
Security Attack Analysis Using Attack Patterns
Tong Li, Elda Paja, John Mylopoulos

University of Trento, Italy
{tong.li, paja, jm}@disi.unitn.it

Jennifer Horkoff
City University London, UK

horkoff@city.ac.uk

Kristian Beckers
Technische Universität München, Germany

beckersk@in.tum.de

Abstract—Discovering potential attacks on a system is an essen-

tial step in engineering secure systems, as the identified attacks

will determine essential security requirements. The prevalence

of Socio-Technical Systems (STSs) makes attack analysis partic-

ularly challenging. These systems are composed of people and

organizations, their software systems, as well as physical infras-

tructures. As such, a thorough attack analysis needs to consider

strategic (social and organizational) aspects of the involved people

and organizations, as well as technical aspects affecting software

systems and the physical infrastructure, requiring a large amount

of security knowledge which is difficult to acquire. In this

paper, we propose a systematic approach to efficiently leverage

a comprehensive attack knowledge repository (CAPEC) in order

to identify realistic and detailed attack behaviors, avoiding severe

repercussions of security breaches. In particular, we propose a

systematic method to model CAPEC attack patterns, which has

been applied to 102 patterns, in order to semi-automatically select

and apply such patterns. Using the CAPEC patterns as part

of a systematic and tool-supported process, we can efficiently

operationalize attack strategies and identify realistic alternative

attacks on an STS. We validate our proposal by performing a

case study on a smart grid scenario.

Index Terms—Attack Analysis, Attack Pattern, Contextual

Goal Model, Prototype, Validation

I. INTRODUCTION

Security breaches in Socio-Technical Systems (STSs) have
repeatedly resulted in multi-million dollar losses per year to
large organizations, and this cost is on the rise [1]. A primary
reason for these breaches is the complexity and heterogeneity
of STSs, consisting of people, processes, technology and
infrastructures. All of these heterogeneous components raise
a plethora of security concerns and present a larger attack
surface compared to more homogeneous software systems.
As reported by Ponemon Institute [1], in 2015, the average
total cost of a data breach for the 350 companies participating
in the study increased from 3.52 to 3.79 million dollars;
and these breaches are caused by a broad range of attacks,
including trusted insiders (inadvertent or malicious), malware,
SQL injections, hijacked devices, etc. In addition, given the
increased number of attacks, STSs have become the ideal
target of multistage attacks, as attackers can compose atomic
attack actions associated with different components to perform
more dangerous attacks [2]. Failing to consider such diverse
attacks while designing STSs can result in vulnerable systems.

Holistically discovering potential attacks is an essential step
for engineering secure STSs, as the identified attacks will
determine essential security requirements and shed light on
what and why security mechanisms are required. Therefore,

we have outlined a holistic attack analysis framework in
our previous work [3], [4], which proposed to holistically
explore the alternative attacks from an attacker’s viewpoint,
as shown in Fig. 1. The framework takes as input a three-
layer requirements model, developed as part of our previous
security requirements analysis work [5], which contains both
system functional requirements and security requirements (i.e,
the right part of Fig. 1). The three-layer model consists of a
social layer, a software layer and a physical layer, capturing
holistic system context, and is used as the domain model
during the attack analysis. The output of the framework
will be a set of alternative (multistage) attacks, which are
transferred back to the three-layer requirements model in order
to identify critical security requirements [5]. For the holistic
attack analysis framework, in our previous work [6], we have
first investigated how to identify an attacker’s strategies by
systematically elaborating an attacker’s malicious intentions
(i.e., the top-left part of Fig. 1). Each attack strategy, consists
of one or several anti-goals that describe attackers’ malicious
intentions, sheds light on what and when attackers may intend
to attack, but does not answer how attackers can achieve their
malicious intentions.

For this paper, we aim at analyzing how attackers imple-
ment an identified attack strategy in terms of realistic attack
behaviors (i.e., the bottom-left part of Fig. 1), completing
our holistic attack analysis. Without this step, the analysis
would stop at abstract attack objectives, which may or may
not be realistically obtainable through attack mechanisms.
Determining which attack strategies are likely to be opera-
tionalized is critical for targeted security analysis. However,
a lack of knowledge about impending attacks introduces a
primary challenge to such operationalization analysis, as an-
alysts cannot realistically identify how attackers might attack
a system and thus have either false positives or false nega-
tives during security analysis. As the security community has
summarized practical attack knowledge in terms of 504 attack
patterns1, i.e., CAPEC (Common Attack Pattern Enumeration
and Classification), we intend to solve the knowledge problem
with the CAPEC attack patterns. However, as reported by
Shostack “the impressive size and scope of CAPEC may make
it intimidating for people to jump in” [7], and thus analysts are
reluctant to use such patterns in practice. Although a number
of studies have been performed to deal with the scalability
problem of CAPEC [8], [9], [10], they all require manual

1https://capec.mitre.org

 Focus of this paper

Malware
Propagation
via USB U3

Autorun

Malicious Logic
Insertion via
Inclusion of

Counterfeit Hardware
Components

Modification of
Existing

Components with
Counterfeit
Hardware

Malware
Propagation via

Infected
Peripheral

Device

Malware
Propagation via

USB Stick
Malicious Logic

Insertion into Product
Software via Inclusion

of 3rd Party
Component
Dependency

Malicious Logic
Insertion into

Product Software
via Configuration

Management
Manipulation

Flash
Memory
Attacks

USB Memory
Attacks

Malicious Logic
Insertion via
Counterfeit
Hardware

Malware
Infection into

Product
Software

Malicious Logic
Inserted Into

Product Software by
Authorized
Developer

Malicious Logic
Insertion into

Product Software
during Update

Malicious Logic
Insertion into

Product Software via
Externally

Manipulated
Component

Malicious Logic
Insertion into

Product Memory

Malicious Logic
Insertion into

Product
Hardware

Malicious Logic
Inserted Into

Product
Software

Open Source
Libraries
Altered

ASIC With
Malicious

Functionality

Malicious
Logic

Inserted
Into

Product

Attack Strategy
Analysis [9]

Real-time price
is obtained

Load info is
available

Receive energy
consumption

 data from SM

Customer is
notified about

the price

ES sends price
to customer

Real-time
pricing is
applied

Calculate
price

New price is
available

Measure energy
consumption

D

D

Smart
Meter
(SM)

Energy
Supplier

(ES)

Send energy
consumption
 data to ES

D

D

Support
calculate

price Price can be
sent to

customer

Communicate
with SMF

 History price
is obtained New price is

generated

Generate
 price

Provide database
service

D

D

Energy
Supplier

Database
(ESD)

Energy
Supplier
Server

Application
(ESSA)

Smart Meter
Firmware

(SMF)

Retrieve
data from
Database

Be able to
communicate with

SM

Send measurement
requests
to SMF

Receive energy
consumption data from

SMF

Send price info
to HEMS

Send energy
consumption

 data to ESSA

D

D Send measurement
requests
to SMF

D

D

Support
communication

between ECA and
SMF

Deploy ESSA to
ESS

Support
ESSA

Connection between
ESS and SMD is

established

Connect ESS to DCN

Connect PC to HAN

D

D

Connect HG to HAND

D

Connect HG to DCN D
D

Connect ESS to DCN

D
D

Energy
Supplier
Server
(ESS)

Smart
Meter
Device
(SMD)

Home Area
Network
(HAN)

Home
Gateway

(HG)

Data
Communicati
on Network

(DCN)

Support
communication

between ECA and
HEMS

Connect ESS to
Internet

Connection between
ESS and PC is

established

BG1

BG2

BG3
BG4

BG5

BT1
BT2

BT3
BT4

BT5

AG1

AG2

AG3

AG4

AG5

AG6 AT3

AT1

AT2

AT4

AT5

AT6

AT7

IG1

IG2

IG3

IG4

IG5

IT1

PT2

PT3

IT4

IT5 IT6

IT7

Social
Layer

Application
Layer

Physical
Layer

(S)
High Integrity

[energy consumption
 data, BG1]

SG1

(Disclose,
Asset: CC,

Target: company
database)

(Access,
Asset: company

database)

Elaborate threat

(Access,
Asset: company database,
Target: company database)

(Access,
Asset: company database,
Target: company server)

(Penetrate,
Asset: company

database)

(Penetrate,
Asset: company database
Target: Acme network)

(Access,
Asset: company

server)

Elaborate threat

(Penetrate,
asset: company

server

(Penetrate,
Asset: company server,
Target: Acme network)

(Access,
Asset: company server,
Target: company server)

(Defeat,
Asset: server access
control mechanism)

Identify protection

(Defeat,
Asset: server access
control mechanism,
Target: server access
control mechanism)

(Access,
Asset: Acme network

(Penetrate,
Asset: Acme network)

Elaborate threat

(Penetrate,
Asset: Acme network
Target: store server)

(Access,
Asset: Acme network,
Target: store server)

Identify exploitable target

(Control,
Asset: store server)

Elaborate threat

(Control,
Asset: store server
Target: store server)

(Access,
Asset: Acme network

(Penetrate,
Asset: Acme network)

(Access,
Asset: store server)

Elaborate threat

(Access,
Asset: store server)

(Penetrate,
Asset: store server)

Identify exploitable target
Identify exploitable target

Identify exploitable target

(Penetrate,
Asset: company database,
Target: company server)

Identify exploitable target

(Penetrate,
Asset: company

server)

Elaborate threat

Identify exploitable target

Identify exploitable target

Identify exploitable target

(Penetrate,
Asset: company server,
Target: server room)

Elaborate threat

(Access,
Asset: server room)

(Defeat,
Asset: server room,
Target: server room)

Identify exploitable target

Attack
Operationalisation

Analysis

Three-Layer Requirements Goal Model
(Domain Model) [8]

Fig. 1: An overview of the holistic attack analysis framework

assessment of the applicability of attack patterns, and cannot
efficiently incorporate CAPEC patterns into attack analysis.

In this paper, we propose a systematic and efficient approach
to leverage CAPEC attack patterns to operationalize attack
strategies in terms of realistic and detailed attack behaviors,
completing our holistic attack analysis framework (as illus-
trated in Fig. 1). The specific contributions of this paper
include:

1) Proposing a systematic method to model CAPEC attack
patterns as contextual goal models in order to semi-
automatically select and apply attack patterns based on
system context. The method is line with the one we have
applied to security patterns [11], but has been adjusted
to accommodate specific concepts in attack patterns.
We have pragmatically applied this method to model
102 CAPEC attack patterns, which can be reused for
operationalizing attack strategies.

2) Defining a systematic process and a collection of formal
inference rules to efficiently select attack patterns for
operationalizing attack strategies in terms of practical
attacks.

3) Implementing a prototype tool in order to semi-automate
the operationalization analysis and to facilitate the prac-
tical adoption of our approach.

4) Validating the entire holistic attack analysis approach,
both the attack strategy identification [6] and the attack
strategy operationalization, using a smart grid case study.

In the remaining part of this paper, we first describe
the baseline approaches we use for operationalizing attack
strategies in Section II. After that we detail the attack strategy

operationalization in Section III and Section IV, where we
present our method for modeling CAPEC attack patterns and
a systematic operationalization process. The supporting tool
for this approach is introduced in Section V, with the help of
the tool we evaluate our proposal using a smart grid case study
in Section VI. We compare our approach with existing work,
and discuss the advantages of our proposal in Section VII.
Finally, we conclude the paper and discuss future work in
Section VIII.

II. BASELINE

A. A Three-Layer Security Requirements Analysis Framework
We have proposed a three-layer security requirements anal-

ysis framework, in which we use an extended goal modeling
language to separately model and analyze the requirements of
STSs in three layers, namely, a business layer, an application
layer, and a physical layer, while capturing the connections
among layers [5]. In that work, we iteratively analyze security
requirements for each layer in order to eventually produce
holistic security solutions for the entire system. During the
security requirements analysis in each layer, related threat
information is required to in order to identify critical security
requirements. Such threat analysis was not accommodated by
the framework, instead we proposed to incorporate external
threat analysis approaches for this purpose (e.g., [12]) or to
import corresponding threat information from related studies
that have been performed in the same domain (e.g., [18]).
However, existing threat analysis approaches cannot holisti-
cally analyze multistage attacks on STSs. As a result, when
analyzing a particular domain that has not been investigated by

other studies, the three-layer security requirements framework
might not be able to precisely identify all critical security goals
due to the missing of holistic multistage attacks.

The holistic attack analysis framework, which we have pre-
liminarily outlined in [3], [4], fills the vacancy of holistic mul-
tistage attack analysis for the three-layer security requirements
framework. As shown in Fig. 1, a three-layer requirements
goal model, which we assume has already been built and
used in the holistic security requirements analysis based on
the methods in [5], is taken as an input of the holistic attack
analysis framework. This model can provide information about
the system under attack and help to identify realistic attacks
on the system across all three layers. Eventually, the identified
attacks will be transferred back to the three-layer security
requirements framework, helping us to analyze critical security
requirements and generate security solutions.

B. Attack Strategy Identification

As the first analysis step of our holistic attack framework,
we identify the alternative attack strategies that attackers can
adopt to damage systems. This has been investigated in our
recent work [6], as shown in the top left of Fig. 1. In particular,
we model an attacker’s high-level malicious intentions as
structured anti-goals, which can be refined and operationalized
like typical goals but from an attacker’s viewpoint. We argue
that the attacker has specific ways of elaborating their high-
level anti-goals until reaching clear and specific anti-goals, and
thus the elaboration of anti-goals amounts to the generation of
their attack strategies. In order to systematically investigate the
elaboration of malicious intention, we propose to characterize
an anti-goal as a quadruple:

• Asset: anything of value to stakeholders.
• Threat: an undesired condition imposed on an asset,

which is specified in terms of STRIDE threat cate-
gories [7]. Note that STRIDE is derived from an acronym
for the following six threat categories: Spoofing, Tam-
pering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege.

• Target: a system component which involves assets and is
vulnerable to attacks.

• Interval: a time period during which attackers carry out
attacks.

Using the structured anti-goal, we systematically examined
three real attacks to STSs [2, Chap.11] and investigated how
attackers elaborate their malicious intentions and produce
attack strategies. Specifically, we identified five anti-goal re-
finement patterns, as well as a systematic process for using
such patterns to generate attack strategies. In other words, our
previous study yielded the meta-strategy for generating attack
strategies from an attacker’s viewpoint, assisting us in discov-
ering potential attack strategies. Details of the attack strategy
analysis approach can be found in [6]. In this paper, we take
the identified attack strategies as input and operationalize them
in terms of realistic attack behaviors.

C. CAPEC Attack Patterns

Attack patterns document reusable attack knowledge to
bridge the knowledge gap and assist with attack analysis.
CAPEC, as a comprehensive and well-documented attack
knowledge repository, has been incrementally built, starting
in from 2007, and includes 504 attack patterns thus far. In
particular, CAPEC involves a wide range of attack categories,
from social engineering, to software attacks, to physical at-
tacks, perfectly meeting our need for holistic attack analysis.
However, such patterns are specified in textual form, which is
difficult to automatically analyze.

In this paper, we leverage CAPEC attack patterns to re-
alistically operationalize potential attacks from an attacker’s
viewpoint. In particular, given an attacker’s malicious inten-
tions (i.e., anti-goals), our approach will tell whether and
how attackers can achieve such malicious intentions with
respect to the comprehensive attack knowledge provided by
CAPEC attack patterns. To efficiently incorporate such a
large amount of knowledge into our analysis, we propose a
systematic method of modeling and analyzing CAPEC attack
patterns, enabling us to semi-automatically select and apply
these patterns.

D. Contextual Goal Models

Goal modeling languages have been extended with the
concept of context in order to accommodate context-sensitive
analysis, such as the proposal by Ali et al. [13]. In particular,
such approaches associate context labels with specific goal
model elements. Thus, a goal model element is taken into
account during corresponding goal model analysis if and only
if the associated context holds. In this paper, we propose
to model attack patterns in terms of such contextual goal
models in order to efficiently select applicable attack patterns
according to specific anti-goals and analyze the alternative
attack behaviors. We follow the approach in [13] to construct
contextual goal models, and propose a semi-automatic process
to check context and identify applicable attack patterns.

III. MODELING ATTACK PATTERNS

A pattern consists of three primary pattern concepts: Con-
text, Problem, and Solution [14], which specify a particular
solution can be applied to solve a problem in certain context.
In our previous work, we have mapped such pattern concepts
to contextual goal model elements (Table I) to semi-automate
selection and application of security patterns [11]. Attack
patterns, as a different type of pattern, are specified in the
same spirit, but from an attacker’s viewpoint, i.e., what an
attacker wants to attack (problem), how does the attacker
perform the attack (solution). Based on the semantics of attack
pattern attributes2, we have identified relevant attack pattern
attributes that specify problem, context, solution, and indirectly
map them to the contextual goal model elements, as shown in
Table I.

2A full CAPEC schema, https://capec.mitre.org/data/xsd/ap schema v2.7.xsd

TABLE I: Pattern-related conceptual mappings

Primary Pattern

Concept

Attack Pattern At-

tribute

Goal Model Element

Context Attack Prerequisites;
Technical Context

Context;
Domain Assumption

Problem
Attack Motivation-
Consequences;
Domains of Attack

Goals

Solution Attack Execution
Flow Tasks

TABLE II: Mappings between attack pattern impact and STRIDE
threats categories

STRIDE Attack Impact

Information
Disclosure

Read application data
Read memory
Read files or directories

Tampering

Modify application data
Modify application data memory
Modify application data files or directories
Unexpected states
Alter execution logic

Denial
of Service

DoS: instability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: crash / exit / restart
DoS: amplification
DoS: resource consumption (other)

Elevation
of Privilege

Gain privileges / assume identity
Execute unauthorized code or commands
Bypass protection mechanism

Spoofing Gain privileges / assume identity
Repudiation Hide Activities

On the basis of these mappings, we propose a systematic
method to model attack patterns as contextual goal models.
In the remainder of this section, we take the attack pattern
CAPEC-66: SQL Injection as an example to illustrate each
modeling step in detail (shown in Fig. 2). The complete
specification of this pattern can be found online3.

A. Modeling Attack Pattern Problems

A Problem solved by an attack pattern is actually the
malicious intention that an attacker wants to achieve, which
will be modeled as a Goal in the goal model. Specifically,
we identify such malicious intentions from the attack pattern
attributes Attack Motivation-Consequences and Domains of
Attack.

To seamlessly integrate the attack pattern analysis with
previous attack strategy analysis, we specify the malicious
intention of each attack pattern using structured anti-goals
(as introduced in Section II). In particular, we focus on the
Threat that is imposed by an attack pattern and the Target
that is exploited by an attack pattern, which are important for
automatic pattern matching (Section IV). The threat informa-
tion is elicited based on the attack impact specified in Attack
Motivation-Consequences. As the CAPEC schema enumerates
a total of 18 types of attack impacts, we map these impacts
to STRIDE threat categories (Table II), using these categories
as the Threat attribute in the resulting anti-goal. We elicit the

3https://capec.mitre.org/data/definitions/66.html

TABLE III: Typical targets of attack domains

Attack Domain Target

Social Engineering People

Supply Chain Software
Hardware

Communication
People
Software
Hardware

Software Software
Physical Security Hardware
Hardware Hardware

target information with respect to Domains of Attack of an
attack pattern. In particular, the CAPEC schema includes six
specific domains, and we identify typical attack targets for
each of these domains, as shown in Table III. In the attack
pattern example (Fig. 2), the pattern has an impact “Read
application data”, which is mapped into the threat Information
Disclosure as modeled in the anti-goal G4. In addition, as this
pattern is under the software domain, we specify the Target
attribute of G4 as software.

B. Modeling Attack Pattern Context

The context of an attack pattern specifies under which situa-
tion the attack can be applied to achieve an attacker’s malicious
intention. Thus, we model such context and associate it with
the operationalization link between goals and tasks in the goal
model, where the goals can only be operationalized into the
tasks if the context holds (e.g., context C1 shown in Fig. 2).

We obtain the context information of an attack pattern by
looking at the attack pattern attributes Attack Prerequisites and
Technical Context. As the context information is specified in
natural language, analysts have to manually check such context
during the application of attack patterns. After reviewing
the context information of 102 attack patterns that we have
modeled (Section III-D), we propose a set of formal predi-
cates for specifying domain-independent context, which can
be automatically checked based on the formalized concepts
defined in three-layer requirements goal model [5]. Such pred-
icates include protected by, communicate, use technique,
use data from, and accept user input, detailed reasoning
with these predicates will be presented in Section IV. It is
worth noting that the proposed predicates do not express
contexts that cannot be captured and checked in the three-
layer requirements goal model. Such contexts are normally
too detailed to capture in the domain model, for example,
“The targeted application runs with elevated OS privileges”.
These cases will require manual analyst intervention via an
interactive pop-up in the tool.

In our example, the SQL Injection pattern has an attack
prerequisite “SQL queries used by the application to store,
retrieve or modify data”, which is then formalized using the
predicate use technique as shown in Fig. 2. Note that if there
are several pieces of context information, they are specified in
a conjunctive way, i.e., all of them have to hold in order to
apply the corresponding attack pattern.

C1

(T1)
Perform SQL

Injection

(T3)
Sniff network

communications with
application using a utility

 such as WireShark

(T14)
Experiment and try

to exploit SQL Injection
vulnerability

(T9)
Determine user-

controllable input susceptible
to injection:

C1 C1C1 C1 = use_technique(target_application,
sql_query)

(G4)
Threat: Information

Disclosure
Target: software

(G3)
Threat: Tampering
Target: software

(G2)
Threat: Elevation of

Privilege
Target: software

(G1)
Threat: Spoofing,
Target: software

(T2)
Spider web
sites for all

available links

(T5)
Use web browser to

inject input through text
fields or through HTTP

GET parameters

(T6)
Use a web application

debugging tool to
modify HTTP POST

parameters etc.

(T8)
Use network-level
packet injection

tools such as netcat
to inject input

(T7)
Use modified client

(modified by reverse
engineering) to

inject input.

(T10)
Use public
resources

(T11)
Add logic to query, and

use detailed error
messages from the server

to debug the query

(T13)
Try stacking

queries

(T12)
Use "Blind

SQL Injection

Legend

Goal

Domain
Assumption

Task

and-refine

refine

operationalize

(T4)
Obtain an

 inventory of application
functionality

Problem

Context

Solution

Fig. 2: An example attack pattern model

C. Modeling Attack Pattern Solutions.
Solutions of attack patterns are specific attack actions that

are performed by attackers using concrete attack techniques.
We elicit such information from the attack pattern attribute
Attack Execution Flow, and model each attack action as a
task in the goal model. In particular, we focus on capturing
the alternative attack actions for implementing the attack.

When modeling the solution section of the pattern, we
first create a general task to summarize the overall attack
that achieves the previously modeled anti-goals, such as T1:
Perform SQL Injection shown in Fig. 2. The Attack Execution
Flow is specified in terms of a sequence of attack steps
that are required to fulfill the attack, thus, we capture this
information as sub-tasks, and-refining the general task. In our
example, the tasks T4, T9, and T14 are individual attack steps
specified in the Attack Execution Flow. Moreover, within each
attack step, the attack pattern also describes alternative attack
techniques that can be used for performing the attack step.
Thus, we model each of these techniques as a refinement to
the corresponding attack step. For example, in Fig. 2, the tasks
T2 and T3 present two alternative attack techniques that can
be applied to perform task T4. Note that when specifying the
tasks, we reuse the original description provided by attack
patterns, maintaining their security expertise in the model.

D. Applying the Modeling Method
In order to promote the adoption of our attack pattern anal-

ysis approach, we have pragmatically modeled 102 CAPEC
patterns. In particular, we decide which the patterns to be
modeled according to the following criteria: first, the select
patterns should cover all attack pattern domains (as shown in

Table III) in order to assist our attack analysis with compre-
hensive attack knowledge. Secondly, the pattern specifications
need to be complete, i.e., all the attack pattern attributes that
are required to build the contextual goal model should be
well documented. Specifically, each CAPEC pattern has been
specified with an attribute Completeness, valuing from Hook,
Stub, to Complete, and thus we focus on patterns that have
complete specification. It is worth noting that most attack
patterns under the Social Engineering and Physical domains
have only incomplete specifications. In order to preserve the
comprehensive coverage of the selected patterns, instead of
dropping all such incomplete patterns, we manually identify
the required pattern attributes based on the References of those
patterns, which have been specified for all attack patterns.

In the CAPEC repository, each attack pattern has been doc-
umented with related patterns that are more abstract or more
detailed to it, using ChildOf relations. We also capture such
relations among the modeled 102 patterns, forming pattern
hierarchies4, which can help us to reduce the complexity of
the attack operationalization analysis.

Overall, one author has spent three person-days pragmat-
ically applying the proposed method to model 102 (out of
504) attack patterns. In particular, during the modeling prac-
tice, we noticed that this modeling task requires modelers
to first thoroughly understand the rationale of the pattern to
be modeled. On average, each pattern took the author 10-20
minutes to model, depending on the complexity of the pattern.
The obtained models can be (re-)used to operationalize attack
strategies in a semi-automatic way, using our prototype tool

4http://disi.unitn.it/⇠li/ap/pattern\ hierarchy.pdf

(Section IV-V). A full list of modeled attack patterns can
be found online5. Based on the above inclusion criteria, we
argue the 102 patterns, as the initial repository of modeled
attack patterns, are good enough to accommodate our attack
analysis in different layers. We can incrementally add other
patterns to further improve our attack analysis later. Also, other
researchers can follow our method to model attack patterns and
contribute to the repository.

IV. OPERATIONALIZING ATTACK STRATEGIES USING
ATTACK PATTERNS

In this section, we present a tool-supported systematic
process for operationalizing attack strategies and eventually
generating a collection of realistic attack alternatives that
can satisfy an attacker’s root anti-goal. The overall attack
operationalization process is shown in Fig. 3, which can
be semi-automated with the support of our prototype tool
(Section V). In particular, after manually selecting a leaf anti-
goal to analyze, we can automatically find attack patterns
that are relevant to an anti-goal. Then, we semi-automatically
determine the applicability of the relevant patterns. Finally,
we automatically generate alternative attacks based on the
applicable attack patterns. In the remainder of this section,
we will describe each analysis step in detail.

A. Select A Leaf Anti-Goal
The operationalization analysis takes the attack strategy

model as an input, which is obtained from our attack strategy
analysis (discussed in Section II). An example of the attack
strategy model is shown at the top of Fig. 4, which specifies
what an attacker intends to attack and why. To operationalize
different attack strategies, we need to iteratively perform
operationalization analysis for each leaf anti-goal in the at-
tack strategy model (i.e., G8,G9,G10,G11). As highlighted in
Fig. 4, we select anti-goal G10 for illustration.

B. Find Relevant Attack Patterns
To select appropriate attack patterns that operationalize the

given anti-goal, we first identify all relevant attack patterns
according to the problem we have modeled for each attack
pattern. Since the problem of an attack pattern has also been
modeled as structured anti-goals, we can identify relevant
patterns by matching the threat and target specified in the
structured anti-goals. Such a match is automated using the
inference rule REV (Table IV), implemented in our support-
ing tool: given an anti-goal G1 which imposes a threat TH
to a target TA1, if an attack pattern AP has an anti-goal G2
(as its problem), where G2 imposes the same threat TH to a
category of target TA2 that TA1 belongs to, then the attack
pattern AP is relevant to the anti-goal. For example, as shown
in Fig. 4, we identify CAPEC pattern SQL Injection is relevant
to G10, as G10 can be matched with the problem G2 of SQL
Injection according to rule REV . Similarly, the other two
patterns CAPEC-186 Malicious Software Update and CAPEC-
100 Overflow Buffers are also identified as relevant to the

5http://disi.unitn.it/⇠li/ap/all attack pattern models.pdf

anti-goal G10. Note that, in Fig. 4, we use pentagons to
represent collapsed attack pattern models in order to provide a
better overview of the operationalization analysis (an excerpt
of an uncollapsed pattern model is indicated in the bottom left
corner).

When performing the attack pattern selection analysis, we
take into account the pattern hierarchies in order to select the
most appropriate patterns. For example, as the SQL Injection
pattern has four child patterns which are also relevant to G10,
we model them as refinements of SQL Injection, as shown
in Fig. 4. According to such a hierarchy, a pattern and its
ascendants represent only one operationalization alternative
rather than multiple alternatives.

C. Identify Applicable Attack Patterns

After finding attack patterns that are relevant to an anti-
goal, we further check their context to determine whether
these patterns are applicable in current system context. We
import the three-layer requirements goal model as the domain
model that captures system context, against which we can
automatically check the attack pattern context. To this end,
we have defined a number of inference rules that specify the
implication relation between the formal context predicates and
the goal model predicates, which are shown as CR1-6 in
Table IV. Such rules are defined based on the semantics of
concepts defined in the three-layer requirements goal model.
The application of these rules is domain-independent, i.e.,
any domain scenario that has been modeled as a three-layer
requirements goal model can apply such rules, and thus further
check the context of attack patterns. In particular, the formal
context predicates are put in the left hand side, while the
right hand side presents the corresponding facts in the three-
layer requirements goal model. For instance, rule CR1 and
CR2 express that if there is a dependency relation between
two actors, it implies the context that the two actors are
communicating with each other. Detailed information about
the formal predicates of the three-layer goal model can be
found in [5].

On top of these context check rules (CR1-6), we have
defined specific applicability rules for each attack pattern, as
different patterns require different contexts. For example, the
rule APP shown in Table IV is specifically defined for the
pattern SQL Injection. This rule says if the sql injection
pattern has been identified as relevant to an anti-goal G,
and the target of G uses the technique sql query, then the
sql injection pattern is applicable to operationalize G. The
entire set of pattern-specific applicability rules, which we have
defined for all the 102 attack patterns, can be found online6.

When identifying the applicable pattern, we also consider
the hierarchy among patterns. As “parent” patterns focus on a
more abstract problem, concerning a more general context, we
first check the parent patterns. If a parent pattern is identified
as inapplicable, then all its child patterns will be identified as
inapplicable without additional checking; if a parent pattern is

6http://disi.unitn.it/⇠li/ap/attack pattern contexts.dl

Attack strategy
model

Relevant
attack

patterns

Applicable
attack patterns

Three-
layer goal

models

Find
relevant attack

patterns

Identify
applicable
patterns

 Generate
alternative

attacks

No

Yes

All leaf anti-
goals have

been analyzed Select a
leaf anti-goal

to analyze

Attack Knowledge Pre-processing

Model
attack patterns

Alternative
attacks

Legend

Input/
Output

Data Flow

Sequence Flow

Automatic
Activity

User
Activity

CAPEC
Attack pattern

models
Textual CAPEC
Attack patterns

Fig. 3: A systematic process for attack strategy operationalization

TABLE IV: Disjunctive Datalog rules for attack operationalization

REV relevant to(AP,G1) :- has threat(G1, TH), has target(G1, TA1), has(AP,G2), has threat(G2, TH),
has target(G2, TA2), isa(TA1, TA2)

CR1 communicate(A,B) :- depend(A, ,B)
CR2 communicate(A,B) :- depend(B, ,A)
CR3 use technique(A,R) :- has(A,R), resource(R)
CR4 use data from(A,B) :- depend(A,R,B), data(R)
CR5 accept user input(A) :- depend(A,R,B), data(R), human(B)
CR6 protected by(A,SM) :- sec goal(SG), has asset(SG,A), operationalize(SM,SG)

APP applicable to(sql injection,G) :- relevant to(sql injection,G), has target(G, TA), use technique(TA, sql query)

ALT1 achieved(G1) _ ... _ achieved(Gn) :- refine({G1...Gn}, G0), achieved(G0)
ALT2 achieved(G1) :- and refine(G1, G0), achieved(G0)

applicable, then we will further check each of its child patterns.
For example, as shown in Fig. 4, we first check the context of
SQL Injection, Malicious Software Update, Overflow Buffers,
(i.e., C1, C2, C3), which turns out that only SQL Injection
is applicable (i.e., C1 holds). Then, we further check the
context of child patterns of SQL Injection, and identify that
only pattern Blind SQL Injection is applicable.

D. Generate Alternative Attacks

Once identifying all applicable attack patterns to an anti-
goal, we unfold the collapsed applicable attack patterns (i.e.,
the pentagon notations in Fig. 4) and show detailed attack
behaviors (i.e., the solution part of an attack pattern model
in Fig. 2). As such, we complete the entire attack model,
including both the attack strategies and attack behaviors.

Once the entire attack model is obtained, we want to
answer the question “Is the root anti-goal achievable?”, “If
so, how many different combinations of attack behaviors can
be performed to achieve the goal?”. To this end, we define
disjunctive Datalog rules to exhaustively explore the space
of alternatives, which has been implemented in the prototype
tool using the DLV inference engine7. As shown in Table IV,
the rule ALT1 means if a goal G0 is alternatively refined

7www.dlvsystem.com

by sub-goals G1...Gn, then the achievement of each sub-
goal serves as an alternative to achieve G0. On the other
hand, if a goal G0 is and-refined by sub-goals G1...Gn, then
the achievement of all the sub-goals is required to achieve
G0, i.e., no more alternatives are introduced. This rationale is
implemented as the rule ALT2. By applying these two rules
to the root anti-goal of the attack model, we are able to obtain
all the alternative attacks.

The identified alternative attacks will be prioritized and used
to assess the criticality of security requirements, as part of our
three-layer security requirements analysis [5], which is beyond
the scope of this paper.

V. SUPPORTING TOOL

We have developed a prototype tool to support the applica-
tion of the proposed attack analysis approach. This prototype
is implemented on top of our existing modeling and analysis
tool MUSER [15], which was designed to support our three-
layer security requirements analysis framework. In this sense,
the attack analysis approach can be well integrated with the
three-layer security requirements analysis. In particular, the
three-layer requirements goal model, which was built and used
in security requirements analysis, can be easily imported and
used by the attack analysis.

Attack Strategy(G5)
Threat: Elevation of privilege,
Asset: Energy management

application,
Interval: Generate bill (G7)

Threat: Elevation of privilege,
Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

(G6)
Threat: Elevation of privilege,

Asset: Energy management application,
Target: Energy supplier server,

Interval: Generate bill

Target-based refinement

Threat-based refinement

(G8)
Threat: Elevation of privilege

(Reach),
Asset: Energy supplier server,
Threat: Energy supplier server,

Interval: Generate bill

(G9)
Threat: Elevation of privilege

(Access),
Asset: Energy supplier server,
Threat: Energy supplier server,

Interval: Generate bill

Protection-based refinement
(G11)

Threat: Defeated security mechanism,
Asset: Energy management application,

Target: Firewall,
Interval: Generate bill

(G10)
Threat: Elevation of privilege,

Asset: Energy management application,
Target: Energy management application,

Interval: Generate bill

CAPEC-66
SQL Injection

(T1)
Perform SQL

Injection

C1C1 C1=use_technique(target_
application, sql_query)

(G2)
Threat: Elevation of

Privilege
Target: software

(G1)
Threat: Spoofing,
Target: software

CAPEC-100
Overflow Buffers

CAPEC-186
Malicious Software

Update

CAPEC-7
Blind SQL
Injection

CAPEC-108
Command Line

Execution through SQL
Injection

CAPEC-109
Object Relational
Mapping Injection

CAPEC-110
SQL Injection through

SOAP Parameter
Tampering

C1 C2

C3

C4 C5 C6

C7

X X
X

X
X

(T14)
Experiment and try

to exploit SQL Injection
vulnerability

(T9)
Determine user-

controllable input susceptible
to injection:

(T4)
Obtain an

 inventory of application
functionality

Attack Pattern
 Model

Fig. 4: Operationalize a leaf anti-goal using attack patterns

This prototype tool, as an “add-on” to MUSER, is a Java-
based program. It translates graphical models in the canvas
into Datalog facts, which are inferred according to the Dat-
alog rules we have proposed in this paper (Table IV) using
the inference engine DLV. All the inference results will be
transferred back and visualized in the canvas. In particular, this
prototype provides us with the following features that support
the attack analysis.

• Support modeling attack strategies and attack patterns.
• Automatically identifying relevant attack patterns for

each leaf anti-goal in the attack strategy model, using
the proposed operationalization rules.

• Semi-automatically check the context of the identified
relevant attack patterns to determine their applicability.

• Once all leaf anti-goals are operationalized, automatically
generating all the multistage attack alternatives with
realistic and concrete attack behaviors.

VI. VALIDATION

In order to validate the proposed holistic attack analysis
approach, we apply it to a smart grid case study. We focus
on identifying applicable attacks which can tamper with a
customer’s energy consumption data. The advanced metering
infrastructure of a smart grid presents a typical STS, which
involves social actors (e.g., energy supplier and consumer)
in a real-time metering and pricing process. In addition, a
number of applications (e.g., energy management system) and

physical hardware (e.g., smart meter) are used to support the
interactive process. A three-layer requirements goal model,
which was constructed and used to analyze holistic security
requirements for smart grid [5], is taken as the domain model
for the holistic attack analysis. The model is built based on
the smart grid specification [16], [17], including 16 actors,
60 goals, 64 tasks, 6 resources, 54 (and-)refinement links, 49
operationalization link, and 15 dependency links. Given the
domain model, we spent three person-hours in applying the
holistic attack analysis approach with the tool support. Note
that the domain model and all other models that have been
built and analyzed during our validation can be found online8.

A. Generate Attack Strategies
As the first part of our holistic attack framework, we identify

alternative attack strategies using our systematic approach [6].
In particular, we start from determining an anti-goal to analyze,
which attacks the integrity of energy consumption data, i.e.,
{Threat: Tampering, Asset: Energy consumption data, Inter-
val: Real-time pricing is applied}. Having this anti-goal as a
root goal, we manually applied anti-goal refinement patterns
based on the domain model to systematically refine the anti-
goal from an attacker’s viewpoint and generate alternative at-
tack strategies [6]. The resulting attack strategy model includes
53 anti-goals, 39 refinement links, and 20 and-refinement links,
implying 12 alternative attack strategies.

8http://disi.unitn.it/⇠li/ap/validation.zip

rogue
integration
procedures

malicious
software

implanted

integrity
modification

during
distribution

authentic
ation

bypass
authentic

ation
abuse

try common
usernames

and
passwords

rainbow
table

password
cracking

brute
force

password
brute

forcing dictionary
based

password
attack

accessing
functionality
not properly
constrained

by acls

physical
destruction
of device or
component

using a
snap gun

lock to
force a

lock

lock
picking

bypassin
g

physical
locks

bypassing
physical
security

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,

Interval: Generate bill
Threat: Elevation of privilege (Reach),

Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate billThreat: Defeated security mechanism,
Asset: Physical access control,

Interval: Generate bill

Threat: Elevation of privilege,
Asset: Energy management application,

Target: Energy supplier server,
Interval: Generate bill

Threat: Elevation of privilege (Access),
Asset: Energy supplier server,
Target: Energy supplier server,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Physical access control,
Target: Physical access control,

Interval: Generate bill

Threat: Defeated security mechanism,
Asset: Authorization,
Target: Authorization,
Interval: Generate bill

No additional attacks
are required

Fig. 5: An excerpt of the final attack model

B. Operationalize Attack Strategies

Once alternative attack strategies are obtained, we opera-
tionalize them in terms of realistic attacks, using the attack
pattern approach proposed in this paper. Using the 102 attack
patterns we have modeled, we first automatically identify
relevant attack patterns for all the 14 leaf anti-goals in the
attack strategy model, resulting in 368 attack patterns in total.
Each of the leaf anti-goals, on average, has been matched with
26 relevant patterns. All the identified relevant patterns are
automatically organized in a hierarchical manner to facilitate
the applicability analysis. After semi-automatically checking
the context of all the relevant attack patterns, we derive 28
applicable attack patterns for all of the 14 anti-goals, covering
social, software, and physical attacks.

Take Fig. 5 as an example, which shows an excerpt of the
final attack model. A wide spectrum of attack patterns have
been identified concerning the root anti-goal, varying from
social attacks (e.g., rogue integration procedures), to software
attacks (e.g., rainbow table password cracking), to physical
attack (e.g., lock picking). In particular, according to the

attack model, we can identify alternative (multistage) attacks
that achieve the root anti-goal, i.e., imposing the elevation
of privilege threat to the energy management application. For
instance, an attacker can first perform the lock picking attack to
reach the energy supplier server and then perform the rainbow
table password cracking attack to gain access into the energy
supplier server.

Based on the complete attack model, including both high-
level attack strategies and realistic attacks behaviors, we
automatically generate 108 realistic attack alternatives, each
of which consists of one or multiple attacks. To validate the
analysis results, we compared them with a comprehensive
security analysis performed on the same smart grid case [18],
this study took a total of 16 person-months to identify threats,
vulnerabilities and security requirements. We find out that our
identified attack alternatives can cover all the threats to the
integrity of energy consumption data that have been identified
manually in the comparison case. Beyond that, our results can
discover additional detailed attacks that can be performed by
attackers, particularly how such attacks can be composed to

form multistage attacks. For example, the comparison study
discovered a high-level threat “Tampering with SM’s firmware”
(Table 4, T.5 in [18]), while our results yield a corresponding
multistage attack which first performs CAPEC-16: Dictionary-
based Password Attack (consisting of four detailed attack
steps) to defeat the password-based authorization and gains ac-
cess to the smart meter firmware, and then performs CAPEC-
186: Malicious Software Update to tamper with the smart
meter firmware.

By checking the vulnerabilities exploited by the identified
attack alternatives, analysts can identify holistic and effective
security requirements. We leave the specific description of how
to feed these attacks back into the three-layer model (the back-
edge in Fig. 1) to future work.

C. Threats to Validity

We here adopt a specific classification used by Runeson and
Höst [19] to classify validity, which has an focus on case study
research in software engineering. In particular, we describe a
number of threats to internal validity, external validity, and
reliability, respectively.

Internal validity considers the causal relations between
factors investigated in the case study. We evaluated the ef-
fectiveness of our attack analysis approach by considering
how many threats can be identified by the approach. As our
approach relied on attack knowledge from existing attack
knowledge sources (i.e., the 102 attack patterns we have
modeled in Section III), the coverage and the quality of the
imported attack knowledge can affect the analysis results,
introducing a threat to the internal validity of our study.

Regarding this threat, firstly, we have modeled a signifi-
cant number of attack patterns (102 patterns in total), which
cover a broad scope of attacks (e.g., social attacks, software
attacks, and physical attacks), ensuring the coverage of the
reused attack knowledge as much as we can. In addition,
we have provided detailed guidelines for modeling attack
patterns, allowing other researchers to incrementally model
new patterns and enrich the reused knowledge set. Secondly, as
we have noticed that a number of CAPEC attack patterns have
incomplete specifications when we pragmatically modeled the
102 attack patterns (reported in Section III-D), we manually
complemented such patterns with corresponding information
in order to ensure the quality of the reused attack patterns. In
the future, we should keep updating the attack knowledge used
in our approach with the recent advances of attack patterns in
order to ensure the effectiveness of our approach.

External validity is concerned with to what extent it is
possible to generalize the findings of our case study. Thus far
we have only applied our approach to one case study, imposing
a threat to the external validity of our study. However, as
a confirmative case study, we purposely selected a typical
STS rather than random cases to study, which might gain
more insight into common situations [20]. In order to further
mitigate this threat, in the future, we plan to perform more
case studies.

Reliability is concerned with to what extent the data and the
analysis are dependent on the specific researchers. This study
was performed by only one person (i.e., the first author), which
introduced a threat to reliability. Although such a threat can be
mitigated by the fact that the performer is one of the method
designers and has related security expertise in attack analysis,
we acknowledge the need of having more people evaluate the
analysis results. In the future, when performing additional case
studies, we intend to have multiple participants work together.

VII. DISCUSSION AND RELATED WORK

A. Attacker-oriented Analysis.

“Know your enemies and know yourself, you will not
be imperiled in a hundred battles.” [21]

Inspired by the “Art of War” philosophy, several approaches
have been proposed to model and analyze security attacks from
an attacker’s viewpoint. Lin et al. capture the requirements
of a malicious user that subverts an existing requirement as
anti-requirements, which are incorporated into abuse frames to
represent threats and analyze security requirements [22]. Van
Lamsweerde proposed to use anti-goals to model attacker’s
malicious intention, and then exploit alternative attacks by
systematically refining such anti-goals [23]. Sindre and Opdahl
extend traditional use cases to cover misuse cases, which
describe harmful behaviors to a system performed by adver-
saries [24]. Building on the misuse cases, they propose a
systematic process for eliciting security requirements. Elahi
et al. extend goal models to model attacker templates which
consist of malicious goals and tasks, based on which they
assess system risks and identify countermeasures [25]. All
of theses approaches require attacker knowledge as input,
based on which they can analyze the influences of attacks
on systems and identify corresponding countermeasures. In
particular, these approaches make a strong assumption about
the availability of relevant knowledge, e.g., “The proposed
framework assumes that analysts have knowledge about vul-
nerabilities, potential attacks, and proper countermeasure or
can obtain such information” [25].

We argue that performing the attack analysis from an
attacker’s viewpoint is a knowledge-intensive task, where the
body of attack knowledge plays an important role. However,
as pointed out by Souag et al., security knowledge is hard
to acquire for software designers in reality [26]. Without
bridging the knowledge gap, the assumptions made in the
above approaches become unrealistic, preventing the real
adaption of those attack analysis approaches. Our approach
tackles this challenge by building on realistic and reusable
knowledge from existing attack knowledge repository, and can
complement the above attacker-oriented analysis approaches.
In particular, our approach identifies alternative attacks based
on realistic attack knowledge, which can be used by those
approaches to perform particular analysis, e.g., analyzing the
impact of the attacks.

B. Attack Pattern-based Knowledge Reuse.

Moore et al. first emphasized the importance of reusing
known attack knowledge, which significantly affects the prac-
ticality of attack analysis methods [27]. Therefore, they define
attack patterns, which encapsulate attack knowledge, in order
to facilitate knowledge-intensive attack analysis. In particular,
each pattern consists of four sections: goal, precondition,
attack steps, and post-condition.

Other researchers have been inspired by Moore’s work,
and have defined various types of attack patterns. Gegick and
Williams define software attack patterns in term of a sequence
of events, using regular expressions [28]. Specifically, each
event is expressed by its associated component, such as
user, server, hard disk, etc. By automatically matching such
patterns with system design, the approach can assist analysts
in identifying system vulnerabilities. In [29], Fernandez et al.
specify attack patterns (i.e., misuse pattern) based on POSA
template [30], which they have also used to specify security
patterns. The POSA template includes much more sections
than the initial one defined by Moore et al., such as context,
known uses, countermeasures, etc., which contribute to the
practicality of attack pattern-based analysis. Although the
above approaches contribute to the theoretical foundation of
attack patterns, they have not been pragmatically applied to
develop attack patterns. For example, Moore et al. illustrate
their approach with four patterns [27], and we are unaware
of subsequent work to develop further patterns; Fernandez has
only developed three misuse patterns, as presented in his recent
book [31].

Compared to the above theoretical approaches which focus
on defining attack patterns, CAPEC emphasizes the pragmatic
development of security patterns, which is initiated as a
baseline catalog of attack patterns along with a comprehensive
schema and classification taxonomy and has accumulated 504
attack patterns thus far. Since CAPEC provides a significant
amount of practical security knowledge, it is receiving an
increase in attention from both academia and industry. Thus,
we choose CAPEC as the realistic attack knowledge source
used in our approach.

One of the challenges of using the CAPEC repository
is dealing with it’s considerable size. Kaiya et al. define
term-maps, which link terms in requirements specifications to
specific security terms used in CAPEC, so as to automatically
associate attack patterns to requirements specifications and
further derive security requirements [10]. Engebretson and
Pauli enrich the CAPEC attack patterns with the concepts
parent threat and parent mitigation in order to facilitate the
navigation among the large number of attack patterns [8]. Yuan
et al. map CAPEC patterns to the STRIDE threat categories,
based on which they develop a tool to facilitate the retrieval
of CAPEC patterns [9]. However, all the above approaches do
not check the applicability of attack patterns based on context.
Thus, the retrieved patterns in these approaches may still
include many non-applicable patterns, which need to be further
analyzed by analysts in order to determine their applicability.

Our approach contributes to the context-based pattern selec-
tion by clearly modeling the context, problems, and solutions
of each attack pattern in terms of contextual goal models,
which can be semi-automatically analyzed based on domain
models. As such, our proposal can help analysts to identify
applicable attack patterns in a more effective manner.

Apart from the retrieval and selection issues of CAPEC
patterns, existing approaches only focus on reusing the knowl-
edge of attack behaviors from the CAPEC patterns, without
mining the intention of attacks. For example, Kim and Kim
extract possible attack behaviors from CAPEC, and specify
such behaviors using formal language in order to simulate
attacks within specific system settings [32]. However, their
approach cannot analyze combined behaviors from different
attack patterns, and thus can only detect limited number of
attacks. Our proposal is a continuation of our previous work
concerning attacker intention analysis [6]. By associating the
CAPEC patterns with an attacker’s high-level intention, we are
able to capture multistage attacks which consists of several
attack patterns, revealing a larger space of attacks.

C. Practical Challenges in Reusing Attack Patterns.
Encapsulating knowledge as structural patterns is an effec-

tive way of reusing knowledge. Various patterns have been
proposed to relieve knowledge-intensive analysis in differ-
ent domains, such as requirements patterns, design patterns,
security patterns, attack patterns, etc. Souag et al. survey
reusable knowledge-based security requirements engineering
approaches over the last 20 years, which shows that 9 out
of 95 surveyed papers represent reusable knowledge in the
form of patterns (other forms include catalogs, taxonomies,
etc.) [26]. Although patterns can be reused in a comparatively
easy manner, Araujo et al. have pointed out that analysts need
first to have a thorough understanding of available patterns
in order correctly select and apply them [33]. This issue
has been confirmed by us when applying our approach to
the CAPEC patterns. When dealing with a small number of
patterns, this issue will not be a challenge, as the analysts
can afford the learning costs. However, we argue that such
issue can impose practical challenges when analyzing a large
number of patterns, e.g., the 504 CAPEC attack patterns.
Facing this challenge, our approach formalizes the context of
attack patterns and semi-automates the context-based attack
pattern selection analysis, relieving analysts from scrutinizing
the detailed context of all patterns. We have applied the
approach to pragmatically process 102 (out of 504) attack
patterns. Such processing must be performed only once, and
the resulting models can be directly used by our prototype
tool.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we first propose a systematic method to
construct contextual goal model from CAPEC attack patterns,
and have practically applied this method to model 102 patterns.
Based on these models, we propose a systematic analysis
process and a collection of formal inference rules in order

to help analysts to effectively select attack patterns for opera-
tionalizing an attacker’s anti-goals. A prototype tool has been
developed to semi-automate such analysis. In particular, this
analysis approach is integrated with our previous work which
holistic analyzes attack strategies from an attacker’s viewpoint,
and thus completes an entire attack analysis framework. We
use a smart grid case study to validate the entire attack analysis
framework, the output of which is compared with an expert
process that was performed manually. The comparison shows
that our approach can effectively identify realistic attacks,
especially those involving multistage attacks.

In the future, beyond the 102 CAPEC patterns that have
been modeled, we intend to model more domain-specific
attack patterns, especially physical attack patterns, in order to
improve the usefulness of our framework in conducting multi-
layered analysis. Moreover, we will further validate the utility
of this attack analysis approach in the context of our three-
layer security requirements framework. Finally, based on the
attack model we constructed, we want to investigate how to
timely identify and tackle multistage attacks at runtime.

ACKNOWLEDGEMENTS

Trento authors are supported by the ERC advanced grant
267856, titled “Lucretius: Foundations for Software Evo-
lution”. Jennifer Horkoff is supported by an ERC Marie
Skodowska-Curie Intra European Fellowship (PIEF-GA-2013-
627489), and by a Natural Sciences and Engineering Research
Council of Canada Postdoctoral Fellowship (Sept. 2014 - Aug.
2016).

REFERENCES

[1] L. Ponemon, “Cost of data breach study: Global analysis,” Poneomon
Institute sponsored by IBM, Tech. Rep., 2015.

[2] K. D. Mitnick and W. L. Simon, The art of deception: Controlling the
human element of security. John Wiley & Sons, 2011.

[3] T. Li, E. Paja, J. Mylopoulos, J. Horkoff, and K. Beckers, “Holistic secu-
rity requirements analysis: An attacker’s perspective,” in Requirements
Engineering Conference (RE), 2015 IEEE 23rd International. IEEE,
2015, pp. 282–283.

[4] T. Li, J. Horkoff, K. Beckers, E. Paja, and J. Mylopoulos, “A holistic
approach to security attack modeling and analysis,” in Proceedings of
the Eighth International i* Workshop, 2015, pp. 49–54.

[5] T. Li and J. Horkoff, “Dealing with security requirements for socio-
technical systems: A holistic approach,” in Advanced Information Sys-
tems Engineering (CAiSE 2014). Springer International Publishing,
2014, pp. 185–200.

[6] T. Li, J. Horkoff, E. Paja, K. Beckers, and J. Mylopoulos, “Analyzing
attack strategies through anti-goal refinement,” in The Practice of
Enterprise Modeling (PoEM 2015). Springer International Publishing,
2015, pp. 75–90.

[7] A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Sons, 2014.

[8] P. H. Engebretson and J. J. Pauli, “Leveraging parent mitigations and
threats for capec-driven hierarchies,” in Sixth International Conference
on Information Technology: New Generations, 2009. ITNG’09., 2009,
pp. 344–349.

[9] X. Yuan, E. B. Nuakoh, J. S. Beal, and H. Yu, “Retrieving relevant
capec attack patterns for secure software development,” in Proceedings
of the 9th Annual Cyber and Information Security Research Conference.
ACM, 2014, pp. 33–36.

[10] H. Kaiya, S. Kono, S. Ogata, T. Okubo, N. Yoshioka, H. Washizaki, and
K. Kaijiri, “Security requirements analysis using knowledge in capec,”
in Advanced Information Systems Engineering Workshops. Springer,
2014, pp. 343–348.

[11] T. Li, J. Horkoff, and J. Mylopoulos, “Integrating security patterns
with security requirements analysis using contextual goal models,” in
The Practice of Enterprise Modeling (PoEM 2014). Springer Berlin
Heidelberg, 2014, pp. 208–223.

[12] Y. Asnar, T. Li, F. Massacci, and F. Paci, “Computer aided threat
identification,” in Commerce and Enterprise Computing (CEC), 2011
IEEE 13th Conference on. IEEE, 2011, pp. 145–152.

[13] R. Ali, F. Dalpiaz, and P. Giorgini, “A goal-based framework for con-
textual requirements modeling and analysis,” Requirements Engineering,
vol. 15, no. 4, pp. 439–458, 2010.

[14] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
towns, buildings, construction. Oxford University Press, 1977, vol. 2.

[15] T. Li, J. Horkoff, and J. Mylopoulos, “A prototype tool for modeling
and analyzing security requirements from a holistic viewpoint,” in The
CAiSE’14 Forum at the 26th International Conference on Advanced
Information Systems Engineering, 2014, pp. 185–192.

[16] J. Cuellar and S. Suppan, “A smart metering scenario,” Network of
Excellence on Engineering Secure Future Internet Software Services and
Systems, eRISE 2013, 2013.

[17] N. Framework, “Roadmap for smart grid interoperability standards,
release 2.0,” NIST special publication, vol. 1108R2, 2012.

[18] H. Suleiman and D. Svetinovic, “Evaluating the effectiveness of the
security quality requirements engineering (square) method: a case study
using smart grid advanced metering infrastructure,” Requirements Engi-
neering, vol. 18, no. 3, pp. 251–279, 2013.

[19] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[20] H. Estrada, A. M. Rebollar, O. Pastor, and J. Mylopoulos, “An empirical
evaluation of the i* framework in a model-based software generation
environment,” in Advanced Information Systems Engineering. Springer,
2006, pp. 513–527.

[21] S. Tzu, The art of war. Shambhala Publications, 2011.
[22] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett, “Introducing

abuse frames for analysing security requirements,” in Requirements
Engineering Conference, 2003. Proceedings. 11th IEEE International.
IEEE, 2003, pp. 371–372.

[23] A. V. Lamsweerde, “Elaborating security requirements by construction
of intentional anti-models,” in Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer Society, 2004,
pp. 148–157.

[24] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering, vol. 10, no. 1, pp. 34–44, 2005.

[25] G. Elahi, E. Yu, and N. Zannone, “A vulnerability-centric requirements
engineering framework: analyzing security attacks, countermeasures,
and requirements based on vulnerabilities,” Requirements Engineering,
vol. 15, no. 1, pp. 41–62, 2010.

[26] A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, “Reusable
knowledge in security requirements engineering: a systematic mapping
study,” Requirements Engineering, pp. 1–33, 2015.

[27] A. P. Moore, R. J. Ellison, and R. C. Linger, “Attack modeling for
information security and survivability,” CMU-SEI-2001-TN-001., Tech.
Rep., 2001.

[28] M. Gegick and L. Williams, “Matching attack patterns to security
vulnerabilities in software-intensive system designs,” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 4, pp. 1–7, 2005.

[29] E. B. Fernandez, N. Yoshioka, and H. Washizaki, “Modeling misuse
patterns,” in 2009 International Conference on Availability, Reliability
and Security. IEEE, 2009, pp. 566–571.

[30] F. Buschmann, K. Henney, and D. Schimdt, Pattern-oriented Software
Architecture: On Patterns and Pattern Language. John Wiley & Sons,
2007, vol. 5.

[31] E. Fernandez-Buglioni, Security patterns in practice: designing secure
architectures using software patterns. John Wiley & Sons, 2013.

[32] J.-Y. Kim and H.-J. Kim, “Defining security primitives for eliciting
flexible attack scenarios through capec analysis,” in Information Security
Applications. Springer, 2014, pp. 370–382.

[33] I. Araujo and M. Weiss, “Linking patterns and non-functional require-
ments,” in Proceedings of the Ninth Conference on Pattern Language of
Programs (PLOP 2002), September 8-12, 2002, 2002.

