Strategy for the Realization of the International Height Reference System (IHRS)

Laura Sánchez¹, Johannes Ihde², Roland Pail³, Riccardo Barzaghi⁴, Urs Marti⁵, Jonas Ågren⁶, Michael Sideris⁷, Pavel Novák⁸

¹ Deutsches Geodätisches Forschungsinstitut, Technische Universität München
² Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum
³ Astronomical and Physical Geodesy, Technische Universität München
⁴ Politecnico di Milano
⁵ Federal Office of Topography, swisstopo
⁶ Lantmäteriet, Swedish mapping, cadastral and land registration authority
⁷ University of Calgary
⁸ Research Institute of Geodesy, Topography and Cartography

Thessaloniki, Greece, September 22, 2016
International Height Reference System (IHRS)
IAG Resolution No. 1, Prague, July 2015

1) Geopotential reference system co-rotating with the Earth.

2) Coordinates of points attached to the solid surface of the Earth are given by
 - geopotential values $W(X)$ (and their changes with time \dot{W}), and
 - geocentric Cartesian coordinates X (and their changes with time \dot{X}) in the ITRS.

3) Parameters, observations and data in mean-tide system/mean crust (to support the combination of oceanic and continental realizations).
International Height Reference System (IHRS)
IAG Resolution No. 1, Prague, July 2015

For practical purposes, potential values $W(X)$ are to be transformed into potential differences with respect to a conventional W_0 value:

- $-\Delta W = C_p = W_0 - W_P$
- $C_p(t_0, X); dC_p(X)/dt$
- conventional fixed value $W_0 = \text{const.} = 62\,636\,853.4\,\text{m}^2\text{s}^{-2}$
- geopotential numbers are preferred, as they may be converted to any type of physical heights.

Remark:

- The determination of X, \dot{X} follows the standards (and conventions) adopted within the IERS for the ITRS/ITRF.
- Similar standards for the determination of W, \dot{W} are (still) missing.
Realization of the IHRS

A reference frame realizes a reference system in two ways:

- physically, by a **solid materialization of points** (or observing instruments),
- mathematically, by the **determination of coordinates** referring to that reference system.
- The coordinates of the points are computed from the measurements, but following the definition of the reference system.

Immediate objectives regarding the IHRS:

- Establishment of an **International Height Reference Frame** (IHRF) with **high-precise primary coordinates** \(X_p, \dot{X}_p, W_p, \dot{W}_p\).
- Identification and compilation/outlining of the required standards, conventions and procedures to ensure consistency between the definition (IHRS) and the realization (IHRF); i.e., **an equivalent documentation to the IERS conventions** is needed for the IHRS/IHRF.
Requirements on W_P

The GGOS terms of reference do not include physical heights or potential values but state:

- **Accuracy of the geoid (geometry of any equipotential surface)**
 - Static geoid: 1 mm, spatial resolution: 10 km.
 - Time-dependent geoid: 1 mm, spatial resolution of 50 km, temporal resolution of 10 days

- **Accuracy of the ITRF coordinates:**
 - Positions: 1 mm horizontal, 3 mm vertical.
 - Velocities: 0.1 mm/a horizontal, 0.3 mm/a vertical.

- **Inferred (expected) accuracy for W_P:**
 - Positions: $\sim 3 \times 10^{-2} \text{ m}^2\text{s}^{-2}$ (about 3 mm).
 - Velocities: $\sim 3 \times 10^{-3} \text{ m}^2\text{s}^{-2}$ (about 0.3 mm/a).

The GGOS requirements are very ambitious. More realistic target values may be around

- Positions: $10 \times 10^{-2} \text{ m}^2\text{s}^{-2}$ (about 1 cm).
- Velocities: $10 \times 10^{-3} \text{ m}^2\text{s}^{-2}$ (about 1 mm/a).
Possibilities for the determination of W_P

- Levelling + Gravimetry:
 \[W_P = W_0 - C_P; \quad C_P = \int_0^P g \, dn \]

- High-resolution gravity field modelling:
 \[W_P = W_{P,\text{satellite-only}} + W_{P,\text{high-resolution}} \]

Satellite-only gravity field modelling:
- Satellite orbits and gradiometry analysis
 - Satellite tracking from ground stations (SLR)
 - Satellite-to-satellite tracking (CHAMP, GRACE)
 - Satellite gravity gradiometry (GOCE)
 - Satellite altimetry (oceans only)

High-resolution gravity field modelling:
- Stokes or Molodensky approach
 - Satellite altimetry (oceans only)
 - Gravimetry, astro-geodetic methods, levelling, etc.
 - Terrain effects

- Combined (high-resolution) gravity field models:
 \[W_P = f(X_P, GGM) \]
W_P from combined (high-resolution) GGMs

- This method is **not (yet) suitable**.
- Main drawback: incomplete gravity signal due to lack of data and restricted accessibility to terrestrial gravity data.

Example:
- Global network with known X coordinates
- Differences between the W_P values derived from EGM2008 (Pavlis et al. 2008) and EIGEN6C4 (Förste et al. 2014), both at $n=2190$
 - Differences larger than $\pm 200 \times 10^{-2}$ m2s$^{-2}$ (~ ± 2 m)
 - Desired accuracy for W_P: $\pm 10 \times 10^{-2}$ m2s$^{-2}$
W_p from high-resolution gravity field modelling

- **Accuracy:** some cm up to dm.
- **Advantages:**
 - High-precise satellite-only GGMs (SLR+GRACE+GOCE).
 - In some cases, terrestrial gravity data is only available at (for) national agencies (but not for global geoid modelling).
- **Main drawbacks:**
 - Lack of terrestrial gravity data (in sparsely surveyed regions).
 - Different standards applied in the local gravity field modelling.
 - Discrepancies between gravity field observables derived from the satellite-only GGMs.

Example:
- Differences between the W_p values derived from EIGEN-6S4 (Förste et al. 2016) and GO_CONS DIR_R5 (Bruinsma et al. 2013)
- Differences
 - -21×10^{-2} to 7×10^{-2} m2s$^{-2}$
- Desired accuracy for W_p:
 - $\pm 10 \times 10^{-2}$ m2s$^{-2}$
W_P from Levelling + Gravimetry $\quad W_P = (W_{0\text{local}} + \delta W) - C_P$;

- **Relative** accuracy: mm, **absolute** accuracy: up to ±2 m.
- Advantage: basis for the height determination during the last 150 years.
- Drawback: local vertical datums, systematic errors in levelling, omission of time-dependent changes, etc.
- Requirement: **vertical datum unification within the IHRF**: determination of the potential differences between the global vertical datum W_0 and the local ones W_{0i}.
- Expected accuracy of the vertical datum parameters: cm in well-surveyed regions, dm in sparsely surveyed regions, extreme cases up to 1 m.

Example: **vertical datum parameters** (in cm) for the South American height systems w.r.t. the IHRS W_0 value.
Present challenges:

- Establishment of a vertical reference network as the main component of the *International Height Reference Frame* (IHRF).
- Determination of potential values W_p at the reference network stations as accurate as possible.
1) To select a global reference network for the implementation of the IHRF (includes site specifications/characteristics)

- **Hierarchy:**
 - A global network \rightarrow worldwide distribution
 - Regional and national densifications \rightarrow local accessibility

- **Collocated with:**
 - fundamental geodetic observatories \rightarrow connection between position vectors X, gravity potential W, reference clocks, and absolute gravity g;
 - continuously operating reference stations \rightarrow to detect deformations of the reference frame;
 - geometrical reference stations of different densification levels \rightarrow to allow access to the IHRF also in remote areas;
 - reference tide gauges and national vertical networks \rightarrow vertical datum unification;

The IHRF is understood to be a component of the Global Geodetic Reference Frame (UN GGRF resolution 2015).
Strategy for the IHRS realization (2)

2) Compilation/generation of standards and conventions

- Identification of required standards and conventions for the IHRS realization:
 - Solid Earth/ocean/atmospheric tides,
 - Ocean/atmospheric/hydrological loading,
 - Plate tectonic motion, crustal deformation,
 - Precession, nutation,
 - LOD, polar motion,
 - Post-glacial rebound,
 - Is the precision of the reduction models sufficient?

- Handling of tide systems in vertical coordinates
 - Conventional conversion formulae between tide systems for consistent treatment.

- Modelling of non-linear motions
 - Conventional physical models
 - Can we assume dh/dt = dH/dt?

- Harmonization of analysis strategies, models, and products related to the Earth's geometry and gravity field (consistency between X_p and W_p).
3) Estimation of potential values
 - Strategies for the determination of \(W \) and \(\dot{W} \) with high precision in accordance with the adopted standards and conventions
 - Specifications for procedures and computations
 - Molodensky approach to avoid disparities between orthometric hypothesis?
 - Fixed GBVP instead of scalar-free GBVP?
 - Which observational data are required?

4) Densification of the global network
 - by integration of the existing local height systems into the IHRF (vertical datum unification).

5) Maintenance and availability of the IHRF
 - Regular updates of the IHRF to take account for:
 - new stations;
 - coordinate changes with time \(\dot{X}, \dot{W} \);
 - improvements in the estimation of \(X \) and \(W \) (more observations, better standards, better models, better computation algorithms, etc.)
 - Geodetic products associated to the IHRF (description and metadata).
 - Organizational and operational infrastructure to ensure the IHRF sustainability.
On-going activities

Coordinated work between:

- GGOS Focus Area 1
- International Gravity Field Service (IGFS)
- IAG Commission 2 (Gravity field)
- IAG Commission 1 (Reference Frames)
- IAG Inter-commission Committee on Theory (ICCT)
- Regional/national vertical reference systems

1) Selection of core stations for the IHRF
 - in agreement with the GGOS Bureau for Networks and Observations, main requirement are gravity data around (~250 km) core stations for high-resolution gravity field modelling.

2) Identification of required standards and conventions
 - in agreement with the GGOS Bureau for Products and Standards, main requirement is the harmonization with the IERS conventions.

3) Estimation of potential values
 - Evaluation of different methodologies and compilation of guidelines for high-resolution gravity field modelling.

4) Vertical datum unification
 - Roadmap for the integration of the existing local height systems into the IHRF.