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Abstract— A well known strategy in bipedal locomotion to
prevent falling in the presence of large disturbances is to modify
drastically future motion. This is an important capability of a
walking control system in order to bring humanoid robots from
controlled laboratory conditions to real environment situations.
This paper presents a predictive stabilization method which
modifies planned center of mass and foot trajectories depending
on the current state of the robot. It uses a nonlinear prediction
model [1] and applies a conjugate gradient method to solve
the resulting optimization problem in real-time. Furthermore,
the method is integrated in the walking control system of
our bipedal robot LOLA. Simulation results demonstrate the
effectiveness and the advantages of the proposed method.

I. INTRODUCTION

There are several critical tasks that have to be solved
if humanoid robots should operate in arbitrary unknown
environments. In order to avoid falling and colliding with
the environment, the walking system has to be flexible and
robust. This means that it can quickly adapt to new and
unknown situations. Therefore it has to first perceive the
environment, detect obstacles and surfaces and adapt its
motion in order to avoid collisions [2], [3]. Second, it has
to be able to react to unknown disturbances which result
from perception errors, unknown external forces or unde-
tected environment properties (e.g. soft ground). For large
disturbances this often requires a method to perform not only
local modifications but also an adaptation of future motion.
This paper deals with the second task and presents a method
to adapt the robot’s ideal planned motion according to sensor
data. In addition to our previously published method [4]
which modifies swing foot trajectories we propose a method
for modifying the horizontal motion (x and y, cf. frame of
reference in Fig. 1) of the center of mass (CoM) in this paper.

The paper is organized as follows: Section II gives an
overview of related work. A description of the problem
and the walking control system of our biped is given in
Section III. The walking stabilization algorithm is described
in Section IV. Section V presents first results obtained from
the proposed method and Section VI concludes the paper.

II. RELATED WORK

There are many different methods for bipedal walking
stabilization. This section starts with two control frameworks
that include local modifications as well as an adaptation of
future motion. A feedback control framework for the biped
HRP2 is presented in [5], [6]. It is based on a continuous re-
calculation of the walking pattern with a moderate frequency

1Institute of Applied Mechanics, Technische Universität München, 85748
Garching, Germany. E-mail: robert.wittmann@tum.de

x y

z

Joint DoF
Head 2
Shoulder 2
Elbow 1
Pelvis 2
Hip 3
Knee 1
Ankle 2
Toe 1
Total 24

Fig. 1: Photograph and kinematic structure of LOLA.

and local adaption of the trajectories with a high frequency.
The current state is used as initial value for the trajectory
planning problem which is formulated as a preview control
of the linear inverted pendulum model (LIPM). Ref. [7],
[8] present a stabilizer of the humanoid robot ASIMO. The
main feedback variable is the absolute inclination of the
upper body which is treated as horizontal displacement error
of the CoM and is used to calculate a reaction moment.
This reaction moment aims to restore an upright posture.
The regulation of the moment is then distributed on three
control strategies which are a ground reaction force control,
model ZMP control and foot landing position control. A
walking controller that is based on the full robot model was
developed in [9] for the biped robot JOHNNIE. The authors
used a feedback-linearization technique in order to impose
a linear behavior for the tracking errors. Buschmann et
al. [10] presents a stabilizer that first modifies desired contact
forces and torques and second applies a hybrid position/force
control which generates local taskspace modifications. Two
similar approaches for a whole-body motion controller which
also considers long term stability based on the LIPM are
presented in [11], [12]. The stabilizer solves a quadratic
programming problem for the overall multibody dynamics
at each time step which considers e.g. dynamic constraints
of the contact forces and joint torques.

One strategy that consists of adaptations of future motion
is the sensor based calculation of next foot steps. For
the stabilizing step length modifications there are several
approaches that apply heuristics or linear models [13], [14],
[15]. The capture point introduced by [13] is an often applied
method for footstep placement and bipedal walking control



[16]. Online model predictive control methods to calculate
a CoM trajectory and optimize the next footsteps using the
LIPM are presented in [17], [18], [19]. The authors of [17]
formulate the optimal control problem for the pendulum in a
different way by choosing the time derivative of the CoP
as input and setting the weight of the input in the cost
function to zero. This allows to give an explicit solution of
the problem and to compute more than hundred iterations
of the optimization in each control cycle. To our knowledge
this is the only work that includes an additional step time
optimization.

Even though these approaches present convincing results
in experiments we believe that methods using an optimiza-
tion together with more accurate models are necessary to
improve the overall robustness of bipedal walking robots in
arbitrary unknown situations. Our model directly resolves the
unilateral contacts and has two passive DoFs. This offers new
possibilities for motion generation in rough terrain situations
or under large disturbances as will be discussed later.

III. SYSTEM OVERVIEW AND PROBLEM DESCRIPTION

This section gives a short overview of the dynamics of
bipedal locomotion and describes the bipedal robot LOLA
and its walking control system. This information will be used
in the next sections to state the main goal of our proposed
bipedal walking stabilization.

A. Problem Description
Bipedal robots represent a class of mechanical systems

with different challenging properties for planning and con-
trol. Beside their nonlinear multi-body dynamics with many
degrees of freedom (DoFs) these robots are, in contrast to
industrial manipulators, not fixed to the environment. This
is a necessary property as bipedal locomotion requires a
system that can change periodically the contact states of the
feet between open and closed. Splitting the overall DoFs
q

R

2 Rn of the robot into the free floating base located at
the torso q

T

2 R6 and the joints q

J

2 Rn�6 the partitioned
[20] equations of motion (EoM) of the robot yield
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The parts of the mass matrix are denoted by M

ij

, h
i

are the
nonlinear vectors of Coriolis, centrifugal and gravitational
forces and ⌧ 2 Rn�6 are the joint torques. The contact
forces and moments ⇤ 2 R12 are projected with the matrices
J

�,T

,J
�,J

to the directions of q

T

and q

J

respectively.
With ⌧ being the system input, the q

T

can not be directly
controlled and the robot described by (1) is under-actuated.
Physically feasible ground forces are limited because of the
unilateral contact, resulting in inequality constraints. They
have to be accounted for in order to generate a feasible
motion. Examples of such motion generation methods can
be found in [21], [22]. But even for perfect tracking (of q

J

)
of a feasible motion there are always deviations from the
ideal planned state (especially q

T

). Reasons are modeling
errors, a finite compliance in the contacts between robot and

the ground and other external disturbances. One strategy to
control q

T

is to modify the contact forces ⇤ by changing
the joint trajectories q

J

. There were many different methods
developed in order to achieve this modification, e.g. changing
the robot’s CoM motion [7], total angular momentum, foot
orientation [23] or horizontal foot positions [4].
The following part gives an overview of the walking control
system of LOLA. Referring to the problem description the
walking pattern generation and the control strategy are
described.

B. System Overview

The experimental platform for this research is the biped
robot LOLA shown in Fig. 1. It weights 60 kg, its total height
is 1.8m and has 24 electrically actuated joints. The joint
configuration is depicted on the right hand side of Fig. 1. The
robot is equipped with an Inertial Measurement Unit (IMU)
at the upper body and 6-axis force-torque sensors (FTS)
located at each foot. The IMU consists of three fiber-optic
gyroscopes and three MEMS accelerometers. The system
includs internal sensor fusion algorithms which provides
accurate and drift-free measurements for the absolute orien-
tation and rotation rate. Those quantities are converted into
absolute inclination '

m

and inclination rate ˙

'

m

which are
the angles between the upper body and the gravity vector.
Details of the mechatronic design can be found in [24].
The control system has a hierarchical design shown in Fig.
2. User commands via joystick or step parameter input are
translated into an ideal step sequence which is then used in
the trajectory planning. The generated ideal walking pattern
in task–space w

id

consists of the center of mass (CoM)
trajectory, upper body orientation, the pose of both feet
and the toe angles. The task–space trajectories are used
as set points in the local stabilization. It is based on a
hybrid force–position control that performs modifications
in task–space depending on sensor data. IMU and FTS
measurements are used to modify the commanded stance foot
orientation and vertical position. Finally, desired joint angles
q

d

and velocities ˙

q

d

are calculated by inverse kinematics
(redundancy resolution is done by automatic supervisory
control originally formulated by Liégois [25]). These are
then passed on to the local joint controllers. Following a
decentralized concept, the local joint feedback loops run on
distributed controllers at high sampling rates (50 µs current,
100 µs velocity and position), while the central control runs
at 1 ms sampling rate on an embedded system. A detailed
overview of the walking controller is provided in [26].

In this work we present a method to modify the horizontal
CoM motion as well as next foot positions in a model predic-
tive control scheme. The main input is the estimated upper
body inclination which is a subset of the unactuated DoFs
q

T

. The algorithm has to consider constraints for the CoM
motion due to the unilateral contact forces which themselves
depend again on the foot positions. The method extends
our previously published algorithm [4] for optimizing next
footsteps by an optimization of the robot’s horizontal CoM
trajectories.
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Fig. 2: Overview of the walking control system.

IV. PREDICTIVE BIPEDAL WALKING STABILIZATION

A. Method Overview

The main goal of the presented method is to stabilize
the absolute inclination of the robot w.r.t. the ground. It is
included in the unactuated DoF of (1). The measurement
data of the IMU ('

m

, ˙

'

m

) is filtered in a state observer
[27] in order to estimate the absolute inclination in x-
and y-direction ('̂

x

, ˙'̂
x

, '̂
y

, ˙'̂
y

). Following this approach
all disturbances that are not related to joint tracking errors
have to be visible in the inclination errors. For rough terrain
locomotion, pushes and modeling errors, this turned out to
be sufficient information. Other state variables that could be
used for feedback are the remaining part of q

T

or the states
of all contacts at the feet.
The predictive stabilizer modifies ideal horizontal CoM
trajectories, and the overall swing foot trajectories (x, y, z
position and orientation about x- and y-axis �c

x

,�c
y

1)
producing the modified task–space motion w

mod

in Fig. 2.
The horizontal CoM motion and final swing foot position
are optimized while the vertical swing foot location and
�c

x

,�c
y

are chosen such that early or late contact are
avoided and the swing foot touches the ground horizontally
(cf. [28], [4]). We choose to use a dynamic model of the
biped that includes the mentioned unactuated DoFs of q

T

naturally as well as the CoM and swing foot motion. This
enables constructing a method to relate the optimization
variables with the control goal. In the following the trajec-
tory modification for the CoM acceleration is denoted by
u
x

(t), u
y

(t) in x- and y-direction and the modification of
the next final swing foot location by �L

x

,�L
y

. A planar
model is used and the problem is solved in a decoupled way
for both directions. Consequently all relations shown below
are only described for one direction and can be easily applied
for sagittal and lateral motion.

The goal of the presented stabilizer can be formulated

1refer to Fig. 1 for the global coordinate system definition

mathematically as a minimization of a quadratic cost function
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for a certain time horizon t 2 [t0, tf ]. The state error �
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x

is the difference between ideal and predicted state of the
model and will be defined in the next part. Note that the
cost function weights S

x

,Q and R will be parameterized to
mainly minimize the absolute inclination error over a certain
time horizon which is included in the state variable ˆ

x.

B. Dynamic Prediction Model
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Fig. 3: Prediction model with three point masses, upper body
modification �r

b

and swing foot modification �r
f1.

The model proposed in [1] is motivated by the observation
that a more accurate model for stiff position controlled
bipedal robots has to include the unactuated DoFs between
robot and ground. Therefore it has to consider the unilateral
and compliant contacts. Starting from the full multi-body
model of a bipedal robot (1) the following simplifications are
done. The planned CoM and foot trajectories are assumed
to be perfectly tracked in the robot’s planning frame of
reference (FoR) which rotates with the upper body (T-
system). Inertia effects are approximately included via three
point masses. The unactuated DoFs are the inclination '

x

in x-direction and the vertical translation z (horizontal trans-
lation is neglected). They describe the transformation from
an inertial (index I, x

I

, z
I

) to a FoR rotating with the
upper body of the robot (index T, x

T

, z
T

). Furthermore,
the trajectories for the robot’s upper body

T

r
b

and the feet
T

r
f1, T

r
f2 correspond to the ideal planned trajectories from

the walking pattern generation in the T-system. The upper
body has the mass m

b

and the inertia ⇥

yy

. Each foot has a
point mass m

f

and one point contact located at the middle
of the foot. Those masses are not fixed to each other and
follow known trajectories which means that they are time
varying but no DoF. The contacts are linear spring-damper
pairs (stiffness k

c

, damping d
c

) with the values identified
from the real robot’s rubber sole. They act only in z

I

-
direction and have to be considered as unilateral in order to
simulate a walking cycle that necessarily requires switching
of the contact states between open and closed. This enables



the model to predict a divergence of '
x

. For a given foot
trajectory
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T , the vertical contact distance is calculated
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During integration (3) has to be compared with a neutral
spring length z0 for each contact in order to set the corre-
sponding contact active or inactive. With the inertial position
of upper body and feet obtained by a translation (z) and
rotation about the y-axis (A
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the overall equations of motion of the model in Fig. 3 can
be stated in the form
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is the mass matrix of the prediction model, h
p

the nonlinear terms and �
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T describes the effect
of the local stabilization term for the model and includes
an approximation of the rotational stiffness for finite sized
feet. The gains K

p

and K
d

are manually tuned for a good
approximation. Using the two–DoF–model ensures that a
prediction can be done in real-time for a sufficient long time
horizon. Predicting 0.8 s takes approx. 4 · 10�5 s using an
explicit Euler integrator with a fixed time step of 3 ms. 2

The model considers the overall modified motion due
to the parameter �L

x

and the trajectory u
x

(t) which is
described in the following. The footstep modification is
used to calculate a quintic polynomial that begins at current
position and ends and �L

x

. This is shown in Fig. 3 where
the polynomial �

T

r

f1(�L
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) is added to the ideal trajectory
T
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which includes a modification of the swing foot height too
(for inclination compensation). CoM modifications are added
the same way
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with the difference that the overall trajectory is modified.
We choose to define our input to be the upper body accel-
eration u

x

= �

T

ẍ
b

in order to ensure C1-continuity of the
generated trajectory. The overall set of first order differential

2The onboard computer runs the RT-OS QNX 6.6 and is equipped with
an Intel core i7-4770@3.4 Ghz and 8Gb Ram

equations including a double integrator for u
x

can be written
as
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The state error in (2) will be defined for our implementation
as �

ˆ

x =

ˆ

x � [0, 0, 0, 0, �L
x

, 0]T . This model does not
only improve prediction accuracy when compared to the
LIPM, it also has two additional advantages:

1) The inclination error which is used as feedback variable
is not contained in the commanded trajectories w which
avoids discontinuities in �x

b

(t). This is often a problem
in generated trajectories together with real-time model
predictive control.

2) As the contact state is directly resolved and no ZMP-
like planning is performed the method can be applied
for situations that violate the assumptions of flat foot
gaits and horizontal ground.

The next section deals with the real-time minimization of (2)
submitted to (9) for �L

x

, u
x

.

C. Real-Time Solution by Conjugate Gradient Algorithm

The resulting dynamic optimization problem will be
solved with the conjugate gradient method which was orig-
inally proposed by [29]. The author of [30] extended the
method for optimal control problems with additional free
parameters. The conjugate gradient provides better results
than using only the gradient and is at the same time compu-
tationally not as expensive as second order algorithms [31]
with better stability properties. Additionally it is often used
for real-time applications as it can be aborted after each
iteration providing a suboptimal but feasible solution (which
is not necessarily the fact for e.g. collocation methods [32]).
Finding the optimal solution u(t) = u

x

(t) and p = �L
x

for
the cost function defined in (2) with the model (9) can be
stated as mathematical problem as follows
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If the final state ˆ

x

f

is free, the application of Pontryagin’s
Minimum Principle results in a decoupled boundary value
problem (see Appendix, (24) and (25)). It is solved with the
conjugate gradient method iteratively by integrating the state
ˆ

x from t0 to t
f

forward and the costate  backward in time.
Afterward an update of the control input u(t) and parameter
p for the (k+1)-th iteration is generated
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The conjugate gradient directions s
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and (from Appendix relation (27))
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for the unconstrained case. They have to be replaced by
a projection pointing into the normal cone of U ,P if the
boundary of the valid regions is reached. The factor ↵k is
computed from the one-dimensional line search problem

↵k  min
↵

J(uk

+ ↵sk
u

,pk

+ ↵sk
p

) (19)

which we solve approximately using the backtracking
method. The overall procedure is summarized in Algo-
rithm 1.

Algorithm 1 Conjugate Gradient Method

1: Determine ˆ

x

a

2: initialize u0
x

(t) u⇤
x,previous

(t)
3: initialize �L0

x

4: k  0

5: repeat
6: solve ˆ

x

k

(u

k,pk, t) from (11)
7: solve  k

(u

k,pk, ˆxk, t) from (25)
8: compute s

k

u

, sk
p

from (15) and (16)
9: solve line search (19)

10: update u

k+1,pk+1 with (13) and (14)
11: k  k + 1

12: until (converged or k > max iterations)
13: end

D. System Integration Details
The algorithm requires an initial value ˆ

x

a

and an initial
solution for u

0
(t), p0. The former is obtained by feeding

the IMU-measurements ('
m

, ˙

'

m

) into a state observer. The
observer is similar to the one presented in [27] but uses the
nonlinear model (5). It is based on an extended kalman filter
with a compensation for model errors and external distur-
bances. The overall predictive bipedal walking stabilization
is called every 20 ms in the walking control system. For all
experiments the optimization horizon T

opt

= t
e

� t
a

is set to
the time of one step which we choose as 0.8 s for this paper.
The initial solution for the control trajectory u0

x

uses the

solution from previous optimization u
x,previous

following a
receeding horizon approach

u0
x

(⌧) = u
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(⌧ � 20ms) (20)

The value �L0
x

is computed from the predicted CoM position
error �x

c

(t1) and velocity error �ẋ
c

(t1) at the end of
current step (t1) by the heuristic motivated by the divergent
component of motion of the LIPM
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p
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/g�ẋ
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⌘
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The overall planned CoM height is described by z
c

and
k1 2 [0, 1] is a manually tuned factor.
At the same time the predicted state in x- and y-direction
at time t1 is used in order to compute modification values
for the final foot rotation (�c

x

,�c
y

) and height (�z) as
described in [4]. This helps to compensate for expected
inclination errors.

All mentioned variables can be summarized in the vector
� = [�L

x

,�L
y

,�c
x

,�c
y

,�z] which is used to calculate
a set of fifth-order polynomials for the task-space modifica-
tions of the legs
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(t) = f(t,�) (22)

continuously when new values � are generated. The CoM
modification �w

com

(t) is computed by integrating the ac-
celerations u

x

(t), u
y

(t) in both directions twice. Using only
the computed accelerations avoids the problem of generating
discontinuous trajectories �w

com

and �

˙

w

com

. A similar
strategy for online generated task-space velocities is used
in [33]. The final modified task-space position for a time
instance t

k

is computed via

w
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) = w

id
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�w
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(t
k

)

�
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and analogous for the task-space velocity ˙

w

mod

(t
k

). The
overall computational time for the whole predictive stabiliza-
tion algorithm is below 3.5 ms for one direction. The maxi-
mum number of iterations is set to three for all experiments
shown below.

V. RESULTS

A. Simulation with Disturbances
The proposed method was implemented in the control

system of LOLA and tested in our simulation environment. It
considers compliant contacts as well as the motor dynamics
and the joint control loops. The robot is stepping in place
while it is pushed at the upper body with a force acting in
x- and y-direction. The unknown disturbance force is shown
in Fig. 4. The plot also shows the resulting inclination errors
of the simulated robot and compares it with the result when
the predictive stabilizer is turned off. It can be seen that the
absolute inclination of the robot does not diverge with the
predictive stabilizer.

The total CoM modification trajectory and the result from
single optimizations are depicted in Fig. 5. At the beginning
of the disturbance the method requires several calls in
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Fig. 4: Disturbance forces and inclination errors of the
simulated robot with the proposed stabilization method and
for the method turned off.

order to adapt to the unknown situation. The corresponding
trajectories for the x- and y-positions of the feet can be
seen in Fig. 6. The effect of choosing different prediction
horizons T

opt

is underlined in Fig. 7. The same simulation as
described above is performed with three different horizons
(0.72 s, 0.8 s, 0.96 s) and it can be seen that the stabilizer
performs better with higher prediction horizons.

VI. CONCLUSION AND OUTLOOK

A new predictive method to determine a stabilizing motion
adaptation of the robot is presented in this work. It uses
the upper body inclination and inclination rate in order to
optimize CoM and foot trajectories. A previously proposed
nonlinear model of the biped robot is used in a model
predictive optimization. The resulting problem is solved with
a conjugate gradient algorithm that ensures computational
times that allow an application in real-time. Results from
our simulation environment are presented where the method
is integrated into the walking control system of the bipedal
robot LOLA. Next steps include finishing testing the method
on the real robot which performs very close to the simulated
robot. The planned experiments are walking while the robot
receives external pushes and walking over uneven terrain.

APPENDIX

The conditions from Pontryagin’s Minimum Principle for
the problem (10) to (12) can be derived by stating the
augmented cost function

¯J =s(y(t
f

),p) +
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h(y,p,u, t) + T

(f(y,p,u, t)� ˙

y)dt

+ 
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0 (y0 � y(t0))

with the Lagrange multipliers  (t) and  0. Using the Hamil-
tonian H(y,p,u, t, ) = h(y,p,u, t)+ T

f(y,p,u, t) the
first variation is
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Fig. 5: CoM modification trajectories in simulation for single
optimizations (single) and the overall executed trajectory
(total).
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Integrating by parts
R
 

T � ˙y and rearranging leads to
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The conditions for the optimal solution are finally
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1

A �p = 0. (27)

These are the same conditions as for an optimal control
problem with free final state and fixed final time with the
additional condition (27) for the free parameters p.
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