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Abstract—Joint transmission coordinated multipoint (JT
CoMP) has been identified as a potential differentiator for future
5G radio systems due to its superior interference mitigation ca-
pabilities. Further, the combination with massive multiple-input-
multiple-output (mMIMO) when a set of fixed grid of beams is
used at eNodeB results in sparse overall channel matrices with
a relatively low number of relevant channel components, which
reduces the feedback overhead for reporting of channel state
information (CSI). Although JT CoMP faces several challenges
from synchronization to CSI outdating, in this paper the focus
will be on complexity reduction of the precoding over large
clustered cells utilizing massive MIMO. It will be derived how
the typical sparse number of relevant channel components per
user equipment can be exploited to reduce the number of floating
point operations (FLOPs) by a factor of ten compared to state-of-
the-art solutions for the calculation of the Moore Penrose pseudo
inverse of the channel matrix.

Index Terms—Moore-Penrose inverse, FLOPs, massive MIMO

I. INTRODUCTION

Currently EU funded 5GPPP projects like Fantastic5G [1]
lay the foundation for a future 5G mobile radio access sys-
tem. One focus is on the frequency range below 6GHz and
the options to maximize its spectral efficiency, capacity and
coverage. From previous projects like METIS [2] it is known
that joint transmission coordinated multipoint (JT CoMP) over
adjacent sites in combination with massive multiple-input-
multiple-output (mMIMO) have the potential to combat inter-
ference and support large multi-user multiple-input-multiple-
output (MU-MIMO) gains. Furthermore, network clustering
which turns a potentially interference free system in case of
network wide cooperation into an interference limited one
due to the inter cluster interference, plays a vital rule as an
essential part of each CoMP scheme. This clustered network in
CoMP literatures is referred to as cooporation area (CA). Since
coordination in the spatial domain relies on the use of suitable
multiple antenna combining, there has been few techniques for
advanced beamforming. Reducing the complexity of massive
MIMO antenna array in such architecture, the massive number
of antennas can be restricted to a set of essential ones through
generating a narrowed and fixed grid of beams (GoBs) [3] at
the evolved node B (eNodeB). Assuming a fixed GoB concept

with eight beams in azimuth and two elevations in direction
as well as two polarizations, there will be 32 beams per cell.
Thus, allocating a group of nine clustered small cells or three
adjacent sites, the total number of beams will equal to 288 .
Further, the current understanding is that massive MIMO gains
for below 6GHZ will rely mainly on MU-MIMO like spatial
multiplexing of ten or more users per cell [4], [2]. As such,
there will be in total 90 user equipment (UEs) distributed in a
three adjacent site cooperation area. Out of these, the overall
channel matrix will be in order of size 90× 288.

Zero forcing which has been identified as common method
used for precoding process, requires accurate calculation of
the Moore Penrose pseudo inverse. The processing complexity
in number of FLOPs can be expressed as 2np2 + 2n3 for a
matrix size of n × p applying the common Singular Value
Decomposition (SVD) method. Thus, the number of FLOPs
for inverse of a 90 × 288 matrix will be in order of 107.
Although the processing complexity for such matrix size can
be reduced to the order of 106 in number of FLOPs utilizing
the state-of-the-art algorithms [5], in case the transmission
time interval (TTI) length is 1ms and the frequency band is
sub divided into 100 physical resource blocks (PRBs), this will
end up to 103×102×106 = 1011 FLOPs per second only for
the precoding. Although many aspects of JT CoMP - ranging
from user grouping, clustering, back-haul requirements up to
channel prediction - have been evaluated and leading to rea-
sonable solutions, the existing literature have paid very limited
attention to the processing complexity of large cooperation
areas over several sites or small cells, where each of the cells is
equipped with a massive MIMO antenna array. In other words,
JT CoMP which requires adjacent sites to be synchronized
exchanging user data constantly, will be facing with such high
processing power which can not be manageable with todays
processor cards. Therefore, computational complexity will be
a challenging issue bringing a significant burden for future
eNodeB.

The above complexity has been achieved neglecting any
special matrix structure. But, for a typical JT CoMP channel
matrix where the fixed beams are gridded directly to the users,
high percentage of the channel coefficients are below a certain



power threshold of e.g. 25dB and might therefore being set to
zero with minor impact to the precoding performance.

In this paper, we bridge the gap by proposing a novel
algorithm that essentially calculates the Moore-Penrose inverse
of sparse channel components matrix used in precoding gen-
eration process at the base station. More specifically, the main
contribution of this paper is reducing the number of FLOPs
for Moore-Penrose inverse calculation of channel components
matrix taking into account the sparsity as the main feature of
such matrices.

The rest of the paper is formed as follows. First, we detail
the general system model features in Section II. The main
analytical algorithm is presented in Section III. Numerical
results including system parameters and performance examples
are discussed in Section IV. Conclusion accomplishes this
paper in Section V.

II. SYSTEM MODEL

We consider a 5G system concept explicitly described in [3].
This integrated system is assumed to support massive MIMO
along with JT CoMP (which provides synchronization of
distant sites, multi-cell channel estimation, feedback of the
channel state information (CSI), synchronous exchange of user
data and joint processing) to increase the spectral efficiency.
Forming cell clusters in the network denoted as cooperation
areas (CA), the served users are expected to gain through
cooperation. In this paper we limit our analysis to a single
cooperation area comprising three adjacent sites with three
small cells per site, i.e. overall 9 cells (See Figure 1).

Fig. 1: Cooperation area architecture.

In order to reduce the number of antenna elements since
each cell is equipped with a massive MIMO antenna array, a

Fig. 2: System model precoding process in each cell.

limited set of effective beams or antenna ports can be used.
these effective beams can be generated through a fixed GoBs.
Moreover, the interference can be more localized when the
radial subsectors created via fixed GoBs is combined with
massive MIMO. If we assume that GoB precoding matrix at
the eNodeB denoted as V generates eight beams in azimuth
and two in elevation direction combines with two polarizations
per beam, it will result in 32 beams per cell (See Figure 2).

Furthermore, it is assumed that the UEs are in rank one
reception mode and apply in case of multiple UE antennas a
suitable Rx beamformer. In case of FDD, all the UEs report the
so-called relevant channel components (RCCs) which defines
the number of channel coefficients above a certain power
threshold for each user with respect to the strongest channel
component to the eNodeB. In case of single cell MU-MIMO,
the MIMO channel precoding matrix W will be calculated
through the pseudo inverse of the matrix H which becomes
sparse after applying the power threshold through the UEs
CSI feedback process. As such, the form of the matrix W
depends on the certain power threshold applied. The lower the
power threshold relative to the strongest channel component,
the higher is the sparsity of W. Obviously, in case of JT
CoMP up to 9 cells, a single precoder spans all cells with
an accordingly high matrix dimension of e.g. K=90 UEs times
N=288 antenna ports, which is significantly larger compared to
todays 3GPP LTE matrix dimensions of e.g. 4×4 or maximal
8× 8.



III. PERFORMANCE ANALYSIS

In this section, we provide our detailed analysis allowing
us to calculate the pseudo inverse of the channel component
matrix efficiently.

A. State-of-the-art Moore-Penrose Inverse computation algo-
rithm

Our below analysis extends the known results for so-
called geninv method of Moore-Penrose inverse computation
published in [5]. More specifically, we target to investigate the
number of FLOPs using such method with respect to sparsity
of the matrix. If we denote H as complex-valued channel
components matrix of size m × n where m < n, we could
consider the symmetric positive matrix HH′ of size m × m
and rank of r ≤ n where H′ corresponds to transpose of
the channel matrix H. By using the Cholesky factorization of
matrix HH′, the matrix L of size n× r is obtained:

Chol(HH′) = L. (1)

Using the general relation concerning the product of two
matrices A and B, we have:

(AB)
+
= A′B′ (A′ABB′)

+
, (2)

where (AB)+ represents the Moore-Penrose inverse of the
product of two matrices A and B. If B=A′ and A is n × r
matrix of rank r, then from (2) we have:

(AA′)
+
= A′A (AA′)

−1
(AA′)

−1
. (3)

Proposition 1. The pseudo inverse of matrix H defined above
can be obtained by the following expression [5]:

H+ = H′L (L′L)
−1

(L′L)
−1

L′

Proof. Considering eq.(2) and (3), we may write down the
following:

H+ = H′ (HH′)
+
. (4)

If we denote L′ as the transpose matrix of L, from eq.(3) and
eq.(4) we obtain:

(HH′)+ = L (L′L)
−1

(L′L)
−1

L′. (5)

Therefore, the Moore-Penrose inverse of matrix H using the
discussed approach can be expressed as follow:

H+ = H′L (L′L)
−1

(L′L)
−1

L′. (6)

B. Efficient sparse Moore-Penrose inverse algorithm

After above analysis of the state-of-the-art Moore-Penrose
inverse algorithm, we continue by proposing an efficient
approach comprising a set of techniques in order to reduce
the computational complexity specifically when the sparsity in
the channel components matrix is considered. For every H+

matrix obtained through the algorithm detailed above, the two
main operations include the full rank Cholesky factorization

of HH′ and inverse of L′L. Considering the eq.(6), we may
divide this process into three steps as follows:

P1 = L× (L′L)
−1

,

P2 = P1× P′1,

P3 = H′ ×P2.

(7)

In the following, we mainly focus on reducing the number
of operations for each matrix multiplication exploiting the
sparsity of matrix H. The Sgeninv algorithm for efficient
inverse of sparse matrices comprises four steps, being applied
to the three multiplications as defined in (7):

1) Store the location of non-zero elements in the matrix
before reordering,

2) Reorder the sparse matrix applying Reserve Cuthill-
Mckee (RCM) algorithm [6],

3) Store the location of non-zero elements after reordering,
4) Multiply two new reordered matrices together with

avoiding unnecessary multiplication and additions.

1) Store the location of non-zero elements in the matrix
before reordering: First, we store the location of non-zero
elements which could be done by obtaining the adjacent graph
of the matrix.

2) Reorder the sparse matrix applying Reserve Cuthill-
Mckee algorithm [6]: The adjacent graph of the sparse matrix
is used as input to produce a matrix with much smaller band-
width by employing the Reserve Cuthill-Mckee algorithm. As
such, we will obtain the sparse matrix elements where the non-
zero of initial sparse matrix are relabeled. Figure 3 represents
an effect of RCM reordering process on the order of adjacent
graph nodes related to sparse matrix A. Matrix A∗ denotes the
reordered sparse matrix of A.

3) Store the location of non-zero elements after reordering:
The relabeled nodes (non-zero elements) are stored in this step.

4) Multiply new reordered matrices together with avoid-
ing unnecessary multiplications and additions: Obtaining the
reordered sparse matrix where all the non-zero elements of
each row become closed to the diagonal, we will be able to
specify the position of non-zero elements in the matrix. As
such, unnecessary multiplications (zero by non-zero elements
multiplications) and inessential additions (like zero and non-
zero elements additions) can be avoided which leads to reduc-
ing the processing complexity.

However, the additional computational cost in this method
includes RCM reordering and identifying non zero positions.
RCM algorithm cost is defined in order of O(log(f)|E|) where
f and E denote the maximum degree in the adjacent graph
and the total number of edges in the considered sparse matrix,
respectively. Thus, the proposed Sgeninv is applied as part of
existing geninv to improve the efficiency in terms of FLOPs
specifically when the sparsity is considered. The method which
counts number of operations on top of discussed algorithms
will be detailed in Section IV (C).



Fig. 3: The effect of RCM algorithm on matrix of A and its
adjacent graph.

IV. NUMERICAL RESULTS AND SUMMARY

A. System Parameters

In what follows, we detail all the parameters and assump-
tions regarding the numerical data presentation based on the
system model discussed above.

For evaluation we have concentrated on two different
channel matrices representing inter-site JT CoMP over a 3
site cooperation area. Channel matrix I of size 40 × 288
has been obtained through a channel model based on Quasi
Deterministic Radio Channel Generator (QuaDRiGa) [7]. This
channel matrix belongs to the case where we distribute 40
users in a 3 site coopearion area featuring 288 fixed grid of
beams. As the second examined channel, we have employed
a 3D urban macro channel matrix of size 90× 288 based on
3GPP 3D channel model for LTE [8] where 10 users have
been placed in each cell. These two matrices have different
channel characteristics which have been demonstrated in Table
I. Additionally, we have been focused on intra-site cooperation
scenario taken exclusively from channel matrix I where a
matrix of size 30× 96 assuming 10 users per site and 32× 3
= 96 beams (three cells per site) are considered. To exemplify
the characteristics of both channel matrices in terms of sparsity
level, we have used an approach by employing three different
thresholds referring to as the minimum power level with
respect to the strongest channel component of the matrix.
As such, we set those matrix elements of each UE to zero
for which the Rx power is below the power of the strongest
channel component minus the threshold value.

B. Signal-to-Interference-Plus-Noise Ratio and Spectral Effi-
ciency

In order to examine the effect of channel matrix sparsity
level (caused by employing power thresholds) on the system-
level performance, we have taken the channel matrices de-
scribed in Section IV (A) and compare the spectral efficiency
in the noisy cooperation area. If we use a bandwidth of 20
MHz around a carrier frequency of 2.1 GHz, we will obtain

Parameter Channel Matrix I Channel Matrix II
Number of Cells 9 9

Number of Users 40 90

Number of Sites 3 3

Inter-Site Distance (m) 500 500

Channel Type QuaDRiGa [6] 3GPP LTE 3D [8]

Number of Channel Taps 24 24

Number of Beams 288 288

TABLE I: Channel Matrices Properties

100 PRBs over LTE. We assume that the transmit power
is equally distributed over 1200 subcarriers. The simulation
parameters are summarized in Table II. The spectral efficiency
(SE) per cell can be defined as the following:

SE =
1/NCell ×NUE × CLTE ×Nsub ×NOFDM

TTI× B
, (8)

where NCell is number of cells, NUE is the number of UEs,
CLTE is the achievable capacity of a memoryless channel
in LTE, Nsub denotes the number of subcarriers over 100
PRBs, NOFDM displays the number of OFDM blocks per
subframe, TTI denotes the duration of one subframe and B is
used bandwidth. Achievable number of bits per second CLTE

is based on the 3GPP physical layer procedures described
in [9] where the measured signal-to-interference-plus-noise
ratio (SINR) is mapped to CQI value and eventually the
spectral efficiency in bit/sec/Hz/cell can be obtained. The
derived SINR of the channel model per user in each iteration
can be obtained as the following:

SINR[dB] = yUE(i) × Ptx[dBm]− Pn[dBm]− IUE(i), (9)

where

Ptx = Total Tx PowerdBm/NUE − 10 log10 Nsub ×NPRB ,
(10)

Pn = −173.83 + 10 log10 NSubSp +ReceiverNF [dB].
(11)

yUE(i) in (9) denotes the received signal at the UE with index
i. As discussed above, if we use zero forcing beamforming
(ZFBF) where the linear precoders are determined according
to an interference zero forcing objective, then the precoding
matrix can be obtained:

W = HH(HHH)−1, (12)

where H is complex-valued channel matrix and HH denotes
the complex conjugate transpose of matrix H. With this choice
of precoding matrix, the received signal is assumed as follows:

y = HW. (13)

If the proposed pseudo inverse method is applied, the received
signal in (13) will not be diagonal due to applying the manip-
ulated channel matrix in precoding process (See eq. (12)). Ptx

in (9) specifies the transmit power distributed equally among
all the users which is obtained via (10). IUE(i) denotes the



PHY Layer Parameters Value
Carrier Frequency (GHz) 2.1

Total Bandwidth (MHz) 20

Used Bandwidth (MHz) 18

Subcarrier Spacing (KHz) 15

Number of Subcarriers 1200

Number of PRBs 100

Noise level (dBm) -125.0691

Total Tx Power per cell (dBm) 46

Receiver NF (dB) 7

Number of UEs (Channel Matrix I) 40

Number of UEs (Channel Matrix iI) 90

Number of Cells 9

Number of OFDM blocks per subframe 14

Duration of one subframe (ms) 1

TABLE II: Simulation Parameters

received interference at the UE with the index i in dBm. NUE

is number of UEs in one cell, Nsub is the number of subcarriers
and NPRB is the number of PRBs expressed in (10). In
order to observe the effect of noise to the channel, the noise
formulation referred to as Pn has been used. NSubSp denotes
the subcarrier spacing and ReceiverNF refers to the receiver
noise figure in dB. Obviously, channel interference shown in
eq.10 is equal to zero when the perfect zero forcing utilizing
the Moore-Penrose pseudo inverse is applied. However, when
the channel components are set to zero based on the explained
power threshold approach we will receive interferences from
neighboring cells after ZFBF process at the receiver. Thus,
we essentially deal with not only the noise level but also the
imposed interferences when the spectral efficiency discussed
in the proposed approach.

C. Performance examples

In what follows, we discuss the obtained numerical results.
In order to calculate the number of FLOPs, we have used the
Lightspeed toolbox version 2.7 [10] since built in MATLAB
function FLOPs retired right after MATLAB release 6 due
to its infeasibility to keep running count of FLOPs. Light-
speed provides count routines for various arithmetic opera-
tions specifically required to calculate the discussed Moore-
Penrose inverse methods with higher accuracy compared with
FLOPs function included in MATLAB version 6. As such,
we are able to count the FLOPs through this toolbox by
collecting and combination of essential arithmetic operations
required in the presented Moore-Penrose inverse methods.
Performance analysis described in Section III (B) can be
applied to any method using for Moore-Penrose inverse. In
order to observe the pseudo inverse computational complexity
using different power thresholds applied on channel matrix
I, two traditional methods include QR decomposition and
singular value decomposition (SVD) as well the proposed
SGeninv have been compared (See Figure4). Sparsity level
of the channel matrix of size 40 × 288 is gained through
changing the power threshold with respect to the strongest

Fig. 4: FLOPs comparison between different pseudo inverse
methods .

Method
Intra-Site
Cooperation

Inter-Site
Cooperation

Receiving
Power
Threshold
(dB)

Pinv 2416162 55344466 15,20,30
geninv 522349 4986003 15,20,30
Sgeninv 3819 278013 15
Sgeninv 10920 512925 20
Sgeninv 42229 617588 30

TABLE III: Average Number of FLOPs (Channel Matrix I)

Method
Intra-Site
Cooperation

Inter-Site
Cooperation

Receiving
Power
Threshold
(dB)

Pinv 2416162 97397366 15,20,30
geninv 522349 27670499 15,20,30
Sgeninv 6738 330062 15
Sgeninv 16783 684546 20
Sgeninv 93712 135351 30

TABLE IV: Average Number of FLOPs (Channel Matrix II)

channel component per user. As it can be seen, both QR
decomposition and SVD impose higher number of FLOPs
to calculate the pseudo inverse even if we use the proposed
method before the precoding process. By contrast, if we apply
the proposed methods (See Figure4 the red curve) specifically
on top of (6), we could obtain 30 gain comparing to SVD
and nearly 70 percent gain comparing to QR decomposition.
Thus, the properties of sparse matrix can be applied to any
pseudo inversion method. However, the processing cost will be
increased dramatically.Table III compares the average number
of FLOPs for calculation of 100 precoders for 100 physical
resource blocks using channel matrix I applying three methods
including the MATLAB Pinv function which is mainly based
on SVD, state-of-the-art geninv algorithm as discussed in
Section III and the proposed Sgeninv.

Interestingly, number of FLOPs calculated by geninv and
MATLAB Pinv in both inter-site (one cooperation area) and
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Fig. 5: FLOPs for inter-site cooperation (Channel I).

intra-site (one site) cooperation is independent from sparsity
of the matrix. In other words, changing the receiving power
threshold has no effect on the number of FLOPs when these
two methods are applied. By contrast, the proposed Sgeninv
gains from sparsity. As it can be seen, this approach clearly
reduces the computational complexity approximately by factor
of 10 compared with geninv and by factor of 100 comparing
with MATLAB Pinv function. Average number of FLOPs
counted for channel matrix II are provided in Table IV. it
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is shown that the precoding process complexity in FLOPs can
be also reduced up to order of 10 comparing with the state-
of-the-art algorithm in both inter-site and intra-site scenarios.
As such, the proposed approach can be used for larger sparse
channel matrices to combat complexity efficiently. Figure 5
illustrates the FLOPs comparison between different receiving
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Fig. 7: FLOPs for Intra-site cooperation using Sgeninv method
(Channel I).

power thresholds in inter-site cooperation when the proposed
Seninv is applied on channel matrix I for 100 resource blocks.
Figure 6 depicts the effect of setting components of channel
matrix II to zero based on three different power thresholds
applied in one cooperation area. Similarly, complexity in terms
of FLOPs increases as the sparsity level of the channel matrix
is reduced. However, the complexity difference in channel
matrix II between different thresholds is higher compared to
the experienced channel matrix of size 40× 288.

Figure 8 confirms that for JT CoMP channel matrix I, total
number of relevant channel components per user will not be
greater than 70 when the power threshold approaches 30dB.
Thus, we will obtain a channel matrix with approximately 80
percent sparsity which can be efficiently used for precoding
matrix generation with lowest complexity.
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Figure 7 contrasts FLOPs and number of intra-site coop-
eration relevant channel components per user in the channel
matrix I when different receiving power thresholds are being
applied. As it can be seen, Sgeninv method confirms that both
FLOPs and relevant channel components per user increase
linearly with respect to the sparsity level of the matrix. There-
fore, using higher thresholds (lower sparsity level) will result



in higher relevant channel components and higher number of
FLOPs. In order to conceive the effect of proposed approach
on the distribution of relevant channel components, Figure 8
and 9 are provided.
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Fig. 9: CDF plot for Spectral Efficiency per Cell (Channel I).

Fig. 10: CDF plot for Spectral Efficiency per Cell (Channel
II).

To exemplify the spectral efficiency per cell using the
proposed approach, CDF plots in Figure 9 and Figure 10
are provided. As it can be observed, a reasonable spectral
efficiency comparing with the perfect channel case (See the
dashed curve in Figure 9) with approximately 16 percent loss
can be obtained in channel matrix I applying power threshold
of 25 dB. Nevertheless, performance can be degraded slightly

with the same threshold of 25dB applied on the larger channel
matrix (See Figure 10). Choosing appropriate threshold, the
effect of interferences received at the eNodeB due to cutting
off channel components can result in not only with reasonable
efficiency but also it provides a very low complex precoding
process based on the proposed approach.

V. CONCLUSION

The processing complexity for a central JT CoMP precoder
can be kept under control for future 5G radio systems even in
case of very large cooperation areas comprising 3 sites or nine
small cells and high number of beams. Simulation results for
such large cooperation areas demonstrate that computational
complexity in channel matrix pseudo inverse process used in
precoding process can be reduced by factor 100 compared
to SVD and by 10 compared to state-of-the-art algorithm.
Exploiting the sparsity of typical massive MIMO channel
matrices allows to replace many arithmetic operations by
low cost operations. System level simulation results strongly
confirm that we could achieve reasonable spectral efficiency
with moderate degradation of the precoding performance by
finding appropriate power threshold leading to setting 70 to
80 percentage of the channel components to zero for such
purpose.
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