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Abstract

Network calculus is a mathematical framework allowing to analyze the worst-case
performance of communication networks. As high performance is the goal of any
communication network, we believe that the theory is a very useful tool for network
researchers and engineers. However, because it relies on non-traditional algebras,
namely the min-plus and max-plus algebras, researchers and engineers are usually
reluctant to use network calculus or use it in a non-optimal or wrong way. Therefore,
as an objective to make it more understandable and usable by the community, this
document tries to present major results of network calculus in a comprehensive way.
Proofs and detailed developments are intentionally omitted. We do not pretend to
present any new result. Each statement is accompanied by a pointer to a proof or to a
more detailed explanation for it. The goal of this document is to provide researchers
and engineers with a comprehensive guide they can use as a reference to properly
apply network calculus to their specific application.

Hoping for the best but expecting the worst
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C H A P T E R 1

INTRODUCTION

Network calculus is a system theory for communication networks. Based on the
min-plus and max-plus algebras, network calculus gives a theoretical framework for
analyzing performance guarantees in computer networks. Specifically, worst-case
bounds on delay and buffer requirements in a network can be computed. Network
calculus is said to be part of exotic or tropical algebras. These are a set of mathematical
results giving insight into man-made systems (such as communication networks).

The results presented in this document focus on deterministic bounds computation,
i.e. the document only deals with deterministic network calculus. Another branch
of network calculus, namely stochastic network calculus, allows to compute worst-
case performance bounds which follow probabilistic distributions. [Cha00], [JL08],
[CBL05], [Fid06], [Jia06] and [Bac+92] are references covering this other branch of
network calculus.

This document is mainly based on [BT12]. It tries to present results thereof in a
more condensed and comprehensive way, clarifying, enhancing and sometimes correct-
ing them with material from other publications. Whereas the focus of most network
calculus references is on the demonstration and proof of the concepts they introduce,
we focus here on their understandability and usability. Each statement however comes
with a reference providing a proof or demonstration for it. Developments and modifi-
cations of results made by the authors of this guide are accompanied by a [?] sign and,
obviously, by a proof or explanation.

1.1 Network Calculus as a System Theory

As already mentioned, network calculus is the system theory that applies to computer
networks. The main difference with the traditional system theory is that network cal-
culus is based on min-plus algebra while traditional system theory is based on classical
algebra. Roughly speaking, this means that the addition becomes the computation of
the minimum and the multiplication becomes the addition.

Among the similarities between both theories is the usage of the convolution operator.
In classical system theory, the convolution of an input signal by the impulse response of
a system gives the output of the system. Also, the impulse response of the concatenation
of a series of systems is given by the convolution of the impulse responses of all the
systems. Similarly, in network calculus, the so-called min-plus convolution is used to
compute the output of a traffic shaper or to merge nodes in series into one single node.
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Nevertheless, both theories present some differences. A major one is the response
of a linear system to the sum of two inputs. In classical system theory, the response
to the sum of two inputs is the sum of the individual responses to each signal. In
min-plus algebra, the addition corresponds to the multiplication in classical algebra
and is therefore a non-linear operation. As a result, little is known on the aggregation
of multiplexed flows. On the other hand, the computation of the minimum corresponds
to the addition in classical algebra. Therefore, the operation is linear and the response
to the minimum of two inputs is the minimum of the responses taken separately.

Another difference is how non-linear systems are handled. In classical system theory,
non-linear systems are linearized around their operating point and the input signals
are restricted around this operating point. In nework calculus, a non-linear system is
replaced by a linear system that is a lower bound for the non-linear system. This is
how worst-case performance measures can be computed.

1.2 Making Network Calculus Friendly

In order to provide worst-case performance bounds for flows in a network, network
calculus requires a model of these flows and of the network. Once this modeling is done,
the derivation of the bounds is an easy task. That is the bright side of network calculus.
It gives easily deterministic bounds. Other tools, such as queueing theory, only allow
to compute average values computed from probabilistic distributions. Deterministic
bounds are for example necessary in real-time networking, where packets have to
reach their destination before a pre-defined deadline. If one wants to guarantee no
packet loss in its network, deterministic bounds (on the amount of data buffered at
the different nodes) are also needed.

While network calculus provides useful results via simple derivations, it requires a
complex first step: the modeling of the flows and of the network. While we will see
in Chapter 4 that modeling flows is usually easy, the modeling of network nodes and
the extension to multiples nodes, i.e. to a network, is more complex. First, though a
node is usually modeled by a simple mathematical curve or function, ensuring that this
curve is a correct model for this node is not trivial. Second, the extension to multiple
nodes requires to apply some min-plus algebra, which is completely different from
the classical algebra engineers are used to work with. Third, network calculus results
are usually developed for bit-by-bit systems and therefore yield bounds which are
not valid for packet-based systems. The step of converting the bounds to be valid for
packet-based systems is often forgotten or neglected.

For these reasons, network calculus is seldom1 used in the networking area and,
when it is, it is difficult to ensure that it is done properly. As we believe it deserves much
more attention, we try in this document to overcome these three obstacles and make
network calculus easy to use and understand. In Chapter 2, we give a comprehensive,
though classical, overview of the mathemical background. Chapters 3, 4 and 5 are
then devoted to the description and explanation of how flows and network nodes
are modeled. In Chapter 6, we then introduce how bounds can be derived from the
models. As the extension from a single-hop to a multi-hop analysis requires min-plus
algebra, we give examples of results in the commonly encountered cases, thereby

1Or not often enough compared to its usefulness.
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Chapter 2
Mathemathical background

Chapters 3, 4, 5
Flows and nodes modeling

Chapter 6
Bounds

Chapter 7
Packet-based systems

Chapter 8
Models of real systems

Figure 1.1: Organization of the Chapters of the report.

trying to allow the reader to circumvent the second issue mentioned here above.
Then, while Chapter 7 explains how the transition from bit-by-bit systems to packet-
based systems can be done, Chapter 8 presents models of commonly encountered
networking nodes. The validity of these models for packet-based systems is highlighted.
Thus, in combination with Chapter 7, Chapter 8 tackles both the first and third issues
mentioned here above, allowing the reader to easily obtain packet-based models of
the different nodes of its specific network setup. Then, after having modeled his flows,
the reader can, using examples of Chapter 6, obtain the desired deterministic bounds.
This structure is illustrated in Figure 1.1.
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C H A P T E R 2

MATHEMATICAL BACKGROUND

Before developing the results of network calculus theory, we first introduce the
important underlying mathematical concepts. Network calculus is built on top of both
min-plus and max-plus algebras. As it mainly uses min-plus algebra, we first focus on
min-plus calculus. We then briefly introduce max-plus algebra.

[Bac+92] provides a detailed treatment of both min- and max-plus algebras. [Cha00]
is an additional reference.

The reader can freely skip this Chapter and come back to it when corresponding
mathematical results are used. Nevertheless, as the saying goes, “cathedrals have not
been built on sand”. In other words, having a good understanding of the mathematical
foundations is helpful to understand and use network calculus results properly.

2.1 Min-Plus Algebra

2.1.1 Introduction

In conventional algebra, one usually works with the algebraic structure (R,+,×)
(or (Z,+,×)), i.e. with the set of reals (or integers) endowed with the addition and
multiplication operators. The particular properties of the two operators make (R,+,×)
a commutative field and (Z,+,×) a commutative ring [BT12, pp. 103-104].

In min-plus algebra, the addition operator is replaced by the infimum (or the
minimum if it exists)1 operator (∧) and the multiplication operator is replaced by
the addition operator. +∞ is also included in the set of elements on which min-plus
operators can be applied. This defines another algebraic structure, (R ∪ {+∞},∧,+),
which verifies the following properties [BT12, p. 105].

◦ Closure of ∧.
∀a, b ∈ R ∪ {+∞}, a ∧ b ∈ R ∪ {+∞}

◦ Associativity of ∧.
∀a, b, c ∈ R ∪ {+∞}, (a ∧ b) ∧ c = a ∧ (b ∧ c)

1The infimum inf{S} of a set S is defined as the greatest lower bound of S. For example inf{]0, 5]} = 0.
By convention, inf{∅} = +∞ [BT12, pp. 103-104].
The minimum min{S} of a set S is the element of S which is smaller than all its other elements. It does
not always exist. For example, ]0, 5] has no minimum [BT12, p. 103]. However, we have min{[0, 5]} =
inf{[0, 5]} = 0.
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◦ Neutral element for ∧.
∃e ∈ R ∪ {+∞} : ∀a ∈ R ∪ {+∞}, a ∧ e = a (e = +∞)

◦ Idempotency of ∧.
∀a ∈ R ∪ {+∞}, a ∧ a = a

◦ Commutativity of ∧.
∀a, b ∈ R ∪ {+∞}, a ∧ b = b ∧ a

◦ Closure of +.
∀a, b ∈ R ∪ {+∞}, a+ b ∈ R ∪ {+∞}

◦ Associativity of +.
∀a, b, c ∈ R ∪ {+∞}, (a+ b) + c = a+ (b+ c)

◦ Neutral element for +.
∃u ∈ R ∪ {+∞} : ∀a ∈ R ∪ {+∞}, a+ u = a = u+ a (u = 0)

◦ Commutativity of +.
∀a, b ∈ R ∪ {+∞}, a+ b = b+ a

◦ The neutral element for ∧ is absorbing for +.
∀a ∈ R ∪ {+∞}, a+ e = e = e+ a

◦ Distributivity of + with respect to ∧.
∀a, b, c ∈ R ∪ {+∞}, (a ∧ b) + c = (a+ c) ∧ (b+ c) = c+ (a ∧ b)

These axioms define a commutative dioid2 [BT12, p. 105]. It is not a (commutative)
ring because the ∧ operator is idempotent rather than cancelable [BT12, p. 105]. For
example, (Z,+,×) is a (commutative) ring because the + operator is cancelable. It
is not a (commutative) field because it does not contain a multiplicative inverse for
every non-zero element. (R,+,×) is therefore a (commutative) field.

2.1.2 Wide-Sense Increasing Functions

A function or sequence3 f is said wide-sense increasing if and only if [BT12, p. 105]

∀s ≥ t, f(s) ≥ f(t) . (Wide-Sense Increasing Function)

We adopt the following notations [BT12, p. 105].

◦ G: set of non-negative wide-sense increasing functions or sequences.

◦ F : set of non-negative wide-sense increasing functions or sequences such that
f(t) = 0 if t < 0.

2.1.3 Pseudo-Inverse of Wide-Sense Increasing Functions

It is well known that strictly increasing (or decreasing) functions are invertible
[AE10, p. 164]. However, wide-sense increasing functions are more general functions

2It would have been a simple dioid if the + operator was not commutative.
3f(t) is called a function when its parameter t is continuous and a sequence when t is discrete.
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Figure 2.1: Derivation of the pseudo-inverse of a function f ∈ F .

and are not always invertible. Therefore, the pseudo-inverse f−1 of a function f ∈ F is
defined as [BJT09, p. 5]4

f−1(x) = inf
t≥0
{t : f(t) ≥ x} . (Pseudo-Inverse of f ∈ F)

The concept is illustrated in Figure 2.1. Let us see how the value f−1(a) for a given
a can be computed. First, we draw, from left to right, a horizontal line at ordinate
value a. When we reach an abscissa θ for which f(θ) ≥ a, we stop. θ is then the value
of the pseudo-inverse of f in a, i.e. θ = f−1(a).

The Figure shows that f−1(x) can actually be obtained by connecting all discontinu-
ity points of f(x) and then mirroring the result around the axis y = x. However, doing
so, since f is not strictly increasing, some abscissas will have several corresponding
ordinates. For these border cases, the pseudo-inverse value must then be explicitly
computed as described above.

The pseudo-inverse is a closed operation in F , f−1(0) = 0 and we have [BT12,
pp. 108-109]

y ≤ f(x) ⇒ f−1(y) ≤ x (2.1)

x > f−1(y) ⇒ f(x) ≥ y (2.2)

It can also be shown that

f−1(x) = sup
t≥0
{t : f(t) < x} (2.3)

is an equivalent definition [BT12, pp. 108-109].

2.1.4 Concave, Convex and Star-Shaped Functions

Concave, convex and star-shaped functions are of particular interest in network
calculus. They are defined as follows.

4Note that the definition in [BT12, p. 108] does not include the restriction that t ≥ 0. However, this
is crucial for the properties mentioned later to be true [?]. For example, with the definition f−1(x) =
inf{t : f(t) ≥ x} of [BT12, p. 108], we have f−1(0) = −∞ for f ∈ F . Therefore, f−1 /∈ F and the
pseudo-inverse operator is not closed in F .
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A function f : R→ R is convex if and only if [BT12, p. 109]

∀x, y ∈ R, u ∈ [0, 1], f(ux+ (1− u)y) ≤ uf(x) + (1− u)f(y) .
(Convex Function)

A function f : R→ R is concave if and only if −f is convex or, alternatively, if and
only if [BT12, p. 109]

∀x, y ∈ R, u ∈ [0, 1], f(ux+ (1− u)y) ≥ uf(x) + (1− u)f(y) .
(Concave Function)

A function f : [0,+∞[→ R is star-shaped if and only if [BO62, pp. 1203-1204]-
[MOA11, p. 650]

∀x ≥ 0, α ∈ [0, 1], f(αx) ≤ αf(x) , (Star-Shaped Function)

or, alternatively, if f(0) ≤ 0 and ∀x > 0, f(x)/x is wide-sense increasing [MOA11,
p. 650]-[BO62, p. 1205].

These mathematical definitions are not very intuitive. Actually, these are based on
the definition of convex and star-shaped domains. A domain S ⊆ Rn is convex if and
only if [BT12, p. 109]

∀x, y ∈ S, u ∈ [0, 1], ux+ (1− u)y ∈ S . (Convex Set)

Intuitively, a set S is convex if the line segment connecting any two points of S is
entirely in S.

A domain S ⊆ Rn is star-shaped (or is a star-domain) if and only if [ST83, pp. 141-
142]

∃x0 ∈ S : ∀x ∈ S, u ∈ [0, 1], ux0 + (1− u)x ∈ S . (Star-Shaped Set)

Intuitively, a set S is star-shaped if there is a point x0 in S such that the line segment
connecting x0 to any other point in S is entirely in S. The set is then also said
star-shaped with respect to x0.

Examples of such domains in R2 are shown in Figure 2.2. The set C and S are
respectively convex and star-shaped. The set D and T are respectively not convex
and not star-shaped because of the existence of the dashed line segment violating the
definitions here above. Note that D and C are also star-shaped.

From this, we can now give more intuitive definitions of convex, concave and
star-shaped functions.

A function f : R→ R is convex if and only if its epigraph5 is a convex set [MOA11,
p. 646].

5The epigraph of a function is the set of points lying above the graph of the function.
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Figure 2.2: C ⊂ R2 is a convex set because the line connecting any two points of C
is entirely in C. In contrast, D ⊂ R2 is not a convex set. S ⊂ R2 is a star-shaped set
because there exist a point x0 ∈ S such that the line segment connecting x0 to any
other point in S is entirely in S. In contrast, T ⊂ R2 is not a star-shaped set.
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Figure 2.3: Example of concave, convex and star-shaped functions.

A function f : R→ R is concave if and only if its opposite −f is convex or, alterna-
tively, if the set of points lying below its graph is a convex set.

A function f : [0,+∞[→ R is star-shaped if and only if the set of points lying above
its graph is star-shaped with respect to the origin [BO62, p. 1203]. Note that the star-
shaped property of a function is only defined for functions whose domain is [0,+∞[.
We will however use it for functions defined on the whole real line by considering only
the values of the function in [0,+∞[.

Figure 2.3 shows examples of such functions. These functions enjoy some interesting
properties.

◦ The maximum (resp. minimum) of any number of convex (resp. concave) func-
tions is a convex (resp. concave) function [BT12, p. 109], that is

f1(t), . . . , fn(t) are convex ⇒ g(t) = max
1≤i≤n

{fi(t)} is convex, (2.4)

f1(t), . . . , fn(t) are concave ⇒ g(t) = min
1≤i≤n

{fi(t)} is concave. (2.5)

◦ If f(0) ≤ 0 and f is convex, then f is star-shaped [MOA11, p. 650]-[BO62,
p. 1207]. Similarly, as can be seen in Figure 2.2, a convex set is star-shaped.
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◦ The maximum of two star-shaped functions is star-shaped [BT12, p. 110].

Note that in [BT12], the authors consider that a function f ∈ F is star-shaped if the
set of points lying below its graph is star-shaped with respect to the origin. As we did not
find any naming for such functions in the literature, we will call them lower-star-shaped
functions [?]. We think they do this because, in network calculus, lower-star-shaped
functions are more often used than star-shaped functions. Obviously, a function f is
lower-star-shaped if its opposite −f is star-shaped and lower-star-shaped functions
therefore enjoy properties similar to star-shaped functions:

◦ if f(0) ≥ 0 and f is concave, then f is lower-star-shaped;

◦ the minimum of two lower-star-shaped functions is lower-star-shaped.

2.1.5 Min-Plus Convolution

In classical system theory using classical algebra, the convolution of functions f(t)
and g(t) (that are zero for t < 0) is defined as

(f ∗ g)(t) =
∫ t

0
f(t− s)g(s) ds. (Convolution)

Transforming the addition into infimum and the multiplication into addition, we obtain
the definition of the min-plus convolution for f, g ∈ F .

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} (Min-Plus Convolution)

(If t < 0, (f ⊗ g)(t) = 0.)

The min-plus convolution enjoys the following properties in F [BT12, pp. 111-115].

◦ Closure.
∀f, g ∈ F , f ⊗ g ∈ F

◦ Associativity.
∀f, g, h ∈ F , (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

◦ Neutral element.
∃δ0 ∈ F : ∀f ∈ F , f ⊗ δ0 = f (δ0 = +∞ if t > 0, 0 otherwise)

◦ Commutativity.
∀f, g ∈ F , f ⊗ g = g ⊗ f

◦ Distributivity with respect to ∧.
∀f, g, h ∈ F , (f ∧ g)⊗ h = (f ⊗ h) ∧ (g ⊗ h)

◦ Addition of a constant.
∀f, g ∈ F ,K ∈ R+, (f +K)⊗ g = (f ⊗ g) +K

◦ Isotonicity.
∀f, g, f ′, h′ ∈ F , f ≤ g, f ′ ≤ g′ ⇒ f ⊗ f ′ ≤ g ⊗ g′

◦ ∀f, g ∈ F , f(0) = g(0) = 0 ⇒ f ⊗ g ≤ f ∧ g

◦ ∀f, g ∈ F , f(0) = g(0) = 0 and f , g lower-star-shaped ⇒ f ⊗ g = f ∧ g
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Figure 2.4: The min-plus convolution of two functions passing through the origin can
be obtained by placing one of the two functions at each point of the other function
and taking the minimum of all the resulting functions.

◦ ∀f, g ∈ F , f, g convex ⇒ f ⊗ g convex. In particular, if f and g are convex and
piecewise linear, their convolution is obtained by putting end-to-end the different
linear pieces of f and g, sorted by increasing slopes.

Graphically, the min-plus convolution of two functions f(t) ∈ F and g(t) ∈ F can be
computed as shown in Figure 2.4. Let us first consider the case where f(0) = g(0) = 0.
In this case, the min-plus convolution is obtained by placing g at each point of f and
keeping the minimum of all these functions and of f . If the functions are not zero at
the origin, the Addition of a constant property here above shows that we can apply the
construction explained above on f(t) − f(0) and g(t) − g(0) and add g(0) + f(0) to
the obtained result.

2.1.6 Min-Plus Deconvolution

The dual operation of the min-plus convolution is the min-plus deconvolution defined
as follows for f, g ∈ F6.

(f � g)(t) = sup
u≥0
{f(t+ u)− g(u)} (Min-Plus Deconvolution)

If one of the function is infinite for some t, the min-plus deconvolution is undefined.

In contrast to the min-plus convolution, the min-plus deconvolution is not closed
in F (the result is not necessarily 0 for t ≤ 0), not commutative and not associative
[BT12, p. 122]. The min-plus deconvolution of γr,b by βR,T 7 is shown in Figure 2.5.

The min-plus deconvolution enjoys the following properties [BT12, pp. 123, 129].

◦ Isotonicity.
∀f, g, h ∈ F , f ≤ g ⇒ f � h ≤ g � h, h� f ≥ h� g

6The supremum sup{S} of a set S is defined as the smallest upper bound of S. For example sup{[0, 5[} =
5. By convention, sup{∅} = −∞.
The maximum max{S} of a set S is the element of S which is bigger than all its other elements. It does not
always exist. For example, [0, 5[ has no maximum. However, we have sup{[0, 5]} = max{[0, 5]} = 5.

7These functions are defined respectively in Sections ?? and 5.2.
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Figure 2.5: Min-plus deconvolution of γr,b by βR,T .
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Figure 2.6: Representation of the min-plus deconvolution g � f by time-inversion
(adapted from [BT12, p. 127]). g is first rotated around the point

(
T
2 ,

g(+∞)
2

)
(2).

Then, the result is convolved with f (3). Finally, the result of the convolution is rotated
back around

(
T
2 ,

g(+∞)
2

)
to give the final result (4).

◦ Composition.
∀f, g, h ∈ F , (f � g)� h = f � (g ⊗ h)

◦ Composition with ⊗.
∀f, g ∈ F , (f ⊗ g)� g ≤ f ⊗ (g � g)

◦ Addition of a constant.
∀f, g ∈ F ,K ∈ R+, (f +K)� g = (f � g) +K

The min-plus convolution and min-plus deconvolution are said dual from each other
because they satisfy [BT12, p. 123]

f � g ≤ h ⇔ f ≤ h⊗ g. (2.6)

The min-plus deconvolution of a function g ∈ G with finite lifetime by f ∈ F can
be easily graphically computed. A function g is said to have a finite lifetime if there
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Figure 2.7: Horizontal and vertical deviation between two curves in F .
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Figure 2.8: Relation between (f � g)(t) and h(f, g) and v(f, g).

exist some finite T0 and T such that g(t) = 0 for t ≤ T0 and g(t) = g(T ) for t ≥ T . If
we call Ĝ the subset of functions of G with finite lifetime, we can show that, for f ∈ F
such that limt→+∞ f(t) = +∞ and g ∈ Ĝ, we can compute g� f by rotating g by 180◦

around
(
T
2 ,

g(+∞)
2

)
, computing the min-plus convolution with f and then rotating

back again around
(
T
2 ,

g(+∞)
2

)
[BT12, pp. 125-126]. This is called the representation

of the min-plus deconvolution by time-inversion. The process is illustrated in Figure 2.6.

2.1.7 Vertical and Horizontal Deviations

The vertical deviation and horizontal deviation between two curves in F are two
quantities that are very often used in network calculus. They are defined as follows
[BT12, p. 128].

h(f, g) = sup
t≥0
{ inf
d≥0
{d : f(t) ≤ g(t+ d)}} (Horizontal Deviation)

v(f, g) = sup
t≥0
{f(t)− g(t)} (Vertical Deviation)

Both quantities are shown in Figure 2.7. It is important to note that these quantities
are not symmetric with respect to f and g. Graphically, h(f, g) corresponds to the
greatest horizontal distance between the graphs of f and g when f is left to g and
v(f, g) corresponds to the greatest vertical distance between the graphs of f and g
when f is greater than g.

The min-plus deconvolution allows to easily express these two quantities. Indeed,
we can show that [BT12, p. 128]

v(f, g) = (f � g)(0), (2.7)
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Figure 2.9: Example of an α curve and its sub-additive closure ᾱ (adapted from [BT12,
p. 14]).

h(f, g) = inf
d≥0
{d : (f � g)(−d) ≤ 0}. (2.8)

This is illustrated in Figure 2.8.

The horizontal deviation can also be written as [BT12, p. 128]

h(f, g) = sup
t≥0
{g−1(f(t))− t} = (g−1(f)� t)(0). (2.9)

2.1.8 Sub-Additivity

Sub-additive functions are another class of functions that are important in network
calculus. A function f ∈ F is said sub-additive if and only if [BT12, p. 116]-[Ros50,
p. 227]

∀s, t ≥ 0, f(t+ s) ≤ f(t) + f(s) . (Sub-Additivity)

The concept is illustrated in Figure 2.9. The α curve is not sub-additive while the ᾱ
curve is.

Letting t = t′ − s, one can easily see that an equivalent definition is

f ≤ f ⊗ f. (2.10)

If f(0) = 0, we know that f ≥ f ⊗ f and it is hence equivalent to imposing that
f = f ⊗ f .

It can be shown that the sum and min-plus convolution of two sub-additive functions
are also sub-additive [BT12, pp. 117-118].

A lower-star-shaped function passing through the origin is sub-additive [BT12,
p. 117]. Hence, if f(0) = 0, we have

f is concave ⇒ f is lower-star-shaped ⇒ f is sub-additive, (2.11)

but none of the reverse implications holds [BO62, p. 1207].

If f ∈ F , f � f is a sub-additive function of F passing through the origin [BT12,
p. 123].
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Figure 2.10: The sub-additive closure of f = t2 for t ≥ 0 is different depending on
whether t is continuous (left) or discrete (right) (adapted from [BT12, p. 122]).

Defining the sub-additive closure f̄ of a function f ∈ F as8 [BT12, p. 118]

f̄ = δ0 ∧ f ∧ (f ⊗ f) ∧ (f ⊗ f ⊗ f) ∧ . . . , inf
n≥0
{f (n)} , (Sub-additive Closure)

it can be shown that f̄ is the greatest sub-additive function smaller than f and passing
through the origin [BT12, pp. 119-120]. From this, we can easily show that, for f ∈ F ,
[BT12, pp. 120, 125]

f(0) = 0 and f is sub-additive ⇔ f ⊗ f = f ⇔ f̄ = f ⇔ f � f = f . (2.12)

Figure 2.9 shows a curve α and its sub-additive closure ᾱ.

The sub-additive closure also enjoys the following properties [BT12, p. 120].

◦ Isotonicity.
∀f, g ∈ F , f ≤ g ⇒ f̄ ≤ ḡ

◦ ∀f, g ∈ F , f ∧ g = f̄ ⊗ ḡ

◦ ∀f, g ∈ F , f ⊗ g ≥ f̄ ⊗ ḡ

◦ ∀f, g ∈ F : f(0) = g(0) = 0, f ⊗ g = f̄ ⊗ ḡ

Figure 2.10 shows that choosing t continuous or discrete may have an impact on
the sub-additive closure of a function.

2.2 Max-Plus Algebra

Max-plus algebra consists in replacing, in min-plus algebra, the infimum operator by
the supremum operator (∨) and +∞ by −∞ in the set of elements on which operations
are performed. This produces the algebraic structure (R ∪ {−∞},∨,+). This structure
is also a commutative dioid [BT12, p. 129]. As we will see in the following Sections,
max-plus algebra derives similar properties as min-plus algebra.

8δT is defined on page 26.
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2.2.1 Max-Plus Convolution

The definition of the max-plus convolution is obtained by replacing the infimum
operator by a supremum in the definition of the min-plus convolution. For f, g ∈ F ,
we have

(f⊗g)(t) = sup
0≤s≤t

{f(t− s) + g(s)} . (Max-Plus Convolution)

(If t < 0, (f⊗g)(t) = 0).

2.2.2 Max-Plus Deconvolution

Similarly, the max-plus deconvolution is defined, for f, g ∈ F , as

(f�g)(t) = inf
u≥0
{f(t+ u)− g(u)} . (Max-Plus Deconvolution)

2.2.3 Linearity of Min-Plus Deconvolution

We can show that the min-plus deconvolution is linear in the max-plus algebra.
Indeed, it enjoys the following property [BT12, p. 129]:

∀f, g, h ∈ F , (f ∨ g)� h = (f � h) ∨ (g � h). (2.13)

2.2.4 Super-Additivity

Super-additive functions in max-plus algebra are the equivalent of sub-additive
functions in min-plus algebra. The definition can be obtained by changing the ≤ into a
≥ in the definition of sub-additivity. Hence, a function f ∈ F is said super-additive if
and only if [MOA11, p. 650]-[BO62, p. 1203]

∀s, t ≥ 0, f(t+ s) ≥ f(t) + f(s) . (Super-additivity)

Letting t = t′ − s, one can easily see that

f ≥ f⊗f (2.14)

is an equivalent definition. It is also equivalent to imposing that −f is sub-additive
[MOA11, p. 650].

It can be shown that if f and g are star-shaped (resp. super-additive), then af + bg
(a ≥ 0, b ≥ 0) is also star-shaped (resp. super-additive) [BO62, p. 1206].

A star-shaped function passing through the origin is super-additive [MOA11, p. 650].
Hence, if f(0) = 0, we have

f is convex ⇒ f is star-shaped ⇒ f is super-additive, (2.15)

but none of the reverse implications holds [BO62, p. 1207].
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C H A P T E R 3

DATA MODELING

3.1 Data Flow

A data flow is represented by a cumulative function R(t) representing the number of
bits seen on the flow during the time interval [0, t]. R(t) is wide-sense increasing and
we assume that R(t) = 0 ∀t ≤ 0. Hence, R(t) ∈ F .

Examples of R(t) curves are shown in Figure 3.1. Different models can be used. Both
Figures represent the same flow arriving at a given node. The flow is an aggregation
of two flows coming from two different input links. From the first link, packets of
length 1 kB, 0.8 kB and 0.5 kB are sent respectively after 0, 3.7 and 7.5 seconds. From
the second link, packets of length 1 kB and 2 kB are sent respectively after 2 and 3.5
seconds. Both links have a transmission rate of 1 kB/s. In Figure 3.1a, both data and
time are continuous. This is called the fluid model. Packets are transmitted bit-by-bit.
In Figure 3.1b, time is continuous but data is discrete. Packets are considered seen
only when fully received. This is the general continuous time model. We have to take
the convention that R is either left- or right-continuous1. Here, we represented a
left-continuous function. We will keep this convention throughout the document.

A data flow is also sometimes represented by its rate function, which corresponds
to the derivative of the R(t) function in the fluid model [Cru91, pp. 115-116]. On
a single link, the rate function can take only two values: zero when the link is idle
and the transmission rate of the link when the link is used [Cru91, p. 116]. The rate
function can however take mores values (but still from a finite set) if we observe data
arriving at an aggregation point. This is the case in Figure 3.1a, in which the derivate
of R(t) takes only three different values: 0 kB/s when none of the incoming links is
sending, 1 kB/s when only one of the incoming link is sending and 2 kB/s when both
incoming links are sending.

3.2 System

A system S (as shown in Figure 3.2) is defined as blackbox taking dataR(t) (the input
function) as input and delivering the data R∗(t) (the output function) at its output after
a variable delay. A system might represent a single buffer, a complex communication
node or even a complete network. The analyzed communication network can then
be represented as the interconnection of these systems, also called network elements
[Cru91, p. 115].

1Informally, a function is left-continuous (resp. right-continuous) if no jump occurs when the limit point is
approached from the left (resp. right) [AE10, p. 79].
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(b) General continuous time model.

Figure 3.1: Example of cumulative functions R(t) representing data arriving at an
aggregation node. From a first link, packets of length 1 kB, 0.8 kB and 0.5 kB are sent
respectively after 0, 3.7 and 7.5 seconds. From a second link, packets of length 1 kB
and 2 kB are sent respectively after 2 and 3.5 seconds. Both links have a capacity of
1 kB/s. In the fluid model, data is observed bit-by-bit. In the general continuous time
model, data is observed packet-by-packet.

S
R(t) R∗(t)

Figure 3.2: A network calculus system takes data R(t) as input and delivers the data
R∗(t) at its output.

time (s)
0 2 4 6 8

da
ta

(k
B

)

0

1

2

3

4

5

R∗(t)

(a) Fluid model.

time (s)
0 2 4 6 8

da
ta

(k
B

)

0

1

2

3

4

5

R∗(t)

(b) General continuous time model.

Figure 3.3: Example of input and output functions for a system serving input data at a
rate of 1 kB/s.
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(b) General continuous time model.

Figure 3.4: Graphical representation of the backlog and delay experienced by the last
bit of the packet sent after 3.5 seconds. In the fluid model, the backlog and delay are
smaller because the node does not have to wait for the entire packet to be received to
start sending it.

For a system which serves data at a rate of 1 kB/s, Figure 3.3 shows the output
functions R∗(t) corresponding to the input functions shown in Figure 3.1. In the fluid
model (Figure 3.3a) this results in sending bits as soon as they arrive at a rate of
1 kB/s. In the general continuous time model (Figure 3.3b) this results in serving a
packet when it has been fully received and considering it out of the system when it
has been fully sent.

3.3 Backlog and Virtual Delay

Two interesting quantities can be derived from the input and output functions [BT12,
p. 5]. The backlog x(t) corresponds to the amount of data held inside the system at
time t.

x(t) = R(t)−R∗(t) (Backlog)

The virtual delay d(t) corresponds to the delay that would be experienced by a bit
at time t if all bits received before it are served before it2.

d(t) = inf
τ≥0
{τ : R(t) ≤ R∗(t+ τ)} (Virtual Delay)

Figure 3.4 shows the graphical interpretation of these two quantities. The virtual de-
lay (resp. the backlog) at time t corresponds to the horizontal deviation (resp. vertical
deviation) between the input and output curves starting from the point (t, R(t)).

Interestingly, the Figure shows that the backlog and virtual delay can differ from one
model to the other. Indeed, the delay experienced by the last bit of the 2 kB packet is
different. For the fluid model, in Figure 3.4a, the last bit of the 2 kB packet enters the
system at time t1 = 5.5 and leaves it at time t1 + d(t1) = 6.3. The delay experienced by
this bit3 is hence d(t1) = 0.8. For the general continuous time model, in Figure 3.4b,

2That is the reason why it is called virtual delay.
3The virtual delay corresponds to the delay because bits/packets leave the system in the same order as

they entered it.
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the last bit of the 2 kB packet enters the system at time4 t1 = 5.5+. With similar
computations, we obtain a virtual delay (equal to the delay) of d(t1) = 2. This is of
course in accordance with the assumptions of each model. In the general continuous
time model, the node must wait for the entire packet to be received to start sending it,
which induces a delay. This can also be seen for all other packets. For example, the two
first packets experience a delay (and generate a backlog) in the general continuous
time model but not in the fluid model. This delay corresponds to the time needed to
wait for the complete packet to be fully received and fully sent.

Since most of the communication networks are nowadays packet-based, we are only
interested in working with the general continuous time model. Indeed, a forwarding
device starts forwarding a packet to an output link only when this packet is fully
received. However, it is often easier to use the fluid model. This is not a problem. We
will see in Chapter 7 how it is possible to switch from the fluid model (bit-by-bit) to
the general continuous time model (packet-by-packet).

4t+ = infx∈R{x > t}.
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C H A P T E R 4

ARRIVAL CURVES

Obviously, in order to provide performance bounds for a flow, we must have a
lower bound of the service the network can offer and an upper bound of the flow
characteristics. In other words, we need to know the minimum service a network
guarantees to offer and the maximum amount of data a flow will send. These are
respectively given by service curves (defined in Chapter 5), which model the network
and its nodes, and by arrival curves (defined in this Chapter), which model flows.

4.1 Definition

A wide-sense increasing function α is an arrival curve for a flow R if and only if
[BT12, p. 7]-[Cru91, p. 116]

∀s ≤ t, R(t)−R(s) ≤ α(t− s) . (Arrival Curve)

We also say that the flow R is α-smooth.

Figure 4.1 illustrates the concept. The arrival curve constraint means that, during
any time window of width τ , the amount of additional data sent by the flow is limited
by α(τ). Because it limits the allowed burstiness of traffic, it is also called a burstiness
constraint [Cru91, p. 114].

Graphically, if we draw instances of the arrival curve starting at any point of the
R(t) curve, R(t) must always remain smaller than all these instances.

From the definition of the min-plus convolution, we can easily show that the defini-
tion of an arrival curve is equivalent to [BT12, p. 15]

R ≤ R⊗ α. (4.1)

From this other definition and from the isotonicity and associativity of ⊗, we can also
easily show that if α1 and α2 are arrival curves for a flow, then so is α1 ⊗ α2 [BT12,
p. 15].

It can be shown that we can always reduce an arrival curve to be left-continuous.
More precisely, an arrival curve α(t) can always be reduced to αl(t) = sups<t α(s)
without changing the set of flows for which it is an arrival curve [BT12, p. 9]. αl(t)
corresponds to the limit to the left of α(t) and is left-continuous. Since we have
αl(t) ≤ α(t), this is always a better bound for the flow.
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Figure 4.1: Graphical illustration of the arrival curve concept (adapted from [BT12,
p. 7]). If we draw instances of the arrival curve starting at any point of the R(t) curve,
R(t) must always remain smaller than all these instances.

b tokens

rate r

packets

k bytes
k tokens

Figure 4.2: Illustration of the token bucket algorithm. When a packet of size k has
to be transmitted, it removes k tokens from the token bucket. The packet is declared
non-conformant if there are not enough tokens in the bucket.

If two flows R1 and R2 have respectively α1 and α2 as arrival curves, then their
aggregate R1 +R2 has (α1 + α2) as arrival curve [Cru91, p. 116].

Affine arrival curves are the most commonly used arrival curves.

γr,b(t) =
{
rt+ b if t > 0
0 otherwise

(Affine Arrival Curve)

b is called the burst and r the rate. This kind of arrival curve allows a source to send b
bits at once, but not more than r b/s over the long run. The arrival curve shown in
Figure 4.1 belongs to this family.

4.2 Token Bucket and Leaky Bucket Algorithms

An affine arrival curve is closely related to the concepts of token bucket and leaky
bucket. For this reason, arrival curves belonging to this family are also sometimes
called token bucket arrival curves or leaky bucket arrival curves. Both concepts define
an algorithm to determine if some data is conformant or non-conformant to some
traffic policy.

21



b

rate r
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Figure 4.3: Illustration of the leaky bucket algorithm. When a packet of size k has
to be transmitted, it adds k units of fluid in the leaky bucket. The packet is declared
non-conformant if this results in the bucket to overflow.

The token bucket algorithm [TW11, pp. 407-411] is illustrated in Figure 4.2. A bucket
of size b tokens, initially full, is filled at a rate of r tokens per second. If the bucket is
full, no tokens are added anymore. When a packet of size k has to be transmitted into
the network, it must remove k tokens from the bucket. If there are not enough tokens,
the packet is declared non-conformant. Non-conformant data can be either queued
or dropped. If there are enough tokens, k tokens are removed and the packet can be
transmitted.

The leaky bucket algorithm [BT12, p. 10]-[TW11, pp. 407-411]-[ELL90, p. 203]-
[Cru91, p. 115] is illustrated in Figure 4.3. A bucket of size b, initially empty, leaks
fluid at a rate of r units of fluid per second when it is not empty. When a packet of size
k has to be transmitted into the network, it must add k units of fluid into the bucket. A
packet that would cause the bucket to overflow is declared non-conformant (and is
then queued or dropped). Otherwise, the fluid is added and the packet is transmitted.

Note that the tokens and the fluid do not represent bits. They, in fact, play a role
similar to a police officer at an intersection with a stopwatch.

Whereas these two formulations are different, it can be easily seen that they are
equivalent. They both limit the long-term rate of a flow to r b/s but allow bursts of up
to b bytes. The analogy with affine arrival curves is then obvious. A leaky bucket with
leak rate r and bucket size b, or a token bucket with filling rate r and bucket size b,
forces a flow to be constrained by the arrival curve γr,b [BT12, p. 11].

Attention must be paid that another leaky bucket algorithm, which is not equivalent
to the one here above, is described in the literature. We will refer to this algorithm as
the leaky bucket as a queue algorithm. In this algorithm [Tan03, pp. 303-305], when a
packet has to be transmitted, it is added in the bucket. If there is not enough place for
it, it has to be discarded. Then, the bucket transmits the packets that it contains at a
rate of r b/s. The main difference with the leaky bucket algorithm described above
is that the leaky bucket as a queue algorithm enforces a rigid output pattern at the
maximum rate r whereas the leaky bucket algorithm allows bursts to be transmitted.

Because of the leaky bucket as a queue algorithm, leaky buckets and token buckets
are sometimes considered to be different, like in [Tan03, p. 306]. However, most of the
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Figure 4.4: Illustration of the good arrival curve concept (adapted from [BT12, p. 14]).
α can always be replaced by its sub-additive closure ᾱ.

modern literature considers the leaky bucket and token bucket algorithms as we have
described them here, therefore considering that leaky buckets and token buckets are
equivalent and even using their names interchangeably [KR13, pp. 645-647]-[TW11,
pp. 407-411]-[BT12, p. 10].

4.3 Good Arrival Curves

Sometimes, the sheer knowledge that a flow R is constrained by an arrival curve
α allows to obtain a better bound than α itself. This is illustrated in Figure 4.4. α(t)
for t ≤ 2 tells us that, during a 2 seconds time window, data cannot arrive faster than
0.5 kB/s. We have α(6) = 1, which allows R to send maximum 1 kB of data in a 6
seconds time frame. We also have α(7) = 2, which allows R to send maximum 2 kB
of data in a 7 seconds time frame. However, since data sent during a 1 second time
frame is limited to α(1) = 0.5 bytes and since data sent during a 6 seconds time frame
is limited to 1 kB, the data sent during a 7 seconds time frame is implicitly limited
to 1.5 kB, which is lower than the bound announced by α(t) itself. The reasoning we
had is that a good arrival curve should be such that α(t+ s) ≤ α(t) + α(s) ∀s, t ≥ 0.
Indeed, if it is not the case, α(s) +α(t) is a better bound than α(s+ t). This inequation
corresponds to the definition of sub-additivity.

Therefore, we say that an arrival curve α ∈ F is a good arrival curve if it is sub-
additive and if α(0) = 0. We add the free condition1 α(0) = 0 to be able to use the
equivalences in Equation 2.12 to characterize good arrival curves. Hence, α ∈ F is a
good arrival curve if [BT12, p. 14]

α(0) = 0 and α is sub-additive ⇔ α⊗ α = α⇔ ᾱ = α⇔ α� α = α .

(Good Arrival Curve)
From Equation 2.11, we see that any concave or lower-star-shaped function f(t) such
that f(0) = 0 is a good arrival curve (but not all good arrival curves are concave or
lower-star-shaped, e.g. ᾱ in Figure 4.4).

We can then prove that we can always replace a wide-sense increasing arrival curve
α by its sub-additive closure ᾱ without changing the set of flows for which it is an
arrival curve [BT12, p. 15]. For the example described here above, Figure 4.4 shows
the sub-additive closure ᾱ of α.

1 We say that this is a free condition because, from the definition of an arrival curve, we can always set
α(0) = 0 for any arrival curve α ∈ F without changing the set of flows for which α is an arrival curve.
Therefore this does not effectively restrict the set of good functions.
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As we can expect, token bucket arrival curves are good arrival curves.

We also said that an arrival curve can be replaced by its limit to the left. How is
this related to the sub-additive closure? Actually, the sub-additive closure and limit to
the left operations do not commute [BT12, p. 16]. However, we can show that (ᾱ)l is
always a good arrival curve. Therefore, taking the sub-additive closure of α and then
the limit to the left will always lead to a good function that is left-continuous, i.e. a
very good function [BT12, p. 16].

4.4 Minimum Arrival Curve

It can be shown that, for a given flow R(t) with R(0) = 0, the source has R as an
arrival curve if and only if R is a good function [BT12, p. 16]. The source of the flow
is then called a greedy source.

We might then wonder if it is possible to get the minimum arrival curve correspond-
ing to a flow R if R is not a good function. Actually, it can be easily shown, from the
definition of the min-plus deconvolution, that

α = R�R (Minimum Arrival Curve)

is the minimum arrival curve for the flow R and that it is a good arrival curve [BT12,
p. 16]. This is also sometimes called the canonical arrival curve for R [BJT09, p. 5].

24



C H A P T E R 5

SERVICE CURVES

After having formalized an upper bound of the flow characteristics in the previous
Chapter, we will now define a lower bound of the service the network can offer. The
details of how packets are handled by a node or network are abstracted using the
concept of service curve, which we will define in the current Chapter. The combination
of arrival and service curves will then be used in the next Chapters to compute
performance bounds.

5.1 Definition

A system S, with input and output functions R and R∗, offers a service curve β to R
if and only if β is wide-sense increasing, β(0) = 0 and [BT12, p. 19]

R∗ ≥ R⊗ β , (Service Curve)

or, alternatively,
R∗(t) ≥ inf

s≤t
{R(s) + β(t− s)}. (5.1)

Figure 5.1 illustrates this definition. Given R and the service curve β offered by a
system S, we can compute R⊗ β. The output R∗ of the system S will lie in the area
(shaded in the Figure) between1 R and R⊗ β. An example of possible output is also
shown in the Figure.

1For causality reasons, we must also have R∗ ≤ R.

time (s)
0 5 10

da
ta

(k
B

)

0

1

2

3

4

5 βR R⊗ β

R∗

Figure 5.1: Graphical illustration of the service curve concept (adapted from [BT12,
p. 19]). The output of the system must always be greater than the convolution of the
input with the service curve of the system.
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We can see that this service curve concept indeed provides a lower bound on the
service a system S can offer. For example, if a system S pretends to offer a service
curve β, we can be sure that, if we provide R at the input of S, its output will be at
least R⊗ β.

5.2 Common Service Curves

Burst-delay and rate-latency functions are the functions most commonly used as
service curves. They are defined as follows.

δT (t) =
{

+∞ if t > T

0 otherwise
(Burst-Delay Function)

T > 0 is called the delay. As convolving a function with δT shifts it by T to the right,
this kind of service curve is used to model a first-in-first-out (FIFO) node imposing a
delay d ≤ T to bits passing through it.

βR,T (t) = R[t− T ]+ =
{
R(t− T ) if t > T

0 otherwise
(Rate-Latency Function)

T ≥ 0 is called the delay and R ≥ 0 the rate. This type of service curve is usually
used to model an approximation of a generalized processor sharing (GPS) node (see
Section 8.2.3). Bits might have to wait up to T before being served with a rate greater
or equal to R. If T = 0, this models a perfect GPS node allocating a rate of at least R
to a flow. The service curve shown in Figure 5.1 is a rate-latency service curve.

5.3 Other Classes of Service Curves

The service curve concept defined in Section 5.1 is the classical service curve concept
used in network calculus. Nevertheless, other types of service curves can be defined.
We introduce the two most common in the following Sections. [BJT09] provides a
more detailed treatment of service curves in network calculus.

In the following, the naming service curve corresponds to the concept defined in
Section 5.1. In case of ambiguity with the new concepts defined in the two next
Sections, the concept defined in Section 5.1 is alternatively referred to as classical
service curve.

5.3.1 Strict Service Curve

A system S offers a strict service curve β to a flow if, during any backlogged pe-
riod2 of duration τ , the output of the system is at least equal to β(τ) [BT12, p. 21].
Mathematically3 [BJT09, p. 6]

∀ backlogged period ]s, t], R∗(t)−R∗(s) ≥ β(t− s) . (Strict Service Curve)

2A backlogged period is an interval of time I (can be closed, semi-closed or open) during which the
backlog is non-null, i.e. ∀u ∈ I : R(u)−R∗(u) > 0 [BJT09, p. 5].

3If β is assumed left-continuous, changing ]s, t] to ]s, t[ in the definition does not change the meaning of
it [BJT09, pp. 6-7]. We will keep this assumption in this document.
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time (s)
0 5 10

da
ta

(k
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)

0
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5
βR R⊗ β

R∗

Figure 5.2: The service curve property does not provide guarantees over any interval
of time (adapted from [BT12, p. 196]).

The strict service curve property allows to guarantee service during any backlogged
interval, which is not possible with the classical service curve property [BT12, p. 196].
Indeed, if for some interval of time, a server gave a service higher than announced
by its service curve, the classical service curve property allows the server to be lazy
afterwards. This is illustrated in Figure 5.2. The server gave a high service between
times 0 and 2 and can hence be lazy (nearly delivering no service) between times 2
and 6.5 though there is some backlogged data in the system (since R > R∗). On the
other hand, a node offering a strict service curve β guarantees that, for any backlogged
period of length τ , it will output at least β(τ) amount of data.

A GPS node is an example of node that offers a strict service curve of the form β = rt
[BT12, pp. 22, 196] because it will always send the backlogged data at least at the
promised rate.

Since both types of service curves represent lower bounds of the service a node
offers, ∀β, β′ ∈ F if β ≤ β′ and if β′ is any type of service curve for a system, then β is
also a service curve of this type for the system [BJT09, p. 8].

As its name suggests, the strict service curve property is more strict than the service
curve property. This means that if a node offers β as a strict service curve to a flow,
then it also offers the same curve β as a classical service curve to the flow [BT12,
p. 22].

5.3.2 Maximum Service Curve

We say that a system S, with input and output functions R and R∗, offers a maximum
service curve γ to a flow R if and only if γ ∈ F and [BT12, p. 35]

R∗ ≤ R⊗ γ , (Maximum Service Curve)

or, alternatively,
∀t, s ≤ t, R∗(t) ≤ R(s) + γ(t− s), (5.2)

or, also,
∀t, s ≤ t, R∗(t)−R∗(s) ≤ x(s) + γ(t− s), (5.3)

where x(s) is the backlog at time s.
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time (s)
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5
γ β

R

R⊗ γ

R⊗ β

R∗

Figure 5.3: Graphical illustration of a maximum service curve coupled with a service
curve. The output of the system must always be greater than the convolution of the
input by the service curve of the system and lower than the convolution of the input
by the maximum service curve of the system.

A given system S can offer different curves as classical, strict and maximum service
curves. For example, Figure 5.3 considers a system S offering a classical service curve
β and a maximum service curve γ. From this, if we provide R at the input of S, we
are sure that the output R∗ of the system will lie in the area (shaded in the Figure)
between R⊗ β and R⊗ γ. An example of possible output is shown in the Figure. The
maximum service curve concept, as its name suggests, actually allows a system to
provide an upper bound on the service it can provide.

It is easy to show that if the output of a lossless node is constrained by σ, then the
node offers σ as maximum service curve [BT12, p. 35]. Note that if a node offers σ
as maximum service curve, it does not mean that its output has σ as arrival curve
(this can be shown with the output bound formula given in Section 6.1.3). This is the
property of a shaper (see Section 5.5).

A node offers a maximum service curve of δT if and only if it imposes a minimum
virtual delay equal to T [BT12, p. 35]. Similarly, if a flow traverses a node with
maximum service service γ such that γ(D) = 0, then the virtual delay d(t) satisfies
d(t) ≥ D ∀t [BT12, p. 36].

5.4 Concatenation

Assuming that a flow traverses systems S1 and S2 in sequence, if the systems offer
respectively the service curves β1 and β2 to the flow, then the concatenation of the
two systems offers a service curve β1 ⊗ β2 to the flow [BT12, p. 28]. Hence, if we note
β(S) the service curve offered by a system S and use ◦ to denote the concatenation of
two systems, we have

β(S1 ◦ S2) = β(S1)⊗ β(S2) . (Concatenation)

Note that if β1 and β2 are strict service curves, β1⊗β2 is not necessarily strict [BJT09,
pp. 13-14]. However, since strict service curves are classical service curves, β1 ⊗ β2
is a classical service curve for the system. It is actually not possible to define a new
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βmin{R1,R2},T1+T2

Figure 5.4: The concatenation of two rate-latency service curves results in a rate-
latency server whose rate is the minimum of the rates of the two initial servers and
whose delay is the sum of the delays of the two initial servers. This can be generalized
to any number of rate-latency servers.

notion of service curve which would be preserved through concatenation and which
would be stricter than the classical service curve property [BJT09, pp. 14-17].

Figure 5.4 shows that the concatenation of two rate-latency servers βR1,T1 and βR2,T2

results in a rate-latency server βmin{R1,R2},T1+T2 [BT12, p. 28]. This property can easily
be generalized to any number n of rate-latency servers βRi,Ti : their concatenation is a
rate-latency server βmin{R1,...,Rn},T1+...+Tn .

The concatenation principle is also true for maximum service curves [BT12, p. 35].

5.5 Greedy Shapers

In this Section, we introduce a particular type of network calculus system: greedy
shapers. As any system, they can be modeled using service curves. However, they enjoy
a stronger input-output relationship than service curves which will lead to interesting
properties in the next Chapters.

Let us use the same step-by-step definition as [BT12] to define what a greedy shaper
is.

Policer A policer with curve σ is a device deciding which bits of a flow conform to an
arrival curve σ [BT12, p. 30]. Policing can be performed at the boundary of a
network to check that users do not send more than specified by some agreement.
Non-conformant traffic can then be discarded or marked as low priority or best
effort.

Shaper A shaper with shaping curve σ is a bit processing device that forces its output
to have σ as an arrival curve [BT12, p. 30].

Greedy Shaper A greedy shaper with shaping curve σ is a shaper that delays the
input bits in a buffer whenever sending them would violate the constraint σ, but
outputs them as soon as possible [BT12, p. 30]. This means at the earliest time t
such that [Geo+96, p. 482]

R(t)−R(t− τ) ≤ σ(τ) ∀ 0 ≤ τ ≤ t.
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The greedy adjective comes from the fact that the device outputs data as soon as
possible. In contrast, we could have a lazy shaper never sending the data.

A lossless greedy shaper with shaping curve σ (and empty at time 0) has an input-
output relationship of the form [BT12, pp. 31-32]

R∗ = R⊗ σ̄ . (Greedy Shaper)

Hence, a greedy shaper with a sub-additive shaping curve σ offers σ both as a service
curve and a maximum service curve [BT12, pp. 32, 35]. However, it does not satisfy
the strict service curve property [BT12, p. 22].

It can be easily shown that if an α-smooth (α being a good function) flow is input to
a greedy shaper with shaping curve σ, then the output flow is still α-smooth [BT12,
p. 34], i.e. greedy shapers keep arrival constraints. Hence, the output of the greedy
shaper has min{α, σ} as an arrival curve. If σ is also a good function, then the sub-
additive closure of min{α, σ} is given by α ⊗ σ [BT12, p. 34] and the output of the
shaper is therefore (α⊗ σ)-smooth.

In min-plus system theory, a system is linear and time invariant (LTI) if its input-
output relationship has the form Y = X ⊗ σ. Greedy shapers are hence min-plus LTI
systems.

[BT12, pp. 36-38] gives an example showing that the modeling of a network element
as a shaper, when possible, provides stronger bounds than the maximum service curve
(see Section 6.1 for bounds results).
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C H A P T E R 6

NETWORK CALCULUS BASICS

Armed with the concepts of arrival and service curves, we are now able to develop
the main results of network calculus. After having introduced the mechanisms to
compute the worst-case bounds in Section 6.1, we present in Section 6.2 the particular
values in commonly encountered cases. We then introduce two important network
calculus principles in Sections 6.3 and 6.4.

6.1 Bounds

From the arrival curve α of a flow and the service curve β of a node, network
calculus theory allows to compute an upper bound of

◦ the backlog generated by the flow at this node,

◦ the virtual delay the flow will experience at the node,

◦ the new arrival curve α∗ of the flow at the output of the node.

This is illustrated in Figure 6.1.

6.1.1 Backlog Bound

From the definitions of service and arrival curves, it can be shown that the backlog
x(t) at a node offering a service curve β to a flow with arrival curve α is such that
[BT12, pp. 22-23]

x(t) ≤ v(α, β) , (Backlog Bound)

i.e., is bounded by the vertical deviation between the arrival and service curves.

S

α

+

β

→

α∗

+ delay, backlog bounds

R(t) R∗(t)

Figure 6.1: From arrival and service curves, network calculus allows to compute
bounds on the delay a flow will experience, on the backlog a flow will cause and on
the new arrival curve of the flow at the output of the system.
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It can be shown that, if α is a good function, β is wide-sense increasing and β(0) = 0,
then the bound is tight, i.e. there is a system offering a service curve β to a flow
constrained by α and which is achieving the bound. Of course, the bound is as tight as
the arrival and service curves are close to the physical flow and system they model.
Indeed, it can easily be seen that if we overestimate the arrival curve of the flow or
underestimate the service curve of the node, the obtained bounds will be overestimated.
Hence, the bound is called a worst-case bound and it can be achieved by a greedy
source [BT12, p. 27].

6.1.2 Delay Bound

Similarly, it can be shown that the virtual delay d(t) experienced by a flow with
arrival curve α at a node offering a service curve β is such that [BT12, p. 23]

d(t) ≤ h(α, β) , (Delay Bound)

i.e., is bounded by the horizontal deviation between the arrival and service curves.

Similarly to the backlog bound, if α is a good function, β is wide-sense increasing
and β(0) = 0, then the bound is tight and can be achieved by a greedy source [BT12,
p. 27].

6.1.3 Output Flow Bound

After having traversed a node, a flow R is transformed into R∗. One might wonder
then what could be an arrival curve for R∗. As data of the flow can be buffered at the
node before being served, we expect the burst of the flow to increase when traversing
a node. We can show that an α-smooth flow traversing a node with service curve β
and maximum service curve γ gets out of the node with an arrival curve α∗ given by
[BT12, pp. 23, 35-36]

α∗ = (α⊗ γ)� β . (Output Flow)

If the node has no maximum service curve, i.e. if γ = δ0, this reduces to

α∗ = α� β. (6.1)

Since we expect α⊗ γ to be smaller than α, we see that the knowledge of a maximum
service curve can lower, i.e. improve, the output bound.

Since traffic exiting a system might be input traffic to a second system, the knowledge
of this output bound allows to analyze this second system and hence to perform a
network-wide worst-case analysis.

α∗(0+) corresponds to the maximum amount of data of the flow the node will output
in an infinitely small amount of time, i.e. to the new maximum burst of the flow. Since
(α� β)(0) = v(α, β) (see Section 2.1.7), we see that the new maximum burst of the
flow corresponds to the maximum backlog that can be observed at the node. This
is intuitive. Indeed, all data that accumulates in the node can be released instantly
as a burst if the node eventually receives an infinite service, which the service curve
concept allows.

32



Recall that the min-plus deconvolution is not closed in F . Therefore α∗(t) might
not be zero for t ≤ 0. α∗ is hence not a good function. However, it is sub-additive.
Thus, the modified function δ0 ∧ α∗ is a good function (even a very good one if α is
left-continuous) [BT12, p. 28]. Using the formulas above, the good arrival curve in F
for the output flow can hence be obtained by setting α∗(t) = 0 ∀t ≤ 0.

The bound is tight (i.e. α∗ is the minimum arrival curve for R∗) if α is a good
function and left-continuous, β is wide-sense increasing, β(0) = 0 and α�α (see
Section 2.2.2) is not bounded from above [BT12, pp. 27-28, 56-58].

6.1.4 Delay from Backlog

In this Section, we present cases when it is possible to compute the maximum virtual
delay at time t based on the backlog that we can measure at this time. This is useful
when the arrival curve of a flow is not known but the backlog generated by the flow at
the node can be measured, which is usually the case (buffer usage monitoring).

As we already know, if we furthermore assume the node to be FIFO, the bound on
the virtual delay corresponds to the maximum delay a bit of the flow will experience
at this time.

6.1.4.1 Classical Service Curve Case

It is not possible, in general, to bound virtual delay from backlog using the framework
of classical service curves [BT12, p. 38]. However, in the particular case of a node
offering a service curve β and a maximum service curve γ satisfying

β(t) = γ(t− v), (6.2)

then we have [BT12, p. 38]

(γ�γ)(d(t)− v) ≤ x(t). (6.3)

If, in addition, γ is super-additive, then

β(d(t)) ≤ x(t). (6.4)

For example, for a node with service curve β = βR,T and maximum service curve
γ = βR,T ′ (with T ′ ≤ T ), we have [BT12, p. 38]

d(t) ≤ x(t)
R

+ T.

6.1.4.2 Strict Service Curve Case

The strict service curve guarantee allows to compute the maximum virtual delay at
time t based on the backlog x(t) at this time. Indeed, we can show that [BT12, p. 196]

d(t) ≤ β−1(x(t)). (6.5)

The difference with the classical service curve case is that we do not require γ to be
super-additive and to satisfy Equation 6.2.
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6.1.5 Output from Delay

A major drawback of the output bound is that the deconvolution operation is not
easy to perform in the general case. [Cru91, p. 117] shows that an output bound α∗

can be obtained from the delay bound D̄ at a node and is given by

α∗(t) = α(t+ D̄), (6.6)

i.e. that the arrival curve of a flow after a node can be obtained by shifting to the left
its initial arrival curve by the maximum delay the flow could experience at this node.

Note that the bound obtained by this formula is not tight. Indeed, we will see in the
next Section that using the formula involving the deconvolution operator allows to
obtain a better, i.e. a lower, output bound. The latter provides a better bound because
it takes advantage of the exact knowledge of the network element structure (its service
curve) while the formula proposed here only uses the delay it induces. Nevertheless,
Equation 6.6 is useful when either

◦ the arrival and service curves combination leads to intractable or complicated
computation of the tight bound,

◦ or the maximum delay is known but not the service curve.

6.2 Common Bounds Results

In the two following Sections, we present the bounds values for the two most
commonly encountered arrival-service curves combinations.

6.2.1 Leaky Bucket Flow through Rate Latency Server

Considering a flow constrained by a leaky bucket arrival curve γr,b going through a
node offering a service curve βR,T , we obtain the following bounds (for r ≤ R), shown
in Figure 6.2 [BT12, p. 24].

x(t) ≤ b+ rT (6.7)

d(t) ≤ T + b

R
(6.8)

α∗(t) = γr,b+rT (6.9)

6.2.2 VBR Flow through Rate Latency Server

We call a constant bit rate (CBR) connection a flow constrained by a leaky bucket
arrival curve. We then call a variable bit rate (VBR) connection a flow constrained by
two leaky buckets in series [BT12, p. 13], i.e. by an arrival curve of the type

α(t) = α1(t)⊗ α2(t) = (M + pt)⊗ (b+ rt) = min{M + pt, b+ rt}. (6.10)

Indeed, both leaky buckets curves are lower-star-shaped and their convolution is
therefore their minimum. We assume that r ≤ R, M ≤ b and p ≥ r. Such an arrival
curve is shown in Figure 6.3. The Internet Integrated Services (IntServ) framework
[RFC1633] uses this family of arrival curve. The 4-tuple (p,M, r, b) is hence often
called, from IntServ jargon, a T-SPEC (traffic specification) [BT12, p. 13]. Considering
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Figure 6.2: Graphical illustration of the computation of the delay, backlog and output
bounds for a leaky bucket flow traversing a rate latency server (adapted from [BT12,
p. 24]).

time
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b

M

T b−M
p−r

Figure 6.3: Graphical illustration of the computation of the delay and backlog bounds
for a VBR flow traversing a rate latency server (adapted from [BT12, p. 25]).

such a flow going through a node offering a service curve βR,T , we obtain the following
bounds (for r ≤ R), shown in Figures 6.3 and 6.4 [BT12, pp. 24-25].

x(t) ≤ b+ rT +
(
b−M
p− r

− T
)+

((p−R)+ − p+ r) (6.11)

d(t) ≤ T +
M + b−M

p−r (p−R)+

R
(6.12)

α∗(t) =
{

if b−Mp−r ≤ T b+ r(T + t)
otherwise min{b+ r(T + t), (t+ T )(p ∧R) +M + b−M

p−r (p−R)+}
(6.13)

Delay and Backlog Bounds. From the convexity and linearity of the region between
α and β, we know that the maximum horizontal and vertical deviations can only be
reached at angular points of either α or β. From this, only two values are possible
for both the delay and backlog bounds [BT12, p. 24]. These are shown in Figure 6.3.
Some max-plus algebra then leads to the formulas given above.

Output Bound. [BT12, p. 25] shows how it is possible to compute the min-plus
deconvolution of a concave function α by the rate latency function βR,T . First, we
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Figure 6.4: Graphical illustration of the computation of the output bound for a VBR
flow traversing a rate latency server.

define
t0 = inf

t≥0
{α′(t) ≤ R}.

In our case, we have

t0 =
{
b−M
p−r if p > R

0 otherwise
.

Then, we can obtain α∗ from α by

◦ replacing α on [0, t0] by the linear function with slope R that has the same value
as α for t = t0,

◦ shifting by T to the left.

The formula given above for α∗ results from this applied to a VBR flow [BT12, p. 25].
In simple words, this formula means that

α∗(t) =


if b−Mp−r ≤ T b+ r(T + t)
otherwise if p > R α shifted by T to the left and replacing first slope p by R
otherwise α shifted by T to the left

.

Reshaping Output. Reshaping is often introduced because the output of a node
usually does not conform anymore with the traffic constraint at the input. In our case,
we can place a greedy shaper with shaping curve α after the node. The input to the
shaper has an arrival curve α∗ given by Equation 6.13. The buffer B required at the
shaper, given by v(α∗, α) (see Figure 6.4), is then [?]1

B =


if b−Mp−r ≤ T (b−M) + rT

otherwise if p > R RT + (b−M)(p−R)
p−r

otherwise pT

. (6.14)

1[BT12, p. 32] uses < rather than ≤ in the first case. This does not make any difference because if
b−M
p−R

= T the values of the three cases are equal. However, we chose ≤ to be consistent with Equation
6.13.
Another difference with [BT12, p. 32] is that we substracted M from the results they have. This is because
they consider that α∗(0) 6= 0. In this case, the maximum vertical deviation is, for the three cases, achieved
in 0 where α(0) = 0. However, we have seen that α∗ can be replaced by α∗ ∧ δ0 (See footnote 1 on page
23). Hence we can consider α∗(0) = 0 and the maximum vertical deviation is then achieved in 0+. Since we
have α(0+) = M , substracting M from the results in [BT12, p. 32] still gives better yet still valid bounds.

36



0 2 4 6

da
ta

(k
B

)

0

1

2

3

4

5

γr,b

βR1,T1

d1

◦

0 2 4 6
0

1

2

3

4

5

γr,b+rT1

βR2,T2

d2
=

0 2 4 6 8 10
0

1

2

3

4

5

α

βmin{R1,R2},T1+T2

d

d1 d2

Figure 6.5: The delay bound computed on the convolved system is lower than the sum
of the bounds computed on the individual systems (PBOO principle).

6.3 Pay Bursts Only Once (PBOO)

The concatenation theorem allows us to derive an important network calculus result:
the pay bursts only once (PBOO) principle [BT12, pp. 28-29].

Assume a γr,b-smooth flow goes through a series of two rate-latency servers βR1,T1

and βR2,T2 . From the example of Section 6.2.1, we know that the delay experienced
at the first node is bounded by d1 = T1 + b/R1. The flow is then γr,b+rT1 -smooth
when entering the second system. The delay experienced at the second node is hence
bounded by d2 = T2 + (b+ rT1)/R2. All in all, the total delay is bounded by

d = d1 + d2 = T1 + T2 + b

R1
+ b

R2
+ rT1

R2
. (6.15)

If we now compute the delay bound by considering the whole system, i.e. by using
the convolution of the two service curves, we obtain

d = T1 + T2 + b

min{R1, R2}
. (6.16)

We see that the result of Equation 6.16 is always smaller than 6.15. This is shown in
Figure 6.5.

Elements of the form b/Ri represent the delay due to the burstiness of the input
flow. We say that we pay bursts only once because Equation 6.15 contains two such
elements while Equation 6.16 has only one.

A similar observation can be made for the backlog bound. These observations are
the essence of the PBOO principle: the bounds obtained by considering the service curve
of the whole system are always better than the bounds obtained by considering each node
in isolation.

The insight behind this principle is that we know the total worst-case delay and
backlog experienced by the flow when traversing the system, but we do not know the
contribution of each node to these values. A bound of the contribution of each node
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can be obtained by considering each one of them individually. This is for example
necessary to compute the buffer requirements at each node. We have to do so because,
though we know that the total backlog in the system will be lower than the sum of all
the buffer space we allocate, we do not have more information on how the buffered
data will be shared among the nodes.

A corollary of this is that the end-to-end delay and backlog bounds experienced by
a flow does not depend on the order of the elements that the flow traverses [BT12,
p. 29].

6.4 Greedy Shapers Come For Free

If we introduce a greedy shaper on a path, some bits may be delayed at the shaper.
Indeed, we know that, if the shaping curve σ of the shaper is sub-additive, the shaper
offers its shaping curve as service curve (see Section 5.5). Therefore, a bound on the
delay experienced by a flow at the shaper is given by the horizontal deviation between
the arrival curve of the flow and the shaping curve of the shaper [Geo+96, p. 484].
One might then think that the overall end-to-end delay will increase. However, this
is not always true. Indeed, assume an α-smooth flow traverses two systems S1 and
S2 in sequence. If a greedy shaper with curve σ ≥ α is inserted between S1 and S2,
then the backlog and delay bounds for the system without shaper are also valid for the
system with shaper. This phenomenon is known as greedy shapers come for free [BT12,
pp. 33-34].

Note however that this does not mean that the shaper does not need any buffer.
Only the total buffer requirement is not increased [BT12, p. 34].

In contrast, adding a greedy shaper has an obvious benefit. The burstiness of the
flow admitted at the next node is reduced, and the delay and backlog bounds at this
node are hence also lowered.
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C H A P T E R 7

PACKET-BASED SYSTEMS

7.1 Introduction

The developments so far considered continuous data flows. However, real packet
switching systems send data on a per-packet basis (entire packets) rather than bit-by-
bit. In this Chapter, we assume that we observe only entire packets [BT12, p. 40].

We know that greedy shapers keep arrival constraints. Let us consider a flow con-
strained by σ(t) = lmax + rt traversing a link of capacity c > r, i.e. a greedy shaper
with shaping curve λc. Consider that the flow sends a first packet of size lmax at T1 = 0
and a second packet of size l2 < r

c lmax at time T2 = l2
r . The flow is hence σ-smooth.

Now considering packetization, the departure time of the first packet is T ′1 = lmax
c . We

have T ′1 > T2. Hence the packets are sent back-to-back and the departure time of the
second packet is T ′2 = lmax+l2

c . The spacing between both packets is now less than l2
r

and the output is therefore not anymore σ-smooth. This example (from [BT12, p. 41])
shows that considering packetization invalidates the result that greedy shapers keep
arrival constraints.

Fortunately, we will show in this Chapter how it is possible to quantify the irreg-
ularities introduced by packetization, which will allow us to still use the concepts
introduced in the previous Chapters.

7.2 The Packetizer

Let us consider L(n) (n ∈ N), the wide-sense increasing sequence of cumulative
packet lengths. We then define the following building block [BT12, p. 41]

PL(x) = sup
n∈N
{L(n) : L(n) ≤ x} , (Function PL)

which can be alternatively defined by [BT12, p. 41]

PL(x) = L(n) ⇔ L(n) ≤ x < L(n+ 1), (7.1)

i.e. PL(x) is the largest cumulative packet length that is entirely contained in x. It can
easily be seen that the function is right-continuous [BT12, p. 41].

An L-packetizer is defined as the system that transforms R(t) into PL(R(t)) [BT12,
p. 41]. A flow R is then said L-packetized if PL(R(t)) = R(t) ∀t [BT12, p. 41].
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Figure 7.1: Modeling of a real variable length packet trunk with constant bit rate as a
greedy shaper (input R, output R∗) followed by a packetizer (input R∗, output R′)
(adapted from [BT12, p. 40]).

The packetizer enjoys the following properties [BT12, p. 42].

◦ Isotonicity.
∀x, y ∈ R, x ≤ y ⇒ PL(x) ≤ PL(y)

◦ Idempotency.
∀x ∈ R, PL(PL(x)) = PL(x)

◦ Optimality.
Among all flows such that {

x is L-packetized
x ≤ R

PL(R(t)) is the upper-bound.

7.3 Impact of the Packetizer

Figure 7.1 shows an example of L-packetized input flow R along with the corre-
sponding bit-by-bit output R and L-packetized output R′ if the flow traverses a greedy
shaper with shaping curve λc. This corresponds to the correct modeling of a real
variable length packet trunk with constant bit rate. We see that the delay and backlog
bounds are bigger than those that we would have obtained considering only R and R∗.
The following quantifies this deviation.

Consider a bit-by-bit system with L-packetized input R and bit-by-bit output R∗ with
service curve β and maximum service curve γ. The output R∗ is then L-packetized to
produce the final output R′. If the systems are FIFO and lossless, we have the following
results1 [BT12, pp. 42-44].

◦ The per-packet delay2 for the combined system is the maximum virtual delay for
the bit-by-bit system.

1lmax = supn{L(n+ 1)− L(n)}.
2For a system with L-packetized input and output, the per-packet delay is supi{T ′i − Ti} where T ′i and

Ti are the arrival and departure times for the ith packet.
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◦ The service curve β′ (from which the maximum backlog for the combined system
can be computed) and maximum service curve γ′ of the combined system are
given by

β′(t) = [β(t)− lmax]+, (7.2)

γ′(t) = γ(t). (7.3)

◦ If a flow S has α(t) as an arrival curve, then PL(S(t)) has α(t) + lmax1{t>0} as
an arrival curve.

The second point is consistent with Figure 7.1 while the third one is consistent with
the observation made in Section 7.1. The first point can be interpreted as follows.
The packetizer waits for the last bit of a packet to consider the first bits transmitted.
Therefore, the packet itself is not delayed, since it is fully received at the same time.
However, downstream nodes will have to wait for the entire packet to be received
before being able to process it. The processing of the packet is then delayed. Packetizers
hence do not increase the maximum delay at the node where they are appended but
they, however, generally increase the end-to-end delay [BT12, p. 45].

That is why, for end-to-end delay bound calculations, the packetizer at the last
hop can be neglected. Consider for example [BT12, p. 44] the concatenation of m
GPS nodes with rate R, each node being followed by an L-packetizer. Each GPS
node followed by its associated L-packetizer offers (from the result hereabove) a
service curve βR, lmaxR . The complete system hence offers a service curve βR,m lmax

R
.

However, to compute the end-to-end delay bound, we can neglect the last packetizer
and consider the service curve βR,(m−1) lmaxR

. If the flow is originally constrained by
γr,b, the end-to-end delay bound is hence

b+ (m− 1)lmax
R

.

7.4 Packetized Greedy Shaper

Consider an L-packetized input sequence R(t).

Packetized Shaper A packetized shaper with shaping curve σ is a system that forces
its output to have σ as an arrival curve and to be L-packetized [BT12, p. 48].

Packetized Greedy Shaper A packetized greedy shaper with shaping curve σ is a
packetized shaper that delays the input bits in a buffer whenever sending them
would violate the constraint σ, but outputs them as soon as possible [BT12, p. 48].
For a packet to be transmitted, we must of course have σ(t) ≥ lmax ∀t > 0 [BT12,
p. 49].

Consider a sequence L of cumulative packets lengths and a good function σ such
that there is a sub-additive function σ0 and a l ≥ lmax such that

σ(t) = σ0(t) + l1{t>0}.

If we call Cσ the greedy shaper with shaping curve σ and PL the L-packetizer, for any
input, the output of the composition

PL ◦ Cσ ◦ PL
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is σ-smooth [BT12, p. 46]. For an L-packetized input, the packetized greedy shaper can
be realized as3 Cσ ◦ PL [BT12, p. 49]. The assumption on σ is satisfied if σ is concave
and limt→0+ σ(t) ≥ lmax [BT12, p. 46]. If the arrival curve α of an L-packetized flow
also satisfies this condition, the output of the L-packetized greedy shaper with shaping
curve σ is still α-smooth [BT12, pp. 51-52].

If σ does not satisfy the above condition, the packetized greedy shaper cannot be
realized simply as Cσ ◦ PL. If σ is only a good function, the output R̄ of the greedy
shaper is given by

R̄ = inf{R(1), R(2), R(3), . . .}, (7.4)

where R(1) = PL((σ ⊗R))(t)) and R(i) = PL((σ ⊗R(i−1)))(t)) ∀i > 1 [BT12, p. 50].
R̄ is actually the biggest flow smaller or equal to R, L-packetized and σ-smooth [BT12,
pp. 50-51].

It can be shown that, for a series of M packetized greedy shapers with shaping
curves σm such that limt→0+ σm ≥ lmax and for L-packetized inputs, the series is
equivalent to a packetized greedy shaper with shaping curve σ = minm σm [BT12,
pp. 52-53].

3We consider that S1 ◦ S2 means that S1 is applied first, which is different from the notation used in
[BT12].
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C H A P T E R 8

SERVICE CURVE DETERMINATION

In the previous Chapters, we have seen what network calculus allows us to compute
based on arrival and service curves. Most flows can easily be modeled by an affine
arrival curve. We now need to know how to obtain the service curve corresponding to
a physical node. This issue is addressed in this Chapter. We will then be able to model
a flow with its arrival curve, a node (and a network) with its service curve, and hence
to compute bounds in real scenarios.

8.1 Constant Delay Line

A constant delay line is a network element that outputs all data which arrives on its
single input on its single output stream exactly T seconds later [Cru91, p. 117]. This
corresponds to a node with service curve and maximum service curve given by δT .

Obviously, the maximum delay experienced at this node is given by T . The output
arrival curve α∗ is equal to the initial arrival curve α [Cru91, p. 117]. Indeed, (α ⊗
δT )� δT = α. Besides, the backlog is bounded by α(T ). This is shown in Figure 8.1.

This type of element can be used to model propagation and processing delays
[Cru91, p. 117]. As these elements do not modify the arrival curve of flows, they can
usually be omitted in the modeling. The end-to-end delay bound of a flow can then
be obtained by computing the delay bound without these elements and adding their
delay contribution to the result.

Since δT − l = δT ∀l, this model is valid both for bit-by-bit and packet-by-packet
systems [?].

time

data

β
α = α∗

T

α(T )

T

Figure 8.1: Bounds at a constant delay line network element.
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8.2 Schedulers

In order to guarantee different service curves to flows, network nodes implement
some form of packet scheduling (also called service discipline) among different flows.
Packet scheduling consists in deciding, at the output of a node, the service order for
different packets [BT12, p. 67].

8.2.1 First-In First-Out (FIFO)

The simplest form of packet scheduling is first-in first-out (FIFO). Packets are served
in order of arrival. The different flows are not isolated. If the node is serving the flows
at a rate r, it is a greedy shaper with shaping curve σ = rt. It then offers a service
curve β = rt to the aggregate flow. The virtual delay and buffer bounds are the same
for all the flows and must be computed with the arrival curve of the aggregate flow
[BT12, pp. 67-68].

The virtual delay computed in such a way does not correspond to the real delay be-
cause a FIFO node is not necessarily FIFO per bit. Indeed, since packets are considered
only when fully received, a bit belonging to a small packet might be sent before a bit
arrived earlier but belonging to a big packet. For the virtual delay bound to correspond
to the per-packet delay bound, we must have an L-packetized input [?]. Indeed, in
such a case, bits belonging to the same packet are seen all at the same time and both
packets and bits are hence transmitted FIFO. Then, to reflect packetization at the
output, the service curve has to be changed to β = [rt− lmax]+.

8.2.2 Priority Queuing (PQ)

FIFO does not provide any isolation among flows. Under priority queuing (PQ)
packets arriving at the output link are classified into priority classes. Typically, each
class has its own queue and when a packet is to be transmitted, a packet from the
highest priority class with the non-empty queue is chosen (choice among packets in the
same priority queue is generally done FIFO). Under nonpreemptive PQ scheduling, the
transmission of a packet is not interrupted once it has begun. In constrast, a preemptive
PQ scheduler would stop the transmission of a packet if a packet of higher priority
arrives at the node (so that the latter can be sent immediately) [KR13, pp. 642-643].

Consider a non preemptive priority scheduler serving two flows H and L. The node
offers a strict service curve β to the aggregate of the two flows. H has priority over
L. If H is αH -smooth and lLmax is the maximum packet size of L, the service curves
guaranteed to H and L are [BT12, p. 176]

βH = [β − lLmax]+ (PQ - High Priority)

and
βL = [β − αH ]+ (PQ - Low Priority)

if these are wide-sense increasing. βH is also a strict service curve [BJT09, pp. 19-20].
βL is not strict but β′L = [β − αH − lLmax]+ is [BJT09, pp. 19-20].
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For example, if the node (also called server) serves the aggregate at a rate C and if
H is γr,b-smooth (r < C), then [BT12, p. 21]

βH = β
C,

lLmax
C

, (8.1)

βL = βC−r, b
C−r

. (8.2)

The latency lLmax
C of βH accounts for the fact that, since the scheduler is non preemp-

tive, H might have to wait for a complete L packet to be sent. The latency b
C−r of βL

is the time needed to empty the buffer of the high priority queue. Indeed, the buffer
might be instantly containing b and then filled at rate r. If emptied at a rate C, the
buffer will finally be empty at time t∗ : b+ rt∗ − Ct∗ = 0, i.e. at time b

C−r . After this
time, L can be served at a rate C − r since r is still used to serve H. In this example,
both service curves are strict [BT12, p. 22].

Generalizing to n classes, if C is the overall capacity of the server and αi the arrival
curve for class i (class 1 is the highest priority) then the service curve for class i is
[Sch+03, p. 4170]

βi(t) =

Ct− i−1∑
j=1

αj(t)− max
i+1≤j≤n

{ljmax}

+

. (8.3)

From the results above, taking the maximum over i ≤ j ≤ n makes it strict [BJT09,
p. 20].

In the particular case where αi = γri,bi (i.e. classes are token bucket flows) the
service curve for class i is given by [Sch+03, p. 4171] βi = βRi,Ti where

Ri = C −
i−1∑
j=1

rj , (8.4)

Ti =
∑i−1
j=1 bj + maxi+1≤j≤n{ljmax}

C −
∑i−1
j=1 rj

. (8.5)

From the results of Section 6.1, the delay and backlog experienced by class i are
then bounded by [Sch+03, pp. 4171-4172]-[Cru91, pp. 122-123]

di(t) ≤ di =
∑i
j=1 bj + maxi+1≤j≤n{ljmax}

C −
∑i−1
j=1 rj

, (8.6)

xi(t) ≤ xi = bi + ri

(∑i−1
j=1 bj + maxi+1≤j≤n{ljmax}

C −
∑i−1
j=1 rj

)
, (8.7)

and the new burst of the class after having traversed the scheduler is given by

b∗i = bi + xi (8.8)

while its rate is unchanged.

Note that these formulas do not consider the packetization of the output of the
scheduler. To do so, each obtained service curve β must be transformed as explained
in Section 7.3.
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8.2.3 Generalized Processor Sharing (GPS)

The ideal form of per-flow queuing is known as generalized processor sharing (GPS).
Each flow i going through the flow is allocated a weight φi. A GPS node with a total
output rate of C guarantees to flow i that the rate it will receive is zero if flow i has no
backlog and otherwise is

φi∑
j∈B(t) φj

C,

where B(t) is the set of backlogged flows at time t [BT12, p. 68].

It can be easily seen that a GPS node offers to flow i a service curve β φiC∑
j
φj

,0 [BT12,

pp. 18, 68]. Hence, for every flow, if we know its weight and its arrival curve, delay
and backlog bounds can be computed. However, GPS is a theoretical concept which is
not really implementable because it relies on the fluid model and assumes that packets
are infinitely divisible.

8.2.4 Packet by Packet GPS (PGPS)

A practical implementation of GPS could consist in, for every packet, computing its
finish time under GPS and then present the packet to the output link at its finish time.
However, such a scheduler might not be work-conserving, i.e. might be idle at some
times while having some packets waiting to be transmitted [BT12, p. 68].

Another practical implementation of GPS, which is work-conserving, is packet by
packet GPS (PGPS). For every packet, its finish time under GPS is computed. Then,
whenever a packet is finished transmitting, the next packet selected for transmission
is the one with the earliest GPS finish time. The work-conserving property comes at
the expense of a packet being possibly transmitted before its GPS finish time [BT12,
p. 68]. It can then be shown that the finish time of PGPS is at most the finish time of
GPS plus L/C where L is the maximum packet size (among all flows present at the
scheduler) and C the transmission rate [BT12, p. 68].

The following Section describes a powerful framework allowing to model most of
the practical implementations of GPS, including PGPS.

8.2.5 Guaranteed Rate (GR)

8.2.5.1 The Framework

There exist a lot of different implementations of GPS that differ in their implemen-
tation complexity and in the bounds that can be obtained. Most of them fit in the
guaranteed rate framework, which is based on the max-plus algebra [BT12, p. 70]-
[GLV95]. The idea is that we now deal with the arrival and departure times of packets,
rather than with cumulative functions.

Consider a node serving a flow whose packets are numbered, starting from 1, in
order of arrival. If ai ≥ 0, di ≥ 0 and ln are the arrival time, departure time and length
of packet i, we say that a node is a GR node with rate r and delay e for this flow if it
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Figure 8.2: Illustration of how a GR node computes the fi of a packet depending on
whether the packet arrives before or after fn−1 (adapted from [BT12, pp. 197-198]).

guarantees that1 [BT12, pp. 70-71]

dn ≤ fn + e{
f0 = 0
fn = max{an, fn−1}+ ln

r ∀n ≥ 1
, (GR Node)

or alternatively, that ∀n there is a k ∈ {1, ..., n} such that

dn ≤ e+ ak + lk + . . .+ ln
r

. (8.9)

Figure 8.2 illustrates how the fi are computed. On the one hand, if packet n arrives
after fn−1 (upper Figure), then its fn is computed starting from an. On the other hand,
if packet n arrives before fn−1 (lower Figure), then its fn is computed starting from
fn−1.

For example, an ideal GPS node is a GR node with rate φi∑
j
φj
C and latency 0 [BT12,

p. 70].

8.2.5.2 Characterization of Nodes as GR Nodes

A scheduler S is said to deviate from GPS by e if, for any packet n, the departure
time dn is such that dn ≤ gn + e where gn is the departure time from the theoretical
GPS node that allocates a rate r to this flow [BT12, p. 70]. Such a scheduler is then a
GR node with rate r and latency e [BT12, p. 70].

For example,

◦ a PGPS node is a GR node with rate φi∑
j
φj
C and latency L

C [BT12, p. 70],

◦ a node (not necessarily FIFO) guaranteeing a delay ≤ δmax is, ∀ r > 0, GR with
rate r and latency [δmax − lmin/r]+, where lmin is the minimum packet size
[BT12, p. 72],

◦ the concatenation (in any order) of a FIFO node imposing a delay ≤ δmax and a
FIFO GR node with rate r and latency e is GR with rate r and latency e+ δmax
[BT12, p. 73],

1Note that a GR node need not be FIFO.
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◦ the concatenation of a first (not necessarily FIFO) node imposing a delay [δmax−
δ, δmax] with a FIFO GR node with rate r and latency e is a GR node with rate r
and latency e+ δmax + (α(δ)− lmin)/r where α is a continuous arrival curve of
the fresh input [BT12, p. 73].

If a FIFO node with L-packetized input guarantees a service curve equal to βr,e, then
it is a GR node with rate r and latency e [BT12, p. 71]. A GR node with rate r and
latency e is the concatenation of a rate-latency node βr,e and an L-packetizer. If the GR
node is FIFO, then the service curve element is also FIFO [BT12, p. 71].

From this, a GR node offers a service curve2

β = βr,e+ lmax
r

, (GR Node Service Curve)

which is valid for packet-by-packet systems. Because many implementations of GPS
can be quantified in terms of their deviation from GPS, this formula allows to easily
derive a service curve for a scheduler emulating GPS.

For an α-smooth flow going through a GR node (not necessarily FIFO), the delay for
any packet is bounded by [BT12, p. 71]

sup
t>0

{
α(t)
r
− t
}

+ e, (8.10)

i.e. by the horizontal deviation between the arrival and service curve. This result is
stronger than the usual delay bound because the GR node need not to be FIFO.

8.2.5.3 Concatenation of GR Nodes

Concatenating GR nodes that are FIFO per flow follow the classical rule of concate-
nation of service curves and packetizers. This means that the concatenation of M FIFO
GR nodes is a GR node with [BT12, p. 72] rate

r = min
m

rm (8.11)

and latency

e =
n∑
i=1

ei +
n−1∑
i=1

lmax
ri

. (8.12)

A bound on the end-to-end delay of a γr,b-smooth flow through a concatenation of GR
nodes is thus [BT12, p. 72]

M∑
m=1

em + lmax

M−1∑
m=1

1
rm

+ b

minm rm
. (8.13)

This result is no longer true for GR nodes that are not FIFO per flow [BT12, p. 73].

2That is why a GR node is also called a rate-latency server.
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8.3 Flows Aggregation

In the previous Section, we have shown how to compute the service curve offered
to different flow classes at a scheduler. However, we know that several flows can be
classified into the same class. Hence, the service curves computed might be offered to
an aggregate of flows. In order to be able to obtain bounds for the individual flows and
not only for the aggregate, we will try in this Section to derive the service curve offered
to the individual flows of an aggregate. Unfortunately, the state of the art dealing with
aggregate multiplexing is not very rich [BT12, p. 175].

Without loss of generality, we will only consider two flows.

8.3.1 Strict Service Curve Element

Consider two flows being served, with some unknown arbitration between the two
flows, by a node guaranteeing a strict service curve β. If flow 2 is α2-smooth, then, if it
is wide-sense increasing,

β1 = [β − α2]+ (Residual Service Curve - Strict Service Curve Node)

is a service curve for flow 1 [BT12, p. 176]-[BJT09, pp. 17-18]. This is when we do not
know anything about the scheduling between flows (also called blind multiplexing).
If flow 2 has priority over flow 1, the service curve is strict [BJT09, pp. 17-19]. This
shows that there is a difference between blind multiplexing and fixed priorities, though
the worst departure process for blind multiplexing is fixed priorities. [BJT09, p. 19]
provides a nice example to show how this is possible.

For example, considering a node with strict service curve βR,T serving two leaky
bucket flows with parameters (ri, bi), we have that [BT12, pp. 176-177]-[Cru91,
pp. 121-122]3, if r1 + r2 ≤ R, the output of flow 1 is a leaky bucket with parameters
r∗1 = r1 and

b∗1 = b1 + r1T + r1
b2 + r2T

R− r2
.

8.3.2 FIFO Service Curve Element

The result above does not hold if the service curve of the node is not strict because
we can then not bound the duration of the busy period for the other (assumed higher
priority) flows [BT12, p. 177]. However assuming the node is lossless, FIFO and
guarantees β as a service curve to the two flows, if packet arrivals are instantaneous,
then ∀ θ ≥ 0 [BT12, pp. 177-178]

β1
θ (t) =

{
[β(t)− α2(t− θ)]+ if t > θ

0 otherwise
(Residual Service Curve - FIFO Node)

are such that R′1 ≥ R1 ⊗ β1
θ . Hence the β1

θ that are wide-sense increasing are service
curves for flow 1.

3This reference considers T = 0 and adds an additional parameter V which is 0 in our case.
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From this, we cannot conclude that infθ{β1
θ} is a service curve [BT12, p. 178].

However, we can show that the output of flow 1 is constrained by [BT12, pp. 178-179]

α∗1(t) = inf
θ≥0
{(α1 � β1

θ )(t)} . (Output Bound - FIFO Node)

Considering a FIFO node guaranteeing a service curve βR,T , if flow 1 is constrained
by a leaky bucket with parameters (r1, b1) and flow 2 by a sub-additive arrival curve
α2, then [BT12, pp. 179-180], if r1 + r2 < R4, the output of flow 1 is a leaky bucket
with parameters r∗1 = r1 and

b∗1 = b1 + r1T + r1
supt≥0{α2(t) + r1t−Rt}

R
. (8.14)

In particular, if α2 is a leaky bucket with parameters (r2, b2), then [BT12, p. 180]
flow 1 is guaranteed a service curve βR′,T ′ with R′ = R− r2 and T ′ = T + b2/R and
the output of flow 1 is a leaky bucket with parameters r∗1 = r1 and

b∗1 = b1 + r1T + r1
b2

R
. (8.15)

This is a better bound than in the strict service curve case, at the expense of the FIFO
assumption.

8.3.3 GR Node

Let us now consider the case of a GR node (which is not necessarily FIFO, i.e.
arbitration between the two flows is unspecified) with rate R and latency T . If flow 1
is constrained by a leaky bucket with parameters (r1, b1) and flow 2 by a sub-additive
arrival curve α2, then [BT12, pp. 180-181], if r1 + r2 < R, the output of flow 1 is a
leaky bucket with parameters r∗1 = r1 and

b∗1 = b1 + r1T + r1D̂, (8.16)

where D̂ = supt>0

{
α2(t)+r1t+b1

R − t
}

. Indeed, from the properties of GR nodes, the

delay for any packet is bounded by D̂+T and the output of flow 1 has thus α1(t+D̂+T )
as an arrival curve.

In particular, if α2 is a leaky bucket with parameters (r2, b2), then [BT12, p. 181]
the output of flow 1 is a leaky bucket with parameters r∗1 = r1 and

b∗1 = b1 + r1T + r1
b1 + b2

R
. (8.17)

This bound is less good than in the FIFO case, but it is valid for any GR node, even not
FIFO.

4Where r2 = inft>0{α2(t)/t} is the maximum sustainable rate of α2.
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