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Abstract

Traditional image segmentation algorithms have merely focused on separating regions
based on homogeneity of color or texture. More recent methods aim at incorporating
high-level knowledge such as semantics or rigid body motion into what is often called
class-based image segmentation. This thesis considers the problems of continuous semantic
image segmentation and joint motion estimation and segmentation. The aim is to impose
prior knowledge about which set of labels are likely to co-occur or how label transitions
should take place between different rigid body motions.

Specifically, we propose to incorporate co-occurrence and hierarchical priors into contin-
uous multi-label image segmentation. Similar to how humans learn to analyze a scene,
these priors can be learned from co-occurrence statistics or drawn from natural label hier-
archies. The latter prior is realized by assigning each label to a scene label such as 'indoor’,
‘outdoor’, 'nature’ or 'urban’. Arising from a continuous convex relaxation formulation,
the resulting algorithms are, in contrast to discrete methods, not prone to metrification
artifacts. Unlike sequential methods based on alpha-expansion, our optimization problems
can be solved globally optimal using GPU-accelerated efficient primal-dual algorithms.
Qualitative and quantitative results demonstrate the effectiveness of these priors in terms
of the resulting labeling.

Furthermore, we propose a novel joint registration and segmentation approach applied to
RGB-D images. Instead of assuming the scene to be composed of a number of independent
rigidly-moving parts, we allow a smooth label transition in order to capture non-rigid
deformations at transitions between the rigid parts of the scene. By doing so our method
is able to infer the underlying motion estimates more accurately than state of the art
works. At the same time, it provides a meaningful segmentation of the scene based on
these motion cues.

Finally, we introduce a novel approach to improve the integrality of the solution of convex
relaxed multi-labeling problems. Despite their enormous success in solving hard combina-
torial problems, convex relaxation methods often suffer from the fact that the computed
indicator functions are far from binary. Subsequent heuristic binarization may even sub-
stantially degrade the quality of computed solutions. To this end, we incorporate the en-
tropy of the objective variable as a measure of the relaxation tightness. We use difference
of convex function (DC) programming as an efficient and provably convergent solver for
this convex-concave minimization problem. We evaluate this approach on three prominent
computer vision problems: multi-label inpainting, image segmentation and spatio-temporal
multi-view reconstruction. These experiments show that our approach consistently yields
better solutions with respect to the original integer optimization problem.
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Chapter

Introduction

The core challenge in computer vision is to implement basic human visual perception on
digital computers. This includes depth estimation, object recognition, motion estimation,
and image segmentation. These disciplines are the building blocks of scene understanding
which is one of the most important objectives in computer vision.

Of particular importance is the task of image segmentation which is the process of dissecting
an image into its constituent parts. The image segmentation problem is a trivial task to
human perception. Nevertheless, it remains a highly challenging problem in computer
vision and despite it being a classical problem, it is still one of the most trending topics in
the computer vision and image processing community today.

Subdividing an image into segments can be considered an instance of the broader class
of multi-labeling problems. Assigning labels is a crucial task in machine vision because
labels help explain input data and therefore reduce its complexity for further process-
ing and understanding the present scene. Input data can be pixelwise color information
from a camera, range information from a depth sensor or data from magnetic resonance
imaging.

The applications areas are numerous since multi-labeling is useful whenever human vision
is required. One trending application area is autonomous driving where the car needs to
detect the road, persons, trees and other cars to avoid potential collisions. Another major
application is the field of robotics, where a robot depends on understanding its environment
to interact with it, for example to bring milk from the fridge it needs to recognize these as
such.

This thesis deals with multi-labeling in various settings, e.g. semantic image segmentation,
motion segmentation and 3D reconstruction. Depending on the application, labels can
either describe the world geometrically, e.g. depth labels and object-void labels in 3D
reconstruction or describe context information by assigning semantic labels such as ’car’,
'road’, ’tree’. Different scenarios of labeling applications are illustrated in Figure (1.1
Images (a) and (c) illustrate semantic labels in contrast to the labels in (b) and (d) which
are of geometric nature and encode depth values and voxel occupancy respectively.
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Occurring semantic labels differ depending on the scene type such as nature, urban, indoor
or outdoor. Consequently, prior contextual information and the probability of certain
label configurations are crucial for assigning the right labels. For this reason, modern
multi-labeling algorithms aim at incorporating prior knowledge about the likelihood of a
set of labels to occur. This knowledge can be based on learning co-occurrence statistics
from ground truth data or on natural label hierarchies.

Another cornerstone to understanding a scene is estimating the motion of objects in a
dynamic environment. For example, autonomous cars are reliant on estimating the motion
of objects on a road in order to react correctly, e.g. knowing the motion of a crossing
pedestrian is important to stop the car or not.

This thesis investigates incorporating semantic priors into variational multi-label algo-
rithms. Additionally, we improve on the quality of the solutions of variational multi-
labeling algorithms by jointly minimizing an entropy term. Finally, the problem of jointly
segmenting an image and estimating the underlying motions of each part is tackled.

Semantic Priors

The algorithm we introduce in [10] allows for the integration of prior knowledge about what
labels are likely to co-occur in the same image. For instance, in a scene where a person
is riding an animal, our approach would facilitate a computer in labeling the animal as a
horse rather than a moose because persons have a higher likelihood of being in the same
image as a horse.

In [8], we devise a more principled way of incorporating semantic priors. We propose a
joint approach for segmentation, object recognition, and scene understanding, which is
formulated within a single multi-label variational optimization approach. Specifically, the
central idea of this approach is to incorporate natural label hierarchies (i.e., assigning
each image label to a scene label such as "indoor", "outdoor", "nature", "urban", etc.)
in continuous multi-label segmentation. These natural label hierarchies are beneficial to
the labeling process as they facilitate a computer, for instance, being able to decide the
appropriate label of an animal that is located in an urban scene (e.g. ,downtown area)
would be a dog or cat rather than a lion.

One goal of this thesis is providing a unifying framework for these semantic priors. To this
end, we devise a generic primal-dual algorithm that can be used to minimize this class of
energies.

Entropy Minimization for Continuous Multi-Label Optimization

Despite the enormous success of convex relaxation approaches in solving multi-labeling
problems, these methods often suffer from the fact that computed solutions are far from
being binary. Fractional (non-binary) solutions reflect the uncertainty of these algorithms
and a posteriori rounding schemes often result in suboptimal results. In |9], we propose an



b) Geometric labeling on Q C R?

¢) Semantic labeling on a 3D shape d) Geometric labeling on Q C R3 xR,

Figure 1.1: Examples of multi-labeling applied on different domain types. Image (a) depicts a semantic
multi-label application on a highway image. Example (b) illustrates a depth-from-stereo reconstruction of
a bowling scene where labels stand for different disparity values. The segmentation in (c) is performed on
a 3D shape . Image (d) depicts a frame from a spatio-temporal reconstruction where the labels
are object /void.

algorithm which uses the entropy of the objective variable as a measure of relaxation tight-
ness, which in turn gives rise to more binary solutions than classical variational algorithms.
The effectiveness of our approach is demonstrated on numerous computer vision applica-
tions, including multi-labeling, image inpainting, image segmentation, and spatio-temporal
multi-view reconstruction.

In this thesis, we discuss augmenting a broader class of optimization problems with an
entropy term, namely the class of mized integer programs. This type of problems contains
integer as well as continuous unknowns.
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Joint Motion Estimation and Segmentation

In this cumulative thesis, we include a research paper [5| where we introduce a novel joint
registration and segmentation approach for RGB-D images. Dynamic scenes are composed
of rigid (e.g. , a tennis racket that is being swung by a tennis player) and non-rigid (e.g. , the
tennis player’s clothing that shifts and moves while he swings the racket) movements. The
analysis of these movements has been a challenge to the field of motion estimation. Instead
of assuming that a scene is composed of a number of independent rigidly-moving parts,
our approach applies a smooth label transition in order to capture non-rigid deformations
at transitions between the rigid parts of the scene. This is critical because our world is not
composed solely of rigid movements.

1.1 Multi-Labeling

Multi-labeling is a highly ambiguous problem and the desired output heavily depends on its
application. In this thesis, we mainly encounter multi-labeling in the context of image seg-
mentation. However, applications including 3D and 4D reconstructions are also discussed.
The goal of this section is to provide a mathematical setting for general multi-labeling in-
dependent of the type of the domain. Additionally, we present different application areas
of multi-labeling demonstrating its versatility.

Formally we assume that the domain €2 is continuous and can be disjointly dissected as
follows:
Q=0 UQU - UQy,, (1.1)

meaning that {2 constitutes of non-overalling parts €2; C 2. The domain €2 depends on the
application and can be:

e A 2D image, i.e. Q C R?

e A 3D volume, i.e. Q C R3

e A 4D volume, i.e. @ CR3 x R

e A 6D diffusion MRI volume, i.e. Q C R? x R?

e A non-Euclidean domain such as a shape manifold
Multi-labeling on different domain types is illustrated in Figure [I.1}

Mathematically, multi-labeling is the problem of seeking a label assignment A between the
domain Q and a discrete label space £ = {1,2...,n}, i.e.

A:Q— L. (1.2)

This label assignment can be formulated as an integer programming problem on a continu-
ous domain. This thesis will include applications where the label space encodes semantics,
3D reconstruction, spatio-temporal reconstructions and moving segments subject to dif-
ferent rigid body motions. The types of domain {2 we encounter in this thesis are usually
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(a) Input image f (b) Image threshold u

Figure 1.2: Thresholding an image merely separates dark regions from bright ones. The application of
such an approach is limited since typical objects of interest like the penguin consist of more than one color.

a subset of a Euclidean space, i.e. @ C RN x Ry. The major subject of this thesis is
multi-labeling applied on images. In the next section, we give an overview of multi-label
image segmentation algorithms by starting with the binary labeling case. We will assume
Q C R? for the rest of this chapter.

1.2 Image Segmentation via Energy Minimization

The most basic segmentation algorithm is taking a threshold of a input image f: Q2 — R4
which yields the following binary function:

(1.3)

0, else,

u() = {1, f@) >,

for some fixed constant v € R;. A thresholding result is illustrated in Figure[I.2] Although
thresholding the image clearly separates dark and bright image areas, this simple approach
fails to capture semantics such as separating the penguin from the background. Other
heuristic methods for dissecting images are methods based on region merging , region
growing and the watershed transform . While the aforementioned methods can be
extremely fast, they lack a criterion of optimality. That is, without visual inspection, it is
impossible for the computer to distinguish between a "good" and a "bad" solution. This
chapter will address image segmentation methods based on energy minimization. These
approaches often do not achieve global optimality. However, their energy gives us a mean
to measure the quality of the results. Next, we will discuss the binary segmentation case
and review local and global optimal approaches.
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1.2.1 Contour based Methods

In this section, we elaborate on methods where the curve enclosing an object is explicitly
formulated. One of the first energy based methods for image segmentation is the so-called
snakes model introduced by Kass et al. in [93]|. Given an input image f : 2 — R4, the
curve evolution in the snakes approach can be described by the following energy:

1 1 o
50) =~ [1vscras [ {Sier+ feaerfe 0

where C(s) : [0,1] — R? denotes a parametric curve and a,3 € R, are parameters. The
last two terms make sure that the resulting curve is smooth, whereas the first term pushes
the curve to the boundary of an object (i.e. ,large gradients). The snakes functional is
minimized using a simple gradient descent scheme. The update steps are carried out on
the curve by calculating a rate with which it transitions towards the inner normals. Classic
active contour approaches depend inherently on the gradient information |V f| and the
curve is thus prone to get stuck in edges which do not belong to an object. Additionally,
the parametric representation of the curve does not allow topological changes such as
splitting and merging. This is where the level set methods come into play.

1.2.2 Level Set Methods

Level set methods were introduced by Stanley Osher and J.A. Sethian in 1988 [141] and
have been made popular in various areas, such as image processing, computer graphics,
computational geometry and computational fluid dynamics. The most popular level set
based segmentation algorithm is the Chan and Vese model [43| which relies on the idea of
representing the curve C' by the zero interface of a signed distance function ¢ : 2 — R.
The Chan and Vese functional for object/background segmentation can be formulated as
follows:

E(p) = /Q H(p()) fo + (1 — H(p(@) fy + |[VH(p())] dx

s.t. [Ve(z)| =1, Yz € Q

(1.5)

where H denotes the Heaviside function

0, =<0,
H(x):{l >0 (1.6)

and f,, f encode the costs of a pixel z € Q taking on label foreground (H(p(z)) = 1)
or background (H(¢(z)) = 0) respectively. Note that the constraint in is known as
the eikonal equation and needs to be fulfilled in order for ¢ to remain a signed distance
function. This can be done by reinitializing ¢ after each iteration of the optimization
algorithm [178]. The need to solve the boundary value problem in the constraint of
and the non-convexity of its objective make the approach suboptimal in terms of speed
and global optimality of the solution.
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1.2.3 Globally Optimal Methods for Binary Segmentation

In this section we discuss globally optimal methods for solving the task of binary segmen-
tation. These formulations differ from contour based and level-set based methods in the
following points:

e The problem representation no longer depends on an explicit formulation for the
contour and therefore allows arbitrary changes in topology.

e Global optimality implying that the optimization of these cost functions is not de-
pendent on the initialization.

There are mainly two lines of work solving the two-phase segmentation problem in a glob-
ally optimal way: models based on a discrete setting and methods developed under the
assumption that the image domain is continuous.

Graph-Cut Methods

The image segmentation problem can be formulated in a discrete setting by interpreting
the image domain as a discrete lattice. In the two-phase case, the resulting Markov random
field (MRF') energy can be solved in various ways, including graph-cuts |24, [25, [76], linear
programming |[100] and message passing approaches [194]. The most efficient methods for
solving binary MRF problems are graph-cut techniques. The only prerequisite is that
their underlying energies are submodular. In that case a polynomial time algorithm can
be applied in order to compute an s-t min-cut. Even more efficient is using the dual s-t
max-flow formulation and solving it using a push-relabel strategy [69]. In addition to the
binary labeling, strategies to generalize the graph-cut approach to multi-labeling have been
explored. These move-making methods [26] solve iteratively binary graph-cut problems
and refine the labeling until convergence. Being defined on a grid, discrete methods are
inherently prone to exhibit metrification errors [95]. Additionally, they do not allow for
sub-pixel accurate segmentation results. Finally, extensions to 3D and 4D domains are
not trivial due to the extremely high memory consumption of these algorithms. Next, we
present a method which is defined on a continuous domain and thus does not introduce
metrification errors. Additionally, is it easily adaptable to higher dimensions and can be
efficiently solved in parallel using GPUs.

Convex Relaxation Methods

Since the seminal work of Rudin, Osher and Fatemi |161] on image de-noising, variational
methods have been popularized in the computer vision community. Especially the usage
of the Total Variation (TV) has been proven very effective in reconstructing discontinuous
signals. The first use of TV in image analysis dates back to the work of Shulman et al. [166|
in the context of motion estimation. Interestingly TV has already been mentioned by the
French researcher Camille Jorgen in 1881 [90] in a paper on Fourier series. The TV of a
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function u € LY(Q) is defined as follows [68]:

TV (u) := sup {/ udiv ¢ dz; o € C(Q,R?), ||¢]le < 1} , (1.7)
¢ Ua

We define the space of functions of bounded variation as the space of all functions u € L!()
which posses a bounded total variation, i.e.

BV(Q) = {ue LY(Q); TV (u) < cc}. (1.8)

Total variation has been initially used as a tool for imposing spatial consistency on solu-
tions. The geometric properties of TV where examined by Fleming and Federer [58] in
their celebrated co-area formula which connects the total variation of a function u with
the perimeter of all its level sets u > v, Vy € R as follows:

TV (u) = /OO Per({u > ~})d, (1.9)

—00

where {u > v} represents the level domain {x € Q| u(x) > v} and where Per({u > ~})
denotes the length of the interface of {u > ~}.

This insight from geometric measure theory has been a key idea to using TV in the context
of image segmentation. If an object is represented by an indicator function w, TV(u)
measures exactly its perimeter, i.e.

TV (u) = Per({u ==1}), (1.10)

where {u == 1} denotes the set {z € ‘ u(z) = 1}. Using this insight, Chan, Esedoglu
and Nikolova [138| devised a convex energy for solving the two-class segmentation problem
which reads as follows:

Epin(u) = A\TV (u) + (o, u)r, s.t. ue BV(Q;{0,1}), (1.11)
where o(z) = ZOQ% and where py and py, are the probabilities of a point being foreground
or background respectively. Parameter ) is a tuning parameter for penalizing the perimeter
of the object represented by the indicator function u. Problem ((1.11]) is not convex due

to the integer constraint uw € BV (€;{0,1}). Chan et al. |[138| resolve the problem by a
relaxation to the unit interval to obtain the following convex relaxed problem:

Ere(u) = ATV (u) + (0,u)r, s.t. we BV(Q;[0,1]). (1.12)

In contrast to graph-cut methods, convex relaxation approaches do not introduce a grid
bias and are trivially extendable to higher dimensions. Addionally, these methods are
easily parallelizable.

Despite these advantages, formulation ((1.12) has a catch, the integer constraints in
the original binary problem ((1.11) are not preserved and the solutions are possibly
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fractional. However, using the so-called thresholding theorem Chan et al. [138] are able to
prove that every thresholded solution

Lo u¥(z) >,
Uy = w(z) > (1.13)
0, else,
with:
u* = argmin Epe(u), (1.14)

u

is a solution of the original formulation ([1.11)) for any threshold v € (0,1). This also
reveals the true nature of the original binary problem as it can exhibit more than one
global solution.

1.3 Multi-Label Segmentation

Despite the global optimality of convex relaxation and graph-cut methods for the binary
segmentation problem, they fail to capture the semantics of a scene with more than 2 labels.
Recent segmentation algorithms tackle the case of having more than 2 labels. The multi-
label segmentation problem is a combinatorial problem and is, in contrast to the 2 label
case, NP-hard in general. The corresponding integer programming problem is naturally
encoded by using indicator functions:

() 1, if label ¢ is set in pixel x € 2, (1.15)
ui(x) = .
‘ 0, otherwise.

By additionally imposing the uniqueness of labels in each point z € 2, we obtain the
following constraint:

S := {UGBVQ {0,1}H)" )=1 Vxeﬂ}. (1.16)
Overall we obtain the generic energy
E(u) = Ep(u) + Er(u) + Es(u), (1.17)

ueS

where Ep(u) denotes the so-called dataterm which involves the input data and Egr(u) the
regularization term which ensures a spatially consistent solution. The term Eg(u) can
incorporate prior information, e.g. shape, geometry and co-occurrence statistics of labels.
Energy is very general and includes, in addition to spatially continuous methods,
graph-cut based methods since their underlying linear programming (LP) problem can be
cast in this very formulation. Energy is non-convex due to the {0,1} constraint
in (L1.15) which makes it very hard to solve. Most algorithms resort to LP-relaxation
techniques [119| where the integer constraint is relaxed to

ui(x) €[0,1] VxeQ, VieLl, (1.18)
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(a) Input image (b) Dataterm g1

Figure 1.3: The dataterm p; for the foreground in a segmentation problem with |£| = 2. This dataterm
has been obtained using the method in [13].

and (1.16) transforms to the convex constraint:

S::{uEBVQ|Ol

Zul =1 VxEQ}. (1.19)

However, in contrast to the binary segmentation case, there exists no thresholding theorem.
Hence, subsequent rounding of the solution does not yield optimal solutions to the original
integer problem.

1.3.1 Dataterm

In the following, we discuss the dataterm FEp which depends on the input data. The
dataterm assigns every point, x taking on a label i, a cost g;(x). The overall cost is the
integral over the domain 2, i.e.

Ep = Zl/guz(x)gz(x) dx, (1.20)

and can be calculated from color distributions [135], textural information [165] or depth
cues [52]|. More recent methods compute the dataterm using convolutional neural networks
[209]. Note that in case F = Ep, the minimizer v* = argmin, E(u) can be trivially
computed as follows:

“(z) = {1, if 1 = argmin, g;(x) (121)

0, otherwise.

As can be seen in Figure the dataterm is subject to noise and the accuracy of the
labeling is not optimal. Therefore additional terms need to be introduced in order to
impose spatial consistency.
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1.3.2 Regularization

Many problems in computer vision are ill-posed, in the sense that often the solution is not
unique, does not even exist or doesn’t change continuously with the input or parameters.
The typical remedy for ill-posed problems is to impose a regularization term which addi-
tionally endows the solution with a physically meaningful prior such as spatial consistency.
In recent years, a multitude of works dealt with approximating the multi-label image seg-
mentation problem. These include methods based on graph-cuts such as a expansion and
a-0 swap and approaches built upon the convex relaxation method described in Section
Continuous and discrete methods can both be cast into the formulation and
mainly differ in terms of the regularization term Egr(u). Being defined on a continuous
domain, convex relaxation methods have the advantage of not having a grid bias. Ad-
ditionally, graph-cut approaches are based on refining the solution by solving a series of
optimization problems sequentially whereas convex relaxation methods solve one convex
optimization problem and can be easily optimized in parallel by state-of-the-art first-order
approaches. The first to propose a convex relaxation for the multi-label problem in the
continuous setting are Zach et al. in [206]. The authors use a label-wise TV regularization.
Equivalent to formulation the regularizer can be written as follows:

Egr(u) = sup {Z/ udiv ; dx} (1.22)

ekl

where K denotes the following convex constraint on the dual variable ¢:

1
K= {90 € C(2,RH)™, [|¢il]oo < 5 1<i< n} (1.23)

In [37] Chambolle, Cremers and Pock (CCP) introduce a convex formulation of the Potts
model which is a tighter approximation than the energy introduced by Zach et al. The
CCP formulation differs from the Zach formulation only in the constraint set . The CCP
constraint set reads as follows:

Keep = {¢ € CP (LR ||p; — pjll 1,1 <i< j<n+1}, (1.24)

with @,11 = 0. Although exhibiting a tighter relaxation, the size of the CCP constraint
grows quadratically with the number of labels, making it more difficult to perform a projec-
tion into it. In experiments, the tighter relaxation is hardly noticeable and occurs especially
in pathological problems such as triple and 4-junctions of labels [37].

Non-Local TV

The above convex relaxations of the Potts model attempt to minimize the perimeter of
each object in the scene. While this is a suitable prior for certain object classes, it can be
suboptimal for structurally complex objects. For example objects with elongated structures
cannot be recovered using TV due to its shrinking bias. Based on the seminal work of
Gilboa et al. |[67] on non-local differential operators for general graphs, Werlberger et
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(a) Input image (b) Dataterm (c) TV regularization (d) Non local TV

Figure 1.4: Using non-local regularization (d) preserves elongated structures like the leg of the cow in
contrast to the TV approach (c) which introduces a shrinking bias. The dataterm in (b) is associated with
the label 'cow’.

al. proposed using non-local TV in order to remedy the shrinking bias classical TV
formulations exhibit. The key idea is to define label similarity of points x and y not only
in a local scale but also considering points in a larger neighborhood. For this we assign
each pair of points a weight w which measures their similarity:

w(, y) = exp [— <dc(2’ v ds(g’ y)>] (1.25)

Here d. and ds; encode some measures for color and spatial distances respectively. Pa-
rameters o and (3 are scaling parameters. The regularizer penalizes the weighted label
differences between a point  compared to all its neighbors y € :

En(u) = ; /Q \/ /Q w(z, y) (uily) — ui(x))? dydz. (1.26)

Figure[T.4] shows the difference between the classical Potts model and its non-local variant.
One observes that the non-local smoothness penalty improves the boundary of the object
by recovering elongated structures like the legs of the cow. In practice only a small neigh-
borhood (e.g. a patch) N(x) C Q of pixel z is considered for calculating finite differences
in (|1.26]).

1.3.3 Thresholding and Optimality Bounds

In order to recover a binary solution from the result of the convex relaxed optimization

problem, one needs to resort to binarization techniques. One simple solution is to perform

the following rounding scheme

1, if i = argmax; u}(x

@i(z) =4’ T I () (1.27)
0, otherwise,

where 4 denotes the rounded solution and u* the solution of the relaxed problem. In
contrast to the 2-label case, there exists no thresholding theorem. Hence, there is no a
priori guarantee that the thresholded solution is optimal in terms of the original binary
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(a) Observed Scene (b) 2 Boxes (c) 1 Box

Figure 1.5: Occam’s principle suggests choosing the model where less boxes (1 box) are occluded by the
tree over the more complex estimate of 2 boxes behind the tree.

energy. Chambolle et al. proposed calculating an a posteriori bound based on the
following relation:
E(u) — E(u) < E(a) — E(u"), (1.28)

where @ denotes the global minimizer of the original integer programming problem. The
relation is based on the fact that E(u*) < E(u) < E(u). Since the unknown energy
gap E(4) — E(u) of the rounded solution @ to the true binary minimizer @ is bounded by
the known gap E(4) — E(u*) we obtain the optimality measure:

E(a) — B(u). (1.29)

Hence, a smaller bound is an indication of the proximity to the minimizer of the binary
problem.

Similar to the a priori bound provided for a-expansion in , Lellmann et al. pro-
posed a probabilistic rounding scheme which provides an a priori optimality bound for
continuous multi-labeling. In practice, this probabilistic rounding method happens to be
slow and does not provide visually satisfactory solutions. In ﬂgﬂ, we proposed minimizing
the entropy of the unknowns in order to penalize deviations from the integer constraint
. Although our approach is not convex, our algorithm is guaranteed to converge and
experimental results show that we consistently obtain better optimality gaps compared
to pure convex relaxation approaches. In Chapter [, we present a generalizing frame-
work in which we introduce entropy minimization to the broader class of mixed-integer
programs.

1.4 Incorporating Prior Information

The problem of dissecting an image into regions is a highly ambiguous task and often
one needs to provide the algorithm with additional information in order to achieve better
results. In the following, we discuss two different types of higher level priors, namely
geometric and label configuration or semantic priors.
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1.4.1 Geometric Priors

The most basic geometric prior forces the solution to be spatially smooth. Spatial smooth-
ness in the in context of image segmentation reflects the prior expectation of objects to
have minimal boundary. Boundary length priors arrised initially in the work of Mumford
and Shah [131] and have been adopted in various forms, including explicit [93| and im-
plicit [138] representations of objects. A more sophisticated way of regularity is devised in
[80] and can be considered as an object class specific smoothing term which implements a
surface orientation prior.

Another line of work on geometric priors has promoted global priors involving all points
in 2. One of the first global geometric priors is the balooning force introduced by Cohen
et al. [46] which is designed to avoid local minimizers in the active contour model. In [96,
97|, Klodt et al. introduced a family of shape priors to binary segmentation in the form
of moment constraints. These convex constraints range from simple area constraints to
complex higher order moments. By increasing the order, the authors are able to encode
simple shape priors. In [136] Niewenhuis et al. propose coupling the volume of different
labels in order to enforce learned segment proportions. In [116} [172]|, Strekalovskiy et
al. proposed different penalization of label jumps for different directions. These penalties
are capable of encoding complex label layout priors. Using dynamic programming, a similar
approach has been devised in the discrete setting [60].

A more direct way of realizing shape priors is to encourage the consistency between a
learned silhouette and the segmentation result [44, 47|. However, these methods suffer
from local optimality and a good initialization is necessary to obtain optimal results. A
remarkable exception is the work of Schoeneman et al. [163] where a polynomial time
algorithm for matching shapes to images is proposed.

1.4.2 Label Configuration Priors

Label configuration priors differ from geometric priors in the following criteria:
e Label configuration priors are independent of location and size of the regions.
e They depend on the occurrence of certain label configurations.

In the following we discuss some instances of label configuration priors, namely the minimal
description length, the co-occurrence and a hierarchy-based prior.

Minimal Description Length

Minimal description length (MDL) is the most basic label configuration priors and and
derives from the criterion of Occam’s razor [123|. Occam’s razor states that simpler expla-
nations are preferred over more complex ones. It has been stated by earlier philosopher
John Duns Scotus in 1639 "Pluralitas non est ponenda sine necessitate" ("Plurality is not
to be posited without necessity") in Opera Omnia. This principle of parsimony can also
be applied in data sciences by choosing the simplest model which fits the data in order
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PERSON

Figure 1.6: The co-occurrence prior helps correcting label configurations. After wrongly labeled as a lemon
(a) the tennis ball is recovered in (b) and the label configuration "person, racket, tennis ball" is favoured.

to avoid overfitting. Figure illustrates Occam’s razor where due to occlusions, it is
not clear how many boxes are in the scene. The answers range from 3 boxes to infinitely
many boxes. Occam’s razor encourages making less hypothesizes which conforms to human
perception.

The same principle has been applied to the task of image segmentation [50} 106} 204 [211].
In addition to the data and smoothness term, a penalty for favoring a minimal description

length representation of the scene is introduced. In [11], we develop a generalized version
of the MDL prior by extending its classical linear label count penalty to a composition
with convex monotone functions. This way, we can e.g. impose an upper bound on the
number of emerging labels. The MDL principle is often suboptimal for obtaining good
segmentation results. This is due to the fact that it merely penalizes the label count and
is agnostic to the emerging label combinations.

Co-Occurrence Prior

A much more fine-grained approach is to penalize configurations of labels which are unlikely
to occur by incorporating learned label statistics. An illustration of the co-occurrence prior
can be seen in Figure [I.6] This prior helps correcting the labeling by encouraging labels
‘person’, 'racket’ and 'tennis’ to co-occur and by penalizing the emergence of labels "person’,
'racket’ and 'lemon’. This prior has been already incorporated by Rabinovich et al.
where after segmentation and object categorization, learned co-occurrence information is
used in a final refining step. Moreover, Ladicky et al. incorporate co-occurrence
potentials into a conditional random field. The resulting energy is then minimized by
means of « expansion and o — 3 swap . In , we integrate the idea of incorporating
the co-occurrence penalty into continuous multi-label optimization.
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Computer

(a) Label hierarchy (b) Office scene (c) Desert scene

Figure 1.7: Different scenes influence the type of labeling occurring in the segmentation. Depending on
contextual information provided as a label hierarchy (a) the algorithm chooses from office labels (b) or
assigns labels from the desert context (c).

Hiarchical Prior

While the co-occurrence prior is very powerful, it still depends on pre-learning from a
database. A more principled prior which is already integrated in human vision is the abil-
ity to group labels under a hierarchy. To this end, a hierarchy of objects is constructed
by introducing superordinate scene labels. This context specific prior has been introduced
by Torralba et al. where the recognized scene type penalizes non-conforming con-
figurations. A more holistic approach is presented by Delong et al. in the discrete
setting which yields a sequential algorithm. In , we introduce a hierarchical prior into
variational multi-labeling. We are able to devise a single optimization problem incorporat-
ing a hierarchy constructed a priori. Figure illustrates an example hierarchy with two
different scenes. In an ideal case an algorithm should be able to recognize the scene and
restrict the label set to the labels conforming with it.

In Chapter |§[, we introduce a unifying framework which generalizes our works on
semantic priors for multi-label segmentation. To this end we present a generic first order
primal-dual algorithm for semantic segmentation.
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Outline of the Thesis

The present cumulative thesis is divided into three parts. In the following chapter we
provide a summary for each part.

Part I:

Introduction

The first chapter gives a motivation and an introduction to the general concept of multi-
labeling. Next, we provide an overview of classical image segmentation methods based on
energy minimization and state-of-the-art multi-label algorithms. Finally, we elaborate on
the different priors commonly used in image segmentation algorithms including priors of
geometric and semantic nature.

Discretization

Variational methods are initially formulated on a continuous domain. In order to imple-
ment these methods on a digital computer, one needs to discretize the image domain and
the involved differential operators. In this chapter we provide example discretizations of
typical differential operators by means of a matrix vector representation.

Mathematical Optimization

Since we are mainly dealing with algorithms based on numerical optimization, we intro-
duce in this part basic concepts from convex optimization such as convexity and duality.
Additionally, we elaborate on a well known iterative optimization method, namely the
proximal-point algorithm. As an instance of the proximal-point algorithm we derive one
of the most popular first order optimization algorithm, namely the primal-dual algorithm
[39, [147] which will be used throughout this thesis.
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Unifying Framework for Semantic Multi-Labeling

This chapter aims at providing a unifying framework for the algorithms we presented in [10|
and [8] which are included in Chapters ?? and [J] respectively. These methods altogether
deal with semantic priors i.e. co-occurrence and hierarchical priors. Conceptually these
algorithms are very similar which inspired us to provide a generalizing algorithmic frame-
work. Starting with a generic semantic multi-labeling problem, we derive a primal-dual
algorithm which can handle a family of multi-labeling problems with semantic priors. We
apply our algorithm to multi-label segmentation with a minimal description length prior
which imposes an upper bound on the label count.

Entropy Minimization for Mixed Integer Programs

In [9], we introduce adding Shanon’s entropy to convex relaxation methods. Our approach
delivers solutions which are more binary and which have a tighter energy than pure con-
vex relaxation methods. In this chapter we expand our approach to the broader class of
mixed integer programs. Mixed integer programs contain integer as well as continuous un-
knowns. In the same spirit of [9], we augment the convex relaxation of the mixed integer
problem with an entropy term resulting in a convex concave problem. Using tools from
DC-Programming, we are able to devise a convergent algorithm for solving this problem.
As an example application we apply our approach on the problem of image cartooning
where we minimize the Ly norm of the image gradient along with a data fidelity term. Ex-
perimental results demonstrate that solving this optimization problem leads to a piece-wise
constant approximation of the input image. Comparative results show that our algorithm
competes with state-of-the-art cartooning algorithms.

Part II:

This part includes a selection of peer reviewed research papers that were published during
this thesis including;:

e Co-occurrence Priors for Continuous Multi-labeling [10]
e Convex Optimization for Scene Understanding [8|
e Entropy Minimization for Convex Relaxation Approaches |9]

e Smooth Piece-Wise Rigid Scene Flow from RGB-D Images [5]

We additionally provide a short summary for each included publication.

Part 111

Concludes the thesis and proposes directions for possible future works.
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Main Contributions

The general aim of this thesis is to introduce different convex priors to continuous multi-
label segmentation. The resulting optimization problems remain convex and can be solved
using state of the art first order methods. Additionally, we introduce a mean to solve mixed
integer programs by adding an entropy term to the convex relaxed problem and thus im-
proving its integrality. Finally, a framework for joint motion estimation and segmentation
is presented. Overall, the contributions of this thesis can be summarized as follows:

Introducing Convex Semantic Priors to Multi-Labeling

The major contribution of this thesis is introducing label configuration priors to continuous
multi-labeling. The simplest label configuration prior is the so called minimum description
length prior. By applying arbitrary convex and monotonously increasing functions on
the label count, we generalize the classical linear penalization introduced in the discrete
[51] and the continuous [203| setting. This allows e.g. imposing an upper bound on the
label count. Furthermore, we introduce a co-occurrence prior within a spatially continuous
framework. In contrast to sequential discrete methods [104], our formulation |10] does not
have a grid bias and can be solved optimally in parallel within one optimization problem. A
more principled approach to introducing semantic prior information is imposing a natural
hierarchy on the labels. This allows inferring superordinate scene labels alongside object
labels. In contrast to solving a sequence of discrete problems via fusion moves as in [50], we
devise an algorithm [8] which imposes a hierarchy prior by solving one convex optimization
problem which does not introduce metrification errors.

In Chapter [6], we provide a unifying framework for all our published works on semantic
multi-labeling.

Entropy Minimization for Multi-Label Optimization

We propose introducing the entropy of the objective variable in order to measure the
tightness of the relaxed solution in convex relaxation methods. By jointly optimizing the
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entropy and the original convex relaxation we are able to improve on the integrality of
the solutions. The resulting convex-concave procedure can be solved using a specialized
DC-Programming algorithm which includes a state of the art primal-dual subroutine. In
various experiments and in theory, we are able to show that the obtained solutions ex-
hibit improved integrality and tighter energy bounds compared to state of the art convex
relaxation methods. The proposed method does not add up to the complexity since, in
practice, only a few iterations of the primal-dual subroutine are sufficient in order to ob-
tain satisfactory results. Considered applications include multi-label image inpainting,
image segmentation and spatio-temporal multi-view reconstruction. This approach has
been published in a research paper [9] which is included in Chapter

In Chapter [7] we generalize this approach by introducing an entropy term to a convex
relaxation of the more general class of mixed-integer programs.

Joint Motion Segmentation and Estimation

In our published research paper |5], we tackle the problem of jointly estimating motion and
segmenting the scene in RGB-D images. Motion estimation as well as image segmentation
are one of the most fundamental problems in computer vision. Although the problem
formulations are different, both tasks are highly interdependent since moving objects are
usually spatially consistent and can be dissected by image segmentation algorithms. This is
were our motion cooperation (MC-Flow) algorithm comes into play, that is, our formulation
is able to jointly segment the scene and infere for each segment its underlying rigid body
motion in 3D. Our approach is the first to perform soft labelling and thereby allow an
interpolation between rigid body motions. Thus, we are able to even recover non-rigidly
moving parts in the scene which allows for more accurate motion estimations. We are able
to outperform state of the art scene flow algorithms in terms of quantity and quality. This
research paper is included in Chapter

Research Papers not included in this Thesis

In addition to the works included in Part II, a variety of peer reviewed papers not included
in this thesis have been published. These include works on:

1. Medical imaging |2, 3|, where the goal is to reconstruct data in 6-dimensional
image x diffusion space in diffusion magnetic resonance imaging.

2. Real time RGB-D scene flow estimation [4], where we devised a method for computing
dense scene flow in real time using a first order primal dual algorithm which we
implemented on a GPU.

3. Unsupervised image segmentation [6], where we perform the separation of figure and
ground based on their mutual information. To this end, a strategy of minimizing
a sequence of convex problems is applied in order to solve the arising non-convex
optimization problem.

A full list of our research papers can be found within the references.
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Mathematical Optimization

The energy formulations mentioned in Section [I.3] are convex relaxations of NP hard prob-
lems and are therefore amenable to the powerful tools of convex analysis. Convex analysis
emerged in the 1960s from works by R. Tyrrel Rockafellar [157], Jean-Jacques Moreau [130]
and Werner Fenchel [61] who extended studies on convex sets to convex functions and how
to minimize them. It is a field dealing with convex functions and the characterization of
their minima. Assessing the "hardness" of optimization problems becomes just a matter
of wether it is convex or not. Additionally, the important concept of duality is a mean to
gain a different perspective on the problem and provide a lower bound to its energy. The
canonical problem in convex optimization can be stated as a convex objective function F
subject to a convex constraint C, i.e.

minimize F'(u)
subject to u € C, (4.1)

where we assume F' : X — R, C C X and u € X with X being a finite dimensional vector
space with n = dimX. It is useful to allow infinite values for the range of functions in order
to examine their limit behavior and to allow incorporating constraints into the objective.
For this we extend the real line by oo and define the mapping:

E: X — RU{oco}. (4.2)
By extending F' by the indicator function of C we obtain
E(u) =F(u)+d(ueC), (4.3)
with
0, wuecC,

(4.4)
oo, else.

(5(u€C):{

This means that the objective F attains an infinite value if the constraint is not feasible.
In order to recover the original domain and feasible solutions we introduce the notion of
effective domain:

dom F = {u: E(u) < oo} . (4.5)
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4.1 Convexity

A convex function F satisfies the following condition:
E(tu+ (1 —t)v) <tE(z)+ (1 —-t)E(v), (4.6)

for any t € [0,1] and u,v € X. The convexity of a function means that every critical point
@ is a global minimum. In general, a convex function does not necessarily have a unique
minimum. One way to show a function F admits a single minimizer is strict convexity,
hence if the inequality in is strict. The uniqueness of the solution does not imply
strict convexity, e.g. the function E(u) = |u| is only minimized at 0 although not strictly
convex.

4.2 Existence of the Solution

The convexity of a function is a necessary condition to find a global minimum. However,
a convex function does not necessarily have a minimum. A convex function E admits a
minimizer if it exhibits the following properties:

o Lower semi-continuity:

For every sequence uy — u we have:
E(u) < limkinfE(uk). (4.7)

The geometric interpretation of lower semi-continuity is the closedness of the epigraph
of E.

o Coercivity:

A function f is called coercive if it satisfies the following condition:

4.3 Optimality Conditions

The optimality conditions of an optimization problem serve as a tool for identifying a
solution and computing a descent direction. Since we deal with energy functions which are
not always differentiable, the optimality condition for a global minimum needs to be written
with respect to the subdifferential. The necessary condition for u* to be the minimizer of
FE reads as follows:

u* =argmin E(u) < 0 € 0E(u"), (4.9)

u
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where OF(u*) denotes the subdifferential of E at point u*. The subdifferential is a set
valued operator containing all subgradients, i.e.

OE(u) ={p € X*|E(v) — E(u) — (p,v —u >0),Yv e X}, (4.10)

where X* denotes the dual space of X. Equation (4.9)) will serve in Section as a starting
point for deriving a first-order optimization method from the conceptional proximal-point
algorithm which computes the zeros of general monotone operator.

4.4 Duality and the Conjugate Function

The principle of duality and the Fenchel conjugate are the most important tools in con-
vex analysis. The counterpart to the Fourier transform in convex analysis is the Fenchel
conjugate function E* which can be written as follows:

E*(p) = sup(p,u) — E(u). (4.11)

ueX

The conjugate function is also known as the Legendre transform and measures the maximal
distance between the linear form (u,p) and E(u). In the 1D case, the conjugate function
is illustrated in Figure where p corresponds to the slope of E(u) at point u and where
E*(p) is its intersection with the v axis. Similar to the Fourier transform, the conjugate
function can be used to facilitate the computation of the convolution (inf-convolution) in
the min-plus algebra [144]. The Fenchel conjugate often appears while reformulating the
Lagrangian of an optimization problem. This makes it easier to identify certain functions
and simplify optimization problems. An important feature of conjugate functions is that
non-convex problems can be rendered convex by computing the double conjugate function
E** e

B (u) = sup(p,u) — E*(p). (4.12)

peX

Interestingly, E(u) = E**(u) if FE is convex and lower semi-continuous. Furthermore, E
and E** always share the same set of minimizers in case £ admits any. Geometrically the
epigraph of E** is the convex hull of the epigraph of E.

4.5 Canonical Variational Problem

Most variational problems in computer vision can be stated in a structured way in the
sense that they can written as the separable function

E(u) = F(Ku) + G(u), (4.13)

where K : X — Y is a continuous linear operator mapping from X to a finite-dimensional
vector space Y with dimY = m, and where F' and G are proper convex lower semi-
continuous functions. Energy (4.13)) can be reformulated as the constrained formula-
tion

E(u)=F@)+Gu) s.t. v=Ku. (4.14)
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v /'<U,p>
E(u) |
// e Uu
(0, —E*(p))

Figure 4.1: The conjugate function evaluated at point p is the maximum gap between the linear functional
(u,p) and E(u). For a differentiable function this case occurs exactly at (u, E(u)) where % =p. The
epigraph of the double conjugate function E** (dashed red line) is the convex envelope of the epigraph of
E.

The associated Lagrangian to (4.14]) reads as:

L(u,v,p) = 1un£F(v) + G(u) + (p, Ku —v). (4.15)

The so called dual problem D(u) is only dependent on multiplier p and can be derived
from the Lagrangian problem by taking its infimum with respect to the primal variables,
i.e.

D(p) = inf L(u,v,p). (4.16)

Problem can be written explicitly by performing the following reformulations:
D(p) = inf F(v) + Glu) + (p, Ku —v)
= inf {G(u) + (p, Ku)} +inf {F(v) = (p,v)}
= —sup {—G(u) — (p, Ku)} —sup {=F(v) + (p, v)}
= —sup {=G(u) = (K'p,u)} = sup{=F(v) + (p,v}} (4.17)
= -G*(~K"p) — F*(p). (4.18)

The resulting dual problem has a closed form. Note that in we identified the Fenchel
conjugates G* and F*. The dual formulation is very useful for understanding the structure
of the primal problem. Additionally, the dual problem is often easier to solve than its
primal counterpart.
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State-of-the-art approaches in numerical optimization tackle the so-called saddle-point
problem. The reason is, that in the so called primal-dual formulation the optimization
process can be accelerated by exploiting information of both the primal and the dual vari-
able. The primal-dual formulation can be derived by substituting F' by its double conjugate
F** in and the resulting saddle-point problem takes the form:

rrgnmgx G(u) — F*(u) + (p, Ku). (4.19)

4.6 Primal-Dual Gap

The dual energy D(p) is a lower bound on the primal energy, i.e.
D(p) < E(u) VpeVY,ueX. (4.20)

This even applies for non-convex functions. Furthermore, for an optimal primal-dual pair
(u* = argmin E(u),p* = argmax D(p)) both the dual and the primal energies coincide
(i.e. E(u*) = D(p*)) under the condition of strong duality [23]. Under the same condition,
if a primal-dual optimal pair is achieved the so-called primal-dual gap

G(u,p) = F(Ku) + G(u) + G*(—~KTp) + F*(p), (4.21)

vanishes. The primal-dual gap provides a natural convergence criterium for solving the
saddle-point formulation (4.19) and is much more expressive than measuring the decrease
of energy during an iterative algorithm.

4.7 Proximal-Point Algorithm

Most first-order methods can be shown to be a special case of the proximal-point algorithm
(PPA) |156]. This is of great importance since proving the convergence of these methods
follows from the convergence of the PPA. The PPA is a fixed point method which serves as a
mean of finding zeros of a maximal monotone operator 7, i.e. finding a u* such that:

0e€ T(u"). (4.22)
An operator is a general set valued mapping;:
T :dom T — 2%, (4.23)

where 2% denotes the set of all subsets of X and dom 7 = {z|3y(x,y) € T}. More
specifically, we can define an operator as the following relation:

T={(z,y) e X x X|y e T(x)}, (4.24)
and we call an operator monotone if it fulfills the following condition:

(x —v,y —w) >0 Y(x,y), (v,w) € T. (4.25)
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T

Figure 4.2: An example of a maximal monotone operator. In 1D an operator is maximal monotone if it is
a curve with non-negative slope

A maximal monotone operator 7 is a monotone operator such that, there is no other
monotone operator 7 with 7 C 7. An example of a monotone operator where X = R is
depicted in Figure Geometrically speaking, a maximal monotone operator is a curve
with positive slope.

The proximal-point algorithm generates the following implicit sequence in order to
solve (4.22):
0 7"t + Mu"t —u™). (4.26)

The proximal algorithm can be written with respect to any weighted norm |- |,¢. However,
the convergence of the algorithm is only guaranteed if matrix M is a symmetric and positive
definite matrix. As a consequence, the optimization can be considered to be carried out
in a Hilbert space endowed with an inner product (-, -)r¢. Rockafellar et al. prove in [156]
the convergence of the proximal-point algorithm for general Hilbert spaces which applies
to this case. We can make the above equation explicit by solving for 4! and we obtain
the following iterative fix-point procedure:

u" = (I + M) (™). (4.27)

The operator (I + M~1T)~! is single valued [127] and is known as the resolvent of 7.
The iterates of the proximal-point algorithm for the 1D case are depicted in Figure [£.3]
where the scalar M~! = 7 corresponds to the step size of the algorithm. Computing
the resolvent operator is often as hard as solving 0 € 7. In order to circumvent this,
Rockafellar et al. proposed solving the resolvent operator approximately [156]. However,
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Slope — 1/7

Figure 4.3: The iterates of the proximal-point operator for a monotone operator |54]. It is obvious that
bigger step sizes lead to a faster convergence since the slope of the iterates decreases leading to iterates
pointing more to the zero of T.

the convergence of such approximate algorithm is only guaranteed if the error is summable.
The most common strategy to solving (4.22)) is to examine whether 7 can be split as a
sum of two operators:

T=A+B. (4.28)

Fortunately, most variational problems in computer vision can be cast in this form since
they typically contain a sum of terms such as the dataterm and the regularization.

4.8 Primal-Dual Method for Convex Problems

In the following we derive a first-order primal-dual algorithm proposed in [39, |147] for
solving optimization problems in the form (4.13). This algorithm is extensively used in
the works introduced in this thesis. This is due to the fact that first-order methods are
suitable for the large scale optimization problems we encounter. Additionally, they are
easily parallelizable which facilitates an optimized GPU implementation. For a first-order
method, the primal-dual algorithm exhibits optimal convergence behavior for the class of
non-smooth problems.

One important example of monotone operators is the set valued subdifferential mapping
OFE(u) which is maximal monotone if and only if E' is convex and lower semi-continuous. If
we consider the problem in (4.19)) and calculate its subdifferential the optimality condition
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for characterizing a saddle points (@, p) € X X Y can be written as follows:

0 € KTp+ 0G(1)
0 € Kt — OF*(p). (4.29)

Hence, in order to cast our optimization problem in (4.26)) we identify 7 with

KTp+0G(u
T(p,u) = P (u) (4.30)
Ku— 0F*(p)
Next we split the operator 7 = A + B as in (4.28)) by setting:
OF* 0 0 KT
(T 0 (), wan
we obtain the following iterative procedure for the proximal-point algorithm
Ve asB) uk N Wt )
€ + + . .
pk+1 pn-l—l _ pn
Furthermore we set the preconditioning Matrix M to be as follows:
T -KT
M = (_K - ) . (4.33)
For the sake of simplicity, we further split M in M = N + M with
T 0 0 -KT
= (T 0), W (2, K st
After substituting M in (4.32)) we obtain the following implicit equation:
P WL
0€(A+ B) - + (M + N) ol (4.35)
U p —D
A (" Yeu () B (P N (P 4.36
(A+ M) s € oF a uF L o S (4.36)

lc+17 uk+1)

By solving for (p we transform above implicit equation into explicit iterates

(uk+1> C 4t <M (uk> . (uk-i—l) N <uk+1 _ uk)) wan
s o Pt P ph ' '

If we substitute B and N with their values in (4.34)) we obtain

k+1 k T, k+1 T, k+1 T, k
U 1 U K'p"" "+ K p" " +K'p
<pk+1> € (A+ M) (M <pk> T ( Kot £ Kbt — Kok : (4.38)
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By further simplifying and substituting for A and M we obtain

utt = (T +T77oG) ! (uk — TﬁlKTpk>
(4.39)
PP = (I + 5 1oF") ! <p” + N IK(2uR Y — uk)) .

The resolvent operators (I + T710G)~! and (I + X719F*)~! are called the proximity
operators of G and F™ respectively and are single valued. Hence one can replace the
inclusion € with an equality going from to (4.39). Interestingly the resolvents of
monotone differential operators can be calculated by solving an optimization problem. For
example the proximity operator of G can be rewritten as follows:

(I +T719G)~ (@) = argmin G(u) + % ((u—1u,T(u— d)))% ) (4.40)

u

where ((u — @, T'(u — ﬁ)))% denotes the weighted distance of v and @ by the preconditioning
matrix 7. By updating «**1 and p**! alternatively one arrives at an implicit update
scheme. The overall primal-dual algorithm [39, 147, 150] is summerized in Algorithm ([1]).
Note that Algorithm is not unconditionally stable, since in order for the proximal

Algorithm 1 Primal-Dual Algorithm

1: Initialize ©° € dom G and p° € dom F*:

2: while not converged do

3 WMl =T +T710G)7"! (uf — T KTp")

4 pPMl =T +E719F) 7 (p" + STIK (2uPT! — o))
5

6

k+k+1
: end while

algorithm to converge, matrix M needs to be a positive definite symmetric matrix [150].
This is ensured by the following condition on > and T

IS 2KT 2| < 1, (4.41)

for a given K. Pock et al. proposed in [150] a family of preconditioners which on one hand
allows for large step sizes and on the other still ensures the convergence of the algorithm
by fulfilling condition (4.41)). This is achieved by setting 7' = diag(7) and ¥ = diag(c)
with
1 B 1

ST K P T T ST R
The chosen matrices Y and T" act as a row and column scaling of K. A more sophisticated
way of choosing the diagonal scaling factors is devised in [179] where the authors make
use of the well-known matrix equilibration algorithm in order to obtain an better diagonal
scaling of a matrix. In the remainder of this work we will choose a = 1 and use the diagonal
preconditioning described in (4.42)).

T; =

(4.42)






Chapter

Discretization

Variational methods are initially defined on a continuous domain. Continuous methods
are advantageous because they are more likely to describe real world phenomena and their
solutions. The implementation of these methods is flexible in the sense that discretizing
continuous methods can be done using different strategies. A link between the discretized
problem and the continuous analogue can be established by taking the number of pixels
to infinity. This is usually done by analyzing the so called I'-convergence [28| to the
continuous functional. A major challenge in discretizing variational formulations is to
ensure that differential operators satisfy the same relations as in the continuous case. A
good discretization should also barely depend on the underlying grid. One of the most
important differential operators we consider in our applications are the gradient V and its

adjoint operator V* = — div. Their relationship reads as:
/ (Vu,p)dx = —/ udivpdx <= V* = —div, (5.1)
Q Q

which stems from applying integration by part on the left hand side. In order to avoid
boundary terms, our discretization needs to fulfill Dirichlet or Neumann boundary condi-
tions. In the following we focus on a simple discretization of the gradient and its matrix-
vector representation. This way, we can cast variational methods into the canonical repre-
sentation . For the sake of simplicity, we consider the discrete version 2 of domain
Q to be the unit square [0, 1] x [0, 1] and sample it in a H x H uniform grid. One possibility
to discretize the vector valued gradient operator is the following difference scheme defined
for every pixel (i,7j) € H x H in a forward difference fashion

1 _ Wit1,j — Ui if’i<H,
(Vu)l, = { ; . (5.2)

2 _ Ui j+1 — Ui ifj <H,

Note that the above discretization fulfills the Neumann boundary conditions which are
crucial for equation ([5.1)) to hold. In what follows we devise a gradient matrix operator K
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based on the discretization scheme (5.2). We first define a difference matrix Vip for the
one-dimensional case as follows:

KlD: T . (5.4)

It can be easily verified that operator calculates forward differences and additionally
fulfills the Neumann boundary conditions for a 1D signal. In the following we consider
a vectorized version of the 2D image. To this end, we stack the image row-wise and
obtain a vector v € X where dim X = n = H?. This allows us to write Vu as a matrix-
vector product. Using the 1D difference matrix Kjp, formulating the 2D gradient operator
amounts to

IH® ;1 2nxn
K= R 5.5
[ Vi® Iy } < ’ (55)

where ® stands for the Kronecker product and matrix /g for the H-dimensional iden-
tity. Multiplying operator K with a vectorized image results in the following gradient

vector:

IH & V1 U= Klu

Vi®Ig -\ Kou /)
where K and K5 stand for the differences in the first and second dimension respectively.
Knowing that V* = —div, calculating the divergence operator is rendered as easy as
transposing K since in finite dimensional real vector spaces the adjoint of a linear operator

is simply the transpose. We obtain for the divergence operator —K” the following block
matrix

I ® V1 ]T

R A A
div=-K [VI®IH

=—[IgaV)" (Viely)’ ] R  (5.6)



Chapter

Unifying Framework for Semantic
Multi-Labeling

6.1 Introduction

The goal of this chapter is to introduce an optimization framework necessary for implement-
ing our works on convex semantic priors |8, |10] included in Chapters ?? and |§| Although
different in philosophy, these priors exhibit very similar attributes in terms of realization
and optimization. Semantic priors are tailored to favor certain label configurations with
disregard to the location, perimeter and neighborhood of the objects. We seek a family of
global priors of order O({), i.e. every image point is aware of the labels of all other points.
In the context of conditional random fields, these priors can be considered as potentials on
a fully connected graph. In this chapter, we aim to develop a general method which encodes
low-level cues such as color and texture, mid-level cues such as spatial consistency as well
as arbitrary semantic priors which can be e.g. drawn from label occurrence statistics. Such
an energy can be encoded in model . Consequently, we can generalize the algorithms
in [8, /10, 11] in a prototypical optimization framework. To this end, it is necessary to keep
track of the existence of certain label configurations. Specifically one needs to track the
existence of individual labels in the segmentation result. For this, we introduce in the next
section auxiliary variables {; which indicate whether a label i is set, i.e. Jz s.t.u;(x) = 1.
This yields in a problem formulation which depends on the unknowns u and . After casting
this problem in a saddle point formulation, we devise an generic primal-dual optimization
framework for solving general multi-labeling problems with semantic priors. Finally, we
apply our framework on a modified version of the classical MDL prior which imposes an
upper bound on the label count.
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6.2 Label Existence Indicator

In order to track certain label co-occurrences, it is crucial to detect whether individual
labels are active in the segmentation result. Building on the formulation in ((1.17]) subject
to , we introduce an additional variable [ : S — {0,1}" where § is the convex set
introduced in (1.19). In order for I; to track the existence of a label i, we make the
following identification:

. 1, if Jz E Q: ui(x) =1, (6.1)
0, otherwise,
Next, we introduce the following constraint:
max u;(z) =1; VieL, (6.2)

€

in order to fulfill the relation in (6.1)) which couples u and [. The above constraint will play
a major role in devising the semantic priors discussed in this thesis. The global coupling of [
is realized by constraint which is a non-convex constraint. In order to convexify ,
we relax [ to the unit interval hence [ : S — [0,1]" and introduce the following constraint
instead:

li >ui(x) VeeQ Viel. (6.3)

This allows us to write the semantic term FEg in ((1.17)) with respect to variable [ hence
Eg(l). Although is convex, we need to impose additional restrictions on Eg(l) in
order to recover the original coupling . By showing Fg(l) exhibits the following
properties:

1. Eg(l) is convex.

2. Eg(l) is monotonically increasing w.r.t [, i.e.

1< 1(a) = Es(l) < Es(D), (6.4)

we can show that (6.2)) is recovered. The proof can be found in a theorem presented in our
research paper included in Chapter ?77.

6.3 Saddle Point Formulation

The overall multi-label energy can be summerized as follows:

E(u,l) = Ep(u) + Eg(u) + Es(l) s.t. weS, l; >uj(x), Vee Q,Vie L.  (6.5)
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We begin by writing out the dataterm Ep and the smoothness term Eg explicitly to obtain
the following optimization problem

milnmaxZ/ ui(z)oi(x)dx + Z/ w;(z) div p;(z) dx
u, p “ [¢) . Q
=1 =1

+ Es(l) +6(ue S)+d(peK)

stt. i >wui(zr) YeeQViel, (6.6)

where u € S denotes the simplex constraint defined in and p € K the constraint
on the dual variable. Depending on the type of div operator and constraint K we achieve
different types of regularizations. These regularizations can be of local |37, [206] or non-
local [199] nature. In contrast to the constraints p € IC,u € S which can be handled using
a closed form resolvent, the inequality [; > u;(x) does not exhibit an orthogonal projection
scheme. Hence, we reformulate our problem by introducing Lagrangian multiplier § which
yields the following modified problem:

u,l  p,0

minmax;/gui(m)gi(:n) dx + ;/Qul(:n) div p;(x) dw—l—;/gﬁ(a:)(ui(x)—li)

+Es(l)+d6(ueS)+dpekK)+4(6=0).

(6.7)

This min-max formulation is amenable to the primal-dual solver introduced in Algorithm
provided Eg(l) is a "simple" function in the sense that its resolvent (4.40)) can be computed
in closed-form.

6.4 Primal-Dual Algorithm for Multi-Label Segmentation
with Semantic Priors

Following the setting in Chapter 4] we discretize the problem by setting u, 0,0 € X™ and
p € Y™ after vectorizing the image domain. From now on, the divergence operator div is
considered to be a matrix. We identify the stacked variables (u, )7 as the primal unknown.
The dual variable is composed of the stacked variables (p,6)”. The most important step
to solve an optimization problem using Algorithm [I] is recognizing the linear operator K
and the functions G and F™* in the saddle point formulation . This allows us to map
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formulation (6.7)) to the primal-dual formulation (4.19)) as follows:

<K< " ) : < h >> = i(ui,divpi> + :1 (0i, (ui — 1)) (6.8)

=1 )
G ( 7; ) = (u,0) +5(u € S) + Es(l) (6.9)
F*<§>=6(p€l€)+5(0t0). (6.10)

By applying Algorithm [I, we obtain the update steps listed in Algorithm

Algorithm 2 Primal-Dual Algorithm for Multi-Label Segmentation with Semantic Priors

1: while not converged do
kt3 k

2: U, =u; —T1 (divpi + 91)
k+3 o
3: ll- 2 = lz- — T Zx 9,(%)
E+1 k+3

U _ _ uv T2
4: (lk_H >:(I+T 18G) 1 lk+%

1
5: pf+2 = pf —o1V (QufJr1 - uf’)

(2 K3 K3

k+1 k+%
< §k+1 ) = +x7toF)~! ( §k+l

2

o oo i )

I~

8: kE+—Lk+1
9: end while

Y1 = diag((o1,092)") and T~ = diag((r1,72)") are diagonal preconditioning matrices
which are set according to the strategy described in (4.42). The resolvent operators are
applied component-wise and consist of

(I+T7710G)™! ( h > = ( (IEST(Z%ESQE(D ) (6.11)

_ - I (p)
[+3'oF 1(”):( : 6.12
( (5 )= (ol (6.12)
The orthogonal projection operator IIg(u) can be calculated using the simplex projection
algorithm described in [126] which uses at most n steps in order to converge. The calcu-

lation of the projector Ilg, (f) can be realized using a simple point-wise clipping into the
positive numbers, i.e.

and

g, (#) = max(0,0), (6.13)

whereas the projection ITx(u) hinges on the type of relaxation of the Potts model and
vary from simple point-wise projections as in the case of the Zach relaxation [206] to a
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more complicated projection technique as in the CCP method [37] which has a quadratic
complexity.

If E is simple, multi-labeling algorithms with semantic priors only differ in the resolvent

operator
(I +m0Eg)~ " (6.14)

In case (6.14]) is not trivial to calculate as in |8} |10], an introduction of auxiliary vari-
ables and the modification of the bilinear term are sufficient to render all resolvents
simple.

6.5 Implementation on Parallel Architectures

First order optimization methods like Algorithm [1| are ideal to be implemented on parallel
architectures. This is due to the simple update steps which consist of applying a matrix-
vector product and simple pointwise operations. Typically matrix K is sparse and is of
known structure. This makes it possible to calculate the matrix-vector product (K, -)
point-wise making a parallel implementation straightfoward. However, in the case of the
semantic primal dual Algorithm [2 matrix K contains dense rows corresponding to the !
update. Consequently, this coupling requires performing a summation over . To this end,
we exploit parallel architecture by applying a reduction scheme described in [82].

6.6 Generalized MDL Prior

In this section, we explore an example of a semantic prior on which Algorithm [2]is applica-
ble. One of the simplest strategies of penelizing label configurations is imposing an MDL
prior as described in Section [I.4:2] This means that we encourage a parsimonious descrip-
tion using fewer labels. In [11] we presented a family of MDL priors which generalize the
usual linear penalty of the label count.The linear MDL penalty can be written as:

Eg(l) = zn: 1,Ci, (6.15)

where C; represents a predefined cost for each label occurring in the image. This linear
prior has been previously considered in [51, [204]. We extend (6.15) to

Es(l) = f <Z zz-) , (6.16)
=1

with f : R — R being an arbitrary convex and monotonously increasing function. Specific
choices are f(s) = s as in [51} [204], f(s) = s2, or f(s) = 6(s < sq) for some sy > 1,
ie

oo, else,

f(s) = {0’ 5= (6.17)
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The latter function imposes a hard constraint on the total number of active labels. We
introduced this prior in a technical report |11]. The constraint in allows us to optimize
over regions when knowing the maximal number of labels beforehand. A straightforward
application of this constraint is devising a convex relaxation formulation of the piece-wise
constant Mumford-Shah model [131] as we will demonstrate in the next section.

Convex Relaxation of the Piece-Wise Constant Mumford-Shah
Model

In the previous section, we reviewed the linear MDL prior and generalized it to a com-
position with convex, monotonously increasing functions f. In this section we choose

f(s) = ds<s, and obtain
Es(l) =0 ( (zn: li:1> S 80> s (6.18)

which limits the label count to at most sg. For the dataterm we choose
0i(x) = (I(z) — c:)?. (6.19)

By setting the number of candidate labels to the number of gray values in a 8 bit image
n = 256 and ¢; = i, 0 <7 < 255, we obtain a convex relaxation of the piece-wise constant
Mumford-Shah functional [131]. This allows for the simultaneous optimization for the re-
gions €); and implicitly for the mean gray values ¢;. Solving for the means and the clusters
for a fixed number of labels reminds us of k-means clustering. In contrast to k-means,
our algorithm allows for controlling the smoothness of the regions which allows for better
handling of noisy input data. Additionally, our the TV smoothness can be made edge [29|
aware or even non-local [199]. Finally, our method relies on a globally optimal optimization
scheme and does not resort to alternating minimizing. However, global optimality comes
with the price of having to solve a huge optimization problem since we discretize the range
of the input image.

6.7 Implementation

Since Fg in (6.18) is simple, we can apply Algorithmto solve problem ([6.7]). To implement
the algorithm, we need to account for performing a resolvent step on the term Eg(l) in
(6.18)) in each iteration. The simplicity of (6.18]) allows calculating its resolvent in a closed

which reads as:

_ 1) o L N
I =(I+7m0Eg)(I) ¢ li — —max | so ;zl,o : (6.20)



6.7. Implementation 45

) 2 phases
) 3 phases 6 phases

Figure 6.1: We apply our label count constraint on a mountain scene a) and obtain different segmentation
results and mean values ¢; depending on the selected value for s;: b) s; =2¢) s; =3d) s, =6.

a) Input b) 2 phases ) 3 phases ) 4 phases

Figure 6.2: The generalized MDL prior allows imposing an upper bound on the number of labels. This
example shows an unsupervised segmentation of MRI image (a) into 2 regions (so = 2) (b) 3 regions
(so = 3) (c) and 4 regions (so = 4) (d).
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6.8 Experiments

The piece-wise constant Mumford-Shah model can be applied in various fields like medical
imaging or approximating an image with a piece-wise constant function in order to obtain
a reasonable simplification. The image formation process in medical imaging is prone to
severe noise and wrong readings. This makes interpreting data originating from medical
scanners a tedious process and a post processing step becomes crucial in order for the doc-
tor to properly interpret scans and conclude a diagnosis. Detecting matters (white, gray)
in magnetic resonance imaging (MRI) is a very important task. The piece-wise constant
Mumford-Shah model is an excellent approximating model since each region typically ex-
hibits a common mean gray value. Our algorithm is able to jointly dissect different regions
Q; in MRI and implicitly estimate their associated mean values ¢;. In Figure[6.2) we apply
our method on an MRI brain scan for different bounds sg on the label count. In Figure[6.1
we apply our label count constraint on a mountain scene and obtain different segmentation
results depending on the selected value for sq.

6.9 Conclusion

In this chapter, we proposed a unifying framework for variational multi-label segmentation
with semantic priors. To this end, we devised a generic primal-dual algorithm which serves
as a guide to solving multi-label problems with arbitrary convex semantic priors. We
applied our framework on a modified version of the MDL prior in which we impose an
upper bound on the label count. This allows us to propose a convex relaxation of the
piece-wise Mumford-Shah model. This chapter serves as a generalization of our published
works on semantic priors which are included in Chapters ?? and [J]
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Entropy Minimization for
Mixed-Integer Programs

7.1 Introduction

In recent years, label assignment problems became a major research field in computer vision
and machine learning. These problems can vary depending on the application, however
conceptionally they are similar. Assigning a label can be described by an optimization
problem. Since one typically deals with a discrete label space £ C Z, we refer to these
optimization problems as integer programs (IP). In this section, we deal with a broader class
of problems namely mixed-integer programs (MIPs). The unknowns in MIPs are partly
real valued and partly constrained in £. The resulting generic optimization problem is
given by:

min F(p)

s.t. peC
plxz)e L, Vo, €T, (7.1)

where Z C Q denotes a subset of domain €y € RY in which ¢ takes on values in £. The
constraint C C © and the objective F' : Qp — R are convex. Overall, formulation (7.1
is not convex due to the integer constraints ¢(z,) € £. We denote the problem as an
integer programming problem if Z = 3. Most MIPs can be be simplified in terms of
search space, meaning that we can find an equivalent formulation which is {0,1} valued
[195]. The resulting mixed-integer programming problem looks as follows:

min E(&)
s.t. £l
§(xp) €{0,1}, V 2y € B, (7.2)

where function E : Q@ — R and constraint C' C €2 are convex as in the original MIP ([7.1]) and
B C Q) denotes the index set where ¢ takes on binary values. The domain 2 is typically a



48 Chapter 7. Entropy Minimization for Mixed-Integer Programs

lifted version of y. For example, this can be realized by setting Q2 = Qyx L, e.g. in [38,,/147,
149]. Hence the simpler binary constraint comes at the cost of an optmization problem with
a higher dimension. Problem is hard to solve since its domain remains non-convex.
Hence classical optimization methods are unfeasible. As a remedy, an optimization over
the interval [0, 1] is usually performed and the resulting convex problem reads:

min F(§)
s.t. £e€C,
&(zp) €10,1], YV ap € B. (7.3)

Note that in case F(§) is linear and C'is polyhedral, the problem in is referred to as the
LP-relaxation of . Although we can obtain an optimal solution to , this does not
guarantee to solve the original binary problem . A remarkable exception is a special
LP case where the underlying constraint matrix is totally uni-modular 85| 164] for which it
was proven that the results of the relaxed formulation solve the original binary problem. A
special case of LPs with totally uni-modular matrices is the class of sub-modular functions
which can be minimized in polynomial time using graph-cut algorithms [25]. This fact is
also reflected in the LP relaxation of sub-modular functions which is proven to be tight
[200]. In the general LP case, where the constraint matrix is not totally uni-modular, the
solutions are usually not integral and a posteriori rounding schemes such as branch-and-
bound strategies or the cutting-plane method can be used to recover an integer solution.
However, although very effective in practice, these methods are not applicable for general
MIPs. For a detailed study we encourage the reader to look into [133]. In case E(&) or C
are non-linear, it is not obvious when the relaxed problem recovers the original problem.
A notable exception is an algorithm tackling the two-phase segmentation task |138] where
one can prove that every threshold of the relaxed solution is a minimizer of the binary
problem. However, this requires 1-homogeneity of the objective function.

7.2 Shannon’s Entropy as a Measure of Tightness

In computer vision, minimizing Shannon’s entropy has been already applied to shadow
removal |63] and unsupervised image segmentation [180|. In Chapter, ?? we included our
research paper |9] in which we are the first to propose incorporating the entropy of the
objective variable as a measure of its integrality. We are able to show in theory as well as
experimentally that by extending the relaxed multi-label problem by an entropy term, we
can improve on the integrality of the solution. Consequently, we obtain tighter solutions
compared to the relaxed convex problem (|7.3) with respect to the original binary problem.
The entropy function for a [0, 1] distribution is illustrated in Figure where it becomes
immediately obvious why the entropy encourages more binary solutions. Shannon’s entropy
is applied point-wise in order to penalize deviations from the binary constraint &(xp) €
{0,1} in (7.2)). The total amount of entropy can be formulated as follows:

H(E) = - /B (6(x) Jog&(x)) + (1 — £(x)) log(1 — £(x))) da. (7.4)
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Figure 7.1: The entropy of £ peaks (H(£) = 1) at maximal uncertainty £ = 0.5 and is minimal for £ = 0
and £ = 1.

Augmenting problem ([7.3)) with Shannon’s entropy ([7.4]) results in the following optimiza-
tion problem:

min E(§) + 6H(§)
s. t. f(ﬂfb) € [O, 1], Vo, €8, (7.5)

where parameter 6§ > 0 is a scalar allowing to fine tune the soft constraint H(§). Note that
by setting 8 = oo we recover the orginal binary problem . Hence, 0 relates both the
binary MIP and the relaxed MIP. Formulation ([7.5)) can be considered a generalization of
our method in [9] since in this chapter we handle the case of the broader class of MIPs.
Unfortunately, the concavity of the entropy function renders non-convex. Luckily, the
problem formulation has a special, well-studied structure: it can be written as a difference of
convex functions (DC). For this class of problems researchers devised a family of algorithms
commonly known as DC-Programming. We will elaborate on DC-Programming in the next
section.

7.3 DC-Programming

In [182] Tao et al. devised an algorithm specialized in solving a family of non-convex
problems of the following form:

o= ilgf{g(é) —h(&)}, (7.6)

where g and h are proper lower semi-continuous convex functions. One of the most impor-
tant insights for minimizing problem (7.6)) is the fact that its dual problem

B =mtH{h* () = 9" ()}, (7.7)
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is symmetric |184] with respect to Fenchel conjugacy and sign. Furthermore, it is impor-
tant to mention that o = § holds. DC-Programming is closely related to majorization-
minimization |105] and has been applied in vision to quadratic program relaxations of MAP
inference [91]. A similar well-known approach, allthough limited to differentiable functions,
is referred to as the convex-concave procedure (CCCP) [205]. In [182], the authors are able
to derive a simple iterative procedure for solving based on the dual and the
KKT systems of and (7.7). The overall abstract DC algorithm performs the iterative
steps illustrated in Algorithm |3| and is guaranteed to converge to a critical point.

Algorithm 3 The DC algorithm

Initialize £ € dom ¢, ¢° € dom h.
while not converged do
Choose ¢ € Oh(&F)
Choose €M1 € 9g* (")
k+—k+1
end while

The second step in Algorithm [3] can be simplified by using Fenchel duality
et € 097 (") & " € 9g(eMt) & 0 € dg(eMHT) — P (7.8)
Since 0 € 9g(£F+1) — ¥ is the optimality condition of the following convex function:

ghtl = arggning(@ —(¢*, ), (7.9)

we end up solving the monotone inclusion €1 € 9g*(p*) in each iteration by solving
using a solver of our choice. Intuitively Algorithm |3 performs a linearization of h(¢&)
function in each step. Thus, it can be considered a majorization-minimization technique
[105] using a linear majorization of the concave part in .

7.4 Minimizing the Ly Norm for Image Cartooning

Our algorithmic framework can be utilized for any instance of a mixed-integer program
such as production planning, scheduling, optimization of telecommunication networks and
some instances of imaging problems. In this thesis, we consider an example from computer
vision, namely image cartooning using Ly smoothing. For this, it is important to name
a few related works. The first known approach to directly minimizing the Ly norm of
the gradient of the objective variable is the work by Xu et al. |[201]. The authors use a
quadratic decoupling minimization in order to tackle the non-convex problem and increase
the coupling parameter in a continuation fashion as has been done in the context of optical
flow optimization |169]. However, it is not known wether the minimization procedure solves
the original problem. Another approach for computing image cartoons is the real-time
piece-wise smooth method by Strekalovskiy et at. [173] where the authors devise a non-
convex variant of the primal-dual Algorithm [I] by modifying the resolvent operator via
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Moreau’s identity [157]. However, these methods are specialized algorithms and are not
trivially applicable to other MIPs. In this section, we make use of the entropy in order
to solve a mixed-integer formulation of the Ly penalty in the context of image cartooning.
By applying this formulation on the gradient of natural images, it is possible to impose
a piece-wise constant prior on the resulting image. Along with a data fidelity term, we
obtain the following cost function:

A
E(u) = §Hu—f||§+ Vaully, (7.10)

where the unknown is u : 2 — R¢ and the input image is f :  — R¢ with ¢ being the
number of channels. The term ||Vu(x)l|, is a sparsity measure of the gradient, i.e.

IVullp = #{z : [Vu(z)| p # 0}. (7.11)

The term ||Vu(z)|  denotes the Frobenius norm of the gradient matrix and covers gray-
valued as well as multi-channel images. It is known in the compressed sensing community
that problem is NP-hard [35|. The most popular remedy is to replace the ||Vul|,
norm by a L; regularization of the gradient, leading to the following convex problem:

A
E(u) = §Hu—f||§+ IVl (7.12)

where

HVum::AJﬁhmmedx. (7.13)

It turns out that model is exactly the Rudin-Osher-Fatemi (ROF) model introduced
in [161] which has been extended to the vectorial case in [53, 72]. As a consequence of the
co-area formula , the total variation effectively measures the perimeter of all level sets
[41]. This effect invokes a loss in contrast which can be observed in the reconstructions.
Next, we rewrite problem by replacing the Ly norm by a mixed-integer formulation
introduced in |66] which gives

A )
min 5 lu = £3+ lall,

s.t. a(x)M > ||Vu(z)| ,
a(x) € {0,1},
Vo € Q, (7.14)

with a : Q — {0,1} and M € R being a scalar which needs to be provided beforehand,
indicating a maximal jump in image values. Instead of a problem with a non-convex
objective function as in we end up with a convex problem with the non-convex
integer constraint a(z) € {0,1}. Similar to (7.5), we relax this constraint to a(z) € [0, 1]
and introduce an entropy term in order to encourage the integrality of a. By doing so, we
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obtain

LA
min 5 lu = f13+ lall, + 0H(a)

s.t. a(x)M > ||Vu(x)| p,
a(z) €10,1],
Vo e Q. (7.15)

Although problem can be cast in a canonical DC-Programming form as in , it
is not obvious how to solve the subproblems . This is due to the non-linear constraint
a(x)M > ||Vu(x)| . By introducing an auxiliary variable p we are able to transform this
constraint into an second order cone (SOC) and we find

A
min 2 lu— fI3 + lall, +0H (@)

u,0,p
s.t. a(z)M > |pllg,
p = Vu,
a(z) €10,1]
Vi € Q. (7.16)

Calculating the inclusion ((7.9) amounts to solving the following problem:

. A
arg min max —Hu—f||§+||a||1+<90kva>
wapl B¢ 2

+ (B, = Vu) + (¢, 1 = Ma),
s.t. U(z) > |Ipll g,
Oé(l’) S [07 1]?
en (7.17)

with oF € (—0H (a*)). Note that we introduced an auxiliary variable [ in order to de-
couple the the [0, 1] constraint from the SOC constraint and to avoid applying alternating
projections as in [27]. Additionally, Lagrange multipliers 5 and ( are introduced in or-
der to handle the constraints p = Vu and | = M« respectively. Formulation (7.17)) is
a saddle point problem which we can solve using Algorithm [T For this, we make the
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identifications

u

<K , ,<f)>—<ﬁ,p—w>+<<,z—Ma>
l
u

A

G| 0 | =5l FIE+ Nl + (e 0) + 8 () 2 Ip@)lp, v € )

l

+ 4 (a(z) € [0,1]",Va € Q)

F* < f > 0. (7.18)

For the sake of simplicity, the right hand sides are given, by abuse of notation, in the
continuous setting. A discretization can be realized trivially, following Chapter[5l In order
to perform the necessary steps in Algorithm [I, we need to compute the resolvent operator
of G which is given component-wise in the discrete setting:

u u+TIAf
_1 _1 o 1+71
p k)
] soc(p, 1)
where & = a + 7o(1 + ¢¥).  The diagonal preconditioning matrices 77! =

diag((t1,72,73,74)7) and X! = diag((o1,09)") are set according to (4.42). The pro-
jection IIj 1)(1) is a simple clipping to the [0, 1] interval, i.e.

I,1)(1) = max(min(/, 1), 0). (7.20)

The point-wise SOC projection Ilgoc(a,p) can be computed in closed-form [145] . The
overall DC procedure is summarized in Algorithm

Algorithm 4 DC-Cartooning Algorithm
Initialize u°, a?, p°,19, 39, ¢O.
while not converged do
Choose ¢* € d(—0H (a*))
Solve to obtain (ukJrl’ ak+1,pk+17 lk+1”8k+17 CkJrl)
k+—k+1
end while

7.5 Experiments

In the following section, we demonstrate the effectiveness of our MIP approach in its
ability to minimize problem (|7.16). For this, we use natural images and estimate their
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d) A =2

Figure 7.2: A cartoon approximation of a natural image using different smoothness parameters A. All
results were computed with § = 1.

cartoon approximations. Additionally, we reconstruct cartoon images contaminated with
JPEG compression artifacts. We demonstrate that penalizing the Ly norm of the image
gradient is a suitable prior for such task. We also compare our approach with both the Lg
smoothing method in [201] and the piece-wise constant Mumford-Shah approach in [173].
In Figure a cartoon approximation of a natural image is calculated using different
smoothness parameters \. With decreasing A our method penalizes jumps more strictly.

0.8
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Figure 7.3: A cross section of the Lo reconstruction (upper plot) of the input image (red channel) in Figure
along with variable a (lower plot) which tracks the jumpset {z : ||[Vu(z)|| # 0}. Note how the peaks
in « exactly coincide with the jumps in w.
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d) [201], PSNR=24.65  e) |173|, PSRN=25.4366  f) Ours, PSRN=25.4395

Figure 7.4: Tmage deblocking of image in (a) using ROF denoising (b), the method by Xu et al. [201] (d),
the real-time Mumford-Shah approach of , and our formulation ([7.15)). Our method is able to achieve
the best smoothing result while still recovering fine structures.

Figure shows a cross section of an approximation with A\ = 3. In this 1D plot, we
observe that our method produces sparse gradients while minimizing the dataterm. In
Figure we apply our algorithm on a cartoon image corrupted with JPEG compression
artifacts. We compare our algorithm to the ROF model (6§ = 0) and to the methods of
Xu et al. and Strekalovskiy et al. . We tuned all parameters such that we obtain
the best reconstructions in terms of PSNR values. In contrast to ROF denoising, our
method clearly exhibits superior performance at de-blocking the image and recovering fine
structures of the input image. When compared to and , we observe that our
method achieves visually better reconstruction results than [201] and a comparable result
to the method of Strekalovskiy et al. in terms of PSRN values. However, in contrast to
[173], our method is guaranteed to converge due to the provably convergent DC-Algorithm
Al Note that in all our experiments we initialize all variables with zero. A dependence of
the reconstruction results on the initialization cannot be observed.

7.6 Conclusion

In this chapter, we generalized our work on introducing entropy to continuous multi-label
optimization Eﬂ (included in Chapter . To this end, we discussed the broader class of
MIPs and augmented their convex relaxation with an entropy term. We demonstrate the
effectiveness of our approach by tackling the problem of image cartooning which can be
formulated as an MIP. Our experimental results show that our approach competes with
state of the art specialized cartooning algorithms. Finally, our algorithm is guaranteed to
converge because we make use of a provably convergent DC algorithm.
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In the following, we provide summaries for the research papers included in this part.

Convex Optimization for Scene Understanding |8]

The most prominent strategies for semantic priors are based on pre-learning co-occurrence
statistics and penalize label configurations which are not likely to occur. These priors have
been incorporated in a discrete multi-label approach by Ladicky et al. [104] and have been
introduced to the spatially continuous setting in our work in [10]. Co-occurrence priors
always depend on a training set and are thus prone to overfitting. In order to avoid this,
a more principled way of incorporating context has been introduced by Delong et al. in
[50], namely hierarchical priors. These priors group labels in a context hierarchy. To this
end, labels are grouped as leafs in a tree where parent nodes represent scene labels. This
natural approach is able to refine image multi-labeling in a more intuitive and principled
way. Additionally, it is less prone to overfit to a database. This comes from the fact that
grouping labels under a context is a universal principle and comes close to the human
intuition. In this work we propose incorporating hierarchical priors into continuous multi-
label optimization. Our algorithm is able to jointly infer the labeling of the scene as
well as the scene type. For example, the labels ’car’, 'road’, 'building’ help determining
the scene type 'urban’ and in contrary knowing the context e.g. urban, nature, outdoor
and indoor helps refine the pixel-wise labels. In contrast to [50], we devise an algorithm
which does not depend on the underlying grid and thus does not introduce metrication
errors |95, 137]. We cast the hierarchical multi-label algorithm into one single optimization
problem in contrast to the discrete approach [50| which performs sequential optimization.
Our algorithm is parallelizable and trivially extendable to 3D multi-labeling unlike discrete
graph-cut based approaches which do not scale well with increasing dimensions [95].
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Entropy Minimization for Convex Relaxation Approaches [9]

Formally label assignment problems map from some domain to a discrete label space.
They can be formulated as integer optimization problems. These integer problems are
typically formulated by means of a {0,1} valued indicator functions. A common strategy
to solve these NP-hard problems is to relax their range to the interval [0, 1]. The resulting
convex relaxation formulations can be solved using state-of-the-art convex optimization
solvers. However, the minimizers of these methods are not always binary and guaranties
on the quality of the solution with respect to the original binary problem cannot be made
a priori. Typically, a binary solution is recovered by a suboptimal a posteriori thresholding
technique. In this work, we introduce a binarization energy to the optimization problem
and enforce the solution to become less fractional. To this end, we incorporate Shanon’s
entropy as a measure of tightness. Although the resulting cost function is not convex, it
happens to be is a difference of convex (DC) functions which can be minimized using a
specialized algorithm. This so called DC algorithm does not recover the global solution,
however, its convergences to a critical point is provably guaranteed. In our work we show
theoretically and experimentally that incorporating the entropy consistently improves the
multi-labeling results. Applications range from multi-label inpainting to spatio-temporal
3D reconstruction. By measuring the a posteriori optimality gap we are able to show that
our solutions exhibit tighter energies than classical convex relaxation approaches. In terms
of computational time our methods do not change the complexity of the algorithm. Indeed,
our method speeds up the convergence behavior of convex relaxation methods by a factor
of two.
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Smooth Piece-Wise Rigid Scene Flow from RGB-D Images [5]

Estimating motion is one of the most important tasks in human and machine vision. Its
application can be as obvious as predicting moving objects in a dynamic scene as well as
generating super-resolved frames in time [77] and space [188]. While 2D motion estimation
approaches have been around since the 80’s [121], in recent years methods for estimating
3D motion are getting more popular. This is due to the availability of high quality RGB-D
sensor’s and massively parallel architectures such as GPU’s which are available on end-
user graphics cards. Additionally, there has been a shift in convex optimization algorithms
towards first-order methods. These iterative methods can be implemented in parallel and
often lead to real time performance. Thus solving large scale variational problems effi-
ciently such as image segmentation, becomes feasible. Another trending topic in computer
vision and robotics is visual odometry, where the challenge is to predict camera poses from
a sequence of RGB [55] or RGB-D [94] frames. Traditional scene flow techniques are based
on linearizing the optical and range flow [197] constraints and solve for the displacement
between corresponding points. In this paper, we tackle the problem of jointly segmenting
the scene into rigidly moving parts and estimating their motion. To this end, we borough
techniques from image multi-labeling and visual odometry and devise an energy function
which is dependent on the partitioning of the scene and its underlying motions. Solving
these highly correlated problems jointly helps solving ambiguities in motion and in image
segments. In addition to rigidly moving parts, our method is able to recover non-rigidly
moving points by allowing a smooth transition between labels. This is realized by allowing
the labeling to vary between 0 and 1 as well as choosing a simple regularization which
promotes a smooth transition between labels when necessary. Detecting non-rigidity in
the scene is a realistic assumption which allows predicting moving segments and their un-
derlying motion more accurately. The overall problem however is highly non-convex. We
resort to a alternating minimization technique in which we fix the motion and solve for
the segments and vice versa. Finally we adapt the number of labels during the optimiza-
tion using filtering and merging. Quantitative and qualitative experiments on synthetic
and real world examples confirm that our method outperforms state-of-the-art scene flow
methods.
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Co-occurrence Priors for Continuous Multi-labeling [10]

Modern segmentation algorithms typically minimize a cost function consisting of a unary
term and a regularization term. These methods promote the smoothness of an object or
enforce a certain shape. Although these priors improve the solution, they are agnostic
to object statistics. Hence, they do not care about objects unlikely to co-occurre in a
scene. Recognizing odd object combinations comes natural to humans since we learn from
a child’s age to expect certain things to appear together or not. Researchers have been
looking into ways to incorporate this knowledge into multi-label segmentation algorithms.
The first approaches were focused on a simple semantic prior, namely the minimal
description length prior |50, 106, |204) 211]. This prior reflects the philosophy of Occam’s
razor by encouraging parsimonious solutions, i.e. solutions with fewer labels, over more
complex encodings of a scene. A more involved strategy is to exploit label co-occurrence
statistics to encourage certain labels to occur jointly. This more fine grained approach
of filtering out wrong labels have been proven to be very effective in the discrete setting
[104]. However, being dependent on a discrete lattice, MRF approaches are known to
exhibit metrication errors [95]. Additionally, extending discrete multi-labeling approaches
to 3D as in [81] is not trivial because graph-cut based algorithms do not scale well with
increasing dimensions. In this paper, we propose incorporating co-occurrence priors into
continuous multi-label optimization. Our algorithm does not depend on the underlying
grid and allows for local and non-local regularizations. The proposed formulation consists
of a single convex optimization problem and can be solved in parallel using modern
GPU’s. This allows for fast and high quality solutions which are independent of initializa-
tion. Finally, our elegant formulation allows for an efficient extension to 3D multi-labelling.
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Abstract In this paper we give a convex optimization approach for scene understanding.
Since segmentation, object recognition and scene labeling strongly benefit from each other
we propose to solve these tasks within a single convex optimization problem. In contrast to
previous approaches we do not rely on pre-processing techniques such as object detectors
or superpixels. The central idea is to integrate a hierarchical label prior and a set of
convex constraints into the segmentation approach, which combine the three tasks by
introducing high-level scene information. Instead of learning label co-occurrences from
limited benchmark training data, the hierarchical prior comes naturally with the way
humans see their surroundings.

9.1 Introduction

9.1.1 A Joint Approach to Scene Understanding

Scene understanding is the combination of segmentation, object recognition and scene
classification. These tasks are highly interdependent. On the one hand, the most important
cues for scene classification are the objects contained in the scene. On the other hand,
results from scene classification help to determine the objects occurring within the scene,
e.g. if we know that we are looking at a natural scene grass and sky would be likely but
armchairs would be surprising. Finally, segmentation results can be improved by means of
object recognition results, since typical color and shape models can be associated with the
objects. Instead of solving all tasks separately or sequentially our objective is to take a
holistic approach to scene understanding by solving all tasks simultaneously within a single
convex optimization problem — similar to the way humans reason about the world around
them. In this way, the tasks can directly influence each other. Previous joint approaches
usually rely on either difficult optimization schemes or on pre-processing tasks such as
superpixels or object detectors, which introduce errors and runtime limitations into the
scene understanding task.

9.1.2 Related Work

The inspiration to this work predominantly draws from two lines of research, namely
research on label configuration priors and research on convex relaxation techniques.

Hierarchical Semantic Prior Knowledge In human vision and understanding of the
world, especially hierarchies of objects are a common concept. They can be found on a
larger scene level characterizing which objects appear in a specific context, e.g. ’cars’ and
'road signs’ appear in ’street contexts’, whereas a 'cow’ and a ’sheep’ usually appear in
'natural contexts’ outside and not in the ’kitchen’ or next to a ’computer’. But hierarchies
can also be found on a small scale level describing single objects which are composed of
different parts, e.g. a ’bike’ consists of 'handlebars’ and ’tires’. In both contexts they are
characterized by specific semantic relationships among objects or object parts.
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Outdoor

______ / \—---_.

Nature Street

b) Potts model c) Proposed

Figure 9.1: Scene understanding consists of segmentation, object recognition and scene classification which
are highly interdependent tasks. Solving these tasks within a single optimization problem such that all
tasks can influence each other improves results for scene understanding. The scene in a) is classified as
‘nature scene’ which prevents incorrect labels such as ’building’ or 'road’.

Therefore, the integration of context-related hierarchical information on the scene level is
of importance to obtain highly accurate results.

The most closely related hierarchical prior is [50], where a fusion algorithm is proposed
which computes labelings for each label group in the tree separately and fuses the results.
This approach is iterative and limited to a single tree level, even though natural hierarchies
consist of many levels. In addition, the algorithm exhibits optimality bounds depending on
the cardinality of the label subgroups and the associated cost in each scene. This is due to
the fact that with arbitrary label costs, a-expansion’s bound is arbitrarily bad. For more
details see . In this paper we propose a non-iterative approach for trees with arbitrarily
many levels and computable (in practice very tight) optimality bounds.

A special case of such hierarchical priors are minimum description length (MDL) priors
106}, 204} 211] (with a single tree level and each class corresponding to a separate leaf with
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fixed MDL cost). Such priors result in a higher penalty the more different labels occur in
the image regardless of the corresponding objects.

A closely related prior is the co-occurrence prior [104, |10], which penalizes object sets
occurring together in the same scene. The main difference to hierarchical priors is that hi-
erarchical priors invoke a category penalty as soon as a single label of that category occurs
in the scene, but they do not differentiate between labels within the same category. In con-
trast, co-occurrence penalties are only invoked if all labels of the specific label set occur. In
addition, hierarchical priors are based on a human understanding of the world and are less
complex to compute, since penalties only exist between subsequent tree levels. In contrast,
co-occurrence priors are learned from limited training data and thus do not necessarily
reflect general or semantically meaningful relations, but rather the label frequencies of the
training set. Besides a separate penalty needs to be computed for each subset of labels (the
power set), which is extremely involved and usually requires approximation [104].

Scene Classification Scene classification denotes the task of categorizing an image with
respect to the type of scene shown. Most approaches build on the combination of image
feature descriptors, such as color histograms, texture or SIFT features. Based on the
descriptor output learning based approaches such as Support Vector Machines or statistical
approaches are applied to classify the scene based on training data [21,113,|114]. Yet, these
approaches rarely solve the segmentation, object recognition and scene classification tasks
jointly.

Joint Approaches Joint approaches for segmentation, recognition and scene classifica-
tion were given recently in [104] and [202]. Both approaches rely on the result of sophis-
ticated object detectors in order to infer solutions for the joint task. Thus, the quality
of the results always depends on the quality of the object detectors. In addition, the in-
ference problem solved in |104] is rather complex and does not involve the actual scene
classification task.

In this paper we solve the joint task based on convex optimization techniques without
requiring any preprocessing such as object detection or superpixel computation. In this
way, the quality of the solutions as well as the runtime directly depend on the proposed
algorithm instead of prior processing steps.

Convex Optimization To tackle the highly complex task of joint recognition and scene
classification we will rely on powerful techniques from convex optimization. In general,
this scene understanding task can be formulated as a multi-label problem. Two popular
paradigms exist for solving such energy optimization problems: discrete Markov Random
Field (MRF) based approaches and continuous optimization approaches. In [137] Nieuwen-
huis et al. showed that for multi-label problems continuous approaches can be parallelized
and implemented more efficiently. In addition, they do not suffer from grid bias and - in
case of a convex relaxation - are independent of the initialization. There are a number of
recent advances on convex relaxation techniques for spatially continuous multi-label op-
timization. These include relaxations for the continuous Potts model [38, (107} 206, for
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the non-local continuous Potts model [199], for MDL priors [204], and for vector-valued
labeling problems |70} |174]. In this paper we will give a convex relaxation of the scene
understanding task.

9.1.3 Contribution

Our main contributions are the following:

e Instead of solving a sequence of optimization problems we introduce the hierarchical
segmentation prior within a single convex optimization problem.

e The performance of our algorithm neither depends on the label subset cost nor on
the cardinality of the label subsets and can therefore handle an arbitrary number of
labels.

e Our formulation is more general than the class of hierarchical priors in [50| in the
sense that we are able to assign arbitrary costs for label configurations arising from
different categories. We also introduce a variant of the hierarchical prior where we
even assign infinite costs to certain label configurations.

9.2 Convex Multi-label Segmentation

Given a discrete label space £ = {1,...,n} with n > 1, the multi-labeling problem can be
stated as a minimal partition problem. The image domain Q C R? is to be segmented
into n pairwise disjoint regions €2; which are encoded by the label indicator function u €

BV(Q,{0,1})"
w(a) = {1 if z € Q;, 01)

0 otherwise.

Here BV denotes the space of functions with bounded total variation, which allows for
discontinuities [16]. To ensure that each pixel is assigned to exactly one region, the simplex
constraint is imposed on u:

zn:uz(:z) =1 Vzxe (9.2)
1=1

To find a solution to the minimal partition problem we minimize the following energy:
E(u) = Ep(u) + Es(u) + Eg(u). (9.3)

The data term
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where p;(x) is the local cost of assigning label ¢ to pixel x, measures how well the segmen-
tation complies with a given appearance model for each label. The regularizer:

Es(u) = ;; [ pu) (9.5)

ensures spatial coherence of the label assignment, and is chosen as the Potts model which
penalizes the boundary lengths. The term Ep(u) is the hierarchical scene understanding
energy which will be the focus of this paper.

Label Occurrence Functions In order to devise the hierarchical prior it is nec-
essary to model the occurrences of specific labels in the image. Let U =
{ue BV(Q,{0,1})"| >, ui(x) =1 Vo € Q} denote the set of all possible segmentations
over the image domain Q. Then the function ! : &4 — {0,1}" indicates for each label

i € {1,...,n} whether it occurs in a given segmentation:
1 if 3z eQ: wlz) =1,
) = 3 ) (9.6)
0 otherwise.
This can also be written as [204]
li(u) = maxu;(z) VieLl (9.7)

€

9.3 The Hierarchical Prior

Hierarchical priors penalize the co-occurrence of labels from different scene contexts, e.g.
a 'cow’ (‘outdoor’ context) and a ’fridge’ (’indoor’ context). To this end, the set of object
labels is organized in a tree structure where the leaves correspond to objects and the inner
nodes to object categories S with k := |S|, see Figures and

Let 7 : § — £ maps each category to the set of object labels it contains in all of its
subtrees, e.g. 7(Lg) = {I5,16,17,l3} in Figure Let furthermore

L:U—{0,1}* Li(u) = max l;(u) (9.8)
jem(i)

denote the indicator function for the k categories in the inner tree nodes, i.e. L;(u) indicates
if any label in any subtree of category L; is present in the scene. These nodes are organized
in arbitrarily many levels, e.g. ’outdoor’ contains the subcategories 'nature’ and ’street’
(see Figure . Note that labels can be shared by several categories by adding them one
level above all the subtrees that should share them. See for example the labels ’sky’ and
‘grass’ in Figure 9.3 which can appear in 'nature’, ’street’ and 'water’ scenes.

For each single category function L; we define a specific cost Cz, > 0 which is added to the
energy if any of the objects in any subtree of the category L; appears in the segmentation.
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Figure 9.2: An example label hierarchy with object labels £ in the leaves and scene labels S in the inner
nodes.

Hence, if the label ’bicycle’ appears the costs for the categories ’street’ and ’outdoor’ are
invoked.

Then we can define the hierarchical energy as

Ep(u) =Y Cp,Li(u) (9.9)

€S

with each L; given by . Thus, for each label occurring in the segmentation the energy
is increased by the costs Cp,, for all categories L; the label belongs to. In this way, we can
introduce statistical information on the likelihood of different scenes. Here, conditional
likelihoods instead of absolute ones are of interest, i.e. the probability of a scene given
its direct parent in the tree. For the optimization, we use and to write L; =
MaXjer (i) zen Uj(T) in terms of u. For efficient minimization we decouple max-terms by
means of the dualization of the max function [204].

Scene Uniqueness Constraints The hierarchical prior introduces costs depending on
the likelihood of each scene. In this way, it discourages labels from different scenes but
nevertheless allows for mixed solutions. For scene classification, however, one would expect
a hard decision for a single scene label. In order to obtain a unique scene label and to
improve the segmentation at the same time, we propose to introduce a scene uniqueness
prior. This prior imposes the constraint that all labels occurring in the final segmentation
belong to the same category, i.e. they share the same path from the lowest category level
to the root node of the tree. Let P : § — S map all categories to their direct category child
nodes, i.e. ’outdoor’ is mapped to 'street’ and 'nature’, and the lowest categories such as
'water’ are mapped to the empty set. Then we impose the following constraints

> Lj(u) = Li(u) Vi€ S. (9.10)
JEP(i)
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This constraint set ensures that the sum of all category functions at each tree level equals
the parent category function. By setting the root node indicator function L,(u) = 1 we
enforce a unique scene classification result. If a subcategory function is zero then no label
from its subtree can occur in the segmentation result. If two labels in different subtrees are
active then the scene uniqueness constraints force one of them to zero. These constraints
are linear and can be easily implemented by means of Lagrange multipliers. They can be
applied in addition to the hierarchical prior or alone. The energy Ep then reads as:

Eg(u) =Y CrLi(u) st. Y  Lj(u) = Li(u), (9.11)

i€S JEP(i)
Li(u) = max [j(u), l;(u) =maxu;(z), ViedLl. (9.12)
jemn(i) xeQ)

In addition to u, the overall energy ((9.3)) is then also optimized over the indicator functions
l; and L; as new variables. Since the max-constraints (9.12)) are not convex, we replace
them by the relaxations

Li(u) ViesS,jemn(i), (9.13)
li(u) VieLl,zeq. (9.14)

L(u)

VANVAY

They can be implemented with Lagrange multipliers, e.g. by adding the terms
SUDg, (2)>0 Jo @i(2)(ui(2) — li(u)) dz to the energy (9.3) and optimizing also over a.

9.4 Implementation

In order for the domain of optimization to be a convex set, we relax the binary constraint
ui(z) € {0,1} to the convex one u;(z) € [0,1]. To minimize the overall energy we
use the primal-dual algorithm [39]|, which is essentially a gradient descent in the primal
variables and a gradient ascent in the dual variables with a subsequent application of the
proximity operators. For the time steps we used the recent preconditioning [146].

9.5 Experiments

We will now show results for the joint task of segmentation, object recognition and scene
classification. To this end, we have selected a set of 15 semantic labels and scene types
(out of 21), which could naturally be grouped in a tree hierarchy, see Figure Hence,
we define the following label set

L := {Grass,Car, Bird, Building, Sky, Water,Cow,Sheep,Boat,
Chair, Tree, Sign, Road, Book,Sky}

together with the object categories

S := {Indoor, Outdoor, Nature, Street}.
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Figure 9.3: Hierarchical prior for MSRC benchmark used for joint segmentation, recognition and scene
classification.

2 0
T |f£g..58 8 _ % . .x53 s
° . = & 3 O > B o= o0 8 & ®
S FlEEedd£2EE2dE5868 88
Potts 87.72 79.09 79 97 89 70 81 97 74 95 81 85 70 82 96 65 32
Co-occurrence |104| 89.97 81.76 88 99 86 62 8 92 94 94 82 89 62 88 84 71 34
Hierarchical Prior 89.53 81.83 82 97 89 82 91 90 89 95 90 88 64 &7 56 79 41

Figure 9.4: Average accuracies over all images (global) and average per class for the pure Potts model,

our approach and the co-occurrence results by Ladicky et al. [104]. The scores for each label are defined
True Positives - 100
True Positives + False Negatives'®

as

For testing we use the subset of 68 images from the MSRC benchmark, which contains
only labels within our hierarchy. We minimize the energy in using the appearance
term in [104] as data term Ep, the standard Potts model as smoothness term Eg(u) and
the hierarchical energy EFg together with scene uniqueness constraints as formulated in
(9.11)). Qualitative results comparing the proposed approach to the results based only on
the Potts model (i.e. Ey = 0) and to the co-occurrence priors by Ladicky et al. [104] are
shown in Figure Several of these images show strong improvements compared to the
Potts and the co-occurrence prior, e.g. the 'book’ label disappears from the sign image, the
reflection of the tree is correctly classified as 'water’ and the ’sheep’ is no longer confused
with the label 'road’ due to color similarities. Figure shows the average accuracy on the
mini-benchmark. The comparison to the co-occurrence prior shows that the differences are
only marginal on average. Yet there is no scene classification involved in the co-occurrence
prior, and as argued in the introduction learning of the prior is much more involved and
prone to specialization on the specific database. In contrast, the hierarchy structure was
modeled by hand based on human reasoning.
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9.6 Conclusion

In this paper we proposed a joint approach for segmentation, object recognition and scene
understanding, which is formulated within a single multi-label variational optimization
approach. In contrast to previous approaches we do not rely on the computation of super-
pixels or object detector outputs or build several stages in the optimization process. We
gave a convex relaxation of the approach yielding unique solutions to the scene classifi-
cation task independent of the initialization of the algorithm. The results on the MSRC
benchmark show that for several images we were able to strongly improve the labeling task
achieving classification results sligtly above the highly specialized co-occurrence prior by
Ladicky et al. [104].
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Abstract Despite their enormous success in solving hard combinatorial problems, convex
relaxation approaches often suffer from the fact that the computed solutions are far from
binary and that subsequent heuristic binarization may substantially degrade the quality
of computed solutions. In this paper, we propose a novel relaxation technique which in-
corporates the entropy of the objective variable as a measure of relaxation tightness. We
show both theoretically and experimentally that augmenting the objective function with an
entropy term gives rise to more binary solutions and consequently solutions with a substan-
tially lower optimality gap. We use difference of convex function (DC) programming as an
efficient and provably convergent solver for the arising convex-concave minimization prob-
lem. We evaluate this approach on three prominent non-convex computer vision challenges:
multi-label inpainting, image segmentation and spatio-temporal multi-view reconstruction.
These experiments show that our approach consistently yields better solutions with respect
to the original integral optimization problem.

10.1 Introduction

Numerous problems in vision — including two-region and multi-region image segmentation,
stereo- and multi-view reconstruction or optical flow estimation — can be cast as variational
multi-labeling problems of the form

u* = argmin F(u), (10.1)
u

with a labeling function u : 2 — I' from a domain €2 to a label space I". The domain and the
label space can be both discrete or continuous. Numerous works have proposed methods
for efficiently computing solutions to the above integer problem. A common approach [151]
is to rephrase the above integer problem as a binary labeling problem with an indicator
variable u :  — {0,1}/T]:

Ui, = argmin  E(u) |, (10.2)

w:Q—{0,1}TI

possibly subject to additional constraints. While this binary formulation often leads to a
convex energy FE, the binary constraint makes the optimization domain non-convex and
generally yields a hard combinatorial problem.

Relaxation. The central idea of many convex relaxation techniques is to drop the inte-
grality constraint and consider the relaxed convex problem:

Uy = argmin E(u). (10.3)
w:Q—[0,1]IT

Solving this problem is usually much easier, but its solution w;, can be non-binary and

consequently a rounding scheme needs to be applied to obtain a binary solution.

Rounding. In general, the rounded solution can be very different from the globally optimal
solution u;;  and may not even be a local minimum of the binary objective ((10.2)). The
simplest rounding scheme is to select the label with the highest likelihood. We will detail
the rounding schemes later when looking at certain problem instances of .
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For certain 2-label problems, a thresholding theorem [138] may assure provably optimal
binary solutions upon simple thresholding of the relaxed solution u;,. For more general
multi-label problems the computed solutions are often far from binary and rounding may
drastically increase the energy and the corresponding a-posteriori optimality bound (the
energetic difference between rounded and relaxed solution). Moreover, a number of works
incorporate additional constraints on the solution in order to constraint the volume/area
[155, 186], or higher order moments |96| of the resulting segmentation, or to enforce size
proportions of respective segments |136]. While these constraints are meaningful for the
binary problem , they often change their physical meaning in the relaxed setting
(110.3)).

Novel relaxation scheme. In order to cope with the above mentioned problems we
propose to augment problem ([10.1)) with an additional term which promotes the integrality
of the solution during optimization and thereby leads to better solutions with substantially
smaller optimality gaps. The key idea is to control the integrality of the objective variable
by means of Shannon’s entropy. Entropy minimization has been used in several computer
vision applications including shadow removal [63] and image segmentation |180] where it
is used as a general color consistency criterion for separating histograms. To the best of
our knowledge this work is the first to apply entropy minimization on the labeling function
u. The augmented relaxed problem composes of the original labeling problem and the
additional entropy term H weighted by 6 € R>q and reads as follows:

u* = argmin FE(u)+ 0H (u). (10.4)
w:Q—[0,1)IT

This generalizes the convex relaxation problem , obtained by setting 6 =0. Likewise,
by taking 6§ — oo we also recover since the entropy term becomes an integral con-
straint. Unfortunately problem is not convex anymore for § >0 and obtaining the
global minimum of its relaxed version is generally not possible anymore. Luckily, problem
exhibits a special structure: it decomposes into a convex function F(-) and a con-
cave function 0 H(-) being equivalent to a difference of convex functions (DC). This makes
formulation amenable to the DC programming approach [182] which guarantees
to find a stationary point of the objective. Although there is no guarantee for finding a
globally optimal solution, we show that the obtained non-rounded results are more binary
than the results of state-of-the-art relaxation methods. In this paper, we focus on spatially
continuous variational approaches as they are easily parallelizable and do not suffer from
metrication errors in contrast to their discrete counterparts [95]. Though, our approach
might also be applicable in a discrete setting.

10.1.1 Contributions

Our contributions can be summarized as follows:

e We propose to use the entropy of the objective variable to empirically measure the
tightness of a relaxed solution. We then enhance integrality of solutions by jointly
optimizing the objective function and the entropy.
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e We propose to use a provably convergent algorithm for solving the arising convex-
concave problem which combines DC programming and a state-of-the-art first order
solver.

e We show theoretically and experimentally that our method provides solutions which
are more integral and exhibit a tighter energy bound than state-of-the-art convex
relaxation methods. Our approach thus promotes simple rounding schemes.

e The proposed entropy augmentation does not change the algorithm complexity. In all
experiments we observed an improved convergence behavior and runtime speed-ups
up to a factor of two.

o We demonstrate the effectiveness of our approach on several computer vision applica-
tions including multi-label image inpainting, image segmentation and spatio-temporal
multi-view reconstruction.

10.2 Shannon’s Entropy

Originally formulated for discrete random variables Shannon’s information entropy is a
measure of uncertainty. Suppose that u : © C R? — [0,1]"] is a soft labeling function
such that Vo € Q : ZEI ue(x) = 1. Interpreting u(z) as a probability distribution on
each x € ) we can apply information entropy on a labeling problem by directly imposing
it on the indicator variable u. The total entropy of a labeling function can be written as
follows:

7|

H(u) :/Q—Zuzlogug dz (10.5)

(=1

which is an integral of a point-wise concave entropy measure in each x € ). For brevity
we will refer to the total entropy as entropy for the rest of the paper.

10.3 Solving the Convex-Concave Program

In the field of variational convex relaxation approaches, non-convex optimization has gained
tremendous popularity in recent years. However most of these works focus on realizing non-
convex regularizers [129, 140]. We make use of DC programming, dating back to a seminal
work by Tao et al. [182] which generalizes subgradient algorithms for convex maximization.
The principle of minimizing the difference of convex functions heavily relies on concepts
from convex optimization and especially DC duality |185]. Closely related to DC program-
ming is the so called convex-concave procedure (CCCP) described later in [205] though it
assumes differentiability of the objective function. In [92] DC programming is applied to
a QP relaxation of MAP inference in order to cope with the non-convex objective.
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10.3.1 DC Programming

DC programming deals with solving a non-convex problem of the following form:
inf{g(u) — h(w)} . (10.6)

where g(u) and h(u) are convex functions. In order to solve we make use of a
simplified form of the DC algorithm [181]. Based on DC duality and the KKT conditions
for DC programs, the algorithm generates the following sequences v* € 9h(u*) and u*+! €
dg*(v®) which guarantee to converge to a critical point. The overall DC algorithm is
illustrated in algorithm [5] where g* denotes the Legendre-Fenchel conjugate of g.

Algorithm 5 The DC Algorithm

Initialize u° € dom g.
while not converged do
Choose v* € 9h(u*)

Choose u**1 € dg*(v)
k< k+1
end while

10.3.2 Solving monotone inclusions

Note that since u**1 € 9g*(v¥) < v* € dg(uF*!) & 0 € dg(uF*+1)—v* and since g a convex,
we solve a monotone inclusion problem in each iteration. Hence choosing u**1 € dg*(v*)
in algorithm [5| amounts to solving the following convex optimization problem:

M1 — arg min g(u) — (0%, u) (10.7)

u

u

In order to be able to solve problem (10.4) using DC programming we make the following
identifications:

g(u) = E(u) + oy, (u) h(u) =0H (u) , (10.8)

where 6y, (u) denotes the characteristic function:

ou

T

(10.9)

0 ifu(x)e€l0,1] VzeQ,
el( ): .
oo otherwise.

Most variational problems g(u) are large scale and non-smooth and therefore not easily
solvable using standard solvers. To this end, we use the state-of-the-art primal-dual algo-
rithm of Pock et al. [39] which solves a saddle point formulation of problem (further
details in the supplementary material). Using Algorithm [5| we can solve any problem
of the form . For binary tomographic reconstruction, [196] proposed a similar DC
programming framework for implicit rounding. In contrast to the entropy term which is
well-grounded on information theory and naturally generalizes to higher dimensions, they
use a negative quadratic term as a heuristic to impose integrality of the solution.
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10.4 Experiments

We consider three problem instances which exhibit non-tight relaxations. For all exper-
iments we initialized function u in our algorithm with a zero or random function while
choosing the entropy parameter as 6 € [0.01, 0.5].

10.4.1 Multi-label Image Segmentation

In variational multi-label image segmentation one assumes a continuous domain €2 and
a discrete label space I' with |T'| > 2. The image domain 2 C R? is to be segmented
into |I'| pairwise disjoint regions €2, which are encoded by the label indicator function
w: Q— {0, 1H] wy(x) = 1,cq,. The overall problem can be stated as a minimal partition
problem. To find a solution to such a problem augmented with an entropy term we solve
the following optimization problem:

|
1
minZ/ [)\w(a:)gg(a:)—i-ﬂDud dx + 0H (u)
Y ome 2
r|
st Y w(r)=1, u(x)>0 VreQ (10.10)
=1

The data fidelity term g;(z) : 2 — R assigns a color-based pixel-wise cost to each pixel z for
belonging to region ¢.  Expression Du in the smoothness term denotes the distributional

Input Zach [206] CCP |[38] Zach+Entropy CCP—+Entropy

Figure 10.1: Inpainting using different relaxations of the Potts model with (6 = 0.02) and without (6 = 0)
entropy. The visualized entropy shows that the joint minimization of the entropy yields more binary
solutions.

derivative of u throughout the paper. It encourages regularity of the obtained partitions
in the solution by minimizing its boundary length and is chosen as proposed by Zach
et al. [206]. Although the relaxation of Chambolle, Cremers and Pock (CCP) [38] of the
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Adll

Input Zach [206] CCP [38| Zach+Entropy CCP+Entropy

Figure 10.2: Inpainting in the case of 4 regions. In case of non uniqueness our approach (with 6 = 0.02)
picks an almost integral solution with lower energy (see table [10.1).

boundary length is tighter compared to Zach et al. [206], its complexity grows quadratically
with the number of labels, making it impractical for large scale problems with many labels.
Note that the energy functional is a convex-concave program which can be solved by
applying the DC algorithm [5| Figure illustrates that despite the less tight relaxation
(10.10) we obtain a drastic improvement of the solution by augmenting the optimization
problem by an entropy term. We observe that for the inner optimization problem in
Algorithm [5| only a few iterations (1-5) are necessary for convergence. As a result, we
obtain tight solutions even with the simple relaxation of Zach et al. [206] without the need
to drastically increase the runtime by using a tighter CCP relaxation.

Rounding. To compute a binary solution from the relaxed one, we select the most likely
label point-wise, i.e. Vx : upin(z) = &; with j = min { argmax,(u}, (x))¢} and &; being
the j-th unit vector in the space {0,1}'l. Note that Lellmann et al. [111] proposed a
probabilistic rounding scheme which provides an a-priori bound on the energy. However it
is slower and yields slightly degraded results in practice (see |110|] for a comparison on the
triple-junction problem).

Non-Uniqueness of the Solution

The energy without H(u) is not strictly convex and thus admits several binary
solutions. If the relaxation is not tight then convex combinations of distinct binary solu-
tions may get assigned lower energies which in turn promotes non-binary solutions. This is
especially visible for larger numbers of labels. Figure shows that already with 4 labels
the CCP relaxation tends to produce a convex combination of binary solutions which is a
valid minimizer in the case of the relaxed problem as we show in Proposition

Proposition 1 (Convex combinations of binary solutions have lower energies). The convex
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combination ue, = aut + (1—a)ub of two binary solutions u},uws: Q—{0,1}T1 of problem

(110.2) has lower or equal energy (Eq. (10.3)) than the energies of the binary solutions, i.e.
E(uq) <E(uj).

Proof. By convexity of the objective E(u) we have:

Eauf + (1 - a)ug) < aB(u}) + (1 - a) E(u)

and since E(uj) = E(u3) we prove the claim. The generalization for more than two
solutions is straightfoward. O

We observe that adding an entropy term tends to constrain the solution space to more
integral solutions, hence our approach helps picking a solution which is more binary and
hence tighter than the convex combination. In addition to the entropy, we measure the
tightness of the solution by also evaluating the established posterior optimality bound
[137] G(ubin, uly) = %_*E)(u;l), where ), is the solution of the relaxed problem and
Upin the corresponding rounacéd solution. The exact runtimes and comparisons of different
relaxations combined with entropy are presented in Table Note that in addition
to obtaining tighter solutions our algorithm outperforms the original formulation even in
the runtime. The following Proposition [2| shows that additionally minimizing the entropy
promotes binary solutions over convex combinations.
Proposition 2 (Energy favors binary solutions over convex combinations). Lets
denote the objective by Ep(u)=FE(u)+0H(u) and let ua =) ,04u; be a convex
combination of different optimal binary labelings u} : Q— {0, 1}|F| with normalized weights
€[0,1], >, a=1. Then, for sufficiently large 0, binary solutions u} have a strictly lower
entropy-augmented energy Ep than convexr combinations of binary solutions ue, that is,

Ei(ua) > Eg(ul).

Proof. Using the definition of Ep, the convexity of E(u) and the property that H(u)
vanishes for binary u, we derive the following equalities and inequalities for any binary
solution u;:

Ep(ua) — Eg(u}) = E(ua)—E(u}) +0 (H(ua)— H(u})) (10.11)

)

~~

<0 >0

By choosing 6 > (5(@)_]5(%) the following inequality holds:

(ua)—H(u}))
Ex(uqg) — Eg(uy) > 0< Eg(us) > Eg(u)) (10.12)

O

Table shows the corresponding energies Fy;, and Eyq to the results in Figure for
the binary and relaxed solutions for the Zach and CCP relaxation respectively. While the
energies obtained using the additional entropy term are higher than the relaxed energies,
the binarized energies of both relaxations combined with an entropy penalization are clearly
lower than the mere convex relaxations.
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Zach CCP Zach+Entropy CCP+Entropy

Era 630.1 634.3 639.6 637.7
Eyvin 673.9 691.6 666.8 668.1
Glupim,usy) 0.069 0.090  0.042 0.047
Entropy H 2769 1739 379 306
Runtime [s] 153 188 68 125

Table 10.1: Relaxed and binary energies for different relaxations with and without entropy term, optimality
gaps as well as entropy values and runtimes in seconds for the 4-region inpainting in Fig. m

10.4.2 Binary Image Segmentation with a Fixed Volume Con-
straint

By considering only two labels the relaxation of problem becomes tight and optimal
binary solutions can be computed via simple thresholding of the relaxed solution [138|.
Unfortunately, this changes easily by adding further constraints to the optimization prob-
lem. We consider a fixed volume constraint on the solution of the segmentation problem.
Volume constraints have been used with convex relaxation methods for image segmentation
[134, [155], image-based modeling [143| [186] and they have also been generalized to higher
order moment constraints [96]. In |134] they also addressed the problem of the non-tight
relaxation, but their suggested algorithm is less general as user-provided seed points are
required. Discrete approaches to this NP-hard problem have been suggested in |56, [115].
Both of them are restricted to equality constraints and the former only provides approx-
imate solutions and its runtime is exponential in the number of labels. Our approach
is more general than previous works, it provides the desired results for the fixed volume
segmentation problem and it improves the convergence of a state-of-the-art solver at the
same time. Thus, we consider the following minimization problem:

rrtin/ [g|Du| + Afu] dv+ 60H (u)
Q

s.t. / uder -V, =0, (10.13)
Q

where A steers the smoothness of the solution by changing the impact of the data fidelity
term being defined by function f : @ — R, f(z) = (c1 — I(2))? — (c2 — I(x))? in which
c1,c2 € R are gray values for foreground and background, I : 2 — R is the input image
and V; denotes the pre-defined target volume. The total variation weight is defined as g =
exp(—|V f]). Note that one easily adapts the approach to bound the volume with inequality
constraints [96, |134], but the problems of the relaxation can be better demonstrated with
an equality constraint.

Because of the volume constraint there is no free choice of thresholds to obtain a binary
solution and the thresholding theorem [138|, which directly relates solutions of the relaxed
problem to binary one, does not apply anymore. For rounding, simple thresholding as
in [56] might violate the volume constraint. The following rounding scheme from [186]
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addresses both the volume constraint and the binary constraint. It even guarantees ful-
fillment of the volume constraint, if several non-binary u(z) have identical values, i.e. no
threshold exists to binarize the solution without violating the volume constraint.
Proposition 3 (Rounding scheme for fixed volume constraint [186, Prop.2|). The relazed
solution of can be projected to the set of binary functions in such a way that the
resulting binary function preserves the target volume V.

Proof. 1t suffices to order the voxels x; € V' by decreasing values u(x1) > u(ze) > ... >
u(z|y|). Subsequently, one sets the value of the first V; voxels to 1 and the value of the
remaining voxels to 0. O

f ur, 9=0 #=0.03 9=0.1

Figure 10.3: Segmenting a fraction of an homogeneous rectangle (gray) with the fixed volume constraint.
Left to right columns: data term f, analytic optimal solution wu;. (top row) of the relaxed problem
without entropy term. This solution is never perfectly reached due to slow convergence and oscillations.
0 =0 depicts a sample solution. The corresponding rounded solution is far from the optimal solution: a disc
with the area of the square next to the square. This optimal solution uy;, is found by adding the entropy
term with # =0.03. Increasing the impact of the entropy term to § =0.1 increases the non-convexity and
adds local optima.

The experiment in Fig. demonstrates the relaxation problem with the volume con-
straint. The goal is to segment a fraction of a homogeneously colored rectangle using the
volume constraint. The first column of Fig. depicts the data term containing a square
with strong foreground preference (black) and a rectangle with equal cost for foreground
and background (gray). The white area strongly prefers a background label. The area of
the gray rectangle is six times larger than the square. The target volume V; is chosen to
be twice the size of the square, i.e. a sixth of the rectangle shall be filled. Due to the
relaxation, the optimal solution is not necessarily compact anymore (u},; top row). If no
preference is given by the data term or by the boundary conditions, an equal distribution of
the volume yields the lowest energy. For the corresponding rounded solution (middle row)
we set the first V; voxels to one according to Prop. [3 but since all pixels in the rectangle
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have equal value, their ordering is arbitrary and can lead to many different non-optimal
solutions. Since the optimal relaxed solution contains the same information as the data
term, optimal rounding is as hard as solving the original problem again in this case. Due
to very slow convergence and oscillating behavior of the solver, the optimal relaxed solu-
tion is not reached because little volume portions are permanently shifted around and the
induced pixel orderings are not related to the optimal binary solution (#=0). An optimal
binary solution wu;; - a compact disc with the area of the square - can be optained with
the proposed entropy augmentation(#=0.03 middle row). The entropy term favors binary
and thus compact solutions, and ensures that the relaxed solution is close to the binary
one which ensures the applicability of simple rounding schemes.

Choice of the entropy weight 6. As a general rule for all experiments in the paper, we
found that 6 should be chosen as small as possible, but large enough to favor binary solu-
tions. This is because larger 8 increase the non-convexity of the problem and thus also the
potential number of local optima, as illustrated in the last two columns of Fig. [10.3]

Input 80% 100% 110%

Figure 10.4: Changing the target volume V; on a real image reveals that relaxation problems occur fre-
quently. The figure compares relaxed solutions uye with and without entropy term. V;=100% corresponds
to the segmentation result without volume constraint.

As shown in Fig. [10.4] the relaxation problems occur frequently and especially if fractions of
regions with approximately homogeneous data costs need to be filled. Fig. shows two
more such cases for which the rounding yields solutions that heavily violate the expected
minimal boundary length and how the entropy term avoids these problems.

The right plot in Fig. illustrates the rounding scheme and shows non-binary homo-
geneous regions as plateaus in the sorted label graph which are effectively eliminated by
the proposed entropy augmentation. If the target volume seeks into a homogeneous region
the rounding might result in shapes not having a minimal contour length (as shown in
Fig. [10.5). The left plot of Fig. shows that the entropy augmentation consistently
yields lower binary energies and leads to smaller energy differences between relaxed and
binary solutions which avoids the need for more complex rounding schemes. The relaxed
solution of the original problem has always the lowest energy. Conversely, the correspond-
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Relaxed result ;e Rounded result up;ip Point-wise entropy

-

9—003 :()03 0=0 6 =0.03
Figure 10.5: Effect of the entropy term on the rounded solution. This figure continues Fig. with
volume percentages 140% and 170% and shows the strong difference between relaxed and corresponding
rounded solutions in regions with approximately homogeneous data costs. The level-sets of el in these
homogeneous regions do not necessarily obey a minimal boundary length for the enclosed volume (red
boxes). The proposed entropy augmentation tackles the problem and ensures that relaxed and binary
solutions are more similar.

140%

170%

% volume - no entropy
Py

Figure 10.6: This figure further studies the target volumes 80%, 140% and 170% from Figs.
These plots should be read color-wise. Each color represents a different target volume. Left: Energy plots
during numerical optimization. Binary energies (solid lines) are always larger than relaxed ones (dashed
lines). Apart from the first iterations, the energies without entropy term (thick lines) are almost always
sandwiching the ones with entropy augmentation (thin lines). That is, the entropy term reduces the gap
between relaxed and binary energies. Right: Visualization of the rounding scheme (Prop. . All pixels
are ordered with respect to their relaxed label urei(x). The plot shows non-binary pixels 6K to 22K (of
120K). The target volume represents a single point on the x-axis defining the transition between 0 and
1. The non-binary, almost homogeneous image regions form plateaus in this plot and lead to ambiguous
selections in the rounding process.

ing rounded energy was always the largest in all our experiments. In all experiments
the entropy augmentation stabilized the oscillating behavior of the numerical solver in
the presence of non-binary homogeneous image regions and thus lead to better and faster
convergence.

10.4.3 Spatio-temporal Multi-View Reconstruction with a Fixed Vol-
ume Constraint

The binary 2D image segmentation model from the previous section can be lifted to higher
dimensions for spatio-temporal multi-view reconstruction [142|. Then, the fixed volume
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constraint can be applied separately to each time frame to express the prior that the overall
scene volume should not change over time which is, for instance, approximately true when
capturing humans with tight clothing. In this section, we demonstrate 1) that the findings
of the previous section are practically even more relevant in a 3D reconstruction setting,
and 2) that the proposed entropy augmentation gives consistently better results over entire
sequences.

The surface ¥ of the reconstructed model is represented as a binary labeling v : VT —
{0,1} of interior or exterior defined by the indicator function u = 1x. It is observed by
N cameras with known projections {m;}X¥, and approximate silhouettes {S;(¢)}X ;. The
volume-constrained and entropy-augmented reconstruction problem reads

mum/ [o|Dyu| + g¢| Dyu| + A fu] do + 0H (u)
VXT

s.t. /ud:v—V} =0 VieT . (10.14)
\%4

Note that we also change the domain from © to VT in the entropy term H(u) in
Eq. . The regularization term in Eq. is split into a spatial and a tempo-
ral part. The temporal term is weighted by function g;(z,t) = exp (— |V f(z, t)|) which
reduces the temporal smoothing in the presence of motion. The spatial term contains the
photoconsistency measure g(x) : VxT — R>q which locally attracts the surface to loca-
tions with high photometric consistency, which, in turn, is estimated by means of truncated
normalized cross-correlation matching scores of image patches from neighboring cameras.
Similarly to the 2D segmentation case, the data fidelity function f : VxT — R gives local
preferences for the label of u and is defined as the log-likelihood ratio of the probabilities
of being either in the surface interior or exterior. For brevity and readability, we refer to
[142] for the exact definitions of the data term and the regularizer weight, also because
their influence on the solution is similar to the 2D case. For temporal consistency, three
consecutive time frames are jointly solved and longer sequences are processed with a tem-
poral sliding window approach. An iso-surface is extracted from the center frame using
the rounding scheme in Prop. [3| and the Marching Cubes algorithm [118].

Fig. [10.7] shows a slice of a single reconstruction together with one of 16 input images, the
data term f next to several solutions for different target volumes. The figure compares the
impact of the entropy term and shows significant artifacts in the solutions without entropy
augmentation. Besides the fact that homogenous cost regions occur frequently in the 3D
setting, we observed that noisy cost regions cause the same problems as long they do not
infer monotonicity on a larger scale. Especially the Neumann boundary conditions attract
the distribution of volume in the entire scene, because it minimizes the regularizer.

Figs. and show the evaluation of our method on the INRIA dataset [88]. Fig. m
shows energy and volume plots over time. In many frames the volume constraint compen-
sates for low photometric matching scores and distributes the volume according to their
score. The energy plot demonstrates the robustness of the entropy augmentation as we
consistently obtained lower binary energies for the entire sequence. In Fig. we il-
lustrate the benefit of the volume constraint in conjunction with the entropy term. While
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Ubin

Entropy

H(u) = 1739 (u) .5 H(u) = 21616 H(u) = 196

Input 9=0 . 0=0 9 =0.05

Figure 10.7: Changing the volume of a 3D reconstruction cross section. Homogeneous regions in the
cost function occur often in a 3D reconstruction setup which in turn causes non-tight relaxations. The

volume adaption can generate strong artifacts which are effectively suppressed with the proposed entropy
augmentation.
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Figure 10.8: Plots of the volume (lower graphs) and several energies (upper graphs) in comparison for 500
frames of a multi-view video sequence (children playing sequence from [88]). Without volume constraint
the volume changes over time due to insufficient matching information and occlusions which appear mostly
when the volume is above our chosen target volume (cyan line). The upper graphs depict relaxed (dashed)
and binary (solid) energies with (blue) and without (red) the volume constraint. Interestingly, the solution
without volume constraint always has a higher energy. The blue graphs show binary and relaxed solutions
with (light blue) and without (dark blue) the entropy term. For the entire sequence we verified that the
solutions without entropy enclose the ones with entropy term, i.e. E97% < E?>0 <« E9>0 <« EI=0 as shown

rel rel bin bin
in the magnified area. That is, our approach gives consistently better binary solutions.
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Frame 4 Frame 13 Frame 95

without

with

with vs. without volume constraint 0 =0vs. =05

Figure 10.9: Reconstruction results with and without volume constraint (for # =0.5) as well as with and
without entropy term in comparison (for fixed V;). For the first 50 frames the volume is too low (see
Fig. bottom) and the constraint improves the reconstruction (first two columns). Column 3 compares
the impact of the entropy term. With entropy term, the regularizer concentrates the volume at locations
with a higher data term rather than distributing volume around regions with low data term for attaining
smoothness. Therefore, the girls arm is better recovered for the same target volume.

the energy without entropy distributes the volume to generate smooth transitions between
opposing labels the entropy term concentrates the volume to the locations with the best
likelihood score. In sum, the fixed-volume relaxation problem remains tight as long
as the data term or the boundary conditions enforce a monotonicity of local costs to avoid

fractional homogeneous labelings. The supplementary material provides further details on
the experiments.
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10.5 Conclusion

We proposed a relaxation technique for general multi-label problems which assures that
the computed solutions of the relaxed problem are more binary and consequently have
lower optimality gaps. The key idea is to combine the traditional convex relaxations with
a concave entropy-term which favors binary solutions. We showed that the arising non-
convex problem can be optimized with a provably convergent DC programming method.
We demonstrated both theoretically and experimentally that binary solutions are energeti-
cally favored and that optimality gaps are smaller. Experiments on multi-region inpainting,
image segmentation and spatio-temporal multi-view reconstruction demonstrate that the
proposed entropy-based relaxation method is faster and consistently yields solutions of
better visual quality and lower energy with respect to the original binary optimization
problems.
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Abstract We propose a novel joint registration and segmentation approach to estimate
scene flow from RGB-D images. Instead of assuming the scene to be composed of a number
of independent rigidly-moving parts, we use non-binary labels to capture non-rigid defor-
mations at transitions between the rigid parts of the scene. Thus, the velocity of any point
can be computed as a linear combination (interpolation) of the estimated rigid motions,
which provides better results than traditional sharp piecewise segmentations. Within a
variational framework, the smooth segments of the scene and their corresponding rigid
velocities are alternately refined until convergence. A K-means-based segmentation is em-
ployed as an initialization, and the number of regions is subsequently adapted during the
optimization process to capture any arbitrary number of independently moving objects.
We evaluate our approach with both synthetic and real RGB-D images that contain var-
ied and large motions. The experiments show that our method estimates the scene flow
more accurately than the most recent works in the field, and at the same time provides a
meaningful segmentation of the scene based on 3D motion.

11.1 Introduction

Scene flow estimation has many applications such as human body pose tracking, articulated
object modelling for virtual/augmented reality or traffic scene understanding. In many
scenarios, the dynamic scene is composed of rigid parts: human/animal bodies, man-made
articulated objects, cars in a street scene, etc. Many existing methods that work on scene
flow do not completely exploit this aspect, and estimate motion fields that are only locally
rigid or not rigid at all. Other methods do segment the scene to impose rigidity or strong
regularization over the regions (or segments). However, these segmentations are only used
as tools to improve the accuracy of the estimates, and do not really correspond to the
underlying/independent motions of the scene (e.g. [176] partitions the scene into depth
layers, [193] divides the scene into piecewise planar regions). Therefore, the segmentation-
from-motion problem, which can be particularly useful for scene understanding or human-
machine interaction, is not trully addressed by these methods.

On the other hand, assuming purely rigid motions is a strong restriction that is barely
fulfilled in organic shapes. When a person moves, there are parts of their body moving
rigidly (e.g. upper and lower arms or legs) and others which are transitions between
the rigid ones (e.g. the neck). Besides, rigid motions within a fine-grained articulated
structure may not be observable with the limited resolution of a camera. For these reasons,
a sharp segmentation will never be able to estimate the motion of life beings or some other
inanimate objects with exactitude.

In our method, we leverage the natural rigid-part decomposition by allowing for smooth
continuous transitions between the parts. We formulate the problem of retrieving a smooth
segmentation along with the motion estimates of the rigid parts, where each rigid part is
assigned an independent 6 degree-of-freedom motion. To this end, we solve a non-convex
optimization problem by means of coordinate descent consisting of a motion estimation
step (in the fashion of visual odometry) and a subsequent variational multilabeling solver.
By using a weighted quadratic regularizer over the discontinuity-preserving total variation
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Second Frame

—s .

Motion Segmentation Warped Labels

Figure 11.1: The proposed method is based on a motion interpolation model, which allows the emergence
of smooth transitions between the segments where the motion is given by a convex combination of adjacent

rigid motions (e.g. in §).

(TV), we promote smooth transitions between motion models rather than a harsh com-
petition. For this reason, we refer to this approach as "motion cooperation" as opposed
to the traditional "motion competition". We evaluate our motion cooperation scene flow
(MC-Flow) algorithm with synthetic and real RGB-D image pairs, and compare it with
state-of-the-art approaches. In all cases, our approach achieves a superior performance
both qualitatively and quantitatively. Furthermore, this evaluation demonstrates that the
combination of a convex relaxation labeling with quadratic regularizer is superior to a sharp
traditional segmentation because it naturally relaxes the overly constraining assumption
of piecewise rigidity. Additionally, we show that our method retrieves meaningful soft
segmentations into rigid parts as depicted in Figure

11.1.1 Related work

Scene flow estimation has been traditionally investigated in the multi-view stereo setting
within the computer vision community. Vedula et al. have proposed one of the first
methods based on the optical and range flow constraints. This approach has been later
extended to regularize the flow field using quadratic and TV regularization ,
the latter optiziming for disparity and flow jointly. In [197], disparity and scene flow
estimation has been decoupled to achieve real-time performance with a stereo camera
system. The approach in oversegments the image into superpixels, assumes the
superpixels to cover planar regions, and estimates a rigid-body motion for each superpixel
individually. In , the planar motion of a superpixel acts as a regularization constraint
on the scene flow of the individual pixels. Recently, with RGB-D cameras, the scene flow
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estimation topic has received further attention due to the availability of depth images at
high framerate. Herbst et al. |[83] used the L1 norm on a data term derived from the
optical and range flow constraint equations and showed good qualitative results. Jaimez
et al. |4] devised the first real-time dense scene flow for RGB-D images. A more natural
TV regularization for the flow was proposed, where the regularization term minimizes the
line integral of the scene flow gradients over the observed 3D surface. Quiroga et al. [153|
overparametrize scene flow and estimate a 6-DoF rigid-body motion at each pixel. They
regularize the flow field in this 6-DoF parametrization such that their model favors locally
rigid motions. Hornacek et al. [86] also parametrize the flow-field with 6 DoF, but propose
to match corresponding points within a spherical search range instead of traditional planar
patch comparisons.

On the other hand, motion segmentation has also been studied in computer vision research.
An early variational method for motion segmentation using optical flow constraints was
proposed by Cremers and Soatto [48| in their work on motion competition. The name stems
from the interpretation of the motion segments to compete for the boundaries through the
best fit to their individual motion model. Several extensions to this method have been
proposed, e.g. using non-parametric motions [32|. Unger et al. |189] explicitly model oc-
clusions as an additional label in the multilabel optimization and impose a map uniqueness
constraint to avoid ambiguous (non-bijective) data associations. All these methods are 2D
and, hence, do not incorporate a 6-DoF motion model. Furthermore, they estimate a
discrete segmentation.

3D-motion segmentation has only gained attention recently, mainly due to the current
availability of GPUs and dense RGB-D cameras. Roussos et al. [160| propose a variational
rigid-body motion segmentation and reconstruction method for monocular video. Zhang
et al. [207] also pose 3D multi-body structure-from-motion in a variational framework.
They require, however, a plane fitting step to make the method robust. Closely related to
our method is the approach by Stueckler and Behnke [175]. They jointly estimate motion
and segmentation of rigid bodies in an expectation-maximization framework in RGB-D
video. Each motion segment is assigned one rigid-body motion, but the approach does not
interpolate between the motions of the segments. Recently, Sun et al. [176] proposed a
probabilistic approach which makes use of a depth-based segmentation to estimate motion
between RGB-D images. They regularize the estimation process by retrieving a mean
rigid-body motion in each layer. This approach also does not explicitly model smooth
transitions of motions between layers, but allows for small deviations of the motion field
from the layer’s mean motion.

11.1.2 Contributions

The MC-Flow algorithm is the first approach to perform joint soft-labeling and scene flow
estimation by dissecting the scene into differently moving regions and their underlying
motion. Our contributions are the following:

e Qur algorithm estimates 3D motion based on a smooth piecewise rigidity assumption
and simultaneously finds a soft motion-based segmentation of the scene.
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e By choosing a suitable regularizer we are able to interpolate between rigid motions
in order to recover non-rigidly moving parts and their underlying motion.

e An arbitrary (and previously unknown) number of rigid parts can be segmented
automatically.

e MC-Flow outperforms state-of-the-art RGB-D scene flow algorithms qualitatively
and quantitatively.

11.2 Problem formulation

In this work, we assume that the scene can be segmented into n unknown distinct motion
labels, each label standing for one rigid motion, as well as non-rigid parts which can be
explained by neighbouring rigid motion labels. An illustration of such a smooth segmen-
tation can be seen in Figure As inputs, a pair of RGB-D frames (I1, Z1) and (I3, Z2)
is given, where Iy : @ — R and Z() : Q@ — R stand for the intensity and depth images
defined on the image domain Q C R?. The segments and the rigid motions associated to
them are obtained by minimizing a functional which depends on an implicit labeling func-
tion u : Q — [0, 1]", the 6-dimensional twist parametrizations & € R® of the rigid motions
and the number n of rigidly moving parts. The label assigment function u encodes the
moving scene in the following way:

if x € €,
if 2 ¢ Q (11.1)

1
ui(x) =<0
(0,1) =z belongs partially to €;

Here we denote the i-th segment by €; C €, which moves with a velocity &;. Note that,
in order to allow for fuzzy assignments, the label functions u; can take on values in the
interval [0, 1], in contrast to classical label assignment problems and their underlying binary
representation.

The general problem of jointly solving for motion segmentation and motion estimation can
be stated as the following optimization problem:

Bn(€um) = [ G(€ T 1o 21, Zayum) do + Rlusn)
Q

s.t. Zuz(x) =1, ui(z) >0 Ve (11.2)
i=1

The function G encodes geometric and photometric consistency between the RGB-D images
according to a linear combination of rigid-body motions:

G I, 12, 71, Zy,u,n) = F(I1(x) — L(Wg(x)))
+F(|gem =z, Z1(2))], — Zo(We(x))) (11.3)
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with

E=Y wi(@)& , Welw) =n(gen (2, Z1(2)))

i=1

and | e |, meaning the z-coordinate. The warping function We(x) involves a projection 7
which transforms the 3D coordinates of the observed points into pixel coordinates. The
function g relates twist coordinates to rigid transformation matrices in SE(3). The function
Fin measures photometric / geometric consistency and can be chosen according to
the application and prior knowledge. In order to obtain a compact labeling, we regularize
the labels by imposing a smoothing term R(u,n) in . Note that problem is hard
to minimize because the labels are non-linearly involved in the non-convex dataterm G. To
the best of our knowledge, except for performing complete search on u, which is unfeasible
in our application, there is no direct way of tackling problem . Consequently, we
consider a simpler formulation where the labels are pulled out of the dataterm. This
significantly facilitates the optimization process because the label assignment function u is
now linearly involved with the dataterm:

E.(&u,n) = Z/QuiD(fi,Il,Ig, 71, Z3) dx + R(u,n)
=1
stZuz(:r) =1, ui(x) >0 Vre (11.4)

The data fidelity term D; is now evaluated for every independent rigid motion:

D<£i7[17[27 Z17Z2) = F(Il(x) - 12(W§z(x)))
+F(|9¢, 7 (@, Z1(2))], — Zo(We, () (11.5)

z
The optimization problems and would be equivalent if the labels u were binary.
The main difference between the two models is that in the motions are interpolated
and subsequently used to evaluate the residuals with the exact velocities, whereas in
the residuals are computed for each independent rigid motion and interpolated afterwards.
With binary labels, there would not be interpolation between motions or residuals and,
hence, both models would turn out to be the same. In this work, we aim to solve the
motion interpolation model but, given its complexity, we resort to the simpler model
(11.4) as an approximation of to optimize for the labels. For this reason, the
regularization term R(u,n) plays a crucial role to estimate accurate interpolated motions
at the transitions between rigid bodies/parts.

11.2.1 Overall Optimization

Independently of which of the two models we chose, the dataterms are nonlinear with
respect to the rigid motions. Therefore, the overall optimization problem is not convex
and the global minimum cannot be guaranteed to be found.
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To tackle this joint problem, we propose a coordinate descent strategy that alternates
between estimating the motions for a fixed set of labels and then refining these labels for
the recently obtained velocities, as illustrated in Algorithm [6] The motions are computed
in the fashion of a visual odometry problem, but considering that the whole scene is not
rigid but smooth-piecewise rigid. The labels are solved using the approximate model
that is convex in u. Note that we are implicitly optimizing for the label count n by adapting
the number of labels within the inner iterations, as will be described in section Next,
we elaborate on how to solve the main two subproblems in Algorithm [6]

Algorithm 6 Coordinate Descent Optimization for joint Motion Estimation and Segmen-
tation
Initialize u
1: for k=0,1,2,...
¢F = argming E(¢, u")
uF! = argmin, E(&F1 )
Update n
2: end for

0

11.3 Motion estimation

Given a precomputed set of labels, at every iteration of Algorithm [6] we need to estimate
the rigid-body motions associated to each label (step 1). This problem can be considered
as an extension of the well-known visual odometry (VO) problem. In this more general
case, the whole scene is not supposed to be moving rigidly; instead, we assume that there
are n predominant rigid motions that can be linearly combined to explain the motion of
every point of the scene.

Our solution to estimate the motion of the segments builds upon two existing VO methods:
DIFODO [89] and the Robust Dense Visual Odometry [94]. This solution is obtained by
minimizing the photometric and geometric residuals, defined as

ri(w) = Ii(z) — Ia(We(x)) (11.6)

ry(x) = ‘ggw_l(x, Zl(m))‘z — Za(We(w)) (11.7)

Note that the residuals are defined here according to the motion interpolation model (11.2)).
To cope with large motions, the process of minimization is applied in a coarse-to-fine
scheme where the residuals are linearized at each level of the pyramid. In order to deal
with outliers and to provide an accurate motion estimate, a robust function of the residuals
is minimized:

&= argmin{/ F(rr) —f—aF(rZ)da:} (11.8)

13 Q

2

F(r) =5 in <1 + (2)2) (11.9)



98 Chapter 11. Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

The function F' is equivalent to the Cauchy M-estimator. Although we do not present
comparisons in this regard, it was chosen because it provides considerably better results
than other more common choices like the L2 or L1 norms. The parameter o balances the
two kinds of residuals and ¢ controls the relative weighting between high and low residuals.
This minimization problem is solved using Iteratively Reweighted Least Squares (IRLS),
where the associated weighting function is

w(r) = ——. (11.10)

With this strategy, we are able to solve the motion estimation problem accurately. The
minimization of both the photometric and the geometric residuals allows us to estimate
the motion of the segments even if they lack of texture or geometric distinctive features.
This aspect is crucial because the segments can be considerably small (compared to the
whole scene) and might not present sufficient photometric or geometric data to solve the
3D registration problem using only one of these two input data.

11.4 Label optimization

Once the motion £¥*1 at a given iteration k+1 is obtained, we optimize the label assignment
function as the second step of the overall optimization problem (Algorithm|f]). For a fixed
set of motions &, the functional E(£¥+1, u) is convex and can be solved using state-of-the-
art first-order solvers. In this work, the labeling function is optimized with the primal-dual
algorithm developed by Pock et al. |150]. Detailed information about how to apply this
algorithm to the addressed problem is given in the supplementary material.

In this work, two different regularizers are considered: total variation and quadratic regu-
larization. Furthermore, the geometrical data that RGB-D cameras provide are exploited
to regularize the labels according to the real 3D distances between points. Thus, regular-
izers are defined as a function of a weighted gradient V, of the labels, whose weights (r;)
are the inverse of the 3D distances between the points:

V,u; = ( Ou; am) (11.11)

Ter — 3 Tpo —
xlaJJl’ “8:52

More details on the theory and the implementation of this regularization strategy can be
found in [4].

11.4.1 Total Variation Regularization

Total variation was made popular by the seminal work of Rudin Osher Fatemi (ROF) [161]
on image denoising. The most prominent properties of the TV regularizer are allowing
for jumps in the solution and being a measure of perimeter of a region if applied on its
indicator function. These factors made TV widely used in general reconstruction problems
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0

a) Input image b) K-means initialazation u

Figure 11.2: We initialize our algorithm by performing K-means (k=20) on the 3D coordinates of the
image pixels.

like image denoising [161], image deblurring and image segmentation [38138|. In order
to incorporate TV regularization into our approach, we simply set:

R(u,n) —)\Z/Q]\Vrui(x)ﬂldx (11.12)
=1

11.4.2 Quadratic Regularization

As previously mentioned, TV regularization favors sharp label boundaries. However, in
our segmentation we would like to obtain a smooth interface between the labels. Hence, a
suitable choice to encourage smooth label transitions is the so-called Tikhonov or quadratic
regularization:

R(u,n) :)\Z/Q]\Vrui(x)”gdx (11.13)
=1

Normally, quadratic regularization does not allow for discontinuities in the solution, which
would not help to provide a precise segmentation. However, the geometric weighting makes
it able to estimate discontinuities in the labels and soft transitions between rigid parts at
the same time.

11.5 Imitialization and adaptive number of labels

This section describes the adopted strategy to refine the number of labels n so that they
represent the actual number of independent rigid motions in the scene. Since we are solving
a non-convex problem, it is crucial to start with an initial set of labels u" that allows us
to converge to the global optimum in Algorithm [6] Instead of including the number of
labels in the variational formulation (which would significantly increase the computational
burden), we propose to initialize the labels with a meaningful over-segmentation of the
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observed scene and iteratively remove those labels that are redundant or not significant
for the overall motion estimation. To this end, we create an initial K-means segmentation
based on the 3D coordinates of the points of the scene. The initial number of labels is
always set to 20 (the number of independent rigid motions in the scene is assumed to be
smaller than this quantity). An example of a K-means initialization is shown in Figure
[[1.2] The refinement of the label count is performed after a full inner iteration of Algorithm
as follows:

o If labels i and j are associated to similar velocities, i.e., if ||§ — &;|| < 6 for some
small § > 0, we merge both labels.

e If a label i contains too few pixels, i.e., if [, u;j(z) < 7 for some small v > 0, we
assign these pixels to the outlier label and remove label 3.

11.6 Occlusions and outliers

In our formulation, we include an outlier label (u,) to capture pixels with null depth
measurements and those other pixels that produce very high residuals for all the possible
velocity candidates &;. To this end, a constant weight K p is associated to this label which,
according to ([11.4) means that D, = Kp in the whole image plane €. As previously
mentioned, this outlier label also plays an important role in the process of reducing the
number of labels. When a label is removed as a consequence of containing very few pixels,
those few pixels need to be assigned to another label. If they were assigned to a wrong
label they could affect the subsequent motion estimate and spoil the results. Conversely,
if they are assigned to the outlier label, they don’t participate in the motion estimation
stage and are automatically assigned to the best label afterwards in the label optimization
stage.

On the other hand, we detect occlusions to avoid the evaluation of the dataterm (D; in
(11.4)) for those pixels which are not visible in the second RGB-D frame. Occlusions
are handled with a binary mask O(z) instead of an extra label, in a way that occluded
points can still be segmented and, therefore, their 3D motion is estimated too. This can
be accomplished by virtue of the regularization term, and allows us to provide a complete
segmentation of the scene even if some points or areas are occluded after the motion.

In order to detect occlusions, two factors are considered: the amount of pixels that are
registered to each pixel of the second frame and the temporal change in the depth images.
First, we compute a cumulative function C(z) : © € R? — R that counts how many
pixels from the first frame are warped to the pixel = of the second frame (according to
the estimated motion). Without occlusions, this function is approximately equal to 1 (or
maybe inferior to one for new points appearing in the second frame), meaning that there is a
one-to-one (bijective) correspondence between the observed points at both images. On the
contrary, if C'(x) is noticeably higher than one, there are some pixels in the first frame that
are warped to the same pixel z in the second frame, indicating the existence of occlusions.
Consequently, we can define a function O¢(z) that finds the pixels candidates for occlusion
by applying a warping with the estimated motion and evaluating the cumulative function
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C:
Oc(x) = C(Wg(l‘)) (11.14)

On the other hand, unlike in the optical flow problem, geometric information is available
and can be exploited to reason whether a point is occluded or not. The simplest function
that can be used to detect occlusions is the temporal change in depth:

Oz(z) = Zi(x) — Za(x) (11.15)

Combining these two functions we can detect most of the occluded areas in the scene by
imposing a threshold K:

1 if
O(x) _ 1 OC(HT) + KZOZ(Qf> > KO (1116)
0 else

where K, is a parameter that weights Oz against O¢. This strategy could be improved
by embedding these functions into a variational formulation and imposing regularization
over the occlusion mask. However, this has not been implemented in our work because it
would significantly increase the runtime of our method.

11.7 Experiments

In this section, qualitative and quantitative results are presented to evaluate the accuracy
of our approach. These results are divided into two categories: scene segmentation and
scene flow estimation. However, the evaluation process is not straightforward given the
lack of benchmarks with either scene flow ground truth or segmentation from 3D motion.
For this reason, we have selected a set of synthetic and real RGB-D frame pairs that

Photometric residual - RMSE Geometric residual - RMSE
PD-Flow [1] SR-Flow [3] Layered-Flow [4] MC-TV MC-Quad | PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad
Sintel-1 0.060 0.035 0.049 0.022 0.021 0.443 0.317 0.420 0.253 0.186
Sintel-2 0.057 0.068 0.063 0.026 0.025 0.086 0.090 0.108 0.056 0.053
Sintel-3 0.048 0.041 0.047 0.032 0.028 0.021 0.022 0.035 0.018 0.017
Sintel-4 0.091 0.069 0.109 0.063 0.044 0.378 0.347 0.607 0.155 0.190
Sintel-5 0.074 0.067 0.091 0.051 0.055 0.373 0.267 0.498 0.203 0.283
Sintel-6 0.120 0.118 0.127 0.055 0.055 0.224 0.190 0.253 0.114 0.096
Sintel-7 0.076 0.071 0.079 0.035 0.038 0.407 0.423 0.382 0.233 0.188
Sintel-8 0.063 0.026 0.045 0.028 0.027 0.083 0.069 0.086 0.038 0.037
RI-1 0.038 0.025 0.031 0.024 0.022 0.070 0.060 0.046 0.038 0.038
RI-2 0.032 0.028 0.035 0.021 0.020 0.286 0.259 0.294 0.114 0.102
RI-3 0.031 0.024 0.027 0.018 0.018 0.221 0.208 0.217 0.160 0.145
RI-4 0.015 0.012 0.011 0.008 0.008 0.025 0.024 0.025 0.025 0.025
RI-5 0.074 0.051 0.056 0.039 0.040 0.095 0.087 0.108 0.079 0.085
RI-6 0.077 0.050 0.070 0.049 0.047 0.036 0.038 0.037 0.041 0.040
Average 0.061 0.049 0.060 0.034 0.032 0.197 0.172 0.223 0.109 0.106

Table 11.1: Photometric and geometric residuals after warping the image pairs with the estimated scene
flow.

contain varied and challenging motions. First, our approach is tested with some sequences
from the Sintel dataset [34]. This dataset contains scenes with heterogeneous and large
motions, and provides optical flow ground truth which can be used to measure the scene
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Sintel-2

v Inputs

Quad

Sintel-5 Sintel-6 Sintel-7 Sintel-8

TV Inputs

Quad

Figure 11.3: Segmentation estimated by our approach for the eight sequences of the Sintel dataset con-
sidered. Colors are independent for each result and do not depend on the associated rigid motion. Black
represents the outlier label.

flow error. Second, the joint segmentation and motion estimation is generated for several
RGB-D image pairs that either have been utilized in previous works in the literature (as
in |153|) or have been taken with RGB-D cameras in our lab. In all cases, two versions
of our method are tested, corresponding to the two different regularization strategies for
the label optimization problem: total variation (TV) and quadratic regularization (Quad).
The resolution adopted for the images is QVGA (240 x 320) for those taken with an RGB-D
camera and 218 x 512 for the Sintel sequences. The maximum depth is set to 5 meters in
all cases. Tests have been performed with a total of fourteen image pairs: eight from the
Sintel dataset (named "Sintel-1...8") and six real image pairs (named "RI-1...6").

11.7.1 Scene segmentation

In this subsection we present the motion segmentation that our method provides for all
the tested sequences. The occlusion layer is also displayed for some sequences together
with the segmentation although the occlusion is not a label itself (but a mask). Figure
shows the results for the Sintel images. It can be observed that TV produces very
sharp labels with very few pixels interpolating between different motions. On the contrary,
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Inputs Segmentation (TV) Segmentation (Quad) Occlusion

Figure 11.4: Segmentation and the occlusion layer estimated by our approach for 6 image pairs taken with
RGB-D cameras. Colors are independent for each result and do not depend on the associated rigid motion.
Black represents the outlier label.

quadratic regularization gives rise to a smooth segmentation where many pixels adopt an
interpolated velocity between two (or maybe more) rigid-body motions. The same behavior
can be seen in Figure where the results for the real RGB-D images are presented. In
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PD - Flow MC-Flow (TV) MC-Flow (Quad)

Figure 11.5: Comparison of the 3D motion fields estimated for the "RI-2" sequence. The initial frame is
represented by the red point cloud, the final frame by the turquoise point cloud and the scene flow by the
blue lines. The above comparison shows that our approach provides the most accurate estimate of the
scene flow.

Optical flow - EPE Optical flow - AAE
PD-Flow [1] SR-Flow [3] Layered-Flow [4] MC-TV MC-Quad |PD-Flow SR-Flow Layered-Flow MC-TV MC-Quad
Sintel-1 1.940 0.684 1.320 0.221 0.219 27.87 7.694 13.26 2.486 2.827
Sintel-2 2.299 2.100 2.851 0.367 0.324 23.63 16.02 35.50 4.826 4.950
Sintel-3 1.223 1.130 0.975 0.383 0.344 31.69 20.21 20.80 8.364 7.721
Sintel-4 17.04 21.68 15.26 10.23 3.436 73.57 90.56 43.09 22.13 9.694
Sintel-5 4.381 3.990 3.212 2.316 1.983 24.27 26.14 10.43 14.56 10.16
Sintel-6 6.045 7.739 7.67 1.168 1.498 12.10 18.99 27.52 3.845 5.194
Sintel-7 2.875 3.335 3.382 1.480 1.591 26.50 21.26 22.48 7.723 8.169
Sintel-8 1.674 0.456 1.012 0.228 0.228 22.45 4.713 8.003 3.762 3.757
Average 4.685 5.142 4.461 2.049 1.203 30.26 25.70 22.63 8.462 6.559

Table 11.2: Average end-point and angular errors of the optical flow computed by projecting the estimated
scene flow onto the image plane.

general, it can be noticed that the number of labels to which the method converges is not
the same for the two regularization strategies. Normally, TV produces a higher number
of labels because it is not able to interpolate motions and tends to keep extra labels to
compensate for it. It can be observed that, but for Sintel-4 (with TV) and RI-5, the
resulting segmentations represent quite accurately the different objects and rigid parts of
the scenes.

11.7.2 Scene flow evaluation

For all the sequences, the scene flow is evaluated quantitatively and compared with three
state-of-the-art methods: the Primal-Dual flow (PD-Flow) [4], the Semi-Rigid flow (SR-
Flow) [153] and the Layered flow [176]. First, the photometric and geometric residuals
are computed by warping the intensity and depth images (respectively) according to the
estimated flow. It is important to note that occluded pixels will show very high residuals
even if the motion is accurately estimated for them, which considerably disturbs the error
metrics (RMSE of the residuals). To overcome this limitation and to provide more precise
comparisons, we compute the RMSE of the non-occluded pixels, which is a more reliable
metric of the scene flow accuracy. To this end, we assume that the occlusion layer computed
by our approach is sufficiently accurate and use it in all cases (neither PD-flow nor SR-
flow detect occlusions). This does not represent any bias toward our method because it
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is a common mask applied to all of them, and if some occluded pixels have not been
detected properly then they will affect the error metrics of all the compared methods
equally. Table shows the results for all the frame pairs. It can be observed that our
method provides the most accurate estimates with both TV and quadratic regularization.
The differences between TV and Quad are essentially caused by the way they produce
transitions between the labels and the number of labels they converge to. As previously
analyzed, TV generates a sharp segmentation where the motion is barely interpolated,
whereas quadratic regularization provides smooth transitions between the labels that lead
to larger areas with interpolated motions. On the other hand, TV tends to converge to
a higher number of labels, which helps to compensate for its inability to capture nonrigid
motions. Overall, the best results are obtained with quadratic regularization, although the
differences are small.

For the sake of clarity, Figure is included to illustrate the 3D motion field that the
compared methods estimate for the sequence "RI-2". PD-Flow, which was conceived to
work in real-time, is unable to estimate large motions and can only capture the motion
of the body and the upper arms. SR-Flow provides better results but is still unable to
reproduce the real motion of the hand and head. Only our approach estimates the whole
motion field properly, specially with quadratic regularization of the labels.

Moreover, for the Sintel image pairs, we project the scene flow onto the image plane
to obtain the optical flow and compare it with the ground truth provided by the Sintel
dataset. In this case we evaluate two error metrics: the average end-point error (EPE)
and the average angular error (AAE), as explained in |18]|. Again, the results (Table
are computed for the non-occluded pixels, which is a fairer comparison given that some
methods do not manage occlusions and hence provide bad estimates for the occluded
areas. It can be seen that our approach with both TV and quadratic regularization clearly
outperforms the others, providing a motion estimate that is between 2 and 5 times more
accurate than those from the PD-Flow, SR-Flow and the Layered-Flow.

Regarding the computational performance, our method ranks second with a runtime of 30
seconds. For the experiments, we have utilized a standard desktop PC running Ubuntu
14.04 with an AMD Phenom II X6 1035T CPU at 2.6 GHz, equipped with an NVIDIA
GTX 780 GPU with 3GB of memory. The measured runtimes are:

e PD-Flow: 0.042 seconds (GPU).
e SR-Flow: 150 seconds (CPU).
Layered-Flow: 8 minutes (CPU).

e MC-Flow: 30 seconds (label optimization on GPU and all the remaining steps on
CPU).

11.8 Conclusion

In this paper we have addressed the problem of joint segmentation and scene flow estimation
from RGB-D images. The overall optimization problem is solved by means of a coordinate
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descent method which alternates between motion estimation and label optimization, while
at the same time adapts the number of labels to the real number of independent rigid
motions of the scene. Two different regularization strategies for the labels are employed,
TV and quadratic, leading to sharp and smooth segmentations, respectively. Our method
has been tested with both synthetic and real RGB-D image pairs, and the experiments
show that joint segmentation and motion estimation provides very accurate results that
outperform state-of-the-art scene flow algorithms on RGB-D frames. Comparisons between
the two regularization strategies show that quadratic regularization estimates motion more
accurately than TV because it generates smooth label transitions between rigid bodies,
which models the scene motion more realistically. For future work, we plan to extend this
work to RGB-D video streams where temporal regularization can be imposed.
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Chapter

Summary

In this thesis, we made contributions in several areas including:
e Continuous semantic multi-labeling
e Convex relaxation methods
e Motion estimation and segmentation

We consider these disciplines to be crucial towards holistic scene understanding. In large
part, this thesis dealt in large part with introducing convex semantic priors for continuous
semantic multi-labeling. In addition, we proposed a framework which promotes more
binary solutions for convex relaxation methods. Finally, we developed an algorithm for
joint motion estimation and image segmentation.

Semantic Priors

This thesis dealt, among other things, with different convex semantic priors for continuous
multi-label segmentation. These include:

e Co-occurrence priors [10] which we introduced into the framework of continuous
multi-label optimization. Using co-occurrence statistics in multi-labeling improves
on the segmentation results since unlikely combinations of labels are penalized. This
publication is included in Chapter ?7.

e Hierarchical priors [8] which exploit contextual information in order to refine the
labeling. Compared to methods using co-occurrence priors, this approach is more
principled and the algorithm is no longer dependent on learning label statistics from
databases. The problem is cast in a single convex cost function and the optimization
is performed jointly with respect to label and scene variables. We included this
publication in Chapter [9}

e Generalized minimal description length priors. In Chapter [6] we presented a gen-
eralization of the classical minimal description length prior by compositions with
an arbitrary monotone convex functions. This enables us to impose, in addition
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to merely penalizing the label count, an upper bound on the number of occurring
labels. We adopted this constraint and devised a convex approximation of the piece-
wise constant Mumford-Shah model.

The above approaches are based on energy minimization and have in common that they
can be cast in a single convex optimization problem. In Chapter [6] we presented a unifying
framework for semantic image segmentation which encompasses these priors. Within this
framework, we derived a generic primal-dual algorithm for semantic multi-label optimiza-
tion.

Entropy Minimization for Mixed-Integer Programming

In Chapter 7] we presented a method for solving mized-integer programs. For this purpose,
we augment classical convex relaxation strategies with an entropy term which favors integer
solutions. We solved the arising convex-concave problem using a provably convergent DC
algorithm. We applied our approach on the problem of image cartooning which can be
cast in a mixed-integer program. In Chapter we included a publication [9] in which we
proposed a similar strategy for improving the integrality of the solution of convex relaxed
multi-labeling problems.

Joint Motion Estimation and Segmentation

In Chapter [1I], we included our research paper on joint image segmentation and motion
estimation [5]. The problems of identifying objects and estimating their motion are highly
correlated and very important for a holistic scene understanding. Our approach is able to
jointly reason about image segments and their underlying rigid body motion by means of
energy minimization. Additionally, by allowing smooth label transitions, we are able to
recover non-rigidly moving parts.
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Future Work

In the following, we would like to point out possible directions for further research:

e Combining semantic segmentation with motion estimation. In this thesis,
we presented a method which segments the scene solely based on its underlying rigid
body motions. A possible future work would be jointly performing motion estimation,
image segmentation and reasoning about the type of the moving objects. By this, we
hope improving the tasks of object recognition, motion estimation and segmentation
since this should helps further resolving ambiguities inherent to these problems.

e Adapting the entropy parameter. In this thesis, we presented augmenting mixed-
integer programs with an entropy term. A future work could be increasing gradually
the associated parameter during the optimization. This means that we warm start the
algorithm by first solving the convex relaxed problem and increasing the influence of
the entropy penalty. Another promising idea is treating this parameter as a Lagrange
multiplier associated with an entropy constraint. By solving the Lagrangian problem
the adaptation of this parameter comes natural in form of an update step.

e DC-Programming for non-convex regularizers. Although established in the
optimization community, DC-Programming did not grow famous in the area of com-
puter vision. By decomposing non-convex regularizers into a convex and concave
part, Gasso et al. [64] devised a convergent algorithm, based on DC-Programming,
for several sparsity promoting penalties. A promising idea is applying this algo-
rithm to variational problems in computer vision in order to implement non-convex
regularizers.
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