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Abstract—We address self-perception in robots as the key for
world understanding and causality interpretation. We present a
self-perception mechanism that enables a humanoid robot to un-
derstand certain sensory changes caused by naive actions during
interaction with objects. Visual, proprioceptive and tactile cues
are combined via artificial attention and probabilistic reasoning
to permit the robot to discern between inbody and outbody
sources in the scene. With that support and exploiting inter-modal
sensory contingencies, the robot can infer simple concepts such as
discovering potential “usable” objects. Theoretically and through
experimentation with a real humanoid robot, we show how self-
perception is a backdrop ability for high order cognitive skills.
Moreover, we present a novel model for self-detection, which
does not need to track the body parts. Furthermore, results show
that the proposed approach successfully discovers objects in the
reaching space, improving scene understanding by discriminating
real objects from visual artefacts.

Index Terms—Self-perception, Self-detection, Conceptual in-
ference, Sensorimotor contingencies, Multi-modal integration,
Embodied cognition.

I. INTRODUCTION

During the last few years, roboticists have been looking
for building machines that, whenever they are turned on for
the first time, learn how to interact with the environment by
means of their sensorimotor experience [1], [2], [3], [4]. We
envisage that, as in humans, this mechanism is the key for
adaptability, since they will be able to relearn when unexpected
changes appear using the same machinery [5]. However, robots
that learn from scratch are still a chimera. It is still unknown
and even controversial how to get from sensor information to
self-awareness, causality, semantic interpretation and agency
attribution. In this sense, the ability of self-perception and the
capacity to learn the body schema seems to be one of the core
processes involved [4], [6].

Actually, recent evidence from psychology and neuroscience
supports that self-perception enables self/other distinction
and agency: sensorimotor temporal contingency is a key for
discriminating inbody and outbody sources in four poten-
tial forms (contiguity, correlation, conditional probability and
causal implication) [7]; the sensory consequences observed
are tightly involved in the agency attribution of the actions
[8]; sensorimotor understanding is a process learnt by in-
teracting with ourselves and the environment [9]; and self
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Fig. 1. The robot differentiates in/out body cues understanding the proprio-
ceptive (artificial skin) and visual sensory contingencies and discovers objects
by interacting with them.

and other’s representation connects the sensorimotor map with
more complex cognitive skills [10]. Accordingly, if we want
to enable causality and semantic inference from sensory infor-
mation, robots need to deploy multisensory binding based on
contingency, self representation and agency attribution, while
interacting with the environment. In this work, we present a
grounding schema to go from sensors to abstract concepts.
A representative example is the following: a robot sends the
action to move the arm; proprioceptive and visual sensors
measure changes due to action execution; then the robot can
state: this is my arm not only because I am sending the
command to move it but also because I sense the consequences
of moving it.

Sensing the movement implies knowing what is the relation-
ship between the action and the sensory effect. Hence, actions
cannot be uncoupled from the sensing devices. This perceptual
embodiment or self-perception depends on the nature of the
sensors available in the robot. In this sense, the theory of
SensoriMotor Contingencies (SMCs) [9] developed for human
perception gives some insights about how this knowledge
could be learnt.

Extending this idea for interacting with the environment,
when the robot pushes an object in the scene the following
argumentation can be formulated: the robot moves the arm
and it makes contact with an object producing a change in the
visual and tactile input; then the robot can interpret: this object
can be usable not only because I am moving the arm and the
object is moving at the same time but also because I sense
myself moving and touching and I understand the sensory
consequence of my action.

In the robotics literature, three main lines of research have
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pursued self-perception. The first line is related to self and
other recognition, where the robot objective is to distinguish
between sensory cues promoted by itself or by other entity
(human or another robot) [11], [12], [13]. Alternatively, other
works have focused on tool use, where the robot performs a
self extension of the body when learning how to use a tool
[14], [15]. Finally, over the last few years, new approaches
have been presented for adaptive exploration [16], active object
learning [17] and object categorization [18]. The first two
works include self-perceptual development as an important
skill in their cognitive architectures. Conversely, the last one
uses sensorimotor contingencies as the core to understand
functional categories.

This paper formally presents the necessity of self-perception
in robots, in the form of understanding the sensory con-
sequences of their actions, in order to interpret high-level
concepts while interacting with the environment. Specifically,
we show that the robot perceives its own body and discovers
potentially “usable”1 objects, observing the causal effects that
appear when the robot exerts actions.

Hence, we propose a novel hierarchical Bayesian compu-
tational model [19] that integrates proprioceptive and tactile
cues from an artificial skin [20] with visual cues through
bottom-up attention [21]. It is comprised of three layers of
abstraction. The first two deal with self-detection by means
of inter-modal contingencies, extending the works from [22],
[11], [12] to avoid visual assumptions such as using markers.
The third layer employs self-detection to enable conceptual
interpretation such as objects discovery. To test the model we
design an object discovery experiment based on the tapping
or pushing setup proposed in [2] and [16] (Fig. 1).

Section II presents a general overview of self-perception in
the literature, and a detailed comparison between self-detection
methods and its relation with attention. Sec. III presents the
in/out body perception problem, depicts the overall proposed
solution and motivates its implementation in robots. Sec. IV
presents how to transform sensor signals into meaningful cues
(e.g., from accelerometers to arm moving). Sec. V describes
the hierarchical probabilistic model to compute in/out body
distinction and to find “usable” objects in the scene. Finally,
sec. VI shows the experimental validation and results, sec. VII
prompts the discussion and sec. VIII summarizes the work.

II. SELF-PERCEPTION IN THE LITERATURE

A. From embodied systems to self-perception

In 1991, the neurologist Antonio Damasio published his
seminal work [23]. This was a major paradigm shift to
understand humans’ brain. He presented the embodied mind.
In his own words: “There is no such thing as a disembodied
mind. The mind is implanted in the brain, and the brain
is implanted in the body”. Analogously, the principle of
embodiment [3] in robotics states that there is no such a
thing as a disembodied robot. The sensors and actuators are
implanted in the body and the body is implanted in the
robotic mind. This was originally investigated by Braitenberg

1In this paper, a usable object is considered as an object that can be moved
by robot interaction - see sec. III.

in [24]. Afterwards, Brooks proposed a robot that used the
sensors to move around without any internal representation
of the environment [25]. Self-perception here is explained
as sensor specific responses to stimuli. On the other hand,
in developmental robotics [1], the robot is provided with
a set of skills that will promote the emergence of more
complex behaviours. For instance, the robot learns from simple
exploration activities to complex manipulations [26]. Here,
self-perception is presented as the mapping between motor
actions and sensory inputs: sensorimotor approach [27]. The
recent theory of SMC, originally presented by O’Regan and
Noë [9] shows how this sensorimotor mapping explains human
behaviours and why it is important for the emergence of
awareness. It was developed to explain the conscious act of
perception in humans as the mastering of the sensory conse-
quences when performing an action. Sensorimotor contingen-
cies are defined as the laws that govern the sensory changes
according to the actions executed [28]. For instance, vision
should be seen as a “mode of exploration of the environment
mediated by the knowledge of the sensorimotor contingencies”
[9, p. 943]. For an example of a computational model of
the SMCs and its relation to previous psychological theories
such as constructivism [29] please refer to [27]. This points
towards a different kind of perception, where understanding
the sensory changes promoted by the actions is the core for
self-perception. It focuses on the modality-related changes
when interacting, instead of the sensory input itself. Recent
works in robotics that exploit SMCs are: [18] where the robot
learns objects by their functionalities or [30] where a naive
agent learns the notion of space in one dimension.

In this work, we present a mechanism inspired by the SMCs
theory that follows the principle of embodiment. The robot
starts with some knowledge about how to process the stimuli
(e.g., visual artificial attention) and observing the multimodal
sensory consequences of performing actions it changes its
belief about the world, promoting the emergence of simple
causality interpretation. To clarify, we define self-perception
in robots as,

Definition 1. Artificial self-perception is the machine ability
to perceive its own body, i.e., the mastery of modal and
intermodal contingencies of performing an action with a
specific sensors/actuators body configuration.

B. Own body distinction through self-perception

“The developmental sequence begins with learning a
model of the robot’s body”...[then]...“the robot can
learn that certain behaviors can reliably cause an
environmental object to move in the same way as
some part of the robot’s body” [3, p. 129].

Some developmental roboticists have proclaimed that giving
the robot the capacity to distinguish its own body is a key
factor for interacting with the environment [6], [34], [17], [16].
To enable body distinction, we can either 1) learn the forward
model (i.e., sensor output given an action, commonly Ŝk+1

given Sk and Ak) by self-exploration and then compute the
error between expected sensory outcome and the predicted
one [13], [34] or 2) master the spatiotemporal contingencies
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TABLE I
OVERVIEW OF RELEVANT PERCEPTION SOLUTIONS FOR SELF-DETECTION AND INTERACTION WITH EMBEDDED ATTENTION. CUES ARE CODED AS:

VISUAL(V), PROPRIOCEPTIVE(P), TACTILE(T) AND MOTOR COMMAND(M).

Work cues features needs obj. identification/method visual attention self-detection/other top-down approach

Michel2004[22] V, M bounding box yes / region similarity motion by image differ-
encing

X/7 saliency weights Efferent-afferent initial
delay classifier

Hikita2008[15] V, P, T 10× 10 attention map no / - Center-surround recep-
tive fields [31]

7/7 - Hebbian learning

Pitti2009[32] V,P saliency map no / - motion,intensity,colour 7/7 7 Spikes neural network

Gold2009[11] V, M blobs yes / area overlap background subtraction
and connected compo-
nents

X/X 7 Markov-process and
Bayes classifier

Stoytchev2011[12] V, M coloured markers yes / colour colour-based segmenta-
tion

X/X 7 Efferent-afferent initial
delay discriminant
thresholds

Nagai2011[13] V, M custom from optical flow no / - optical flow X/X 7 Hebbian learning

Rolf2014[33] V, P optical flow assumed to be known difference-of-gaussians - goal (implicit) Reinforcement learning

Proposed V, P, T (level 1) N ×N attention map
(level 2) protoobjects

no / velocities estimation protoobjects [21] X/7 embodied model /
saliency weights

Hierarchical Bayesian
model

(S × A × t relation [35]) by observation and then use them
to infer if the sensor stimuli have been produced by the robot
body [11], [36]. In this sense, self-detection, a term borrowed
from psychology [7], is defined as the prior process for the
conscious act of self-recognition [12]. We review some of the
most relevant works related to self-detection for object passive
interaction2, highlighting its connection with artificial attention
and the sensory cues used. Besides, we have omitted all works
dealing just with motor kinematics learning since we are more
interested in analysing the sensory consequence of the action3.

Table I describes some approaches for self-detection and
object interaction. Although it is difficult to make a fair
comparison due to the heterogeneity of the final addressed
problems, we have tried to briefly summarise some interesting
aspects. The approaches introduced by Michel et al. [22],
Stoychev [12] and Pitti et al. [32] are based on temporal
contingency although they use different methodologies. These
works have psychology foundations on Watson theories [7]
and studies on the visual cortex [32]. The idea is that causality,
in form of motor-visual cues and temporal coherence, is
the base for self-detection. However, despite the consistent
temporal response to similar stimuli of the visual neurons,
observation uncertainties should be treated. On the other hand,
Gold et al. [11] have approached self-detection via probabilis-
tic reasoning of the observed cues. We argue that causality,
seen as the relation between the cause and the effect A→ B,
cannot be uncoupled from the perception of the process (if A
is observed then B becomes more plausible [37]). In practice,
in robotic applications, visual segmentation algorithms usually
have spatial-temporal incoherence of the output at different
instants due to changing conditions (e.g., light changes).

Artificial attention must contribute to self-detection and
object interaction processes [38]. Further information on at-
tentional systems can be found in [39]. This is something that

2First, there is a passive interaction where the robot arm is differentiated
from the object even if there is contact [33] and afterwards, when the object
is learnt as a tool, there is a body-extension where the object becomes a part
of the self [15].

3This is a simplification of the self-perception and the proper relation
between the action and the sensory change should be learned. However, in
this paper for the sake of clarity we have restricted the study to analyse inter-
modality sensory changes promoted by predefined simple actions.

has been simplified using colour markers [12] or by means of
connected components [11]. In both works, object tracking is
crucial for the success of the method. Simplified models of at-
tention such as difference-of-Gaussians or image-differencing
have been used in [22], [33]. It is worth mentioning the work
in [13] where the robot is able to learn the sensorimotor
mapping to distinguish self and other using features extracted
from optical flow. However, this mapping does not tackle
objects interaction. A more interesting approach for sensory
integration has been performed by Hikita et al. [15] where
a biologically inspired attention system processes the visual
information. Although that work is the most similar to the one
proposed here, in terms of multimodal cues integration and
attentional map approach, they only deal with tool extension
and do not tackle causal implications of passive interaction
with outbody objects.

Full cognitive architectures, which are not included in
Table I, that include self-detection are presented in [17], [16].
The former uses appearance models to track the robot and
the human hand. The visual segmentation that they propose
converts the image into protoobjects using motion as the
differentiating cue. Then visual features are extracted in order
to further classify the robot arm. They assume that the space
restrictions of the robot are known. Thus, not reachable regions
are ignored. The later exploits visual and proprioceptive cues
to discriminate inbody and outbody visual blobs. However,
when performing interaction they assume a perfect tracking
of the robot end-effector and the object.

III. PROPOSED MULTISENSORY MODEL

We enable self-perception and some simple causality in-
ference in a robot that counts with visual and tactile sensing
(Fig. 2(a)) by observing the inter-modal contingencies when
an action is performed. For that purpose, a hierarchical proba-
bilistic model that performs several abstractions is designed. In
this section, the model is explained conceptually (sec. III-A)
followed by an overview of the system in detail (sec. III-B)
and the experimental design to show its expected behaviour
(sec. III-C).

The overall process is as follows: first of all sensor signals
are converted into meaningful cues represented by random
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TABLE II
FROM SENSORS TO CONCEPTS

Sensor signals Meaningful cues Inferred concepts

Ca skin accelerometer BM arm moving S belongs to itself

VM visual motion OM protoobject moving Out is outbody

Cf , Cp skin force and proximity T arm touching U is “usable”

variables, e.g., accelerometer values are transformed into body
movement (sec. IV); afterwards, those meaningful visual and
proprioceptive cues are bound to enable in/out body discrimi-
nation and finally tactile cues are employed to infer “usability”
of the objects in the scene (sec. V). All the processing is
computed while the robot interacts with the environment.

A. Probabilistic model design

(a) Cues processed (b) Abstract model

Fig. 2. Meaningful signals and the proposed abstract model. Two layers of
abstraction use the meaningful signals to discriminate between in/out body
sources. Visual receptive field layer binds proprioceptive and visual cues
to discern the robot arm in the field of view. Prior spatial or appearance
information about the robot body also feeds this self-detection. The protoob-
ject layer treats the information provided by the previous layer to visually
classify attended objects. With this information more complex concepts such
as discovering potentially usable objects can be inferred (top layer).

Instead of only studying the SMCs within one sensor modal-
ity we analyse the contingencies and relations of different
sensor modalities in order to understand simple causality.
Modality-related contingencies [18] are the ones that the robot
uses to interpret that is moving when there is a specific change
on the proprioceptive sensing (e.g., from the accelerometer
information supplied by the skin Ca, the robot knows that the
arm is moving BM ). Inter-modality contingencies are the ones
that enable the robot to refine interpretation (i.e., visual moving
objects OM belong to the robot if there is a correlated change
at the proprioceptive Ca and visual senses VM ). Note that in
this work, we are more interested in the sensory consequences
of the action than on the action itself. Figure 2(a) shows
the robot sensors signals and the meaningful cues extracted
from them, and Table II summarizes the meaning of each
variable and the concepts extracted. While the sensor signals
are represented by real values, the cues and the concepts are
modelled as Bernoulli random variables.

The hierarchical probabilistic model is composed of three
layers of inference (Fig. 2(b)):
• Visual field self-detection. The robot, binding visual

(saliency map with motion) and proprioceptive (ac-
celerometers) sensory contingencies, detects whether a

pixel belongs to itself or not. This layer combines
probabilistic inference grids with attentional maps [40].
To avoid tracking of robot parts 1st order dynamics
(velocities) are learnt online.

• Protoobject in/out body discrimination. Bottom-up at-
tention provides the most relevant proto-objects4 in the
scene. These attentional units are stored in the working
memory. Using the visual field layer information the robot
is able to classify whether the protoobject belongs to itself
or it is an outbody source.

• Object interaction. It defines properties of the object
based on the self-detection model and on the sensory
consequences of the interaction. In this work, we have
focused on discovering potentially usable objects. We
define a “usable” object when the following causality
is present (see sec. III-C): the robot moves the arm, it
touches an object and the object visually moves.

This model can be seen as several layers that disambiguate
sensory cues into concepts. Although the layered methodology
has been also proposed in [17], they just present a segmen-
tation pipeline. We face the problem with a more general
approach using bottom-up artificial attention (see sec. III-B).

B. Overall system design
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Fig. 3. System design and processing flow. A single camera and the body
skin cells provide the necessary sensory information for the system.

Figure 3 details the sensors used and the information flow.
On one hand, the image stream provided by the camera is
processed by a visual attention system [21], that contributes
with two main outputs: the saliency map with the proto-
object relevance encoded in a 2D image and a list of attended
protoobjects in the working memory. The spatial saliency
is computed using several conspicuity maps that represent
different features of the protoobjects [40]: color and intensity
contrast, optical flow and color bias. These feature maps
(2D images) are combined by weighted average using a
fixed attentional set (weights), which in the case of having
contextual information is used for top-down modulation. The
visual moving cue VM is obtained from the optical flow map.
Furthermore, the working memory tracks a fixed number of
protoobjects in the scene (humans are able to track around 5

4Protoobjects are pre-attentive units obtained by grouping structures (e.g.,
pixels) that have common characteristics [41].
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objects simultaneously [21]). These protoobjects are potential
objects to use. Their moving cue OM is then obtained from
the working memory.

On the other hand, the proprioceptive and tactile signals
are extracted from each cell of the skin. The accelerometer
information is transformed into the probability of moving
the arm and the force and proximity values are transformed
into the probability of touching. The position of each cell in
the body is known. Thus, we know where the accelerometer
changes are produced and obtain the arm moving cue BM

and touching cue T . Finally, all meaningful cues feed the
probabilistic model that uses Bayesian filtering to update the
new observations and to compute in/out body distinction and
the “usability” of the objects.

Particularly, the robot used in this work counts with a
vision system with one single See3CAMCU50 camera with
640x480 pixels definition working at 30fps. Although this
configuration makes the robot 3D blind, objects discovering
disambiguation is interestingly solved by interaction (see sec.
VI-C). It also counts with artificial skin [20], [42] that provides
proprioceptive and tactile information. Each cell of the skin
has one 3-axis linear accelerometer, 3 capacitive force sensors
and 1 infrared proximity sensor.

C. Experimental design

S 

T 

𝐵𝑀 

sensory link 

object visually moving 

𝑉𝑀 

𝑂𝑀 

O 

𝑂𝑀 

Fig. 4. System expected behaviour with in/out body distinction. The tactile
link (T) promotes the causality between the body (BM ) and the moving object
(OM ).

We formulate a theoretical experiment to explain how
self-perception is involved in the robot interaction with the
environment. The goal is to discover “usable” (U ) objects by
the following hypothesis: an object is potentially usable if it
is not part of myself and when I move my arm while touching,
it also moves5. The causality is the following: (1) the robot
moves the arm (promoted action or cause), (2) it is touching
(sensory link) and (3) the object moves (sensory consequence
or effect). We assume that the robot already understands when
something is moving in the visual field (VM ), when its own
arm is moving (BM ) and when it is touching (T ). Moreover,
the visual attention system is able to provide relevant objects
in the scene and when they are moving (OM ). We analyse the
system behaviour in two different configurations.
• With self-detection skill, Fig. 4. It is able to discern the

self S from the rest O. To do that it employs two vari-
ables: visual (VM ) and proprioceptive (BM ) movement.

5A similar formulation using the object movement to interpret the effect
promoted by the action has been expressed in [16, p. 13].

By observing the temporal sensory contingencies between
both variables the robot makes in/out body distinction.
Then, it can separate self and outbody moving objects (in
Fig. 4, circular and hexagonal shapes respectively). Thus,
when the robot moves the arm while touching the object,
causality is generated: body BM and object movement
OM are linked. Hence, the object is “usable”. Finally,
when the robot stops touching, the sensory link is no
longer valid. If there has been enough interaction the
outbody entity should remain as usable. In the case that
the robot touches a part of its own body a double tactile
link will appear. This produces a clear difference between
self-touching and object interactions.

• Without self-detection skill. The robot is not able to dis-
tinguish if an object belongs to itself. Thus, we have only
one type of object movement OM (in this case, circles
and hexagons belong to the same class; Fig. 4). Whenever
the robot moves the arm and tactile interaction occurs, the
sensory consequence of object visually moving appears.
The defined causality will make all visual objects to be
potentially usable, even body parts. However, when this
tactile link disappears, causality vanishes and the objects
do not have entity support to be maintained as usable.

Intuitively, grounding self-distinction aids to discover objects
by binding multimodal sensory consequences. This scenario
will be discussed again using the real robot in sec. VI.

IV. EXTRACTING MEANINGFUL CUES FROM VISUAL,
PROPRIOCEPTIVE AND TACTILE SENSORS

To simplify the proposed approach we introduce in the
robot enough knowledge to extract meaningful information
from the sensor cues. For instance, we develop an algorithm
to convert proprioceptive information (accelerometers) into
moving cues. This means that the robot has mastery in
modality-related sensorimotor contingencies for movement.
Then we can focus on inter-modality contingencies for self-
detection and object discovery. The levels of SMCs complexity
proposed in [18] do not fit in our schema as the robot actually
has to infer what an object is and what is not. Thus, here
we only consider modality-related contingencies (changes in
the signal depending on the agent action) and inter-modality
contingencies (relation between changes in the signals from
different sensors).

A. Proprioception information

𝑩𝑴
𝒌  

𝑪𝒂𝒙  𝑪𝒂𝒚  𝑪𝒂𝒛  

𝑩𝑴
𝒌−𝟏 

(a) Model (b) Probability of moving

Fig. 5. Arm moving estimation using accelerometer information. The plot
presents 70 seconds of the robot performing random movements. P (Bk

M |Ck
a )

is the blue line and the corresponding Ca signal movement is depicted in red.
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We extract the moving information from the arm skin
proprioception. Modelling it as a first order Markov process
(Fig. 5) we get the probability of the arm being moving
given the accelerometer observation P (BM |Ca). We only need
to learn the likelihood distribution P (Ca|BM ), which are
the values that the accelerometer measures when the arm is
moving. We bypass the classical solution of grabbing data
and then learn the distribution by redefining the problem
with a signal change detection function. Thus, we have the
probability of the arm being moving given a change in the
signal P (BM |change(Ca)), where change(Ca) = 1 if signal
changes and 0 otherwise.

This methodology helps to detect value changes while being
robust to oscillations. It also simplifies the problem to a binary
variable. We assume that the natural behaviour of the system
is to maintain the current state (moving or static). Thus, it only
depends on the likelihood of the observations6. Moreover, the
three axes accelerometer variables (Cai

) are assumed to be
independent of each other. Then, the probability of the arm
moving is,

P (Bk
M |change(Ca)) ∝

∏
i

P (change(Cai)|B
k
M )P (Bk−1

M ) (1)

In order to calculate when the signal changes, we use an
adapted online CUMSUM both-sides detector algorithm [43].
The method starts with an initial estimation of the signal value
µ̂, σ̂2 computed from an initial set of samples with fixed size
(window). Whenever the algorithm detects a change, the mean
and the variance are updated using the new window samples7.

B. Visual cues

Bottom-up artificial visual attention [21], [41] is used to
extract salient protoobjects. First, it groups pixels that have
similar characteristics (colour, intensity) and then a set of
features are extracted and weighted (colour and intensity
contrast, colour bias and optical flow) in order to evaluate their
relevance. These salient regions are already meaningful repre-
sentations of the scene. Thus, we have a set of visual objects,
which contains the movement information {OM1

, · · · , OMn
}.

In order to enable self-detection before a body schema has
been learnt, the protoobjects must be maintained through
time. Assuming that all objects in the scene can be tracked
over time is currently impracticable. We argue that attention
should remain as a middleware process that manages objects in
the scene and helps self-detection. Therefore, the protoobject
saliency map is used as the visual input for the self-detection
model.

C. Proprioceptive and visual temporal coherence

There is a time mismatch between the proprioceptive cue
and the visual cue, as shown in Fig. 6(a). The delays found
between cues are: the visual moving cue appears after the pro-
prioceptive sensation of starting the movement and, contrary

6With slow dynamics we can assume P (Bk
Ml

|Bk−1
Ml

) = diag(1).
7The window of input samples is maintained by means of a double linked

queue and the new estimation is computed as follows: µ̂ = mean(window),
σ̂2 = max(variance(window),MIN VARIANCE).

to [22], [12], visual movement cues stop before the current
movement has been finished. This is happening because slow
movements are totally inappreciable at the visual level. We
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Visual moving starts Visual moving stop 
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(a) Visual and proprioceptive delays
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Fig. 6. Efferent-afferent delays. The body moving meaningful signal is filtered
to synchronize it with the visual moving stimuli, obtaining the blue line instead
of the brown-dotted one.

have to learn the efferent-afferent delay as in [12]. As the
proprioceptive rate computation (60Hz) is higher compared
to the visual processing (15fps), the solution is implemented
by means of a buffer that stores accelerometer measurements
before outputting them. Then a filter delays (from static to
moving) or anticipates (from moving to static) the sensor
values to the self-detection model. Figure 6(b) shows the
filtered signal (blue line) overlaid on the original signal (brown
dotted line).

D. Tactile cues
Force and proximity sensors in each cell of the skin [42]

provide information about the relative location (which part of
the body) and the amount of force that the robot is performing.
When touching an object the force sensor increases its value
and we can extract the probability of touching something.
However, in practice, we need to fuse proximity sensing to
cope with very light objects by exploiting the saturation value
of the sensor when touching. Defining Cpi

as proximity and
Cfi as force of each cell i, the probabilistic model of a set of
cells to infer touching T is the following:

P (T |Cp ∪ Cf ) ∝ 1−
∏
i

P (Cpi |T )P (Cfi |T )(1− P (T )) (2)

where T is a Bernoulli random variable that expresses no-
touching. Force and proximity sensors contribute indepen-
dently to obtain the probability of touching.

V. HIERARCHICAL PROBABILISTIC MODEL

The model presented in this section is designed taking into
account the theoretical facts (sec. III) and implements the
abstract scheme depicted in Fig. 2(b). In order to make the
in/out body distinction, we need to keep tracking the robot arm
and the objects in the scene. Within bioinspired approaches,
the working memory is widely argued to be in charge of
this process [21]. However, human studies show that we are
able to store approximately five objects concurrently [44].
On the other hand, when dealing with self-detection we face
other unsolved problem: which features of the body should be
tracked allowing appearance changes? In essence, the attention
system should be general enough to deal with the objects
of the scene but also to help in the self-detection process.
Preattentive stages cannot actually overcome with the hard task
of self-detection, but in this rationale, several abstraction layers
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and top-down body understanding (e.g., appearance and spatial
sensorimotor model) could solve this issue. Here we provide
a self-detection general solution when the robot parts cannot
be tracked using two layers of abstraction: visual field self-
detection and protoobjects in/out discrimination. Afterwards,
an objects discovery model, which works on the top of the
other layers, is presented.

A. Visual field self-detection

Fig. 7. Inference grid for self-detection. The posterior probability is computed
by means of the estimated velocity and the observations generated by the
artificial attention system (saliency). Then 1st order dynamics are estimated
according to the posterior computation of the self.

In the case of not being able to track all objects coherently
along the time and before having a self-representation of the
body, we have to solve which parts of the scene belong to
the robot by visual VM and proprioceptive observations Ca.
The method proposed here agrees with the fact that the body
understanding should be constructed with the latest infor-
mation available [3, p. 124]. We define the visual receptive
field as a grid where we want to infer which node (i.e., the
decimation of the pixel-wise image) belongs to the self and
which does not (Fig. 7). We adapt Bayesian inference grids
[19], [45] to estimate the probability of being self along the
time . The prediction step is computed using the velocity in
four directions (i.e., up, down, left, right). The probabilistic
equation that governs self-detection is the following (see [45]
for a detailed explanation),

P (S|V, VM , BM ) =∑
V P (VM , BM |S = 1)αself∑

V [P (VM , BM |S = 1)αself + P (VM , BM |S = 0)αout]
(3)

where V is the velocity in four directions k and αself is
computed as,

αself=(1−ε)P (Ak)P (Vk)TkP (S)+εP (Ak) [1−P (Vk)TkP (S)]
(4)

To compute αout we set ε = 1 − ε. In order to make the
equation clearer, we have defined Tk as the transition matrix
that shifts all probabilities towards k direction and P (Ak) as
the prior probability of moving in the direction k. The term
ε controls the amount of non-constant velocity in the visual
input (with higher values the system becomes more reactive).
Finally, we have to compute the posterior probabilities of the
velocities:

P (Vk) =P (VM , BM |S = 1)αself + P (VM , BM |S = 0)αout (5)

With this method, we do not need tailor-made body objects
tracking and we can still use the working memory to store
relevant protoobjects given by the attention system, something
important for discovering potentially usable objects.

B. Protoobjects in/out discrimination
We compute the probability of a protoobject being self

depending on the visual field self-detection P (S′|S). The
protoobject pixels region can be z = S, when it is self, or
z = S, when it is outbody. The Bayesian update step under
the 1st order Markov assumption is then,

P (S′|S) = P (z|S′)P (S′)

P (z = S)P (S′) + P (z = S)P (S′)
(6)

C. Objects interaction: usable model
The usable model is computed using the output of pro-

toobjects in/out body discrimination model. The probability
of being a usable object is then defined as:

P (U |BM , T,OM , S) ∝

�����
P (BM |U)︸ ︷︷ ︸

indep.

P (T |BM , U)︸ ︷︷ ︸
uniform

P (OM |BM , T, U)︸ ︷︷ ︸
table

P (S′|BM , T,OM , U)︸ ︷︷ ︸
in/out proto discrim.

=
1

η
P (OM |BM , T, U)P (S′|U)P (S′|S) (7)

where η is a normalization factor. Thus, the probability of
being “usable” depends on the protoobject being self P (S′|S),
computed by Eq. 6, the likelihood of being self when “usable”
P (S′|U) and the likelihood of the being moving when the arm
is moving and touching at the same time P (OM |BM , T, U).

D. Synthetic example of the model behaviour

(a) Generated synthetic signals (b) Model output

Fig. 8. Example of the model behaviour assuming a single correctly tracked
object. Synthetic signals are generated for P (BM ), VM and P (T ). P (S)
depends on both moving signals and P (U) depends on the touch signal and
on the probability of being self or outbody.

Figure 8 shows an example of the model for one object
where the input signals are generated synthetically. Here we
assume that we can coherently track the object O along
the time. The probability of usability only rises when there
is a sensory link (touching) and causality (arm moves →
object moves) [4]. Furthermore, the probability of being usable
decreases when the object belongs to the robot.
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(a) saliency (b) moving protoobjects (c) P (S) (d) self-detection

Fig. 9. Visual field self-detection combining visual attention and proprioceptive cues. From left to right, (a) saliency map (brighter represents more salient);
(b) protoobjects moving; (c) probability of being self (whiter colour represents higher probability); and (d) self detection. Self (magenta), outbody (yellow)
and unknown (greyscale).

E. Top-down influence

We define the most probable regions for the arm to ap-
pear P (E) at the visual field level using any embodiment
information. Here we have included two types of information:
attended objects that are classified as self P (Oi, S = 1) > κ
(protoobjects level) and a prior model defined by a smoothed
mixture of Gaussians over a straight line that connects the left-
bottom corner with the end-effector estimated location. This
can be also used to include appearance or more complex prior
spatial models of the robot body. The combined self-detection
becomes P (S) = wP (S) + (1− w)P (E), where w ∈ (0, 1).

VI. RESULTS

The self-perception mechanism is evaluated. First, we ana-
lyse self-detection and then we evaluate the integration of
tactile cues for objects discovering. The experimental setup
and some examples can be further explored in this video
http://web.ics.ei.tum.de/∼pablo/tcds2016.mp4. The parameters
values, summarised in Table III, are fixed for all experiments
and obtained by experimentation to satisfy the trade-off be-
tween computational costs and behaviour coherence.

TABLE III
DEFINED PARAMETER VALUES FOR THE EXPERIMENTS

Parameter Notation Value

grid decimation - 5× 5 pixels/node

Object moving when usable P (OM |BM , T, U = 1) (Pu, 0.08, Pu, Po, Pu, Pu, Pu, 1− Po)
Object moving when not usable P (OM |BM , T, U = 0) (Pu, Pu, Pu, 1− Po, Pu, Pu, Pu, Po)

uniform / outbody movement Pu, Po 1/8, 0.15

self being usable P (S|U) (0.5, 0.5; 0.53, 0.47)

velocity prior probability PA (0.1, 0.9/4, 0.9/4, 0.9/4, 0.9/4)

non-constant velocity, top-down self thr. ε, κ 0.0001, 0.8

A. Self-detection

An example of the self-detection inference is shown in
Figure 9. The saliency and the protoobjects moving, outputted
by the visual attention, are described in the first two columns.
Fig. 9(c) shows the probability of each pixel belonging to the
robot. Finally, Fig. 9(d) exhibits the moving arm being visually
detected as own (magenta) and as outbody (yellow). As the
arm is moving to the left, velocity estimation aids to spread
the probabilities towards that direction. Note that larger area
of unknown (grey) and self appear on the left side of the arm.
Moreover, without velocity estimation self regions will appear
on the arm trajectory.
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Fig. 11. Experimental model behaviour for the protoobjects inference. This
plot corresponds to the two objects experiment of Fig. 10. (a) Protoobjects
1 and 2 are progressively differentiated as outbody and (b) when the tactile
interaction occurs their probability of being usable increases drastically.

B. Object discovery

To evaluate the task of discovering potentially usable objects
we design 10 experiments with the same initial configuration
of the scene but with different objects (shapes and colours).
The robotic arm has preprogrammed naive motion and it is
not goal-directed. Figure 10 shows an example where the
robot is able to distinguish two potential usable objects by
interacting just with one of them. This happens because when
it pushes one object, the other also moves. First, row represents
the system 7 seconds after starting the experiment and the
second row shows when the robot is pushing the object. After
interaction (Fig. 10(h)), the robot has interpreted that object
1 and 2 are outbody and potentially usable. Furthermore, we
analyse the distinct system behaviour with the same object
but with different interaction time: (1) Fig. 10(k) short period
of touching and failure, and (2) Fig. 10(l) longer interaction
and success. The density of the interaction expressed by the
number of meaningful events (e.g., inter-modal contingencies)
determines how successful the grounding is. The failure case
presents fewer events where tactile interaction, body moving
and outbody object moving occurs at the same time.

Finally, the probabilities for each protoobject being self
and usable during the experiment are shown in Fig. 11.
Protoobjects 1 and 2 correspond to the objects in the table,
which are gradually identified as outbody as the arm moves.
When the robot touches the object and there is a movement
sensory consequence on the visual sensing, the probability
of being usable rises rapidly. This certitude of usability is
maintained after the touch link disappears showing that there
was enough interaction and the grounding was successful. This
agrees with the simulated results previously presented.

http://web.ics.ei.tum.de/~pablo/tcds2016.mp4
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(e) P (BM ), P (T ) (f) self-detection (g) working memory (h) P (Out), P (U)

(i) Cylinder (j) Big ball (k) Small ball, short interaction (l) Small ball, intense interaction

Fig. 10. Object discovery via visual attention and self-detection. First row describes the first stage of the system where the arm has started moving but
self-features are still counted as outbody parts. Second row shows the robot pushing an object (which at the same time pushes another object). The system
infers that both visual objects are potentially usable. First column displays the meaningful signals (arm moving and touching). Second shows self-detection at
the visual low level. Third shows the attended protoobjects in the working memory (yellow - outbody, magenta - self, green - usable). Last column describes
the probability of each protoobject (six potential objects) being outbody (yellow) and usable (blue). Last row depicts different experiments and the final result
of the object discovery inference.

(a) Object illusion (b) Before touching (c) While touching (d) After touching

Fig. 12. Disambiguating usability in visual artefacts. One printed object (illusion) and a truck toy are placed over the table. Coloured pixels represent
self-detection or protoobjects in the working memory. Colour code: self (magenta), inanimate (yellow), green (usable).

C. Scene disambiguation: illusion experiment

We show how tactile and visual sensory contingencies un-
derstanding disambiguates objects usability. The robot cannot
know in advance which objects in the scene can be manipula-
ble [16]. For that purpose, we print on a sticker an object that
looks three-dimensional from the robot visual perspective (Fig.
12(a)). Then we put it on the table along with a real object (toy
truck) that can be moved. The system is able to infer that the
truck is usable and the illusion is not longer valid. Figure 12
shows different instants of the robot interacting. When tactile
interaction begins some protoobjects are lost (tracking) and

one of the new selections is also classified for a small period of
time as a usable object. Afterwards, it converges towards self
again and the robot correctly detects one real usable object.
The visual artefact is finally established as an outbody non-
usable region.

D. Disabling self-detection

We analyse how the system behaves without enabling
self-detection. This experiment also supports the theoretical
example introduced in sec. III. In the case of disabling self-
detection, when the robot interact by touch, it infers that all
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(a) Before touching (b) While touching (c) After touching
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(d) Protoobjects usability

Fig. 13. Discovering objects without self-detection. By disabling self-detection skill, the system is not able to correctly infer which objects are potentially
usable. (b) When there is contact, all visual attended protoobjects, even the ones that belong to the robot, become usable for some instants (green rectangles).
(c) After contact all protoobjects are labelled again as non-usable (black rectangles). (d) Shows the probability of each protoobject being usable during the
experiment.

potential objects in the working memory are usable due to the
sensory contingency of promoting movement (Fig. 13(b)). This
means that, by construction, there is a sensory link with all
objects in the scene and it cannot distinguish the difference of
touching itself or an outbody object. However, when there is no
contact all objects are labelled again as non-usable (Figs. 13(c)
and 13(d)). Furthermore, in the case of disabling in/out body
discrimination as well as the tactile sensory link, the objects in
the visual field are inferred as unknown and non-usable during
the whole experiment. This contributes with more evidence to
support that in/out body distinction through self-perception is
significant for scene understanding.

E. Quantitative study

TABLE IV
QUANTITATIVE ANALYSIS: SELF-DETECTION AND OBJECT DISCOVERY

Layer Confusion Matrix E (mov/¬mov) Discovery

expected \ detected (µ%) µ± σ success/total%

visual field level
self out unknown

self 60.59 12.96 26.45
out 94.26 1.10 4.64

0.595± 0.107/0.483± 0.083 -

with top-down
self out unknown

self 74.87 2.11 23.02
out 92.0 2.12 5.88

0.615± 0.096/0.513± 0.116 -

proto-object level
self out unknown

self 81.9 11.9 6.1
out 74.3 20.8 4.8

- 92.31 %

We have also performed a quantitative analysis of self-
detection and object discovery to show the accuracy of the
proposed model. In order to perform the evaluation we have
stored one image per second and then manually segmented
the self region into a mask. This is then used as ground truth.
Table IV shows the mean values for all experiments and Fig.
14 depicts two experiments in detail. The measure used to
evaluate self-detection is the confusion matrix, where we show
the percentage of correct pixel-wise classification in mean
values. We also use a matching metric (E = tp/(tp+fp+fn)),
which is explained in the left side of Fig. 14. E is a con-
servative measure since we are computing the ratio of the
correct detected area and all mismatches. True positives (tp)
is the number of correct self pixels. False positives (fp) are
pixels wrongly detected as self. False negatives (fn) are pixels
wrongly classified as outbody. True negatives are not used
since the area of outbody is too big and it does not represent
an important indicator.
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Fig. 14. System evaluation example. The success ratio
(measure/self region area) is shown along the time comparing the
visual self-detection with the ground truth. Two measures are provided:
precision (tp/(tp+ fp)) and the matching metric (E = tp/(tp+ fp+ fn)).
Shaded grey regions determine when the robot is moving.

Confusion matrices in Table IV show that the visual layer
is able to detect the 60% of the robot arm on average for
all experiments. Using top-down influence we improve self-
detection around 14% with low impact on the outbody infer-
ence. Finally, at the proto-object level, the out-body detection
is failing 20% due to the first instants where the system is
unable to induce the current class of the tracked object. The
matching metric (E) has been analysed when the robot is
static and when it is moving. There is an increment in the
performance when the robot moves. We can see this in detail
in Fig. 14, where at shaded regions (when the robot is moving)
the number of true positives rises. However, false positives also
rise due to the delayed reaction of the Bayesian filter and the
larger self detected area. Worse cases scenarios are produced
when the observations (movement binding between the visual
and proprioceptive cues) are not certain enough to maintain
the region when the arm stops. This is perfectly shown in
Fig. 14(a), where the ratio of tp drops when the robot stops
(non-shaded regions). On the contrary Fig. 14(b) shows how
to reduce this effect by means of top-down modulation.

The object discovery task success is presented in the last
column of Table IV. 10 experiments with a total of 13 objects
to be discovered exhibit one failure. In conclusion, the robot
is able to sufficiently discover the object just by touching and
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analysing the posterior moving causality when it can discern
outbody regions.

VII. DISCUSSION

We have experimentally shown the advantages of self-
perception in robots when interacting with the environment.
On one hand, self-detection has been performed by correlating
sensory consequences of visual and proprioceptive cues. On
the other hand, objects discovery has been presented as the
combination of the self-detection ability and the inter-modal
sensory contingencies understanding. Despite the simple pro-
posed model, the robot is able to successfully discover the
objects in the scene by means of visual artificial attention and
tactile cues. Thus, it shows the potential of building robots
with self-perception understanding. This involves the ability
to transform sensor information into meaningful cues, self-
detection skill and the mastery of the multisensory binding.
In this sense, low-level perception and top-down embodied
representation seem to be the first stage for self-recognition
and agency attribution.

By removing the ability to distinguish inbody from outbody
sources (sec. VI-D) we have shown that the robot is not able
to interpret correctly which objects are potentially usable. This
means that even understanding modality-related contingencies
the sensory tactile link makes incorrect causality inference.
On the other hand, the mastery of inter-modal contingencies
(multisensory fusion) disambiguates scene understanding. Vi-
sual artefacts are differentiated from real objects (sec. VI-C).

However, by developing a computational model, according
to the theoretical facts, we take the risk of biasing the emergent
behaviour. Thus, more robust evidence of what we are postu-
lating here can be obtained by learning modal and inter-modal
contingencies and analysing if they have embedded causality.
Hence, we will study biologically inspired learning structures
to obtain the same performance but improve generalization.

One interesting aspect that SMC theory tries to explain
is the sensory substitution [9]. For instance, remote tactile
sensing, where the sense of touch is substituted by other sensor
modality such as sound echo. In this work, we have presented
the idea of the tactile sensory link between the self and out-
body objects, which generates causality. If we can replace
this sensory link, by letting the robot learn the sensorimotor
contingencies for that new sensor, the conceptual interpretation
machinery will remain the same.

Interaction as an active process [46], [17], [47] has been
insufficiently addressed. The robot should refine its knowledge
or infer more complex causality by continuous interaction.
This incremental development needs the generation of actions
according to the sensory consequence, meaning that the robot
does also have to learn the actions promoted by those changes
in the sensor (e.g, within attention, the sensory changes trigger
fixation actions).

VIII. CONCLUSION

We have presented a robotic self-perception mechanism
that exploits multimodal contingencies in order to interpret
simple causality. Three needed skills have been identified:

(1) meaningful cues extraction, where the system transforms
signal changes associated with each sensor into informative
cues such as movement; (2) self-detection, where in/out body
discrimination takes place; and (3) object interaction, where
the robot employs low-level inferred knowledge and inter-
modal contingencies to deploy conceptual interpretation of the
scene.

The robot has successfully discovered potentially usable
objects in the scene with a 92% of accuracy and it has been
able to disambiguate a visual artefact from real objects. The
experiments where the object has not been correctly identified
indicate that the level of interaction, quantified as the density
of the meaningful signals during the interaction time, is essen-
tial for the grounding of the knowledge. Thus, improvements
can come by increasing the interaction time or by augmenting
the number of meaningful signals or modalities.

Our self-detection method uses, as input, bottom-up pro-
toobject artificial attention and proprioceptive cues. This ap-
proach is more general than other tailor algorithms that need
prior knowledge of the body parts. The advantage of using
visual artificial attention is that the same subsystem can be
used for aiding self-detection and for object interaction. The
quantitative analysis has shown that when the robot is moving,
it is sufficiently capable of performing in/out discrimination.
However, in absence of movement, the performance decreases
considerably (12% on average) suggesting the necessity of in-
cluding other features or top-down information. In this regard,
self-detection with top-down has obtained the best accuracy
at the pixel level (74.87%). This performance increases up to
81.9% when classifying the attended protoobjects.

We have shown, and validated in a real humanoid robot,
that self-perception, taken as the understanding of the sensory
consequences of performing an action, can improve the capa-
bilities of the robot to interact in unknown environments. Then,
the robot could speculate: �I understand the world because I
understand my perception�.
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