Ханнес Бартц¹, Владимир Сидоренко^{1,2}

¹Institute for Communications Engineering (LNT) Technical University of Munich (TUM) Munich, Germany

²Институт проблем передачи информации (ИППИ) Москва, Россия

Институт проблем передачи информации (ИППИ), Москва, Россия

4 Октябрь, 2016

Outline

1 Definitions

2 Subspace Codes Punctured Subspace Codes

3 Power Decoding of Punctured Subspace Codes

4 Conclusion

Some Definitions

- \mathbb{F}_h : finite field
- \mathbb{F}_q : extension field of \mathbb{F}_h of degree ℓ , i.e. $q = h^{\ell}$
- \mathbb{F}_{q^m} : *extension field* of \mathbb{F}_q of degree *m*
- $\beta = (\beta_0, \beta_1, \dots, \beta_{m-1})$: An *ordered basis* of \mathbb{F}_{q^m} over \mathbb{F}_q
- Any element a from F_{q^m} can be represented w.r.t β by a coordinate vector <u>a</u> = (a⁽⁰⁾ ... a^(m-1)) over F_q s.th.

$$a=\sum_{i=0}^{m-1}a^{(i)}\beta_i.$$

- *h-linearized polynomial*: $p(x) \stackrel{\text{def}}{=} \sum_{i=0}^{d} p_i x^{[i]}$ where $[i] \stackrel{\text{def}}{=} h^i$
- *h*-degree: deg_h(p(x)) $\stackrel{\text{def}}{=} \max_i \{ p_i \neq 0 \}$

Some Definitions

- $\mathbb{L}_{q^m}[x]$: ring of *h*-linearized polynomials with coefficients from \mathbb{F}_{q^m}
- $\mathbb{L}_{q^m}[x]_{\leq k}$: set of all polynomials in $\mathbb{L}_{q^m}[x]$ with *h*-degree less than k
- For any $b \in \mathbb{F}_q$ and integer i we have: $b^{q^i} = b$
- Projective space $\mathcal{P}_h(N)$: set of all subspaces of \mathbb{F}_h^N
- Grassmannian $\mathcal{G}_h(N, n)$: set of all subspaces of $\mathcal{P}_h(N)$ of dimension n

The Operator Channel

- Input: n_t -dimensional subspace $\mathcal{V} \in \mathcal{G}_h(N, n_t)$
- $\mathcal{H}_{n_t-\delta}(\mathcal{V})$ returns a random $(n_t \delta)$ -dimensional subspace of \mathcal{V} $\Rightarrow \delta$ deletions
- γ -dimensional error space \mathcal{E} with $\mathcal{V} \cap \mathcal{E} = \{\mathbf{0}\}$ $\Rightarrow \gamma \text{ insertions}$
- Output: (n_r = n_t − δ + γ)-dimensional subspace U ∈ G_h(N, n_r)

Definition

The subspace distance between \mathcal{U} and \mathcal{U}' is defined as $d_s(\mathcal{U}, \mathcal{U}') = \dim(\mathcal{U} \oplus \mathcal{U}') - \dim(\mathcal{U} \cap \mathcal{U}')$ $= \dim(\mathcal{U}) + \dim(\mathcal{U}') - 2\dim(\mathcal{U} \cap \mathcal{U}')$

Properly Punctured Subspace (PSub) Codes

Definition (Properly Punctured Subspace Code)

Let $\alpha = (\alpha_0 \ \alpha_1 \ \dots \ \alpha_{n_t-1})^T \in \mathbb{F}_q^{n_t}$ be a vector containing \mathbb{F}_h -linearly independent code locators from \mathbb{F}_q . For $k \leq n_t$, a proper punctured subspace code $\operatorname{PSub}[\alpha; n_t, k]$ of dimension n_t is defined as

$$\left\{ \langle (\boldsymbol{\alpha} \ f(\boldsymbol{\alpha})) \rangle_{h} \stackrel{\text{def}}{=} \left\langle \begin{pmatrix} \alpha_{0} & f(\alpha_{0}) \\ \vdots & \vdots \\ \alpha_{n_{t}-1} & f(\alpha_{n_{t}-1}) \end{pmatrix} \right\rangle_{h} : f(x) \in \mathbb{L}_{q^{m}}[x]_{< k} \right\}.$$
(1)

- Subspace distance $d_s(\operatorname{PSub}[\alpha; n_t, k]) = 2(n_t k + 1)$
- Dimension of vector space: $N = \ell(1 + m)$ over \mathbb{F}_h
- Unique decoding up to $d_s/2$ [1]: $\gamma + \delta \leq n_t k$

How to decode beyond $d_s/2$?

^[1] R. Kötter, F. R. Kschischang "Coding for Errors and Erasures in Random Linear Network Coding", 2008

Interleaved Subspace Codes [2]

Definition (*m*-Interleaved Subspace Code)

Let $\alpha = (\alpha_0 \ \alpha_1 \ \dots \ \alpha_{n_t-1})^T$ be a vector containing \mathbb{F}_h -linearly independent code locators from \mathbb{F}_q . For a fixed integer $k \le n_t$, an interleaved subspace code ISub $[m, \alpha; n_t, k]$ of dimension n_t and interleaving order m is defined as

$$\left\{\left\langle \left(\alpha \ f^{(1)}(\alpha) \ f^{(2)}(\alpha) \ \ldots \ f^{(m)}(\alpha)\right)\right\rangle_h : f^{(j)}(x) \in \mathbb{L}_q[x]_{< k}, \forall j \in [1,m]\right\}.$$

- Subspace distance $d_s(\operatorname{PSub}[\alpha; n_t, k]) = 2(n_t k + 1)$
- Dimension of vector space: $N = \ell(1 + m)$ over \mathbb{F}_h
- Decoding region [2]: $\frac{\gamma}{m} + \delta \leq (n_t k)$
- Decoding failure probability (unique decoder): $<\frac{1}{a}$

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

List Decoding of Interleaved Subspace Codes [2]

Interpolation Problem

Let

$$\mathcal{B}_{\mathcal{U}} = \left\{ \left(x_0, y_0^{(0)}, \dots, y_0^{(m-1)} \right), \dots, \left(x_{m-1}, y_{n_r-1}^{(0)}, \dots, y_{n_r-1}^{(m-1)} \right) \right\}$$

be a basis for the received subspace U. Construct an (m + 1)-variate *h*-linearized polynomial of the form

$$Q(x, y^{(0)}, \dots, y^{(m-1)}) = Q_0(x) + Q_1(y^{(0)}) + \dots + Q_m(y^{(m-1)})$$

that fulfills

$$egin{aligned} Q(x_i, y_i^{(0)}, \dots, y_i^{(m-1)}) &= 0, \quad orall (x_i, y_i^{(0)}, \dots, y_i^{(m-1)}) \in \mathcal{B}_\mathcal{U} \ \deg_h(Q_0(x)) &< D \ \deg_h(Q_j(x)) < D - (k-1), orall j \in [1, m]. \end{aligned}$$

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

List Decoding of Interleaved Subspace Codes [2]

Root-Finding Step

If the number of insertions γ and deletions δ satisfy

$$\gamma + m\delta \le m\left(n_t - k\right) \tag{2}$$

then

$$Q_0(x) + Q_1(f^{(0)}(x)) + \dots + Q_m(f^{(m-1)}(x)) = 0.$$
 (3)

Find the list \mathcal{L}_I of all $f^{(0)}(x), \ldots, f^{(m-1)}(x) \in \mathbb{L}_q[x]_{<k}$ of degree less than k that satisfy (3) The maximum list size is upper bounded by $|\mathcal{L}_I| \leq q^{k(m-1)}$ Decoding failure probability (unique decoder): $<\frac{1}{q}$

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

• Define $f^{q}(x) = \sum_{i=0}^{k-1} f_{i}^{q} x^{[i]}$

• For any $\alpha \in \mathbb{F}_q$ we have $(f(\alpha))^q = f^q(\alpha)$

• For $1 \le s \le m$ we can virtually extend each codeword of $PSub[\alpha; n, k]$ as

$$\left\langle \begin{pmatrix} \alpha_0 & f(\alpha_0) & f^q(\alpha_0) & \dots & f^{q^{s-1}}(\alpha_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{n_t-1} & f(\alpha_{n_t-1}) & f^q(\alpha_{n_t-1}) & \dots & f^{q^{s-1}}(\alpha_{n_t-1}) \end{pmatrix} \right\rangle_h$$

- The resulting codeword is a codeword of an *s*-interleaved code over \mathbb{F}_{q^m} with correlated message polynomials $f(x), f^q(x), \ldots, f^{q^{s-1}}(x)$
- The *virtually created symbols* do not need to be transmitted since they can be obtained at the receiver

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

• Define
$$f^{q}(x) = \sum_{i=0}^{k-1} f_{i}^{q} x^{[i]}$$

- For any $\alpha \in \mathbb{F}_q$ we have $(f(\alpha))^q = f^q(\alpha)$
- For $1 \le s \le m$ we can virtually extend each codeword of $PSub[\alpha; n, k]$ as

$$\left\langle \begin{pmatrix} \alpha_0 & f(\alpha_0) & f^q(\alpha_0) & \dots & f^{q^{s-1}}(\alpha_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{n_t-1} & f(\alpha_{n_t-1}) & f^q(\alpha_{n_t-1}) & \dots & f^{q^{s-1}}(\alpha_{n_t-1}) \end{pmatrix} \right\rangle_h$$

- The resulting codeword is a codeword of an *s*-interleaved code over \mathbb{F}_{q^m} with correlated message polynomials $f(x), f^q(x), \ldots, f^{q^{s-1}}(x)$
- The *virtually created symbols* do not need to be transmitted since they can be obtained at the receiver

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

• Define
$$f^{q}(x) = \sum_{i=0}^{k-1} f_{i}^{q} x^{[i]}$$

- For any $\alpha \in \mathbb{F}_q$ we have $(f(\alpha))^q = f^q(\alpha)$
- For $1 \le s \le m$ we can virtually extend each codeword of $PSub[\alpha; n, k]$ as

$$\left\langle \begin{pmatrix} \alpha_0 & f(\alpha_0) & f^q(\alpha_0) & \dots & f^{q^{s-1}}(\alpha_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{n_t-1} & f(\alpha_{n_t-1}) & f^q(\alpha_{n_t-1}) & \dots & f^{q^{s-1}}(\alpha_{n_t-1}) \end{pmatrix} \right\rangle_h$$

- The resulting codeword is a codeword of an *s*-interleaved code over \mathbb{F}_{q^m} with correlated message polynomials $f(x), f^q(x), \ldots, f^{q^{s-1}}(x)$
- The *virtually created symbols* do not need to be transmitted since they can be obtained at the receiver

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

• Define
$$f^{q}(x) = \sum_{i=0}^{k-1} f_{i}^{q} x^{[i]}$$

- For any $\alpha \in \mathbb{F}_q$ we have $(f(\alpha))^q = f^q(\alpha)$
- For $1 \le s \le m$ we can virtually extend each codeword of $PSub[\alpha; n, k]$ as

$$\left\langle \begin{pmatrix} \alpha_0 & f(\alpha_0) & f^q(\alpha_0) & \dots & f^{q^{s-1}}(\alpha_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{n_t-1} & f(\alpha_{n_t-1}) & f^q(\alpha_{n_t-1}) & \dots & f^{q^{s-1}}(\alpha_{n_t-1}) \end{pmatrix} \right\rangle_h$$

- The resulting codeword is a codeword of an *s*-interleaved code over \mathbb{F}_{q^m} with correlated message polynomials $f(x), f^q(x), \ldots, f^{q^{s-1}}(x)$
- The *virtually created symbols* do not need to be transmitted since they can be obtained at the receiver

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

• Define
$$f^{q}(x) = \sum_{i=0}^{k-1} f_{i}^{q} x^{[i]}$$

- For any $\alpha \in \mathbb{F}_q$ we have $(f(\alpha))^q = f^q(\alpha)$
- For $1 \le s \le m$ we can virtually extend each codeword of $PSub[\alpha; n, k]$ as

$$\left\langle \begin{pmatrix} \alpha_0 & f(\alpha_0) & f^q(\alpha_0) & \dots & f^{q^{s-1}}(\alpha_0) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha_{n_t-1} & f(\alpha_{n_t-1}) & f^q(\alpha_{n_t-1}) & \dots & f^{q^{s-1}}(\alpha_{n_t-1}) \end{pmatrix} \right\rangle_h$$

- The resulting codeword is a codeword of an *s*-interleaved code over \mathbb{F}_{q^m} with correlated message polynomials $f(x), f^q(x), \ldots, f^{q^{s-1}}(x)$
- The *virtually created symbols* do not need to be transmitted since they can be obtained at the receiver

^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

Interpolation Problem

Let

$$\mathcal{B}_{\mathcal{U}} = \left\{ \left(x_0, y_0 \right), \dots, \left(x_{n_r-1}, y_{n_r-1} \right) \right\}$$

be a basis for the received subspace $\mathcal{U}.$ Virtually create an s-interleaved received word with basis

$$\tilde{\mathcal{B}}_{\mathcal{U}} = \left\{ \left(x_0, y_0, y_0^q, \dots, y_0^{q^{s-1}} \right), \dots, \left(x_{n_r-1}, y_{n_r-1}, y_{n_r-1}^q, \dots, y_{n_r-1}^{q^{s-1}} \right) \right\}.$$

Construct a (s + 1)-variate *h*-linearized polynomial of the form

$$Q(x, y, y^{q}, \dots, y^{q^{s-1}}) = Q_0(x) + Q_1(y) + Q_1(y^{q}) \dots + Q_s(y^{q^{s-1}})$$

that fulfills

$$egin{aligned} & Q(x_i,y_i,y_i^q,\ldots,y_i^{q^{s-1}})=0, \quad orall (x_i,y_i,y_i^q,\ldots,y_i^{q^{s-1}})\in ilde{\mathcal{B}}_{\mathcal{U}} \ & \deg_h(Q_0(x)) < D \ & \deg_h(Q_j(x)) < D-(k-1), orall j\in [1,s]. \end{aligned}$$

Interpolation Problem

Let

$$\mathcal{B}_{\mathcal{U}} = \left\{ (x_0, y_0), \ldots, (x_{n_r-1}, y_{n_r-1}) \right\}$$

be a basis for the received subspace $\mathcal{U}.$ Virtually create an s-interleaved received word with basis

$$\tilde{\mathcal{B}}_{\mathcal{U}} = \left\{ (x_0, y_0, y_0^q, \dots, y_0^{q^{s-1}}), \dots, (x_{n_r-1}, y_{n_r-1}, y_{n_r-1}^q, \dots, y_{n_r-1}^{q^{s-1}}) \right\}.$$

Construct a bivariate *h*-linearized polynomial of the form

 $Q(x,y) = Q_0(x) + Q_1(y) + Q_1(y^q) \cdots + Q_s(y^{q^{s-1}})$

that fulfills

 $egin{aligned} Q(x_i,y_i) &= 0, \quad orall (x_i,y_i) \in \mathcal{B}_\mathcal{U} \ & \deg_h(Q_0(x)) < D \ & \deg_h(Q_j(x)) < D - (k-1), orall j \in [1,s]. \end{aligned}$

Multivariate List Decoding

Root-Finding Step

If the number of insertions γ and deletions δ satisfy

$$\gamma + s\delta \le s\left(n_t - k\right) \tag{4}$$

then

 $Q_0(x) + Q_1(f(x)) + Q_2(f^q(x)) + \dots + Q_s(f^{q^{s-1}}(x)) = 0.$ (5) Find the list \mathcal{L}_V of all f(x) of degree less than k that satisfy (5) The maximum list size is upper bounded by $|\mathcal{L}_V| \le q^{k(s-1)}$ Decoding failure probability (unique decoder): $< \frac{1}{q}$

Comparison of Interleaved vs. Power Decoding

	Interleaved [2]	Power Decoding [3]
Interleaving order	т	$1 \leq s \leq m$
Decoding region	$\gamma + m\delta \leq m(n_t - k)$	$\gamma + s\delta \leq s(n_t - k)$
Worst-case list size	$q^{k(m-1)}$	$q^{k(s-1)}$
Comp. complexity	$\mathcal{O}(m^2n^2)$ in \mathbb{F}_q	$\mathcal{O}(s^2n^2)$ in \mathbb{F}_{q^m}

Contributions [4]:

- A decoding parameter 1 ≤ s ≤ m for the interleaved decoder that allows to control the decoding radius vs. maximum list size tradeoff
- We showed that $|\mathcal{L}_I| \leq |\mathcal{L}_V|$ if we use a minimal Gröbner basis for the interleaved decoder

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

 ^[4] H. Bartz, V. Sidorenko "On List-Decoding Schemes for Punctured Reed-Solomon, Gabidulin and Subspace Codes", Redundancy 2016, St. Petersburg, 2016

Comparison of Interleaved vs. Power Decoding

	Interleaved [2]	Power Decoding [3]
eaving order	т	$1 \leq s \leq m$
ding region	$\gamma + s\delta \leq s(n_t - k)$	$\gamma + s\delta \leq s(n_t - k)$
t-case list size	$q^{k(s-1)}$	$q^{k(s-1)}$
o. complexity	$\mathcal{O}(m^2n^2)$ in \mathbb{F}_q	$\mathcal{O}(s^2n^2)$ in \mathbb{F}_{q^m}
eaving order ding region t-case list size p. complexity	$egin{aligned} m \ \gamma+s\delta &\leq s(n_t-k) \ q^{k(s-1)} \ \mathcal{O}(m^2n^2) ext{ in } \mathbb{F}_q \end{aligned}$	$egin{aligned} 1 \leq s \leq m \ \gamma + s\delta \leq s(n_t - k \ q^{k(s-1)} \ \mathcal{O}(s^2n^2) ext{ in } \mathbb{F}_{q^m} \end{aligned}$

Contributions [4]:

- A decoding parameter 1 ≤ s ≤ m for the interleaved decoder that allows to control the decoding radius vs. maximum list size tradeoff
- We showed that $|\mathcal{L}_I| \leq |\mathcal{L}_V|$ if we use a minimal Gröbner basis for the interleaved decoder

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

 ^[4] H. Bartz, V. Sidorenko "On List-Decoding Schemes for Punctured Reed-Solomon, Gabidulin and Subspace Codes", Redundancy 2016, St. Petersburg, 2016

Comparison of Interleaved vs. Power Decoding

	Interleaved [2]	Power Decoding [3]
Interleaving order	т	$1 \leq s \leq m$
Decoding region	$\gamma + s\delta \leq s(n_t - k)$	$\gamma + s\delta \leq s(n_t - k)$
Worst-case list size	$q^{k(s-1)}$	$q^{k(s-1)}$
Comp. complexity	$\mathcal{O}(m^2n^2)$ in \mathbb{F}_q	$\mathcal{O}(s^2n^2)$ in \mathbb{F}_{q^m}

Contributions [4]:

- A decoding parameter 1 ≤ s ≤ m for the interleaved decoder that allows to control the decoding radius vs. maximum list size tradeoff
- We showed that $|\mathcal{L}_I| \leq |\mathcal{L}_V|$ if we use a minimal Gröbner basis for the interleaved decoder

H. Bartz, A. Wacher-Zeh "Efficient Interpolation-Based Decoding of Interleaved Subspace and Gabidulin Codes", 2014

 ^[3] V. Guruswami and C. Xing, "List Decoding RS, Algebraic-Geometric, and Gabidulin Subcodes up to the Singleton Bound", 2012

 ^[4] H. Bartz, V. Sidorenko "On List-Decoding Schemes for Punctured Reed-Solomon, Gabidulin and Subspace Codes", Redundancy 2016, St. Petersburg, 2016

Conclusion

- *Analyzed* and *compared* power decoding for punctured subspace codes
- Proposed an efficient root-finding algorithm for the power decoder
- Showed equivalence of the interleaved decoder and the power decoder [4]
- Same results for Reed-Solomon and Gabidulin codes
- The equivalence was also established for syndrome-based decoding of Reed-Solomon an Gabidulin codes [5]
- Allows to choose the decoder with the *lower complexity* ⇒ Decode punctured RS, Gabidulin and subspace codes as *m*-interleaved codes over the subfield 𝔽_g

^[4] H. Bartz, V. Sidorenko "On List-Decoding Schemes for Punctured Reed-Solomon, Gabidulin and Subspace Codes", XV International Symposium on Problems of Redundancy in Information and Control Systems, St. Petersburg, 20016

^[5] H. Bartz, V. Sidorenko "On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes", ACCT 2016

Thank you! Questions?

{hannes.bartz, vladimir.sidorenko}@tum.de

