This
also has the potential to improve the algorithms performance during surgery
which is carried out by instruments with wide variations. Moreover, since many
instrument detection algorithms require modeling the shape of the tool or some
of its parts, having prior information about the type allows incorporating many
shape models for different instruments in one general framework.

In this work, we show the power of using CNN to extract such prior
information by automatically detecting the instrument type in live surgery. A
deep convolutional neural network is learned from different instrument patches
to predict the class of the instrument during the surgery.

A.1 Proposed method

A.1.1 Problem Formulation

Assume we have C1, C2,..., CN of different instrument classes, where N is the
number of classes. Given an image patch X that comprises one of the instrument
types, determining the type is simply classifying this patch by assigning one
class label to it, and it can be formulated by calculating the posterior probability
P(Ci|X).

To calculate this probability, a convolutional neural network shown in
Figure.A.1 is learned from few examples. The examples are provided to the deep
network in the form of pairs (Ti, Ci), where Ti is the i-th 32 × 32 input patch
associated with its class label Ci. The network is learned to find a function F(T, C)
that can predict the class for any unseen patch. To predict a class for a given new
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input patch X, we input this patch to the network and get a class label based on
Eq.A.1 which is computed by CNN.

p(c|X) = maxi(p(Ci|X)) (A.1)

Figure A.1: Convolutional Neural Network for Tool Type Detection.

A.1.2 Convolutional Neural Network Structure

The convolutional neural network are designed as shown in Figure.A.1,
where it has two convolutions layers, two pooling layers and a fully connected
neural network.

The input to the first convolution layer is a patch of size 32×32 pixels, which
includes the entire instrument head part. Therefore, the input patch should be
resized to the standard input size of the designed network. The coefficients of
the convolution kernel is randomly initialized, and the each convolution kernel
has a size of 5 × 5 pixels. Six convolution channels are used and the convolved
images has the size 28× 28 pixels.

The output of the first convolution layer is fed into the first pooling layer,
which uses a max-pooling operation to account for any small translations in the
input patches. The output of this layer has the same number of features channels
but with half the size.

The second convolution layer has the same kernel size and double the
features channels, and another pooling layer is applied to the output of the
second convolution layer to produce the features vector of size 5 × 5 × 12.
These features are the input to a fully connected neural network with N output
neurons. The output probability at each neuron represents the confidence that
the patch belongs to each class.

All the parameters of the neural network, in addition to the convolution
kernel parameters are optimized iteratively using the stochastic gradient descent
and the back-propagation algorithm based on Eq. A.2.

argmin
1
n

n∑
i=1

L(F(Ti; w1, .....wL), Ci), (A.2)

where w1, ...., wL are the network parameters and L is the loss function which
computes the errors between the predictions and the desired outputs for n
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training examples. In the designed network, the used loss function is the softmax
function.

Figure A.2: Four different types of surgical instruments.

Figure A.3: Confusion matrix of eye phantom group.

A.2 Results

This approach is validated on two groups of datasets, one are images
for eye phantom taken from Carl-Zeiss microscopes and the second are real
microsurgery images taken from in-vivo video surgeries. The datasets compose
of image patches with different illumination conditions, different orientations
and different states of the instrument’s grippers. Before feeding the network
with the patches from both cases, the patches are normalized to compensate for
illumination changes during the operation.

The convolutional neural network used in this work is the MatConvNet [116]
which is trained using the pack-propagation algorithm with 100 epochs and
learning rate of 0.001.

A.2.1 Eye Phantom Datasets

Four datasets from Carl-Zeiss Microscopes have been used for training and
testing the proposed algorithm on four instrument types shown in Figure.
A.2. For each dataset, 600 images are used to train the convolutional neural
network on different type after pre-processing operation. The testing operation
is performed on 200 images from each dataset. In 94 percent of the testing

109



APPENDIX A. INSTRUMENT TYPE DETECTION USING CNN

images, the instrument type is correctly classified. The confusion matrix in
Figure. A.3 shows the details.

A.2.2 Real Microsurgery Datasets

Three datasets from real surgery videos have been used for training and
testing on three instrument types shown in Figure.A.4. For each dataset, 400
images are used to train the convolutional neural network while testing is
performed on 200 images. The images show challenging cases where they have
clear presence of the instrument shadow and the retinal vessels. The results show
that the algorithm could handle instrument with cluttered background, and in
87% of the testing images the instrument type is correctly classified. Figure. A.5
shows the confusion matrix of the results.

Figure A.4: Three different tool types with different poses.

Figure A.5: Confusion matrix for real microscopic images.

A.2.3 Results Analysis

In the first group, most of the confusions occur between type 1 and 4, and the
reason behind that is the characteristics of the gripper tips. Both types, at some
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orientations, look similar to each other and create false detections. Moreover,
when the tools are in close state, it is very difficult to classify all the types
correctly since most of the informative instrument structures are not clearly
visible.

For the second group, the results are not as good as the first group due to the
cluttered background and the severe changes in the surgery conditions such as
blurring degrees and illumination changes. However, the classification precision
is still high, and most of the misclassifications are due to the confusion between
types 2 and 3 when the forceps is closed. In that case, the two gripper sides
look parallel with small gap in between which makes it difficult to distinguish
between them.

A.3 Conclusion

The proposed approach shows promising results to extract prior information
about instrument type during live surgery. The detected instrument class can
be incorporated with other tracking and detection algorithms to improve the
practicality and robustness and to reduce uncertainty. Using CNN in this
direction demonstrates high classification accuracy at real time performance
where it would be very difficult for any classical classifier to find discriminative
features to capture fine difference between different instruments types.
Integrating this approach with other tracking and detection methods would
contribute significantly towards minimally invasive procedures.
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