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Abstract

We address self-perception and object discovery by integrating multimodal tactile, proprioceptive and visual cues. Consid-
ering sensory signals as the only way to obtain relevant information about the environment, we enable a humanoid robot to
infer potential usable objects relating visual self-detection with tactile cues. Hierarchical Bayesian models are combined with
signal processing and protoobject artificial attention to tackle the problem. Results show that the robot is able to: (1) discern
between inbody and outbody sources without using markers or simplified segmentation; (2) accurately discover objects in the
reaching space; and (3) discriminate real objects from visual artefacts, aiding scene understanding. Furthermore, this approach
reveals the need for several layers of abstraction for achieving agency and causality due to the inherent ambiguity of the sensory
cues.

I. INTRODUCTION

In the last twenty years roboticist are seeking to build machines that, whenever they are turned on for the first time, learn
how to interact with the environment by means of their sensorimotor experience [1], [2], [3]. We envisage that, as in humans,
this is the key for adaptability as they will be able to relearn when unexpected changes appear using the same machinery [4].
However, robots that learn from scratch are still a chimera. The difficulties do not only arise from the computational models
and their limitations but also from the nature of the sensory cues. Moreover, it is still unknown and even controversial how
to get from sensor information to self-awareness, causality, semantic interpretation and agency attribution.

Recent works related to self-perception in psychology and neuroscience give some insight about the potential paths
to follow. Sensorimotor temporal contingency is a key for discriminating inbody and outbody sources in four potential
forms (contiguity, correlation, conditional probability and causal implication) [5]; the sensory consequences observed are
tightly involved in the agency attribution of the actions [6]; sensorimotor understanding is a process learnt by interacting
with ourselves and the environment [7]; self and other’s representation connects the sensorimotor map with more complex
cognitive skills [8]. If we want to enable causality and semantic inference from sensory information, robots need to deploy
multisensory binding based on contingency, self representation and agency attribution while interacting with the environment.

In this work we show a novel robotic approach to go from sensors to abstract concepts. Instead of using the motor
commands as the cue, we exploit the multimodal sensory consequence of the action. A representative example is the
following: a robot sends the action to move the arm; body and visual sensors measure changes due to new stimuli; then
the robot can state: this is my arm not only because I am sending the command to move but also because I sense the
consequences of moving it.

One of the biggest challenges in self-perception is to arrive from bottom-up attention to coherently identify the self body
parts in the scene as the time passes. Within bioinspired approaches the working memory is argued to be in charge of
the objects tracking [9]. However, when dealing with self-detection we do not know which features of the body should be
tracked. Hence, the attention system should be general enough to deal with the objects of the scene but also to help in the
self-detection process.

This paper first addresses self-detection from the multisensory perception point of view, extending the works from [10],
[11] to avoid visual assumptions such as placing markers or objects tracking. Secondly, we employ self-detection to enable
object discovery. For that purpose, we replicate the taping experiment (Fig. 1(a)) proposed in [2]. The only considered
way to get information is through sensor signal processing. Thus, we integrate proprioceptive and tactile cues from an
artificial skin [12] with visual cues through bottom-up attention [9] to provide the robot self-detection and simple objects
interaction causality skills. We show that without any prior knowledge of the scene the robot perceives its own body and
discovers potentially usable objects by simple causal effects that it can promote to those objects. We propose a hierarchical
Bayesian computational model [13] comprised of three layers of abstraction. This model is capable of transforming sensory
information into “concepts” taking into account observation uncertainty.
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(a) Robot setup and sensor signals (b) Proposed model

Fig. 1. The robot differentiates in/out body cues using proprioceptive and visual sensing and discovers objects by moving them. It counts with vision
system and artificial skin with accelerometers, force and proximity sensors.

A. Multisensory-based approach

The robot counts with artificial skin [12] that provides proprioceptive (accelerometers, Ca) and tactile (force Cf and
proximity Cp sensors) information, as well as a vision system (i.e., one See3CAMCU50 camera). The robot signals and
concepts extracted, and the proposed approach in abstract form is depicted in Fig. 1. It is composed of three layers of
inference: visual field self-detection, protoobject self-detection and object interaction. The system can be seen as several
layers that disambiguate sensory cues into concepts. First, meaningful visual and proprioceptive signals are bound to enable
in/out body cues discrimination. Then, the protoobjects provided by visual attention and stored in the working memory are
classified as self or outbody using lower layer information. Finally, the robot interacts with the potential outbody objects
to infer “usability” using tactile cues. Besides, this model also provides an easy way to include top-down modulation as a
prior knowledge (e.g., an embodied or appearance model).
• Visual field self-detection. The robot, binding visual (saliency map with motion) and proprioceptive (accelerometers)

cues, detects whether a pixel belongs to itself or not. This layer combines probabilistic inference grids with attentional
maps [14]. To avoid the tracking of the robot parts 1st order dynamics (velocities) are learnt online.

• Protoobject in/out body discrimination. Bottom-up attention provides the most relevant regions of the scene. These
attentional units, called protoobjects, are stored in the working memory. Using the visual field layer information the
robot is able to classify whether the protoobject belongs to itself or it is an outbody source.

• Object interaction. It defines properties of the object based on the self-detection model and the sensory consequences of
the interaction. We have focused on discovering potential usable objects. We define a usable object when the following
causality appears: (1) the robot moves the arm (promoted action or cause), (2) it is touching (sensory link) and (3) the
object moves (sensory consequence or effect).

II. REVISITING SELF-DETECTION AND ATTENTION

Several authors have expressed robotic self-embodiment as the ground skill for higher level interaction with the environment
[3], [15]. The first stage in the developmental process is learning the body model and then, the robot can learn behaviours
that it can promote to objects [3]. However, where does perception take part? Causality inference, as a high order skill,
arrives when we are able to attribute the agency of the actions [6] and this definitely undergirds on the understanding
of the sensorimotor response [7]. The mechanism behind the construction of the own representation in humans is still
unknown. Evidence point towards the parieto-premotor network where own and other’s body representation connect low
level sensorimotor skills with high-order cognitive functions [8]. In this configuration there are self-dominant and other-
dominant neurons [8]. This shows that although the self-other representation shares the same machinery there are some
regions dedicated to each aspect.

Approaches introduced by Stoychev [11] and Pitti et Al. [16] are supported on temporal contingency although they use
different methodologies. This has psychology foundations on Watson theories [5] and studies on the visual cortex [16]. The
idea is that causality, in the form of motor-visual cues and their temporal coherence, is the base for self-detection. However,
despite the consistent spatio-temporal response to similar stimulus of the visual neurons there should be an implicit treatment
of the observation uncertainties. On the other hand, Gold et al. [10] have approached self-detection via probabilistic reasoning
of the observed cues. We argue that causality, seen as the relation between the cause and the effect A → B, cannot be
uncoupled from the perception of the process (if A is observed then B becomes more plausible [17]). In practice, in robotic
applications visual segmentation algorithms usually have spatial-temporal incoherence of the output at different instants due
to changing conditions (e.g., light changes).

Artificial attention must contribute to self-detection and object interaction processes. This is something that has been
simplified using colour markers [11] or by means of connected components [10]. In both works, object tracking is crucial
for the success of the method. Other models of attention that have been used are difference-of-gaussians or image-differencing.



It is worth mentioning the work in [18] where the robot is able to learn the sensorimotor mapping to distinguish self and
other using features extracted from optical flow. However, this mapping do not tackle objects interaction. A more interesting
approach for sensory integration has been performed by Hikita et al. [19] where a biologically inspired attention system
processes the visual information. Although [19] is the most similar to the one proposed here, in terms of multimodal cues
integration and attentional map approach, they only deal with tool extension and they do not tackle causal implications of
passive interaction with outbody objects.

III. EXTRACTING MEANINGFUL CUES FROM VISUAL, PROPRIOCEPTIVE AND TACTILE CUES

TABLE I
FROM SENSORS TO CONCEPTS

Sensor signals Meaningful cues Inferred concepts

Ca skin accelerometer BM left arm moving S belongs to itself

VM visual move OM protoobject moving Out is outbody

Cf ,Cp skin force and proximity T left arm touching U is usable

We extract meaningful signals from the sensor information for later use inside the models (Table I). Sensor signals Ca
and Cf are real measurements from the sensors and the meaningful cues are modelled as Bernoulli random variables1.

A. Proprioception information
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k
a ). The arm is moving depending on the previous knowledge and the new

observation from the sensors. The data plotted correspond to 70 seconds of the robot performing random movements.

First we extract the moving information from the left arm skin proprioception. Modelling it as a first order Markov
process we get the probability of the left arm being moving (Fig. 2) given the accelerometer observation P (BM |Ca). We
only need to learn the likelihood distribution P (Ca|BM ), which are the values that the accelerometer measures when the
arm is moving. Alternatively, we bypass the classical solution of grabbing data and then learn the distribution by redefining
the problem with a signal change detection function. Thus, we have the probability of the left arm being moving given a
change on the signal P (BM |change(Ca)) where, change(Ca) = 1 if the signal changes.

This methodology helps to detect value changes while being robust to oscillations. It also simplifies the problem to a
binary variable. We assume that the natural behaviour of the system is to maintain the current state (moving or static).
Thus, it only depends on the likelihood of the observations2. Moreover, accelerometer variables (Cai ) are assumed to be
independent to each other. Then the probability of the left arm moving is,

P (Bk
M |change(Ca)) ∝

∏
i

P (change(Cai)|B
k
M )P (Bk−1

M ) (1)

In order to calculate when the signal changes we use an adapted online CUMSUM both-sides detector algorithm [20]. The
method starts with an initial estimation of the signal value µ̂, σ̂2 computed from an initial set of samples with fixed size
(window). Whenever the algorithm detects a change, the mean and the variance are updated using the new window samples3.

1P (BM = 1) = p where {p ∈ (0, 1) ∈ R}.
2With slow dynamics we can assume P (Bk

Ml
|Bk−1

Ml
) = diag(1).

3The window of input samples is maintained by means of a double linked queue and the new estimation is computed as follows: µ̂ = mean(window),
σ̂2 = max(variance(window),MIN VARIANCE).



B. Visual cues

Bottom-up artificial visual attention [21], [9] is used as the preattentive stage to extract salient protoobjects (see section V).
First it groups pixels that have similar characteristics (colour, intensity) and then a set of features are extracted and weighted
(colour and intensity contrast, colour bias and optical flow) in order to evaluate their relevance. These salient regions are
already meaningful representations of the scene. Thus, we have a set of visual objects, which contains the movement
information {OM1

, · · · , OMn
}. For enabling self-detection before any body schema has been learnt, the protoobjects must

be maintained over time. However, tracking all objects in the scene is impracticable. We argue that attention should remain
as a middleware process [9] that manages objects in the scene and helps self-detection. Therefore, the protoobject saliency
map is used as the visual input for the self-detection model.

C. Tactile cues
Force and proximity sensors in each cell of the skin [22] provide information about the relative location (which part of

the body) and the amount of force that the robot is performing. When touching an object the force sensor increases its value
and we can extract the probability of touching something. However, in practice we need to fuse proximity sensing to cope
with very light objects by exploiting the saturation value of the sensor when touching. Defining Cpi as proximity and Cfi
as force of each cell i, the probabilistic model of a set of cells to infer touching T is the following:

P (T |Cp ∪ Cf ) ∝ 1−
∏
i

P (Cpi |T )P (Cfi |T )(1− P (T )) (2)

where T is a Bernoulli random variable that express no-touching. Force and proximity sensors contribute independently to
obtain the probability of touching.

IV. HIERARCHICAL BAYESIAN MATHEMATICAL MODEL

First we describe the mathematical model assuming a perfect tracking of the object to show its correctness. Afterwards,
we provide the solution when the robot parts cannot be tracked due to segmentation failures.

A. Assuming features tracking

This section studies the theoretical model when the object can be correctly identified through time. We define a set of
classes that should be inferred by the self-detection model ζ = {S,Out}4, where self (S) is defined as the parts of the scene
that belong to the robot and outbody (Out) defines any region of the scene that do not correlate with the robot movement.
The probability of being S given the meaningful cues is (protoobject moving OM , body moving BM and touch T ):

P (ζ = S|OM , BM , T ) ∝ (1− P (T ))
∑
BM

P (OM |BM , S)P (S) + P (T )P (S) (3)

The object class i is obtained by normalization and computing the maximum a posteriori [10]: argmaxi P (ζ = i) =
argmaxi P (ζi)/

∑
ζ P (ζ).

The usable model is computed using the output of self-detection model. The joint probability is defined as:

P (U,BM , T,OM , S) = �����
P (BM |U)︸ ︷︷ ︸

indep.

P (T |BM , U)︸ ︷︷ ︸
uniform

P (OM |BM , T, U)︸ ︷︷ ︸
table

P (S|BM , T,OM , U)︸ ︷︷ ︸
low level

(4)

by knowing P (S|BM , T,OM , U) using the visual-field layer the probability of being a usable object at the proto-object
level is then simplified to:

P (U |BM , T,OM , S) =
1

η
P (OM |BM , T, U)P (S|U)P (S|BM , T,OM ) (5)

where η is a normalization factor.
Figure 3 shows an example of the theoretical model for one object where the input signals are generated synthetically.

The probability of usability only rises when there is a sensory link (touching) and causality (arm moves → object moves).
Furthermore, the probability of being usable decreases when the object belongs to the robot.

4Note that in this case P (S) = 1− P (Out).



(a) Generated synthetic signals (b) Model output

Fig. 3. Example of the model behaviour assuming a single correctly tracked object. Synthetic signals are generated for P (BM ), VM and P (T ). P (S)
depends on both moving signals and P (U) depends on the touch signal and on the probability of being self or outbody.

B. Self-detection without features tracking: inference grid and velocities estimation

In the case of not being able to track all objects coherently over time and before having a self representation of the body,
we have to solve which parts of the scene belong to the robot by visual VM and proprioceptive observations Ca. We define
the visual receptive field as a grid where we want to infer which node (i.e., decimation of the pixel-wise image) belongs
to the self and which does not. We adapt Bayesian inference grids [13], [23] to estimate the probability of being self along
the time. The prediction step is computed using the velocities in four directions Wd∈(0,3) (i.e., up, down, left, right). The
probabilistic equation that governs self-detection is the following (see [23] for a detailed explanation),

P (S|W,VM , BM ) =

∑d=3
d=0 P (VM , BM |S = 1)αself(d)∑d=3

d=0 P (VM , BM |S = 1)αself(d) + P (VM , BM |S = 0)αout(d)
(6)

where αself(d) is computed in every velocity direction d as,

αself(d) =(1− ε)P (Ad)P (Wd)TdP (S) + εP (Ad) [1− P (Wd)TdP (S)] (7)

Analogously, to compute αout(d), we set ε = 1 − ε in Eq. 7. We have defined Td as the transition matrix that shifts all
probabilities towards d direction and P (Ad) as the prior probability of moving in that direction. The term ε controls the
amount of non-constant velocity in the visual input (with higher values the system becomes more reactive). Afterwards we
compute the posterior probabilities of the velocities to be used in the next instant:

P (Wd) =P (VM , BM |S = 1)αself(d) + P (VM , BM |S = 0)αout(d) (8)

With this method we do not need tailor made body objects tracking and we can still use the working memory to store
relevant protoobjects given by the attention system, something important for discovering potential usable objects.

C. Top-down influence

We define the most probable regions for the arm to appear P (E) at the visual field level using any embodiment information.
Here we have included two types of information: attended objects that are classified as self P (Oi, S = 1) > κ (protoobjects
level) and a prior model defined by a smoothed mixture of Gaussians over a straight line that connects the left-bottom corner
with the end-effector estimated location. This can be also used to include appearance or more complex prior spatial models
of the robot body. The combined self-detection becomes P (S) = wP (S) + (1− w)P (E), where w ∈ (0, 1).

V. RESULTS

First we analyse self-detection and then we evaluate the integration of tactile cues for objects discovering. The experimental
setup and some examples can be further explored in the following video http://web.ics.ei.tum.de/˜pablo/
sawicdl2016.mp4. The parameters value, obtained empirically, for all executions are summarized in Table II.

http://web.ics.ei.tum.de/~pablo/sawicdl2016.mp4
http://web.ics.ei.tum.de/~pablo/sawicdl2016.mp4


TABLE II
DEFINED PARAMETERS VALUE FOR THE EXPERIMENTS

Parameter Notation Value

grid decimation - 5× 5 pixels/node

Object moving when usable P (OM |BM , T, U = 1) (Pu, 0.08, Pu, Po, Pu, Pu, Pu, 1− Po);
Object moving when not usable P (OM |BM , T, U = 0) (Pu, Pu, Pu, 1− Po, Pu, Pu, Pu, Po)

uniform, outbody mov Pu, Po 1/8, 0.15

self being usable P (S|U) (0.5, 0.5; 0.53, 0.47)

velocity prior probability PA (0.1, 0.9/4, 0.9/4, 0.9/4, 0.9/4)

non-constant velocity, top-down thr. ε, κ 0.0001, 0.8

(e) P (BM ), P (T ) (f) self-detection (g) working memory (h) P (Out), P (U)

Fig. 4. Object discovery via visual attention and self-detection. First row describes the first stage of the system where the arm has started moving but
self-features are still counted as outbody parts. Second row shows the robot pushing an object (due to the pushing another object has been also moved).
The system infers that those visual objects are actually potential usable ones. First column displays the meaningful signals (left arm moving and touching).
Second shows self-detection at the visual low level. Third shows the attended protoobjects in the working memory (yellow - outbody, magenta - self, green
- usable). Last column describes the probability of each protoobject (six potential objects are being tracked) being outbody (yellow) and usable (blue).

A. Self-detection

An example of the self-detection inference is shown in Figure 5. The saliency and the protoobjects moving, outputted
by the visual attention, are described the first two columns. Fig. 5(c) shows the probability of each pixel belonging to the
robot. Finally, Fig. 5(d) exhibits the moving arm being visually detected as own (magenta) and as outbody (yellow). As the
arm is moving to the left, velocity estimation aids to spread the probabilities towards that direction. This can be seen in the
unknown areas (grey) and the self larger in the left side of the arm. Moreover, without velocity estimation self regions will
appear on the arm trajectory.

B. Object discovery

To evaluate the task of discovering potential usable objects we design 10 experiments with the same initial configuration
of the scene but with different objects (shapes and colours). The robotic arm has preprogrammed naive motion and it is not
goal directed. Figure 4 shows an example where the robot is able to distinguish two potential usable objects by interacting
just with one of them. This happens because when it pushes one object the other also moves. The first row represents the
system 7 seconds after starting the experiment and the second row shows when the robot is pushing the object. Note that,
after interaction, the robot is certain about object 1 and 2: they are outbody and potentially usable.

C. Scene disambiguation: illusion experiment

We show how tactile and visual cues fusion disambiguates objects usability. We print on a sticker an object that looks
three-dimensional from the robot perspective (Fig. 6(a)). Then we put it on the table along with a real object (toy truck)



(a) saliency (b) moving protoobjects (c) P (S) (d) self-detection

Fig. 5. Self-detection combining visual attention and proprioceptive cues. (a) Saliency map (brighter represents more salient); (c) probability of being
self (whiter colour represents higher probability); and (d) self-detection, self (magenta), outbody (yellow) and unknown (greyscale).

(a) Object illusion (b) Before touching (c) While touching (d) After touching

Fig. 6. Disambiguating usability in visual artefacts. One printed object (illusion) and a truck toy are placed on the table. Coloured pixels represent
self-detection or protoobjects in the working memory (self (magenta), inanimate (yellow), green (usable)).

that can be moved. The system is able to infer that the truck is usable and the illusion is no longer valid. Figure 6 shows
different instants of the robot interacting. When the touching begins some protoobjects are lost (tracking) and one of the
new selections is also classified for a small period of time as a usable object. Afterwards, it converges towards self again
and only detects the real usable object. The visual artefact is finally established as an outbody non-usable region.

D. Quantitative study

Layer Confusion Matrix E (mov/¬mov) Discovery

expected \ detected (µ%) µ± σ success/total%

visual field level
self out unknown

self 60.59 12.96 26.45
out 94.26 1.10 4.64

0.595 ± 0.107 /
0.483± 0.083

-

with top-down
self out unknown

self 74.87 2.11 23.02
out 92.0 2.12 5.88

0.615 ± 0.096 /
0.513± 0.116

-

proto-object level
self out unknown

self 81.9 11.9 6.1
out 74.3 20.8 4.8

- 92.31 %

Fig. 7. Quantitative analysis: self-detection and object discovery.

We have also performed a quantitative analysis of self-detection and object discovery. In order to perform the evaluation
we have stored one RGB image per second and then segmented the self region by hand into a mask. This is then used as
the ground truth. Figure 7 shows the mean values for all experiments. The measure used to evaluate self-detection is the
confusion matrix, where we show the percentage of correct pixel-wise classification in mean values. We also use a matching
metric (E = tp/(tp + fp + fn)), which is explained in the left side of Fig. 7. E is a conservative measure as we are
computing the ratio of the correct detected area and all mismatches. True positives (tp) is the number of correct self pixels.
False positives (fp) are pixels wrongly detected as self. False negatives (fn) are pixels wrongly classified as outbody. True
negatives are not used as the area of outbody is too big and it does not represent an important indicator.

The statistical analysis shows that the visual layer is able to detect the 60% of the robot arm in average during all
experiments. Using top-down influence we improve self-detection around 14% with low impact on the outbody inference.
Finally, at the proto-object level the out-body detection is failing 20% due to the first instants where the system is unable to
induce the current class of the tracked object. Moreover, the matching metric (E) describes a 10% performance decrement
when the robot is static.

The object discovery task success is summarized in the last column of Fig. 7. 10 experiments with a total of 13 objects
to be discovered exhibit one failure. The error is due to poor response of the tactile sensor. The robot is able to discover



the object by touching and analysing the posterior moving causality when it can discern outbody regions.

VI. CONCLUSION

We have presented a perception method for interpreting visual, proprioceptive and tactile signals and to enable self-
detection and object discovery. Results shows that self-detection of the arm is 60% on average and 74% when using some
prior top-down information. By differentiating self from outbody sources the robot has been able to discover objects in the
scene (92% accuracy) and disambiguate visual cues. Thus, by providing in/out body discrimination abilities, more complex
types of interpretation activities, such as finding usable objects, is simplified.
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[7] J. K. O’Regan and A. Noë, “A sensorimotor account of vision and visual consciousness,” Behavioral and brain sciences, vol. 24, no. 05, pp. 939–973,

2001.
[8] A. Murata, W. Wen, and H. Asama, “The body and objects represented in the ventral stream of the parieto-premotor network,” Neuroscience research,

2015.
[9] P. Lanillos, J. F. Ferreira, and J. Dias, “Designing an artificial attention system for social robots,” in Intelligent Robots and Systems (IROS), IEEE/RSJ

Int. Conf. on, 2015, pp. 4171–4178.
[10] K. Gold and B. Scassellati, “Using probabilistic reasoning over time to self-recognize,” Robotics and Autonomous Systems, vol. 57, no. 4, pp. 384–392,

2009.
[11] A. Stoytchev, “Self-detection in robots: a method based on detecting temporal contingencies,” Robotica, vol. 29, no. 01, pp. 1–21, 2011.
[12] P. Mittendorfer and G. Cheng, “Humanoid multimodal tactile-sensing modules,” Robotics, IEEE Trans. on, vol. 27, no. 3, pp. 401–410, 2011.
[13] J. F. Ferreira and J. Dias, Probabilistic approaches to robotic perception. Springer, 2014.
[14] P. Lanillos, J. F. Ferreira, and J. Dias, “Multisensory 3d saliency for artificial attention systems,” in REACTS Workshop, Int. Conf. of Computer

Analysis of Images and Patterns (CAIP), 2015, pp. 1–6.
[15] G. Schillaci, V. V. Hafner, B. Lara, and M. Grosjean, “Is that me?: sensorimotor learning and self-other distinction in robotics,” in ACM/IEEE Int.

Conf. on Human-robot interaction (HRI), 2013, pp. 223–224.
[16] A. Pitti, H. Mori, S. Kouzuma, and Y. Kuniyoshi, “Contingency perception and agency measure in visuo-motor spiking neural networks,” Autonomous

Mental Development, IEEE Trans. on, vol. 1, no. 1, pp. 86–97, 2009.
[17] E. T. Jaynes, Probability theory: the logic of science. Cambridge university press, 2003.
[18] Y. Nagai, Y. Kawai, and M. Asada, “Emergence of mirror neuron system: Immature vision leads to self-other correspondence,” in Development and

Learning (ICDL), IEEE Int. Conf. on, vol. 2, 2011, pp. 1–6.
[19] M. Hikita, S. Fuke, M. Ogino, T. Minato, and M. Asada, “Visual attention by saliency leads cross-modal body representation,” in Development and

Learning, (ICDL), IEEE Int. Conf. on, 2008, pp. 157–162.
[20] E. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2, pp. 100–115, 1954.
[21] R. Marfil, A. J. Palomino, and A. Bandera, “Combining segmentation and attention: a new foveal attention model,” Frontiers in computational

neuroscience, vol. 8, 2014.
[22] F. Bergner, E. Dean-Leon, and G. Cheng, “Event-based signaling for large-scale artificial robotic skin - realization and performance evaluation,” in

Intelligent Robots and Systems (IROS), IEEE/RSJ Int. Conf. on, 2016, p. to Appear.
[23] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic reasoning and decision making in sensory-motor systems. Springer, 2008, vol. 46.


	I Introduction
	I-A Multisensory-based approach

	II Revisiting self-detection and attention
	III Extracting meaningful cues from visual, proprioceptive and tactile cues
	III-A Proprioception information
	III-B Visual cues
	III-C Tactile cues

	IV Hierarchical Bayesian Mathematical Model
	IV-A Assuming features tracking
	IV-B Self-detection without features tracking: inference grid and velocities estimation
	IV-C Top-down influence

	V Results
	V-A Self-detection
	V-B Object discovery
	V-C Scene disambiguation: illusion experiment
	V-D Quantitative study

	VI Conclusion
	References
	References

