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Abstract

Automated measurements are being taken in many areas of society. Typically, the scale
is large and the structure complex. Even within a single application, data are often
collected in various forms (e.g. graph structures, relational tables and multivariate time-
series) and over all the fundamental scales of measurement. Despite the heterogeneity,
such stores can hold profound insights about patterns found in the domain. This
thesis is concerned with exploratory data mining – the development of unsupervised and
automatic algorithms to extract this knowledge.
Research Approach: Our research is primarily driven by the “top challenges” identified
by the data-mining community. These challenges highlight five aspects of practically-
observed complexity on which we focus: 1) heterogeneous data types and measurement
scales, 2) missing information, 3) clutter and noise, 4) high dimensionality, and 5)
high-bandwidth time-series data. To help address these concerns, we present novel
methods for practical data mining tasks having these complexities. Secondly, driven
by the pressing need to develop algorithms that scale efficiently with size of the data,
we present linear-time algorithms for our problems and discuss their properties. We
empirically evaluate each against the state-of-the-art with respect to 1) synthetically-
generated data, 2) real-world data, and 3) run-time behavior.
Results: We present problems, frameworks, algorithms and statistical tests to extract
knowledge in various forms. We extract latent patterns in the complex context of
incomplete heterogeneous measurements using our Ternary Matrix Factorization (TMF)
problem and our Matrix Factorizations over Discrete Finite Sets (MDFS) framework. We
extract clusters in the complex context of high-dimensional data with “extreme” clutter
using our algorithm SkinnyDip. Finally, we extract anomalous system events from the
complex context of high-bandwidth time-series data using our approach BenFound.
Contributions: From a research perspective, we show how dimensionality-reduction
through matrix factorization can be performed over heterogeneous data types and
measurement scales, and in doing so complete the theoretical unification of a set of
related data-mining techniques. We show how an elegant “mode-hunting” approach
can help to cluster data with high dimensionality and extreme levels of clutter. Finally,
we show how anomaly-detection can be performed on high-bandwidth time-series data
without the need for a parameterized model to describe the underlying process.

From a practical perspective, our contributions are fourfold. Firstly, all of our
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Abstract

techniques can outperform the state-of-the-art with respect to standard quality met-
rics. Secondly, each is highly scalable, with aggressive optimization and empirically-
demonstrated linear run-time growth in the size of the data. Thirdly, our techniques
have no “obscure” parameters and thus contribute to the holy grail of “parameter-free”
data mining. Finally, we present numerous examples on real-world data, and provide
all prototypes and source code in online, publicly-accessible repositories for direct use.
All results are reproducible.
Limitations: None of our proposed algorithms are able to solve optimally in the general
case (NP-Hard). Indeed, we are only able to provide an approximation factor for one
sub-problem under special conditions. Our algorithms are therefore based on heuristics
and their evaluation empirical. A number of additional assumptions and practical
limitations exist and are discussed.
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Zusammenfassung

In beinahe allen Bereichen der Gesellschaft werden automatisierte Messungen vorgenom-
men. Typischerweise ist die Datenmenge groß und die Struktur komplex. Sogar in-
nerhalb eines Anwendungsfalls werden die Daten oft in unterschiedlichen Formen
(z.B. als Graphstrukturen, relationale Tabellen, multivariate Zeitreihen) und über alle
fundamentalen Skalenniveaus hinweg gesammelt. Trotz ihrer Heterogenität können
die Datensätze tiefe Einblicke in das Anwendungsgebiet ermöglichen. Diese Disser-
tation befasst sich mit dem explorativen Datamining, das heißt der Entwicklung von
unüberwachten, automatischen Algorithmen zur Extraktion dieses Wissens.
Forschungsansatz: Unsere Forschung wird in erster Linie durch die in der Datamining-
Gemeinschaft als „größten Herausforderungen“ geltenden Probleme angetrieben. Diese
Herausforderungen lenken den Blick auf fünf Aspekte der in der Praxis zu beobach-
tenden Komplexität, auf welche wir uns fokussieren: 1) heterogene Datenarten und
Skalenniveaus, 2) fehlende Informationen, 3) Stördaten und Rauschen, 4) hohe Dimen-
sionalität, und 5) Zeitreihendaten mit hoher Bandbreite. Um die Herangehensweise an
diese Probleme zu erleichtern, stellen wir neue Methoden für den praktischen Umgang
mit Datamining-Aufgaben dieser Komplexität vor. Angetrieben durch den dringenden
Bedarf an effizient mit der Datengröße skalierender Methoden, entwickeln wir außerdem
lineare Algorithmen für unsere Problemstellungen und diskutieren ihre Eigenschaften.
Wir vergleichen die entwickelten Algorithmen empirisch mit wissenschaftlich etablierten
Algorithmen hinsichtlich 1) synthetisch generierter Daten, 2) realer Daten, und 3) ihres
Laufzeitverhaltens.
Ergebnisse: Wir präsentieren Problemstellungen, Frameworks, Algorithmen und statis-
tische Tests, um Wissen verschiedener Arten zu extrahieren. Wir extrahieren latente
Muster im komplexen Kontext unvollständiger heterogener Messungen mittels unserer
Ternäre Matrixzerlegung (TMF)-Problemstellung und mittels unseres Frameworks der
Matrixzerlegung über diskreten endlichen Mengen (MDFS). Wir extrahieren Cluster
im komplexen Kontext hoch-dimensionaler Daten mit „extremen“ Stördaten mittels
unseres SkinnyDip-Algorithmus. Schließlich extrahieren wir anomale Systemereignisse
im komplexen Kontext von Zeitreihendaten mit hoher Bandbreite mittels unseres Ben-
Found-Ansatzes.
Beiträge: Aus Forschungssicht zeigen wir, wie Matrixzerlegung über heterogene Date-
narten und Skalenniveaus hinweg durchgeführt werden kann. Wir vervollständigen

iii



Zusammenfassung

dadurch die theoretische Vereinigung einer Reihe an verwandten Datamining-Techniken.
Wir zeigen, wie ein eleganter „mode-hunting“-Ansatz beim Clustern von Daten mit
hoher Dimensionalität und extremem Niveau an Stördaten helfen kann. Schließlich
zeigen wir, wie eine Anomalieerkennung bei Zeitreihendaten mit hoher Bandbreite
ohne Verwendung eines parametrisierten Models, das den zugrunde liegenden Prozess
beschreibt, durchgeführt werden kann.

Aus praktischer Sicht zeigen wir empirisch, dass unsere Techniken den „State-of-the-art“
in Bezug auf Standard-Qualitätskriterien übertreffen können. Jede Technik ist außerdem
hoch skalierbar und hat keine „verschleierten“ Parameter. Schließlich präsentieren
wir zahlreiche auf realen Daten basierende Beispiele und stellen alle Prototypen und
den Quellcode in online öffentlich zugänglichen Repositories für den unmittelbaren
Gebrauch bereit. Des Weiteren sind alle Ergebnisse reproduzierbar.
Einschränkungen: Keiner der von uns vorgeschlagenen Algorithmen stellt im allge-
meinen Fall ein optimales Lösungsverfahren dar. In der Tat können wir nur einen
Approximationsfaktor für ein Teilproblem unter speziellen Bedingungen liefern. Unsere
Algorithmen basieren somit auf Heuristik und deren empirische Evaluation. Eine Reihe
weiterer Annahmen und praktischer Einschränkungen existieren und werden diskutiert.
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1 Introduction

1.1 Clarifying the Buzzwords: Data Mining, Knowledge
Discovery in Databases and Data Science

The terms “data mining”, “knowledge discovery in databases” (KDD) and “data science”
are often used loosely, so it is useful to begin with some clarifications.

We follow the definitions as given in [FPS96]. Specifically, we understand “data
mining”1 as being the application of specific algorithms to prepared data for the purpose
of either prediction or description. Prediction involves finding patterns that can assist
in forecasting the behavior of a phenomenon (or some entities). Description involves
finding useful explanatory patterns that can be presented to a user in a digestible,
understandable form. Of course, the boundaries between these types need not be sharp.
For example, a predictive data-mining algorithm that yields a decision-tree with readable
branching rules is usually more descriptive and interpretable than, say, a feed-forward
artificial neural network containing a cryptic set of numeric weights.

In this thesis we are primarily interested in descriptive data mining, that is, the
extraction of interpretable and digestible patterns in a given data set. More specifically,
this thesis focuses on learning these patterns in an unsupervised or exploratory way. We
assume no a priori “labeled” data. This implies no training phase, in which a system
might “learn” about the domain from a representative set of such labeled instances.
The knowledge-discovery processes on which we focus are also not hypothesis driven,
as is often the case in classical statistical analysis. In short, we focus on variants of the
fundamental unsupervised and exploratory data-mining problems: finding associations,
clustering objects and detecting anomalies.

The term “knowledge discovery in databases” refers to the high-level workflow that
transforms raw data into proven domain insights. Data mining is a single step in this
workflow. The other steps include selection (of a data subset for analysis), preprocessing,
transformation and interpretation/evaluation. The broad workflow is depicted in Figure
1.1. Again, it is important to realize that “data mining” is one of many steps in the KDD
process. As the primary contributions of this thesis are novel data-mining methods, we
will usually only treat the other tasks of the KDD workflow to the extent necessary for

1We use the terms “data mining” and “knowledge mining” interchangeably.
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Data

Target Data

Preprocessed Data

Transformed Data

Patterns

Knowledge

Selection

Preprocessing

Transformation

Data Mining

Interpretation/Evaluation

Figure 1.1: The Knowledge Discovery in Databases workflow, inspired by Figure 1 in
[FPS96].

demonstrating our ideas.

Finally, the term “data science” is typically understood to be more abstract again.
It is often defined as the field concerned with processes and systems which extract
knowledge or insights from data in various forms. Many techniques from machine
learning and classical fields such as statistics, mathematics and signal-processing fit
this definition. Indeed, the term “data science” is often argued to be a “buzzword” for
statistics. The interested reader can find a detailed discussion between the concepts of
“data science” and “statistics” in [Dha13].

In summary, this thesis makes methodological contributions to the field of data mining,
so to avoid confusion we will mostly refrain from using the terms “data science” and
“knowledge discovery in databases”.
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1.2 The Role of Exploratory Data Mining in Society

1.2 The Role of Exploratory Data Mining in Society

Data mining techniques play an increasingly important role in society [KB11; Kri+07;
BY09]. In (e-)commerce, data mining is used as a basis for many purposes, including
the generation of cross-selling recommendations [AIS93] and for summarizing customer
sentiments based on large numbers of reviews [HL04]. In healthcare, applications
range from the detection of health-insurance claims fraud to the evaluation of treatment
effectiveness [K+11]. In science and engineering, data mining finds applications in
bioinformatics [Wan+05], genetics [Kan+02], medicine [CM02], education [SVM06] and
electrical power engineering [McG+02]. In online social networks, data mining is used
for many tasks including link-prediction [LK07], community detection [TL10], fraud
detection [YWB11] and spam detection [Ben+10].

The contributions of this thesis are application-agnostic, but we do note a number
of common properties from the list just mentioned. In many of these applications, the
Four V’s of big data [Buh+13; SS13] are evident. Volume refers to the scale of the data,
now larger than terabytes and petabytes, which outstrips traditional store and analysis
techniques. Velocity refers to the bandwidth at which data is being streamed (e.g. 1TB
of trade information is collected during each trading session on the New York Stock
Exchange). Variety refers to the different forms of data, including measurements that
are made over fundamentally different scales. Finally, veracity refers to the uncertainty
and poor quality of data. Humans cannot be expected to manually analyze big data.
“Hence, KDD is an attempt to address a problem that the digital information era made a
fact of life for all of us: data overload” [FPS96, p. 38]. In this thesis, the scalability of our
proposed methods to such big data applications in society is a key consideration.

1.3 Current Challenges in Data Mining

As illustrated by the DBLP2 metrics in Figure 1.2, many fundamental problems in the
field of data mining remain in an active state of research.

Take cluster analysis, for example. One commonly-found definition states that Clus-
tering is the task of partitioning a set of objects such that objects in the same group are more
“similar” to each other than those in other groups. With such an innocent-looking definition,
why does this task continue to attract such a growing number of academic publications?
That is, why is it so challenging? Why haven’t we solved it yet?

One answer is that it is difficult to find a more precise definition of the clustering
problem that is universally valid. The notion and measurement of “similarity”, for
example, may vary by application, as may the mechanism for evaluating a candidate

2dblp.uni-trier.de, a computer-science bibliography.
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Figure 1.2: Counts of publications over time that include “clustering”, “anomaly” or
“frequent itemset” in the title respectively (source: DBLP).

solution. Other questions soon become evident: What about the notion of “noise” and
“outliers”? Must the partitioning be strict? How do we select the number of clusters?

To arrive at a well-defined problem for which an algorithm can be designed and
deployed in practical situations, we must make assumptions that help us to answer
such questions. The validity of those assumptions in turn depends on the nature of
the application in question. Different arguments can be made for favoring different
assumptions, thus increasing the possibilities for developing more specialized clustering
techniques.

Other data mining problems are analogously difficult (anomaly detection, association-
rule mining, graph mining). This leads us to perhaps the top challenge in modern data
mining, namely the development of a unified theory of data mining. In the following
subsection we discuss this challenge in more detail. In the subsequent subsections we
list a further three “top” challenges on which we focus. Taken together, these four
challenges correspond to the top four open challenges for data mining as enumerated
by Yang and Wu [YW06].

1.3.1 Challenge 1: Developing a Unified Theory of Data Mining

This challenge was identified as “numero uno” in Yang and Wu’s highly-cited work on
data-mining challenges [YW06]. Specifically, they note that the current state of data-
mining research is often criticized as being too “ad-hoc”. Indeed, numerous techniques
have been designed for individual problems. A theoretical framework that unifies the
various data-mining tasks could therefore be considered as a “holy grail” of research in

4



1.3 Current Challenges in Data Mining

this field.
Needless to say, this is an ambitious goal that may prove very difficult, if not impossi-

ble, to attain in practice. Regardless, we can remain optimistic and be inspired by the
various elements of what such a direction would entail. For example, we can take a step
closer to this goal if we keep in mind the motto: induce, deduce and reduce. This is the
motto particularly embraced in Papers A, B and C of this thesis. Specifically, we should:

• Induce general frameworks for data-mining problems based on similarities
found in specialized techniques. Ideally, all possible instances of the special-
ized problems would be provably reducible to an instance of the framework problem.
If the algorithms for the new framework additionally outperformed their specialized
counterparts with respect to both efficiency and effectiveness, then researchers and
practitioners alike would welcome the retirement of a further set of redundant
tools from the overwhelming population of data-mining algorithms. Additionally,
researchers would be inspired to deduce additional useful applications from the
framework. Problems from these applications could then be solved by the same
algorithm.

• Reduce the number of assumptions made by state-of-the-art data-mining ap-
proaches. It would be naïve to think that we can design a useful data-mining
algorithm that is void of assumptions. However, we should take the initiative to
review the need for some of the most fundamental assumptions made in data
mining, and challenge ourselves to relax them when appropriate. For example, for
a given relational data set, many matrix-factorization techniques make the implicit
assumption that all features are measured over the same scale (typically the ratio
scale). In the area of non-hierarchical, vector-based cluster analysis, all techniques
known to this author assume a particular multivariate “distance” or “similarity”
measure on the space (e.g. Euclidean in k-means, or the Gaussian kernel in spectral
clustering). We should exercise our scientific curiosity by questioning these basic
assumptions.

• Reduce the need for obscure parameters and excessive “tuning”. Algorithm
parameters can be a gift and a curse. When a parameter relates to a concept that
a practitioner can readily comprehend (e.g. the number of desired clusters k), its
variation can yield a set of potentially-useful results on the same data. At the other
extreme, it can be a daunting task to set a parameter that is only used internally,
has no obvious relationship to the result and is infinitely variable (we will see that
the τ parameter required by the Asso algorithm for Boolean Matrix Factorization
is such a parameter). We should take care to design algorithms that reduce the
requirement for parameters in this latter category.
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1.3.2 Challenge 2: Scaling Up for High-Dimensional Data and High-Speed
Data Streams

Challenge number two on Yang and Wu’s list is first and foremost related to the curse
of dimensionality [ZSK12; IM98; BC57; KKZ09]. We understand this term as referring
to a number of difficulties encountered when analyzing data in high-dimensional spaces.
One difficulty could be termed the “distance concentration effect”, and refers to the
fact that, as the volume of the space increases with increasing dimensionality (making
the available data more sparse), there tends to be little difference in the “similarity”
between different pairs of objects [KKZ09]. Coupled with the fact that the presence
of irrelevant features may conceal relevant information, the effectiveness of many data-
mining algorithms fails to scale to high-dimensional data.

In addition to appropriately filtering attributes (e.g. those with zero entropy) in
the preparation phase of the KDD workflow, data-mining algorithms should consider
mechanisms through which the curse of dimensionality can be tamed. In clustering, for
example, it is seldom useful to apply a full-space clustering method to a data set with
a moderate-to-large number of dimensions (e.g. 10 or above) [KKZ09]. An algorithm
designed to search for the most useful parts of the data, generally in the form of a
low-dimensional subspace, can yield better results. Paper D makes contributions in this
direction.

Yang and Wu also use the words “high-speed” in their naming of this challenge,
which implies an additional need to focus on efficiency. It is an unfortunate truth that
concrete formulations of many data mining problems imply that finding their optimal
solution is not computationally tractable. Even k-means, which takes a rather simplified
view of the abstract clustering problem, is provably NP-Hard [SI84]. Assuming that
computer science will not be blessed any time soon with a favorable result akin to
P = NP, we must resort to heuristics in order to enable the analysis of any data having
non-trivial size.

Of course, the use of a heuristic alone does not automatically classify an algorithm
as “scalable”. Many heuristic-based data mining techniques have super-linear time
complexity in the size of the data set. For example, we will see that a number of
non-parametric anomaly- and change-point-detection algorithms have quadratic time
complexity in the number n of data objects. For high-speed data streams like Twitter,
where over 6000 new objects (“Tweets”) arrive every second (see Paper E), super-linear
time complexity may well be prohibitive.

To help address Challenge 2, we will subscribe to some further “guiding principles”
when designing our data-mining algorithms:

• Consider the curse of dimensionality, and work to include mechanisms for miti-
gating its effects.

6
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• Strive for algorithms that have a practically linear run-time complexity in the size
of the data.

• Use algorithmic paradigms that lend themselves well to parallelization on high-
performance computing infrastructure.

1.3.3 Challenge 3: Mining Time-Series Data

Temporal data with trends, seasonality and noise are commonplace in modern infor-
mation systems [LAF15]. Particularly in the domains of intrusion detection, credit-card
fraud, medical diagnoses and law enforcement, there is often a need to raise a “red
flag” when the real-time data deviates from the expected distribution or patterns. The
detection of the related change-points, anomalies and “events” in time-series data is an
important element for modern information systems with large volumes of traffic and
strict “uptime” requirements. At Yahoo!, for example, it is critical for the integrity of
the business to perform real-time monitoring of millions of production-system metrics
[LAF15].

Along with Challenge 2, Challenge 3 on Yang and Wu’s list relates to the increasing
requirement for monitoring live data for patterns in a real-time manner. For applications
like Yahoo!, it is not sufficient to periodically schedule offline processing alone.

Interestingly, many time-series mining techniques consider measures relating to the
distribution of the absolute values of the metrics in question. In tune with our reduce
motto from Section 1.3.1, it can sometimes be useful to question basic assumptions like
these. More precisely, we ask: Is there a lens through which we can view time-series data
that focuses specifically on what is “natural” and “unnatural”? This curious question
will be investigated in Paper E.

1.3.4 Challenge 4: Mining Complex Knowledge from Complex Data

Yu and Wang’s fourth problem relates to handling “complex” data. They note that
graphs are one form of complex data that has become especially prevalent in social
networks, and that more research needs to be performed in this direction. Paper C
considers a certain kind of graph structure in this light.

Another form of complexity is found in relational data that has heterogeneous features
measured over fundamentally different scales. This heterogeneity complicates matters
because it rules out the application of techniques that assume completely real-valued
measurements, or completely categorical measurements, for example. More research
needs to be made into methods that can mine patterns from data sets containing
measurements from a variety of the different fundamental scales (nominal, ordinal,
interval, ratio). This is the topic of Papers A, B and C.
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A further form of complexity relates to the amount by which the signal in the data is
hidden by noise. The real world is noisy to varying extents. Noise is usually unstructured
and contributes little to understanding the patterns or associations between the variables
and phenomena in a domain. In the context of noise, data-mining techniques should
remain robust. For example, a clustering technique that assigns cluster membership to
large volumes of clutter or noise points is not particularly useful. Complexity in the
form of clutter and noise is thus a key consideration in our work (particularly Paper D).

Finally, Yang and Wu note that we must make sure that we pay attention to the
“interestingness” and interpretability of the patterns that we mine. In line with the
definition of descriptive data mining (Section 1.1), a user must be able comprehend the
meaning of the discovered patterns in the context of their domain. This includes making
sure that the set of patterns presented to the end-user has a digestible cardinality (e.g.
“top 10”), and that each pattern contains information that can be directly translated to
real-world domain concepts. If a data-mining algorithm learns a representation of a
system, but that representation is in turn difficult to comprehend, then the algorithm’s
usefulness is limited. Delivering interpretable patterns is thus a key consideration for
our work (particularly in Papers A, B and C).

1.4 Goals of this Thesis

To summarize the challenges from the previous section, this thesis focuses on making
data-mining contributions that address a number of aspects of complexity. Each helps
to advance the state-of-the-art in data mining. Specifically, we aim to develop problems,
frameworks, algorithms and statistical tests that

1. can subsume a number of existing approaches without the requirement for addi-
tional obscure parameters (Challenge 1),

2. can support input data with high dimensionality whilst scaling linearly in time
(Challenge 2),

3. can be deployed in real-time for high-bandwidth time-series data (Challenge 3),

4. can yield interpretable results on heterogeneous data sets containing measurements
from a number of scales and high levels of noise (Challenge 4), and

5. are demonstrably superior to the state-of-the-art in controlled and real-world
settings.
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1.5 Remarks on the Document Structure

This is a publication-based dissertation. Each individual publication is embedded as an
appendix, accompanied by a short introduction concerning the topic, publication outlet,
acceptance status, re-use license and author contributions.

The remainder of this dissertation is organized as follows. Chapter 2 reviews a number
of the basic technical results and problems on which this work builds. This includes a
brief review of the fundamental scales of measurement, a review of the basic algorithms
for Blind-Source Separation and a review of the main paradigms for cluster analysis.
Chapter 3 presents a review of the literature that is directly relevant to the techniques
proposed in this thesis, including Boolean and Ordinal Matrix Factorization, robust
clustering algorithms for high-clutter data contexts, and anomaly- and change-point-
detection algorithms. Chapter 4 discusses our research approach. Chapter 5 states and
discusses the results of our work and highlights their impact on research and industry.
Limitations of our work, as well as directions for future research, are likewise covered in
Chapter 5. Chapter 6 gives concluding remarks.
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2 Preliminaries

2.1 The Fundamental Scales of Measurement

In this thesis, a number of contributions relate to knowledge-discovery from data that has
been collected over heterogeneous scales of measurement. For this reason, and despite
the risk of triviality, a short review of the fundamentals of these scales is warranted.

S. S. Stevens notes in his seminal 1946 article that “measurement exists in a variety
of forms” and that “scales of measurement fall into certain definite classes” [Ste46, p.
677]. His proposed typology has since become the most widely-adopted classification
for levels of measurement in the natural sciences. Importantly, the different scales
exhibit different properties and permit different mathematical operations. The following
subsections briefly review the necessary preliminaries for each type of measurement
scale.

Ratio Scales

Physical quantities are often measured on a ratio scale. For example, measurements of
electric charge, rates of flow, distance, temperature (in Kelvin) and mass are all done on
the ratio scale. What do they all have in common?

Firstly, each scale has a meaningful zero point. A mass of zero corresponds to the
absence of matter. A distance of zero corresponds to the separation of a location in
space from itself. A temperature of zero (Kelvin) corresponds to the minimum possible
thermal motion of atoms and molecules, and so on. This meaningful zero point is
valuable because it allows us to make sensible statements about the ratio between two
measurements on that scale. For example, it is reasonable to state that “20K is twice as
hot as 10K”, or “200m is twice as long as 100m”.

We can also reasonably make statements about the “difference” between two measure-
ments made on a ratio scale. “The difference between a mass of 10g and a mass of 6g is
4g” is a sensible statement, for example.

Said differently, the ratio scale is the scale with the greatest amount of “metadata”. Of
the four fundamental scales of measurement, it permits the greatest number of math-
ematical operations that can be sensibly applied. These operations include numerical
addition and multiplication.
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Interval Scales

Many scales used in daily life are measured on an interval scale. We find two examples
in temperature (Celsius) and time (measured after the AD 0 epoch). Compared to
the examples from the previous section (ratio scale), we recognize that the zero point
on these scales is arbitrary. That is, it is arbitrary to select water’s freezing point at
atmospheric pressure as the zero point for temperature, and arbitrary to select the
nativity date as the zero point for time (indeed, many civilizations have done otherwise).

For this reason, it makes little sense to talk about ratios between two interval-scale
measurements. It is not useful to assert that “40 degrees Celsius is twice as hot as 20
degrees Celcius”, nor that “the year 2016 is half as old as the year 4032”. We should
therefore refrain from using numerical multiplication on such measurements.

We can, however, still talk about degrees of difference between values measured on
interval scales. It is sensible to say that the difference in temperature between 40 and 30
degrees Celcius is the same as the difference in temperature between 20 and 10 degrees
Celcius.

Ordinal Scales

Yet more restrictive is an ordinal scale, perhaps most often used for measurements made
in survey research. In this thesis, for example, we work in part with data from survey
research questionnaires that are designed for measuring opinions (Paper C). Items in
such surveys involve a statement and a dichotomy (e.g. “Disagree” or “Agree”), and
the participant is tasked to select a value1 from a scale imposed over that dichotomy
(commonly called Likert items). A typical five-level Likert item might be 1) Strongly
disagree, 2) Disagree, 3) Neither agree nor disagree, 4) Agree, and 5) Strongly agree.

In contrast to interval scales, we cannot sensibly talk about precise degrees of differ-
ence on an ordinal scale. That is, it makes little sense to propose that the difference
between “Strongly agree” and “Agree” is exactly the same as the difference between
“Agree” and “Neither agree nor disagree”. Therefore, even if these scales have numer-
ical labels, we should refrain from using numerical operations such as addition and
multiplication. Ordinal scales do, however, impose a rank ordering of their elements.

Nominal (Categorical) Scales

The label for this scale derives from the Latin root nom, meaning “name”. A scale is
hence termed “nominal” if it involves differentiating between items based only on a

1For simplicity here we ignore the case where the participant is permitted to leave the answer blank, or
select the “Don’t know” option.
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system of qualitative classification or categorization. Measuring the religion of a human
being is an example of a measurement done over a nominal scale. Such a scale would
likely include the set of labels {Christianity, Islam, Judaism}.

It makes little sense to “mix” or “add” two religions, compute a quantitative “dif-
ference” between them, or impose an objective “ordering”. For these reasons, neither
addition nor multiplication may be performed on nominal measurements. Assigning
a numerical value to each nominal category for purposes of identification should be
done with caution; it can lead to a false belief that the measurements may be open to
the same interpretation as given to one of the more powerful scales from the previous
sections. In general, the only permissible statement regarding the relationship between
two measurements made on a nominal scale is that of equality.

A curious observation, and one that is particularly relevant for this thesis, is that
the values from two- and three-valued logic (Boolean and Ternary logic) are, by this
definition, measured over a nominal scale (or a trivial dichotomous ordinal scale). The
Boolean values of false and true are often given alternative labels like no and yes, failure
and success, and so on. Perhaps the most common labels, however, are 0 and 1. This
preference is most likely due to the benefits of compactness (a single character in each
case), however we will see in this thesis that this representation can, in the context of
data-mining, have disadvantages (Section 3.1).

2.2 Blind Source Separation, Latent Patterns, and Finite
Mixtures

Blind Source Separation (BSS) is the abstract task of extracting a set of source signals
from a set of mixed observations [YHX14]. With this definition, a number of concrete
techniques fall under the BSS banner. We explicitly note that we do not use the BSS
term as a synonym for Independent Component Analysis (as is done in some technical
communities). For our purposes, “sources” can be understood as the “patterns” we
wish to find, and the common property held by each BSS technique is that observations
are formed through the mixture of sources (patterns). In the definition of BSS as we
consider it, no information is given about the form of the source signals or the mixing
mechanism, so the problem is highly underdetermined.

Papers A, B and C of this thesis focus on the problem of BSS for non-ratio-scale data,
so it is useful to briefly review the fundamental concepts and commonly-used BSS
techniques for data that has been measured on the ratio-scale.
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2.2.1 Independent Component Analysis

Various techniques exist to solve special cases of BSS. Each makes different assumptions
regarding the nature of the source signals. The “Cocktail Party effect” is a frequently-
used example for motivating the study of BSS in signal processing [Bro00]. It refers to
the well-known phenomenon of being able to target one’s attention to a single auditory
stimulus at a party (e.g. the monologue of the partner), despite the presence of numerous
other significant auditory stimuli (music, speeches, other conversations). The sources
at the party are the various stimuli in the room, including musical instruments and
human speakers. A given observer (e.g. a microphone, or a human ear) measures
sound resulting from the weighted numerical sum (mixture, or “superposition”) of these
signals, where the weighting is influenced by factors such as each source’s intensity
and the distances of the sources from the observer. Importantly, computing a weighted
sum implies “weighting” and “summation”, which can only be done sensibly if the
corresponding operators (“multiplication” and “addition”) exist for the associated level
of measurement. In the Cocktail Party example, sound intensity is a physical quantity
measured on the ratio scale, so a finite linear mixture of audio signals is a sensible
concept.

With the Cocktail Party application in mind, Figure 2.1 shows a simple application
of Independent Component Analysis (ICA), which assumes that the source signals are
statistically independent from each other and non-Gaussian. The concrete mechanism
by which statistical independence is measured can vary, which leads to different forms
of ICA. Often, an information-theoretical approach is taken which seeks to minimize
the mutual information between the sources. Other approaches are also possible, such
as maximum likelihood estimation, maximization of non-Gaussianity, and tensorial
methods [HKO04].

ICA has numerous other applications. The human brain often emits signals from
different regions, which are typically understood to have been “mixed” in a linear way
when measuring brain activity using sensors attached to the outside of the head. It is
often medically sensible to assume that the sources behave independently, so an ICA
can help to uncover the signals emitted by the different brain regions. In econometrics,
performing an ICA on parallel time series can help to decompose them into independent
components in order to gain an insight into the driving mechanisms of the data. For the
task of feature-extraction in image processing, ICA can help to find features that are as
independent as possible [HKO04].
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Figure 2.1: An example of Blind-Source Separation using Independent Component
Analysis (using the R package fastICA [MHR10]). Note the ambiguities: ICA
is generally not able to reconstruct the amplitude and the sign of the original
signals.

2.2.2 Principal Component Analysis (via the Singular Value Decomposition)

In Figure 2.2 we see an example of Principal Component Analysis (PCA), which can
be understood as another kind of BSS technique (based on our definition). In this
case (spatial data) a PCA helps us to identify the directions in the data that are most
responsible for the variance. Usually, taking just a small subset of these directions
gives us the “primary sources” for explaining much of the variability in the data.
For visualization tasks, projecting the original data onto these directions can give a
digestible (in terms of being low-dimensional and comprehensible by a human) and
highly-informative (in terms of being able to visualize the “spread” or variance) view.
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Figure 2.2: PCA finds orthogonal directions in the data, ordered such that each succes-
sive direction explains the maximum possible remaining variance.

2.2.3 Non-negative Matrix Factorization

The title of the seminal article on Non-negative Matrix Factorization (NMF) is “Learning
the parts of objects by non-negative matrix factorization” [LS99]. Indeed, NMF is a
technique that aims to find a parts-based, not holistic-based, representation of objects in
a data set. Given a data matrix D ∈ Rn×m where each of the n rows represents an object
with m features, the form of the decomposition is:

D ≈ H ·W. (2.1)

The matrix W ∈ Rk×m is often named the basis matrix because it contains the k
most fundamental “parts”. The parts are mixed together in various ways to form each
observed object in D. The recipe according to which the parts are combined is prescribed
by the corresponding row in the “encoding” or “usage” matrix H ∈ Rn×k. The mixing
mechanism is linear and respects the classical matrix product:

dij ≈ ∑
a=1...k

hiawaj. (2.2)

Performing Blind-Source Separation on faces data is often used to intuitively explain
the difference between PCA and NMF. Consider the top 25 basis vectors found by two
decompositions of the CBCL faces data [HPP00] in Figure 2.3. The basis vectors on the
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2.3 Cluster Analysis

Figure 2.3: Top 25 basis vectors found by performing PCA (left) and NMF (right) on the
CBCL faces data [HPP00].

left are found by PCA; those on the right by NMF. This result is a neat visual aid for
comprehending the objective of NMF. That is, the NMF basis vectors are more in line
with a parts-based representation of faces. For example, we can see NMF basis vectors
that focus only on the eyes (row 1, column 4), the nose (row 2, column 1), the chin (row
1, column 3) and the cheeks (row 2, column 2). The PCA “eigenfaces” are more holistic
in comparison.

Why do approaches like Principal Component Analysis not enable such a parts-based
representation? The answer lies in the constraints that NMF enforces on the matrices H
and W. As the name suggests, neither H nor W is allowed to contain negative entries.
This implies that only additive sources and mixtures are allowed. Representations learned
by approaches like PCA generally involve cancellations between positive and negative
numbers. This complex mechanism lacks an intuitive meaning in such a “faces” example.
By forbidding subtractions, NMF is compatible with the intuitive notion of “combining
parts to form a whole”.

2.3 Cluster Analysis

Cluster analysis involves the abstract task of partitioning a set of objects into groups, or
“clusters”, such that objects in any given group are more “similar” to one another than
they are to objects in other groups.

As discussed in Section 1.3, this definition of “clustering” is a high-level one that
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2 Preliminaries

requires concrete elaboration. No “silver bullet” technique exists, because the interpreta-
tion of the problem typically depends on the application in question. In this thesis, we
restrict our focus to non-hierarchical clustering of vector data. Figure 2.4 illustrates four
different sets of 2D vector-data in which the concept of a “grouping” can differ.
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Figure 2.4: Four different two-dimensional spatial data sets.

2.3.1 Partition-Based Clustering

On the left of Figure 2.4 we find perhaps the simplest of the four data sets. This data
set was generated by sampling over four bivariate Gaussian distributions (each with a
different mean and standard deviation). Although the groups have different sizes, they
have comparable spatial extent and are well separated (in the Euclidean sense of the
word).

It is clear to the naked eye that it would be useful in this case to group (or “partition”)
objects based on their absolute position in space. That is, we could assign a “prototype”
vector for each group, and assign each object’s cluster membership based on its closest
prototype (using the Euclidean distance). This is one partitioning approach, also known
as vector quantization. The prototype vectors might also be called “centroids”, hence a
further name for this kind of clustering paradigm. In Figure 2.5 we see an example of
the popular k-means partition-based clustering algorithm [Mac+67] applied to the data
on the left of Figure 2.4.

Vanilla k-means requires that we specify the number k of prototypes (clusters). In
general this may not be known a priori. Importantly for the work in this thesis, centroid-
based partitioning techniques like k-means are typically also deficient of a noise concept
(Challenge 4). That is, centroid-based partitioning techniques often assume that each
object in the data set has a sensible membership in exactly one cluster.

The second data set in Figure 2.4 is not the best fit to the centroid-based partitioning
model because the spatial extents of the two clusters vary considerably. We observe in
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2.3 Cluster Analysis
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Figure 2.5: An example k-means result. The locations of the cluster prototypes (also
known as “centers” or “centroids”) are given by the yellow + markers.

Figure 2.6 that this complicates matters somewhat for k-means, so we look for a different
approach. One solution is to model each of the k clusters using a statistical distribution.
One might call such an approach a “distribution-based” clustering paradigm. For our
data we observe that each cluster can be well approximated by a Gaussian distribution
(with different parameters). In particular, the top cluster could be described with a
scalar variance in each axis direction, and the stretched elliptical cluster on the bottom
with an appropriate 2× 2 covariance matrix.

Each data object is then assigned a vector of length k, the elements of which represent
the membership probabilities for each of the k cluster distributions. This implies a
soft clustering (no concrete membership assignments), although a hard assignment can
trivially be achieved by assigning each object to its most likely cluster.

This approach is clearly parametric. The user is required to specify the number of
clusters k and the type of distribution in advance. To practically solve the problem,
the popular Expectation-Maximization (EM) [DLR77] algorithm is often deployed. The
distribution form of the clusters is typically selected as Gaussian. EM iterates to achieve
the (local) maximum likelihood parameters of these distributions.

Although classical distribution-based clustering techniques have no explicit notion of
noise, one might interpret an object with consistently “low” membership probabilities
as a noise object.
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EM Clustering

Figure 2.6: k-Means (left) and hard-EM (right) clustering algorithms applied to a com-
mon data set. EM models each cluster using a bivariate Gaussian with
different distribution parameters.

2.3.2 Density- and Spectral-Based Clustering

A rather different clustering paradigm is to consider the localized object density of
points, recognizing that such a measure is considerably higher inside a cluster than it is
outside a cluster. The most highly-cited density-based clustering method is DBSCAN
[Est+96]. It formalizes this notion using localized concepts like the number of points
within a given point’s spatial “neighborhood”, and whether or not two points can be
considered to be “reachable” and “connected” to each other through other local points.

Density-based approaches have a number of advantages. Firstly, operating at a local
level, they do not require the user to specify the number of clusters to find. Secondly,
they are not restricted to convex-shaped clusters: the notions of “reachability” and
“connectivity” enable clusters to grow “naturally” in the direction of all points that
satisfy the propagation conditions. Thirdly, they have a clear concept of noise: any point
that does not meet the conditions for inclusion in a cluster is labeled as noise. In Figure
2.7 we see an example DBSCAN result on a noisy, synthetic data set with non-convex
cluster shapes.

Despite its numerous advantages, DBSCAN its no silver bullet. DBSCAN is not a
linear-time algorithm (Challenge 2), still requires some measure of distance on the space
(the Euclidean distance is used in [Est+96]), needs the user to specify thresholds for
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2.3 Cluster Analysis
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DBSCAN

Figure 2.7: A DBSCAN result on a data set (over the unit square) containing clusters of
non-convex form. The parameters used were ε = 0.01, minPts = 5. Light
gray is used to represent points labeled by DBSCAN as noise.

minimum cluster sizes and density, and has difficulties extracting clusters of varying
density. More recent variants of density-based clustering, like OPTICS [Ank+99], help
to mitigate the latter two limitations2.

The third data set in Figure 2.4, commonly known as the “spirals” data, shows another
situation in which clusters need not necessarily have convex boundaries. In such cases it
is not sensible to assign cluster membership based on prototype vectors or Gaussian
distributions. Again, a more local “connectivity”-based approach can prove useful in
such situations.

Spectral clustering is the name given to techniques based on graph-theoretical notions,
and that exploit the spectral decomposition of matrices derived from the data set. The
symmetric matrix typically used is the so-called “affinity matrix” A ∈ Rn×n, which
encapsulates the “similarity” information between all objects in the data. The similarity
is typically measured using the Gaussian kernel. Specifically, the affinity between two
data points with vectors ~xi and ~xj is

aij = e
−‖~xi−~xj‖2

2σ2 . (2.3)

2In solving these problems, however, it could be argued that OPTICS introduces others. It produces a
hierarchical clustering that typically requires manual interpretation.
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σ is a scale parameter, typically interpreted as a measure of when two points are
considered “similar”. The selection of σ is commonly done manually, however it can
also be made to vary in space and can be determined automatically [ZP05].

Spectral clustering can be formulated in various ways, but the classical goal is to find
the first k eigenvectors of the symmetric, normalized Graph Laplacian

Lnorm := I − D
−1
2 · A · D 1

2 , (2.4)

where D is the graph’s degree matrix. The k eigenvectors are used as columns in
constructing the matrix V ∈ Rn×k. The rows of V are then interpreted as the new data
observations in k-dimensional space. In this space, it turns out that grouping by compact
clusters corresponds to minimizing the inter-cluster affinity (that is, maximizing the
total “separation” of the clusters) in the original graph context. The final step to identify
the clusters is hence to apply a traditional compactness-based clustering method, like
k-Means or EM, on this k-dimensional space.
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Spectral Clustering

Figure 2.8: The spectral clustering result on the spirals data (using the R kernlab package
[Kar+04]). We note that density-based algorithms like DBSCAN can find a
similar solution.

Although shown to be empirically successful for image segmentation and a variety
of exotic spatial data sets (e.g. snakes, letters, and the spirals in Figure 2.8), spectral
clustering in its basic form has a number of limitations. These include the difficulty in
handling noise (Challenge 4, especially if e.g. k-means is used in the final clustering
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2.3 Cluster Analysis

stage), the requirement for the user to specify the number of clusters k and the scale σ

(Challenge 1), the difficulty in handling multi-scale data, and the high computational
cost (Challenge 2). Indeed, spectral clustering experiences problems on the DBSCAN-
example data in Figure 2.7 because of the noise (note that DBSCAN performs well
on the spirals data). More recent approaches, including the highly-cited “self-tuning”
(automated) method for spectral clustering [ZP05], have made progress on some of these
limitations.
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In this chapter we reflect on results from the specialized, state-of-the-art literature that
is more directly relevant for the work in this thesis.

3.1 Matrix Factorizations over Discrete, Finite Sets

In Section 2.2 we discussed the concept of using matrix factorizations from linear algebra
as a tool for Blind-Source Separation. We briefly reviewed Independent Component
Analysis, Principal Component Analysis and Non-negative Matrix Factorization as three
techniques commonly used to solve concrete realizations of the abstract BSS problem.
All three impose restrictions on the nature of the factor matrices in order to be able
optimize an objective function that is assumed to coincide with what a practitioner would
consider as useful. In the Cocktail Party example, the assumption that the audio sources
are statistically independent is reasonable, so ICA’s objective function is a sensible
choice. In contrast, if we wish to visualize a high-dimensional, real-valued spatial data
set, we might obtain a useful view by following PCA’s objective (selecting the two or
three directions that explain the greatest variance). If a “parts-based” representation is
sensible, we might select NMF.

Consider now the simple data matrix in Figure 3.1, which records the courses taken by
four students (the courses are Programming , Electromagnetism , Mathematics ,
Molecular Dynamics ). The first three students study the disciplines of Computer
Science, Physics and Chemistry respectively. The last student studies Numerical Simula-
tion, an interdisciplinary program involving a mix of the other three “pure” disciplines.
To reflect the fact that these measurements are not made on the ratio scale, the entries of
the matrix are denoted either f or t for false and true respectively (rather than 0 and 1).

As exploratory data miners, we hope to learn something from this data. We pose the
question: Can we perform Blind-Source Separation on this data in order to extract some
useful and intuitive “sources” (latent patterns)?

Our first (naïve) step in this direction might be to map our nominal labels to numerical
values and apply a numerical technique from linear algebra. We select the commonly-
used mapping f 7→ 0 and t 7→ 1. Figure 3.2 shows the effective factors obtained after
applying SVD to the data obtained and keeping only k = 3 of the most significant
eigenvalues.
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1 t f t f

2 f t t f

3 f f t t

4 t t t t

Figure 3.1: A simple data matrix that records the participation of students in courses.

We note two key limitations of the SVD result. Firstly, it is approximate. For this data,
there exists no exact rank-three decomposition when the classical matrix product is used.
Secondly, the factors contain both negative, zero and positive entries.

From a knowledge-discovery perspective, it is the latter limitation that is perhaps the
most critical. It has a direct impact on the interpretability of the factors in the context of
the data domain (Challenge 4). That is, how are we supposed to map the factors found
by SVD back into meaningful insights into the context of students and courses? Given
the SVD factors here, there is no trivial mapping scheme that will help us learn about
our “source” disciplines of Computer Science, Physics and Chemistry.

The Non-negative Matrix Factorization result (also in Figure 3.2) is an improvement.
Although it is still only an approximation, it constrains its factors to non-negative entries,
which can often aid interpretability. In this case we see entries in the factors ranging
from 0 to approximately 1.14. To get a clearer picture, we might use simple rounding to
interpret the result in the context of the domain. We color a cell red if its entry is closer
to zero than it is to 1, and green otherwise.

With this rounding, and even if we perform normalization, the factors still fail to
reflect our “source” disciplines (errors relative to the upcoming BMF decomposition are
labeled with an exclamation mark). Why is this? To answer this question, we reflect on
the fundamental assumption that NMF makes about the data we provide. NMF assumes
that the data is measured on a ratio scale. NMF, and indeed all techniques from linear
algebra, rely on the classical matrix product which performs numerical addition and
multiplication. The crux is that performing numerical addition and multiplication make
little sense for logical data, because logical data is not measured on a ratio scale. Rather,
two-valued logical data is more sensibly mixed and weighted using the semantics of
Boolean disjunction and conjunction. Concretely, the Boolean axiom of 1 + 1 = 1 (where
1 represents logical truth and + represents logical disjunction) is in conflict with its
arithmetic counterpart 1 + 1 = 2 (where 1 is a real value and + is numerical addition).
When mixing is involved, this has the effect of “pushing down” the values in the NMF
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Data matrix “Usage” matrix “Basis” matrix

Singular Value Decomposition

Prog. Elec. Math. Mol.Dyn.

1 1 0 1 0

2 0 1 1 0

3 0 0 1 1

4 1 1 1 1

≈

1 -0.4 -0.8 0.0

2 -0.4 -0.4 -0.7

3 -0.4 -0.4 0.7

4 -0.7 0.0 0.0

·

-1.115 -1.115 -1.932 -1.115

0.816 -0.408 0.000 -0.408

0.000 -0.707 0.000 0.707

Non-negative Matrix Factorization

≈

1 0.00 1.33 0.00

2 1.14 0.00 0.00

3 1.14 0.00 0.00

4 0.78 0.32 1.05

·

0.000 0.439 0.878 0.439

0.750 0.000 0.750 0.000

0.725 0.625 0.072 0.625

Boolean Matrix Factorization

=

1

2

3

4

�

Figure 3.2: Finding latent disciplines from students and courses.

factors, which can lead to misleading results on final interpretation. We hence arrive
at the seminal discrete matrix-factorization technique for non-ratio-scale data in the
context of data mining: Boolean Matrix Factorization.

3.2 Boolean Matrix Factorization

Let B = {f, t} be the set of Boolean logic values. Let the binary function �B : B × B 7→
[0, 1] be a contrast or “dissimilarity” measure over this set such that for all a, b ∈ B,
�B (a, b) 7→ 0 if a = b, otherwise 1 (i.e. the Boolean XOR function). The Boolean matrix
product A�B B of two matrices A ∈ Bn×k, B ∈ Bk×m is an analog to the classical matrix
product, whereby arithmetic addition and multiplication are exchanged for logical
disjunction ⊕B and conjunction ⊗B :

(A�B B)ij =
(
ai1 ⊗B b1j

)
⊕B · · · ⊕B

(
aik ⊗B bkj

)
. (3.1)

The Boolean Matrix Factorization problem [MV14; Mie09] is stated as follows:
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Problem (BMF: Boolean Matrix Factorization). Given a Boolean data matrix D ∈ Bn×m

and positive integer k, find “usage” and “basis” matrices U ∈ Bn×k and B ∈ Bk×m that
minimize

‖D�B (U �B B)‖1, (3.2)

where �B is applied entry-wise to produce a “residual” matrix, and ‖·‖1 is the entry-wise
1-norm (simple sum of all matrix elements).

Returning to Figure 3.2, we see how the BMF treatment of the students and courses
data offers numerous advantages. Firstly, we see how BMF’s logic-based mixture model
enables us to achieve an exact “rank”1-three decomposition (zero reconstruction error
with respect to Equation (3.2)). Secondly, and perhaps most importantly, the factor
matrices are directly interpretable in the context of the domain (Challenge 4). The basis
matrix exposes our latent Physics, Computer Science and Chemistry disciplines, and the
usage matrix shows how the fourth student learns a mix of the core disciplines. Finally,
we note that the pre- and post-processing steps (mapping and rounding) necessary
for SVD and NMF are not required by BMF. Indeed, such mapping decisions are the
root cause of the problems found when applying SVD and NMF to these data: these
mappings introduce ratio-scale semantics on non-ratio-scale data.

Asso is a state-of-the-art algorithm specifically designed for solving BMF [Mie+08].
The algorithm is so-named because it involves the computation of Association accuracies.
Specifically, an entry aij of the association matrix A represents the confidence of the
association between the ith and jth column, as defined in association-rule mining [AIS93].
Initially, the entries of the non-symmetric matrix A are hence real values between zero
and one. Heuristically, A can be converted to a binary matrix using a rounding threshold
τ, and its rows then considered as candidate Boolean basis vectors. k of these candidate
basis vectors are then selected in a greedy fashion to arrive at an approximate solution.
In the best case, Asso computes a solution in time O(knm2). The computation of the
association matrix is particularly expensive: the association score is calculated for each
pairwise combination of columns, requiring time O(nm2). Asso requires the values
of k and τ to be defined by the user, and depends on floating-point arithmetic for the
creation and manipulation of the raw matrix A (despite the fact that the original data is
two-valued discrete).

3.2.1 Combinatorics Problems Related to Boolean Matrix Factorization

The BMF problem is related to a number of problems from combinatorics. These
combinatorics problems will help us in our work as well. For reference, we hence detail
these problems in the following subsections.

1See [MV14] for a discussion on the Boolean rank of a matrix.
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Set Cover

The Set Cover (SC) problem is one of the classic 21 NP-Complete problems published by
Karp [Kar72].

Problem (Set Cover). Given a “universe” set of elements U = {1, 2, . . . , m} and a collection
S = {S1,S2, . . . ,Sn} of sets such that their union is U , find the smallest sub-collection C ⊆ S

such that the union of its sets is also U .

Example (Set Cover). Consider the problem instance with U = {1, 2, 3, 4, 5} and S =

{{1} , {1, 2, 3} , {2, 5} , {3, 5} , {4, 5} , {3, 4}}. It is clear that the union of all sets in S is
equal to U . The smallest sub-collection of S which still fully covers U , and hence the solution
to the problem, is C = {{1, 2, 3} , {4, 5}}.

The optimization version of the set-cover problem is NP-Hard [BJ08] (the decision
version is NP-complete). The baseline greedy polynomial-time algorithm for approxi-
mating set cover simply involves selecting those successive sets which cover the largest
number of remaining uncovered elements. The algorithm terminates when all elements
are covered. In [Sla96] it is shown that the approximation ratio for this greedy algorithm
is exactly ln n− ln ln n +O(1), making it essentially the best-possible polynomial-time
approximation algorithm for set cover.

Red-Blue Set Cover

The Red-Blue Set Cover (RBSC) problem [Car+00] is a generalization of the Set Cover
problem. The objective of RBSC differs from that of SC in that the cost of a solution
considers not the number of covering sets, but the number of covered “penalty” elements
from a second “red” set:

Problem (Red-Blue Set Cover). Given two disjoint sets R =
{

r1, r2, . . . , rρ

}
and B ={

b1, b2, . . . , bβ

}
, as well as a collection of sets S ⊆ 2R∪B , find the sub-collection C ⊆ S that

covers all elements in B but covers the minimum possible number of elements in R.

Example (Red-Blue Set Cover). Consider the problem instance with B = {1, 2, 3, 4, 5},R =

{6, 7, 8} and S = {{1} , {1, 2, 3, 7, 8} , {2, 5} , {3, 5, 6} , {4, 5, 7} , {3, 4, 6}}. The solution is
C = {{1} , {2, 5} , {3, 4, 6}}, which has the minimum cost of 1.

In [Car+00] it is shown that the SC problem can be reduced to the RBSC problem, and
that the RBSC problem is at least as hard as the SC problem.
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Positive-Negative Partial Set Cover

The Positive-Negative Partial Set Cover (±PSC) problem is a more recent generalization
of the RBSC problem (which in turn is a generalization of the SC problem). Its introduc-
tion was motivated by the BMF problem [Mie08a]. Compared to RBSC and SC, ±PSC
relaxes the strict requirement of complete cover. It searches for a solution that represents
the best balance between covering positive elements and not covering negative elements.

Problem (Positive-Negative Partial Set Cover). Given two disjoint sets P and N , as well
as a collection of sets S ⊆ 2P∪N , find the sub-collection C ⊆ S that minimizes the cost function

cost±PSC(P ,N ,S) =

∣∣∣∣∣P \
(⋃
C∈C
C
)∣∣∣∣∣+

∣∣∣∣∣N ∩
(⋃
C∈C
C
)∣∣∣∣∣ . (3.3)

Example (Positive-Negative Partial Set Cover). Consider the problem instance with P =

{2, 3, 5, 7}, N = {1, 4, 6} and S = {{1, 2, 6} , {2, 4} , {1, 4, 5, 6, 7} , {4, 5, 7}}. The sub-
collection of S achieving the minimum cost is C = {{2, 4} , {4, 5, 7}}. The minimum cost is 2,
because this solution covers one negative element (4) and fails to cover one positive element (3).

In [Mie08a] it is shown that RBSC can be reduced to ±PSC, that the ±PSC problem
is at least as hard as RBSC, and that a polynomial-time approximation algorithm for
±PSC exists that achieves an approximation factor of 2

√
(|S|+ |P|) log |P|.

3.2.2 Missing-Value Boolean Matrix Factorization

Missing-Value Boolean Matrix Factorization (MVBMF) is a variant of Problem BMF that
considers the case where the data matrix is incomplete.

Problem (MVBMF: Missing-Value Boolean Matrix Factorization). Let BMV = B∪{?},
where ? indicates a missing value. Given a Boolean data matrix D ∈ Bn×m

MV and positive integer
k, find “usage” and “basis” matrices U ∈ Bn×k and B ∈ Bk×m that minimize

‖D�B (U �B B)‖1, (3.4)

where �B and the norm ‖·‖1 this time consider only the known elements in D.

This problem has applications in collaborative filtering [SK09] and the mining of
“roles” from incomplete data during an organization’s migration to role-based access
control (RBAC) [Vav+].

Asso
mv is the name we use to denote the Asso extension that supports missing values

[YM12]. The major contribution that this work makes to Asso is in the algorithm
step where the association matrix is computed. To handle missing values, the original
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definition of association confidence is modified to include a probabilistic component.
The resulting association matrix is then converted to binary (using the same τ parameter
as Asso). The remaining part of the algorithm is similar to Asso, although certain
additional data structures are needed to track the elements of the data matrix for which
the cover need not be computed. Asso

mv also has quadratic run-time complexity with
respect to the dimension m (again due to the need to compute the full association
matrix). The method is evaluated on synthetic data with up to 99% missing values in
the data matrix [YM12].

One key advantage of Asso
mv is that it addresses both the prediction and description

task simultaneously. That is, the factors U and B are 1) Boolean, which admits their
interpretation in the context of the domain to help describe potentially-valuable latent
patterns (description), and 2) multiplied using the Boolean matrix product, which helps
to “fill in the blanks” in the data matrix (prediction).

Other techniques exist for the collaborative-filtering problem that focus primarily
on prediction. Maximum-Margin Matrix Factorization (MMMF) [SRJ04] is such a tech-
nique. MMMF finds a factorization of the same basic structure (“usage” and “basis”
matrices), however the factors contain real values and are multiplied using the classical
matrix product. The main contribution of this work is the formulation of the binary
collaborative-filtering problem (in which the data matrix has missing values) in terms of
standard optimization problems. To this end, the dimensionality k is kept unbounded
and the factorization is regularized with a low-norm constraint. For the learning process
it is shown that, when keeping one of the matrices fixed, each separate linear prediction
problem decomposes into a standard support-vector machine problem if the hinge-loss
error (appropriate for binary data) is chosen. This technique has been shown to be highly
successful on the prediction problem, however fails to carefully address the description
problem for Boolean data. Like SVD and NMF, the use of real-values and a linear
mixture model ultimately renders the factors difficult for interpretation in the context
of the Boolean domain. Additionally, and unlike SVD and NMF, MMMF leaves the
decomposition rank k unbounded, which may result in a large and indigestible set of
“features” in the factorization.

3.3 Ordinal Matrix Factorization

Ordinal Matrix Factorization was first presented in the context of data-mining research
in [BK13]. Like BMF, the authors consider the problem of performing Blind-Source
Separation on data measured over a non-ratio scale. In this case, the data under
consideration is measured over ordinal scales.

To motivate the need for OMF, Figure 3.3 shows an ordinal example where the “fre-

31



3 Literature Review

Data matrix “Usage” matrix “Basis” matrix

Non-negative Matrix Factorization

Energy Loud. Protect. Affec.

GER

SCH

SIB

BUL

≈

GER 1.17 0.87 0.15

SCH 0.01 1.59 0.33

SIB 0.19 0.12 1.40

BUL 0.97 0.76 1.12

·

0.031 0.296 0.784 0.128

0.557 0.510 0.136 0.005

0.357 0.536 0.071 0.728

Ordinal Matrix Factorization

=

GER

SCH

SIB

BUL

�

Figure 3.3: Finding latent canine temperaments from dogs and traits.

quency” {Never, . . . , A Great Deal} of dog traits (energy , loudness , protectiveness
and affection ) is measured for four breeds (GERman Shepherd, SCHipperke,

SIBerian Husky and BULL Terrier). From the domain we are aware of the latent dog
temperaments “hyperactive” (energetic and loud), “playful” (loud and affectionate) and
“watchful” (loud and protective), which we might hope to uncover with a rank-three
decomposition. By imposing a five-element numerical scale (0, 0.25, 0.5, 0.75, 1) on our
ordinal data, we might again try NMF. If we again use simple rounding to get a clearer
picture, we struggle to clearly see our latent concepts. The first basis vector, for example,
fails to pair loudness with protectiveness to highlight “watchfulness”. OMF’s exact de-
composition, on the other hand, clearly highlights the temperaments in the basis matrix,
with the usage matrix confirming that Bull Terriers strongly exhibit all three. NMF’s
result is again attributable to its use of a classical linear mixture model (arithmetical
addition and multiplication). A more in-depth OMF motivation on real-world canine
data is given in [BK13].

Let L =
{

0, 1
s+1 , . . . , 1

}
represent an s-element partially-ordered set bounded by 0 and

1. Scales of this nature are often found in survey-research. For example, we often find
“Likert Items” inspired by Miller’s Law2 [Mil56] with the possible values:

strongly disagree disagree neutral agree strongly agree

When we map such choices to the numerical values L =
{

0, 1
4 , 1

2 , 3
4 , 1
}

for the sake of

2The observation that the number of objects an average person can hold in working memory is approxi-
mately 7± 2.
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convenience, we should take care not to think that the classical arithmetic operations
can then be applied. For example, we cannot make a statement like “Neutral is twice as
much agreement as Disagree” for this data because we have no meaningful “zero” value.
It is this mechanism that causes the NMF interpretation problems in Figure 3.3.

Instead, values on such scales can be weighted and mixed using the Łukasiewicz
operations [BK13]. The ordinal matrix product �L hence uses the operation a⊕L b =

max(a, b) in place of addition, and the operation a⊗L b = max(0, a + b− 1) in place of
multiplication. Let the binary function�L : L×L 7→ [0, 1] be a contrast or “dissimilarity”
measure over L (in [BK13] the function is defined as �L(a, b) = |a− b|). The formal
definition of the OMF problem is then [BK13]:

Problem (OMF: Ordinal Matrix Factorization). Given an ordinal data matrix D ∈ Ln×m

and positive integer k, find “usage” and “basis” matrices U ∈ Ln×k and B ∈ Lk×m that
minimize

‖D�L (U �L B)‖1, (3.5)

where, like BMF, �L is used entry-wise to produce a “residual” matrix, and ‖·‖ is the entry-
wise 1-norm (simple sum of all matrix elements).

In [BK13] the algorithm GreEss is introduced to solve OMF. The algorithm is based on
formal-concept theory. Importantly, we note that GreEss achieves the optimal from-below
decomposition. That is, GreEss is able to compute the optimal solution from the subset
of OMF solutions that give a reconstructed data matrix not exceeding the original matrix
D in any entry. Although not mentioned in the original article, our empirical analysis
suggests that this effectiveness comes at a price: the time complexity of GreEss is in
O(sn2m3).

3.4 Clustering in the Context of Noise/Clutter

Although noise is considered to some extent by a number of clustering techniques (e.g.
DBSCAN, or Robust Information-Theoretic Clustering [Böh+06]), there are far fewer
that consider the case where global “clutter” heavily outweighs the number of clustered
points (the right-most case in Figure 2.4). We are aware of only two techniques that
specifically focus on this kind of scenario. We discuss these techniques in this section.

3.4.1 Peer Article: Detecting Features in Spatial Point Processes with Clutter
via Model-Based Clustering

In [DR98] the authors consider the problem of detecting surface-laid minefields on the
basis of many images from reconnaissance aircraft (Figure 3.4). Minefields are often
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laid in a structured way. The authors approach the problem as one of clustering in the
presence of significant “clutter”. They propose a distribution-based method which sees
minefields modeled as multivariate normal distributions, and “clutter” represented by a
spatial Poisson process. The EM algorithm is used to find an approximate solution to
the problem, with approximate Bayes factors employed to select the number of clusters.
The resulting Mclust-EM algorithm is shown to produce good results for up to two
such “minefield” clusters in the presence of considerable “clutter”. Examples are also
given for detecting seismic faults based on an earthquake catalog, although this data is
much less “cluttered”.
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Minefield data

Figure 3.4: A simulated minefield (left) in the presence of “clutter” (like metal objects
or rocks). This data set was generated based on similar data presented in
[DR98].

Primarily driven by the minefield application, Mclust-EM is unfortunately only
usable for data in two dimensions and is parametric (assumption of Gaussian clusters).

3.4.2 Peer Article: Efficient Algorithms for Non-Parametric Clustering with
Clutter

Compared to [DR98], the development of the method in this article [WM02] is not
driven by a particular application. The authors argue that situations with a combination
of noisy background and clusters are found in a variety of applications, and that a
new approach is needed. One application that the authors do use as motivation is the
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clustering of galaxies (Figure 3.5). Each “bright spot” in such a data set is a galaxy
containing billions of stars. Astrophysicists are interested in clustering galaxies, but
a noisy background of field galaxies interferes with traditional clustering techniques
based on mixture models, vector quantization or graph-theory.

Figure 3.5: A view of galaxy data from the Sloan Digital Sky Survey [Alb+16; Eis+11] as
considered in [WM02].

The key contribution of [WM02] is a refined version of the Cuevas, Febrero and
Fraiman (CFF) algorithm [CFF00]. The CFF algorithm first determines the subset of data
points that are in high-density regions using a non-parametric density estimator. This is
followed by a clustering step, whereby such high-density points are agglomerated. The
refinements made are aimed at partially addressing the computational problems of the
CFF algorithm. However, a key limitation is that it still needs to be executed “hundreds
of times” [WM02, p. 4] with different combinations of the three required parameters.

3.5 Anomaly and Change-Point Detection in Time-Series Data

The topics of “change-point detection”, “anomaly detection” and “event detection” for
time-series data (Challenge 3) have seen numerous contributions in the data-mining,
signal-processing and statistics literature. In this section we firstly review a range
of generic techniques for numerical time series. Afterwards, we review text-based
(Natural Language Processing) methods for topic and event detection in social-media
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and microblogging services like Facebook and Twitter.

3.5.1 Numerical Techniques from Data-Mining and Signal-Processing

A number of recent contributions to the data-mining anomaly-detection literature have
been made by research teams of internet-based companies. Twitter, for example, has
released two popular techniques: Twitter Anomaly Detection [JKM14] and Twitter
Breakout Detection [VHK14]. A result from the former technique is shown in Figure
3.6, where we can see that it identifies intuitive outliers (red points) in a signal that
contains noise, short-term seasonality and long-term trend. The underlying algorithm
uses statistics based on the energy spectral density of the signals.
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Figure 3.6: Twitter Anomaly Detection finds significant deviations in signals containing
noise, short-term seasonality and long-term trend.

Yahoo! is another company which has recently “open sourced” a framework for
anomaly detection [LAF15]. It is named the Extensible Generic Anomaly Detection
System (EGADS). Subscribing to the view that there is no “silver bullet” approach,
it contains a suite of anomaly-detection techniques in a single package. The overall
architecture consists of two primary components: the time-series modeling module
(TMM) and the anomaly-detection module (ADM). The TMM predicts expected future
values of a given time series. These predictions are consumed by the ADM, which in
turn computes anomaly scores.

The recent statistical literature contains further approaches. The eDiv approach
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presented in [MJ14] finds segments in time-series data, the boundaries of which represent
change points. To this end it employs a binary bisection method and a permutation test.
eDiv is primarily an offline method: its computational complexity is in O(kn2), where k
is the number of estimated change points and n the number of observations. From the
same work we find eAgglo, the bottom-up variant of eDiv, and another probabilistic
pruning method cp3o. These techniques likewise have quadratic run-time complexity in
n. The work presented in [Rig10] considers the same problem and presents the technique
pDPA. pDPA is able to find the solution that globally minimizes the sum of the quadratic
losses in each segment. pDPA likewise has a worst-case quadratic run-time in n.

3.5.2 Specialized Techniques for Social Media

Motivated by large-scale applications like Twitter and Facebook, the data-mining com-
munity has recently been focusing on the task of detecting “events” or “topics” in social
media. In [Rit+11; Rit+12] the algorithm TwiCal is presented. TwiCal exploits part-of-
speech tagging, named entity recognition, temporal expression resolution (e.g. “next
Friday”), event-tagging and event classification in order to generate an open-domain
calendar of significant events (see Figure 3.7). In [HTK15] we find an approach that
is more focused on the real-time detection of topics in Twitter (as opposed to trying to
generate a calendar) in the presence of noise. To handle the high bandwidth of Twitter
(Challenge 2), the authors reformulate the Non-negative Matrix Factorization problem
in a stochastic manner. The reformulation enables the use of stochastic gradient descent
updates in linear time with respect to the number of non-zero entries in the matrix.
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Figure 3.7: Partial screenshot of the Twitter Status Calendar (statuscalendar.com) – a
demonstration of the system described in [Rit+11; Rit+12].
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This thesis is based on the research and development of practical methods for exploratory,
unsupervised data mining. Research questions were initially spawned based on the
community-identified challenges enumerated in Section 1.3. Given a research question,
literature was reviewed, existing algorithms were collected and example data sets
were synthetically generated or harvested from various sources. Given these resources,
an iterative phase of method- and algorithm-design was performed to identify and
overcome the limitations of existing approaches to the problems in question. Our
work did not focus on individual data sets alone, nor a hypothesis for explaining a
phenomenon in a particular application domain. The following sections discuss the
elements of our research approach in more detail.

4.1 Literature Reviews

Particularly in the accelerating field of data-mining research, it is important to frequently
review the literature for a given research question or problem. As with all research, our
contributions build on those of others. We adopted the following strategies during our
literature reviews:

• Perhaps our primary sources of literature were the proceedings of the premier
conferences in the field. These conferences are 1) ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2) IEEE International Conference on
Data Mining, and 3) SIAM Data Mining. Proceedings are published annually,
with articles indexed by topic-area (e.g. cluster analysis). These three established
conferences are highly-selective and tend to attract the greatest attention and
highest-impact contributions from data-mining researchers and practitioners (more
so than any data-mining journal, for example).

• “Bottom-up” search was performed by seeking concrete implementations of algo-
rithms for the given research question in established data-mining software systems.
These systems included 1) the Environment for Developing KDD-Applications
Supported by Index-Structures (ELKI) [AKZ08], 2) the Waikato Environment for
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Knowledge Analysis (Weka) [Hal+09], and 3) the Comprehensive R Archive Net-
work (CRAN) [Hor12]. Given a software implementation, the source-code or
documentation was consulted to extract the relevant publication(s).

• “Top-down” search was performed by seeking survey articles for a given research
question or problem definition.

• Established researchers in the field were contacted, who often recommended
related work. These researchers are listed in Table 4.3 and also in the acknowledg-
ments section of this thesis.

In all cases, identified articles were additionally used as a starting point for backwards
search (analyzing the references of each publication in a recursive manner). Taken
together, these strategies yielded a representation of the state-of-the-art with respect to a
given research question.

4.2 Idea Synthesis, Problems Definitions and Algorithm Design

Having performed literature reviews for a given research question, we began a creative
process of idea-generation and brainstorming in an attempt to address the weaknesses
of the state-of-the-art. Early in this process, we would typically generate and focus on a
“running-example” or “illustrative” problem that highlighted these weaknesses (we make
use of such examples in our publications). This exercise helped to remove irrelevant
complexity, assisted in refining the problem definition, and served as a springboard
for spawning algorithmic ideas for overcoming the weaknesses. In line with our thesis
goals, we only pursued ideas that led to linear-time algorithmic behavior. Finally, before
investing time in writing a software implementation, we manually tested the idea on
small (“toy”) datasets, and performed a further literature review to determine if a peer
had already proposed such an algorithm for the given problem.

4.3 Software Prototypes

Our research made extensive use of software prototypes for the practical implementation
of the algorithms presented. Considering that all the problems we investigated cannot be
solved optimally in general, a practical implementation gave insight into the performance
(both in terms of effectiveness and efficiency) of a proposed heuristic on non-trivial
problem instances. Unsurprisingly, researching in this way was often iterative: The
implementation was driven by changes to the algorithm, which in turn was driven by
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investigations into the implementation’s performance. Finally, a prototype helped to
confirm theoretically-calculated approximation bounds for an algorithm.

The software prototypes developed for this dissertation made use of a variety of
programming languages and paradigms. All development work was done on a Linux
Ubuntu system. For the initial stages of algorithm development we often selected R, a
high-level interpreted programming language and statistical computing environment
for rapidly prototyping data-mining ideas [Tip+15]. Java, an object-oriented compiled
language, was used for an implementation in Paper C. For Java programming we used
the IntelliJ IDEA integrated development environment (IDE). For Papers A, B and C,
further implementations were written in C++ in order to optimize performance. For
C++ programming we used the NetBeans IDE. All software prototypes are included in
the code repositories referenced from each paper.

4.4 Data Sources

We empirically evaluated our proposed methods on both synthetic and real-world
data. Synthetic data was created by building data-generation tools that implemented a
generative model. In each case, the generative model was designed to accept a number
of parameters. These parameters controlled the properties of the generated problem
instance, like the size, ground-truth model order, the density of the patterns, and the
amount of noise. The data-generation tools were intentionally non-deterministic, allow-
ing multiple data sets to be generated at random for the same parameter combination. A
simple random sample of several such data sets (typically 20) was then used to evaluate
each algorithm in focus (more details in Section 4.6.2). We note that all data-generation
tools were made available alongside our algorithm implementation in publicly-accessible
repositories linked directly from footnotes in each paper.

For our real-world experiments, we used data from various sources. Some of this data
was from “benchmark” repositories for machine-learning and data-mining. Table 4.1
shows the data sets used from these repositories. In other cases, we harvested data using
the application programming interfaces (APIs) provided by online services. These data
sets were subsequently published (with permission) in the respective source repositories
(supplementary material) in each case. Table 4.2 gives a description for each of these
sources and provides remarks on the data-collection approach.

41



4 Research Approach

Repository and Data Sets Relevant Papers
UCI Machine Learning Repository (archive.ics.uci.edu)

Breast Cancer, Congressional Voting Records, Dermatology,
Hayes-Roth, Image Segmentation, Lenses, Lymphography, Pen-
Based Recognition of Handwritten Digits, Promoter Gene Se-
quences, Seeds, Soybean, SPECT Heart, Tic-tac-toe, Trains, 3D
Road Network (North Jutland, Denmark)

A,B,D

Rdatasets (github.com/vincentarelbundock/Rdatasets)

Whiteside (MASS), OldMaps (HistData), Coalition2 (Zelig), Motor
(Boot), Prestige (Car)

D

Personality Tests (personality-testing.info/_rawdata/)

Relationships, Feminism, Assertiveness, Personality 1, Occupa-
tion, Humor Styles, Mindfulness, Masculinity/Feminism, Person-
ality 2, Sexual Self

C

Pew Research Center (pewforum.org)

Tolerance and Tension: Islam and Christianity in Sub-Saharan
Africa

A,B

Table 4.1: Existing real-world data sourced from public repositories

API/Remarks Relevant Papers
Stack Overflow (api.stackexchange.com)

Sourced were 1.02× 106 answers and their corresponding ques-
tions between the dates 2010-01-01 and 2012-12-31. The data
set consists of 340 × 103 answers to the most “useful” ques-
tions, 340× 103 answers to the most “non-useful” questions, and
340× 103 answers to questions where the usefulness is “unknown”
(zero votes).

A,B

Internet Movie Database (imdb.com/interfaces)

Sourced were 14690 films, each having genre flags, rating in-
formation and filming locations in the form of raw text strings.
The data-collection process explicitly excluded titles with the text
“TV”. The shooting locations ontology was generated using the
Google Places API (developers.google.com/places).

C
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Yummly (developer.yummly.com)

Sourced were the 296 recipes returned from an API-search for
main-course recipes of American cuisine and tagged with the
holiday summer. As the official Yummly ingredients ontology is
proprietary, we constructed an ontology by hand based on the
tractable number (693) of unique ingredients in these 296 recipes.

C

Twitter (dev.twitter.com/rest/public)

Sourced were 1) 14698 randomly-sampled Twitter user profiles
and their five count-based metrics (follower count, status count
etc.), 2) the 7701 tweets made against the hashtag #FathersDay
between June 5, 2016 and June 20, 2016, 3) the 10901 tweets made
against the hashtag #PokemonGO between July 13, 2016 and July
17, 2016.

E

Wikipedia (mediawiki.org/wiki/API:Recent_changes_stream)

Sourced were n > 2 million edits to Wikipedia pages streamed
through stream.wikimedia.org (namespace “/rc”) between July
6, 2016 and July 11, 2016. 404,365 of these edits were tagged as
non-bot edits.

E

GitHub (developer.github.com/v3/)

Sourced were 100,999 repositories created between January 1 2008
and December 31 2015 with their attributes full_name, stargaz-
ers_count and forks_count.

E

YouTube (developers.google.com/youtube/v3/)

Sourced were 138,529 videos with region code “US”, type “video”,
video type “movie” and published between January 1 2012 and
December 31 2016.

E

Table 4.2: Real-world data sourced from public Application Programming Interfaces.

4.5 Comparison Techniques

The broad data-mining tasks of finding associations, clustering objects and detecting anoma-
lies have seen a large number of publications (Figure 1.2). Many of these publications
present novel data-mining methods and detail a corresponding new algorithm. There
are hence many hundreds, if not thousands, of published data-mining algorithms in
existence.

To appropriately select comparison techniques for each of our proposed algorithms,
we began by clearly defining the problem and/or the kind of data sets in focus. In the
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case of FasTer and Finesse, we found comparable techniques in Asso, Asso
mv, PaNDa,

PaNDa+ and GreEss. That is, each searches for k patterns from discrete data that are
mixed using non-linear operations (for Asso, Asso

mv, PaNDa and PaNDa+ the mixing
semantics are Boolean; for GreEss they are ordinal). In the case of SkinnyDip we found
only a single implementation of an algorithm focused on the high-clutter case [DR98],
so we therefore extended our search to include six parameter-free clustering algorithms
from different paradigms (SkinnyDip is likewise parameter-free, so we argued that this
was a sensible property on which to base the selection of comparison techniques). Finally,
in the case of BenFound, we selected ten techniques (classical benchmark techniques
in addition to state-of-the-art approaches) for numerical anomaly-detection, and a set
of state-of-the-art techniques specifically for Twitter-based topic- and event-detection.
The majority of the selected techniques were the result of work presented at one of
the premier data-mining conferences (Section 4.1). The techniques were primarily
identified through periodic reviews of the literature, however there were also instances
in which anonymous peer-reviewers suggested comparison techniques (this was the
case for PaNDa+ and Mclust-EM). We additionally thank Pauli Miettinen for making
the technique GreEss known to us.

We did not implement the comparison techniques ourselves, but rather obtained
existing implementations from the original author or from publicly-accessible reposi-
tories. Table 4.3 shows the source for each algorithm implementation that we used in
comparing to our work. We implemented “wrapper” scripts where necessary in order
to integrate each comparison technique into our experimental testbed.

A subset of the comparison techniques were “parameter-free” in the sense that the
only required input was the data set. The remaining techniques had hard parameter re-
quirements. To be fair on the competition, we provided correct values for the parameters
in each of these cases. For example, we provided the correct number k = 6 of clusters to
the EM algorithm when evaluating it on our “running example” data in Paper D. In the
cases where the correct value of a parameter was uncertain (“obscure” parameter), we
varied the parameter over a generous range and executed the technique once for each.
The concrete cases of this were: DBSCAN (Paper D, ε parameter) and Asso/Asso

mv

(Papers A, B and C, τ parameter). We subsequently reported the best result from the
obtained set.

4.6 Experiments

The evaluation of our proposed methods was primarily empirical. In this section we
discuss a number of aspects of the approach taken when performing these experiments.
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4.6.1 Evaluation Metrics

In Papers A, B and C we adopted the evaluation metric established by the original
work on Boolean and Ordinal Matrix Factorization [Mie09; BK13]. This metric can be
considered to be a “residual”. It is the difference, or “error”, between the original data
matrix and the reconstruction. It is measured as the sum of the entry-wise contrasts
(in the Boolean case it is simply the sum of false positives and false negatives in the
reconstruction, i.e. Equation (3.2)).

In Paper D we required a metric to compare a computed clustering result against
the corresponding set of “ground-truth” cluster labels. We selected Adjusted Mutual
Information (AMIMAX) [VEB09], a state-of-the-art metric that is calculated based on
the information-theoretic measures of entropy and mutual information. Although this
metric is accepted by the data-mining community, a similar metric known as Normalized
Mutual Information (NMI) [Yao03] is likewise used and considered acceptable. For this
reason, we additionally presented a subset of our results using the NMI metric (more
information in Section 5.1.2).

In Paper E, the results of the real-world experiments on Twitter and Wikipedia data
were qualitatively evaluated using supplementary data. In the case of the #FathersDay
and #PokemonGO hashtags, we investigated the text of the corresponding tweets. In
the case of Wikipedia, we investigated the corresponding editor comments. For the
synthetic experiments the evaluation metric was binary: Whether the synthetic process
was generating Benford or non-Benford data at a given time.

4.6.2 Controlled Experiments

The controlled experiments in Papers A,B,C and D all follow a similar approach. Firstly,
a set of default generative-model parameters was selected for generating synthetic data
sets. The selection of the default parameters was discussed and justified in each case.
Given these default parameters, we systematically performed experiments by varying
each parameter individually over a range (keeping the other parameters fixed). This
approach of designing and implementing a generative model, based on which systematic
experiments are performed, is commonly used in the data-mining research community
(e.g. [MV14; YM12; Mie09; Mie+08]). We note that it was not tractable to run experiments
for every combination of generative-model parameters (indeed, many parameters were
continuous real numbers with theoretically-infinite variability).

For each algorithm under consideration, as well as each generative-model parameter
configuration, we generated 20 random data sets using our generative model tool.
Each of the 20 data sets were provided to the algorithm under consideration along
with any required algorithm parameters (discussed in Section 4.5). The algorithm was
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executed independently of all other experiments in each case. We collected 20 results
corresponding to the algorithm’s output on each data set. We evaluated each of the
20 results using the selected evaluation metric (Section 4.6.1), generating a set of 20
evaluation metric values. Finally, we calculated the mean and standard deviation for
this set of 20 evaluation metric values. The mean (first moment) and standard deviation
(positive square root of the second central moment) was then used for the plots in
the corresponding report. To reduce clutter, we note that we often omitted standard-
deviation bars for every second data point in a plot. An example of such a plot is seen
in Figure 5.5.

In the case of Paper B, we included for reference an indication of the statistical
significance of the difference between our results and that of the comparison. To this
end, we used the conservative Wilcoxon signed-rank test [Wil45] to assess whether a
significant difference existed between the mean evaluation-metric value for our proposed
method and that of a selected comparison technique. The Wilcoxon signed-rank test
is non-parametric (no assumption of normality is made). The resulting p-values for a
comparison between FasTer and Asso

mv were made available in Figure 7 of Paper B. In
all but two cases the results were significant at the α = 0.05 level. In the case of Paper E,
our controlled experiments were evaluated visually by comparing the times at which
BenFound and each comparison technique detected an anomaly or change-point.

4.6.3 Real-World Experiments

A suitable decomposition rank k needed to be selected in order to perform experiments
on the real-world data for Papers A and B. Not knowing the “ground truth” model
order, we used a heuristic approach. For the Stack Overflow data we ran FasTer for a
range of k values. We then selected k = 6 based on the “kink” in the error-k curve, and
used this value of k to compare to Asso and PaNDa. For the Africa and Congressional
Voting Records data we selected k based on the number of “classes” published in the
original data.

For Paper C the situation was similar. The decomposition ranks k = 6 and k = 9 were
selected for the Yummly and IMDB data based on the “kink” in the error-k curve (Figure
5.13). For the ten ordinal survey-research data sets, we repeated the experiments for both
k = 10 and k = 20. For Paper D we note that the data sets used were “classification-style”
data sets, that is, each object included a class label. We thus used the class labels as
the “ground truth” reference clustering result during the evaluation of each technique
(a common approach adopted by the clustering community). Finally, for BenFound

we selected a constant window size of w = 2000 for our real-world experiments on
Twitter data (based on a trade-off between maximizing statistical power and the ability
to promptly capture system dynamics). For the “red-flag” threshold α we selected the
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commonly-used value of 0.05.

4.6.4 Run-Time (Scalability) Experiments

For all run-time experiments presented, we consistently used the default generative-
model parameters and systematically varied only the scale of the problem (in terms of
the number of objects n, number of dimensions m and number of ground-truth patterns
k). We note that many of the resulting instances required a number of days to “solve”,
so it was not tractable to perform 20 repetitions of each experiment. The metric recorded
for each experiment was the algorithm’s response time in seconds. The run-time
experiments were all performed in isolated “jobs” on the compute cluster at Helmholtz
Zentrum München. The compute architecture is based on IBM x3650 M3 nodes, each
having two Intel Xeon X5690 6-core processors (3.46 GHz) and hyper-threading enabled,
giving 24 virtual cores in total. The serial experiments were performed on a single
virtual core. The experiments on parallelization in Papers B and C used up to 24 virtual
cores for strong- and weak-scaling scenarios.

4.7 Reproducibility

In the respective online repositories we provide detailed instructions for reproducing all
of our published results. Repository links are provided as footnotes in each publication.
All data sets that we sourced ourselves, or that are not publicly-available, are also
provided. In the case of Paper E, reproducibility is “built in” to the LATEX report
source itself using the Knitr approach [Xie15]. That is, compiling the report involves
dynamically generating the plots, figures and tables using embedded R code. We
advocate this transparent means of conducting research.
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Algorithm name Source Relevant Papers
Asso Pauli Miettinen

mpi-inf.mpg.de/~pmiettin/src/DBP-progs/
A,B,C

Asso
mv Pauli Miettinen (email request) A,B

GreEss Radim Belohlavek (email request) A,B,C
PaNDa/PaNDa+ Claudio Lucchese

hpc.isti.cnr.it/~claudio
A,B,C

NMF Jean-Philippe Brunet
portals.broadinstitute.org

A,B,C

MMMF Jason Rennie (email request) A,B
NMI (evaluation metric) Nguyen Xuan Vinh

sites.google.com/site/vinhnguyenx/publications
D

k-Means, Single Link, Com-
plete Link Clustering

R base package D

EM Clustering R EMCluster package D
Mclust-EM R Mclust package D
DBSCAN R dbscan package D
STSC L. Zelnik-Manor and P. Perona

vision.caltech.edu
D

DipMeans Argyris Kalogeratos
kalogeratos.com/psite/material/dip-means/

D

PgMeans Greg Hamerly (email request) D
RIC Christian Böhm (email request) D
Sync Junming Shao (email request) D
FOSSCLU Sebastian Goebl (email request) D
eAgglo, eDiv, cp3o R ecp package E
pDPA R cghseg package E
BinSeg R changepoint package E
Twitter Anomaly Detection Twitter

github.com/twitter/BreakoutDetection
E

Twitter Breakout Detection Twitter
github.com/twitter/AnomalyDetection

E

EGADS Yahoo!
https://github.com/yahoo/egads

E

Extreme Values R extremevalues package E
Twitter NLP Alan Ritter

github.com/aritter/twitter_nlp
E

Twitter Topic Detection
(Streaming NMF)

Kohei Hayashi (email request) E

Table 4.3: Sources for implementations of comparison algorithms
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5.1 Summary of Findings

In the following two subsections we discuss our results from two viewpoints. First and
foremost, we consider our overall results with respect to the challenges and goals that
were laid out in Sections 1.3 and 1.4. Secondly, as some of the publications on which
this dissertation is based were space-constrained to an extent, we elaborate for the sake
of completeness on each publication’s results and arguments separately.

5.1.1 Reflecting on our Challenges and Goals

The goals of this thesis were driven by the community-identified “top challenges” in
data mining [YW06] (Sections 1.3 and 1.4). In following sub-sections we reflect on how
we have addressed these challenges and goals through our work.

Challenge 1: Developing a Unified Theory of Data Mining

The first challenge was related to the arguably “ad-hoc” nature of data mining. Although
conceding that the development of a unified theory of unsupervised, exploratory data
mining would be difficult, we embraced the elements of what such a direction would
entail with the motto induce, deduce and reduce. Our first goal in this thesis was thus to
contribute to the induction of general frameworks, contribute to the deduction of further
useful applications, contribute to the reduction of the number of assumptions made
in data-mining approaches, and contribute to the reduction in the need for obscure
parameters.

We have shown how this goal can be met for a practical set of unsupervised, ex-
ploratory data-mining tasks. Specifically, the induction of a general framework was
successfully completed through the culmination of papers Papers A, B and C. The
framework is named MDFS, and generalizes the problems of Boolean Matrix Factor-
ization, Ternary Matrix Factorization and Ordinal Matrix Factorization. Each of these
specialized problems is provably reducible to an instance of MDFS, and its algorithm
Finesse was shown to outperform state-of-the-art techniques on many instances of the
special cases in terms of both effectiveness and efficiency. Based on the general MDFS
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framework, we deduced additional applications of practical use (in particular, a feature
based on tree objects or “itemsets over an ontology”).

The reduction of commonly-made assumptions in data-mining approaches was demon-
strated in Papers D and E. Specifically, the assumption that a multivariate distance
measure is required when clustering vector data was questioned by our contribution
SkinnyDip. SkinnyDip is a unique approach to clustering that exploits the dip test of
unimodality on systematically-selected univariate projections of the data set, thereby not
requiring a multivariate distance measure for clustering objects in a multidimensional
vector space. Furthermore, the assumption that anomaly-detection techniques require
the absolute values of the sample as an input was questioned by BenFound, which
showed that anomalous behavior can be detected with just leading-digit (or mantissa)
information.

Finally, a reduction in the need for “obscure” parameters was demonstrated by all of
our methods. The FasTer and Finesse algorithms require the parameter k, however do
not require a threshold for association confidence as it is used by Asso. The SkinnyDip

algorithm requires a threshold α for statistical significance, however requires neither
the number k of clusters, nor a density threshold, nor a strict assumption about the
form of the clusters. The BenFound algorithm for anomaly-detection in time-series
data requires a window-width w and threshold for statistical significance α, however
requires no parameterized model from which the measurements are assumed to be taken
(the Benford distribution involves no parameters).

Challenge 2: Scaling Up for High-Dimensional Data and High-Speed Data Streams

The second challenge was related to the curse of dimensionality, and additionally to the
need for efficient and scalable algorithms. We subscribed to a set of “guiding principles”
to address this challenge. Based on these guiding principles, our second goal in this
thesis was to 1) consider mitigations for the curse of dimensionality in our work, 2)
strive for algorithms that have a practically linear run-time complexity in the size of the
data, and 3) use algorithmic paradigms that lend themselves well to parallelization.

Again we showed how this goal can be met for unsupervised, exploratory data-mining
tasks. Specifically, we presented with SkinnyDip and SparseDip a novel mitigation
for the curse of dimensionality in the context of clustering vector data. SparseDip

searches for a subspace with coordinate directions that are maximally multimodal,
which we argued to be a sensible choice from a clustering perspective. In this way, we
are able to focus the actual SkinnyDip clustering on a low-dimensional view of the data,
and help to mitigate the various negative effects otherwise faced when clustering in
high-dimensional spaces (see Section 1.3.2).

The aim of developing linear-time algorithms was met in all of our work. FasTer,
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Finesse, SkinnyDip and BenFound each have a linear run-time complexity in the size
of the input data (in the case of BenFound the input is the set of measurements made
in one time window).

Finally, the ability to parallelize was demonstrated with our TMF algorithm FasTer

and our MDFS algorithm Finesse. We showed that we can achieve near-ideal speedup
in weak- and strong-scaling scenarios up to 10 processors.

Challenge 3: Mining Time Series Data

The third challenge was related to the extraction of knowledge from temporal data
with trends, seasonality and noise. Our third goal in this thesis was thus to develop
approaches that could be deployed in real-time for high-bandwidth time-series data. More
precisely, we posed the question of whether or not it was possible to define an anomaly-
detection approach that focused, in a non-parametric way, on what is “(un)natural”.

Again we showed how this goal can be met with a novel contribution. Specifically,
we presented with BenFound an online, linear-time algorithm for detecting significant
deviations from the “natural” state of a system. We identified in Benford’s Law an
intriguing notion for measuring the “authenticity” of signals from many application
domains. By monitoring the conformity of the measured signal to the law, BenFound

can hence raise a red flag when the signal deviates significantly in an “unnatural” way.

Challenge 4: Mining Complex Knowledge from Complex Data

The final challenge was related to “complex” data in the form of high noise, and
heterogeneous features measured over fundamentally different scales. The final goal of
our thesis was thus to advance the data-mining state-of-the-art by extracting interpretable
knowledge from such complex data sets.

Again we showed how this goal can be met for unsupervised, exploratory data-mining
tasks. Specifically, we presented with the Matrix Factorizations over Discrete Finite Sets
(MDFS) framework an approach which supports interpretable Blind-Source Separation
for data with features measured over heterogeneous scales. We showed how complex
knowledge can be extracted using this framework and its linear-time algorithm Finesse.

The aim of remaining robust to noise was well-met through our contributions. We
presented systematic experiments for FasTer, Finesse and SkinnyDip in which the
amount of noise was varied over a non-trivial range. In each case, our empirical
evaluation showed that our algorithms stand up well to the state-of-the-art with respect
to varying levels of noise. SkinnyDip, in particular, was shown to be highly robust to
noise. It is able to extract meaningful clusters in scenarios where the overwhelming
majority (e.g. 80%) of data points belong to a global “clutter” distribution.
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5.1.2 Elaboration on the Specific Results from Papers A to E

In following sub-sections we summarize and elaborate on the results of Paper A to
Paper E separately.

Paper A: Ternary Matrix Factorization

TMF Shown to be Widely Applicable: We argued that measurements made on the
nominal scale of ternary logic are often found in information systems. We listed three
practical applications in our work. The first practical application corresponds to Boolean
data with missing (lost or indeterminable) values, which we termed the Missing Value
Boolean Matrix Factorization problem (MVBMF). Approaching this problem using TMF
can help to serve two purposes: 1) finding latent descriptive patterns in the data, and 2)
imputing the missing values (“filling in the blanks”).

Missing values may arise in various ways [VS08]. The Missing Completely at Random
(MCAR) case that we considered can be found when data collection is done improperly,
mistakes are made in data entry, or data is damaged or corrupted.

A concrete example of TMF’s application to MVBMF problems is found in an indepen-
dent study by Phillips Research Europe and the University of Technology in Eindhoven
[Vav+]. The authors referenced our work, investigating the TMF problem (as published
in this paper) in the context of organizational Role-Based Access Control (RBAC) with
missing values. In this context, “roles” need to be mined to help organizations that
want to migrate to RBAC from low-level permission-based access systems. The full
permissions database is seldom available directly [Vav+], so the set of permissions
assigned to users is often obtained by analyzing the system actions they perform. These
logs are typically incomplete, hence MVBMF. Importantly, it is typical that a user can
take on multiple roles, hence the RBAC problem is best treated with logical mixing
semantics (TMF) rather than the classical linear mixing semantics used by techniques
from linear algebra. We discuss this study further in Section 5.3.

The second practical application of TMF relates to data in which the logical proposi-
tion of unknown has a meaning other than “missing”. In Paper A we identified two such
cases with wide applicability: explicit Don’t Know responses in questionnaires [Poe+88;
FB75], and null values in application databases [Zan82; Bis81].

TMF Shown to Subsume BMF: The third practical application of TMF relates to the
fact that TMF subsumes BMF. Each instance of BMF consists of a data matrix D ∈ Bn×m

and a positive integer k. An instance of our introduced TMF problem consists of a data
matrix D ∈ T n×m and a positive integer k. We presented the reduction from BMF to
TMF considering that 1) B ⊂ T , 2) the truth table for ternary logic subsumes that of
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Boolean logic, and 3) the set of possible TMF factor matrices is a superset of all possible
BMF factor matrices. We showed therefore that the applications of TMF implicitly
include all the applications of BMF (e.g. the students-courses example from Section 3.1,
or the Role-Based Access Control problem without missing values [KSS03]).

FasTer Introduced to Solve TMF: We presented FasTer, a heuristic-based algorithm
for approximating the solution to instances of the TMF problem in O(k2nm) time. At
a high level the approach taken by FasTer is a “leapfrog” one: it solves first for U
whilst keeping B fixed, then solves for B whilst keeping U fixed. This process is iterated
so long as the error continues to reduce. Termination is guaranteed because the TMF
objective function only has a finite number of possible values.

FasTer is non-deterministic because it begins with a stochastic initialization of B. That
is, a single row vector from D is selected at random to form the first basis vector in
B, after which k− 1 of the most “diverse” observations with respect to it are selected
from D for the remaining initial basis patterns in B. We noted that rigorous arguments
supporting this kind of initialization approach are given in [ÇM09; BMD09; TKB12].

We presented the pseudocode for FasTer and made an optimized, documented C++
implementation available for download and re-use. The implementation has been suc-
cessfully used in one independent study to date [Vav+].

FasTer Shown to be More Effective than the State-Of-The-Art: Our empirical analysis
of FasTer involved comparing it to the state-of-the-art algorithms for discrete matrix
factorizations (Asso, Asso

mv, PaNDa and GreEss) on TMF, BMF and MVBMF problems.
For reference, we also compared to the linear-algebra (“real-valued”) techniques Singular
Value Decomposition, Non-negative Matrix Factorization and Maximum-Margin Matrix
Factorization (MMMF, see Section 3.2.2). Our generative model included parameters that
enabled us to systematically vary the number of “ground truth” source patterns k, their
density (ρt and ρu), the density α of the matrix U the percentage η of randomly-injected
noise. Inspired by the original work on BMF [Mie09], we selected sensible defaults for
each of these parameters.

The results showed that FasTer outperformed Asso, Asso
mv, PaNDa and GreEss

nearly consistently on these data. In the case of TMF, the quantitative improvement
that FasTer offered over Asso and PaNDa was substantial. One reason for this is that
Asso and PaNDa cannot directly solve TMF problems. That is, to compare to Asso

and PaNDa, we first needed to encode the ternary data matrix into binary format. To
achieve this, we mapped each ternary value to a binary triple: f 7→ (0, 0, 1), u 7→ (0, 1, 0),
t 7→ (1, 0, 0), thereby tripling the matrix dimension m. Although at first seeming to be a
sensible choice, this encoding is in fact unfair to both Asso and PaNDa. Specifically, it
results in non-equivalence between the BMF and TMF optimization goals (see Paper B).
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The TMF empirical analysis in Paper A therefore evaluated Asso and PaNDa using an
objective function that was different to the one that Asso and PaNDa believed they were
solving. A fair encoding was later detailed in papers Papers B and C. The experiments
in Papers B and C in turn made use of this fair encoding (the results still showed that
FasTer is superior on such data).

In the case of MVBMF, we observed that FasTer consistently outperformed Asso
mv

on data sets with up to 99% missing values. Like Asso, the Asso
mv variant responds

negatively to an increase in the density ρt of the “ground truth” basis patterns. As
is generally the case, all algorithms produced poorer-quality results for an increasing
decomposition rank k. Informally, the decompositions clearly become “more difficult”
for increasing k. More formally, we see that the approximation factor increases with
respect to k for the greedy algorithm that solves the ±PSC covering problem (see Section
3.2.1, noting that FasTer solves similar problems in a greedy way during each of its
iterations).

In the case of BMF, we observed that Asso is the closest competitor and produced
FasTer-similar results for varying “rank” k, noise η and usage-matrix density λ. Asso

and PaNDa, however, both yielded poorer results when the density of the “ground
truth” patterns increased, whereas FasTer remained relatively stable in this respect. In
the case of Asso, the reason for this sub-optimal behavior is given in [Mie+08, p. 1354]:
“If for all i so that bpi = 1 there is q so that also bqi = 1, then we cannot find row bp·
from A”. In our context, as we increased the density of the “ground truth” patterns, the
probability of basis vectors sharing t values for any given column increased. The Asso

heuristic, based on computing the association confidences between columns (Section
3.2), is less effective in such cases.

The real-valued techniques SVD and NMF consistently outperformed all discrete
techniques on the BMF problems with respect to the objective function (Equation (3.2)).
This was expected, and echoes the results seen in [Mie09]. Even though SVD and NMF
use the arithmetic mixing operators (normal addition and multiplication), they have
a higher degree of freedom for selecting values in their factor matrices. In the case of
SVD, the algorithm can also solve optimally with respect to its objective function. For
the MVBMF experiments, the results from the MMMF method painted a similar picture:
MMMF is likewise based on a real-valued decomposition and uses the classical matrix
product. Of course, SVD, NMF and MMMF are not a fair comparison in our context
because their factors have clear interpretation weaknesses in the context of the domain
(see Section 3.1). The error with respect to the objective function therefore fails to tell
the whole story.

To get a better idea of the whole story, we compared FasTer to Asso and PaNDa on
three real-world ternary data sets. In each case, FasTer outperformed Asso and PaNDa

in terms of the reproduction error. Additionally, we qualitatively analyzed FasTer’s
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results in the context of the domain, offering intuitive interpretations for the discovered
knowledge. Additionally, we quantitatively compared FasTer to Asso

mv on ten real-
world Boolean data sets (on which we injected up to 99% missing values). FasTer

consistently outperformed Asso
mv on these data.

Finally, we note that FasTer often outperformed NMF and SVD on the TMF problems.
In this case, two arbitrary schemes were selected to map the ternary values in the data
to real values for use with NMF and SVD. Clearly it is not possible to represent the
results of the ternary truth tables using classical arithmetic operations on these values,
so the results for both NMF and SVD can be attributed to their difficulties in trying to
separate the ternary sources by using linear mixing mechanisms only.

FasTer Shown to be more Efficient than the State-Of-The-Art: Our theoretical time-
complexity analysis of the FasTer algorithm showed that it has a worst-case run-time
complexity in O(nmk2). This result was based on the assumption that the number of
high-level “refine-and-alternate” iterations is independent of n, m and k. We verified
this assumption empirically. We also noted that the theoretical run-time dependency on
k would in fact have been cubic, had we not exploited bitwise operations to reduce a
critical calculation from O(k) to O(1) operations.

We executed experiments to compare the run-time of FasTer against the run-time
of Asso, PaNDa and GreEss. These experiments confirmed the run-time growth of
FasTer to be in O(nmk2). Both Asso and PaNDa have linear run-time complexity in
n, however have quadratic time complexity in m (in agreement with the respective
theoretical analyses). In summary, FasTer’s run-time grows linearly with the size of the
data; that of Asso and PaNDa is super-linear. GreEss is the most expensive (quadratic
growth in n, cubic growth in m). Finally, we presented results showing how the global
(user-supplied) randomization-round-count affects the quality of the results on problems
of varying size (n, m and k).

Paper B: Ternary Matrix Factorization: Problem Definitions and Algorithms

Approximation Factor Proven for TMF Sub-Problem Under Certain Conditions: A
primary contribution of Paper B was the investigation of the ±PSC problem in the
context of TMF. Specifically, we observed that the Ternary Usage Problem (TUP – the
problem that solves for each row of U during any given FasTer iteration when B is fixed)
exhibits similarities to the ±PSC problem. We posed the question: Can we reduce ±PSC
to TUP? If this could be shown to be possible, we could express each TUP problem as
a ±PSC problem and use the algorithm from [Mie08a] with a known approximation
factor (see Section 3.2.1).

We proved in this paper that the answer depends on the form of our contrast function
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�T , which in turn depends on how the semantics of the ternary logical propositions are
interpreted for a given application. For one concrete case, where the ternary propositions
are understood to be ordinal in nature (like a Likert item) and the proposition of u is
“between” f and t, the reduction succeeds. For the other common case, where the ternary
propositions are understood to be equally different from one another, we provided a
proof that a reduction is not possible (Theorem 3 in Paper B).

FasTer±PSC Introduced for Solving TMF: Based on the successful reduction from ±PSC
to TUP in one case, we introduced FasTer±PSC as a FasTer variant. Instead of the
original greedy heuristic, FasTer±PSC uses the ±PSC algorithm from [Mie08a] to solve
each TUP instance. The provable approximation factor suggested that the effectiveness
of FasTer±PSC would be greater than that of vanilla FasTer.

The use of the ±PSC algorithm, however, came at the cost of scalability. Specifically,
our theoretical analysis of the FasTer±PSC run-time showed that its worst-case run-
time is O(k2nm(m + k) log(m + k)), compared to the worst-case run-time complexity of
vanilla FasTer (O(k2nm)).

FasTer±PSC Shown to Outperform FasTer (Effectiveness) Under Certain Conditions:
We showed that FasTer±PSC can give very competitive results, significantly outperform-
ing vanilla FasTer, particularly for small-to-moderate values of k. For k = 12, 14, 16, for
example, the reconstruction error was very close to the error attributable to the noise.
Said differently, FasTer±PSC achieved near-optimal decompositions for the default pa-
rameter values.

Unfortunately, FasTer±PSC yielded to vanilla FasTer for large k and large ρt (the den-
sity of true values in the “ground-truth” basis matrix B). This behavior was attributed to
the use of the ±PSC algorithm, the approximation factor for which is known to grow
with both k and ρt (see Section 3.2.1).

Parallellizing FasTer Delivered Promising Speedup Results: Another primary con-
tribution of Paper B was the implementation of a parallel version of FasTer. Using
empirical evidence of “diminishing returns”, we first argued that the use of paralleliza-
tion for improving the TMF solution accuracy (through more initialization rounds) is
inefficient. We also found memory usage to be of secondary concern (the storage of the
problem data structures can exploit sparsity, and FasTer requires neither floating-point
arithmetic nor Asso-style large intermediate storage). It was thus decided to exploit
the shared-memory, multiprocessor programming OpenMP [Boa08] API and focus on
strong- and weak-scaling scenarios.

After identifying the elements of FasTer that were good candidates for parallelization,
we discussed the advantages and disadvantages of the various scheduling strategies
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static, dynamic and guided. We presented speedup and efficiency results in strong-
and weak-scaling scenarios. To this end, both the processor (virtual core) count and
scheduling strategy were varied. Speedup and efficiency was shown to be near-ideal
for up to approximately eight processors. At 22 processors the speedup reached a
maximum of approximately 13. Overall, we did not witness a large variation in the
speedup and efficiency between the scheduling strategies. We did, however, witness
super-linear speedup for one case of static scheduling. This result was not particularly
surprising – we subsequently clarified the low-level cache-based mechanisms that can
lead to such an effect when static scheduling is in place.

Paper C: Factorizing Complex Discrete Data “with Finesse”

BMF, TMF, OMF and Beyond (MDFS as a Unifying Framework): Perhaps the primary
contribution of Paper C was the development of a general matrix factorization problem
that subsumes BMF, TMF and OMF, and provides a formal structure for additional
decompositions of this type (helping to address Challenge 1).

After reviewing the problem definitions of BMF, TMF and OMF, we highlighted their
similarities and began pursuing a generalization. One question in particular remained
a hurdle: what should be the structure and purpose of the usage matrix? At this stage
it is warranted to explain the intuition behind our eventual decision to recommend a
Boolean usage matrix for the general case.

In Figure 3.2 (Section 3.1) the interpretation of the BMF usage matrix is clear – a row
indicates which basis patterns are “mixed” (disjunction) to explain the corresponding
data-set observation. The OMF example from Figure 3.3 is also readily understood – the
largest scale value ( ) is the indicator value in this case.

In the seminal OMF article [BK13] it is implicitly argued that the OMF usage matrix
(like that in Figure 3.3) should not restrict entries to the two extremes (in a binary
fashion), but rather allow values from the full ordinal scale. The OMF multiplication
operator ⊗L is used to this end. For completeness we intended to support this kind of
relaxation in our generalization, however it is worthwhile to briefly discuss it here from
an interpretability perspective.

Consider a synthetic data set over the five-element ordinal scale . Such a
scale could correspond to the format of a typical Likert item in a questionnaire (e.g.
= strongly disagree, = disagree, = neutral, = agree, = strongly agree).
For illustrative purposes we assume the data set has n observations and four attributes.
The four elements in a row represent a respondent’s answers to four Likert items. We
assume that the data set has an exact OMF decomposition of rank k = 3. The ordinal
usage row vectors u1·, . . . , un· contain entries from the same five-element ordinal scale
and prescribe the recipe for “mixing” the ordinal basis row vectors b1·, b2· and b3· to
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form each data set observation d1·, . . . , dn·:

d1· 1/4 1/4 2/4 3/4
...

dn· 0 0 0 0

=

u1· 1 3/4 1/4
...

un· 1/4 2/4 3/4

�
b1·0 1/4 2/4 3/4
b2·2/4 1/4 2/4 0
b3·1/4 0 1/4 1/4

Our focus here is the last data observation: how does the decomposition explain dn·?
From the last usage vector un· we see it explained by “a lower agreement with b1· mixed
with a moderate agreement with b2· and mixed with a higher agreement with b3·”. Based
on the multiplication operator suggested in [BK13], specifically Łukasiewicz’s strong
conjunction connective (a⊗ b) = max( , a + b− ), we mathematically understand
the “strongly disagree” result (dn· = ).

Although we stress that this is a pathological example, it does raise the question of
whether or not this interplay of two non-linear operations (one for “mixing” and one
for “weighting”) is perhaps too esoteric or unintuitive for practitioners to grasp. In
this work we hence focused primarily on the OMF variant which restricts the usage
matrix entries to be binary. The ternary case (TMF) also works along these lines:
the problem definition stipulates that the usage matrix should be binary, based on
the justification that “unknown” propositions in the usage matrix may be difficult to
comprehend (see Paper A). Finally, such a restriction also offered us a bonus: it enabled
us to handle heterogeneous data sets (Challenge 4), which is another key advantage
of our framework.

With all this in mind, the pieces were in place to introduce our framework, named
Matrix Factorizations over Discrete Finite Sets (MDFS). We presented the formal re-
quirements for the types of data that are supported by the framework. Specifically, a
feature is supported by our framework if it satisfies our definition of being a “mixable”
feature. A “mixable” feature must be one that is measured over a finite set of values
and one that admits a particular algebraic structure. This algebraic structure must have
a binary, closed “mixing” operator (the analog to arithmetical addition) and a contrast
function for measuring (dis)similarity between members of the set. Finally, each feature
must include an indicator for whether or not it supports an analog to multiplication (e.g.
Boolean conjunction), provide that binary function if so, and also provide a mechanism
for generating new candidate values during the search for patterns (in the trivial case
this could enumerate all items of the corresponding set).

Additional Features Deduced for the MDFS Framework: MDFS is a unifying frame-
work for Blind-Source Separation on “mixable” discrete data. Compared to BSS tech-
niques from linear algebra, MDFS uses factorizations employing a specialized matrix
product that respects the “mixing” semantics of each data type. MDFS subsumes BMF,
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TMF and OMF, which each use a specialized matrix product for their respective target
data types.

Having induced a general framework, we were then able to ask the question: Can
we deduce further data types that satisfy our requirements for a “mixable” set? A further
contribution from this paper was the investigation of a new feature type that lends
itself well to this kind of decomposition. The feature could be called “itemsets over an
ontology”, or simply a “tree” feature.

We find such features in many modern-day information systems. In our paper we
presented the real-world example of recipe data from yummly.com. For any given recipe,
Yummly measures information over various measurement scales. The “flavor” flags, for
example, are Boolean, and the “rating” measurement is an ordinal one. Additionally,
each recipe includes a set of ingredients, and these ingredients are nodes in Yummly’s
ingredients ontology (Figure 5.1). This is a concrete example of an “itemsets over an
ontology” or “tree” feature.

Ingredient

Vegetable

Bulb

Onion

Shallot Brown Scallion

Root

. . .

Meat

. . .

Dairy

Cheese

Hard

. . .

Brined

Feta Sirene Svecia

Butter

. . .

Cream

. . .

Figure 5.1: A basic culinary ingredients ontology. The bold sub-tree represents (the
recipe with) the ingredients list scallions, feta, sirene and butter.

By factorizing this heterogeneous data matrix using MDFS, we were able to expose
latent sources that led to useful information in the domain context. For example, the
basis matrix included associations of the form: “Recipes like pies and quiches that
include meat and dough products are often associated with a high rating and a long
preparation time”, or “recipes with chili are often associated with a piquant flavor”.

Finesse Introduced to Solve MDFS: We presented Finesse, a heuristic-based algorithm
for approximating the solution to instances of the MDFS problem in O(k2nm |Fl |2) time
(where Fl is the discrete feature set having the largest cardinality). At a high level the
algorithmic paradigm is similar to that taken by FasTer (“leapfrog” or “alternate and iter-
ate”). However, Finesse no longer dictates a strict data type and strict mixing semantics.
It handles features in an abstract way, enabling concrete extensions to additional data
types that support our formal requirements for a “mixable” set. It thus supports input
data sets with features measured over a variety of discrete measurements scales. To this
end, the relevant software interfaces can be implemented. Our publicly-available imple-
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mentation includes out-of-the-box support for Boolean, ternary, ordinal and tree features.

Finesse Shown to Find Intuitive Patterns on Large-Scale, Heterogeneous Data: In
addition to the aforementioned Yummly example, we further illustrate Finesse’s real-
world applicability, and in particular its scalability, through a novel investigation of
the popular imdb.com (Internet Movie Database) movie data here. In particular, we are
curious about film shooting locations, and ask how they associate with genres, ratings and
a technical widescreen attribute.

Whilst geographical places (suburbs, political states, countries and so on) are related
through a hierarchy, the IMDB data files only contain simple text strings for each film’s
shooting locations. The Shawshank Redemption (1994), for example, is listed as having
had one scene shot in St. Croix, U.S. Virgin Islands. To prepare the data for MDFS,
we used Google’s Places API1 for extracting the hierarchical geographical components
associated with these strings. We generated the 82646-node “filming locations ontology”
from this information. Note that one could argue that the requirement of an ontology is
a disadvantage of our technique, however it is also clear that many applications have
the ontology for their data ready-made (e.g. Yummly uses an ingredients ontology for
improving the user’s search experience on their website).

Each row vector in the IMDB data matrix represents a single movie over a num-
ber of features, the first being an ontology-itemset feature for the shooting locations.
Analogously to the aforementioned ingredients example, a matrix value in the first
column is a subtree of the 82646-node locations ontology (for example, the subtree
encapsulating various neighborhood shooting locations in Paris and New York). A
number of Boolean features follow, recording the presence or absence of genre tags like
“Action” and “Romance”. Rating information is next – here IMDB measures on a scale
of 1.0 to 10.0 with increments of 0.1, so this feature is ordinal with |L| = 91. Finally,
a ternary feature is used for the widescreen attribute as it contains missing (unknown)
values which we wish to impute. This heterogeneous data set (together with the filming
locations ontology) is in the public repository for reuse.

The repository also contains the results for 3 ≤ k ≤ 16. Figure 5.2 shows the rank-
nine (k = 9) decomposition, again selected for interpretation because it corresponds
to the “elbow” point on the error-k curve (Figure 5.13). This decomposition of the
n = 14690 titles2 for which rating, location and genre information was available required
approximately two hours running on a single virtual core (Intel Xeon X5690 3.46 GHz).
Despite the data set being larger than the Yummly example, the reconstruction error was
lower (6%) due to the relative sparsity of the genre features. This IMDB example also

1developers.google.com/places
2Titles including “(TV)” were explicitly excluded.
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illustrates that it is not uncommon to find large real-world ontologies (82646 nodes here)
where Finesse’s scalable approach is more tractable than the use of binary encoding and
a BMF technique (simple encoding here would give n ·m > 1× 109, making techniques
like Asso and PaNDa+ intractable for use).
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7.2/10

Figure 5.2: The basis matrix corresponding to the rank nine (k = 9) decomposition of
the IMDB data.

We offer a brief interpretation. The American motion-picture industry is unsurpris-
ingly very present, with movie shooting locations often found directly in Los Angeles
( ) as well as in California ( ) and nationally in general ( ). Movies like
Mob City (2013), having elements of crime, drama and mystery and shooting locations
in Los Angeles (b5·), have slightly better overall ratings than comedies like Fired Up!
(2009) from that area (b1·). These in turn are generally associated with better ratings
than action-drama films (b8·) like Blue Thunder (1983). Perhaps owing to its panoply of
geoclimatic regions, Canada and its cities (e.g. Vancouver ) are identified in b7· as
frequently being the set for action-adventure films like Journey to the Center of the Earth
(2008). The intuitive latent association of Buenos Aires ( ) with romance is visible in
b6·, mapped by the usage matrix to titles like Verónica: El rostro del amor (1982) and El
amor tiene cara de mujer (1964). Interestingly, widescreen films having shooting locations
in America and Europe ( ) frequently enjoy higher ratings (b3·). Earth Story (1998) is
such an example – this film was shot in widescreen but this information is not included
in the IMBD database (Finesse was able to impute it using the ternary feature). Of
course, many titles are explained by a mixture of patterns. Napoléon (2002), for example,
is an adventure-drama filmed in widescreen on the European and North-American
continents with a rating of 7.3. It is explained in the usage matrix by b2· ⊕ b3· ⊕ b9·.
Finally we note that the rating distribution is in line with the average film rating of 6.9
on IMDB.
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Finesse Shown to be More Effective Than the State-Of-The-Art: Our results showed
that Finesse outperforms the state-of-the-art techniques Asso, GreEss and PaNDa+
(note that PaNDa+ [LOP14] is an improvement over the PaNDa algorithm investigated
in Papers A and B) almost consistently.

Our first focus in this paper was on ordinal data sets, like those found in survey
research. Again we used a generative model inspired by real-world data. Specifically,
we harvested and analyzed the distribution of entries in ten studies with Likert items
(See Table 4.1). Analysis of these questionnaires showed that they had an approximately-
uniform distribution of response values, so we designed our generative model such
that the default parameters generated data matrices with an approximately uniform
distribution of response values.

Varying each parameter systematically, we found that Finesse outperformed both
Asso, GreEss and PaNDa+ in terms of reconstruction error. To compare to Asso and
PaNDa+, we encoded the ordinal data in Boolean form. We again used an encoding
scheme that ensured equivalence between the objective functions being solved by each
algorithm. GreEss was the only other technique that could work with an ordinal
data matrix directly, so no encoding was required. Unfortunately, however, it was
only tractable to compare to the computationally-intensive GreEss on small data (e.g.
n = m = 50).

Figure 5.3: GreEss achieves the optimal decomposition on this synthetic, no-noise ordi-
nal data. The basis matrix is shown below, and the usage matrix to the right.
It correctly identifies the three ground-truth patterns (k = 3).

Although GreEss yields near-optimal results for the case of zero noise (and thus
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outperformed Finesse), our results showed that its performance significantly degraded
as realistic levels of noise are added (it yields to Finesse at less than 10% noise). To
understand why, we consider the GreEss decomposition for a simplified ordinal data
set with η = 0% (no noise) in Figure 5.3.

We see from Figure 5.3 that the decomposition is exact. Without the need for a
parameter k, GreEss impressively finds the three latent patterns (bottom), various
mixtures of which (right) precisely reproduce each row in the data set. We now make
the problem more realistic by lightly “salting” our data matrix: one element from each
of the 42 non-zero columns is set to zero (less than 2% noise). GreEss’ decomposition
after this change is in Figure 5.4 (this time displayed canonically).

Figure 5.4: GreEss requires 24 basis vectors to exactly reconstruct this synthetic, noisy
data set.

We see from Figure 5.4 that GreEss now needs to generate 24 basis vectors to exactly
reconstruct the data set. The three ground-truth basis vectors found in the zero-noise
case (Figure 5.3) are now seen fragmented. The reason for this is that GreEss precisely
models the signal and the noise, using a from-below approach where over-coverage is
prohibited [BK13]. This practically means that small quantities of “salt” noise are
sufficient to cause the fragmentation of the true signal in the decomposition. Asso,
Finesse and PaNDa+ are more liberal in this respect, tolerating patterns which may
somewhat over- or under-cover the data in the hope of separating the signal from the
noise. Such examples show that this balanced approach, the basis of which is formulated
in the Positive-Negative Partial Set-Cover problem [Mie08a], is more appropriate for
realistic levels of noise.

We also compared Finesse to both Asso and PaNDa+ on the ten aforementioned
real-world survey data sets. Again, we were unable to compare to GreEss here due to
the size of the data. The “ground-truth” model-order k was not known for these data,
so we ran experiments for both k = 10, 20. In all cases (20 experiments in total), Finesse
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outperformed both Asso and PaNDa+.
Finally, we also repeated the BMF experiments with the new PaNDa+ algorithm.

Compared to the experiments in Papers A and B, these experiments used a different
generative model. Specifically, the default parameters generated a data matrix with an
equal distribution of Boolean f and t values. The results are shown in Figure 5.5. Finesse

outperformed both Asso and PaNDa+ in all cases.

Finesse More Efficient Than the State-Of-The-Art: The theoretical worst-case run-time
complexity of Finesse is linear in the size of the data, whereas Asso and PaNDa+ (like
PaNDa) are both quadratic in the number m of features. GreEss is yet more complex: its
run-time is quadratic in the number n of objects and cubic in the number m of features.
This result was confirmed in our practical experiments on run-time/scalability.

In addition to our Java version, we investigated two performance-optimizations for
Finesse. The first step was to rewrite the algorithm in C++ and utilize SSE4 intrinsics
(Streaming SIMD Extensions 4) for vectorization. Specifically, Finesse can exploit
bitwise AND, bitwise OR, bitwise XOR and POPCNT3. Recent advances in SIMD instruction
sets on general-purpose CPUs process up to 512 bits at a time in this fashion (e.g.
AVX-2 and AVX-512), significantly reducing Finesse’s absolute response time on a
single CPU. Our run-time experiments included “proof of concept” results for the SSE4
(128-bit) case, which showed that the absolute response time of the optimized C++
version was approximately 1

20 that of the Java version. This version outperformed the
PaNDa+ algorithm, which has likewise been optimized in C++. The second optimization
of Finesse – the use of OpenMP for parallelization of Finesse’s inner loops on ten
processors – yielded in a further speedup factor between 8 and 9 (analogous to the
results seen for FasTer parallelization in Paper B).

Paper D: Skinny-dip: Clustering in a Sea of Noise

Motivation: Data Sets with “Extreme” Clutter Expose Significant Limitations in Exist-
ing Clustering Paradigms: We considered as a case-study the synthetic two-dimensional
data set in Figure 5.6. 80% of the objects are sampled from a global, uniform “clutter”
distribution. In the figure, the raw data is accompanied by attempts to cluster it using
the popular Expectation-Maximization (EM), k-Means and Mclust-EM algorithms. The
quality of their results leaves much to be desired, particularly their treatment of the
global “clutter” or “noise”. EM and k-Means are examples of well-known concrete
algorithms in the partition-based clustering paradigm. In this paradigm, the separation
of large volumes of clutter is often not a fundamental consideration. Centroid-based

3“Population count” – efficient calculation of the number of 1s in a bit string.
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Figure 5.5: Boolean Matrix Factorization for synthetic data with varying data-generation
parameters k, λ, ρ and η.
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techniques often fail to consider noise whatsoever, dictating that each point be assigned
to its nearest centroid.
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Figure 5.6: Results from further clustering techniques on the “running example” data
in Paper D. MCLUST is the algorithm used in [DR98] (discussed in Section
3.4.1).

In Paper D we demonstrated analogous results using more specialized methods
from other clustering paradigms, like the density- and spectral-based DBSCAN and
Self-Tuning Spectral Clustering [ZP05] algorithms. In addition to our “running exam-
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5.1 Summary of Findings

ple”, we further motivated our work by showing real-world data sets which exhibit the
characteristics on which we focus: high clutter and heterogeneous cluster shapes.

Formal “Dip Test” Identified as a Useful Tool for Data Mining: Given the sub-optimal
results from existing clustering techniques on such data, we considered alternative
approaches to the problem. We investigated the intuitive notion that equates clusters
with the modes, or “modal regions”, of a multivariate distribution. Intuitively, this
concept was a strong fit: modes are generally invariant to globally-added “clutter”,
and can have a range of spatial extents. We noted that the idea of “hunting” for
the modes of a multivariate distribution had already been studied in the statistical
literature [BP09; Ooi12], however had received somewhat less attention in the data-
mining community. Specifically, “mode-hunting” clustering techniques had often been
based on computing non-parametric density estimates of the data using methods like
Kernel Density-Estimation (KDE) [Ros+56; Par62]. In [LRL07] it is explained that it
is computationally-expensive to perform clustering based on KDE (quadratic-time in
the data set size n) and that KDE additionally requires the tuning of a “bandwidth”
parameter.

In Hartigan’s dip test we identified existing statistical work that enabled the detection
of modal regions in a non-parametric, linear-time and parameter-free way. We thus
began our novel contributions by investigating the dip in the context of extracting
heterogeneous clusters in cluttered environments. The dip is a statistic that measures
the departure from unimodality of a given (univariate) empirical sample [HH85]. The dip
test is a statistical hypothesis test that uses the dip to address the null hypothesis “the
given data was sampled from a unimodal distribution”. In addition to helping reject
or accept this null hypothesis, the dip test yields a further piece of useful information
from its calculations, namely the interval corresponding to the most primary mode. We
observed that the test has a list of advantages that mirror much of what we wish to
see in a general clustering technique. These include 1) no strict assumptions about the
form of a “cluster” (i.e. non-parametric), 2) no required algorithm parameters, 3) highly
robust to global clutter and outliers, 4) deterministic, 5) shift- and scale-invariant, and 6)
linear run-time complexity in the size of the sample.

We also noted, however, that the test has two fundamental limitations: 1) it is applica-
ble to univariate samples only, and 2) it identifies only one (primary) modal interval.
Despite its limitations, we argued that its advantages make a dip-based clustering
approach worthwhile pursuing. The remainder of our contributions in this work were
based on overcoming these limitations to produce a general clustering technique.

UniDip Introduced to Clutter Univariate Data: We took the first step in the direction
of our goal by introducing UniDip, a recursive dip-based algorithm for clustering
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univariate data. The algorithm operates by exploiting the two fundamental questions
answered “out-of-the-box” by the dip, namely: 1) Is the distribution from which the sample
was taken multimodal?, and 2) Where is the interval corresponding to the most primary mode?

Based only on this information, UniDip follows a recursive “divide-and-conquer”
approach to extract the locations of all modal intervals in a univariate sample. It is non-
parametric and requires no algorithm parameters (other than a threshold α for statistical
significance, which is set to 0.05 by default). In Figure 5.7 we see a demonstration of
UniDip’s ability to extract modal intervals formed from various distribution types. Its
result on a busier sample is included in Paper D.
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Figure 5.7: The UniDip result on a univariate sample (from left: a Beta distribution, a
Gaussian distribution, a uniform distribution, and 50% “global” clutter over
the interval [0, 1]).

UniDip inherits all of the core advantages of the dip mentioned in the previous
section. It is a standalone technique, and can be used for finding all the modes of a
continuous univariate distribution. To the best of our knowledge, this non-parametric,
noise-robust, linear-time and parameter-free technique for finding such intervals is a
novel contribution.

SkinnyDip Algorithm Presented and its Properties Investigated: UniDip solves our
need to identify all modal intervals in a sample. However, it only does so for univariate
data. The next step in the direction of our goal was to extend this approach to the
multivariate case. The result, SkinnyDip, is a recursive dip-based algorithm for clustering
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continuous multivariate data. At a high level, one can describe SkinnyDip as a technique
that recursively partitions the data, dimension by dimension, based only on the results
of the univariate application of the dip. To do this, SkinnyDip applies UniDip on
filtered univariate projections of the data in a systematic way. SkinnyDip yields “modal
hyperintervals” (e.g. rectangles in two dimensions) corresponding to each detected
cluster. Data falling within one of these areas is assigned the corresponding cluster label.
Other data is labeled as noise/clutter.

Compared to other clustering techniques, SkinnyDip has a unique combination of
properties. Its practical run-time is linear in the number of objects and dimensions.
It requires no parameters, other than a threshold for statistical significance (in our
work we always use the standard value of α = 0.05). It is deterministic and highly
robust to clutter and outliers. Finally, and perhaps most interestingly, it requires no
multivariate measure of distance on the space. This allows SkinnyDip to extract clusters
with different spatial extents, like the long, thin rectangle in Figure 5.6. To the best
of our knowledge, SkinnyDip is the first general clustering technique for vector data
that does not perform multivariate distance computations between objects in the data.
That is, in line with our motto in Section 1.3.1, it curiously questions a fundamental
assumption made by existing clustering approaches, namely that a multivariate measure
for the distance between objects is required on the space.

SparseDip Algorithm Presented for Optimal-Subspace Pursuit: We presented SparseDip

as an additional layer on top of SkinnyDip. The goal of SparseDip is to enable clustering
on high-dimensional spatial data sets by searching for a subspace in which SkinnyDip

can be applied. SparseDip does this by searching for directions in the data that are
maximally multimodal with respect to the dip statistic. Considering that multimodality
implies separation, we argued that focusing on such directions is a useful heuristic for
the task of clustering.

By exploiting results relating to the continuity of the dip [KL05], we were able to make
use of gradient ascent in the search for these maximum-dip directions. Unfortunately,
the relevant function is non-convex, containing many local optima. For this reason, the
choice of the starting point for gradient ascent became an important factor.

To select candidate starting points for gradient ascent, we evaluated two options. The
first, a naïve approach, involved simple random-sampling of candidate starting points.
The second involved using the nodes of a sparse grid. A sparse grid is an efficient data
structure that can be used to represent functions in high-dimensional spaces. Sparse
grids are often used in the field of numerical simulation in order to make tractable the
computation of approximate solutions to partial differential equations (PDEs) in high
dimensions [BG04]. In our case the end-goal was not to solve a PDE, nor to accurately
represent or interpolate the function. We decided to evaluate sparse grids simply as
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a mechanism to find candidate starting points for gradient ascent. We empirically
compared the sampling from sparse grids with simple random sampling and found
that the sparse grids approach worked more favorably on a number of optimization
benchmark functions (one example is shown in Figure 5.8). Additionally, the use of
sparse grids led to higher-quality results on all ten of our real-world data sets.

SparseDip builds an orthogonal basis using the maximum-dip directions that are
found. The search is terminated when no more significant directions are found (with
respect to a significance threshold α). The projection of the data onto this basis is then
passed to SkinnyDip, which performs the clustering in that subspace.

Figure 5.8: Using a constant sample size of the Levy function, the curves show the
minimum value found by varying dimensionality when using 1) simple
random sampling and 2) sparse-grid-based sampling.

SkinnyDip Shown to be Robust Against “Extreme” Levels of Noise and Clutter: We
presented results showing that SkinnyDip is able to extract intuitive clusters embedded
in high levels of noise and clutter (see Figure 5.9). These experiments suggested that the
performance of techniques from the remaining clustering paradigms was degraded at
this level of noise. In addition to experiments on synthetic data with varying amounts of
clutter, we presented a real-world case study using the North Jutland (Denmark) Road
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Network data from the UCI Machine-Learning Repository. This data is highly noisy,
with insignificant road-segments spaced more or less evenly through the countryside.
On this data we showed that SkinnyDip is able to extract intuitive clusters corresponding
to high-settlement areas (cities). These clusters have by no means a Gaussian spatial
form. The spatial form of the city of Frederikshavn, for example, is constrained by
its proximity to the coast. SkinnyDip’s properties of being non-parametric and not
relying on a particular measure of distance in the multivariate space was of noticeable
advantage here.

SkinnyDip Shown to Outperform the State-Of-The-Art in Terms of Effectiveness:
We empirically evaluated SkinnyDip against six state-of-the-art automated clustering al-
gorithms from different paradigms (partition-based, density-based, spectral-based). The
first part of our evaluation was completed in a controlled way on synthetically-generated
data. The model we selected for synthetically-generating data was based on the com-
plexities we were attempting to address: high levels of clutter and heterogeneous (albeit
still convex) cluster shapes (Challenge 4). The generative model included parameters
that gave us control over 1) the number of clusters, 2) the number of dimensions, and 3)
the level of clutter.

Using Adjusted Mutual Information as our evaluation metric, we found that Skinny-
Dip was able to outperform all comparison techniques consistently on our generated
data when working with problems of dimensionality up to m = 8. Above this level, we
found that the SkinnyDip result was not useful. Indeed, as the dimensionality of the
problem increased, the limitations of SkinnyDip’s “dimension by dimension” heuristic
became significant. However, we argued that it is uncommon to find a real-world
clustering that exists in a non-redundant way in this many dimensions. We suggested
the use of SparseDip as a pre-processing option for practical data sets of non-trivial
dimensionality. As discussed in Section 4.6.1, we additionally evaluated a portion of the
clustering results using the Normalized Mutual Information metric, which suggested
that there is little deviation between the two measurements (Figure 5.9).

We further evaluated SkinnyDip on ten real-world data sets from public repositories
(see Section 4.4). The data varied in size and dimensionality (up to n = 7494 and m = 16).
In seven cases out of ten, SkinnyDip outperformed the suite of comparison techniques.
In two of the remaining cases, it ranked second. Additionally, the use of SparseDip

identified a number of interpretable and useful “maximally-modal” directions in the
data that yielded intuitive insights into the domain.

SkinnyDip Shown to Outperform the State-Of-The-Art in Terms of Efficiency: As a
full-space clustering technique, we showed that SkinnyDip’s theoretical worst-case run-
time complexity is O(n · log(n) ·m + n ·m · k), where n is the number of data objects,
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Figure 5.9: A reproduction of Figure 2 in Paper D, with the addition of SkinnyDip’s
Normalized Mutual Information values (the NMI is the top-most dotted red
line series, seen slightly above the blue AMI measurement for SkinnyDip).

m is the dimension of the space, and k is the maximum number of clusters that is
found from a call to UniDip (by definition not greater than the number of clusters
found in total). The logarithmic factor is related only to the requirement of sorting the
data (computation of the dip requires a sorted sample). Using aggressively-optimized
R sorting routines, we were unable to detect this logarithmic factor. Practically, our
run-time experiments even showed that SkinnyDip scales sub-linearly with the size of
the data, which is attributable to the fact that data objects cease to be considered by
SkinnyDip’s recursive calls after they have been labeled as noise. Practically then, linear
complexity is a conservative statement about SkinnyDip’s run-time. As a comparison,
the standard implementation of DBSCAN is quadratic4 in the number of objects n.

In terms of absolute response time, SkinnyDip outperformed all six comparison
techniques. The closest competitor was DBSCAN. The slowest of the competition was
Self-Tuning Spectral Clustering; the computation of its locally-scaled affinity matrix is
very expensive and we were not able to complete all of its run-time experiments within
a reasonable time frame.

4Optimized implementations of DBSCAN can reduce this factor to n · log(n).
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Paper E: Let’s see your Digits: Anomalous-State Detection using Benford’s Law

Benford’s Law Holds for Data From Many Online Services: We showed empirically
that Benford’s Law (BL) holds for data from the online services Twitter, Wikipedia,
YouTube and GitHub. Benford’s original manuscript [Ben38] had already shown em-
pirically that many real-life sets of numerical data obey the law. These data included
population numbers, lengths of rivers and a list of physical and mathematical constants.
Since the original manuscript, it has also become well-known that BL holds for economic
data [Nig99; DHP04]. To the best of our knowledge, however, our work is the first
to investigate conformance for Wikipedia, YouTube and GitHub data (conformity of
Twitter data was already shown in [Gol15]). We argued that this is a convenient property,
particularly because data from such online services is often considered “noisy”, and
because the Benford distribution requires no parameterization.

Benford’s Law is a "Natural" Tool for Anomaly-Detection in Time-Series Data: We
reflected on Benford’s original manuscript [Ben38] which argued that, despite mathe-
maticians having named the sequence 1, 2, 3, . . . the “natural” numbers, Nature is found
to count e0, ex, e2x, e3x, . . . much more often. Numerous examples of natural and man-
made processes that follow geometric or logarithmic progressions are given in Benford’s
manuscript. Given a set of numbers that was generated by such an underlying process
and that span a large range, random samples over that set will yield a collection of
numbers that follow Benford’s law. We argued that conformity to BL is therefore a
sensible measure for its “naturalness”, and that deviations from this conformity can
be understood as resulting from some “unnatural” influence. We further argued that
significant deviations from the Benfordness property in a window of data that is streamed
with high-bandwidth in real-time (Challenge 2) is an intuitive indication for “unnatu-
ral” or “anomalous” system behavior, and that this mechanism may prove useful as a
“red-flagging” approach for many applications.

Statistical Hypothesis Test Presented for Benford’s-Law Conformity: In order to ob-
jectively evaluate the BL-conformity of arbitrary univariate numerical samples, we
presented a statistical hypothesis test based on the formal Kolmogorov-Smirnov one-
sample test. The test exploits the fact that the mantissae of a Benford set are uniformly
distributed in [0, 1) [NW12].

We compared our hypothesis test with seven other state-of-the-art BL-conformity
tests. These tests were either based on testing single digits at once, testing all digits
at once, or investigating the mantissae. We used two ideal Benford sequences of the
same length for evaluating the tests. Six of the seven tests, based on considering the
discrete digit distributions, failed to conclude that the second sequence was Benford
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due to identified discretization errors. The seventh test, the so-called Mantissa Arc test,
correctly identified both sequences as Benford. We showed using a simple example,
however, that the Mantissa Arc test is not sufficient: it concludes Benfordness on a
numerical sample that is clearly not Benford. Our test was thus used to form the basis
for our anomaly-detection technique BenFound.

BenFound Introduced as a Novel Anomaly-Detection Technique for Time-Series
Data: We presented BenFound as a technically-uncomplicated anomaly-detection tech-
nique that can be used to monitor “Benford-style” data, that is, data generated by
multiplicative or exponential growth phenomena. We explained how BenFound only
depends on the choice of a window size w and a statistical threshold α, and discussed
how these values can sensibly be set. To the best of our knowledge, this is a novel
approach to the general task of anomaly-detection in time-series data. All of the other
approaches that we know of consider the behavior and evolution of the absolute values
of the measurements, or statistics or moments based directly thereon. We are not aware
of a general anomaly-detection technique for time-series data that considers only the
leading digits and/or the mantissae.

BenFound Shown to Detect “Unnatural” Behavior in Online Services: We presented
three case studies showing how BenFound can detect “unnatural” behavior in online
services. The first case-study was related to Wikipedia data. We investigated a large
set of change-size deltas (in bytes) for page-edit events that were labeled by Wikipedia
as “non-bot”. Analyzing the leading two-digit distribution exposed significant “spikes”
which, upon further analysis, were found to corresponded to bot behavior (autonomous
agents that were mass-editing Wikipedia content). Wikipedia’s labeling system had
failed to label the edits as “bot” edits.

The second case-study involved listening to the Twitter tweets against the #Fathers-
Day hashtag. Approximately one week before Father’s Day, the Benfordness of the
signal was significantly rejected. It turns out that the hashtag had been “hijacked” by
a number of spam and advertising accounts “unnaturally” trying to generate a profit
from the event. Finally, our third case-study involved listenting to the Twitter tweets
against the #PokemonGO hashtag. A sharp drop was seen on July 16 and corresponded
to unnatural tweet behavior because of a confirmed denial-of-service attack on the
Pokemon Go game servers.

BenFound Shown to Outperform Ten State-Of-The-Art Change-Point and Anomaly-
Detection Techniques on Synthetic Data: We generated synthetic time-series data
and performed an experiment comparing BenFound to ten state-of-the-art anomaly-
detection techniques from the statistics and data-mining literature. The synthetic data
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simulated a change in the underlying process from Benford to non-Benford, and then its
regression from non-Benford to Benford thereafter. BenFound was the only technique
able to identify both changes to the underlying generative process. Many of the other
techniques generated an indigestible number of false positives.

5.2 Implications for Research

This thesis has three main implications for research:

Implication 1: Knowledge can be extracted in the complex context of incomplete,
heterogeneous and discrete data measured over non-ratio scales.

Our contributions imply that Blind-Source Separation can be performed over heteroge-
neous data sets containing certain kinds of discrete data types (Challenge 4). Through
the introduction of the Ternary Matrix Factorization (TMF) problem, for example, we
have provided a basis for performing Blind-Source Separation on data measured on the
scale of ternary logic. This logical structure additionally implies a useful perspective on
the problem of incomplete Boolean measurements (MVBMF) and has applications in
collaborative filtering and the mining of access roles.

With the Matrix Factorizations over Discrete Finite Sets (MDFS) framework, we extend
this concept to arbitrary discrete finite sets having a sensible notion of “mixing”. The
MDFS framework implies progress towards a unified theory of data mining (Challenge
1) because it subsumes a number of existing data mining techniques (BMF, TMF and
OMF). The MDFS framework also implies that researchers can deduce additional appli-
cations by identifying further features with applicability.

Implication 2: Knowledge can be found despite the complexities of “extreme” global
clutter and high dimensionality.

Our contributions imply that object-groupings (clusters) can be found despite their
presence in a sea of up to 90% noise (Challenge 4) and despite their location in an
arbitrarily-oriented, low-dimensional subspace (Challenge 2). Through the introduction
of our clustering algorithm SkinnyDip and the subspace-search algorithm SparseDip, we
have introduced a novel take on the problem of extracting knowledge through clustering.
The SkinnyDip result implies, for example, that a multivariate distance or “similarity”
measure is not a strict requirement for a vector-based clustering method. It also implies
that the relatively-unknown dip test is an effective tool for data mining – it can efficiently
and non-parametrically quantify a notion of “separation” in continuous univariate data,
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and locate the primary “modal” region in such data. It does this in linear-time without
parameters.

Implication 3: Knowledge can be extracted from the complex context of high-bandwidth
time-series data without needing a parameterized model.

Our contributions imply an intriguing new approach for analyzing high-bandwidth
numerical time-series data (Challenge 3). The approach does not involve the use of a
parameterized model for explaining the distribution of the absolute measurement values.
Specifically, our anomaly-detection approach BenFound implies that the availability
of the absolute values of the time-series data measurements is not strictly necessary.
By monitoring the conformance of the leading digits or mantissae to Benford’s Law, we
obtain an elegant mechanism for determining whether a system has deviated from its
natural state. Our experiments on real-world data imply that this approach is by no
means limited to data from social-media streams like Twitter. Indeed, our results on
Wikipedia, GitHub and YouTube data suggest that many systems measure phenomena
that obey Benford’s Law. To the best of our knowledge, Benford’s Law has not yet been
investigated or exploited by the data-mining community.

5.3 Implications for Practice

Practitioners will benefit from the results of this thesis in the following four ways.

Implication 1: Our proposed techniques outperform the state-of-the-art with respect
to solution quality on many practical problems.

The effectiveness of a given algorithm (with respect to a sensible objective function) is a
key consideration for practitioners looking for high-quality solutions. For the complex
problems we investigate, it is of course difficult to compare the quantitative performance
between algorithms over the complete set of problem instances. For this reason, we took
care in the design of our empirical evaluation to ensure that our generative models
reflected the kind of data seen in practice. On such data, we showed that our algorithms
outperformed the state-of-the-art in the majority of cases. For our work on discrete
matrix factorizations, for example, one generative model was inspired by patterns found
in survey research. For our work on clustering, the generative model was inspired
by the levels of clutter often seen in minefield-detection and the clustering of galaxies.
For our work on anomaly-detection in time series data, our generative model was
inspired by dynamic observations of the “Benfordness” of system metrics, and how
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non-conformance often relates to events of interest in the system under investigation.
In addition to synthetic data, we showed the effectiveness of our techniques on a

number of real-world examples. Practitioners almost always deal with real-world data,
and such data is seldom “well-behaved”. In many cases, our quantitative evaluations
were complemented by qualitative ones that showed our techniques yield results which
are more interpretable and intuitive than the state-of-the-art (helping to address Challenge
4).

Perhaps the most concrete evidence of the practical impact of our work is found in
a recent independent study of TMF [Vav+]. In this study, the authors cite estimates
that the adoption of role-based access control (RBAC) saved American organizations
$USD1.8 billion in the year 2009 [OL10]. The most significant expense in the transition
from permission-based access control to RBAC was noted to be in the role engineering
and mapping stage. Our TMF work assists in this migration process by effectively
solving the role-based mining with missing-values problem at scale. In our work, we
showed empirically that our algorithm FasTer outperforms existing techniques that are
able to solve this problem. This conclusion was independently verified in this study
[Vav+].

Implication 2: Our proposed techniques exhibit practically linear run-time behavior
in the size of the data.

An algorithm that yields the globally-optimal result to a problem that needed to be
solved yesterday is of little use. Often more so than researchers, practitioners and the
“production” applications on which they work need to produce results on short time
scales. To directly address this challenge, the approaches we have presented yield
highly-competitive results at linear run-time complexity in the size of the data. In
many cases, our algorithms outperform the state-of-the-art in terms of both effectiveness
and efficiency, helping to address Challenge 2 and simplifying the practitioner’s job of
algorithm-selection.

Implication 3: Our proposed techniques require no “obscure” parameters.

A Utopian system of unsupervised learning would promptly addresses the request
Here is my data, tell me what I want to know without requiring any further information.
Practically, algorithms need some information about the nature of the patterns which
should be sought and presented. In many cases, this information is embedded as an
assumption in the technique itself (e.g. Gaussian clusters); in others, it may be provided
in the form of an algorithm parameter (e.g. number of patterns to find). Some algorithm
parameters are not intuitively connected with the form of the solution and are instead
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used “internally” for managing a heuristic (e.g. a rounding threshold for an intermediate
matrix). We might call such parameters “obscure”, because a practitioner may find it
difficult to know how the nature of the solution varies when varying the parameter. The
iterative nature of data mining and KDD becomes more difficult when such parameters
are involved, because the user may be less certain about how to proceed. Obscure
parameters are hence best avoided where possible.

Fortunately, the algorithms we present in this thesis do not require parameters of this
kind. FasTer requires only the number k of source patterns to find, as does Finesse.
SkinnyDip is even more lean: its default parameter value for the statistical-significance
threshold is equal to the typically-used threshold in most of statistics (α = 0.05). This
value seldom needs to be changed in practice (indeed, we did not change it for all our
work). BenFound requires an analogous significance threshold α and the width of
the sliding window, which the user can appreciate as representing a trade-off between
statistical power and the ability to capture system dynamics. From the perspective of
algorithm parameters, our algorithms are therefore an attractive choice for practitioners.

Implication 4: Our proposed techniques have documented implementations avail-
able in publicly-accessible locations online. All results are reproducible.

Replication is an important criteria by which scientific claims are judged [Pen11]. The
ability to replicate results can also be of use for practitioners who wish to get started
on applying our techniques to their own problems. In each of our research articles, we
have provided references (URLs) to supplementary material that includes a download-
able research prototype of the proposed method. Each repository includes a detailed
description and verbose code examples for getting started with the algorithm.

In the most recent contribution (Paper E) we also adopted and advocated the use of
Knitr [Xie15]. Knitr is a LaTeX preprocessor that enables transparent and reproducible
research by embedding the source code required for reproducing all results, figures and
tables directly alongside the source for the report.

5.4 Limitations

Like all research, there are limitations to the contributions of this thesis. In the following
sections we discuss these limitations in detail.

5.4.1 Non-Optimality

Perhaps the most obvious (albeit important) limitation of the methods presented in this
thesis is the non-optimality of their solutions.
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The field of data mining is rife with NP-Hard problems, including those treated
in this thesis. For example, applying our FasTer algorithm to the Boolean Matrix
Factorization problem involves an iterative heuristic that, at each step, needs to solve
a set of optimization instances of the ±PSC problem. The ±PSC problem itself is
NP-Hard, which currently means that globally-optimal solutions are generally not
attainable for it in a computationally-tractable manner. Assuming we want “efficient”
algorithms, the limitation of non-optimal solutions will therefore continue for some
time (at least until the field sees revolutionary and constructive contributions in the
direction of P = NP and similar conjectures, or alternate computing machines like
practical quantum computers become available).

Another important limitation is that “optimality” in the sense of a problem’s objective
function may not coincide with the “optimal” solution from the perspective of the
practitioner or domain expert. SkinnyDip, for example, involves a hard-partitioning of
the data points based on which points are determined to belong to the “modes” of the
distribution. Practically, it uses mathematical and statistical notions for where modes
terminate. A practitioner may well subjectively argue that these boundaries are not
optimal. To some extent then, the notion of “optimality” extends to the choice of the
objective function, which in the context of exploratory and unsupervised learning may
be a subjective one.

5.4.2 Limited Approximability Results

Although our work includes theoretical results regarding the worst-case run-time com-
plexity of our algorithmic contributions, it is somewhat more deficient of theoretical
results regarding effectiveness.

For the FasTer algorithm, we were able to show that we can successfully reduce
±PSC to one of the sub-problems (Ternary Usage Row) under certain conditions. For
this case it was possible to present an approximation ratio (at the cost of increased
run-time complexity). We were not, however, able to present approximation ratios for
the higher-level TMF and MDFS problems.

Good approximation algorithms have escaped researchers for a wide variety of NP-
Hard problems. In [Aro98] it is argued that achieving certain reasonable approximation
ratios is no easier than computing optimal solutions. That is, a number of negative
results suggest that approximation itself can be NP-Hard for many problems.

For some algorithms, the convergence to a local minimum can be shown (e.g. k-
Means [SI84]). We were also unable to prove such convergence for the FasTer and
Finesse algorithms. Indeed, for the TMF and MDFS problems addressed in this thesis,
discussions of the mathematical notions of “convexity”, “differentiability”, “intervals”
and “locality” are not sensible because the domain of the objective functions is finite
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and non-continuous.
Without proofs for approximation ratios and “local” convergence, we resorted to

1) proofs that show algorithm-termination upon reaching a minimum during their
search strategy, and 2) empirical evaluation. These approaches, particularly empirical
evaluation, are common in the data-mining community. Strictly speaking, however, we
concede that such evaluations cannot be used as the basis for conclusive statements
about an algorithm’s general performance.

5.4.3 Limited Empirical Evaluation

All of the methods presented in this thesis are evaluated empirically on real-world and
synthetically-generated data sets.

Experiments on synthetically-generated data involve selecting a parameterized gen-
erative model. Such a generative model should ideally be motivated by real-world
applications. It is important to realize, however, that the set of problem instances gen-
erated by all parameter combinations of such a model is typically only a small subset
of the complete population of problem instances. In our case, it was not even possible
to evaluate all parameter combinations of our generative models due to the curse of
dimensionality. Our empirical evaluation was hence limited to the selection of sensible
“default” generative parameters, from which individual parameters were varied over a
range.

In many cases the proposed algorithms outperformed the state-of-the-art, however
this was not always the case. Our empirical evaluation identified a number of generative
parameters to which our algorithms reacted negatively. In the case of FasTer and
Finesse, increasing the density of the usage matrix (i.e. the number of mixed patterns)
caused in some cases poorer performance compared to the Asso algorithm. In the
case of SkinnyDip being used as a full-space clustering approach, the clustering results
degraded quickly with increasing spatial dimensionality.

5.4.4 Algorithm Parameters

Although we have noted in this thesis that our algorithms do not rely on “obscure”
parameters, we cannot claim that they are entirely parameter-free. The following
parameters are required by our methods. The most appropriate value for each parameter
may not be known a priori, potentially causing confusion for practitioners.

1. TMF and MDFS (and their algorithms FasTer and Finesse) require the specification
of the parameter k (the number of latent/source patterns to find). Additionally,
these methods require the user to choose a number of “randomization rounds”
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(defaulting to 20). At the cost of longer running time, we showed that a larger
number of randomization rounds yields a higher-quality end result.

2. Our proposed “itemsets over an ontology” (“tree”) feature for MDFS assumes
that the tree structure is known a priori and provided as an input. Although
we concede that this makes it more difficult to prepare the data for analysis, we
argue that such a tree structure would likely already exist in many applications.
The website yummly.com, for example, exploits its existing proprietary ingredients
ontology for optimizing the user-search experience on their website.

3. Our clustering technique SkinnyDip relies on a threshold for statistical significance
α, which can optionally be varied as a parameter.

4. SparseDip, our subspace-search technique, requires the specification of the number
of grid points to evaluate in the search for a gradient-ascent starting point. Here
there is likewise a trade-off between run-time and result quality.

5. BenFound requires the parameters w and α, representing the width of the sliding
time-window and the threshold for statistical significance respectively. We discuss
the setting of these parameters in Paper E.

5.4.5 Non-Determinism

Only a subset of our algorithms are deterministic (SkinnyDip and BenFound). The algo-
rithms FasTer and Finesse are non-deterministic due to the use of a non-deterministic
initialization heuristic. Specifically, the initialization procedure of both techniques in-
volves a random selection. No other initialization strategies were evaluated, and we did
not investigate mechanisms to make FasTer and Finesse deterministic. We note that
Asso, a competitor to these methods, is deterministic.

5.4.6 Performance Trade-Offs

We introduced practical limitations to some of our methods in order to improve their
run-time performance. For example, the FasTer algorithm was presented to be used
for k ≤ 32. This decision was made in order to reduce the run-time complexity
from O(nmk3) to O(nmk2) through the exploitation of bitwise instructions on 64-bit
architectures. As each ternary value requires two bits, the maximum permissible length
of a row vector in the usage matrix or a column vector in the basis matrix is 32. This
limitation could be mitigated by exploiting larger-width SSE instructions (as in Finesse),
or accepting the higher run-time complexity O(nmk3). We also note a limitation of
our work on evaluating FasTer in high-performance environments. In this part of our
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work, we only considered a shared-memory environment, so we are unable to draw
conclusions about the performance of FasTer on distributed-memory architectures or
GPUs.

5.4.7 Side-Effects of our Complexity-Reducing Assumptions

As with most data-mining techniques, our methods rely on a number of assumptions
for reducing complexity. Our techniques may yield sub-optimal results when these
assumptions are violated. In the case of TMF and FasTer, we note that our work on
Missing-Value Boolean Matrix Factorization (MVBMF) assumed the missing completely
at random case (MCAR). We did not perform synthetic experiments for the missing at
random (MAR) case, nor the missing not at random (MNAR) case, so we are unable to
draw conclusions about the performance of FasTer in such cases.

Our framework MDFS demands that each admissible “mixable” feature fulfill a
number of formal requirements. In particular, we assume the existence of a sensible
contrast function �, which may be difficult to objectively formulate.

One of SkinnyDip’s most intriguing strengths (no multivariate distance computations)
is related to one of its main complexity-reducing assumptions. That is, SkinnyDip as-
sumes that the cluster structure can still be reconstructed by taking systematic univariate
projections. We can construct pathological examples which violate this assumption.
Consider the relatively simple clustering problem in Figure 5.10. Two rectangular clus-
ters exist in a “sea” of approximately 70% noise. SkinnyDip is able to detect the full
clusters, but also includes a number of obvious noise points off to the side in each
case. The problem here is that SkinnyDip first projects onto the horizontal axis. The
“shadows” of the two-dimensional clusters appear as one when looking up from this axis,
so SkinnyDip can only tell them apart after it has recursed into the second dimension.

A second effect of this complexity-reducing SkinnyDip assumption is that it models
clusters as “hyper-intervals”, which may be sub-optimal. In two dimensions, for example,
the clusters are modeled using rectangles. Rectangles cannot precisely model “rounded”
cluster structures, like the Gaussian clusters in Figure 5.11.

Our method BenFound relies on the assumption that “unnatural” or “fraudulent”
behavior causes a violation of Benford’s Law. If this assumption is violated, we see that
BenFound is not immune to false negatives. That is, if true anomalies are created by
agents that are aware of Benford’s Law, those agents may tune their anomalies such as
to remain undetected by the law. However, the success of BL to date (particularly in
forensic accounting [NW12]) suggests that many real-life fraudsters are not aware of the
law.

Finally, BenFound relies on the assumption that the system metrics in focus follow
BL in the “natural” state. We concede that many metrics do not follow BL. For example,
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Skinny−dip clustering result

Figure 5.10: An example data set on which SkinnyDip achieves a less-than-optimal
result (univariate projections limitation).
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Figure 5.11: An example data set on which SkinnyDip achieves a less-than-optimal
result (“boxed” or “rectangular” cluster-models limitation).
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consider the signal obtained when monitoring the server response time of a popular
website over time (Figure 5.12). Such data is normally not associated with any natural
growth processes, so the digit distribution is by no means Benford. BenFound would
be in a constant “red flag” state on such data (not useful).
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Figure 5.12: An example of non-Benford data: server response times for a popular
website.

5.4.8 The Multiple Comparisons Problem

A subset of our proposed methods apply multiple statistical hypothesis tests in an
automated fashion. This raises the question as to whether the multiple-comparisons
problem is applicable [Sal10]. SkinnyDip, for example, may apply the dip test multiple
times during its execution. In statistics, the application of multiple simultaneous
hypothesis tests to a given sample should be accompanied by changing the significance
level α to a more conservative (lower) value. Controlling procedures like Bonferroni
correction [Dun61] can be used to this end. Bonferroni correction compensates for the
fact that, as the number of tests increases, it becomes more likely that at least one test
will report a significant result simply by chance.

In the case of SkinnyDip, we note the following with respect to the multiple compar-
isons problem:

• The dip test is used in a heuristic manner, and it is not known how many tests will
be applied a priori. That is, the UniDip algorithm on which SkinnyDip is based
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will perform k tests, where k is the number of modal intervals (clusters) found at
“runtime”.

• UniDip ceases to apply the dip as soon as it finds a non-significant result.

• The size of the sample changes for each application of the dip (each is a subset
of the full data set), meaning that the test theoretically loses power as UniDip

progresses.

These observations complicate the situation, making it difficult to determine whether
or not the multiple comparisons problem is a valid concern in SkinnyDip, and how
correction should be performed if so. Although we believe that SkinnyDip has more
important limitations that should be addressed first (e.g. the reliance on univariate
projections), we concede that there may be a limitation due to this multiple comparisons
effect as well. A future investigation into the multiple comparisons problem in the
context of SkinnyDip may yield a more robust algorithm.

A statistical hypothesis test is also applied in an automated fashion in our method
BenFound. In this case, the sample changes for each application of the test, so again
the situation is more complex and not directly equivalent to the classical multiple-
comparisons scenario.

5.5 Future Research

Our MDFS framework is one which leaves room for additional research. Perhaps the
most interesting question is: What other data types are admissible to MDFS? We have
identified a particular kind of graph structure in which it makes sense to mix instances
(“itemsets over an ontology” ). Other kinds of graph-based structures could also be
investigated. A multitree, for example, can be used to represent multiple overlapping
taxonomies over the same ground set. They are a class of directed acyclic graph with
easily-identifyable substructures that are trees. Such structures are found in various
applications, like a family tree which contains multiple inter-family marriages but no
blood-relative marriages, or a corpus of academic material that is structured into a
syllabus in different hierarchical ways by different university professors [FZ94]. List-
or set-based objects may also be appropriate. For example, we can imagine a classical
“itemsets” feature for which the measurement is a set of objects from some catalog (as in
market-basket analysis). The “mixing” mechanism for such a feature would be the set
union operator.

Perhaps the next most obvious improvement for TMF and the MDFS framework
would be automated model-order selection. That is, the complete automation of the
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algorithm can be achieved by removing the need for the user to provide the parameter
k. Automatic model-order selection is a difficult problem, particularly considering that
algorithms like FasTer can only approximately calculate the solution for any given k. In
our work on MDFS, we used the “elbow” heuristic to estimate a sensible model order
k before moving to interpret the data (Figure 5.13). Some approaches for model-order
selection try to automate the detection of such a point. More sophisticated approaches
are based on various ways of interpreting Occam’s Razor, which suggests that “among
competing hypotheses, the one with the fewest assumptions should be selected”. The
Minimum Description Length principle [Ris78; Grü07] or the Bayesian Information
Criterion [Sch+78] are often used in this light, helping to find a balance between a
model’s complexity and its performance. An investigation into automatic model-order
selection for TMF and MDFS would ideally compare a number of such approaches on a
variety of synthetic and real-world data, similar to the approach used in [MV14].
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Figure 5.13: Model-order selection for Yummly (left) and IMDB (right) data. The “elbow”
points are approximately k = 6 and k = 9 respectively.

Another direction for further research on our proposed matrix decompositions relates
to the investigation of additional constraints. Like BMF and OMF, our formulation of the
TMF and MDFS problems impose no strict constraints on the nature of the factors in the
basis matrix (other than that they should contain entries from the finite set in question, of
course). The objective function is based solely on the reconstruction error. In techniques
from linear algebra, the factors are typically constrained. In PCA we see the constraint
of orthogonality; in ICA we see the constraint of statistical-independence; in NMF we
see the constraint of non-negativity. Interestingly, there already exist BMF variants
that dictate similar constraints. For example, the Boolean CX (BCX) Decomposition
problem [Mie08b] is similar to BMF, however the set of basis vectors in BCX must be
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a subset of the original (observed) vectors. The Boolean CUR problem is a further
variant with similar constraints [Mie08b]. Unfortunately, the practical usefulness of
these decompositions is not entirely clear, as the original article (and, to the best of our
knowledge, future work) does not show real-world applications which serve to motivate
the choice of these constrained techniques over vanilla BMF. Despite this, and even if
only for theoretical purposes, one could investigate analogous constrained versions of
TMF and MDFS. Future applications may find such variants useful.

Our clustering algorithm SkinnyDip is the first to consider the use of the dip test.
Although elegant, the dip is only usable on univariate data, so important information
is sometimes lost when SkinnyDip performs the necessary univariate projections from
multivariate data. To improve on this, SkinnyDip could be modified to perform multiple
“projection rounds” on the data (perhaps heuristic-based), and the results aggregated in
an ensemble-like manner.

Overcoming the “box clusters” limitation of SkinnyDip may be a comparatively easier
problem to solve. One approach might work as follows. Each detected SkinnyDip cluster
could have its mean density computed. This density, along with the detected cluster
points, could serve as a “seed” for “elaborating” on the cluster in a local density-based
fashion. The propagation algorithm might be similar to that of DBSCAN, for example
[Est+96]. Another approach might be to create multiple overlapping “boxes” for the
same cluster from different projection angles, again using the results to “fine-tune” the
shape of each cluster.

With respect to our work on exploiting Benford’s Law (BL), it is difficult not to be
intrigued by this “gem of statistical folklore” [BH11]. Indeed, it remains somewhat of a
mystery, having not yet been fully explained [BH11]. To the best of our knowledge, our
contribution is the first that exploits the law as the basis of a data-mining technique. We
anticipate that BenFound, our non-parametric anomaly-detection technique based on
BL, will consequently generate some interest in the data-mining community. Instead of
being used as the basis for a “red-flagging” anomaly-detection technique, one might use
BL as the basis for ranking the “authenticity” of a set of phenomena. Ranking Twitter
hashtags, YouTube channels or sets of networks or graphs are some concrete ideas that
could be investigated in this respect.

Finally, there is room in all our work for even more aggressive hardware optimization.
Although we have optimized some of our techniques for shared-memory parallel
environments, we did not consider the performance gains that are possible through
graphics cards. The performance of FasTer, for example, is dependent on the ability to
efficiently evaluate bitwise instructions. A modern CPU core can typically execute four
32-bit instructions per clock (using a 128-bit SSE instruction), whereas many modern
GPUs can execute thousands of such instructions per clock (having many more ALUs or
“shaders”). Although other factors would of course need to be considered (“executive
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work” like branching logic), we expect that a graphic-card implementation of FasTer

would yield significant performance gains.
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Data mining is the application of specific algorithms to prepared data for the purpose of
either prediction or description. The scope of this thesis was restricted to exploratory,
unsupervised, descriptive data mining. We have advanced the state-of-the-art by pre-
senting novel methods which address a number of complexities in modern information
systems: 1) heterogeneous data types and measurement scales, 2) missing information,
3) clutter and noise, 4) high dimensionality and 5) high-bandwidth time-series data.
We designed linear-time algorithms for our problems, discussed their properties, and
empirically evaluated their performance on 1) synthetically-generated data, 2) real-world
data, and 3) run-time behavior.

From a research perspective this thesis offers a number of results. To help address the
complex challenges of heterogeneous data types, heterogeneous measurement scales and
missing values, we presented Ternary Matrix Factorization and the Matrix Factorizations
over Discrete Finite Sets framework. To help address the complex challenges of clutter
and high-dimensionality in clustering, we presented the novel clustering paradigm
SkinnyDip. To help address the complex challenge of anomaly-detection in high-
bandwidth time-series data, we presented the insightful method BenFound based on
the exploitation of Benford’s Law. We thus achieved our goals by demonstrating how
these kinds of complexities can be addressed in variants of the most fundamental
kinds of data mining problems (finding associations, clustering objects and detecting
anomalies).

The results of this thesis are beneficial to practitioners from a number of perspectives.
From the perspective of effectiveness, we showed empirically that each algorithm
can outperform the state-of-the-art on synthetic and real-world data with respect to
appropriate quality measures. From the perspective of efficiency, we showed that each
algorithm exhibits practically-linear run-time growth in the size of the data. From
the perspective of usability, we showed that none of our techniques require “obscure”
parameters. From the perspective of interpretability, we showed that the majority of
our algorithms yield directly-interpretable results in the context of the domain (only
BenFound requires some level of post-processing). Finally, we discussed how all
implementations are provided in publicly-accessible repositories online, and how all
results are reproducible.

We identified a number of limitations. Our methods are mostly based on heuristics
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and are unable to solve optimally in the general case (“hard” computational complexity).
We provide only a single approximation guarantee for a sub-problem of one method.
Our evaluation was mainly empirical and did not cover all possible problem instances.
FasTer and Finesse require the provision of the parameter k, the number of patterns to
find. SkinnyDip may yield sub-optimal results as a result of univariate projections and
“blocky” cluster bounding. BenFound is not immune to false-negatives and can only be
applied to systems with metrics that follow Benford’s Law in their “natural” state.

We identified a number of future research directions. Further concrete types of
“mixable” finite sets could be identified and implemented for MDFS, thereby widening
its applicability. Enhancements to SkinnyDip could be made with the aim of overcoming
some of its limitations, particularly its tendency to produce “rectangular” clusters and
its dependency on univariate projections. Finally, the real-time concepts in BenFound

might be applied to data contexts other than univariate time series, like monitoring the
flow of information between nodes of a network.
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