
SHRIFT
System-wide HybRid Information Flow Tracking

Enrico Lovat1, Alexander Fromm1, Martin Mohr2, and Alexander Pretschner1

1 Technische Universität München, Garching bei München, Germany
firstname.lastname@cs.tum.edu
2 Karlsruhe Institute of Technology

martin.mohr@kit.edu

Abstract. Using data flow tracking technology, one can observe how
data flows from inputs (sources) to outputs (sinks) of a software system.
It has been proposed [1] to do runtime data flow tracking at various layers
simultaneously (operating system, application, data base, window man-
ager, etc.), and connect the monitors’ observations to exploit semantic
information about the layers to make analyses more precise. This has im-
plications on performance—multiple monitors running in parallel—and
on methodology—there needs to be one dedicated monitor per layer.
We address both aspects of the problem. We replace a runtime monitor
at a layer L by its statically computed input-output dependencies. At
runtime, these relations are used by monitors at other layers to model
flows of data through L, thus allowing cross-layer system-wide tracking.
We achieve this in three steps: (1) static analysis of the application at
layer L, (2) instrumentation of the application’s source and sink instruc-
tions and (3) runtime execution of the instrumented application in com-
bination with monitors at other layers. The result allows for system-wide
tracking of data dissemination, across and through multiple applications.
We implement our solution at the Java Bytecode level, and connect it to
a runtime OS-level monitor. In terms of precision and performance, we
outperform binary-level approaches and can exploit high-level semantics.

1 Introduction

Information flow analyses try to answer the question of whether or not data
will potentially flow, or has potentially flowed, from inputs (sources) to out-
puts (sinks) of a certain system. Different analyses cater to different kind of
source-sink dependencies, mainly distinguishing between explicit information
flows (data-flow dependencies or data flows) and implicit information flows (like
e.g. dependencies caused solely by control-flow). Data flow tracking solutions are
generally tailored to one particular level of abstraction, like source code, byte
code, machine code, or the operating system level (cf. §5).

Recently, data flow tracking technologies have been augmented by concepts
of distributed data usage control [1–5] and performed at multiple layers of ab-
straction, to the end of expressing and enforcing more complex policies (e.g.
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“any representation of this picture must be deleted after thirty days”). Multi-
layer monitoring is important to preserve the high-level semantics of objects
(e.g. “a mail”) and events (e.g. “forward”), which is otherwise hard to capture
at lower levels. But this benefit does not come for free: even a small number of
monitors running in parallel may seriously compromise the performance of the
overall system, and dedicated high-level monitors are not always available for
every domain. In this case, the usual solution is to rely on conservative estima-
tions provided by lower layers. For instance, if a dedicated monitor for a process
is not available, an OS-level monitor would have to treat the process as a “black
box” and assume that every sensitive data it got in touch with is propagated to
every future output. This solution likely introduces many false positives and in
this sense grossly overapproximates the set of potential information flows.

We propose Shrift, an approach to mitigate this issue. The core idea behind
Shrift is to replace the runtime monitoring of how data flows through a process
(or its black-box overapproximation) by consultations of a statically precomputed
mapping between its inputs and outputs.
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Running Example: A com-
pany enforces the policy “upon
logout, delete every local copy
of customer data” to prevent
clerks to work with outdated
material. Upon every login, a
clerk must download from a
central server a fresh version of
the customer data he is interested in. In this setting, a clerk uses the Zipper ap-
plication to compress multiple customer data (E, F) into a single archive file
(File 3), which he then sends to the company server using Ftp-Client.

In this example, a data-flow tracking system can help tracking down every
copy of to-be-deleted customer data in the system. However, if the tracking
is imprecise (too many false positives), additional important resources may be
accidentally deleted as well. For example, ZipConfig (Zipper’s configuration
file), which is updated during every run of Zipper, could be mistakenly marked as
containing data E and deleted upon logout, making Zipper unusable in the future.
Similar concerns also apply to the Ftp-Client: FTP works with two channels, one
for commands, and one for payload. In a black-box monitoring situation, once
sensitive data is read, every write to any of the two channels may be possibly
carrying sensitive information, and, as such, it should propagate the taint to the
socket connection, and possibly to the recipient side. In this case, the credentials
(marked as P in the figure), sent via the command channel, and the database in
which they are stored on the server side would also be marked as “to-be-deleted”.

Our approach improves the precision of information-flow tracking system-
wide, i.e. through and in-between different processes/applications, like the flow
of data E and F through the Zipper application (Source 1→ Sink 1) into
File 3 and then through the Ftp-Client application (Source 4 → Sink 3)
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till the payload channel, with lower execution overhead than other dynamic
monitors for comparable scenarios (cf. §3).

Problem: Concurrently running multiple monitors at different layers of ab-
straction allows to exploit high-level semantic information (e.g., “screenshot” or
“mail”) but is performance-wise expensive and requires dedicated monitoring
technologies for every layer/application. On the other hand, relying only on es-
timates provided by other layers (e.g., the above black-box approach) improves
performance but comes at the cost of (possibly significant) precision loss.

Solution: We propose a dynamic monitoring approach for generic processes
that replaces runtime intra-process data flow tracking by consultations of a stati-
cally computed taint-propagation table. Such a monitor is more performant than
equivalent runtime monitors for the same application and more precise than the
OS-level overapproximation adopted when such a monitor is not available.

Contribution: To the best of our knowledge, we are the first to combine
static and dynamic data-flow tracking for different levels of abstraction and
through multiple different applications. Our solution improves the precision of OS
level data flow tracking with minimal intra-process runtime tracking overhead.

2 Our Approach

We consider a setting with monitors at two levels of abstraction: a dynamic
monitor at the OS level, based on system-call interposition [2], and one or more
inline reference monitors at the application level. Our goal is to improve tracking
precision at the OS level with minimal performance penalties. Although our
approach is generic in nature and could be applied to any language or binary
code, in this work we focus on an instantiation for the Java Bytecode (JBC) level.

We use standard terminology: a source is a method invoked by the applica-
tion to get input data from the environment. A sink performs the dual output
invocation. While in some contexts one can find detailed lists of source and sink
methods [6], in general the choice is left to the analyst. In our work, a source
(sink) is the invocation of a Java standard library method that overrides any
overloaded version of InputStream.read (OutputStream.write) or Reader.read
(Writer.write), or a method that indirectly invokes one of them, e.g., Properties.
load(), which uses an input stream parameter to fill a properties table.

The idea is the following. If a source in an application is executed, the respec-
tive input’s taint mark is stored. If a sink is executed, all sources (and therefore
all taint marks) with potential flows to this sink are determined using a static
mapping of potential flows between sources and sinks. There is hence a need to
instrument sources and sinks, but not all the instructions in-between them.

Our approach consists of three phases:

2.1. Static analysis: An application X is analyzed for possible information
flows between sources and sinks. During this phase we generate a report con-
taining a list of all sources and sinks in the application and a mapping between
each sink and every source it may depend on.
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1 x = 1;
2 y = 2x - 5;
3 if (y > 42) {
4 z = 1;
5 } else {
6 z = 2;
7 }

x = 1 y = 2x - 5 y > 42

z = 1

z = 2data dep.

control dep.

Fig. 1: A code snippet and its PDG

2.2. Instrumentation: All sinks and sources identified by the static analysis
(and those instructions only) are instrumented in the bytecode of X, allowing us
to monitor their execution.

2.3. Runtime: Every time a source or a sink is executed by the instrumented
application, information about the data being read or written is exchanged with
the OS-level monitor.

In the remainder of this section, we will describe these phases in details, using
Zipper and Ftp-Client as examples. Notice, however, that in principle our work
can be applied in a push-button fashion to any Java program.

2.1 Static Analysis

In this phase, we perform a static information flow analysis of the application and
generate a list of all sources and sinks in the application and of their respective
dependencies. To do so, we use JOANA [7, 8], a static information flow analysis
tool, but the choice is not binding because our approach is generic in nature and
the techniques used by JOANA are also implemented by other tools, e.g. [9].

JOANA operates in two steps: first, it builds a Program Dependence Graph
(PDG) [10] of the application; second, it applies slicing-based information flow
analysis [11] on the PDG to find out which set of the sources influences which
sinks. In order to reduce the number of false positives, JOANA leverages several
program analysis techniques. In the following, we explain some fundamental
concepts behind JOANA.

PDGs and Slicing: A PDG is a language-independent representation of a
program. The nodes of a PDG represent statements and expressions, while edges
model the syntactic dependencies between them. There exist many kinds of de-
pendencies, among which the most important are data dependencies, (a state-
ment using a value produced by another statement) and control dependencies
(a statement or expression controlling whether another statement is executed or
not). The PDG in Figure 1 contains a data dependency between the statements
in line 1 and in line 2 because the latter uses the value of x produced by the
former, and a control dependency between the if -statement in line 3 and the
statements in lines 4 and 6 because whether line 4 or 6 is executed depends on
the value of the expression in line 3.

PDG-based information flow analysis uses context-sensitive slicing [12], a
special form of graph reachability: given a node n of the PDG, the backwards
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slice of n contains all nodes from which n is reachable by a path in the PDG
that respects calling-contexts. For sequential programs, it has been shown [13]
that a node not contained in the backwards slice of n cannot influence n, hence
PDG-based slicing on sequential programs guarantees non-interference [14]. It is
also possible to construct and slice PDGs for concurrent programs [15]. However,
in this context, additional kinds of information flows may exist, e.g. probabilistic
channels [16]. So the mere slicing is not enough to cover all possible information
flows between a source and a sink. A PDG- and slicing-based algorithm providing
such guarantee has recently been developed and integrated into JOANA [17].

Analysis Options: JOANA is highly configurable and allows to configure
different aspects of the analysis, e.g. to ignore all control flow dependencies
caused by exceptions, or to specify different types of points-to analysis [18].
Points-to-analysis is an analysis technique which aims to answer the question
which heap locations a given pointer variable may reference. JOANA uses points-
to information during PDG construction to determine possible information flows
through the heap and therefore depends heavily on the points-to analysis preci-
sion. JOANA supports several points-to analyses, including 0-1-CFA [19], k-CFA
[20] and object-sensitive [21] points-to analysis.

The outcome of this phase is a list of the sources and sinks in the code of the
application and a table that lists all the sources each sink depends on.

2.2 Instrumentation

In this phase, we take the report generated by the static analysis and instrument
each identified source and sink. For each source and sink, the analysis reports
its signature and its exact location (parent method and bytecode offset).

1 void zipIt(String file, String srcFolder) {
2 fos = new FileOutputStream(file);
3 zos = new ZipOutputStream(fos);
4 fileList = this.generateFileList(srcFolder);
5 byte[] buffer = new byte[1024];
6 for (String file : fileList) {
7 ze = new ZipEntry(file);
8 zos.putNextEntry(ze);
9 in = new FileInputStream(file);

10 int len;
11 while ((len = in.read(buffer)) > 0)
12 zos.write(buffer, 0, len);
13 in.close();}}

Listing 1.1: Java code fragment for Zipper
application

Consider the code snippet
in Listing 1.1, used in our Zip-
per application: static informa-
tion flow analysis detects the
flow from the source at line
11 (Source1), where the files
are read, to the sink at line 12
(Sink1), where they are writ-
ten into the archive. Listing 1.2
shows the corresponding anal-
ysis report: lines 1 - 9 spec-
ify that the return value of the
read method invocation at bytecode offset 191 in method zipIt is identified
as Source1. The same holds for Sink1 (lines 12-20), but in this case the first
parameter (line 19) is a sink, not a source. In the final part, the report also
provides information about the dependency between Sink1 and Source1 (line
21 - 25), which is then used to model possible flows.

We use the OW2-ASM [22] instrumentation tool to wrap each reported source
and sink with additional, injected bytecode instructions. We refer to the set of
these additional instructions as inline reference monitor. The outcome of this
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phase is an instrumented version of the original application, augmented with a
minimal inline reference monitor that interacts with the OS-level monitor when
a source or a sink is executed. This way incoming/outgoing flows of data from/to
a resource, like files or network sockets, can be properly modeled.

1 <source><id>Source1</id>
2 <location>JZip.zipIt
3 (Ljava/lang/String;Ljava/lang/

String;)V:191
4 </location>
5 <signature>
6 java.io.FileInputStream.read([B)I
7 </signature>
8 <return/>
9 </source><source><id>Source2</id>

10 ...
11 </source>
12 <sink><id>Sink1</id>
13 <location>JZip.zipIt

14 (Ljava/lang/String;Ljava/lang/
String;)V:185

15 </location>
16 <signature>
17 java.util.zip.ZipOutputStream.

write([BII)V
18 </signature>
19 <param index="1"/>
20 </sink>
21 <flows>
22 <sink id="Sink1">
23 <source id="Source1"/>
24 </sink>
25 </flows>

Listing 1.2: Static analysis report listing sinks, sources and their dependencies

2.3 Runtime

This phase represents the actual runtime data-flow tracking, where we execute
the instrumented applications in a dynamically monitored OS. At runtime a
single OS-level monitor exchanges information with multiple inlined bytecode-
level reference monitors, one per application. We assume that the information to
be tracked is initially stored somewhere in the system, e.g. in some files or coming
from certain network sockets, and marked as sensitive. In our example in §1 we
assume data E and F to be already stored in File 1 and File 2, respectively.

Once a source instruction is about to be executed, the instrumented code
queries the OS-monitor to obtain information about the tainting of the input. It
then associates this information to the source id (e.g. ZipConfig → Source2
in our example). When a sink instruction is about to be executed, the instru-
mented code fetches tainting information from all the sources the current sink
depends on according to the analysis report (Source2 → Sink2). Such infor-
mation denotes all the possible inputs the current output may depend on, but,
most importantly, it denotes all the inputs the current output does not depend
on: this is where we reduce false positives, mitigating the overapproximation of
potential flows. The tainting information is then propagated to the output.

With this approach, even if the application reads additional data (like data
E) before generating the output, the tainting associated with the sink (and,
consequently, with the output) remains the same, as long as the input does
not influence the output. In contrast, in a process treated as a black-box ev-
ery output is as sensitive as the union of all the sources encountered till then.
The information about the content being output by the current sink (Sink2 →
ZipConfig) is forwarded to the OS monitor, which will carry on the tracking
outside the boundaries of the application. Since the process described here ap-
plies to every instrumented application, this allows us to track the flows of data
between any pair of applications, even through OS artifacts (like files), OS events
(like copying a file) and non-instrumented processes (via black-box tracking).
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3 Evaluation

Our goal is to improve system-wide, i.e. OS-level, data-flow tracking precision
without the extreme overhead of process-level runtime data-flow tracking. We
evaluated our work in terms of precision (false positives3) and performance, and
addressed the following research questions by means of case studies:
RQ1 How much more precise is this approach with respect to the estimation

provided by an OS-level monitor alone?
RQ2 How long does the static analysis phase take?
RQ3 How much slower is the instrumented application, and how do we compare

with purely dynamic solutions?
We performed our experiments on the applications described in our running
example (cf. §1), Zipper and Ftp-Client. Zipper was written by a student, while
Ftp-Client was found online [23]. The code of these applications is intentionally
minimal, in order to facilitate manual inspection of the results. Moreover, these
applications stress-test our solution because our approach instruments only entry
and exit points in the code (sources and sinks), but the vast majority of executed
instructions are indeed sources or sinks; for comparison, we also run our solution
on an application with little I/O and large amount of computation in-between:
the Java Grande Forum Benchmark Suite4, a benchmark for computationally
expensive Java applications. We chose this framework, among others, to compare
our results to those of related work [24].

3.1 Settings

Our evaluation was performed on a system with a 2.6 GHz Xeon-E5 CPU and
3GB of RAM. We ran our static analyser on all the applications using the dif-
ferent configurations described in §3.2. We report the median value for 30+
executions of each configuration, to weed out possible environmental noise. As
OS monitor, we used an implementation from the literature [25]. All the runtime
experiments use the objsens-D (§3.2) configuration for the static analysis phase.
We decided for it because of its high precision in our tests; any other analysis,
however, would generate statistically indistinguishable runtime performances.

3.2 Precision (RQ1) and Static Analysis Performance (RQ2)

First, by construction, our approach cannot be less precise than treating the
processes as black boxes (= every output contains every input read so far), the
typical conservative estimation made by OS-level monitors [2]. Second, while
dynamic analyses usually rely on explicit flows only, static analyses consider
additional kinds of dependencies between instructions (e.g. control-flow depen-
dencies), generating more dependencies between sources and sinks. Third, even

3 We assume the static analysis to be sound: all actual flows are reported, i.e., there
are no false negatives. Limitations of our approach are discussed in §4

4 https://www2.epcc.ed.ac.uk/computing/research activities/java grande/index 1.html
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if we configure our static analyser to consider explicit-flows only, a static ap-
proach considers every possible execution at once, meaning that if at least one
execution leads to a flow, then the sink statically depends on the source.

1 in=input();
2 if (cond) {
3 out=in;
4 }
5 output(out);

For instance, for the code on the left static analysis reports
that the sink at line 5 depends on the source at line 1, even
considering explicit flows only. A runtime monitor would re-
port the dependency only during those runs where condition

cond at line 2 is satisfied. Replacing the runtime monitoring with a static de-
pendency table introduces overapproximation by making the sink depending on
the source during every execution, regardless of cond’s value.

Table 1: Static analysis results for
different configurations.

Points-To Time #Sources/ Precision
(s) #Sinks (DI / D)

F
tp

-C
lien

t

0-1-CFA 32 9 / 46 38% / 51%
1-CFA 64 9 / 46 58% / 73%
2-CFA 153 9 / 46 58% / 73%
objsens 220 9 / 46 38% / 74%

Z
ip

p
er

0-1-CFA 53 10 / 56 24% / 43%
1-CFA 82 10 / 55 25% / 53%
2-CFA 185 10 / 55 55% / 78%
objsens 353 10 / 55 57% / 84%

J
G

F
B

S

0-1-CFA 211 8 / 84 56% / 59%
1-CFA 580 8 / 81 71% / 75%
2-CFA 626 8 / 81 71% / 77%
objsens 360 8 / 81 73% / 79%

We ran experiments on the scenario
described in §1. We created the Zip-
per’s configuration file, assigned to data
C, and two files with random content
(data E and F, respectively). In this sce-
nario, we assumed that the only data
read from the standard input is the pass-
word, marked as P. We then ran the sce-
nario (i.e. we zipped the files using Zip-
per and sent them to the server using
Ftp-Client) and looked at the sensitivity
of the content that reached the sockets.

As expected, the execution using
a black-box approach yielded a rather
coarse-grained result (all data reached
both sockets); in contrast, our solution
provided the expected result (data E
and F flowed only to the data socket, while P only to the control socket).

However, it is hard to quantify such an improvement in general. Consid-
ering that a black-box approach would always be as precise as our approach
when every source is connected to every sink, a possible metric for precision im-
provement could be the number of source-to-sink connections that we can safely
discard, thanks to static analysis. We let #flows denote the number of stati-
cally computed dependencies between sources and sinks, and measure precision
as 1−(#flows/(#sources×#sinks)), where 0 indicates that every source flows
to every sink (like in the black-box approach) and 1 indicates that all sinks are
independent from the sources, i.e. no data propagation. We are not aware of any
better metric to measure precision of static analysis w.r.t dynamic monitoring.

As reported in Table 1, we ran our analysis with various points-to-analyses
(0-1-CFA [19], 1-CFA, 2-CFA, object-sensitive, cf. §2.1), considering only explicit
(D), and additional implicit (DI), information flows. According to the formula
above, the improved precision of the instrumented applications varies between
24% and 84% for Zipper, between 38% and 74% for Ftp-Client and between 56%
and 79% for Java Grande F.B.S., depending on the configuration. Although some
of these analyses are incomparable in theory, object-sensitivity tends to deliver
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Table 2: Runtime analysis results. Underlined value taken from the literature, all
others measured. Values in italic refer to results of comparable tests (cf. §3.3).
Zipper32 indicates the archiving of 261MB using internal buffers 32x bigger.

Size (bytecode)
orig.→instr.

Average overhead
per sink/source

Overhead in total

Intra Intra+OS Intra Intra+OS [26] [24] [27]

Zipper 1611 → 2192 2.06x 22.92x 2.09x 34.28x 220.4x - -
Ftp-Client 9191 → 9785 0.16x 4.37x 0.28x 6.75x 25.7x - -

Java Grande 29003 → 30123 6.33x 144.65x 0.001x 0.07x 10.5x 0.25x - 1x -

Zipper32 1611 → 2192 0.24x 7.11x 0.33x 11.61x 19.7x - 15.2x - 28.1x

more precision, as was already reported for various client analyses [21]. Note
that these numbers are hard to relate to dynamic values, because they depend
on the specific application under analysis and they do not take into account how
many times a certain source/sink instruction is executed at runtime.

To answer RQ2, we also measured the time required to statically analyse our
exemplary applications: between 30 and 626 seconds were needed to perform the
static analysis (cf. Table 1), of which 80-90% are invested in building the PDG,
while the rest is spent on slicing. The choice of the points-to-analysis determines
the size of the PDG and thus directly affects the total analysis time; our PDGs
have between 104 and 106 nodes and between 105 and 107 edges.

3.3 Runtime performance (RQ3)

We tested our approach with multiple experiments based on our scenario (§1):
transfer a 20K file to a remote server using Ftp-Client, and compress it using
Zipper. We also ran our tool on the Java Grande F.B.S., the computationally
expensive task with limited I/O used in the evaluation of [24]. We evaluated our
approach (cf. Table 2) in terms of the bytecode space overhead (column “Size
(bytecode)”), the average execution time of a single instrumented source/sink
(column “Average overhead per sink/source”), and the total execution time of
the instrumented application (column “Overhead in total”) compared to its na-
tive execution. We measured the execution runtime overhead with both monitors
at the application and OS level (columns “Intra+OS”), and with just one in-
lined reference monitor at the application level observing only sources’ and sinks’
executions (columns “Intra”). In addition, we compared our work to other ap-
proaches, either by running our tool on the same scenario used to evaluate them
[24] or, if possible, by running those tools on our tests. The latter is the case for
LibDFT [26], an intra-process data-flow tracking framework for binaries.

Zipper and Ftp-Client applications are stress-testing our approach because
they transfer data in blocks of 1KB at a time. This results in a huge number of
read/write events: for comparison, creating a zip file from 261MB of data with
our Zipper generated ∼122K write and ∼256K read events, whereas gzip, an
equivalent tool used in [27]’s evaluation, only generates 3781 writes and 7969 read
system calls for the same input and the same output. Because [27] is a dynamic
monitor that connects information flow tracking results for multiple applications
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across the system, we found a comparison to this work to be particularly relevant.
To perform it, we ran a fourth experiment: archiving 261MB of linux source code
with our Zipper application after increasing the size of the internal buffers by a
factor of 32x; this way, for the same input, Zipper generates the same number
of I/O events of the tool used in [27]. We are aware that comparing different
applications is always tricky; however, since the number and type of generated
events is almost identical, we believe the comparison to be informative and likely
fair. Our results are presented in the last row of Table 2. The overhead for
archiving 261MB (11.61x) using our Zipper is smaller than the best value for
gzip mentioned in [27] (15.2x-28.1x). Similarly, on the Java Grande test, we
outperformed [24]’s analysis of one order of magnitude (0.07x vs 0.25x-0.5x).

Note that the static analysis and the instrumentation are executed only once
per application. For this reason, we excluded the time to perform them from the
computation of the relative runtime overhead (columns Intra and Intra+OS in
Overhead, Table 2). Also, the values in Table 2 do not include the time required
to boot the Java Virtual Machine, which is independent of our instrumentation
and thus irrelevant. It is worth noticing that we tried different configurations of
LibDFT but we could only reproduce overheads more than ten times larger than
those reported in the original paper [26].

4 Discussion

We now offer a general summary of our experimental results, elaborating on some
of the technical and fundamental highlights and limitations of our approach.

By combining static and dynamic data flow technologies, we manage to track
system-wide information flows between different programs and across different
application layers. Our prototype implementation performs better than existing
approaches although we are aware that this strongly depends on the application
under analysis. While we have not “tuned” our approach to the examples in the
case studies, we need to refrain from generalizing our findings. As we instru-
ment only sources and sinks, on computationally intensive tasks with little I/O,
like the Java Grande F.B.S., our tool exhibits a negligible overhead in practice
(<0.07x). In more I/O intensive scenarios, our results are comparable or better
than existing approaches. Note that while the tracking overhead per source/sink
is stable (∼0.08ms “Intra”, ∼2.2ms “Intra+OS”), the time to execute specific
sources/sinks (e.g. >7ms for printing a certain string on standard output) can
be longer than for others (e.g. ∼0.011ms for reading 1KB from a file), resulting
in vastly different relative overhead.

We could improve the precision of our approach by leveraging additional
information, e.g. the context in which a certain sink/source is executed [19].
However, this requires a) the use of a context-sensitive points-to-analysis, like 1-
CFA, usually more costly than a context-insensitve one (cf. §3), and b) additional
instrumentation, which is the reason why we decided not to go for it. Other
options to improve the precision of static analysis are ignoring certain kinds of
flows, like those solely caused by exceptions, or manually adding declassification
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annotations to the code. While the first idea is acceptable, as long as one is
fine with the respective change in the notion of soundness, we decided against
manual annotations, envisioning the application of our tool in a scenario where
static analysis is performed automatically on unknown code.

JOANA currently does not support dynamic language features like reflection
and callbacks, challenging tasks for any static information flow analysis: dealing
with reflection in a meaningful way requires approximating the possible values
of strings which are passed as class or method names or to exploit runtime infor-
mation [28], while callback-based applications (e.g. using Java Swing) require a
model that captures the way the callback handlers are invoked. In other words,
while JOANA can analyse multi-threaded programs (cf. §2.1), library-supported
asynchronous communication between threads is still a limitation.

If we configured the static analysis to ignore all implicit flows (easy to cir-
cumvent [29]), the combination of our OS runtime monitor and the application
reference monitors would guarantee a property similar to Volpano’s weak secrecy
[30]. On the other hand, a sound and precise system-wide non-interference anal-
ysis (including all information flows), would require to analyse all applications
simultaneously, to also capture flows caused by the concurrent interactions on
shared resources [16]. This is unfeasible even for a small number of applications
and likely leads to prohibitively imprecise results. Our approach lies somewhere
in-between: the static intra-process analysis guarantees non-interference between
inputs and outputs of each application, while data flows across applications are
captured at runtime. This property is stronger than weak secrecy, which com-
pletely ignores implicit flows, but still weaker than system-wide non-interference.

5 Related work

Approaches in the field of Information Flow Analysis can be roughly categorized
in static, dynamic and hybrid solutions.

Static approaches analyze application code before it is executed and aim
to detect all possible information flows [31, 32]. A given program is certified as
secure, if no information flow between sensitive sources and public sinks can be
found. Such a static certification can for example be used to reduce the need
for runtime checks [33]. Various approaches (apart from PDGs) can be found in
the literature, usually based on type checking [32] or hoare logic [34]. Because
of their nature, static approaches have problems with handling dynamic aspects
of applications like callbacks or reflective code (§4), and are confined to the
application under analysis, i.e. no system-wide analyses.

Dynamic approaches track data flows during execution and thus can
also leverage additional information, like concrete user inputs, available only
at runtime. TaintDroid [35] is a purely dynamic data flow tracking approach
for system-wide real-time privacy monitoring in Android. Despite its relatively
small runtime overhead, TaintDroid focuses on explicit data flow tracking only.
[36] proposes ShadowReplica, a highly optimized data flow tracker that lever-
ages multiple threads to track data through binary files. While performance
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in general depends on the application under analysis, on I/O-intensive tasks
ShadowReplica’s runtime overhead is comparable to ours (cf. §3). [26] presents
LibDFT, a binary-level solution to track data flows in-between registers and
memory addresses. Although LibDFT’s reported evaluation mentions little per-
formance overhead, we could not reproduce these numbers: as shown in Table 2,
LibDFT imposed a bigger performance overhead than our approach; it is also
unable to perform system-wide tracking because, in contrast to our approach, it
cannot model flows towards OS resources (e.g. files) or in-between processes.

Whole-system tainting frameworks, on the other hand, can specifically track
such kind of flows; among them we find Panorama [37], an approach at the hard-
ware and OS levels to detect and identify privacy-breaching malware behaviour,
GARM [38], a tool to track data provenance across multiple applications and ma-
chines, and Neon[39], a fine-grained system-wide tracking approach for derived
data management. While the performance penalty they induce is comparable to
ours, because of their dynamic nature, none of these tools can cope with implicit
flows, nor exploit application-level semantics (“screenshot”, “mail”).

Hybrid approaches aim at combining static and dynamic information flow
tracking approaches, usually to mitigate runtime-overhead. [24] presents a hy-
brid solution for fine-grained information flow analysis of Java applications; in
this work, statically computed security annotations are used at runtime to track
implicit information flows and to enforce security policies by denying the execu-
tion of specific method calls. In [40] the authors propose to augment a hybrid
tracking approach with declassification rules to downgrade the security levels of
specific flows and controlling information flows by allowing, inhibiting, or modi-
fying events. Although both [24, 40] show promising results, they do not take into
account flows through OS-level abstractions, like files, nor between different ap-
plications or abstraction layers, as we do. We did not discuss so far the possibility
of enforcing usage control requirements at the Java bytecode level in a preventive
fashion [41] (i.e. execute a certain source/sink only if the tracker’s response is
affirmative), because, while requiring only minor changes in the instrumentation,
denying method executions at this level may make the system unstable.

Other approaches model inter-application information flows by instrument-
ing sources and sinks in the monitored applications, relying on pure dynamic
tracking [27] or on static analysis results [42] for the intra-application tracking.
All of them, however, perform the inter-application flow tracking relying on the
“simultaneous” execution of a sink in the sender application and a source in the
receiver. None of them can model a flow towards an OS resource, like a file, nor
towards a non-monitored application. In these scenarios, these approaches lose
track of the data, while ours delegates the tracking to the OS level monitor.

6 Conclusions and Future Work

We described a new, generic approach to perform precise and fast system-wide
data-flow tracking. We integrated static information flow analysis results with
runtime technologies. In our case studies, our solution could track flows of data
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through and in-between different applications more precisely than the black-box
approach does and faster than comparable dynamic approaches do. At present
we cannot substantiate any claim of generalization of these results to other sce-
narios, but we are optimistic. While our proof-of-concept implementation con-
nects executed Java code to an OS-level runtime monitor, other instantiations
are possible. For instance, static approximations for flows in a database could
be connected to dynamic measurements in a given application. Also, our gen-
eral methodology is not restricted to specific programming languages or tools,
so instantiations for languages other than Java are possible.

To the best of our knowledge, this is the first system-wide runtime analysis
that replaces the internal behavior of applications by their static source/sink
dependencies. Although hybrid approaches have already been proposed before,
this kind of integration of static and dynamic results is the first of its kind.

Our experiments confirmed the intuition that the improvement in precision
and performance depends on the type of information flows considered, and on
the amount of I/O instructions executed (w.r.t the total number of instructions).
Our solution is more suitable if this ratio is low, i.e. for applications that perform
large computations on few inputs to produce a limited number of outputs.

We plan to apply our work to other programming languages, or the x86-
binary level, although static analysis tools at this level exhibit bigger limita-
tions. Additionally, we want to better understand the issues described in §4, in
particular the exploitation of context-sensitive analysis information.
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