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Zusammenfassung	
	
Kryoelektronentomographie	(KET)	bietet	einen	noch	nie	da	gewesenen	Blick	auf	die	native	
zelluläre	Umgebung	bei	molekularer	Auflösung.	Während	hochaufgelöste	Strukturen	
abgebildeter	molekularer	Komplexe	mittels	Subtomogram	Analyse	bestimmt	werden	
können,	gibt	ein	Tomogramm	zusätzlich	Auskunft	über	die	genauen	Positionen	und	
Orientierungen	dieser	Makromoleküle	innerhalb	der	Zelle.	Die	Analyse	geometrischer	
Beziehungen	zwischen	benachbarten	Makromolekülen,	kann	strukturelle	Einblicke	in	die	
molekularen	Wechselwirkungen	bieten	und	einheitliche	supramolekulare	Anordnungen	
identifizieren.	Allerdings	müssen	rechnergestützte	Verfahren	für	die	quantitative	Analyse	
dieser	dichten	geometrischen	Informationen	entwickelt	werden.	
	
Diese	Arbeit	stellt	eine	statistische	Methode	für	die	Analyse	der	unmittelbaren	
Nachbarschaft	von	Makromolekülen	vor,	welche	darauf	abzielt	die	3D-Konfiguration	von	
Makromolekül	Paaren	zu	identifizieren.	Diese	Methode	der	lokalen	geometrischen	Analyse	
beansprucht	allgemeine	Gültigkeit;	sie	kann	für	jede	Art	von	Makromolekülen	angewendet	
werden	und	berücksichtigt	molekulare	Symmetrien.	In	dieser	Arbeit	wurde	diese	Methode	
genutzt,	um	die	3D	Organisation	von	RuBisCO	Enzymen	innerhalb	des	Pyrenoid	von	C.	
reinhardtii	Zellen zu	untersuchen.	Mittels	Subtomogram	Analyse	wurden	RuBisCO	
Komplexe	innerhalb	von	Pyrenoid	Tomogrammen	lokalisiert	und	es	konnte	eine	Struktur	
des	nativen	Komplexes	bei	16	A	Auflösung	gewonnen	werden.	Lokale	geometrische	Analyse	
von	RuBisCO	Komplexen	lässt	auf eine	flüssigkeitsähnliche	Pyrenoid	Matrix	schließen.	Aus	
den	vorherrschende	Konfigurationen	von	RuBisCO	Paaren	wurde	ein	geometrisches	Modell	
der	Einheitszelle	von	RuBisCO	Nachbarn	entwickelt,	das	der	3D-	Konfiguration	dichtester	
Kugelpackung	ähnelt.	
	
Im	nächsten	Schritt	dieser	Arbeit	wird	die	lokale	geometrische	Analyse	zur	Identifizierung	
von	Strukturen	höherer	Ordnung	verwendet.	Flexible	supramolekulare	Anordnungen	von	
Ribosomen	und	Messenger-RNA,	sogenannte	Polysomen,	werden	mit	der	hier	vorgestellten	
Methode	detektiert.	Mittels	lokaler	geometrischer	Analyse	wird	die	bevorzugte	3D-	
Anordnung	benachbarter	Ribosomen	in	Polysomen	extrahiert.	Diese	Vorinformation	wird	
dann	in	einem	nachgeschalteten	Detektionsverfahren	genutzt,	das	Ribosomen	als	
Knotenpunkte	in	einem	Graphen	dargestellt	und	durch	ein	Markov	Random	Field	gruppiert	
um	Polysomen	zu	lokalisieren.	Leistungsbewertung	der	Methode	basierend	auf	
synthetischen	und	experimentellen	Tomogrammen	bakterieller	Zelllysate	zeigt	eine	96%ige	
Vorhersagegenauigkeit.	Schließlich	wurde	das	Verfahren	angewendet,	um	cytosolische	und	
membranassoziierte	Polysomen	in	Tomogrammen	zu	detektieren,	die	Membranvesikel	
abgeleitet	vom	endoplasmatischen	Retikulum	aus	Maus-	Myeloma-Zellen	abbilden.	
	
Diese	Arbeit	stellt	geometriebasierte	Methoden	für	die	Analyse	lokaler	Organisation	von	
Makromolekülen	und	die	Erfassung	von	supramolekularen	Strukturen	in	der	KET	vor.	
Während	sich	diese	Analyseverfahren	vorläufig	auf	die	Verteilung	eines	einzelnen	
Makromolekül-Typs	beschränken,	könnten	sie	um	die	Einbeziehung	mehrerer	
Makromolekül-Klassen	erweitert	werden,	um	quantitative	Analysen	für	die	visuelle	
Proteomik	zu	ermöglichen.	Somit	stellen	die	hier	vorgestellten	Verfahren	einen	Schritt	in	
Richtung	der	räumlichen	Erfassung	der	gesamten	molekularen	Soziologie	einer	Zelle	dar.	
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Abstract	
	
Cryo-electron	tomography	(CET)	provides	unprecedented	views	into	the	native	cellular	
environment	at	molecular	resolution.	While	subtomogram	analysis	yields	high-resolution	
native	structures	of	molecular	complexes,	it	also	determines	the	precise	positions	and	
orientations	of	these	macromolecules	within	the	cell.	Analyzing	the	geometric	relationships	
between	adjacent	macromolecules	can	offer	structural	insights	into	molecular	interactions	
and	identify	supramolecular	ensembles.	However,	computational	tools	must	be	developed	
for	quantitative	analysis	of	this	dense	geometric	information.	
	
This	thesis	presents	a	statistical	method	for	analyzing	the	local	neighborhoods	around	
macromolecules,	with	the	aim	of	identifying	3D	configurations	of	macromolecule	pairs.	This	
method	of	local	geometric	analysis	emphasizes	generality;	it	can	be	applied	to	any	type	of	
macromolecule	and	incorporates	molecular	symmetry.	Here,	the	method	was	used	to	study	
the	3D	organization	of	Ribulose-1,5-bisphosphate	carboxylase/oxygenase	(RuBisCO)	
enzymes	within	the	pyrenoid	of	C.	reinhardtii	cells.	Subtomogram	analysis	identified	
RuBisCO	complexes	within	pyrenoid	tomograms,	producing	an	in	situ	structure	at	16	A	
resolution.	Local	geometric	analysis	of	RuBisCO	complexes	suggested	a	fluid-like	pyrenoid	
matrix.	Predominant	configurations	of	RuBisCO	pairs	were	identified	and	combined	into	a	
geometric	model	of	the	unit	cell	of	RuBisCO	neighbors,	showing	a	3D	configuration	similar	
to	closely	packed	spheres.	
	
Next,	this	thesis	progresses	from	local	geometric	analysis	to	identification	of	higher-order	
structures	by	presenting	a	method	to	detect	polysomes,	flexible	supramolecular	ensembles	
of	ribosomes	and	messenger	RNA.	Local	geometric	analysis	extracted	the	3D	arrangements	
of	neighboring	ribosomes	in	polysomes.	This	prior	information	is	then	used	in	the	detection	
method,	where	ribosomes	are	represented	as	nodes	in	a	graph	and	clustered	by	a	Markov	
random	field	to	reveal	polysomes.	Performance	evaluation	on	synthetic	and	experimental	
tomograms	of	bacterial	lysate	indicated	a	96%	prediction	accuracy.	Finally,	the	method	was	
applied	to	tomograms	of	rough	microsomes	derived	from	the	endoplasmic	reticulum	(ER)	
of	mouse	myeloma	cells,	with	the	aim	of	detecting	cytosolic	and	ER-associated	polysomes.	
	
This	thesis	presents	geometry-based	methods	for	analyzing	the	local	organization	of	
macromolecules	and	detecting	supramolecular	structures	in	CET.	While	these	methods	
operate	on	macromolecule	distributions	of	a	single	type,	they	could	be	expanded	to	
incorporate	multiple	classes	of	macromolecules,	enabling	quantitative	analysis	for	visual	
proteomics.	Thus,	they	represent	a	step	towards	the	spatial	dissection	of	the	complete	
macromolecular	sociology	of	cells.	
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1.	Introduction	
	
Molecular	studies	of	biological	systems	require	imaging	techniques	that	produce	magnified	
views	of	biological	samples.	While	spatial	resolution	of	light	microscopy	is	limited	by	the	
wavelength	of	visible	light,	techniques	such	as	Nuclear	Magnetic	Resonance	(NMR),	X-ray	
crystallography,	and	cryo-electron	microscopy	Single	Particle	Analysis	(SPA)	allow	studying	
isolated	macromolecular	complexes	at	subnanometer	scales.	NMR,	SPA	and	X-ray	
crystallography	provide	three-dimensional	(3D)	information	of	macromolecular	structures	
at	resolutions	in	the	Angstrom	range	[Cheng,	2015].	An	enormous	limitation	is	that	these	
methods	require	a	purified,	homogenous	sample	containing	many,	ideally	identical,	copies	
of	the	macromolecule	of	interest.	Therefore,	information	about	the	intracellular	context,	in	
which	the	macromolecule	functions,	is	absent	and	the	purification	process	can	introduce	
artifacts	in	the	sample,	such	as	induced	conformational	changes	and	complex	
disassociation.	
	

1.1	Cryo-Electron	Tomography	
	
Cryo-electron	tomography	(CET)	is	an	imaging	technique	that	allows	the	observation	of	
macromolecular	complexes	in	their	cellular	environment	under	close-to-native	conditions.	
It	provides	a	3D	electron	density	map	of	the	biological	sample	[Lucić	et	al.,	2005].	CET	
comprises	four	major	steps:	(1)	a	biological	sample	is	placed	on	a	grid	and	rapidly	cooled	to	
cryogenic	temperatures,	freezing	the	sample	sufficiently	fast	to	avoid	the	formation	of	ice	
crystals,	which	would	otherwise	compromise	the	structural	integrity	of	the	biological	
material.	(2)	The	frozen-hydrated	sample	is	placed	in	a	Transmission	Electron	Microscope	
(TEM)	to	acquire	two-dimensional	(2D)	projections	of	the	sample	at	different	tilt	angles	
(tilt-series).	Due	to	the	radiation	sensitivity	of	biological	samples,	the	allowed	electron	dose	
applied	to	the	sample	must	be	distributed	over	the	tilt-series,	yielding	micrographs	with	
significantly	lower	signal	than	those	acquired	by	SPA.	(3)	A	reconstruction	of	the	3D	density	
map	(tomogram)	of	the	sample	is	computed	from	the	acquired	2D	projections.	(4)	The	
tomogram	is	subsequently	processed	by	computational	means	to	extract	biological	
information.	
	
Given	that	CET	allows	visualization	of	macromolecules	in	their	physiological	environment,	
it	has	enabled	in	situ	studies	of	membrane-bound	and	membrane-embedded	
macromolecular	structures.	For	example,	ribosomes	bound	to	the	endoplasmic	reticulum	
(ER)	and the	ER	translocation	machinery	for	co-translational	insertion	of	polypeptides	into	
the	membrane	and	lumen	of	the	ER	[Pfeffer	et	al.,	2012,	2014,	2016;	Pfeffer,	Burbaum,	et	al.,	
2015].	
	

1.2	RuBisCO	and	Polysomes	
	
The	Ribulose-1,5-bisphosphate	carboxylase/oxygenase	(RuBisCO)	enzyme	and	the	
ribosome	are	macromolecular	complexes	that	play	pivotal	roles	in	key	biological	processes,	
photosynthesis	and	translation,	respectively.	
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During	the	light-independent	reactions	of	the	photosynthetic	process,	the	RuBisCO	enzyme	
is	responsible	for	incorporating	inorganic	carbon	into	biomolecules.	However,	this	enzyme	
is	a	very	slow	catalyst	and	suffers	from	an	opposing	side-reaction	that	leads	to	an	energy-
consuming	salvage	pathway.	The	enzymatic	limitations	of	RuBisCO	have	driven	
microorganisms	to	develop	carbon	concentration	mechanisms	(CCM)	to	augment	their	
photosynthetic process. A	characteristic feature of CCMs is the packing of large amounts of
RuBisCO	complexes	in	micro-compartments,	such	as	carboxysomes	in	cyanobacteria	and	
the	pyrenoid	in	eukaryotic	algae	[Meyer	et	al.,	2016].	
	
The	RuBisCO	structure	of	the	Chlamydomonas	reinhardtii	alga	has	been	determined	to	
atomic	resolution	by	X-ray	crystallography	[Taylor	et	al.,	2001].	However,	the	3D	
organization	of	RuBisCO	complexes	in	its	pyrenoid	is	still	poorly	understood.	While	a	CET	
study	of	C.	reinhardtii	pyrenoids	observed	RuBisCO	complexes	in	configurations	similar	that	
of	closely	packed	spheres,	resolution	limitations	precluded	detailed	analysis	of	their	local	
geometric	organization	[Engel	et	al.,	2015].	
	
On	the	other	hand,	ribosomes	are	large	macromolecular	machines	that	synthetize	proteins	
by	translating	messenger	RNA	(mRNA)	into	polypeptide	chains.	Supramolecular	ensembles	
of	ribosome	particles	translating	a	single	mRNA	molecule	are	called	polysomes.	
Interestingly,	polysomes	have	been	observed	to	adopt	characteristic	structures,	which	are	
highly	conserved	across	species	and	cellular	environments.	Cryo-electron	tomograms	of	
cytosolic	polysomes	from	bacteria	and	of	human	cells	revealed	remarkably	similar	
polysome	structures	[F.	Brandt	et	al.,	2009,	2010],	while	structural	similarities	of	
membrane-bound polysomes,	both	on	the	ER	surface	and	in	yeast	mitochondria,	have	also	
been	observed	in	CET	studies	[Pfeffer	et	al.,	2012;	Pfeffer,	Woellhaf,	et	al.,	2015].		
	
However,	detailed	characterization	of	polysome	structures	and	understanding	of	their	
function	in	the	translation	process	remains	elusive,	as	it	requires	in	situ	identification	of	
polysome	structures.	Since	detection	of	these	flexible	supramolecular	structures	in	
tomograms	of	macromolecule-rich	environments	is	a	challenging	task,	previous	CET	studies	
have	been	restricted	to	local	analysis	of	polysome	structures,	i.e.,	only	the	relative	3D	
configuration	of	neighboring	ribosomes	in	a	polysome	sequence	has	been	analyzed	(e.g.	
figure	1.2	A).	
	

1.3	Subtomogram	analysis	in	CET	and	Visual	Proteomics	
	
Identifying	and	localizing	macromolecular	complexes	in	CET	is	typically	achieved	by	
template	matching	[Frangakis	et	al.,	2002;	Ortiz	et	al.,	2006].	In	template	matching,	an	
exhaustive	cross-correlation	search	of	a	tomogram	aims	to	locate	a	macromolecular	
complex	by	comparing	a	structural	template	in	different	orientations	against	all	same-sized	
regions	within	the	tomogram.	This	process	yields	a	cross-correlation	function	on	
tomographic space (i.e. the 3D space in a tomogram). By extracting maxima of this function
(with	respect	to	orientation	and	spatial	coordinates)	it	is	possible	to	determine	the	most	
probable	position	and	orientation	of	a	target	macromolecular	complex	in	a	tomogram.	It	is	
noteworthy	that	attaining	high	specificity	and	sensitivity	in	macromolecule	detection	is	a	
challenging	task.	
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Figure	1.1:	Concept	of	visual	proteomics	and	its	application. Visual	proteomics	aims	at	detecting	the	majority	
of	macromolecular	complexes	within	a	cell,	allowing	statistical	analysis	of	their	distribution.	(A)	Visual	
proteomics	of	Leptospira	interrogans.	(A.1)	Library	of	structural	templates,	from	right	to	left:	ribosome,	RNA	
polymerase	II,	GroEL,	GroEL-ES,	Hsp,	and	ATP	synthase.	(A.2)	Central	slice	of	a	tomogram	from	a	Leptospira	
interrogans	cell.	(A.3)	Structural	templates	from	the	library	were	identified	in	the	tomogram	to	yield	a	3D	atlas	
of	molecular	complexes.	Templates	rendered	in	their	computationally	determined	position	and	orientation	in	
tomographic	space,	membranes	depicted	in	blue	and	the	cell	wall	in	brown.	(B)	The	nuclear	periphery	of	a	
HeLA	cell	studied	using	a	visual	proteomics	approach.	(B.1)	Slice	of	a	tomogram	from	a	region	adjacent	to	the	
cellular	nucleus.	(B.2)	Rendered	tomogram	depicting	identified	macromolecules	labeled	by	color:	nuclear	
envelope	(NE),	endoplasmic	reticulum	(ER),	nuclear	pore	complex	(NPC).	(B.3)	Tilted	view	of	the	rendered	
tomogram	from	a	perspective	perpendicular	to	the	nuclear	envelope.	Adapted	from	[Förster	et	al.,	2010;	
Mahamid	et	al.,	2016].	

A.1

A.3

B.1 B.2

B.3

A.2
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Subvolumes	(subtomograms)	containing	the	putative	macromolecular	complex	can	be	
aligned	and	averaged	to	reduce	noise	and	yield	higher	resolution	structures	than	that	of	
individual	subtomograms	[Hrabe	&	Förster,	2011].	Furthermore,	subtomogram	
classification	can	be	used	to	identify	large	conformational	changes	and	further	increase	the	
resolution	of	individual	class	averages	by	producing	subtomogram	subsets	with	increased	
structurally homogeneity.
	
Applying	template	matching	to	cryo-electron	tomograms	using	a	library	of	structural	
templates	permits	the	identification	of	specific	macromolecular	complexes	in	their	native	
cellular	context.	The	emerging	field	of	visual	proteomics	aims	to	combine	the	geometric	
information	of	multiple	types	of	macromolecules,	i.e.	their	position	and	orientation	in	a	
tomogram,	to	generate	3D	atlases	within	cellular	landscapes	(figure	1.1),	which	can	
visualize	the	proteome	of	a	cell	[Förster	et	al.,	2010;	Nickell	et	al.,	2006].	Visual	proteomics	
has	the	potential	of	characterizing	the	proteome	of	cells	spatially,	complementing	mass	
spectrometric	approaches	that	lack	spatial	information	[Förster	et	al.,	2010].		
	
Furthermore,	cellular	maps	of	identified	macromolecular	complexes	can	be	used	for	
quantitative	analysis	of	their	spatial	distribution	within	cells,	cellular	contextualization	of	
conformational	states,	detection	of	interaction	partners	and	characterization	of	their	3D	
geometric	arrangement.	For	example,	a	CET-based	molecular	census	of	26S	proteasomes	in	
intact	hippocampal	neurons	[Asano	et	al.,	2015]	allowed	statistical	characterization	of	the	
abundance	of	predominant	molecular	species	(double	and	single	capped	proteasomes)	and	
their	major	conformational	states	(substrate-accepting	state	and	substrate-processing	
state).	It	provided	a	3D	cellular	atlas	of	26S	proteasomes	depicting	their	position,	
orientation	and	conformational	state.		
	
The	above-mentioned	tasks	require	quantitative	analysis	of	geometric	parameters	obtained	
by	template	matching	and	refined	by	subtomogram	alignment	and	classification.	Therefore,	
the	implementation	of	methodologies	for	statistical	analysis	of	3D	geometric	information	is	
imperative	for	the	development	of	the	visual	proteomics	field.	
	

1.4	Local	Geometric	Analysis	of	Macromolecules	
	
When	the	positions	and	orientations	of	macromolecular	complexes	in	tomographic	space	
have	been	determined,	it	is	possible	to	conduct	statistical	analyses	of	the	geometric	relation	
between	adjacent	macromolecules.	Concrete	examples	are	the	CET	studies	of	the	3D	
organization	of	polysomes	in	bacterial	lysate	and	in	intact	human	cells	[F.	Brandt	et	al.,	
2009,	2010],	where	ribosomes	were	localized	by	template	matching	and	their	near-
neighbor	distribution	of	center-to-center	vectors	and	relative	orientations	was	subjected	to	
cluster	analysis.	Statistical	analysis	of	these	geometric	features	enabled	the	identification	of	
predominant	geometric	configurations	between	neighboring	ribosomes	in	a	polysomic	
sequence,	which	once	extrapolated	produce	characteristic	polysome	topologies.	
Additionally,	identification	of	candidate	ribosomal	components	for	surface	interactions	
between	adjacent	ribosomes	was	possible	by	fitting	atomic	models	into	ribosome	
subtomogram	averages	arranged	as	dictated	by	the	mean	neighbor	configuration	derived	
from	cluster	analysis	of	the	geometric	features.	Furthermore,	analysis	of	the	above-
mentioned	geometric	features	provided	structural	insights	into	the	mechanics	of	the	
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translation	process:	mRNA	molecules	were	predominantly	buried	inside	the	polysome	
structures,	mRNA	exits	and	entries	of	adjacent	ribosomes	were	consistently	observed	in	
close	proximity,	while	their	peptide	tunnel	exits	were	oriented	away	from	each	other.	
	
Local	geometric	analysis	of	macromolecules	in	cryo-electron	tomograms	can	elucidate	the	
3D arrangement of macromolecules in supramolecular ensembles and allow structural
characterization	of	macromolecular	interactions.	Thus,	the	development	of	methodologies	
for	statistical	analysis	of	geometric	features	(e.g.	3D	center-to-center	vectors,	relative	
orientations)	derived	from	adjacent	macromolecules	in	tomographic	space,	is	an	important	
step	towards	understanding	the	spatial	relation	between	macromolecules	in	their	
physiological	environment.	
	

	
Figure	1.2:	Statistical	analysis	of	neighboring	80S	ribosomes	in	intact	human	cells	for	geometric	
characterization	of	polysomes	[F.	Brandt	et	al.,	2010].	(A)	Cluster	analysis	of	center-to-center	vectors	and	
relative	orientations	of	adjacent	ribosomes	identified	predominant	neighbor	configurations.	Neighbors	on	the	
5’	side	of	the	𝑖#$	ribosome	in	the	polysomic	sequence	are	termed	i+1.	The	two	predominant	3D	arrangements	
(A.1	and	A.2)	differ	by	a	neighbor	rotation	of	> 90°.	(B)	Models	of	polysome	structures	were	generated	by	
extrapolating	previously	identified	configurations	of	ribosome	pairs	(A).	Extrapolating	configuration	A.1	
yielded	a	compact	helical	topology	(B.1),	while	extrapolation	of	A.2	produced	a	much	loose	helical	topology	
(B.2).	(B.3)	Spiral	polysome	topologies	were	produced	by	1:1	alternation	of	configurations	A.1	and	A.2.	
Ribosomal	large	and	small	subunits	in	blue	and	yellow	respectively,	peptide	tunnel	density	in	red.	Adapted	
from	[F.	Brandt	et	al.,	2010].	
	

1.5	Graphs	and	Probabilistic	Graphical	Models	
	
Graphs	are	mathematical	structures	composed	of	nodes	and	edges	used	to	connect	pairs	of	
nodes.	Graph	theory	provides	a	natural	representation	for	geometric	information	(e.g.	the	
distribution	of	points	in	3D	space)	and	a	large	number	of	algorithms	to	solve	a	variety	of	

180° 180°

i i i i
i+1 i+1 i+1 i+1

A.1 A.2

B.2B.1 B.3
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topological	problems	[Bollobás,	1979].	Therefore,	graphs	are	especially	well	suited	to	deal	
with	visual	proteomics	tasks,	as	they	can	be	employed	to	describe	and	analyze	the	
distribution	of	macromolecules	in	cryo-electron	tomograms.	
	
Probabilistic	graphical	models	are	graphs	that	provide	a	diagrammatic	representation	of	
joint	probability	distributions	[Bishop,	2006]. In these frameworks, nodes represent
random	variables,	while	edges	denote	probabilistic	relations	between	these	variables.	
Bayesian	networks	and	Markov	random	fields	are	examples	of	graphical	models,	which	
have	been	successfully	used	for	probabilistic	inference	in	a	wide	variety	of	image	
processing	applications.	Concrete	examples	of	such	applications	are	image	de-noising	and	
segmentation	[Bishop,	2006;	Blake	et	al.,	2011],	where	these	probabilistic	frameworks	are	
used	to	model	the	tendency	of	neighboring	image	sites	to	be	coherent,	i.e.,	to	have	the	same	
pixel	value	or	to	belong	to	the	same	region.	Here,	each	pixel	is	represented	by	a	node	and	
only	nodes	corresponding	to	directly	adjacent	pixels	are	connected	with	an	edges.	While	
not	only	pixels	that	are	direct	neighbors	are	correlated,	graphical	models	are	capable	of	
capturing	implicit	long-range	dependencies	that	arise	from	short-range	connections.	
Moreover,	describing	only	short-range	connections	generates	sparsely	connected	graphs,	
which	allow	inference	algorithms	to	mine	long-range	correlations	with	low	computational	
cost	[Blake	et	al.,	2011].	
	
In	a	similar	manner,	probabilistic	graphical	models	can	be	used	to	analyze	the	3D	
organization	of	macromolecules	in	cellular	volumes. Once	a	set	of	macromolecular	
complexes	have	been	identified	in	a tomogram,	a	probabilistic	framework	can	be	used	to	
describe	their	3D	organization,	e.g.,	by representing	each	macromolecule	with	a	node	and	
connecting	nodes	of	adjacent	macromolecules	with	an	edge.	Inference	algorithms	can	then	
be	applied	to	mine	supramolecular	information,	such	as	identification	of	flexible	polysome	
structures.		
	

1.6	Thesis	Outline	
	
This	thesis	describes	novel	methodologies	to	analyze	the	3D	organization	RuBisCO	
complexes	and	polysomes,	as	imaged	by	CET.	A	general	method	for	local	geometric	analysis	
of	macromolecular	complexes	is	developed,	which	is	then	applied	to	investigate	the	local	
organization	of	RuBisCO	complexes	in	cryo-electron	tomograms	of	C.	reinhardtii	pyrenoids.	
Finally,	a	graph-based	method	for	automated	detection	of	polysomes	is	presented.	It	
implements	a	probabilistic	graphical	model	to	detect	flexible	polysome	structures	in	cryo-
electron	tomograms,	using	only	the	positions	and	orientations	of	previously	localized	
ribosomes	as	input.	The	subsequent	chapters	of	this	thesis	are	organized	as	follows:		
	

� Chapter	2	provides	background	on	the	TEM,	CET,	the	mathematical	concepts	used	
for	geometry	analysis,	and	a	basic	description	of	the	biological	systems	on	which	the	
proposed	methodologies	are	applied.		
	

� Chapter	3	describes	the	materials	and	methods	used	in	this	thesis.	
	



	 7	

� Chapter	4	presents	a	strategy	for	statistical	analysis	of	geometric	information,	
derived	from	the	local	organization	of	previously	detected	macromolecular	
complexes	in	CET	data.		

	
� In	chapter	5,	the	method	described	in	chapter	4	is	applied	to	describe	the	local	

organization	of	RuBisCO	complex	in	the	crowded	environment	of	the	pyrenoid	from	
C.	reinhardtii	cells.	A	set	of	predominant	arrangements	of	RuBisCO	complex	pairs	is	
identified	and	subsequently	used	to	propose	a	model	of	the	local	organization	of	
RuBisCO	complexes.	

	
� In	chapter	6,	a	probabilistic	polysome	detection	method	is	descried.	Statistical	

models	of	geometric	configurations	between	neighboring	ribosomes	in	
characteristic	polysome	topologies	are	constructed	using	the	methodology	
presented	in	chapter	4.	Within	the	polysome	detection	method,	these	models	are	
regarded	as	prior	knowledge	of	the	local	structure	of	polysomes.	The	method	is	
evaluated	on	synthetic	and	experimental	tomograms	of	bacterial	lysate	and	then	
applied	to	tomograms	of	microsomal	preparations	derived	from	rough	ER,	with	the	
objective	of	detecting	cytosolic	and	ER-associated	polysomes.	

	
� Finally,	chapter	7	provides	an	overarching	summary	of	the	thesis,	discusses	

contributions	and	provides	an	outlook	into	future	research	questions.
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2.	Background	
	

2.1	Transmission	Electron	Microscopy	
	
The	standard	setup	of	a	transmission	electron	microscope	(TEM)	has	seven	major	
components:	(1)	The	electron	gun	emits	and	accelerates	electrons	to	form	a	spatially	and	
temporally	coherent	electron	beam.	Typically,	a	field	emission	gun	(FEG)	is	used	to	
generate	a	highly	bright	and	coherent	electron	beam.	The	usual	acceleration	voltage	ranges	
between	100	kV	to	300	kV.	(2)	The	condenser	system	contains	two	or	three	electron	lenses,	
they	use	electromagnetic	coils	to	focus	the	electron	beam	onto	a	small	region	of	the	
specimen.	Usually	it	is	sufficient	to	illuminate	a	specimen	area	of	approximately	1	µm	
[Reimer,	1984].	A	circular	metallic	mesh	(EM	grid)	of	approximately	3	mm	in	diameter	
supports	the	sample,	the	EM	grid	is	placed	on	a	sample	holder	system,	which	is	
subsequently	mounted	on	(3)	the	specimen	stage.	The	sample	holder	and	specimen	stage	
permit	translation	and	single-axis	rotation	of	the	EM	grid.	The	sample	holder	is	kept	at	
cryogenic	temperatures	using	liquid	nitrogen,	as	it	comes	in	direct	contact	with	the	EM	grid.	
(4)	The	objective	lens	creates	the	image	of	the	sample,	which	is	later	magnified	by	(5)	the	
intermediate	lens.	Finally,	(6)	the	projection	lens	directs	the	image	into	(7)	the	image	
detector.	The	image	detector is	used	to	produce	a	digital	image	from	the	signal	carried	by	
the	electrons.	Historically,	a	TEM	was	equipped	with	a	Charged	Coupled	Device	(CCD)	
camera,	which	uses	a	scintillator	to	translate	the	electron	signal	to	photons,	the	signal	is	
subsequently	transmitted	to	the	CCD	chip	to	generate	a	digital	image.	The	advent	of	direct	
electron	detectors	significantly	improved	image	quality	of	the	TEM,	by	avoiding	signal	
degradation	from	the	translation	process	between	electrons	and	photos,	as	these	devices	
are	capable	of	recording	digital	images	from	an	electron	signal,	dramatically	increasing	
quantum	efficiency	and	image	contrast	[Faruqi	&	Mcmullan,	2011].	It	is	important	to	point	
out	that	the	column	of	the	TEM	is	maintained	at	high	vacuum,	allowing	the	electron	beam	to	
interact	only	with	the	specimen	[J.	Frank,	2006;	Lucić	et	al.,	2005;	Reimer,	1984].	Figure	2.1	
depicts	a	cross-section	of	a	typical	TEM.	
	
As	the	planar	wave	of	electrons	passes	the	sample,	electrons	interact with	the	Coulomb	
potential	of	atoms	in	the	sample,	modifying	the	path	of	electrons.	Electrons	can	be	
elastically	or	inelastically	scattered,	while	elastic	scattering	of	electrons	transfers	negligible	
energy	into	the	sample,	inelastic	scattering	events	introduce	significant	energy,	leading	to	
radiation	damage	in	biological	samples	[Reimer	&	Kohl,	2008;	Williams	&	Carter,	2009].	The	
energy	introduced	by	inelastic	scattering	events	heats	the	sample	and	can	lead	to	free	
radicals,	by	breaking	ionic	and	covalent	bonds.	Thus,	radiation	sensitivity	of	biological	
material	limits	sample	thickness,	as	the	chance	of	inelastic	scattering	events	increases	in	
thicker	samples.	Furthermore,	while	highly	scattered	electron	are	blocked	by	the	objective	
aperture,	an	energy	filter	can	be	placed	between	the	projection	lens	and	the	image	detector	
to	filter	out	inelastically	scattered	electrons	(i.e.	lower	energy	electrons).	Energy	filters	
improve	contrast	and	prevent	image	blurring	from	chromatic	aberrations	of	the	TEM	[Lucić	
et	al.,	2005].	
		
Micrograph	images	produced	by	the	TEM	are	2D	projections	of	the	sample	under	
investigation.	Image	contrast	is	the	intensity	difference	between	adjacent	areas,	it	
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is	formed	by	two	mechanisms,	amplitude	and	phase	contrast	[Reimer	&	Kohl,	2008].	(1)	
Amplitude	contrast	is	produced	by	differences	in	the	number	of	detected	electrons	between	
adjacent	areas	in	the	image	plane.	Since	highly	dense	regions	in	the	sample	strongly	scatter	
electrons,	the	objective	aperture	and	an	energy	filter	can	be	used	to	block	elastically	and	
inelastically	scattered	electrons,	respectively.	Therefore,	areas	on	the	image	plane	
corresponding to low and high density regions in the sample will register different amounts
of	electrons.	This	type	of	contrast	increases	as	the	aperture	radius	decreases.	(2)	Phase	
contrast	is	produced	by	constructive	and	destructive	interference	of	phase-shifted	electron	
waves	on	the	image	plane.	Electron	waves	become	phase	shifted	by	scattering	events	as	
they	traverse	the	sample.	Images	produced	by	phase	contrast	are	projections	of	the	
electrostatic	potential	of	the	sample,	convoluted	with	the	inverse	Fourier	transform	of	the	
contrast	transfer	function	(CTF),	the	CTF	is	the	product	of	acquisition	parameters	(e.g.	
acceleration	voltage	and	defocus	value)	and	imaging	conditions	in	the	TEM	(e.g.	electron	
beam	coherence	and	spherical	aberration)	[Lucić	et	al.,	2005].	Furthermore,	the	image	
detector	records	the	amplitude	of	the	electron	wave	function,	squared,	i.e.	the	probability	of	
an	electron	being	detected	at	any	particular	pixel.	It	is	noteworthy	that	both	amplitude	and	
phase	contrast	are	damped	by	the	modulation	transfer	function	(MTF)	of	the	image	
detector	

	
Figure	2.1:	Cross-section	diagram	of	a	TEM.	The	diagram	shows	all	major	components	of	a	typical	TEM,	
including	a	two-lens	condenser	system	(C1	and	C2)	and	a	magnetic	prism	acting	as	an	energy	filter	[Krivanek	
et	al.,	1995].	Adapted	from	[Schweikert,	2004].	
	
Historically,	the	defocus	value used	to	record	micrographs	of	frozen-hydrated	samples	
established	a	practical	limit	on	the	maximum	resolution	attainable.	Resolution	was	
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restricted	to	the	spatial	frequency	of	the	first	zero	crossing	of	the	CTF,	since	frequency	
bands	at	higher	resolution	are	hard	to	interpret	given	the	alternating	contrast	produced	by	
CTF	oscillation.	Extracting	structural	information	at	frequencies	higher	than	the	first	CTF	
zero	crossing	(CTF	correction)	is	only	possible	when	the	experimental	CTF	has	been	
accurately	estimated.	While	CTF	determination	was	a	challenging	task	given	the	low	signal-
to-noise ratio (SNR) of images collected with CCD cameras, direct electron detectors have
significantly	increased	the	SNR	of	micrographs,	allowing	reliable	estimation	of	the	
experimental	CTF.	Moreover,	periodogram	averaging	can	be	used	to	improve	CTF	
determination	[Fernández	et	al.,	2006;	Zanetti	et	al.,	2009].	In	this	strategy,	a	micrograph	is	
divided	into	tiles	and	their	power	spectra	is	averaged,	a	theoretical	CTF	is	subsequently	
fitted	to	the	averaged	power	spectrum.	It	is	important	to	point	out	that	micrograph	images	
recorded	at	small	defocus	values	allow	higher	frequency	information	to	be	available	at	the	
cost	of	reducing	contrast.	Figure	2.2	shows	theoretical	CTF	at	different	defocus	values.	
	

	
Figure	2.2:	Simulated	CTFs	at	different	defocus	values.	CTFs	(blue)	and	envelope	functions	(red)	depicting	the	
first	zero	crossing	at	(A)	5	µm	and	(B)	8	µm	defocus	values.	All	CTFs	were	calculated	for	a	spherical	aberration	
of	2.7	mm,	acceleration	voltage	of	300	kV	and	a	pixel	size	of	0.288	nm.	The	values	were	chosen	to	agree	with	
the	acquisition	parameters	used	for	the	experimental	data	presented	in	the	following	chapters.	
	

2.2	Cryo-Electron	Tomography	
	

2.2.1	Sample	Preparation	
	
An	aqueous	biological	sample	is	applied	on	the	EM	grid	and	rapidly	frozen	into	a	glass-like	
state,	i.e.	the	sample	is	vitrified	in	crystal-free	amorphous	ice.	There	are	two	predominant	
methods	for	vitrification,	plunge	freezing	[Dubochet	et	al.,	1988]	and	high	pressure	freezing	
[Studer	et	al.,	2008].	Plunge	freezing	is	used	if	sample	thickness	is	below	10	µm	[Asano	et	
al.,	2016],	the	sample	is	rapidly	submerged	into	a	cryogen,	i.e.	a	liquid	at	less	than	−160°C,	
such	as	liquid	ethane.	Sample	temperature	is	reduced	to	−140°C	at	an	approximate	cooling	
speed	of	101°C/s,	avoiding	the	formation	of	ice	crystals	that	would	otherwise	compromise	
the	structural	integrity	of	the	sample.	High-pressure	freezing	is	used	for	samples	up	to	
200	µm	in	thickness	[Asano	et	al.,	2016].	Here	rapid	cooling	is	combined	with	the	



	 12	

application	of	high	pressure,	acting	as	a	physical	cryo-protectant	that	lowers	the	melting	
point	of	water.	
	
Samples	above	1	µm	in	thickness	are	virtually	intransparent	to	electrons	[Lucić	et	al.,	2013]	
and	require	thinning	under	cryo-conditions.	Sample	thinning	can	be	achieved	by	cutting	
with	a	cryo-ultramicrotome. However, this methodology usually introduces compression
artifacts	and	crevasse	deformations	in	the	sample	[Han	et	al.,	2008].	A	compression-free	
strategy	for	sample	thickness	reduction	is	cryo-focused	ion	beam	(cryo-FIB)	milling,	where	
a	focused	beam	of gallium	ions	is	used	to	ablate	material	at	a	selected	region	of	the	sample,	
creating	electron	transparent	windows	where	thickness	typically	ranges	from	100	to	
300	nm	[Schaffer	et	al.,	2015].	
	

2.2.2	Tilt-Series	Acquisition	
	
Once	the	sample	is	prepared	and	loaded	into	the	specimen	stage,	a	set	of	micrographs	is	
acquired	at	different	orientations,	as	the	sample	is	tilted	by	the	computer-controlled	
specimen	stage.	Physical	restrictions	of	the	TEM	and	large	sample	thickness	at	high	tilt	
angles	usually	restricts	tilt	range	to	±60°.	Since	frozen	biological	samples	are	very	
susceptible	to	radiation	damage	[Glaeser,	1971],	the	applied	electron	dose	needs	to	be	
restricted	to	~100	e:/A;,	significantly	reducing	the	SNR	of	each	micrograph.	Furthermore,	
sample	sensitivity	to	radiation	damage	also	restricts	angular	increment	of	the	tilt-series	
from	2°	to	3°.	The	size	(s)	of	the	imaged	sample	in	the	direction	of	the	electron	beam	and	
the	number	of	projections	in	the	tilt-series	(n),	determine	the	maximum	isotropic	resolution	
(r)	attainable	in	the	resulting	tomogram	[Crowther	et	al.,	1970]:	
	

𝑟 =
𝜋𝑑
𝑛
	

(2.1)	

	
Even	though	automated	tilt-series	acquisition	tools	compensate	for	large	displacements	
caused	by	mechanical	inaccuracies	of	the	specimen	holder	during	tilt	movement,	the	
recorded	micrograph	set	needs	to	be	further	aligned	within	a	coordinate	system	common	to	
the	complete	tilt-series.	The	aim	of	tilt-series	alignment	is	to	correct	shift,	rotation	and	
magnification	differences	before	tomographic	reconstruction	[J.	Frank,	2006].	
Computational	alignment	of	projections	is	commonly	performed	by	manual	or	automatic	
tracking	of	high-contrast	features	(e.g.	fiducial	gold	markes)	throughout	the	tilt-series	[S.	
Brandt	et	al.,	2001a,	2001b].	Typically,	a	least-squares	procedure	is	used	to	align	the	
micrograph	set	using the	coordinates	of	localized	features,	minimizing	an	alignment	error	
as	a	function	of	lateral	shifts,	tilt-axis	angle	and	magnification	changes	[Amat	et	al.,	2010].		
	

2.2.3	Tomogram	Reconstruction	
	
Once	the	2D	projections	of	tilt-series	have	been	aligned,	and	if	required	CTF	corrected,	a	
density	volume	of	the	imaged	sample	is	reconstructed.	The	mathematical	principles	behind	
tomographic	reconstruction	base	on	the	central	slice	theorem,	which	states	that	the	Fourier	
transform	of	a	2D	projection	from	a	3D	object	corresponds	to	a	central	section	of	the	3D	
Fourier	transform	of	the	imaged	object	[J.	Frank,	2006;	Radon,	1917].	However,	in	CET,	the	
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limited	tilt	range	leads	to	missing	information	in	a	wedge-shaped	region	in	Fourier	space,	
causing	distortions	in	the	resulting	tomogram,	such	as	elongation	in	the	direction	of	the	
electron	beam.	Figure	2.3	illustrates	the	so-called	‘missing	wedge’	problem.	
	

	
Figure	2.3:	Depiction	of	the	missing	wedge	problem	in	CET.	(A.1,	B.1)	Sampled	Fourier	space	(gray)	and	
resulting	images	(A.2,	B.2	respectively).	The	image	resulting	from	a	fully	sampled	Fourier	space	(A.1)	is	
isotopically	resolved	in	real	space	(A.2),	as	opposed	to	the	heavily	deformed	image	(B.2)	resulting	from	a	
partially	sampled	Fourier	space	(B.1).	Adapted	from	[Förster	et	al.,	2008].	
	
Since	interpolation	in	Fourier	space	is	a	challenging	task,	real	space	reconstruction	methods	
are	typically	used.	The	most	commonly	used	real	space	method	in	CET	is	weighted	
backprojection	(WBP),	given	its	computational	simplicity:	micrographs	are	projected	back	
into	a	reconstruction	volume,	regions	where	mass	is	found	in	the	original	object	are	
reinforced	as	back-projected	images	intersect	inside	the	volume.	To	obtain	a	faithful	
reconstruction	of	the	object,	projections	need	to	be	weighted	in	Fourier	space	to	account	for	
uneven	sampling,	otherwise	low	frequency	information	will	be	artificially	enhanced	in	the	
resulting	tomogram.	It	is	worth	mentioning	that	aside	from	WBP,	there	is	a	variety	of	real	
space	[Marabini	et	al.,	1998;	Penczek	et	al.,	1992;	Wan	et	al.,	2011]	and	Fourier	space	[Chen	
&	Förster,	2014;	Penczek	et	al.,	2004;	Sandberg	et	al.,	2003;	Zhang	et	al.,	2008]	
reconstruction	methods.	
	

2.3	Subtomogram	Analysis	
	
After	tomographic	reconstruction,	the	resulting	3D	density	map	can	be	interpreted	by	
computational	analysis	of	subvolumes	containing	the	macromolecular	structure of	interest.	
A	typical	workflow	aimed	at	structural	characterization	of	macromolecular	complexes	
follows	four	basic	steps:	(1)	a	macromolecular	complex	of	interest	is	localized	in	a	
tomogram,	(2)	the	corresponding	subvolumes	are	aligned	and	averaged	to	overcome	the	
low	SNR.	(3)	Aligned	subtomograms	are	subsequently	subjected	to	classification.	Here,	the	
objective	is	the	identification	of	structural	heterogeneity,	stemming	from	different	
conformations	of	the	observed	complexes.	(4)	Finally,	the	resolution	of	a	structurally	

A.1 B.1

A.2 B.2
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homogenous	subtomogram	average	can	be	measured.	Figure	2.4	illustrates	a	2D	analogy	of	
the	typical	subtomogram	analysis	workflow.	

	
Figure	2.4:	2D	simplification	of	a	typical	subtomogram	analysis	workflow.	(A)	After	a	tomogram	has	been	
reconstructed	from	a	tilt-series,	(B)	The	macromolecule	of	interest	(‘A’s)	is	localized	in	tomographic	space	and	
subtomograms	containing	the	target	macromolecule	are	extracted.	(C)	Subtomogram	alignment	and	averaging	
is	used	to	produce	a	higher	resolution	structure	of	the	target	complex.	(D)	Classification	procedures	allow	the	
identification	of	structural	heterogeneity	(denoted	by	different	fonts),	finally,	the	resolution	of	class	averages	
is	measured,	usually	exceeding	the	resolution	of	the	unclassified	average.	Adapted	from	[Hrabe	&	Förster,	
2011].	
	

2.3.1	Macromolecule	Localization	
	
Localization	of	macromolecules	of	interest	inside	a	tomogram	is	of	paramount	importance,	
as	it	is	the	basis	of	the	subsequent	subtomogram	analysis.	Template	matching	is	a	
commonly	used	method	for	macromolecule	localization	in	CET;	an	exhaustive	cross-
correlation	search	compares	a	template	of	a	macromolecular	complex	in	a	set	of	different	
rotations	to	each	same-sized	region	inside	the	tomogram.	The	template	matching	procedure	
has	three	major	steps:	(1)	Structural	template	generation,	(2)	scoring	function	computation	
and	(3)	peak	extraction.	The	template	matching	pipeline	is	depicted	in	figure	2.5	B.	
	
Even	though	a	SPA	structure	can	be	used	as	a	template,	preparation	of	structural	templates	
from	atomic	models	derived	from	X-ray	crystallography	is	a	standard	practice.	The	atomic	
model	(i.e.	the	list	of	atomic	coordinates)	of	the	macromolecule	of	interest	is	obtained	from	
the	Protein	Data	Bank	(PDB),	a	repository	of	experimentally	determined	structures	of	
biological	macromolecules.	In	order	to	generate	a	structural	template	from	an	atomic	
model,	the	imaging	process	of	CET	needs	to	be	faithfully	simulated:	The	electrostatic	
potential	of	the	macromolecule	is	calculated	from	the	coordinates	and	identities	of	each	
atom	in	the	atomic	model.	Subsequently,	the	resulting	electron	density	map	is	convolved	
with	a	CTF	calculated	using	the	experimental	parameters	used	for	tomogram	acquisition	in	
the	TEM.	Finally,	the	template	is	low-pass	filtered	according	to	the	first	zero	crossing	of	the	
CTF	and	binned	to	the	pixel	size	of	the	tomogram.	This	process	is	illustrated	in	figure	2.5	A.	
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Figure	2.5:	Template	matching	workflow.	(A)	Diagram	for	template	generation	from	an	atomic	model.	(B)	
Depiction	of	the	template	matching	pipeline.	Calculation	of	the	cross-correlation	function	between	the	input	
volume	𝑉BC	and	previously	prepared	structural	templates	can	be	accelerated	by	parallel	computation.	Peak	
extraction	of	the	cross-correlation	function	yields	positions	and	orientations	of	localized	templates	in	
tomographic	space	𝑉DE# .	Adapted	from	[Förster	et	al.,	2010;	Lucić	et	al.,	2005].	
	
Once	a	template	structure	has	been	prepared,	the	scoring	function	describing	a	similarity	
measure	between	the	template	volume	and	the	tomographic	volume	can	be	computed.	
Conceptually,	the	scoring	function	describes	the	similarity	of	the	template	volume	at	each	
position	in	the	tomogram	volume.	Since	the	orientation	of	the	target macromolecule	inside	
tomographic	space	is	unknown,	the	orientation	space	of	the	template	is	exhaustively	
sampled	at	each	position	in	the	tomogram,	typically	by	a	set	of	Euler	angles with	an	angular	
increment	between	5°	and	15°	(usually	7°).	Thus,	the	scoring	function	(template	matching	
score)	is	defined	by	the	orientation	that	maximizes	a	similarity	measure	between	the	
rotated	template	volume	and	the	subvolume	corresponding	to	each	position	in	the	
tomogram.	The	similarity	measure	used	in	CET	is	the	locally	normalized	cross-correlation	
function	[Frangakis	et	al.,	2002],	which	uses	a	smoothened	binary	mask	to	define	the	area	of	
interest	between	the	template	and	tomogram	volumes,	and	applies	local	normalization	
before	computing	the	correlation	coefficient.	Moreover,	this	measure	addresses	the	missing	
wedge	problem	by	constraining	the	correlation	calculation	to	the	sampled	region	in	Fourier	
space.	
	
Since	the	scoring	function	provides	a	quantitative	measure	of	similarity	between	the	
template	volume	and	the	tomogram,	it	can	be	interpreted	as	the	probability	of	template	
occurrence	in	tomographic	space.	Therefore,	scoring	function	peaks	indicate	positions	in	
the	tomogram	where	the	macromolecule	of	interest	is	likely	to	be	found.	In	practice,	the	
peak	extraction	process	selects	coefficient	values	in	descending	order,	while	marking	a	
spherical	region	around	each	selected	coefficient	to	keep	track	of	extracted	peaks,	the	
spherical	radius	should	approximate	that	of	the	template.	Each	extracted	peak	indicates	the	
position	and	orientation	of	a	detected	macromolecular	complex. Given	the	low	SNR	of	CET	
(usually	between	0.1	and	0.01)	a	considerable	fraction	of	the	extracted	peaks	will	be	false	
positives.	Moreover,	estimating	the	number	of	peaks	to	extract	is	challenging,	since	the	
abundance	of	the	target	macromolecule	inside	the	tomogram	is	usually	unknown.	This	issue	
can	be	addressed	by	oversampling	the	amount	of	peaks,	plotting	the	histogram	
corresponding	coefficients,	and	setting	a	coefficient	threshold	based	on	the	parameters	of	a	
visually	estimated	Gaussian	distribution	of	true	positive	peaks	[Ortiz	et	al.,	2006].	However,	
this	strategy	relies	on	the	assumption	that	coefficient	values	of	true	positives	form	a	
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Gaussian	distribution,	which	can	be	easily	segmented	from	the	remaining	of	the	coefficient	
distribution	(i.e.	coefficients	corresponding	to	false	positives).	While	this	approach	has	been	
successful	for	high-contrast	macromolecules	such	as	ribosomes	[Ortiz	et	al.,	2006],	for	other	
macromolecular	complexes	the	coefficient	distributions	of	false and	true	positive	may	
significantly	overlap,	hindering	estimation	of	the	true	positive	Gaussian	distribution	and	
appropriate	separation	of	these	two	classes	by	coefficient	thresholding.
	

2.3.2	Subtomogram	Alignment	and	Averaging	
	
After	a	macromolecule	of	interest	has	been	located	inside	a	tomogram,	the	corresponding	
subtomograms	can	be	extracted,	aligned	and	averaged	to	procedure	a	higher	resolution	
structure.	Assuming	that	each	subtomogram	represents	the	sum	of	structural	signal	from	
the	macromolecule	of	interest	plus	additive noise,	averaging	aligned	subtomograms	will	
linearly	increase	the	SNR	with	the	number	of	subtomograms	[Hrabe	&	Förster,	2011],	
therefore	increasing	resolution.	Moreover,	since	instances	of	the	target	macromolecular	
complex	have	different	orientations	with	respect	to	the	missing	wedge,	isotropic	resolution	
tends	to	increases.	Typical	alignment	procedures	follow	and	iterative	approach:	align	each	
subtomogram	against	a	structural	reference,	average	aligned	subtomogram	to	create	a	new	
reference,	and	use	the	new	reference	structure	for	next	iteration.	Subtomogram	alignment	
not	yields	higher	resolution	structures,	it	also	refines	the	positions	and	orientations	
parameters	of	detected	macromolecular	complexes,	which	can	be	subsequently	used	to	
analyze	the	
spatial	distribution	of	the	target	complex	in	tomographic	space.	
	
At	each	alignment	iteration,	subtomograms	need	to	be	aligned	against	a	reference	structure.	
This	is	achieved	by	maximizing	a	similarity	score	between	the	reference	structure	and	all	
subtomogram,	where	the	similarity	score	is	a	function	of	unknown	shifts	and	rotations.	
Constrained	cross-correlation	is	used	as	a	similarity	measure,	to	account	for	the	missing	
wedge	problem	[Förster	&	Hegerl,	2007].	Expectation-maximization	is	a	commonly	used	
algorithm	for	subtomogram	alignment,	as	presented	in	[Hrabe	et	al.,	2012],	where	shifts	are	
efficiently	computed	by	a	fast	correlation	search	based	on	Fourier	transforms	[Roseman,	
2003].	However,	a	time-consuming	rotation	search	is	performed	based	on	explicit	angular	
sampling	in	real	space	(RS).	To	address	this	issue,	[Chen	et	al.,	2013]	proposed	an	alignment	
algorithm	based	on	the	generalized	convolution	theorem,	which	uses	spherical	harmonics	
to	dramatically	accelerate	rotation	search	without	sacrificing	accuracy.	Fast	rotation	
matching	(FRM)	allows	the	efficient	implementation	of	a	reference	free	protocol	to	avoid	
reference	bias,	where	an	initial	alignment	reference	is	calculated	by	randomly	rotating	and	
averaging	all	subtomogram	[Scheres	et	al.,	2009].	It	is	worth	mentioning	that	average	
resolution	is	not	only	restricted	by	the	number	of	subtomograms,	but	also	by	structural	
flexibility	and	the	intrinsic	SNR	of	the	source	tomogram.	
	

2.3.3	Subtomogram	Classification	
	
Structural	heterogeneity,	stemming	from	different	conformational	states	of	the	imaged	
macromolecule	of	interest,	is	a	limiting	factor	for	subtomogram	average	resolution.	To	
address	this	issue,	subtomogram	classification	aims	at	creating	structurally	homogenous	
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subtomogram	sets,	thus	identifying	structural	differences	and	yielding	higher	resolution	
class	averages.	Subtomogram	classification	also	aids	in	the	identification	of	false	positive	
results	from	the	template	matching	procedure,	which	can	be	subsequently	discarded	to	
improve	the	resolution	of	the	macromolecular	structure	yielded	by	subtomogram	
averaging.	

A	commonly-used	classification	approach	is	constrained	principal	component	analysis	
(CPCA),	where	a	constrained	cross-correlation	measure	(to	account	for	the	missing	wedge)	
between	aligned	pairs	of	subtomograms	is	used	to	compute	a	similarity	matrix.	The	
similarity	matrix	is	subjected	to	principal	component	analysis	for	dimensionality	reduction,	
and	k-means	or	hierarchical	clustering	is	subsequently	applied	[Förster	et	al.,	2008].	
Alternative	approaches	based	on	maximum	likelihood	[Scheres	et	al.,	2009;	Stölken	et	al.,	
2011]	and	multi-reference	alignment	and	classification	[G.	Frank	et	al.,	2012][G.	Frank	et	al.,	
2012]	have	also	been	developed.	Another	methodology	is	auto-focused	classification	
(AC3D)[Chen	et	al.,	2014],	it	is	an	iterative	multi-reference	optimization	method,	similar	to	
k-means	clustering,	capable	of	automatically	detecting	regions	of	statistically	significant	
structural	differences	between	class	averages,	as	opposed	to	CPCA	classification,	which	uses	
a	static	mask	to	focus	cross-correlation	calculation	to	a	region	of	interest.	At	each	iteration,	
masks	are	computed	by	calculating	a	standard	deviation	map	between	pairs	of	class	
averages,	a	standard	deviation	threshold	is	subsequently	used	to	binarize	the	map	
(typically	> 3𝜎).	Masks	are	then	used	to	focus	the	calculation	of	the	constrained	cross-
correlation	measure	in	the	following	iteration,	thereby	directly	influencing	class	
assignment.	
	

2.3.4	Resolution	Measurement	
	
A	commonly	used	method	of	estimating	the	resolution	of	subtomogram	averages	is	Fourier	
shell	correlation	(FSC)	[Saxton	&	Baumeister,	1982].	Here,	a	correlation	function	between	
two	subtomogram	averages	is	computed	in	Fourier	space;	correlation coefficients	between	
volumetric	shells	of	corresponding	spatial	resolution	are	computed,	yielding	a	FSC	curve.	
Subsequently,	resolution	is	estimated	by	the	intersection	of	the	FSC	curve	at	specific	cutoff	
values	[Penczek,	2010].	In	cases	where	averages	are	simply	computed	by	splitting	the	set	of	
collectively	aligned	subtomograms	in	half,	a	cutoff	vale	of	0.5	is	typically	used.	However,	
when	‘gold-standard’	alignment	is	applied,	a	cutoff	value	of	0.143	is	commonly	used.	In	
gold-standard alignment,	half	sets	are	treated	separately	during	the	alignment	process,	
avoiding	enhancement	of	noise-based	features,	which	can	lead	to	over-estimating	
resolution.	Cross-resolution	FSC	estimates	the	resolution	of	a	subtomogram	average	by	
comparing	it	with	an	external,	high-resolution	reference,	typically	derived	from	SPA	or	X-
ray	crystallography,	often	using	a	cutoff	value	of	0.3.	
		

2.4	Radial	Distribution	Functions	
	
A	particle	in	the	context	of	CET	refers	to	a	mathematical	object	describing	the	position	and	
orientation	of	a	detected	macromolecular	complex	in	a	tomogram.	Once	a	set	of	particles	
has	been	determined,	characterizing	their	local	geometric	organization	can	offer	valuable	
insights	into	the	associated	biological.	The	radial	distribution	function	(RDF)	is	widely	used	
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for	statistical	analysis	of	the	structure	of materials.	Given	a	set	of	N	particles	in	a	volume	V,	
the	RDF	𝜌(𝑟),	describes	how	density	changes	as	a function	of	radial	distance	from	a	
reference	particle,	and	represents	the	probability	of	finding	the	center	of	a	particle	at	a	
distance	r	from	another	particle.	The	RDF	can	be	expressed	as	[Takeshi	&	Billinge,	2012]:	
	

𝜌 𝑟 = 𝜌L𝑔 𝑟 =
1

𝑁4𝜋𝑟;
𝛿(𝑟 − 𝑟BP)

PB

	
(2.2)

	
where	𝛿	is	the	Dirac	delta	function,	𝑟BP 	the	center-to-center	distance	between	the	𝑖#$	and	𝑗#$	
particles,	and	𝜌L = 𝑁 𝑉	is	the	number	density	of	the	system.	The	function	𝑔 𝑟 	is	called	the	
pair	distribution	function.	The	atomic	RDF	of	a	material	can	be	experimentally	determined	
by	radiation	diffraction	measurements	(e.g.	X-ray	crystallography),	it	is	connected	by	a	
Fourier	transform	to	the	total	scattering	structure	function,	also	known	as	the	structure	
factor	[Takeshi	&	Billinge,	2012].	Figure	2.6	shows	examples	of	RDFs	for	amorphous	and	
crystalline	materials.	
	

	
Figure	2.6:	Radial	distribution	functions	of	crystalline	and	amorphous	materials.	(A)	RDF	of	amorphous	metals	
compared	to	a	theoretical	RDF	of	random	close	packing	of	particles.	(B)	Theoretical	model	and	experimentally	
acquired	perovskite	RDF.	Experimental	RDFs	were	determined	by	radiation	diffraction	experiments.	Adapted	
from	[Cargill	III,	1975;	Louca	&	Takeshi,	1999].	
	

2.5	Topology	Graphs	
	
While	RDFs	are	useful	to	describe	the	average	local	organization	of	a	set	of	particles,	they	
fail	to	capture	many	geometric	features	from	underlying	topologies	of	3D	particle	
distributions.	Therefore,	it	is	necessary	to	use	other	mathematical	tools	to	describe	sets	of	
particles	in	3D	space.	Graph	structures	are	well	suited	to	describe	3D	geometry	and	are	
widely	used	for	geometry	processing	[Berner	et	al.,	2008;	Mitra	et	al.,	2013;	Tevs	et	al.,	
2009].	A	graph	structure	is	a	mathematical	abstraction	used	to	define	pairwise	relations	
within	a	set	of	objects	[Bollobás,	1979].	A	graph	𝐺 = (𝑉,𝐸),	has	a	set	of	nodes,	or	vertices	
𝑉 = 1,… ,𝑛 	and	a	set	of	edges	E.	An	edge	(𝑖, 𝑗) ∈ 𝐸	denotes	a	connection	between	vertices	
𝑖	and	𝑗.	In	an	undirected	graph,	edges	 𝑖, 𝑗 	and	(𝑗, 𝑖)	are	equivalent.	However,	in	a	directed	
graph,	an	edge	tuple	also	defines	directionality,	i.e.	a	directed	graph	can	only	be	traversed	

r (Å)

Experiment

RD
F 

(Å
–3

)

Model perovskite

2

- 0.4

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10

A B



	 19	

from	vertex	𝑗	to	vertex	𝑖	if	there	is	an	edge	(𝑗, 𝑖) ∈ 𝐸.	Furthermore,	weighted	graphs	assign	a	
‘weight’	value	𝑤B,P 	to	each	edge	(𝑗, 𝑖),	representing	a	distance	or	similarity	measure	between	
the	connected	nodes.	Figure	2.7	depicts	examples	of	simple	graphs.	
	
Here,	the	term	topology	graph	is	used	to	denote	a	graph	that	describes	the	local	
organization	of	objects	in	3D	space.	Given	a	set	of	vectors	 𝐭Y, … , 𝐭Z ,	where	each	vector	𝐭[ =
(x[, y[, z[)	represents	a	3D	point,	a	topology	graph	aims	to	model	the	spatial	neighborhoods	
of	the	3D	point	set.	Local	neighborhoods	can	be	modeled	by	defining	a	graph	with	a	vertex	
set	𝑉 = 1,… , n ,	and	connecting	vertices	corresponding	to	spatially	adjacent	3D	vector	
pairs.	There	are	two	commonly	used	approaches	to	create	this	type	of	graphs	[von	Luxburg,	
2007]:	(1)	The	𝜖-neighborhood	graph,	where	nodes	are	connected	if	their	pairwise	distance	
is	smaller	𝜖,	i.e.	 𝑖, 𝑗 ∈ 𝐸	if		 𝐭[ − 𝐭` < 𝜖.	(2)	The	k-nearest	neighbor	graph	connects	vertex	i	
with	vertex	j,	if	point	𝐭`	is	one	of	the	k-nearest	neighbors	of	𝐭[.	Both	strategies	allow	the	
creation	of	directed	and	undirected	graphs.
	
For	the	purpose	of	describing	the	organization	of	detected	macromolecular	complexes	in	
tomographic	space,	this	work	defines	a	topology	graph	as	a	𝜖-neighborhood	graph.	Spatial	
neighborhoods	of	𝜖-nm	radius	for	each	𝐭[,	a	3D	point	associated	with	the	position	of	a	
detected	complex,	can	be	easily	detected	using	a	k-dimensional tree.	k-dimensional	trees	
are	space	partitioning	structures	[Bentley,	1975]	capable	of	performing	efficient	near-
neighbor	queries	in	sets	of	points,	when	the	number	of	points	n	is	much	larger	than	2b ,	
where	k	indicates	dimensionality	[Indyk	et	al.,	2004].	Given	that	the	amount	of	detected	
macromolecules	in	a	tomogram	is	usually	well	above	2c,	k-dimensional	trees	are	well	suited	
for	this	particular	application.		
	

	
Figure	2.7:	Depiction	of	simple	graphs.	(A) A	weighted,	undirected	graph	𝐺 =
1,2,3,4 , 1,2 , 1,3 , 2,3 , (1,4) ,	with	edge	weights	𝑤Y,; = 𝑤Y,c = 𝑤;,c = 0.5,𝑤Y,e = 0.7.	(B)	An	

unweighted,	directed	graph	𝐺 = 1,2,3,4 , 1,2 , 2,1 , 2,3 , 3,1 , (1,4) .	
	

2.5.1	Markov	Random	Fields	
		
Probabilistic	graphical	models	are	useful	tools	for	visualizing	the	structure	of	probabilistic	
models,	detecting	statistical	dependence,	and	graphically	modifying	a	model	with	implicit	
mathematical	correspondence	[Bishop,	2006].	Graphical	models	are	graph	structures	
where	each	vertex	represents	a	random	variable,	and	edges	denote	probabilistic	relations	
between	variable	pairs.	The	graph	describes	how	the	joint	distribution	over	all	random	
variables	can	be	factorized	into	factors	that	depend	only	subsets	of	random	variables.	The	
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two	prominent	types	of	graphical	modes	are	Bayesian	networks	and	Markov	random	fields	
(MRF),	while	Bayesian	networks	are	used	to	express	causal	relations,	MRF	are	capable	of	
describing	soft	constrains	between	random	variables	[Bishop,	2006].	MRF	are	undirected	
graphs	where	edges	indicate	probabilistic	dependence,	stated	specifically,	the	conditional	
probability	of	a	random	variable	is	dependent	only	on	the	variables	in	its	Markov	blanket,	
i.e.	the	set	of	neighboring	nodes	directly	connected	by	an	edge.	
	
The	notion	of	a	maximal	clique	is	useful	to	appropriately	define	the	joint	probability	
distribution	of	a	MRF.	A	clique	is	a	subset	of	vertices	in	a	graph,	such	that	all	pairs	of	
vertices	are	connected	by	an	edge,	i.e.	a	fully	connected	subgraph.	Furthermore,	a	maximal	
clique	is	a	clique,	which	cannot	include	anymore	nodes	without	ceasing	to	be	a	clique.	By	
defining	a	maximal	clique	in	a	MRF	𝐺 = (𝑉,𝐸)	as	𝐶 ⊆ 𝑉,	the	set	of	random	variables	in	the	
clique	as	𝐱i ,	and	an	associated	potential	function	𝜓i 	over	𝐱i ,	the	Hammersley-Clifford	
theorem	[Clifford,	1990]	can	be	used	to	express	the	joint	probability	distribution	𝑝 𝐱 	of	the	
MRF,	as	the	product	of	clique	potential	functions	[Bishop,	2006]:	
	

𝑝 𝐱 =
1
𝑍

𝜓i(𝐱i)
m

	
(2.3)	

	

𝑍 = 𝜓i(𝐱i)
m𝐱

	 (2.4)	

	
where	Z	is	the	so-called	partition	function,	ensuring	that	𝑝 𝐱 	is	correctly	normalized.	
Potential	functions	𝜓i(𝐱i)	should	be	strictly	positive.	They	are	usually	expressed	as	Gibbs	
distributions	[Bishop,	2006]:	
	

𝜓i 𝐱i = exp(−𝐸 𝐱i )	 (2.5)	
	
Here	𝐸 𝐱i 	is	the	energy	function	associated	with	the	set	of	random	variables	of	clique	C.	
Potential	functions	do	not	have	specific	probabilistic	interpretations,	while	this	provides	a	
large	degree	of	flexibility	for	modeling	problems,	they	require	appropriate	motivation,	often	
in	terms	of	compatible	configurations	of	neighboring	variables	[Bishop,	2006;	Blake	et	al.,	
2011].	
	

2.5.2	Loopy	Belief	Propagation	
	
Belief	propagation	is	an	algorithm	for	probabilistic	inference,	where	nodes	in	a	graphical	
model	pass	local	messages	along	connecting	edges.	The	two	main	variants	of	belief	
propagation,	the	sum-product	and	max-product	algorithms,	aim	to	marginalize	the	joint	
probability	distribution	and	estimate	a	maximum	a	posteriori	(MAP)	solution,	respectively	
[Bishop,	2006;	Blake	et	al.,	2011].	This	algorithm	was	initially	proposed	for	tree	structures,	
i.e.	graphs	without	cycles,	where	it	was	proven	to	converge	to	the	correct	solution	[Pearl,	
1988].	However,	the	application	of	this	algorithm	to	graphs	with	loops	was	proposed	by	[B.	
Frey	&	MacKay,	1998].	This	was	mainly	possible	since	the	message-passing	rules	of	the	
algorithm	operate	locally	within	the	graph.	However,	the	introduction	of	cycles	may	allow	
information	to	circulate	indefinitely	inside	the	graph,	leading	to	oscillation,	and	preventing	
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the	algorithm	to	converge	to	a	stable solution	[Bishop,	2006;	Pearl,	1988].	Despite	
theoretical	reservations,	in	particular,	the	well-known	NP-hardness	of	probabilistic	
inference	in	arbitrary	graphs	[Cooper,	1990;	Shimony,	1994],	loopy	belief	propagation	has	
been	applied	successfully	on	a	variety	of	computer-vision	problems	[Blake	et	al.,	2011;	
Freeman	et	al.,	2000;	B.	J.	Frey	et	al.,	2001].	Moreover,	loopy	belief	propagation	has	also	
been shown to provide exceedingly good empirical results in error-correcting	codes	
[Berrou	et	al.,	1993;	Kschischang	&	Frey,	1998;	McEliece	et	al.,	1998].	It	is	worth	
mentioning	that	the	optimality	of	loopy	belief	propagation	and	the	structural	characteristics	
of	the	underlying	graph	that	allow	convergence	to	reasonable	approximations	are	still	being	
investigated	[Murphy	et	al.,	1999;	Weiss	&	Freeman,	2001a].	
	

2.7	Photosynthesis	
	
Photosynthesis	is	the	biological	mechanism	responsible	for	the	production	of	chemical	
energy	and	biomass	from	atmospheric	CO;,	solar	energy	and	water.	This	process	can	be	
classified	into	light-dependent,	and	light-independent	reactions.	While	light-dependent	
reactions	generate	chemical	energy	in	the	form	of	ATP	and	NADPH	molecules	and	O;	from	
H;O	and	light,	the	subsequent	light-independent	reactions	use	this	chemical	energy	to	fix	
inorganic	CO;	into	organic	carbon	in	the	Calvin-Benson-Bassham	cycle	[Andersson	&	
Backlund,	2008;	Miziorko	&	Lorimer, 1983].	The	enzyme	Ribulose-1,5-bisphosphate	
carboxylase/oxygenase	(RuBisCO)	has	a	central	role	in	the	Calvin-Benson-Bassham	
pathway	because	it	binds	CO;	to	ribulose-1,5-bisphosphate	(RuBP)	to	yield	two	molecules	
of	3-phosphoglycerate	(3PG),	the	following	reactions	use	ATP	and	NADPH	to	produce	
glyceraldehyde-3-phosphate	(G3P),	ADP,	NADPt,	and	inorganic	phosphate	(P[).	Finally,	3PG	
can	be	used	to	regenerate	RuBP	in	an	ATP-driven	process,	or	for	the	production	of	
biomolecules,	e.g.	sugars	and	amino	acids.	However,	RuBisCO	is	a	notoriously	inefficient	
enzyme,	with	a	low	catalytic rate	of	~3− 10	CO;	molecules	per	second	[Ellis,	2010],	and	a	
competing	oxygenase	reaction	that	produces	2-phosphoglycolate.	To	compensate	for	the	
oxygenase	activity	of	RuBisCO,	the	energy-consuming	pathway	known	as	photorespiration	
recycles	2-phosphoglycolate	back	to	3PG,	leading	to	the	loss	of	previously	fixed	carbon	in	
the	from	CO;	[Hartman	&	Harpel,	1994].	The	most	common	form	of	RuBisCO	found	in	algae,	
cyanobacteria	and	plants	has	a	hexadecameric	structure.	It	consists	of	eight	large	(~50	kDa)	
and	eight	small	subunits	(~15	kDa),	forming	a	~520	kDa	holoenzyme	with	a	diameter	of	
~11	nm	[Andersson	&	Backlund,	2008;	Hauser	et	al.,	2015].	
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Figure	2.8:	Diagram	of	the	photosynthetic	process.	Overview	of	the	light-dependent	and	light-independent	
reactions,	depicting	the	relation	between	the	Calvin-Benson-Bassham	cycle	and	the	photorespiration	pathway.	
Adapted	from	[Hauser	et	al.,	2015].	
	

2.7.1	The	Pyrenoid	of	C.	Reinhardtii	
	
Photosynthetic	organisms	have	developed	strategies	to	cope	with	the	enzymatic	limitation	
of	RuBisCO.	While	most	organism	produce	large	amounts	of	RuBisCO	to	increase	the	total	
enzymatic	activity	[Ellis,	1979],	microorganisms	have	augmented	their	photosynthetic	
process	by	biophysical	carbon	concentration	mechanisms	(CCM).	A	salient	feature	of	CCMs	
is	the	packing	of	RuBisCO	in	micro-compartments,	such	as	the	pyrenoid	in	eukaryotic	algae	
and	carboxysomes	in	cyanobacteria	[Meyer	et	al.,	2016].	The	pyrenoid	of	the	unicellular	
green	alga	C.	reinhardtii	is	a	spherical	organelle	in	the	chloroplast	stroma,	which	usually	
contains	~90− 95%	of	the	cellular	RuBisCO.	The	pyrenoid	matrix	is	surrounded	by	starch	
sheaths	and	traversed	by	tubules	of	thylakoid	membranes	[Engel	et	al.,	2015;	Meyer	et	al.,	
2016].	Mass	spectrometry	analysis	of	pyrenoid	proteins	after	inducing	the	CCM	by	
reduction	of	CO;	in	the	medium	indicate	that	the	large	majority	of	the	protein	found	in	the	
pyrenoid	matrix	consists	of	RuBisCO	large	and	small	subunits,	RuBisCO	activase,	and	a	~33	
kDa	protein	labeled	‘Essential	Pyrenoid	Component	1’	(EPYC1)	because	it	is	necessary	for	
pyrenoid	formation	in	C.	reinhardtii	cells	[Mackinder	et	al.,	2016].	
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Figure	2.9:	Structure	and	protein	content	of	the	C.	reinhardtii	pyrenoid.	(A)	Scanning-electron-micrograph	
reconstruction	of	a	pyrenoid,	depicting	starch	sheaths	(red)	and	thylakoid	tubules	(green).	(B)	Mass	
spectrometry	analysis	of	pyrenoid	proteins	from	C.	reinhardtii	cells	after	CCM	induction,	showing	a	
significantly	higher	protein	abundance	of	RuBisCO	large	(rbcL)	and	small	(RBCS)	subunits,	RuBisCO	activase	
(RCA1),	and	EPYC1	protein.	(C)	Surface	model	of	the	RuBisCO	holoenzyme	from	C.	reinhardtii,	showing	the	De	
symmetry	of	the	hexadecameric	arrangement	of	large	(blue	and	light	blue)	and	small	(orange)	subunits,	
model	derived	from	[Taylor	et	al.,	2001].	Adapted	from	[Mackinder	et	al.,	2016;	Meyer	et	al.,	2016].	
	

2.8	Protein	Synthesis	
	
The	ribosome	is	the	macromolecule	responsible	of	translating	mRNA	into	polypeptide	
chains.	Ribosomes	are	large	macromolecular	machines,	with	a	molecular	mass	of	2.5	MDa	
and	4	MDa	in	bacteria	and	eukaryotes	respectively.	The	ribosome	mass	is	approximately	
one	third	protein	and	two	thirds	RNA	[Tissières,	1974].	Ribosomes	are	composed	of	one	
large	and	one	small	subunit.	The	large	subunit	is	responsible	for	the	enzymatic	function	
(addition	of	amino	acids	to	the	nascent	peptide	chain),	while	the	small	subunit	ensures	
fidelity	in	the	mRNA	translation	process.	In	bacteria,	the	large	subunit	is	referred	to	as	50S	
and	the	small	subunit	is	labeled	30S.	In	the	case	of	eukaryotic	ribosomes,	the	large	and	
small	subunits	of	are	known	as	60S	and	40S,	respectively	[Voorhees	&	Ramakrishnan,	
2013].	The	large	and	small	subunits	assemble	on	the	mRNA	to	form	the	bacterial	70S	and	
eukaryotic	80S	ribosome.	During	translation,	a	ribosome	creates	a	protein	sequence	by	
binding	amino	acids	from	transfer	RNAs	(tRNAs)	in	the	order	dictated	by	the	mRNA	
molecule,	in	an	iterative	subprocess	called	elongation.	tRNA	molecules	bind	to	the	ribosome	
and	sequentially	move	from	the	aminoacyl	(A)	site	to	the	peptidyl	(P)	site,	and	finally	to	the	
exit	(E)	site	before	detaching	from	the	ribosome	complex.		
	
The	translation	process	has	four	main	phases:	(1)	Initiation;	the	ribosome	positions	itself	
over	the	start	codon	of	the	mRNA	sequence.	(2)	Elongation;	ribosome	sequentially	adds	
amino	acids	to	the	polypeptide	chain.	(3)	Release;	once	the	ribosome	reaches	the	mRNA	
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stop	codon,	the	nascent	peptide	is	detached	from	the	ribosome.	(4)	Recycling;	the	ribosome	
subunits	disassociate	and	prepare	for	another	protein	synthesis	cycle.	Thus,	the	core	of	the	
translation	process	happens	during	the	elongation	stage,	a	highly	conserved	cycle	between	
bacterial	and	eukaryotic	organisms	[Voorhees	&	Ramakrishnan,	2013].	
	
The elongation cycle has three major steps [Voorhees & Ramakrishnan,	2013]: After
initiation,	the	ribosomal	A	site	is	empty	and	the	P	site	is	occupied.	In	the	subsequent	(1)	
decoding	step,	an	aminoacyl	tRNA	(aa-tRNA)	is	delivered	to	the	A	site	by	the	elongation	
factor	Tu	(EF-Tu).	Once	the	cognate	tRNA	binds	to	the	ribosome,	the	EF-Tu	factor	
disassociates	and	peptide	bond	formation	occurs,	adding	a	new	amino	acid	to	the	nascent	
protein,	this	step	is	known	as	(2)	accommodation.	Finally,	in	the	(3)	translocation	step,	
tRNAs	move	from	the	A	to	the	P	site,	and	from	the	P	site	to	the	E	site.	Subsequently,	the	
elongation	factor	G	(EF-G)	triggers	a	single-codon	shift	of	the	mRNA	molecule.	Finally,	EF-G	
dissociates	and	the	ribosome	is	ready	for	another	iteration	of	the	elongation	cycle.	

	
Figure	2.10:	Structure	of	the	bacterial	ribosome	and	overview	of	the	elongation	cycle.	(A)	Top	view	of	the	70S	
ribosome,	depicting	the	mRNA	(black),	and	the	A	(purple),	P	(green)	and	E	(yellow)	tRNAs.	(B)	Depiction	of	
the	elongation	cycle,	marking	decoding,	accommodation	and	translocation	steps.	Adapted	from	[Schmeing	&	
Ramakrishnan,	2009].	
	

2.8.1	Polysomes	
	
Typically,	an	mRNA	molecule	is	simultaneously	translated	by	many	ribosomes.	Ensembles	
of	various	ribosomes	translating	a	single	mRNA	molecule	are	called	Polysomes.	Ribosomes	
within	a	polysome	are	expected	to	be	actively	translating	an	mRNA	sequence,	and	thus	be	
engaged	in	the	elongation	cycle	[Rich	et	al.,	1963].	Furthermore,	ribosomes	in	polysomic	
ensembles	have	been	observed	to	adopt	specific	supramolecular	arrangements,	yielding	
characteristic	polysome	structures.	In	lysates	of	E.	coli	cells	polysome	displayed	
characteristic	planar	and	helical	organizations	[F.	Brandt	et	al.,	2009].	Helical,	planar	and	
spiral-like	topologies	were	also	observed	in	the	cytosol	of	intact	human	cells	[F.	Brandt	et	
al.,	2010].	The	remarkably	conserved	arrangements	of	cytosolic	polysome	in	bacteria	and	
humans	suggest	a	universal	evolutionary	pressure	on	polysome	topology	[F.	Brandt	et	al.,	
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2010].	It	has	been	suggested	that	polysome	topologies	contribute	to	the	prevention	of	non-
native	interactions	between	nascent	polypeptides	[F.	Brandt	et	al.,	2009],	and	the	
optimization	of	the	folding	process	by	providing	ample	space	for	the	folding	machinery	to	
access	nascent	proteins	and	shield	them	from	the	crowded	environment	of	the	cytosol	
[Hartl	&	Hayer-Hartl,	2009].	Another	interesting	topological	feature	of	cytosolic	polysomes	
is the sequestering of the mRNA	into the core of the supramolecular arrangement, possibly
shielding	the	mRNA	molecule	from	RNases	during	elongation slowdown	[Buchan	&	
Stansfield,	2007;	Sivan	et	al.,	2007].	
	

	
Figure	2.11:	Polysome	topologies	observed	by	CET.	(A)	Diagram	of	a	polysome	structure,	small	(s)	and	large	
(L)	ribosomal	subunits	assemble	on	the	mRNA,	translating	from	the	5’	end	to	the	3’end	of	the	mRNA	molecule.	
Neighbors	of	the	𝑖#$	ribosome	in	the	polysomic	sequence	are	termed	i+1	and	i-1	at	position	on	the	5’	and	3’	
sides,	respectively.	(B)	Planar	and	helical	topologies	of	cytosolic	bacterial	polysomes,	tomographic	cross-
sections	(left)	and	surface	models	(right)	of	observed	polysomes,	large	subunits	in	blue	and	light	blue,	small	
subunits	in	yellow,	red	cones	point	to	the	peptide	exits,	scale	bars:	50	nm.	(C)	Helical	(C.1)	and	planar	(C.2,	
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C.3)	topologies	of	cytosolic	polysomes	in	human	hells,	tomographic	cross-sections	(left)	and	surface	models	
(right)	of	observed	polysomes,	large	subunits	in	blue,	small	subunits	in	yellow,	red	cones	point	to	the	peptide	
exits.	(D)	Model	of	the	local	organization	of	ER-associated	polysomes,	putative	mRNA	path	in	red.	(E)	Model	of	
the	local	structure	of	membrane-bound	mitochondrial	polysomes,	putative	mRNA	path	in	green.	Adapted	from	
[F.	Brandt	et	al.,	2009,	2010;	Pfeffer	et	al.,	2012;	Pfeffer,	Woellhaf,	et	al.,	2015].	
	
On the surface of membranes extracted from	ER of canine pancreatic cells, polysomes
preferred	curved	and	spiral-like	topologies	[Pfeffer	et	al.,	2012].	Membrane-bound	
polysomes	of	yeast	mitoribosomes	display	similar	topologies,	further	supporting the	
hypothesis	of	a	universal	evolutionary	pressure	on	polysome	arguments,	as	both	ER-
associated	and	membrane-bound	mitochondrial	polysomes	face	the	same	topological	
requirements	for	threading	an	mRNA	molecule	between	polysomic	neighbors	on	the	
membrane	surface,	while	simultaneously	translocating	the	nascent	polypeptide	through	the	
membrane	[Pfeffer	et	al.,	2015].	
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3.	Materials	and	Methods	
	
3.1	Implementation	of	algorithms	
	
Tomogram	reconstruction:	All	tomograms	were	reconstructed	using	weighted	backprojection.	Two	
software	packages	were	used	for	tomographic	reconstruction,	the	Matlab-based	TOM	toolbox	for	tomography	
[Nickell et	al.,	2005]	and	IMOD	[Kremer	et	al.,	1996].	
	
Tomogram	visualization	and	segmentation:	Visualization	of	tomograms	was	performed	with	the	UCSF	
Chimera	package	[Pettersen	et	al.,	2004].	This	software	was	also	used	for	fitting	atomic	models	into	
subtomogram	averages.	The	Amira	software	(FEI	visualization	Science	Group)	was	used	for	manual	
segmentation	of	tomographic	volumes.	
	
Template	Matching:	Template	generation	from	atomic	models	was	performed	as	described in	section	2.3.1,	
specifically,	the	protocol	described	in	[Förster	et	al.,	2010]	using	the	TOM	toolbox	[Nickell	et	al.,	2005].	The	
template	matching	procedure	was	applied	on	binned	tomograms	using	the	PyTom	software	[Chen	et	al.,	2012;	
Hrabe	et	al.,	2012]	a	tomography	toolbox	implemented	in	the	C++	and	python.	
	
Subtomogram	Alignment	and	Classification:	Subtomograms	were	aligned	in	PyTom,	using	the	FRM	method	
[Chen	et	al.,	2013]	(in	Fourier	space)	and	the	RS	expectation-maximization	method	[Hrabe	et	al.,	2012].	Both	
methods	have	a	built-in	option	for	gold-standard	alignment.	Classification	of	subtomograms	by	CPCA	used	
PyTom	to	calculate	similarity	matrices,	and	Matlab	for	principal	component	analysis,	k-means	clustering	and	
hierarchical	clustering.	On	the	other	hand,	AC3D	classification	is	fully	implemented	in	PyTom.	PyTom	provides	
a	parallelized	implementation	of	alignment	and	classification	algorithms	using	the	python-based	message	
passing	interface,	substantially	reducing	computation	time.	PyTom-based	alignment	and	classification	tasks	
were	performed	on	a	computer	cluster,	each	task	used	a	number	of	computer	nodes	ranging	from	64	to	256,	
each	with	16	CPUs	and	516	GB	of	RAM.	
	
Three-Dimensional	Range	Queries:	Range	queries	on	sets	of	3D	points	for	the	identification	of	particle	
neighborhoods	(chapter	5)	and	the	construction	of	topology	graphs	(chapter	6)	used	the	SciPy	
(www.scipy.org)	implementation	of	the	k-dimensional	tree	[Bentley,	1975].	SciPy	is	a	widely	used	python-
based	library	for	scientific	analysis,	which	uses	NumPy	(www.numpy.org)	for	efficient	linear	algebra	
calculations.	
	
Graph	structures	and	algorithms:	The	NetworkX	library	(networkx.github.io)	was	used	to	generate	graph	
structures	and	incorporate	graph-based	algorithms	(e.g.	Dijkstra’s	shortest	path	algorithm	[Dijkstra,	1959])	
into	the	polysome	detection	method.	NetworkX	is	a	python	library	for	graph	theory,	it	provides	data	
structures	for	different	types	of	graphs	and	implements	a	large	number	of	algorithms.		
	
Gaussian	mixture	models:	Fitting	Gaussian	mixture	models	was	performed	by	expectation-maximization	
using	the	scikit-learn	library	(scikit-learn.org).	Scikit-learn	is	a	python	library	for	machine	learning	with	an	
extensive	clustering	module.	3D	Gaussian	components	were	fitted	with	unconstrained	covariance	matrices.		
	
Clustering	3D	vector	distributions	was	performed	by	fitting	Gaussian	mixture	models.	First,	a	mixture	model	
was	fitted	to	a	vector	distribution,	the	cluster	label	for	each	data	point	was	then	obtained	by	selecting	the	
Gaussian	component	with	the	largest	likelihood	value.	
	
Quaternion	analysis:	The	clustering	module	of	the	scikit-learn	library	was	used	for	spectral	clustering	[von	
Luxburg,	2007]	of	quaternions,	with	a	python	implementation	of	algorithm	5.1	to	calculate	similarity	matrices.	
Additionally,	the	Bingham	Statistics	Library	(github.com/sebastianriedel/bingham)	was	used	to	fit	Bingham	
distributions,	this	library	contains	C	and	Matlab	implementations	of	the	Bingham	distribution	operations	
described	in	[Glover	&	Kaelbling,	2013].	The	C	implementation	of	the	Bingham	Statistics	Library	was	accessed	
as	a	python	module	by	using	function	wrappers.	
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Loopy	belief	propagation:	An	implementation	of	a	Markov	random	field	with	functionality	for	loopy	belief	
propagation	was	written	in	python.	This	module	used	NetworkX,	PyTom,	SciPy	(for	a	k-dimensional	tree)	and	
NumPy	as	dependencies.	
	

3.2	Dataset	Acquisition	and	Processing	
	

3.2.1	Tomograms	of	C.	reinhardtii	Pyrenoids	
	
Acquisition:	Pyrenoid	lamellas	of	plunge-frozen	C.	reinhardtii	cells	were	milled	using	a	dual-beam	instrument	
for	FIB	milling	and	scanning	electron	microscopy	(Quanta	3D	FEG,	FEI).	Lamellas	were	milled	as	described	in	
[Rigort	et	al.,	2012]	and	subjected	to	CET.	A	dataset	of	nine	lamella	tomograms	was	recorded	on	a	Titan	Krios	
microscope	(FEI,	Eindhoven,	NL)	equipped	with	an	energy	filter	and	a	K2	direct	electron	detector	(Gatan,	
Pleasanton,	USA).	A tilt	range	of	-60°	to	60°	with	an	increment	of	2°	was	used,	defocus	ranging	from	5	to	6	μm,	
and	a	pixel	size	of	0.34	nm.	Tilt-series	alignment	was	performed	by	patch	tracking	with	the	IMOD	software	
[Kremer	et	al.,	1996;	Mastronarde,	1997].	IMOD	was	also	used	for	tomographic	reconstruction.	
	
Subtomogram	analysis:	For	template	matching,	a	structural	template	was	derived	from	a	C.	reinhardtii	
RuBisCO	structure	obtained	by	X-ray	crystallography	[Taylor	et	al.,	2001]	(section	5.3).	For	each	tomogram,	
the	cross-correlation	function	produced	by	template	matching	was	filtered	using	a	binary	mask,	which	
covered	the	region	in	the	tomogram	where	the	lamella	was	found,	removing	cross-correlation	values	in	the	
periphery.	These	binary	masks	were	generated	manually.	Extraction	of	RuBisCO	particles	from	the	filtered	
cross-correlation	function	was	performed	by	peak	extraction	with	a	mask	radius	of	8.2	nm.	To	accomplish	
exhaustive	peak	extraction,	the	parameter	indicating	the	number	of	peaks	to	extract	was	set	to	a	large	
number,	allowing	the	peak	extraction	procedure	to	finish	only	when	the	cross-correlation	function	was	
completely	set	to	zero.	
	
The	IMOD	software	[Kremer	et	al.,	1996]	was	used	for	CTF	correction	of	subtomograms.	FRM	alignment	of	
data	binned	to	a	pixel	size	of	0.68	nm	(section	5.4)	did	not	impose	De	symmetry	and	the	maximal	number	of	
iterations	was	set	to	5.	It	considered	a	maximal	spatial	resolution	of	2.12	nm	to	reduce	the	influence	of	noise	
and	provide	an	initial,	coarse-grained	refinement	of	position	and	orientation	parameters.	AC3D	classification	
(section	5.5)	was	restricted	to	a	maximal	spatial	resolution	of	3.83	nm,	number	of	classes	was	set	to	15,	
number	of	iterations	was	set	to	10	and	the	standard	deviation	threshold	for	difference	maps	was	set	to	3𝜎.	
After	subtomogram	classification,	alignment	of	unbinned	data	(section	5.6)	was	separated	in	two	steps.	The	
initial	FRM	alignment	step	was	performed	with	the	maximal	number	of	iterations	set	to	5,	it	was	restricted	to	
a	spatial	resolution	of	2.12	nm	in	the	first	iteration,	to	provide	a	global	solution	for	particle	orientations	
without	significant	noise	bias.	In	the	following	RS	alignment	step,	the	number	of	iterations	was	set	to	10,	the	
initial	angular	increment	to	3°	and	angular	shells	to	3.	Both	FRM	and	RS	alignment	of	unbinned	data	imposed	
De	symmetry.	
	
Tomogram	handedness:	Control	tomograms	from	adjacent,	ribosomes-rich	regions	were	acquired	and	
reconstructed	using	the	same	parameters.	Tomogram	handedness	was	tested	by	applying	template	matching	
with	mirrored	templates	of	ribosome	structures.	The	distribution	of	template	matching scores	from	extracted	
peaks	was	compared	with	the	distribution	yielded	with	the	unmirrored	template,	since	scores	computed	using	
a	template	with	incorrect	handedness	tends	to	display	significantly	reduced	values	[Ortiz	et	al.,	2006].	
	
Local	geometric	analysis:	Range	queries	for	computation	of	the	RDF	(section	5.7.1)	used	a	radius	parameter	
of	40	nm,	while	the	radius	parameter	for	inspection	of	the	first	near-neighbor	shell	was	set	to	21	nm.	Once	
range	queries	identified	particle neighborhoods,	fine-grained	dissection	of	the	first	near-neighbor	shell	was	
performed	by	filtering	the	distribution	of	center-to-center	vectors	by	vector	magnitude,	to	allow	selection	of	
radial	shells	within	the	21	nm	radius.	
	
Gaussian	mixture	model	fitting	on	the	distribution	of	center-to-center	vectors	(sections	5.7.2	–	5.7.5)	was	
performed	as	follows:	De	symmetry	was	applied	to	the	3D	vector	distribution	of	the	chosen	radial	shell	and	
the	number	of	Gaussian	components	was	estimated	by	visual	inspection.	The	Gaussian	mixture	model	was	
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fitted	and	symmetrically	redundant	clusters	were	merged.	Likelihood	cutoffs	for	Gaussian	components	were	
set	to	values	corresponding	to	1𝜎	distance	from	the	mean.	

	
For	rotation	clustering,	De	symmetry	was	applied	to	the	set	of	quaternions	and	the	corresponding	distribution	
of	rotated	4-fold	axes	(figure	5.7	B)	was	plotted	to	estimate	the	number	of	clusters.	After	spectral	clustering	
[von	Luxburg,	2007],	symmetrically	equivalent	clusters	were	merged	by	inspecting	rotated	RuBisCO	
templates,	as	dictated	by	the	mode	of	the	corresponding	Bingham	fit.	Likelihood	cutoffs	for	Bingham	
distributions	were	set	within	a	range	of	70	to	80%	the likelihood	value	of	the	quaternion	corresponding	to	the	
Bingham	mode.	
	

3.2.2	Tomograms	for	Polysome	Detection	
	

3.2.2.1	Experimental	Tomograms	of	E.	coli	Lysate	
	
Acquisition:	Six	tomograms	of	E.	coli	spheroplast	lysates	from	the	dataset	published	in	[F.	Brandt	et	al.,	2009]	
were	used	for	detection	of	cytosolic	polysomes.	Each	tomogram	was	recorded	using	a	tilt	range	of	-60°	to	60°	
and	an	increment	of	3°.	The	tilt	series	was	acquired	with	a	defocus	of	3	μm	and	a	pixel	size	of	0.28	nm.	The	
TOM	toolbox	[Nickell	et	al.,	2005]	was	used	for	tilt-series	alignment	(by	tracking	gold	markers)	and	for	
tomographic	reconstruction.	
	
Subtomogram	analysis:	This	dataset	was	processed	by	[F.	Brandt	et	al.,	2009].	For	template	matching,	
tomograms	were	binned	to	a	pixel	size	of	2.24	nm	and	the	template	was	generated	from	an	atomic	model	of	
the	70S	ribosome	(PDB	entries	2AW7	and	2AWB	[Schuwirth,	2005]),	which	was	lowpass	filtered	to	4	nm	
resolution.	Positions	and	orientations	from	1,500	peaks	of	the	cross-correlation	functions	were	extracted.	A	
large	number	of	peaks	was	extracted	to	fully	cover	the	true	positive	class	of	ribosomes.	While	a	large	number	
of	false	positives	might	have	been	introduced,	high	sensitivity	was	required	to	obtain	true	polysome	
structures.	This	dataset	was	binned	to	a	pixel	size	of	2.24	nm	and	1.12	nm	for	subsequent	processing	(details	
in	[F.	Brandt	et	al.,	2009]).	This	analysis	produced	a	set	of	ribosome	particles,	from	which	polysomes	in	
characteristic	pseudo-helical	and	pseudo-planar	arrangements	were	manually	identified.	The	manually	
identified	polysome	were	later	used	as	ground	truth	knowledge	to	evaluate	the	performance	of	the	polysome	
detection	method.	
	

3.2.2.2	Simulated	Tomograms	of	E.	coli	lysate	
	
Simulation:	Five	tomograms	of	512x512x256	voxels	were	simulated,	each	containing	three	pseudo-helical	
and	three	pseudo-planar	polysomes.	Polysome	arrangements	were	simulated	by	successively	adding	70S	
ribosomes	densities	(simulated	from	PDB	entries	2AW7	and	2AWB	[Schuwirth,	2005])	in	t-t	or	t-b	
configurations	[F.	Brandt	et	al.,	2009],	up	to	a	randomly	chosen	length	between	10	and	15	ribosomes.	
Additionally,	3	to	5	gold	beads	were	added	to	each	volume,	as	well	as	500	single	ribosome	densities	in	random	
positions	and	orientations	(monosomes).	Simulation	of	electron	tomography	followed	the	method	described	
in	[Beck	et	al.,	2009;	Förster	et	al.,	2008]	using	the	same	acquisition	parameters	as	in	the	analogous	
experimental	dataset	(section	3.2.2.1):	Once	simulated	electron	densities	of	70S	ribosomes	and	gold	beads	
were	added	to	a	volume	with	pixel	size	of	0.28	nm,	the	volume	was	low-passed	filtered	and	projected	to	create	
a	tilt	series	of	-60°	to	60°,	with	3°	angular	increments.	Gaussian	noise	was	added	to	each	projection,	a	
simulated	2D	CTF	function	with	3	μm	defocus	was	applied,	and	MTF	noise	was	added.	Tomographic	
reconstruction	was	performed	with	the	TOM	toolbox	[Nickell	et	al.,	2005].	
	
Subtomogram	analysis:	Tomograms	were	subjected	to	template	matching	with	a	70S ribosome	template	
derived	from	[Schuwirth,	2005]	and	an	angular	increment	of	7°.	For	each	tomogram,	1,000	template	matching	
peaks	were	extracted	to	achieve	high	sensitivity	for	true	positive	ribosome	particles.	Based	on	ground	truth	
knowledge,	ribosome	particles	were	then	assigned	to	polysome	sets	for	subsequent	evaluation	of	the	
polysome	detection	method.	
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3.2.2.3	Tomograms	of	Microsomes	Derived	from	Rough	ER	
	
Acquisition:	A	dataset	of	18	tomograms	of	a	preparation	of	rough	microsomes	derived	from	ER	of	mouse	
myeloma	cells	was	collected	at	8	μm	defocus	and	a	pixel	size	of	0.288	nm,	using	a	tilt	range	of	-60°	to	60°	and	
an	increment	of	3°.	Tilt-series	alignment	was	performed	with	the	TOM	toolbox	[Nickell	et	al.,	2005]	by	manual	
detection	of	fiducial	markes.	The	TOM	toolbox	was	also	used	for	tomographic	reconstruction.	

	
Subtomogram	analysis:	In	preparation	for	template	matching,	the	tilt-series	was	binned	to	a	pixel	size	of	
2.304	nm	and	subsequently	reconstructed.	A	SPA	reconstruction	of	a	canine	80S	ribosome	[Chandramouli	et	
al.,	2008]	was	used	as	a	template,	lowpass	filtered	to	4	nm	resolution.	A	large	number	of	peaks	was	extracted	
(approximately	2,000	per	tomogram)	to	ensure	high	sensitivity,	since	false	negatives	would	hinder	polysome	
detection.	A	total	of	32,487	peaks	were	extracted	from	18	tomograms.	Subtomograms	binned	to	a	pixel	size of	
0.576	nm	were	subjected	to	RS	alignment,	where	the	number	of	iterations	was	set	to	5,	initial	angular	
increment	to	3°	and	angular	shells	to	3.	For	CPCA	classification,	subtomograms	were	lowpass	filtered	to	2.9	
nm,	5	eigenvectors	were	used	and	the	number	of	classes	was	set	to	320.	The	320	classes	were	then	merged	by	
hierarchical	clustering,	using	constrained	cross-correlation	as	distance	measure,	yielding	3	classes:	‘noise’,	
‘putatively	active’	and	‘putatively	inactive’	ribosomes.	Finally,	the	‘putatively	active’	and	‘putatively	inactive’	
classes	were	merged	into	a	positive	class	containing	25,683	ribosome	particles,	the	remaining	6,804	particles	
were	labeled	as	false	positives.	
	

3.2.2.4	Subsequent	Processing	
	
Tomogram	handedness:	Tomogram	handedness	was	tested	by	subjecting	tomograms	to	template	matching	
with	mirrored	ribosome	templates	[Ortiz	et	al.,	2006],	as	described	in	section	3.2.1.	
	
Local	models	of	polysomes:	After	Gaussian	mixture	models	were	fitted	to	distributions	of	mRNA	exit-to-
entry	vectors,	likelihood	cutoffs	for	Gaussian	components	were	set	to	values	corresponding	to	2𝜎	distance	
from	the	mean,	allowing	extraction	of	relative	rotations	corresponding	to	the	5’	cluster.		
	
Polysome	detection:	The	radial	parameter	𝑟vwx	for	range	queries	used	to	construct	topological	graphs	
(section	6.4.1)	was	set	to	approximately	twice	the	diameter	of	the	ribosome.	For	topological	graphs	of	70S	
ribosomes	this	parameter	was	set	to	40	nm,	while	80S	ribosome	graphs	used	an	𝑟vwx	of	60	nm.	Furthermore,	
the	number	of	iterations	for	loopy	belief propagation	was	set	to	5.	
	
Subtomogram	analysis	of	ER-associated	and	cytosolic	mammalian	polysomes:	CPCA	classification	of	the	
monosome	class	(figure	6.10)	was	applied	with	a	mask	covering	only	the	ER	membrane,	subtomograms	were	
lowpass	filtered	to	5.23	nm	resolution,	10	eigenvectors	were	used	and	the	number	of	classes	was	set	to	2.	
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4.	Local	Geometric	Analysis	
	

4.1	Introduction	
	
Once	a	macromolecular	complex	of	interest	has	been	located	in	tomographic	space,	the	set	
of	positions	and	orientations	of	detected	complex	particles	can	be	refined	by	subtomogram	
analysis,	precise	determination	of	these	geometric	parameters	enables	statistical	analysis	of	
the	local	organization	of	complexes	particles.	Characterization	of	the	local	spatial	
distribution	of	macromolecular	complexes	can	offer	mechanistic	insights	into	biological	
processes,	a	major	objective	in	the	visual	proteomics	field	[Förster	et	al.,	2010;	Nickell	et	al.,	
2006].	Statistical	analysis	of	relative	positioning	and	orientation	of	adjacent	mammalian	
ribosomes	in	cryo-tomograms	of	intact	cells	and	rough	ER	microsomal	preparations	
enabled	geometric	characterization	of	pairwise	arrangements	from	neighboring	ribosomes,	
responsible	for	the	characteristic	supramolecular	organization	of	polysomes.	Moreover,	it	
allowed	for	a	quantitative	description	of	variability	in	polysome	topologies	[F.	Brandt	et	al.,	
2010;	Pfeffer	et	al.,	2012].	
	
Local	geometric	analysis	of	localized	macromolecular	complexes	can	be	used	for	descriptive	
or	predictive	purposes.	A	model	of	the	geometric	configuration	of	macromolecular
neighborhoods	can	be	created	based	on	a	set	of	characteristic	arrangements	of	particle	
pairs.	Statistical	analysis	of	relative	position	vectors	and	relative	orientations	(geometric	
features)	allows	the	proposed	models	to	be	intrinsically	quantitative.	Moreover,	
supramolecular	structures	of	biological	interest	can	be	identified	by	detecting	
extrapolations	of	characteristic	particle	pair	configurations,	since	these	local	arrangements	
can	be	understood	as	geometric	templates.	Statistical	description	of	geometric	feature	
clusters	associated	with	characteristic	configurations	of	particle	pairs,	allows	the	design	of	
probabilistic	methods	for	supramolecular	structure	detection,	capable	of	coping	with	
varying	degrees	of	local	flexibility.	
	
In	this	chapter,	a	strategy	is	presented	for	geometric	analysis	of	local	neighborhoods	from	
the	spatial	distribution	of	detected	particles	in	tomographic	space:	First,	the	local	
neighborhood	of	each	particle	is	identified,	followed	by	geometric	feature	calculation,	
describing	the	3D	organization	of	neighboring	particles.	Finally,	the	distribution	of	local	
geometric	features	is	subjected	to	cluster	analysis,	and	statistical	models	are	used	to	
describe	the	distribution.	The	main	objective	is	to	identify	characteristic	geometric	
arrangements	of	particle	pairs.	
	

4.2	Local	Geometric	Analysis	Workflow	
	
Here,	the	proposed	strategy	for	local	geometric	analysis	is	formally	described.	Given	a	set	of	
particles	𝑃 = 𝑝Y, . . . ,𝑝C ,	of	a	macromolecular	complex,	as	localized	by	template	matching,	
where	each	particle	𝑝B = (𝐭𝐢, R[)	is	described	by	a	position	𝐭𝐢 ∈ ℝ𝟑	(3D	vector)	and	
orientation	R[ ∈ 𝑆𝑂(3)	(rotation	matrix)	of	the	detected	macromolecular	complex	in	the	
tomographic	coordinate	system.	The	objective	is	to	identify	predominant	geometric	
configurations	of	spatially	adjacent	pairs	of	particles,	by	analyzing	the	distribution	of	
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relative	(pairwise)	3D	position	vectors,	and	relative	rotations	(geometric	features)	derived	
from	the	local	neighborhood	of	each	particle	in	tomographic	space.	
	
The	proposed	local	geometric	analysis	is	performed	by	the	following	steps:	(1)	
Identification	of	particle	neighborhoods	and	geometric	feature	computation.	(2)	Statistical	
cluster analysis and extraction of mode peaks from	the 3D position vector distribution. (3)
A	position	peak	is	selected	for	further	inspection	of	the	associated	distribution	of	relative	
rotations,	finally,	rotation	clustering	and	cluster	peak	extraction	is	performed.	Once	a	
rotation	mode	has	been	extracted	from	the	geometric	feature	distribution	of	a	previously	
selected	3D	position	peak,	the	corresponding	geometric	configuration	of	particle	pairs	can	
be	fully	characterized.	Figure	4.1	exemplifies	the	proposed	workflow	for	a	set	of	RuBisCO	
complex	particles,	detected	in	a	pyrenoid	tomogram	of	a	C.	reinhardtii	cell.	

	
Figure	4.1:	Local	geometric	analysis	workflow,	exemplified	on	an	input	set	of	RuBisCO	complex	particles	
detected	in	a	pyrenoid	tomogram	of	a	C.	reinhardtii	cell.	(A)	Source	pyrenoid	tomogram	of	a	C.	reinhardtii	cell.	
(B)	A	set	of	RuBisCO	complex	particles	yielded	by	template	matching	on	the	source	tomogram	(3D	positions	
rendered	as	black	spheres),	detected	particle	neighborhoods	are	depicted	as	red	circles.	(C-D)	Cluster	analysis	
and	peak	extraction	of	3D	position	vectors.	(D)	1D	Gaussian	analogy	of	the	peak	extraction	strategy.	Since	the	
depicted	likelihood	cutoff	is	set	to	a	value	corresponding	to	1𝜎	distance	from	the	mean,	the	extracted	peak	
approaches	68%	of	the	cluster.	(E)	Cluster	analysis	of	relative	rotation	distributions	associated	to	position	
peaks.	(F)	Peak	extraction	of	rotation	clusters	yields	subpopulations	of	geometric	features	describing	specific	
particle	pair	configurations.	RuBisCO	complex	model	from	[Taylor	et	al.,	2001],	large	subunits:	blue	and	light	
blue,	small	subunit:	orange.		
	

(1) Identification	of	particle	neighborhoods	and	geometric	feature	computation.	
Initially,	the	set	of	input	particle	positions	 𝐭𝟏, . . . , 𝐭𝐧 	is	used	to	detect	the	radial	
neighborhood	around	each	particle	𝑝B ∈ 𝑃.	Once	particle	neighborhoods	have	been	
identified,	relative	3D	position	vectors	𝐩𝐢,𝐣 ∈ ℝ𝟑	and	relative	rotations	R[,` ∈ 𝑆𝑂(3)	of	
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adjacent	particle	pairs	(𝑝B ,𝑝P ∈ 𝑃)	are	computed	to	generate the	geometric	feature	
distribution	of	input	set	P.	
	

(2) Cluster	analysis	and	peak	extraction	of	3D	position	vectors.	The	feature	
distribution	of	3D	position	vectors	is	clustered	in	the	3D	Cartesian	space	defined	by	
the	template.	If	the	reference	structure	displays	symmetry,	the	input	dataset	of	3D	
vectors	can	be	mapped	onto	a	symmetrized	space.	A	Gaussian	mixture	model	is	
fitted	to	the	3D	vector	distribution,	theoretically	speaking,	each	component	
distribution	𝒩 𝛍†, Σ† 	represents	a	position	cluster	C†,	Bayesian	interpretation	of	
the	estimated	model	parameters	𝛍𝐱	and	Σ†	(3D	mean	vector	and	covariance	matrix,	
respectively)	is	subsequently	used	to	extract	the	mode	peak	of	each	C†	cluster:	a	
likelihood	cutoff	parameter	is	used	to	discriminate	the	subpopulation	of	data	points	
enclosed	in	the	3D	region	of	the	cluster	mode,	i.e.	the	domain	space	where	the	
𝒩 𝐩 𝛍𝐱, Σ† 	likelihood	function	exceeds	the	cutoff	(figure	4.1	D),	where	𝐩	represents	
a	3D	random	vector.	

	
(3) Cluster	analysis	and	peak	extraction	of	relative	rotations.	Once	peaks	of	3D	

position	clusters	have	been	identified,	a	position	peak	of	interest	is	selected	for	
quaternion-based	cluster	analysis	of	the	associated	relative	rotation	distribution.	
The	proposed	clustering	approach	can	be	applied	in	symmetrized	space.	Finally,	a	
Bingham	distribution	function	is	fitted	to	each	quaternion	cluster	CŠ,	and	likelihood-
based	peak	extraction	is	done	as	described	in	step	(2).	Modes	of	3D	position	and	
relative	rotation	clusters,	describe	specific	geometric	configurations	of	particle	pairs.	

	
Estimated	statistical	parameters	of	Gaussian	and	Bingham	fits,	provide	a	quantitative	
description	of	3D	position	and	rotation	clusters,	useful	for	structural	interpretation	of	
statistically	significant	particle	pair	configurations.	Likelihood-based	peak	extraction	allows	
for	systematic	segmentation	of	the	geometric	feature	distribution.	Moreover,	Bayesian	
interpretation	of	fitted	Gaussian	and	Bingham	models	can	be	subsequently	used	in	
predictive	methodologies	for	structural	characterization	of	supramolecular	architectures.	
	

4.3	Local	Extraction	of	Geometric	Information	
	
Given	a	set	of	particles	P,	the	initial	step	of	the	proposed	analysis	is	the	detection	of	radial	
neighborhoods	from	the	distribution	of	particle	positions	 𝐭𝟏, . . . , 𝐭𝐧 .	The	radial	
neighborhood	of	a	particle	𝑝B ∈ 𝑃,	denoted	as	𝑁‹(𝑖),	is	defined	as	the	set	of	neighboring	
particles	within	a	r	nm	radius,	i.e.	𝑁‹ 𝑖 = 	𝑝P ∈ 𝑃: r > 𝐭𝐢 − 𝐭𝐣 	 .	A	k-dimensional	tree	
[Bentley,	1975]	of	particle	position	vectors	is	used	to	efficiently	calculate	the	3D	range	
queries	required	for	detecting	large	amounts	of	neighborhood	sets	𝑁‹ .		
	
Two	types	of	geometric	features	are	calculated	for	every	𝑁‹ 𝑖 ,𝑝B ∈ 𝑃,	relative	3D	position	
vectors	𝐩𝐢,𝐣	and	relative	rotations	R[,`,	for	all	neighboring	particles:	The	relative	3D	position	
vector	𝐩𝐢,𝐣	between	reference	particle	𝑝B 	and	a	neighboring	particle	𝑝P ∈ 𝑁‹ 𝑖 ,	can	be	
defined	as	a	vector	between	centers	of	mass:	
	

𝐩𝐢,𝐣 = 𝑅B
• 𝐭𝐣 − 𝐭𝐢 	 (4.1)	
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The	center-to-center	vector	(𝐭𝐣 − 𝐭𝐢)	in	tomographic	space	is	mapped	to	the	reference	
coordinate	system	by	the	inverse	R[	transformation.	Similarly,	a	3D	vector	can	also	be	
derived	from	structural	features	of	biological	relevance	(e.g.	mRNA	exit-to-entry	vector	of	
adjacent	Ribosome	particles,	as	presented	in	chapter	6).	In	this	approach,	the	relative	
rotation	matrix	is	defined	as	follows:	
	

R[,` = R[
•R`	 (4.2)	

	
Describing	the	relative	orientation	of	particle	j	with	respect	to	the	reference	coordinate	
system	of	particle	i.	In	this	manner,	each	neighborhood	𝑁‹ 	contributes	a	set	of	position	
vectors	and	relative	rotations	to	the	overall	distribution	of	geometric	features	associated	
with	P,	the	distribution	of	detected	particles	in	a	single	tomogram.	This	process	can	be	
iteratively	applied	to	individual	tomograms	in	large	datasets,	to	generate	geometric	feature	
distributions	from	a	series	biological	samples.	
	

4.4	Analysis	of	3D	position	Vectors	
	

4.4.1	Handling	Particle	Symmetry	in	3D	Vector	Space	
	
In	cases	where	the	reference	structure	is	symmetric,	it	is	necessary	to	map	the	distribution	
of	3D	position	vectors	to	a	symmetrized	space	before	cluster	analysis.	The	point	group	
symmetry	of	the	reference	particle	defines	a	set	of	rotation	operations,	which	can	be	used	
to	produce	a	series	of	symmetrically	equivalent	vectors	for	each	𝐩𝐢,𝐣,	e.g.	C6	symmetry	would	
imply	6	equivalent	vectors,	while	D4	implies	8.	Each	symmetry-associated	rotation	R𝐚,’ ∈
𝑆𝑂(3)	can	be	fully	characterized	by	two	parameters:	(1)	a	symmetry	axis	𝐚 = (x“, y“, z“),	
defining	a	rotation	axis	in	the	orthonormal	basis	of	the	reference	structure,	and	(2)	a	

rotation	angle	α = ϰ	 ∗ c—L°

ℱ
,	where	ℱ	is	the	associated	fold	number	and	0 ≤ ϰ < ℱ,ϰ ∈ ℤ.	

Using	these	parameters,	a	rotation	matrix	can	be	directly	computed:	
	

R𝐚,’ =
cos α + 𝑥w;[1 − cos α ] 𝑥w𝑦w 1 − cos α − 𝑧wsin	(α) 𝑥w𝑧w 1 − cos α + 𝑦wsin	(α)

𝑥w𝑦w 1 − cos α + 𝑧wsin	(α) cos α + 𝑦w;[1 − cos α ] 𝑦w𝑧w 1 − cos α − 𝑥wsin	(α)
𝑥w𝑧w 1 − cos α − 𝑦wsin	(α) 𝑦w𝑧w 1 − cos α + 𝑥wsin	(α) cos α + 𝑧w;[1 − cos α ]

	
(4.3)	

	
By	exhaustive	sampling	of	ϰ	factors	and	symmetry	axes	a,	followed	by	multiplication	of	the	
resulting	rotation	matrices	R𝐚,’	with	a	position	vector	𝐩𝐢,𝐣,	i.e.	R𝐚,’𝐩𝐢,𝐣,	all	symmetrically	
equivalent	vectors	can	be	generated.	
	
Once	symmetrically	equivalent	representations	of	the	position	vector	distribution	have	
been	generated,	it	is	possible	to	define	a	suitable	space	for	cluster	analysis.	One	approach	is	
to	use	all	symmetrically	equivalent	representations	of	the	vector	distribution,	and	
subsequently	adjust	clustering	parameters,	in	particular	parameters	related	to	the	amount	
of	expected	clusters	in	the	distribution.	This	approach	will	generate	redundant	clusters,	
which	need	to	be	merged	in	a	post-processing	step.	
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4.4.2	Cluster	Analysis	of	3D	Vectors	
	
Since	the	proposed	methodology	aims	to	segment	the	position	distribution	in	a	similarly	
manner	as	k-means	clustering	[Lloyd,	1982],	and	subsequently	use	a	3D	Gaussian	function	
to	represent	each	cluster,	it	is	theoretically	equivalent	to	directly	fit	a	3D	Gaussian	mixture	
model	(GMM)	to	the	position	distribution.	The	probability	density	function	of	a	Gaussian	
mixture	model	is:	
	

P¤¥¥ 𝐩 = w†	𝒩(𝐩; 𝛍𝐱, Σ†)

b

x¨Y

	
	

(4.4)	

	
where	𝐩	is	a	3D	random	vector,	the	vector	mean	𝛍𝐱	and	covariance	matrix	Σ†	are	the	
statistical	parameters	for	𝑥#$	Gaussian	component,	corresponding	to	vector	cluster	C†,	
while	w†	denotes	component	weight.	A	GMM	is	fitted	to	the	distribution	of	3D	position	
vectors	using	an	expectation-maximization	procedure	[Dempster	et	al.,	1977].	
	

4.4.3	Peak	Extraction	of	3D	Vector	Clusters	
	
Once	a	GMM	has	been	fitted	to	the	3D	position	vector	distribution,	likelihood	functions	of	
GMM	components	are	used	to	derive	a	subset	C†

©	from	each	cluster	C†,	by	extracting	
position	vectors	with	likelihood	values	above	a	cutoff	𝜖x:	
	

C†
© = 𝐩𝐢,𝐣 ∈ C†:𝒩 𝐩𝐢,𝐣 𝛍𝐱, Σ† ≥ 𝜖x	 	 (4.5)	

	
Appropriate	values	for	likelihood	cutoffs	can	be	easily	estimated	by	visual	inspection	of	3D	
vector	distributions	from	extracted	peaks	C†

©.	However,	geometric	interpretation	of	
covariance	matrices	Σ†	can	produce	statistical	relevant	values,	e.g.	translation	of	the	mean	
𝛍𝐱	by	an	eigenvector	of	Σ†,	with	vector	magnitude	set	to	the	square	root	of	the	
corresponding	eigenvalue,	will	yield	a	point	at	one	standard	deviation	distance	from	𝛍𝐱,	the	
likelihood	function	can	be	evaluated	at	this	point,	and	the	resulting	value	set	as	a	cutoff.	In	
this	manner,	likelihood	cutoff	values	corresponding	to	factors	of	a	standard	deviation	can	
be	calculated.	
	

4.5	Analysis	of	Relative	Rotations	
	
In	the	proposed	approach,	relative	rotation	analysis	is	limited	to	the	feature	distribution	of	
a	specific	3D	position	cluster.	The	aim	is	to	restrict	geometric	feature	space	by	relative	3D	
position,	and	subsequently	dissect	the	associated	distribution	of	relative	rotations.	As	an	
iterative	process,	once	the	relative	rotation	distribution	of	a	position	cluster	peak	C†

©	has	
been	analyzed,	another	position	peak	can	be	chosen	for	inspection,	until	the	rotation	
distribution	of	all	position	peaks	of	interest	have	been	scrutinized.	
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4.5.1	Handling	Particle	Symmetry	in	Relative	Rotation	Space	
	
Symmetry	of	the	reference	structure	presents	similar	challenges	for	relative	rotation	
analysis	as	for	3D	position	vectors.	Each	relative	rotation	R[,`,	has	a	set	of	symmetrically	
equivalent	rotations,	defined	by	the	point	group	symmetry,	specifically,	by	the	set	of	
symmetry-associated	rotation	R𝐚,’.	A	symmetrically	equivalent	rotation	for	R[,`	can	be	
calculated	by	the	rotation	concatenating	operation	R[,`R𝐚,’ ∈ 𝑆𝑂(3),	applying	this	operation	
for	all	valid	parameters	a	and	α,	under	the	specific	point	group	symmetry	of	the	reference	
structure,	will	generate	the	complete	set	of	equivalent	rotations	for	R[,`.	
	
As	in	the	case	of	3D	vectors,	the	relative	rotation	distribution	needs	to	be	mapped	to	a	
suitable	space	before	cluster	analysis	can	be	performed.	Analogous	to	the	symmetrization	
of	the	position	vector	distribution,	all	symmetrically	equivalent	rotations	for	each	R[,`	in	the	
distribution	are	generated,	a	clustering	procedure	is	used	to	segment	the	symmetrized	
distribution,	and	redundant	clusters	are	subsequently	merged.	
	

4.5.2	Cluster	Analysis	of	Rotations	
	
Clustering	3D	rotations	requires	a	distance	measure	which	accurately	describes	similarity	
between	two	rotations	𝑅B,P ,𝑅b,« ∈ 𝑆𝑂(3).	In	this	approach,	a	quaternion-based	metric	is	
applied	for	clustering	relative	rotations.	Each	rotation	matrix	𝑅B,P 	is	represented	by	an	
analogous	unit	quaternion	𝐪𝒊,𝒋 = (w[,`, x[,`, y[,`, z[,`) ∈ ℝ𝟒.	The	proposed	metric	is	the	inner	
product	of	quaternion	vectors	(𝐪𝒊,𝒋 ∙ 𝐪𝒌,𝒍 = w[,`w³,´ + x[,`x³,´ + y[,`y³,´ + z[,`z³,´),	a	measure	
proportional	to	the	length	of	the	geodesic	path	connecting	the	vectors	on	the	4D	unit	sphere	
[Kuffner,	2004].	Computation	of	the	metric	is	described	in	algorithm	4.1,	this	algorithm	
accounts	for	the	antipodally	symmetric	nature	of	quaternion	space,	i.e.	polar	opposite	
quaternions	𝐪	and	–𝐪	represent	the	same	rotation.	
	
Procedure	for	computing	a	quaternion	similarity	metric:	
Input:	Two	unit	quaternions	𝐪𝟏	and	𝐪𝟏	
Output:	Rotation	similarity	in	the	range	[0,	1]	
	
1					𝜆 = 𝐪𝟏 ∙ 𝐪𝟐	
2					if	𝜆 < 0	then	
3															𝜆 = −𝐪𝟏 ∙ 𝐪𝟐	
5					return	𝜆	
	
Algorithm	5.1:	Algorithm	for	calculating	a	quaternion-based	similarity	measure	for	elements	of	the	SO(3)	
rotation	set,	adapted	from	[Kuffner,	2004].	This	metric	is	proportional	to	the	length	of	the	geodesic	path	
between	quaternion	vectors	on	the	surface	of	the	quaternion	3-sphere.	It	accounts	for	antipodal	symmetry	by
evaluating	the	inner	product	of	quaternion	vectors.	
	
A	spectral	clustering	algorithm	is	used	to	cluster	quaternions	based	on	the	metric	described	
in	algorithm	4.1.	The	input	parameters	for	this	procedure	are	a	similarity	matrix	and	the	
number	of	clusters	k.	The	similarity	matrix	is	subjected	to	dimensionality	reduction,	and	
subsequent	k-means	clustering	of	matrix	eigenvectors	yields	a	set	of	quaternion	clusters	CŠ	
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[von	Luxburg,	2007].	This	clustering	method	was	chosen	given	its	capacity	to	operate	in	
non-flat	manifolds.	
	

4.5.3	Peak	Extraction	of	Rotation	Clusters	
	
Once	relative	rotations	have	been	clustered,	a	Bingham	distribution	is	fitted	to	each	cluster	
set	CŠ	and	cluster	peaks	are	extracted	by	likelihood	cutoffs.	The	antipodally	symmetric	
Bingham	distribution	on	quaternion	space	is	a	zero-mean	Gaussian	function	conditioned	to	
lie	on	the	surface	of	the	unit	3-sphere	𝕊c ⊂ ℝe	[Glover	et	al.,	2011],	the	probability	density	
function	takes	the	form:	
	

ℬ 𝐪; 	𝚲, V = 	
1
𝐹
	exp λ[(v[

•𝐪

c

[¨Y

); 	
	

(4.6)	

	
where	q	is	a	random	4D	vector	in	unit	quaternion	space,	F	the	normalization	constant,	𝚲	a	
vector	of	3	concentration	parameters	λ[,	and	the	columns	of	the	4x3	matrix	V	are	
orthogonal	unit	vectors	v[.	𝚲	and	V	are	defined	so	that	λY ≤ λ; ≤ λc ≤ 0,	where	a	small-
magnitude	λ[	indicates	that	the	distribution	is	spread	out	along	direction	v[,	and	a	large-
magnitude	λ[	indicates	it	is	highly	peaked	along	v[	[Glover	&	Kaelbling,	2013].	The	
parameters	𝚲𝐲	and	VŠ	of	Bingham	functions	fitted	to	clusters	CŠ	are	estimated	using	the	
maximum-likelihood	procedure	described	in	[Glover	et	al.,	2011].	Once	Bingham	functions	
have	been	fitted,	likelihood	peaks	CŠ

©	are	extracted	from	each	cluster	CŠ,	by	selecting	
quaternions	with	likelihood	values	above	a	cutoff	𝜖Á:	
	

CŠ
© = 𝐪𝐢,𝐣 ∈ CŠ: ℬ 𝐪𝐢,𝐣 𝚲𝐲, VŠ ≥ 𝜖Á	 	 (4.7)	

	
Since	geometric	features	were	filtered,	initially	by	relative	3D	position	and	subsequently	by	
relative	rotation,	particle	pairs	(𝑝B ,𝑝P)	corresponding	to	extracted	features	𝐪𝐢,𝐣 ∈ CŠ

©,	have	
geometric	configurations	averaging	the	rigid	transformation	described	by	the	modes	of	the	
distribution	functions	fitted	to	the	associated	clusters	of	position	vectors	and	relative	
rotations,	𝒩 𝐩;𝛍𝐱, Σ† 	and	ℬ(𝐪; 𝚲𝐲, VŠ)	respectively.	Thus	describing	a	characteristic	
geometric	arrangement	for	the	subpopulation	of	particle	pairs	associated	with	CŠ

©.	
	

4.6	Discussion	
	
In	this	chapter,	a	systematic	approach	was	presented	to	analyze	local	geometric	
information	from	the	spatial	distribution	of	detected	macromolecular	complexes	in	
tomographic	space.	It	aims	at	identifying	characteristic	geometric	configurations	of	particle	
pairs	by	a	three	step	approach:	(1)	detect	spatial	neighborhoods	of	particles	and	compute	
relative	3D	position	vectors	and	relative	rotations.	(2)	Cluster	analysis	of	3D	position	
vectors,	followed	by	(3)	cluster	analysis	of	the	relative	rotation	distribution	associated	with	
a	previously	selected	position	cluster.	The	proposed	cluster	analysis	provides	a	statistical	
description	of	the	geometric	feature	distribution	by	fitting	probability	distribution	
functions	to	clusters	in	3D	position	and	quaternion	space.	Once	statistical	models	have	been	
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fitted,	the	use	of	a	likelihood	cutoff	was	proposed	for	cluster	peak	extraction,	allowing	
identification	of	particle	pairs	associated	with	local	modes	in	the	geometric	feature	
distribution.	
	
Similar	geometry-based	analyses	have	been	previously	applied	to	describe	the	relative	
arrangement of neighboring ribosomes within polysomes. In [F.	Brandt	et	al.,	2009],	
characterization	of	the	geometric	arrangement	between	ribosome	particles	in	cytosolic	
bacterial	polysomes	used	k-means	clustering	of	center-to-center	vectors	to	identify	clusters	
of	3’	and	5’	polysomic	neighbors.	Subsequently,	the	distribution	of	relative	rotations	
associated	with	each	center-to-center	vector	clusters	was	dissected	by	k-means	clustering	
in	quaternion	space.	Theoretically	speaking,	k-means	clustering	is	not	a	suitable	method	for	
rotation	clustering	in	quaternion	space,	as	it	assumes	Euclidean	distance	between	data	
points.	This	assumption	does	not	hold	in	quaternion	space,	since	this	space	is	a	manifold	
defined	on	the	surface	of	the	4D	unit	hypersphere.	In	practice	however,	this	methodology	
successfully	identified	characteristic	‘top-to-top’	and	‘top-to-bottom’	ribosome	pair	
configurations	of	polysomic	neighbors.	A	similar	study	of	cytosolic	polysomes	in	human	
cells	[F.	Brandt	et	al.,	2010]	applied	hierarchical	clustering	of	geometric	features	with	a	
distance	metric	that	combined	a	center-to-center	vector	distance	and	a	quaternion-based	
distance	by	using	a	weighted	sum	model.	This	approach	aimed	at	3D	vector	and	rotation	
clustering	in	a	single	step,	as	opposed	to	the	proposed	methodology,	which	conceptually	
decouples	3D	vector	and	rotation.	It	is	important	to	point	out	that	this	type	of	analyses	rely	
on	previous	detection	of	macromolecular	complexes,	therefore	sensitivity	and	specificity	of	
template	matching	results	are	issues	that	need	to	be	addressed	beforehand.	
	
A	salient	characteristic	of	the	above-mentioned	analysis	is	the	efficient	detection	of	particle	
neighborhoods.	Particle	neighborhoods	are	detected	by	near-neighbor	queries	in	a	k-
dimensional	tree	structure,	constructed	from	the	3D	positions	of	n	input	particles.	This	
allows	efficient	identification	of	local	neighborhoods	from	large	and	densely	clouds	of	
points.	Near-neighbor	queries	in	a	3D	k-dimensional	tree	have	an	average	time	of	O(log	n)	
[Freidman	et	al.,	1977]	and	a	worst-case	time	of	𝑂(3𝑛Y:

Â
Ã)	[D.	T.	Lee	&	Wong,	1977],	

significantly	outperforming	the	O(3n)	running	time	of	a	naïve	linear	search.		
	
The	two	major	contributions	of	this	analysis	are	quaternion-based	clustering	and	statistical	
description	of	rotation	distributions.	(1)	This	analysis	uses	a	quaternion-based	metric	for	
rotation	clustering.	This	metric	accurately	describes	similarity	between	elements	of	the	
SO(3)	group,	since	it	is	proportional	to	the	geodesic	distance	between	quaternions	on	the	
surface	of	the	unit	hypersphere.	Accordingly,	spectral	clustering	was	chosen	for	its	ability	to	
operate	in	non-flat	manifolds	[von	Luxburg,	2007].	(2)	Bingham	functions	are	used	to	
describe	rotation	distributions	in	quaternion	space.	The	Bingham	function	accurately	
represents	the	antipodal	symmetry	of	this	space,	and	is	the	maximum	entropy	distribution	
on	the	quaternion	hypersphere	that	matches	the	sample	inertia	matrix	𝐸 𝐪𝐪• ,	where	q	is	a	
unit	quaternion	[Mardia,	1975],	thus	it	may	be	better	suited	to	represent	a	noisy	quaternion	
distribution	than	other	models	[Glover	&	Kaelbling,	2013].		
	
It	is	important	to	mention	that	global	fitting	of	distribution	functions	to	clusters	(i.e.	subsets	
of	the	distribution)	can	lead	to	artificially	sharpened	distribution	fits.	This	issue	can	
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significantly	impact	parameter	estimation	when	clusters	do	not	fully	capture	the	
corresponding	local	mode,	or	when	a	significant	amount	of	the	data	is	uniformly	
distributed.	Artificial	sharpening	of	fitted	distributions	can	be	addressed	by	a	local	fitting	
procedure,	i.e.	setting	boundary	conditions	on	random	variables	in	order	to	restrict	the	
optimization	procedure	to	cluster	boundaries.	Alternatively,	a	mixture	model	can	be	
directly	fitted	to	the	distribution. In order to avoid artificial sharpening of Bingham	fits, a
natural	extension	of	the	proposed	rotation	analysis	would	be	the	inclusion	of	a	Bingham	
mixture	model	fit,	which	could	use	the	above-described	quaternion	clustering	procedure	as	
an	initialization	strategy	for	maximum-likelihood	estimation	of	model	parameters.	This	
extension	would	allow	the	inclusion	of	a	uniform	component	into	the	mixture	model,	which	
can	be	expressed	as	a	Bingham	component	with	all	its	concentration	parameters	λ[	set	to	
zero	[Glover	et	al.,	2011].	
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5.	Local	Organization	of	RuBisCO	in	the	Pyrenoid	of	C.	
reinhardtii	Cells	
	
5.1	Introduction	
	
Structural	characterization	of	cellular	regions	associated	with	the	CCM,	such	as	the	
pyrenoid	of	the	unicellular	C.	reinhardtii	algae,	might	offer	mechanistic	insights	in	the	
cellular	processes	that	evolved	to	overcome	RuBisCO’s	enzymatic	limitations.	RuBisCO	
complexes	in	C.	reinhardtii	pyrenoids	have	been	observed	to	be	densely	packed	in	
supramolecular	organizations	similar	to	spheres	in	a	close-packing	configuration,	
specifically	a	hexagonal	close-packing	arrangement	[Engel	et	al.,	2015].	However,	resolution	
limitations	of	the	CCD-acquired	tomograms	analyzed	in	this	previous	study,	precluded	
identification	of	RuBisCO	complex	orientations,	thus	limiting	the	geometric	information	
available	for	construction	of	models	describing	the	3D	arrangement	of	RuBisCO	complexes	
in	the	pyrenoid.	
	
Here,	we	employed	local	geometric	analysis	to	characterize	the	local	arrangement	of	
RuBisCO	complexes	in	high-resolution	tomograms	of	C.	reinhardtii	pyrenoids.	First,	
tomograms	of	cryo-FIB	milled	pyrenoid	lamellas	were	subjected	to	subtomogram	analysis:	
Template	matching	was	used	to	localize	RuBisCO	complexes	in	tomographic	space	(as	
described	in	chapter	3),	yielding	an	initial	set	of	positions	and	orientations.	Subtomogram	
alignment	was	subsequently	used	to	refine	the	geometric	parameters	of	the	detected	
RuBisCO	particles.	Once	detected	particles	were	aligned,	subtomogram	classification	
yielded	a	highly	specific	subset	of	RuBisCO	particles.	Nominal	resolution	of	the	resulting	
symmetrized	average	was	measured	and	the	associated	particles	were	used	as	input	for	
local	geometric	analysis	(chapter	4).	
	
Geometric	analysis	of	the	3D	distribution	of	RuBisCO	complexes	aimed	at	identifying	
predominant	arrangements	of	RuBisCO	particle	dimers,	which	could	be	subsequently	used	
to	characterize	the	local	organization	of	RuBisCO	complexes.	The	local	distributions	of	
relative	positions	and	rotations	were	analyzed	and	clustered	in De symmetrized space.
Statistical	peak	extraction	was	used	to	test	sample	predominant	geometric	clusters	and	
calculate	averages	of	the	corresponding	RuBisCO	dimer	arrangements.	Finally,	the	
previously	identified	RuBisCO	dimer	configurations	were	used	to	construct	a	geometric	
model	of	complexes	within	the	first	near-neighbor	(NN)	shell.	
	

5.2	Tomogram	Dataset	
	
Tomogram	acquisition	with	a	direct	electron	detector	(section	3.2.1)	greatly	improved	
tomogram	resolution,	enabling	direct	visualization	of	the	in	situ	RuBisCO	structure.	This	
allowed	the	expansion	of	the	preliminary	analysis	of	the	organization	of	pyrenoid	RuBisCO	
reported	in	[Engel	et	al.,	2015].	Figure	5.1	depicts	a	tomogram	of	a	pyrenoid	lamella.	
	



	 42	

	
Figure	5.1:	Tomogram	of	pyrenoid	lamellas	from	plunge-frozen	C.	reinhardtii	cells.	(A)	Diagram	of	a	C.	
reinhardtii	cell,	adapted	from	[Engel	et	al.,	2015]	next	to	a	cross-section	from	a	tomogram	of	a	pyrenoid.	(B.1)	
Region	of	the	tomographic	cross-section	showing	the	high	density	of	RuBisCO	complexes.	(B.2-4)	Magnified	
examples	of	densities	with	structural	features	that	are	consistent	with	the	cage-like	shape	of	the	RuBisCO	
complex	at	different	orientations	(rounded	cube	shape	with	a	lack	of	density	in	the	middle).	Scale	bars:	8.5	
nm.	
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5.3	Localization	of	RuBisCO	Complexes	
	
For	template	matching,	tomograms	were	binned	to	a	pixel	size	of	1.36	nm,	and	a	template	of	
the	C.	reinhardtii	RuBisCO	complex	was	generated	from	a	crystal	structure	of	the	same	
species	(PDB	entry	1GK8	[Taylor	et	al.,	2001]).	To	thoroughly	sample	RuBisCO complexes	
from	the	densely	packed	pyrenoid,	peaks	were	exhaustively	extracted	and	then	the	
expected	Gaussian	distribution	of	true	positive	particles	(figure	5.2)	was	approximated	by	
visual	inspection	of	binned	subtomograms.	Specifically,	20	random	subtomograms	were	
evaluated	for	different	template	matching	scores.	Once	true	positive	Gaussians	were	
estimated	for	all	nine	tomograms,	a	cutoff	value	was	set	to	one	standard	deviation	towards	
the	low-valued	tail	of	each	Gaussian,	all	particles	with	scores	below	the	cutoff	value	were	
discarded	(figure	5.3	A).	Approximately	200,000	RuBisCO	particles	were	extracted	from	
each	tomogram.	
	

	
Figure	5.2:	Histograms	of	template	matching	scores	from	exhaustive	peak	extraction	of	RuBisCO	particles.	
Each	histogram	shows	a	single	tomogram’s	estimated	parameters	for	the	Gaussian	distribution	of	true	
positives	particles	(red).	
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Figure	5.3:	Subtomogram	alignment	of	RuBisCO	complexes.	(A)	Template	matching	results	of	a	sample	
tomogram,	depicting	the	score	cutoff.	(B)	FRM	alignment	results	for	the	sampled	tomogram,	showing	
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approximate	true	positive	(TP)	rates	at	different	score	values	and	the	FRM	score	cutoff.	(C)	Visual	inspection	
of	aligned	subtomograms	at	different	FRM	score	values	(20	subtomograms	sampled	per	value);	Projecting	the	
sampled	subtomograms	along	the	4-fold	symmetry	axis	of	the	RuBisCO	complex	facilitates	the	estimation	of	
TP	rates.	(D)	Side	and	top	views	of	an	aligned	average	of	~50,000	RuBisCO	complex	particles,	fitted	to	the	
crystal	structure	[Taylor	et	al.,	2001].	Large	subunits:	blue	and	light	blue,	small	subunits:	orange.	
	

5.4	Alignment	of	RuBisCO	Subtomograms	
	
Subtomograms	of	the	extracted	RuBisCO	particles	were	binned	to	a	pixel	size	of	0.68	nm	for	
subtomogram	alignment.	FRM	alignment	was	employed	to	process	the	large	number	of	
subtomograms	(9	tomograms	×	~200,000	particles = 	~1,800,000	subtomograms).	After	
alignment,	reduction	of	the	dataset	was	necessary	to	both	remove	large	quantities	of	false	
positive	particles	and	significantly	reduce	the	computational	complexity	of	processing	the	
dataset.	Further	visual	inspection	of	aligned	subtomograms	was	used	to	estimate	a	FRM	
score	cutoff	value	for	each	tomogram	such	that	approximately	30%	of	the	sampled	particles	
were	true	positives	(figure	5.3	B,	C).	By	discarding	particles	with	FRM	scores	below	the	
cutoff	values,	the	amount	of	particles	was	further	reduced	to	~50,000	particles	per	
tomogram.	

	
5.5	Classification	of	RuBisCO	Subtomograms	
	
The	reduced	dataset	of	aligned	RuBisCO	subtomograms	(binned	to	a	pixel	size	of	0.68	nm)	
was	subjected	to	AC3D	classification.	The	objective	of	this	step	was	to	identify	a	structurally	
homogenous	subset	of	subtomograms	corresponding	to	true	positive	RuBisCO	particles,	
and	in	parallel	detect	sets	of	false	positive	particles	which	can	be	subsequently	discarded,	
thereby	increasing	the	structural	quality	of	the	dataset.	Since	the	aim	was	to	classify	
subtomograms	on	the	basis	of	overall	shape,	the	classification	procedure	was	restricted	to	
low	spatial	frequencies	(< 38.3	A	resolution	information).	The	number	of	classes	was	
oversampled	to	allow	for	fine-grained	segmentation	of	the	dataset.	Visual	inspection	of	the	
resulting	class	averages	was	used	to	merge	classes	into	structurally	homogeneous	
subpopulations.	
	
A	significant	percentage	of	the	subtomogram	dataset	(~40%)	belonged	to	a	subpopulation	
of	‘RuBisCO-like’	particles,	which	were	similar	to	the	RuBisCO	complex	but	displayed	
missing	densities	(figure	5.4).	AC3D	classification	yielded	a	variety	of	classes	showing	
‘RuBisCO-like’	averages	lacking	densities	in	different	regions	(figure	5.4	C).	Classes	of	false	
positive	particles	were	grouped	into	a	‘noise’	class,	and	subsequently	discarded.	Mapping	
the	classified	particles	back	into	tomographic	space,	showed	that	particles	belonging	to	
both	the	‘positive’	and	‘RuBisCO-like’	class	appeared	to	be	evenly	distributed	within	the	
pyrenoid	(figure	5.5).	
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Figure	5.4:	AC3D	classification	of	detected	RuBisCO	complexes.	Classification	results	by	tomogram	(A)	and	for	
the	complete	dataset	(B),	where	the	‘positive’	class	refers	to	a	positive	set	of	RuBisCO	complexes	(aiming	for	
high	specificity)	and	the	‘RuBisCO-like’	class	denotes	a	set	of	particles	similar	to	the	RuBisCO	complex	but	with	
missing	densities.	Classes	of	false	positive	subtomograms	were	labeled	as	‘noise’.	(C)	Surface	model	of	the	
RuBisCO	complex,	as	structural	reference	(large	subunits:	blue	and	light	blue,	small	subunits:	orange)	next	to	
sample	averages	of	‘positive’,	‘RuBisCO-like’	(dashed	red	lines	marking	regions	with	missing	densities),	and	
‘noise’	subclasses.	Pixel	size:	0.68	nm.	
	

	
Figure	5.5:	Distribution	of	‘positive’	and	‘RuBisCO-like’	classes	in	a	sample	tomogram	(Tomo1).	(A)	Rendered	
tomographic	space	depicting	thylakoid	membranes	(gray),	surrounding	starch	(yellow),	and	positions	of	
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‘positive’	and	‘RuBisCO-like’	particles	as	green	and	red	spheres	respectively.	(B)	Projection	along	the	z	axis,	
showing	‘positive’	(green)	and	‘RuBisCO-like’	(red)	positions,	and	regions	where	classes	overlap	in	the	
projected	xy	plane	(yellow).	Scale	bar:	110	nm.	
	

5.6	In	situ	Structure	of	the	RuBisCO	Complex	
	
The	‘positive’	class	was	subsequently	subjected	to	a	final,	two-tier	subtomogram	alignment	
step,	producing	final	averages	of	the	RuBisCO	complex.	In	the first	step,	subtomogram	were	
unbinned	to	their	original	0.342	nm	pixel	size	and	realigned	using	FRM.	Once	all	nine	
tomograms	were	FRM	aligned,	a	second	RS	alignment	step	was	used	to	refine	shift	and	
rotation	parameters.	Both	alignment	procedures	enforced	De	symmetry.	Cross-resolution	
estimates	per	tomogram	ranged	from	FSCL.c = 20	A	to	FSCL.c = 24	A,	while	the	average	
produced	by	merging	subtomogram	sets	from	the	top	two	performing	tomograms	yielded	a	
resolution	of	FSCL.c = 16	A	(figure	5.6).	These	top	two	tomograms	were	selected	by	visual	
inspection	of	the	resulting	averages,	and	cross-resolution	FSC	curves.	The	reference	atomic	
model	used	for	estimating	resolution	was	derived	from	PDB	entry	1GK8	[Taylor	et	al.,	
2001].	

	
Figure	5.6:	In	situ	structure	of	the	RuBisCO	complex	resolved	to	16	A	resolution.	(A)	Cross-resolution	FSC	
curves	(PDB entry 1GK8)	of De symmetrized averages from all nine	tomograms (within a	defocus range of 5	to	
6	μm),	and	corresponding	resolution	estimates	using	the	0.3	criterion.	All	averages	were	computed	using	gold	
standard	alignment.	(B)	Cross-resolution	FSC	curves	for	De	symmetrized	averages	computed	by	merging	sets	
of	particles	from	the	top	two	performing	tomograms,	at	varying	amounts	of	particles.	(C)	Top	and	side	views	
of	the	12000	particle	average	(pixel	size:	0.34	nm)	from	the	top	2	tomograms	(Tomo	1	and	Tomo	3)	with	a	
fitted	crystal	structure	[Taylor	et	al.,	2001],	large	subunit:	blue	and	light	blue,	small	subunits:	orange.				
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5.7	Local	Organization	of	RuBisCO	Complexes	in	the	Pyrenoid	
	
Next,	the	aligned	subtomograms	were	leveraged	to	perform	a	fine-grained	analysis	of	the	
local	organization	of	RuBisCO	complexes	in	pyrenoid	tomograms.	Unbinned	alignment	of	
the	‘positive’	class	provided	refined	position	and	orientation	parameters	for	this	set	of	
particles,	allowing	for	geometric	characterization	of	their	local	environment.	Since	the	
‘positive’	particle	set	is	comprised	of	AC3D	classes	that	were	labeled	as	true	positives	by	
visual	inspection	of	class	averages,	specificity	of	this	particle	set	is	expected	to	be	high.	
Furthermore,	by	visual inspection	of	unbinned	averages	and	cross-resolution	FSC	curves,	
only	six	tomograms	were	selected	for	geometric	analysis,	each	tomogram	contributed	
~20,000	particles.		
	
The	analysis	presented	here	follows	the	methodology	described	in	chapter	4.	Peak	
extraction	based	on	likelihood	cutoffs	was	applied	with	the	objective	of	test	sampling	
specific	modes	of	the	3D	position	vector	and	relative	rotation	distributions,	in	order	to	
provide	a	geometric	description	of	the	local	neighborhood.	Extracting	large	fractions	of	
distribution	modes	to	compute	statistically	significant	averages	of	RuBisCO	dimers	is	
beyond	the	scope	of	this	chapter.	However,	RuBisCO	dimer	averages	were	computed	as	a	
control	of	correspondence	between	test	samples	of	the	geometry	distributions	and	the	
observed	electron	densities	in	subtomograms.		
	
5.7.1	Radial	Distribution	of	Near	Neighbors	
	
The	radial	distribution	of	3D	center-to-center	vectors	from	neighboring	RuBisCO	particles	
(figure	5.7	A)	was	analyzed	by	incremental	segmentation	of	radial	shells.	The	radial	
distribution	function	of	NN	positions	reveled	a	large	peak	ranging	from	~11	to	~16	nm	
radial	distance	from	the	center	of	the	reference	particle,	corresponding	to	the	first	NN	shell	
(figure	5.8	A);	the	3D	distribution	of	the	associated	vectors	is	depicted	in	figure	5.8	B.	Fine-
grained	dissection	of	the	NN	position	distribution	was	performed	by	incrementally
selecting	1	nm	radial	shells,	and	plotting	the	associated	3D	vectors	on	the	unit	sphere	
(figure	5.8	C.0-C.10).	
	
Analysis	of	the	distribution	of	NN	positions	revealed	specific	clusters.	In	this	study,	the	
following	four	predominant	position	clusters	were	sampled	by	3D	vector	clustering:	(1)	the	
closest	cluster,	spanning	a	radial	range	of	~10− 12	nm,	(2)	top	and	(3)	side	clusters	within	
the	~11− 14	nm	radial	range,	and	(4)	the	corner	cluster,	found	within	the	~15− 18	nm	
range.	
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Figure	5.7:	Vectors	describing	relative	positions	and	rotations	of	neighboring	RuBisCO	particles.	(A)	Relative	
position	with	respect	to	the	reference	particle,	depicting	a	center-to-center	3D	vector	𝐯𝐢	(red).	(B)	Relative	
rotation	R[	of	a	neighboring	particle	i,	represented	as	the	3D	vector	(red)	produced	by	the	rotation	of	the	4-
fold	symmetry	axis	z’	from	the	neighboring	particle.	RuBisCO	models	derived	from	[Taylor	et	al.,	2001],	large	
subunit:	blue	and	light	blue,	small	subunits:	orange.	
	

5.7.2	Closest	Neighbor	Cluster	
	
The	closest	cluster	was	sampled	from	a	radial	shell	ranging	from	9.9	nm	to	12.0	nm	(figure	
5.9	A),	with	a	cluster	center	located	at	a	radial	distance	of	11.0	nm	from	the	center	of	the	
reference	particle.	The	source	shell	contained	a	total	of	11,812	particle	dimers,	from	which	
a	cluster	peak	sample	of	573	dimers	was	extracted;	the	resulting	average	is	shown	in	figure	
5.9	B.1-B.2.	The	distribution	of	relative	rotations	of	particle	dimers	associated	with	the	
sampled	peak	of	center-to-center	vectors	(figure	5.9	C),	was	clustered	to	extract	a	sample	
from	the	most	predominant	rotation	peak.	The	sampled	rotation	peak	consisted	of	53	
particle	dimers	(9.24%	of	the	rotation	distribution).	The	average	of	the	resulting	particle	
dimer	arrangement	is	depicted	in	figure	5.9	D.1-D.2.	
	

5.7.3	Side	Neighbor	Cluster	
	
A	radial	shell	ranging	from	10.9	nm	to	14.0	nm	(figure	5.10	A)	was	used	to	extract	a	sample	
from	the	side	cluster.	The	extracted	peak	sample	of	1,689	vectors	(from	the	56,970	vectors	
captured	within	the	source	shell)	was	centered	at	a	radial	distance	of	11.39	nm;	the	
resulting	average	is	depicted	in	figure	5.10	B.	Subsequently,	the	relative	rotations	
associated	with	the	vector	sample	(figure	5.10	C)	were	clustered	and	the	most	predominant	
mode	was	sampled,	the	peak	sample	contained	103	rotations	(6.09%	of	the	rotation	
distribution).	Finally,	an	average	of	the	corresponding	RuBisCO	complex	dimer	was	
computed	(figure	5.10	D).	
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Figure	5.8:	Position	distribution	of	neighboring	RuBisCO	complexes.	(A)	Radial	distribution	of	neighbor	
positions	for	a	dataset	of	6	tomograms,	depicting	the	diameter	range	of	the	reference	RuBisCO	complex	(red),	
and	the	radial	shell	attributed	to	the	first	layer	of	near	neighbors	(dashed	lines).	(B)	distribution	of	center-to-
center	3D	vectors	within	the	first	NN	shell	(figure	5.7	A)	mapped	to	the	unit	sphere.	(C.0-C.10)	Center-to-
center	vector	distributions	of	1	nm	radial	shells,	ranging	from	9	to	20	nm	distance	from	the	reference	particle.	
All	distributions	displayed	with	De	symmetry	applied.	
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Figure 5.9: Geometric analysis of the closest cluster. (A) Full distribution of center-to-center 3D vectors from
the	9.92	-	11.97	nm	radial	shell	(figure	5.7A).	The	extracted	peak	sample	from	the	vector	cluster	is	depicted	by	
a	dashed	circle,	with	the	corresponding	percentage	from	a	tight	radial	shell	containing	the	sample.	(B.1)	The	
resulting	average	(filtered	to	3	nm	resolution)	displayed	from	different	perspectives	with	a	crystal	structure	
fitted	to	the	reference	particle.	(B.2)	Middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	
iso-surface	representation.	(C)	Relative	rotation	distribution	associated	to	the	previously	extracted	3D	vector	
cluster,	represented	as	a	distribution	of	rotated	4-fold	axes	(figure	5.7	B)	and	in	Euler	angle	space	(C.1	and	C.2	
respectively).	The	extracted	rotation	sample	is	depicted	with	dashed	circles.	(D.1-D.2)	Average	(filtered	to	4	
nm	resolution)	of	the	resulting	dimer	arrangement	displayed	from	different	perspectives,	crystal	structures	
were	fitted	to	both	particles.	(D.2)	Middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	
iso-surface	representation.	Fitted	crystal	structures	[Taylor	et	al.,	2001]	with	large	subunits	in	blue	and	light	
blue,	and	small	subunits	in	orange.	All	distributions	displayed	with	De	symmetry	applied.	
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Figure	5.10:	Geometric	analysis	of	the	side	cluster.	(A)	Full	distribution	of	center-to-center	3D	vectors	from	
the	10.94	–	14.02	nm	radial	shell	(figure	5.7A).	The	extracted	peak	sample	from	the	vector	cluster	is	depicted	
by	dashed	circles,	with	the	corresponding	percentage	from	a	tight	radial	shell	containing	the	sample.	(B)	
Resulting	average	with	a	crystal	structure	fitted	to	the	reference	particle,	and	a	middle	cross-section	from	the	
perspective	depicted	by	the	iso-surface	representation.	(C)	Relative	rotation	distribution	associated	to	the	
previously	extracted	3D	vector	sample,	represented	as	a	distribution	of	rotated	4-fold	axes	(figure	5.7	B)	and	
in	Euler	angle	space	(C.1	and	C.2	respectively).	The	extracted	rotation	sample	is	depicted	with	dashed	circles.	
(D)	Average	of	the	resulting	particle	dimer	arrangement	with	crystal	structures	fitted	to	both	complexes,	and	
middle	cross-sections	of	the	average	from	the	perspectives	depicted	by	the	iso-surface	representations.	
Averages	filtered	to	3	nm	resolution,	fitted	crystal	structures	[Taylor	et	al.,	2001]	with	large	subunits	in	blue	
and	light	blue,	and	small	subunits	in	orange.	All	distributions	displayed	with	De	symmetry	applied.	
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Figure	5.11:	Geometric	analysis	of	the	top	cluster.	(A)	Full	distribution	of	center-to-center	3D	vectors	from	the	
10.6	–	14.02	nm	radial	shell	(figure	5.7A).	The	extracted peak	sample	from	the	vector	cluster	is	depicted	by	a	
dashed	circle,	with	the	corresponding	percentage	from	a	tight	radial	shell	containing	the	sample.	(B)	Resulting	
average	with	a	crystal	structure	fitted	to	the	reference	particle	and	a	middle	cross-section.	(C)	Relative	
rotation	distribution	associated	to	the	previously	sampled	3D	vector	cluster,	represented	as	a	distribution	of	
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rotated	4-fold	axes	(figure	5.7	B)	and	in	Euler	angle	space	(C.1	and	C.2	respectively).	The	extracted	rotation	
samples	are	depicted	with	dashed	circles.	(D.1) Rotation	distribution	of	the	top-top	sample,	in	spherical	and	
Euler	angle	space.	(D.2)	Average	of	the	resulting	top-top	dimer	arrangement	with	crystal	structures	fitted	to	
both	particles,	and	middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	iso-surface	
representation.	(E.1)	Rotation	distribution	of	the	top-side	sample,	in	spherical	and	Euler	angle	space.	(E.2)	
Average	of	the	resulting	top-side	dimer	arrangement	with	crystal	structures	fitted	to	both	particles,	and	
middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	iso-surface	representation.	Averages	
filtered	to	3	nm	resolution.	Fitted	crystal	structures	[Taylor	et	al.,	2001]	with	large	subunits	in	blue	and	light	
blue,	and	small	subunits	in	orange.	All	distributions	displayed	with	De	symmetry	applied.	
	

5.7.4	Top	Neighbor	Cluster	
	
The	top	cluster	was	sampled	from	a	radial	shell	of	10.6	-	14.0	nm,	containing	a	total	of	
58,546	vectors	(figure	5.11	A).	The	extracted	peak	sample	of	1,583	vectors	had	a	center	
located	12.27	nm	from	the	center	of	the	reference	particle;	the	sample’s	average	is	shown	in	
figure	5.11	B.	The	relative	rotation	distribution	corresponding	to	the	extracted	peak	sample	
of	3D	vectors	had	two	predominant	modes,	designated	as	‘top-top’	and	‘top-side’	(figure	
5.11	C).	Rotation	clustering	allowed	the	extraction	of	peak	samples	from	both	top-top	and	
top-side	modes,	containing	91	(5.7%	of	the	rotation	distribution)	and	97	(6.12% of	the	
rotation	distribution)	rotations	respectively.	Figure	5.11	D	shows	the	distribution	of	
sampled	rotations	from	the	top-top	mode,	along	with	the	resulting	average,	while	figure	
5.11	E	shows	analogous	information	for	the	top-side	mode.
	

5.7.5	Corner	Neighbor	Cluster	
	
The	radial	shell	considered	for	sample	extraction	of	the	corner	cluster	ranged	from	15	nm	
to	18	nm,	containing	a	total	of	76,504	vectors	(figure	5.12	A).	3,251	vectors	were	sampled	
from	the	peak	of	the	target	cluster,	the	center	of	the	sample	was	located	at	a	radial	distance	
of	16.1	nm.	A	sample	from	the	predominant	mode	of	the	relative	rotation	distribution	
associated	with	this	position	sample	(figure	5.12	C)	was	extracted,	containing	185	rotations	
(5.69%	of	the	rotation	distribution).	The	average	of	the	resulting	RuBisCO	dimer	
arrangement	is	depicted	in	figure	5.12	D.	

	
5.7.6	Local	Organization	Model	
	
Finally,	the	identified	dimer	arrangements	of	RuBisCO	particles	within	the	first	NN	shell	
(~10	-	18	nm)	are	were	combined	to	build	a	geometric	model	of	RuBisCO	packing	within	
the	pyrenoid.	Four	dimer	arrangements	were	used	for	the	model:	(1)	top-top,	(2)	top-side,	
(3)	side,	and	(4)	corner.	Individual	arrangements	are	depicted	in	figure	5.13	A-C,	and	a	
complete	model	of	the	unit	cell	is	shown	in	figure	5.13	D,	with	the	percentage	of	first	NN	
shell	contribution	per	dimer	arrangement.	Different	perspectives	of	the	resulting	3D	mesh	
of	first	NN	positions	are	depicted	in	figures	5.13	E-F.	Connected	rings	of	first	NN	positions	
in	figure	5.13	G,	depict	neighbor	layers	in	an	arrangement	similar	to	close-packing	of	
spheres:	One	hexagonal	middle	layer,	and	two	surrounding	layers	above	and	below.	
However,	in	this	model,	both	the	top	and	bottom	layer	require	4	neighbor	centers	to	fully	
saturate	the	space	within	the	first	NN	shell,	yielding	a	14	neighbor	configuration.	
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Figure	5.12:	Geometric	analysis	of	the	corner	cluster.	(A)	Full	distribution	of	center-to-center	3D	vectors	from	
the	14.98	–	17.99	nm	radial	shell	(figure	5.7A).	The	extracted	peak	sample	from	the	vector	cluster	is	depicted	
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by	a	dashed	circle,	with	the	corresponding	percentage	from	a	tight	radial	shell	containing	the	sample.	(B.1-
B.2)	Resulting	average	filtered	to	3	nm	resolution,	with	a	crystal	structure	fitted	to	the	reference	particle.	(B.2)	
Middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	iso-surface	representation.	(C)	
Relative	rotation	distribution	associated	to	the	previously	extracted	3D	vector	sample,	represented	as	a	
distribution	of	rotated	4-fold	axes	(figure	5.7	B)	and	in	Euler	angle	space	(C.1	and	C.2	respectively).	The	
extracted	rotation	sample	is	depicted	with	dashed	circles.	(D.1-D.2)	Average	(filtered	to	4	nm	resolution)	of	
the	resulting	dimer	arrangement	displayed	from	different	perspectives,	crystal	structures	were	fitted	to	both	
particles.	(D.2)	Middle	cross-section	of	the	average	from	the	perspective	depicted	by	the	iso-surface	
representation.	Fitted	crystal	structures	[Taylor	et	al.,	2001]	with	large	subunits	in	blue	and	light	blue,	and	
small	subunits	in	orange.	All	distributions	displayed	with	De	symmetry	applied.	
	

	
Figure	5.13:	Proposed	geometric	model	for	the	local	organization	of	RuBisCO	complexes	in	pyrenoids	of	C.	
reinhardtii	cells.	(A-C)	Extracted	averages	of	predominant	dimer	arrangements	with	fitted	structures	and	
corresponding	surface	models.	(A)	Percentage	of	the	top	distribution	in	top-top	and	top-side	sub-clusters.	(D)	
Integrative	model	of	the	RuBisCO	complex	unit	cell,	derived	from	4	dimer	arrangements	(top-top,	top-side,	
side,	and	corner	clusters),	displaying	averages	with	fitted	crystal	structures,	next	to	a	corresponding	surface	
model	showing	the	percentages	of	the	first	NN	shell	per	neighbor	cluster.	(E)	Unit	cell	model	of	RuBisCO	
complexes	showing	a	mesh	over	first	NN	positions	(red)	and	radial	distance	to	NN	cluster	centers.	(F)	
Different	perspectives	of	the	first	NN	position	mesh	(red)	with	respect	to	the	reference	RuBisCO	particle.	(G)	
Rings	of	first	NN	positions	(red)	depicting	neighbor	layers	resembling	a	configuration	similar	to	close-packing	
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of	spheres:	a	hexagonal	middle	layer	and	two	surrounding	layers	with	4	points	each.	Fitted	crystal	structures	
and	corresponding	surface	models	[Taylor	et	al.,	2001]	depicting	large	subunits	in	blue	and	light	blue,	and	
small	subunits	in	orange.	Averages	filtered	to	3	nm	resolution.	
	

5.8	Discussion	
	
Here,	I	present	a	study	of	the	molecular	organization	of	RuBisCO	complexes	in	pyrenoids	of	
C.	reinhardtii	cells.	Subtomogram	analysis	of	detected	RuBisCO	complexes	in	nine	
tomograms	of	cryo-FIB	milled	pyrenoid	lamellas,	was	used	to	optimize	the	geometric	
information	(i.e.	position	and	orientation	parameters	of	RuBisCO	particles)	needed	to	
describe	the	in	situ	distribution	of	RuBisCO	complexes	in	pyrenoid	space.	Initially,	nine	
pyrenoid	tomograms	were	subjected	to	template	matching	(using	a	reference	structure	of	
the	RuBisCO	complex	[Taylor	et	al.,	2001]),	FRM	alignment	and	AC3D	classification.	
Approximately	50,000	subtomograms	from	each	tomogram	were	used	for	classification,	
yielding	a	significant	‘noise’	class	(17.8%),	a	class	of	‘RuBisCO-like’	structures	with	missing	
densities	in	a	variety	of	regions	(41.6%),	and	a	‘positive’	class	of	RuBisCO	complexes	
(40.5%).	The	positive	class	of	RuBisCO	particles	was	subjected	to	a	final	round	of	alignment,	
while	De	symmetrized	averages	of	individual	tomograms	yielded	cross-resolution	estimates	
of	19.15	to	23.94	A,	merging	subtomogram	sets	from	the	top	two	performing	tomograms	
produced	a	final	in	situ	structure	of	nominal	16	A	resolution.	
	
The	proposed	methodology	for	local	geometric	analysis	(chapter	4)	was	applied	to	the	set	
of	particles	labeled	as	positives	by	visual	inspection	of	AC3D	class	averages,	with	the	aim	of	
dissecting	the	local	arrangement of	RuBisCO	complexes.	By	inspection	of	the	radial	
distribution	of	near	neighbors,	specifically	within	the	first	NN	radial	shell	(~10	-	18	nm),	
five	RuBisCO	dimer	arrangements	were	identified,	corresponding	to	predominant	modes	in	
the	associated	distributions	of	relative	positions	and	rotations:	(1)	The	closest	cluster	
(7.01%	of	the	first	NN	shell)	with	position	cluster	center	at	a	radial	distance	of	11.01	nm,	
displayed	one	predominant	mode	in	rotation	space.	Interestingly,	the	extracted	rotation	
sample	generated	an	average	showing	a	RuBisCO	dimer	configuration	that	brings	
neighboring	small	subunits	in	close	proximity	(figure	5.9	D.1,	D.2).	(2)	The	side	cluster	
(31.57%	of	the	first	NN	shell)	was	positioned	11.39	nm	from	the	reference	particle,	and	the	
associated	distribution	of	relative	rotations	had	a	very	distinctive	mode,	which	yielded	a	
‘side-side’	dimer	arrangement	(figure	5.10	D).	The	rotation	distribution	of	the	top	cluster	
(14.03%	of	the	first	NN	shell,	at	a	radial	distance	of	12.27	nm)	was	bimodal,	the	peak	
samples	yielded	the	top-top	(3)	and	top-side	(4)	dimer	arrangements	(figure	5.11	D.2,	E.2	
respectively).	(5)	The	corner	cluster	(42.1%	of	the	first	NN	shell),	located	at	a	17.99	nm	
radial	distance	displayed	one	predominant	mode	in	rotation	space.	The	extracted	rotation	
sample	places	the	neighboring	complex	in	a	similar	orientation	as	the	reference	particle	
(figure	5.12	D).	It	is	noteworthy	that	retaining	rigidity	of	RuBisCO	dimer	arrangements	to	
produce	clear	averages,	required	extraction	of	samples	within	a	small	deviation	from	the	
modes.	The	four	most	predominant	RuBisCO	dimer	arrangements	of	the	first	NN	shell	were	
integrated	to	propose	a	geometric	model	for	the	unit	cell	of	RuBisCO	complexes	(figure	5.13	
D-G).	Figure	5.13	G	shows	layers	of	NN	positions	in	a	configuration	resembling	that	of	
closely	packed	spheres,	a	hexagonal	middle	layer	and	2	layers	of	4	neighbor	positions,	
creating	a	unit	cell	configuration	that	fully	saturates	the	space	within	the	first	NN	shell.	
Furthermore,	the	predominant	RuBisCO	dimer	configurations	suggest	that	the	cube-like	
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shape	of	the	RuBisCO	complex	is	a	factor	in	the	arrangement	of	near	neighbors,	as	expected	
given	the	high	density	of	RuBisCO	complexes	in	the	pyrenoid.	
	
Neighboring	complexes	do	not	appear	to	be	highly	ordered.	Even	though	predominant	
position	clusters	within	the	first	NN	shell	account	for	a	significant	percentage	of	the	shell	
(~88%),	position	clusters	have	large	standard	deviations	(> 2 nm) when compared to the
radius	of	the	RuBisCO	complex	(~5− 6.75	nm).	While	relative	rotation	distributions	
associated	with	position	cluster	do	have predominant	modes,	most	of	the	remaining	
distribution	remains	highly	disorganized.	Moreover,	relative	rotation	clusters	also	exhibit	
angular	variance	above	4°.	Since	only	a	small	percentage	(~30%)	of	the	first	NN	shell	
displays	order	under	both	relative	position	and	rotation,	is	reasonable	to	conclude	that	
there	is	a	high	degree	of	flexibility	in	particle	dimer	arrangements.	These	findings	are	
consistent	with	a	relatively	amorphous	pyrenoid	matrix.	Using	a	CCD-acquired	tomographic	
dataset,	a	model	based	on	close-packing	of	spheres	was	proposed	to	describe	the	
organization	of	RuBisCO	complexes	in	the	pyrenoid	[Engel	et	al.,	2015].	Expansion	of	this	
preliminary	analysis	with	the	high-resolution	data	presented	here	has	elucidated	a	highly	
dense	and	unorganized	first	NN	shell.	Moreover,	the	shape	of	the	radial	distribution	
functions	of	RuBisCO	particles	(figure	5.8	A)	is	characteristic	of	liquid	substances,	peaks	
gradually decrease	as	radial	distance	increases,	completely	disappearing	within	few	factors	
of	the	particle	diameter,	i.e.,	a	distribution	with	clear	short-range	order	but	lacking	long-
range	order.	In	contrast,	the	radial	distribution	function	of	crystalline	materials	displays	
both	decrease	and	increase	of	peak	values,	with	peaks	being	clearly	discernable	at	
significantly	higher	radial	distances	[Zallen,	1998].	Furthermore,	the	lack	of	long-range	
order	and	high	flexibility	observed	in	the	relative	position	and	orientation	distributions,	
supports	the	idea	that	the	pyrenoid	matrix	is	a	dynamic	and	fluid-like	environment,	
perhaps	allowing	flexible	hexagonal	and	cubic	close-packing	configurations	to	appear	
transiently.	Moreover,	this	could	imply	that	first	NN	shells	are	not	always,	perhaps	rarely,	
fully	saturated,	suggesting	that	unit	cell	configuration	of	12	neighbors	might	be	
commonplace,	as	proposed	by	previous	CET	studies	of	the	C.	reinhardtii	pyrenoid	[Engel	et	
al.,	2015].	However,	since	a	measure	of	sensitivity	and	specificity	of	the	‘positive’	particle	
class	is	difficult	to	obtain,	this	study	is	not	suitable	to	reliably	calculate	the	average	number	
of	neighbors	in	the	first	NN	shell	and	quantify	its	variance.	It	is	noteworthy	that	the	local	
geometric	analysis	presented	here,	greatly benefited	from	efficient	detection	of	particle	
neighborhoods	(section	4.3).	Since	pyrenoid	matrices	have	a	high	concentration	of	RuBisCO	
complexes	(figure	2.9	B,	figure	5.1),	each	pyrenoid	tomogram	provided	a	large	number	of	
RuBisCO	particles	(~20,000),	yielding	a	highly	densely	cloud	of	particle	position	points	
(figure	5.5).	Thus,	detection	of	RuBisCO	neighborhoods	using	near-neighbor	queries	with	k-
dimensional	trees	[Bentley,	1975]	allowed	computation	of	a	large	number	geometric	
features	(i.e.	center-to-center	vectors	and	relative	rotations)	in	affordable	time.	
	
Considering	that	the	RuBisCO	linker	protein	EPYC1	is	highly	abundant	in	the	pyrenoid	and	
has	been	shown	to	directly	bind	RuBisCO	[Mackinder	et	al.,	2016],	a	density	between	
neighboring	RuBisCO	complex	is	expected	to	be	visualized	in	dimer	averages.	However,	it	is	
possible	that	dimer	flexibility	(only	~5− 10%	of	the	orientation	distributions	is	ordered)	
precludes	detection	of	this	small	33	kDa	protein	by	subtomogram	averaging.	Furthermore,	
test	samples	from	the	distributions	of	3D	position	vectors	and	relative	rotations	(section	
5.7)	are	far	too	small	to	provide	sufficient	signal	that	would	allow	visualization	of	such	a	
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small	and	flexible	protein	in	subtomogram	averages.	Moreover,	given	the	dynamic	and	
disordered	packing	of	RuBisCO	in	the	pyrenoid,	it	is	very	likely	that	EPYC1	is	bound	sub-
stoichiometrically	to	RuBisCO.	Since	‘top’,	‘side’,	and	‘corner’	dimer	classes	have	
symmetrical	relationships	between	RuBisCO	complexes,	geometric	classification	alone	is	
insufficient	for	detecting	which	EPYC1	binding	sites	between	neighboring	complexes	are	
bound	by	the	linker protein.	On	the	other	hand,	additional image-based alignment of the
area	between	neighboring	RuBisCO	particles,	by	using	a	small	mask	between	complexes	to	
focus	the	alignment	procedure,	can	generate	density	between	the	complexes,	thus,	this	
approach	might	introduce	significant	bias.	However,	an	interesting	characteristic	of	the	
proposed	unit	cell	model,	is	that	small	subunits	of	neighboring	complexes	appear	to	
consistently	align	and	come	in	close	proximity,	not	only	between	the	central	and	
neighboring	complexes,	but	also	between	adjacent	neighbor	complexes	(e.g.	side	and	corner	
neighbors	in	figure	5.13	D,	E).	Thus,	the	proposed	unit	cell	model	is	consistent	with	
biochemical	studies,	which	predict	that	EPYC1	proteins	bind	to	the	two	hydrophobic	alpha-
helices	of	the	RuBisCO	small	subunit	[Meyer	&	Griffiths,	2013;	Meyer	et	al.,	2012].	
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6.	Polysome	Detection	
	

6.1	Introduction	
	
While	structure-function	studies	on	isolated	ribosomes	have	greatly	elucidated	its	
enzymatic	function	[Voorhees	&	Ramakrishnan,	2013],	the	organizational	principles	of	
polysomes	and	their	functional	consequences	remain	poorly	understood.		

Identification	of	polysomes	enables	the	study	of	structural	features	from	supramolecular	
arrangements	of	ribosomes	during	protein	synthesis.	However,	polysome	detection	is	an	
inherently	challenging	task	due	to	the	flexible	nature	of	their	preferred	arrangements,	in	
particular	for	densely	populated	macromolecular	landscapes.	Another	significant	challenge	
is	the	low	SNR	of	CET	data,	which	directly	impacts	specificity	and	sensitivity	of	template	
matching,	hindering	ribosome	localization,	and	thus	making	analysis	of	polysome	
topologies	cumbersome.	

Once	template	matching	has	identified	ribosomes	in	a	tomogram,	and	their	position	and	
orientation	have	been	refined	through	subtomogram	alignment.	Computational	analysis	of	
these	parameters	is	required	to	analyze	polysomes.	Here	a	graph-based	method	for	
polysome	detection	is	proposed.	I	model	the	probability	distribution	of	two	ribosomes	
translating	the	same	mRNA	molecule	based	on	the	local	geometric	analysis	of	adjacent	
ribosomes.	This	model	is	then	used	in	a	probabilistic	framework	where	localized	ribosomes	
are	represented	as	a	neighborhood	graph	[von	Luxburg,	2007].	A	MRF	is	embedded	on	the	
neighborhood	graph	and	a	message-passing	algorithm	infers	a	polysome-label	for	each	
ribosome,	i.e.,	to	cluster	ribosomes	into	polysomes.	

The	performance	of	the	method	was	evaluated	on	simulated	and	experimental	datasets	of	
bacterial	lysates	[F.	Brandt	et	al.,	2009],	the	method	was	subsequently	applied	to	
tomograms	of	rough	microsomes	derived	from	ER	of	mouse	myeloma	cells,	with	the	
objective	of	identifying	cytosolic	and	ER-associated	Ribosomes.		
	

6.2	Polysome	Detection	Workflow	
	
Here	the	polysome	detection	problem	is	formally	defined.	Given	a	set	of	n	detected	
ribosome	particles	𝑃 = 𝑝Y, . . . ,𝑝C ,	where	each	particle	𝑝B = (𝐭𝐢,𝑅B)	is	described	by	a	3D	
vector	𝐭𝐢	and	rotation	𝑅B ,	denoting	the	position	and	orientation	of	a	detected	ribosome	in	
the	tomographic	coordinate	system.	The	aim	of	the	method	is	to	classify	all	elements	of	P	
into	disjoint	subsets,	where	each	subset	represents	a	polysome.	
	
The	following	steps	outline	the	developed	statistical	inference	method:	(1)	model	the	
probability	of	an	mRNA	molecule	connecting	two	adjacent	ribosomes,	(2)	topology	graph	
construction,	(3)	classification	using	a	MRF,	and	(4)	polysome	clustering.	The	model	in	step	
(1)	is	constructed	using	a	training	dataset	of	tomograms,	while	steps	(2)	to	(4)	operate	
directly	on	the	data	where	polysome	detection	will	be	carried	out.	The	overall	workflow	is	
depicted	in	figure	6.1.	
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Figure	6.1:	Polysome	detection	workflow.	The	dashed	lines	separate	the	training	and	detection	phases.		𝑃vÎÏÐ	
is	generated	in	the	training	phase,	and	subsequently	used	in	the	detection	phase	for	generating	a	topology	
graph	from	a	set	of	input	ribosome	particles.		
	

(1) Modeling	the	probability	an	mRNA	connection	between	ribosomes.	Here,	a	
training	dataset	of	tomograms	is	used	to	model	the	probability	of	two	ribosome	
particles	translating	a	single	mRNA	molecule,	given	their	relative	geometric	
arrangement.	The	model	aims	to	capture	the	local	arrangement	of	neighboring	
ribosomes	within	a	polysome	sequence.	From	the	available	data,	a	small	number	of	
tomograms	are	selected	as	a	training	dataset,	the	associated	ribosome	particles	are	
subjected	to	a	local	geometric	analysis	and	a	probabilistic	model	𝑃vÎÏÐ	is	generated	
based	on	visual	inspection.	
	

(2) Topology	graph	construction.	The	input	of	the	polysome	detection	method	is	a	set	
of	ribosome	particles	P	from	a	single	tomogram.	The	initial	step	of	the	detection	
phase	is	to	generate	a	neighborhood	graph	using	the	set	of	3D	ribosome	positions	
𝐭𝟏, . . . , 𝐭𝐧 	as	vertices.	Edge	weights	are	derived	from	our	previously	constructed	
𝑃vÎÏÐ	model.	

	
(3) Classification	using	MRF.	A	MRF is	defined	on	the	topology	graph	by	associating	a	

state	variable	𝑥B 	to	each	vertex	in	the	topology	graph,	and	thus	to	each	particle	𝑝B .	
State	variables	denote	polysome-labels,	identifying	a	polysome	subset	for	each	
particle.	Our	problem	can	now	be	stated	as	inferring	the	posteriori	distribution	of	all	
states	𝑋 = (𝑥Y, … , 𝑥C)	given	observations	P.	More	specifically,	to	obtain	the	MAP:	

	
	 𝑥∗ = arg	max	Ò𝑃(𝑋|𝑃)	 (6.1)	
	 	

Where	𝑥∗ = (𝑥Y
∗, . . . , 𝑥C∗)	is	the	MAP	for	all	n	variables.	Approximation	of	the	MAP	is	

performed	using	loopy	belief	propagation	[Blake	et	al.,	2011].	The	underlying	MRF	is	
modeled	to	classify	vertex	sequences	using	the	geometric	information	embedded	in	
the	topology	graph,	i.e.	graph	connectivity	and	edge	weights.	
	

Training
Dataset

Model

Probabilistic
Graphical Model

Loopy Belief Propagation

Input Ribosome
Particles

Detected
Polysome Subsets

TrainingDetection

Topology
Graph Construction

Polysome Clustering

MAP estimate
of state variables

Local Geometric Analysis

P
mRNA



	 63	

(4) Polysome	clustering.	Ribosome	particles	are	classified	into	polysome	subsets	
according	to	the	MAP	estimate	of	polysome-labels.	For	each	polysome	subset,	the	
sequence	of	ribosome	particles	from	the	3’	to	5’	end	can	be	extracted	from	the	
corresponding	topology	subgraph.	

	

6.3	Probabilistic	Model	for	the	Local	Geometric	Arrangement	of	
Polysomes
	
The	aim	of	𝑃vÎÏÐ	is	to	capture	prior	knowledge	of	the	local	organization	of	polysomes;	it	
approximates	the	probability	density	function	of	an	mRNA	molecule	being	translated	by	
two	spatially	adjacent	ribosome	particles.	𝑃vÎÏÐ.	The	model	𝑃vÎÏÐ i, j 	is	a	function	of	the	
relative	geometric	arrangement	of	particles	𝑝B 	and	𝑝P .	Given	a	training	dataset	of	ribosome	
particles,	the	local	distribution	of	particles	is	inspected	to	extract	exit-to-entry	vectors,	i.e.	
3D	vectors	between	the	mRNA	exit	site	of	the	reference	particle	𝑝B ,	to	the	mRNA	entry	site	
of	the	neighboring	particle	𝑝P .	The	objective	is	to	extract	the	cluster	of	exit-to-entry	vectors	
corresponding	to	the	polysomic	neighbors	on	the	5’	side	of	the	reference	particle.		
	
Subsequently,	the	relative	rotations	corresponding	to	the	5’	vector	cluster	are	extracted.	
Once	the	5’	vector	and	rotation	distributions	have	been	identified,	parametric	density	
functions	are	fitted,	labeled	𝑃ÕÖi 	and	𝑃‹D#	respectively.	By	assuming	statistical	independence	
between	𝑃ÕÖi 	and	𝑃‹D# ,	a	simplified	model	can	be	used:	
	
	 𝑃vÎÏÐ i, j = 	 𝑃ÕÖi 𝑝B ,𝑝P ×	𝑃‹D# 𝑝B ,𝑝P 	 											(6.2)	
	

6.4	Graphical	Model	for	Probabilistic	Polysome	Detection	
	
The	objective	of	the	polysome	detection	method	can	be	stated	as	classification	of	input	
ribosome	particles	𝑃 = 𝑝Y, . . . ,𝑝C 	into	polysome	subsets,	i.e.	inferring	a	polysome-label	𝑥B 	
for	each	ribosome	particle	𝑝B .	The	probability	of	states	𝑋 = 𝑥Y, … , 𝑥C 	given	observations	P	
can	be	expressed	as	𝑃 𝑋 𝑃 ∝ 𝑃 𝑃 𝑋 𝑃 𝑋 ,	thus	the	calculation	of	MAP-associated	states	
takes	the form:	
	

	 𝑥∗ = arg	max	Ò𝑃 𝑃 𝑋 𝑃 𝑋 	 (6.3)	
	
Where	𝑃(𝑃|𝑋)	and	𝑃(𝑋)	are	the	observation	likelihood	and	label	prior	respectively.		
	
The	polysome-label	is	further	defined	as	the	index	of	the	ribosome	particle	at	the	3’	end	of	
the	polysome	sequence,	thus,	each	variable	𝑥B 	can	take	any	value	in	our	label	space	𝐿 =
{1,… ,𝑛}.	
	

6.4.1	Topology	Graph	of	Ribosomes	
	
The	topology	graph	describes	the	overall	organization	of	input	ribosome	particles	P	in	the	
coordinate	system	of	tomogram.	A	neighborhood	graph	𝐺 = (𝑉,𝐸)	is	derived	from	P,	where	
the	set	of	vertices	𝑉 = {1,… ,𝑛}	represents	particles.	An	ordered	pair	(𝑖, 𝑗) ∈ 𝐸	represents	a	
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directed	edge	connecting	vertices	𝑖, 𝑗 ∈ 𝑉.	The	neighborhood	graph	G	is	constructed	by	
connecting	vertices	if	the	corresponding	ribosome	particles	are	spatially	adjacent,	i.e.	an	
edge	(i,j)	is	created	if	 𝐭𝐢 − 𝐭𝐣 ≤ 𝑟vwx .	The	radial	parameter	𝑟vwx 	should	be	large	enough	to	
connect	polysomic	neighbors,	but	small	enough	to	yield	a	𝜖-neighborhood	graph.	Range	
queries	for	extraction	of	near-neighboring	particles	within	𝑟vwx 	are	computed	by	querying	a	
k-dimensional	tree	[Bentley,	1975]	constructed	from	3D	positions	 𝐭𝟏, . . . , 𝐭𝐧 .	In	this	
context,	directed	edges	can	be	understood	as	possible	mRNA	connections,	in	a	3’	to	5’	
direction.		
	
As	𝑃vÎÏÐ(𝑖, 𝑗)		models	the	probability	of	particle	𝑝P 	being	the	polysomic	neighbor	of	𝑝B 	on	
its	5’	side,	the	likelihood	function	can	be	expressed	as:	
	

	 𝑃 P X = ξ x[ τ 𝑥B , i
xÞ∈𝐱

	 (6.4)	

	
Where	𝜉(𝑖)	is	the	probability	of	𝑝B 	being	at	the	3’	end	of	a	polysome,	i.e.	the	probability	of	a	
polysome-label	i	.	While	𝜏(𝑖, 𝑗)	denotes	the	probability	of	an	mRNA	path	from	particle	𝑝B 	(3’	
side)	to	particle	𝑝P .	Using	graph	G,	𝜉(𝑖)	can	be	defined	as:	
	

	 ξ i = 1− Páâãä j, i
`∈ã [

	 (6.5)	

	
Here	𝑁(𝑖)	refers	to	the	set	of	neighbors	of	i	which	contribute	to	its	in-degree,	i.e.	the	set	of	
vertices	j	for	which	there	is	an	edge	(𝑗, 𝑖) ∈ 𝐸.	
	
Estimation	of	𝜏(𝑖, 𝑗)	considers	the	most	probable	mRNA	path	between	vertices.	The	most	
probable	path	from	vertex	i	to	vertex	j,	denoted	here	as	a	vertex	sequence	𝑃𝐴𝑇𝐻B→P ,	can	be	
computed	using	Dijkstra’s	shortest	path	algorithm	[Dijkstra,	1959]	by	setting	edge	weights	
as	the	negative	log	of	𝑃vÎÏÐ,	i.e.,	𝑤(𝑖, 𝑗) = −log	(𝑃vÎÏÐ(𝑖, 𝑗)). Assuming	edges	to	be	
statistically	independent,	the	probability	of	traversing	𝑃𝐴𝑇𝐻B→P 	becomes:	
	

	 τ i, j = −exp w(v³, v³tY)
éê∈ëä•ìí→î

	 (6.6)	

	
Where	v³ ∈ PATH[→`	indicates	the	𝑘#$	vertex	in	the	sequence	and	v³tY	the	next	vertex	in	the	
5’	direction.	figure	6.1	illustrates	a	simple	topology	graph,	exemplifying	computation	of	𝜉	
and	τ.	
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Figure	6.2:	Illustration	of	a	simple	Topology	graph.	(A)	Depiction	of	polysome-label	probability	ξ(s),	explicitly	
showing	N(s)	(dashed	line).	(B)	Using	Dijkstra’s	shortest	path	algorithm	to	find	the	path	that	minimizes	the	
sum	of	weights	(dashed	line),	corresponding	to	the	path	with	the	largest	mRNA	probability𝑃𝐴𝑇𝐻ñ→B .	
	

6.4.2	Markov	Random	Field	for	Maximum-A-Posteriori	Classification	
	
A	MRF	on	G	acts	as	a	prior	model	𝑃(𝑋)	for	the	hidden	random	variables	X,	under	the	set	of	
observations	P.	We	can	express	the	posterior	MRF	in	terms	of	a	sum	of	energies	(Gibbs	
energy),	having	a	prior	term	𝛹	and	an	observation	likelihood	term	𝛷	[Blake	et	al.,	2011]:	

	 𝑃 X 𝑃 = 	
1

𝑍(P)
exp(−𝐸(𝑋,P))	 (6.7)	

	

	 𝐸 𝑋,𝑃 = 	 Φ[ x[, p[
[∈õ

+ Ψ[`(x[, x`)
([,`)∈÷

	 (6.8)	

	
Both	single	and	pairwise	potential	functions,	𝛷	and	𝛹	respectively,	can	be	defined	as	to	
model	our	polysome	clustering	problem.	They	are	defined	as	follows:	
		

	 Φ[ x`, p` =
−[	log	(ξ j ) + log	(τ j, i )	] ∃	PATH`→[

−log	(0) ∄	PATH`→[
	 (6.9)	

	
	

	 Ψ[` x[, x` = 	
−log	(Páâãä i, j ) x[ = x`	and	(i, j) ⊂ PATH†í→`

−log	(0) else
	 (6.10)	

	
	
Using	this	model,	it	is	possible	to	efficiently	approximate	the	MAP	𝑥∗ = arg	max	x	𝑃(𝑋|𝑃).	
Using	loopy	belief	propagation,	specifically	the	max-product	algorithm,	the	general	energy	
function	𝐸(𝑋,𝑃)	can	minimized.	Since	the	energy	function	is	the	negative	log	of	the	
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posterior	probability,	we	can	compute	the	message	from	variable	𝑥P 	to	neighboring	variable	
𝑥B 	in	the	following	manner	[Blake	et	al.,	2011;	Weiss	&	Freeman,	2001b]:	
	

	 𝑀P→B 𝑥B = minxû ΦP 𝑥P,𝑝P +ΨBP 𝑥B , 𝑥P + 𝑀b→P 𝑥P
b∈Ï P :{B}

	 (6.11)	

	
After	a	number	of	iterations	(typically	3	to	5),	the	min-marginal	belief	𝑏B 	for	every	variable	
𝑥B 	is	computed:	
	

	 𝑏B 𝑥B = Φ[ 𝑥B ,𝑝B + 𝑀b→B 𝑥B
b∈Ï B

	 (6.12)	

	
A	MAP	estimate	for	variable	𝑥B 	can	later	be	obtained	as	𝑥B

∗ = arg	min	xÞ𝑏B(𝑥B),	where	𝑥B
∗	

indicates	the	inferred	polysome-label	for	particle	𝑝B .	
	
Loop	correction	procedure:	
Input:	Initial	polysome	sets	
Output:	Merged	polysome	sets	
	
1					for	all	labels	𝑠	do	
2										if	𝑠 ∉ Ωñ	then	
3															for	all	labels	𝑞	do	
4																				if	𝑠 ∈ Ω"then	
5																									set	Ω" 	to	Ω" ∪ Ωñ	
6																				end	if	
7															end	for	
8										end	if	
9					end	for	
	
Algorithm	6.1:	Procedure	to	merge	polysome	sets.	Cycles	in	G	with	high	𝑃vÎÏÐ	values	in	every	edge	have	an	ill-
defined	polysome-label,	since	probability	ξ	is	low	for	all	vertices	in	the	cycle.	MAP	classification	tends	to	
fragment	these	cycles	into	several	polysome	sets.	This	algorithm	was	used	to	merge	polysome	sets	that	
present	such	behavior.	
	

6.4.3	Polysome	Clustering	
	
Once	the	MAP	estimate	for	X	has	been	calculated,	ribosome	particles	are	grouped	into	
polysome	sets	according	to	their	polysome-label	assignment.	A	polysome	set	with	label	s	is	
denoted	as	𝛺ñ,	representing	a	polysome	where	the	ribosome	particle	s	is	positioned	at	the	3’	
end	of	the	mRNA	sequence.	
	
Circular	polysomes	can	generate	loops	in	the	topology	graph	(i.e.,	edges	with	high	
probabilities	between	5’	and	3’	polysomic	ends).	In	such	cases	the	above	method	fragments	
true	polysomes	into	separate	polysomes.	A	consistent	observation	is	that	ribosome	
particles	designated	as	3’-labels	of	polysome	fragments,	are	not	elements	of	their	own	
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representative	polysome	set,	i.e.	𝑠	 ∉ 𝛺ñ,	but	elements	of	a	neighboring	polysome	fragment.	
This	observation	can	be	used	to	overcome	this	issue,	by	merging	polysome	fragments	in	a	
post-processing	step.	Algorithm	6.1	is	used	to	merge	polysome	sets	when	heavily	weighted	
cycles	in	G	lead	to	fragmentation.	
	

6.5	Tomogram	Datasets	
	
The	above-described	detection	was	applied	to	three	distinct	datasets:	(1)	an	expert-curated	
dataset	of	tomograms	from	bacterial	lysates	[F.	Brandt	et	al.,	2009]	(section	3.2.2.1),	and	(2)	
a	simulated	dataset	of	bacterial	lysate	tomograms	(section	3.2.2.2),	analogous	to	the	
experimental	dataset.	This	application	was	chosen	since	the	topological	features	of	
characteristic	polysome	arrangements	have	been	well	investigated,	moreover,	the	set	of	
ribosome	particles	detected	in	the	experimental	dataset	was	subjected	to	visual	inspection	
and	manually	classified	into	polysome	and	monosome	classes	[F.	Brandt	et	al.,	2009].	Using	
the	polysome	sets	identified	by	[F.	Brandt	et	al.,	2009],	a	benchmark	dataset	was	derived	for	
quantitative	evaluation	of	the	polysome	detection	methodology.	(3)	a	dataset	of	tomograms	
from	microsomal	preparations	of	rough	ER,	derived	from	mouse	myeloma	cells	(section	
3.2.2.3).	Microsome	tomograms	contained	both	ER-associated	ribosomes	and	cytosolic	
ribosomes,	making	the	dataset	an	attractive	candidate	for	polysome	detection.	For	each	
dataset,	a	large	amount	of	peaks	was	extracted	to	ensure	high	sensitivity,	a	requirement	for	
recuperating	true	supramolecular	arrangements.	While	specificity	was	sacrificed,	for	this	
particular	analysis,	false	positive	particles	are	preferred	against	false	negatives.	
	

6.6	Results	
	
The	first	step	in	the	proposed	polysome	detection	methodology	is	to	define	a	local	
arrangement	model	𝑃vÎÏÐ	for	each	type	of	polysome.	Here	3	models	are	defined,	for	
cytosolic	bacterial,	ER-associated,	and	cytosolic	mammalian	polysomes.	The	cytosolic	
bacterial	model	was	used	for	quantitative	evaluation	of	the	polysome	detection	method	on	
simulated	and	experimental	tomogram	of	bacterial	lysates.	The	ER-associated	and	cytosolic	
mammalian	models	were	used	for polysome	detection	and	analysis	in	tomograms	of	rough	
ER	microsomes.	
	

6.6.1	Local	Model	of	Cytosolic	Bacterial	Polysomes	
	
A	training	dataset	of	three	tomograms	of	E.coli	lysate	(section	3.2.2.1)	was	used	to	derive	a	
𝑃vÎÏÐ	model	for	cytosolic	bacterial	polysomes.	Previous	analysis	of	this	dataset	revealed	
two	characteristic	local	arrangements	between	neighboring	70S	ribosomes,	top-to-top	(t-t)	
and	top-to-bottom	(t-b),	giving	rise	to	pseudo-helical	and	pseudo-planar	organizations	of	
polysomes	[F.	Brandt	et	al.,	2009].	Local	geometric	analysis	of	the	training	dataset	yielded	
results	similar	to	what	has	previously	reported	in	[F.	Brandt	et	al.,	2009],	modes	of	the	
vector	and	relative	rotation	distributions	were	consistent	with	t-t	and	t-b	configurations	
(figure	6.3).	
	
From	the	training	dataset,	360	ribosome	particles	were	identified	in	pseudo-helical	and	
pseudo-planar	polysomes	by	visual	inspection.	Local	geometric	analysis	revealed	2	distinct	
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clusters	of	mRNA	exit-to-entry	vectors,	corresponding	to	neighboring	ribosomes	on	the	5’	
and	3’	polysome	directions	from	the	reference	ribosome	(figure	6.3	A).	A	3D	Gaussian	
density	function	in	Cartesian	space	(𝑃ÕÖi)	was	fitted	to	the	5’	cluster	of	183	vectors	(figure	
6.3	B).	The	distribution	of	relative	rotations	corresponding	to	the	5’	vector	cluster	is	
bimodal,	describing	both	t-t	and	t-b	configurations.	To	model	this	orientation	distribution,	
we	define 𝑃‹D# as mixture model of two Bingham	distributions; one Bingham	density
function	was	fitted	to	the	31	quaternions	of	the	t-b	cluster,	while	the	second	was	fitted	to	
152	quaternions	of	the	t-t	cluster.	
	

	
Figure	6.3:	Local	geometric	analysis	of	bacterial	Ribosomes.	mRNA	exit-to-entry	vector	and	relative	rotation	
distribution	from	a	training	dataset	of	3	tomograms.	(A)	Density	of	mRNA	exit-to-entry	vectors.	(B)	3D	
Gaussian	fit	for	the	5’	cluster	with	a	goodness-of-fit	𝜒‹Ö&

; = 1.28.	(C)	Relative	rotation	distribution	of	the	5’	
cluster,	showing	the	t-t	and	t-b	clusters,	Bingham	distributions	were	fitted	to	the	t-t	and	t-b	clusters	with	a	
goodness-of-fit	of	𝜒‹Ö&

; = 1.28	and	𝜒‹Ö&
; = 7.41	respectively.	The	Euler	angle	density	shows	the	mixture	model	

of	the	fitted	Bingham	distributions.	

 t-b
t-t

��
�
�
�

��
�
�
�

����������
� ��� ��� ���

�
�
�
�

�
�
�

�
�
�

� ��� ��� ���

�
�
�

�
�
�

�
�
�

�

8e−05

��
��
�
�

������

0.01

0.0919

�
�
�
�
��
�
�����

��
�
���

�
�
�
��
���
�
�
�
���

2σ

−
2
0

−
1
0

�
�
�

�
�

−20 −10 � �� ��

������

��
��
�
�

3σ

1σ

�

�

�

−
2
0

−
1
0

�
�
�

�
�

−20 −10 � �� ��

��
��
�
�

������

−
2
0

−
1
0

�
�
�

�
�

−20 −10 � �� ��

2σ

3σ

1σ

������

−
2
0

−
1
0

�
�
�

�
�

−20 −10 � �� ��

��
��
�
�

5’

3’

5’ 3’



	 69	

6.6.2	Quantitative	Evaluation	of	Bacterial	Polysome	Detection	
	
Once	a	𝑃vÎÏÐ	model	for	cytosolic	bacterial	polysomes	was	defines,	the	experimental	(the	
three	remaining	tomograms)	and	simulated	datasets	of	cytosolic	polysomes	from	bacterial	
lysate	(sections	3.2.2.1,	3.2.2.2)	were	used	for	quantitative	evaluation	of	the	proposed	
polysome	detection	method.	The	experimental	dataset	was	manually	curated:	a	subset	of	
ribosome	particles	was	identified	as	polysomes	in	pseudo-helical	and	pseudo-planar	
topologies,	their	local	arrangement	was	inspected	to	select	only	t-t	and	t-b	local	
configurations	[F.	Brandt	et	al.,	2009]	and	used	as	a	positive	class,	whereas	the	remaining	
detected	ribosomes	were	labeled	as	negative	particles.	The	set	of	negative	particles	ΩZ'(	
was	defined	as	monosome	particles,	or	false	positive	ribosomes.	Furthermore,	the	amount	
of	peaks	extracted	from	the	synthetic	tomograms	was	oversampled	to	ensure	high	coverage	
of	both	positive	and	monosome	classes.		
	
A	polysome	set	from	the	benchmarked	positive	class	is	denoted	Ωñ) ,	as	opposed	to	the	
inferred	polysomes	Ω*	from	the	detection	method.	Performance	measures	were	calculated	
as	follows:	
	

	 TP = Ω* ∩ 	Ωñ)

*

	 (6.13)	

	

	 FP = Ω* − Ω* ∩ 	Ωñ)

*

	 (6.14)	

	

	 TN =
ΩZ,[*'
ΩZ'(
ΩZ,[*'

− ΩZ'( ∩ Ω*
*

	 (6.15)	

	

	 FN = 	Ωñ) − Ω* ∩ 	Ωñ)

*

	 (6.16)	

	
Where	TP:	number	of	true	positives,	FP:	number	of	false	positives,	TN:	number	of	true	
negatives,	and	FN:	number	of	false	negatives.	Performance	measures	are	shown	in	table	6.1,	
examples	of	detected	polysomes	in	the	experimental	dataset	are	depicted	in	figure	6.4.	
	

Dataset	 Accuracy	 Precision	 Recall	
Synthetic	 97.6%	 81.3%	 87.1%	
Experimental	 96.2%	 82.6%	 80.0%	

Table	6.1:	Performance	measures	of	polysome	detection	on	simulated	and	experimental	datasets	of	bacterial	
lysate.	Accuracy	=	(TP	+	TN)/(TP	+	TN	+	FP	+	FN),	Precision	=	TP/(TP	+	FP),	Recall	=	TP/(TP	+	FN).		
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Figure	6.4:	Detected	cytosolic	polysomes	in	tomograms	of	bacterial	lysate.	Examples	of	detected	pseudo-
helical	(A,	B,	C)	and	pseudo-planar	(D,	E,	F)	topologies.	Tomographic	cross-sections	(1)	of	the	detected	
polysome	are	shown	next	to	the	rendered	model	of	the	corresponding	Ribosome	particles	(2),	small	and	large	
ribosomal	subunit	in	yellow	and	blue	respectively.	
	

6.6.3	Local	Model	of	ER-Associated	Polysomes	
	
From	a	training	dataset	of	five	tomograms	of	rough	microsomes,	exhaustive	peak	extraction	
during	the	template	matching	procedure	yielded	total	of	9,063	particles.	Subsequently,	
CPCA	classification	produced	a	subset	of	7,081	positive	ribosome	particles.	Visual	
inspection	further	reduced	this	set	to	635	ribosome	particles	bound	to	the	microsomal	
membrane.	
	
Membrane	bound	ribosome	particles	were	used	to	derive	a	𝑃vÎÏÐ	model.	Through	local	
geometric	analysis,	5’	and	3’	mRNA	exit-to-entry	vector	clusters	were	identified	(figure	6.5	
A),	and	a	3D	Gaussian	function	was	fitted	to	172	vectors	in	the	5’	cluster	(figure	6.5	B),	
designated	as	component	𝑃ÕÖi 	in	the	𝑃vÎÏÐ	model.	Furthermore,	the	distribution	of	relative	
rotations	associated	to	the	5’	vector	cluster	was	reduced	to	the	in-plane	rotation	with	
respect	to	the	membrane	plane	(figure	6.5	C)	allowing	the	distribution	to	be	described	by	
one	parameter	only.		𝑃‹D#	was	modeled	as	a	1D	bimodal	Gaussian	mixture	(figure	6.5	D).	
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Figure	6.5:	Local	geometric	analysis	of	neighboring	ER-associated	ribosomes.	mRNA	exit-to-entry	vector	and	
relative	rotation	distribution	from	a	training	dataset	of	5	tomograms.	(A)	Density	of	mRNA	exit-to-entry	
vectors.	(B)	3D	Gaussian	fit	for	the	5’	cluster	with	a	goodness-of-fit	𝜒‹Ö&

; = 1.16.	The	distribution	of	(C)	relative	
in-plane	rotations	with	respect	to	the	ER	membrane,	(D)	associated	with	the	5’	cluster	of	mRNA	exit-to-entry	
vectors,	show	a	peak	at	335°.	The	rotation	distribution	was	modeled	by	a	bimodal	Gaussian	mixture	(red	
curve)	with	a	goodness-of-fit	𝜒‹Ö&

; = 0.98	(𝜇Y = 333.8°,𝜎Y = 	24.8°, 𝜇; = 256.9°,𝜎; = 53.9°).	
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6.6.4	Local	Model	of	Cytosolic	Mammalian	Polysomes	
	
Using	the	local	model	for	ER-associated	polysomes	(section	6.6.3),	the	polysome	detection	
method	was	applied	to	the	training	dataset	of	five	rough	microsome	tomograms,	with	the	
aim	of	segregating	ER-associated	polysomes	from	cytosolic	ribosomes,	thus	identifying	
potential	candidates	for	cytosolic	polysomes.	From	the	set	of	7,081	positive	ribosome	
particles,	the	polysome	detection	method	produced	a	subset	of	5,914	monosome	particles,	
i.e.	ribosome	particles	uncorrelated	with	the	𝑃vÎÏÐ	model	for	ER-associate	polysomes.	This	
monosome	class	was	subsequently	used	to	generate	the	𝑃vÎÏÐ	model for	cytosolic	
mammalian	polysomes.	
	
Local	geometric	analysis	of	candidate	particles	for	cytosolic	polysomes	elucidates	two	well	
defined	clusters	of	mRNA	exit-to-entry	vectors,	in	agreement	with	3’	and	5’	polysomic	
neighbors	(figure	6.6	A).	Furthermore,	a	3D	Gaussian	function	was	fitted	to	the	5’	cluster	of	
1,917	coordinates	and	defined	as	component	𝑃ÕÖi 	(figure	6.6	B).	Similarly	to	the	bacterial	
model,	the	relative	rotation	distribution	of	the	5’	cluster	appears	to	be	bimodal	(figure	6.6	
C).	The	rotation	distribution	was	segmented	into	two	clusters	of	1,100	(figure	6.6	F)	and	
817	quaternions	(figure	6.6	H).	Two	Bingham	functions	were	fitted	(figure	6.6	G,	I),	and	𝑃‹D#	
was	defined	as	the	corresponding	Bingham	mixture	model.	Bingham	modes	show	local	
arrangements	consistent	with	bacterial	t-t	and	t-b	configurations	(figure	6.6	D,	E).	
	

6.6.5	Analysis	of	ER-Associated	and	Cytosolic	Mammalian	Polysomes	
	
Once	𝑃vÎÏÐ	models	for	ER-associated	and	cytosolic	mammalian	polysomes	were	derived	
from	the	training	dataset,	polysome	detection	was	applied	to	a	dataset	of	13	tomograms	of	
rough	ER	microsomes.	Visual	inspection	of	tomograms	revealed	two	distinct	populations	of	
ribosomes,	membrane	bound	and	cytosolic	(figure	6.11	A).	Initially,	a	total	of	25,186	
ribosome	particles	from	13	tomograms,	both	true	positives	and	false	positives,	were	used	
as	input	to	detect	membrane	bound	polysomes.	The	method	was	applied	using	the	𝑃vÎÏÐ	
model	from	ER-associated	ribosomes	(section	6.6.3).	A	second	round	of	polysome	detection	
was	applied	using	the	cytosolic	mammalian	𝑃vÎÏÐ	model	(section	6.6.4).	In	this	manner,	
membrane	bound	(1,756	particles,	6.97%	of	the	total	amount	of	particles)	and	cytosolic	
polysome	sets	(7,533	particles,	29.91%	of	the	total	amount	of	particles)	were	extracted,	and	
the	remaining	monosome	particles	from	both	detection	rounds	were	merged	into	a	
monosome	set	(15,897	particles,	63.11%	of	the	total	amount	of	particles).	
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Figure	6.6:	Local	geometric	analysis	of	cytosolic	80S	Ribosomes.	mRNA	exit-to-entry	vector	and	relative	
rotation	distribution	from	a	training	dataset	of	5	tomograms.	(A)	Density	of	mRNA	exit-to-entry	vectors.	(B)	
3D	Gaussian	fit	for	the	5’	cluster	with	a	goodness-of-fit	𝜒‹Ö&

; = 1.02.	(C)	Relative	rotation	distribution	of	the	5’	
clusters	in	Euler	angle	space	showing	2	clear	clusters,	corresponding	to	the	top-to-top	(t-t)	and	top-to-bottom	
(t-b)	arrangements.	Rendered	models	of	cluster	modes,	depicting	t-t	(D)	and	t-b	(E)	arrangements	(large	
subunit	of	reference	Ribosome	in	light	blue,	large	subunit	of	neighboring	Ribosome	in	dark	blue,	small	
subunits	in	yellow).	Bingham	distributions	were	fitted	to	t-t	(F)	and	t-b	(H)	clusters,	the	goodness-of-fit	for	t-t	
cluster	was	𝜒‹Ö&

; = 1.17	(G),	while	the	fit	for	the	t-b	cluster	(I)	provided	a	𝜒‹Ö&
; = 1.15.	
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Figure	6.7:	Detected	ER-associated	polysomes	in	tomograms	of	microsome	preparations.	Examples	from	a	
range	of	detected	topologies,	from	slightly	curved	(E,	F)	to	spiral-like	(B,	C)	and	circular	(A).	Tomographic	
cross-sections	(1)	of	detected	polysomes	(framed	region)	are	shown	next	to	a	rendered	model	(2),	small	and	
large	ribosomal	subunit	in	yellow	and	blue	respectively.	
	
	

	
Figure	6.8:	Histogram	of	polysome	size,	and	relative	amount	of	false	positive	particles	by	polysome	size.	
Particle	distribution	by	polysome	size,	for	ER-associated	and	cytosolic	polysomes	(A).	Relative	concentration	
of	false	positive	ribosome	particles	over	detected	polysome	size	(B).	
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Figure	6.9:	Morphology	of	detected	ER-associated	and	cytosolic	polysomes.	Histogram	of	detected	ER	
polysome	(A)	and	cytosolic	(B)	topologies.	Rendered	models	of	predominant	topology	types,	show	top	views	
of	linear	(C),	curved	(D),	spiral-like	(E),	circular	(F)	and	hairpin	(G)	ER-associated	polysomes,	and	examples	of	
cytosolic	polysomes	in	circular	(H,	I),	helical	(J),	mixed	(K),	and	planar	(L,	M)	conformations.	Full	models	(1)	
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are	shown	next	to	their	corresponding	mRNA	paths	(2).	Large	and	small	ribosomal	subunits	in	blue	and	
yellow	respectively,	mRNA	path	in	red,	ER	membrane	depicted	in	gray,	green	cones	marking	peptide	exit.	
Scale	bar:	50	nm.	

	
Figure	6.10:	Subtomogram	classification	based	on	polysome	detection	of	ER	and	mammalian	cytosolic	
polysomes.	Three	subtomogram	classes	of	80S	Ribosomes	were	derived	from	polysome	detection:	ER	
polysome,	cytosolic	polysome,	and	a	monosome	class.	Averages	of	these	3	classes	where	computed,	the	
monosome	class	was	further	subjected	to	CPCA	classification	to	separate	the	ER-associated	and	cytosolic	
monosome	classes.	Difference	maps	of	monosome	and	polysome	classes	(light	blue	iso-surface,	4σ)	reveal	
significant	density	differences	at	the	tRNA	P-site.	Since	this	analysis	was	mainly	focused	on	large	structural	
features,	all	averages	were	filtered	to	5	nm	resolution.	
	
figure	6.7	shows	examples	of	ER-associated	polysomes,	as	detected	by	the	proposed	
methodology.	The	distribution	of	ribosomes	and	concentration	of	false	positive	particles	
over	polysome	size	is	depicted	on	figure	6.8	A	and	6.8	B	respectively.	figure	6.9	shows	the	
amount	of	characteristic	topology	types	found	for	both	membrane-bound	and	cytosolic	
polysomes.	
	
Furthermore,	CPCA	classification	was	applied	to	the	subset	of	true	positive	ribosome	
particles	in	the	monosome	class	(10,644	particles).	Classification	was	focused	on	the	ER	
membrane,	i.e.,	a	classification	mask	covering	only	the	membrane	region	was	used,	yielding	
2	subclasses,	one	with	clear	membrane	signal	(7,171	particles,	67.37%	of	the	true	positive	
particles	in	the	monosome	class),	and	one	without	(3,473	particles,	32.63%	of	the	true	
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positive	particles	in	the	monosome	class).	Averages	of	the	ER	and	cytosolic	monosome	
subclasses	were	compared	against	averages	of	true	positive	ER	(1,380	particles)	and	
cytosolic	(6,675	particles)	polysome	sets,	respectively	(figure	6.10).	
	

	
Figure	6.11:	Experimental	overview	of	the	polysome	detection	methodology	on	tomograms	of	rough	ER	
microsomes.	(A)	Cross-section	of	source	tomogram,	marking	examples	of	membrane	bound	(A.1)	and	
cytosolic	(A.2)	polysomes.	(B)	Rendered	tomogram	of	detected	80S	ribosome	particles	(blue)	and	microsomal	
membrane	(gray).	(C)	Topology	graph	of	ribosome	particles.	(D,	E)	Rendered	examples	of	detected	ER-
associated	(large	subunit	in	light	blue)	and	cytosolic	(large	subunit	in	dark	blue)	polysomes,	small	subunits	in	
yellow,	mRNA	path	in	red,	ER	membrane	in	gray,	green	cones	marking	peptide	exit.	(F,	G)	Different	
perspectives	of	highlighted	polysomes	in	(E).	Scale	bars:	250	nm.	
	

6.7	Discussion	
	
Here	a	method	is	presented	for	detection	of	polysomes	in	cryo-electron	tomograms.	
Putative	ribosome	particles	are	represented	as	a	3D	neighborhood	graph,	a	probabilistic	
graphical	model	is	embedded	on	the	graph	to	classify	ribosomes	into	polysomes,	based	on	
local	geometric	templates	of	predominant	polysome	topologies,	as	observed in	training	
datasets.	A	neighborhood	graph	of	the	3D	distribution	of	ribosome	positions	in	a	tomogram	
can	be	efficiently	computed	using	a	k-dimensional	tree	for	3D	range	queries,	allowing	large	
position	sets	to	be	processed	in	affordable	time.	Edge	weights	in	the	graph	are	derived	from	
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the	likelihood	of	mRNA	connection,	based	on	previously	constructed	models	of	the	local	
geometric	signature	of	polysome	topologies.	Graph	theory	was	used	to	define	polysome	
detection	as	a	classification	problem	on	a	MRF.	Finally,	loopy	belief	propagation	is	used	to	
cluster	ribosome	particles	into	polysomes.	
	
We assessed the performance of the method on simulated and experimental tomograms of
E.	coli	lysates.	Quantitative	evaluation	shows	encouraging	results,	in	particular	in	terms	of	
prediction	accuracy	(>96%).		Moreover,	the	method	was	able	to	retrieve	pseudo-helical	and	
pseudo-planar	topologies	from	ribosome-rich	environments	of	bacterial	lysate	[F.	Brandt	et	
al.,	2009]:	30S	subunits	are	buried	within	the	supramolecular	structure,	bringing	mRNA	exit	
and	entry	sites	from	adjacent	ribosomes	in	close	proximity.	The	50S	subunits	are	arranged	
outwards	towards	the	cytosol,	exposing	the	tRNA	entry	site	and	peptide	exit	site.	It	has	
been	suggested	that	these	characteristic	topologies	provide	protection	from	mRNA	decay	
by	sequestering	the	mRNA	molecule	inside	the	polysome	structure,	shielding	it	from	
RNases	[Arnold	et	al.,	1998],	while	the	positions	of	the	50S	subunits	provide	space	for	the	
co-translational	folding	machinery,	protecting	nascent	polypeptides	from	potentially	toxic	
aggregation	[Deuerling	et	al.,	1999;	Teter	et	al.,	1999]	in	the	highly	crowded	cellular	
environment.	Furthermore,	detected	ER-associated	polysomes	are	also	in	good	agreement	
with	previously	observed	topologies	of	circular,	spiral,	and	curved	polysome	arrangements	
[S.	Y.	Lee	et	al.,	1971;	Palade,	1964].	Neighboring	40S	subunits	tend	to	minimize	the	
distance	between	their	mRNA	exit	and	entry	sites,	bringing	the	mRNA	molecule	into	a	
smoothly	curved	path,	while	the	60S	subunits	point	their	peptide	exit	sites	towards	the	ER-
membrane,	exposing	their	nascent	polypeptides	to	the	translocation	machinery	[Pfeffer	et	
al.,	2012].	Interestingly,	detected	topologies	of	cytosolic	polysomes	in	tomograms	of	
bacterial	lysate	and	mammalian	microsomal	preparations	were	remarkably	similar,	and	in	
agreement	with	those	observed	in	CET	studies	of	human	cells	[F.	Brandt	et	al.,	2010],	
indicating	that	this	methodology	may	also	enable	structural	analysis	of	polysomes	under	
physiological	conditions.	Moreover,	this	method	was	successfully	applied	in	a	cryo-FIB	
milled	tomogram	from	the	nuclear	periphery	of	a	HeLa	cell,	with	the	aim	of	detecting	
polysomes	bound	to	the	nuclear	envelope	and	the	ER	[Mahamid	et	al.,	2016].					
	
Theoretically	speaking,	since	the	polysome	detection	method	assumes	statistical	
independence	of	graph	edges,	the	probability	of	an	mRNA	path	tends	to	collapse	as	the	path	
length	increases.	This	methodological	property	could	preclude	detection	of	long	polysomes,	
while	the	presence	of	this	systemic	bias	remains	to	be	evaluated,	it	could	explain	why	the	
majority	of	80S	ribosome	particles	were	classified	as	monosomes	or	assigned	to	small	
polysomes,	with	only	few	inferred	polysomes	larger	than	6	ribosomes	long.	However,	
subtomogram	analysis	of	the	predicted	polysome	and	monosome	classes	does	not	suggest	a	
significant	bias,	averages	of	ribosome	particles	from	cytosolic	and	ER-associated	polysomes	
classes	show	clear	densities	co-localizing	with	polysomic	neighbors,	as	opposed	the	
monosome	average.	Subsequent	comparison	of	polysome	averages	with	their	
corresponding	monosome	class	average,	show	a	significant	density	difference	at	the	tRNA	
P-site,	consistent	with	passive	and	actively	translating	ribosomes.	It	is	noteworthy	that	the	
relative	concentration	of	false	positive	80S	particles	was	significantly	higher	in	the	
monosome	class	and	in	small	polysomes	(2	–	3	ribosome	long),	as	expected	since	their	local	
geometric	configurations	are	unlikely	to	correlate	with	𝑃vÎÏÐ.	Furthermore,	the	proposed	
method	was	applied	to	detect	yeast	cytosolic	polysomes	in	tomograms	of	monosome	and	
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polysome	containing	fractions	of	cell	lysate.	The	analysis	yielded	a	distribution	of	inferred	
polysome	lengths	consistent	with	polysome	profiling	by	sucrose	gradient	centrifugation	of	
cell	lysates	[Pospísek	&	Valásek,	2013], thus	providing	biochemical	validation	of	the	above-
described	polysome	detection	method	[Burbaum,	2015].	
	
The method still holds considerable potential for improvement. The 𝑃vÎÏÐ model aims to
approximate	the	likelihood	of	mRNA	connection	between	two	adjacent	ribosomes,	given	
their	relative	geometric	arrangement.	Here,	the	mRNA	exit-to-entry	vector	and	relative	
rotation	of	a	ribosome	dimer	are	considered	statistically	independent.	This	is	certainly	a	
simplified	model,	since	it	is	expected	that	both	components	are	functions	of	the	same	
physiological	elements	driving	the	pressure	for	the	preferred	supramolecular	arrangements	
of	polysomes	e.g.,	shape	of	the	ribosome,	spatial	restrictions	in	the	cellular	environment,	
and	optimization	of	the	folding	process	of	nascent	peptides.	However,	this	convoluted	
intracellular	process	is	challenging	to	model.	It	is	noteworthy	that	tomograms	of	different	
biological	systems	and	sample	preparations	with	varying	amounts	of	ribosome	density	can	
provide	significantly	different	parameters	for	𝑃vÎÏÐ,	overfitting	the	local	geometric	model	
towards	a	specific	dataset.	
	
Furthermore,	polysome	detection	is	defined	in	terms	of	potential	functions	within	a	Markov	
random	field	(equations	6.9	and	6.10),	which	theoretically	speaking,	do	not	have	specific	
probabilistic	interpretations.	While	direct	probabilistic	modeling	of	the	polysome	detection	
problem	could	be	possible	using	a	different	graphical	models	(e.g.	a	Bayesian	network	or	a	
factor	graph),	their	performance	for	this	particular	application	is	still	to	be	evaluated.	
Another	caveat	of	the	proposed	methodology	is	the	lack	of	theoretical	assurances	for	the	
convergence	of	loopy	belief	propagation	into	a	stable	solution.	Nevertheless,	quantitative	
evaluation	(table	6.1)	and	visual	inspection	of	detected	polysomes	confirms	that	loopy	
belief	propagation	in	conjunction	with	the	simplified	𝑃vÎÏÐ	model,	is	capable	of	
approximating	a	MAP	classification	solution	with	enough	accuracy	to	detect	characteristic	
polysome	topologies.		
	
Moreover,	the	method	hinges	on	the	accuracy	of	ribosome	detection.	False	positives	and	
negatives	from	template	matching	can	potentially	affect	the	performance	of	the	polysome	
detection	method.	False	positives	are	not	likely	to	generate	large	errors	at	polysome	
detection;	the	method	regards	them	as	monosome	particles	since	the	3D	arrangement	of	
their	neighboring	particles	is	highly	unlikely	to	correlate	with	the	𝑃vÎÏÐ	model.	In	contrast,	
false	negatives	may	significantly	reduce	chance	of	providing	the	required	ribosome	
particles	necessary	for	detecting	complete	polysome	sequences,	in	such	cases,	the	detection	
method	will	identify	sequence	fragments	as	separate	polysomes.	For	the	purpose	of	
polysome	detection,	it	is	preferable	to	oversample	the	amount	of	template	matching	peaks.	
	

	
	



	 80	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 81	

7.	Conclusion	
	
This	thesis	presents	a	generalized	statistical	method	for	quantifying	the	3D	organization	of	
macromolecular	complexes	within	cryo-electron	tomograms.	Chapter	4	describes	the	
procedure	for	local	geometric	analysis	of	adjacent	macromolecules	(e.g.	center-to-center	
vectors	and	relative	rotations),	with	the	aim	of	identifying	particle	pairs	that	have	specific	
geometric	relationships.	Previous	visual	proteomics	studies	have	been	restricted	to	the	
generation	of	macromolecular	atlases	in	cellular	volumes,	providing	only	the	3D	position	
and	orientation	of	particles	[Beck	et	al.,	2009;	Ortiz	et	al.,	2006],	but	not	progressing	
further.	While	some	CET	studies	have	presented	near-neighbor	analyses,	these	applications	
have	been	focused	on	ribosomes	[F.	Brandt	et	al.,	2009,	2010;	Pfeffer	et	al.,	2012;	Pfeffer,	
Woellhaf,	et	al.,	2015].	This	thesis	proposes	an	analysis	that	can	be	applied	to	any	
macromolecular	complex,	incorporating	macromolecule	symmetry	and	can	generate	RDFs,	
allowing	statistical	description	of	macromolecular	distributions.	Implementation	of	the	
toolbox	for	local	geometric	analysis	was	based	on	the	PyTom	software	[Hrabe	et	al.,	2012],	
in	the	hope	that	future	users	might	find	it	useful.		
	
In	chapter	5,	the	method	described	in	chapter	4	was	applied	to	study	the	local	organization	
of	RuBisCO	complexes	within	the	pyrenoid	of	C.	reinhardtii	cells.	Subtomogram	analysis	
yielded	a	16	A	in	situ	structure	of	the	RuBisCO	complex.	Local	geometric	analysis	of	
RuBisCO	particles	suggests	a	fluid-like	pyrenoid	matrix.	The	RDF	(figure	5.8	A)	indicates	
short-range	order	but	no	long-range	order,	with	the	first	NN	radial	shell	located	within	a	
center-to-center	distance	of	~10-18	nm.	Furthermore,	the	distribution	of	center-to-center	
vectors	and	relative	rotations	suggests	high	flexibility	in	particle	pair	configurations.	
Finally,	predominant	3D	arrangements	of	RuBisCO	complex	pairs	were	identified	and	
unified	into	a	geometric	model	of	the	unit	cell	of	RuBisCO	complexes,	with	a	3D	
configuration	similar	to	that	of	closely	packed	spheres.		
	
Chapter	6	progresses	from	local	neighborhood	analysis	to	the	identification	of	
supramolecular	structures,	presenting	a	graph-based	method	for	probabilistic	polysome	
detection.	This	method	is	the	first	of	its	kind,	there	has	not	been	any	method	for	CET	that	
allows	detection	of	higher-order	structures.	Moreover,	since	this	method	utilizes	only	
geometric	information	(i.e.	positions	and	orientations	of	ribosomes),	it	is	intrinsically	
compatible	with	visual	proteomics.	�������,	the	approach	outlined	in	chapter	4	was	applied	
to	a	training	dataset	of	tomograms	to	derive	statistical	models	for	the	3D	configuration	of	
neighboring	ribosomes	within	polysomes.	These	𝑃vÎÏÐ	models	were	then	used	as	local	
geometric	templates	within	a	Markov	random	field	to	detect	flexible	extrapolations	of	
ribosome	pair	arrangements.	Quantitative	evaluation	of	the	method	indicated	a	96%	
prediction	accuracy.	Furthermore,	visual	inspection	of	the	predicted	polysomes	confirmed	
the	identification	of	characteristic	polysome	structures.�
	
The	proposed	methodologies	in	this	thesis	can	still	be	improved	and	extended.	For	the	
quaternion	analysis	presented	in	chapter	4,	it	would	be	useful	to	implement	a	maximum-
likelihood	method	for	Bingham	mixture	model	fitting.	An	expectation–maximization	
method	could	use	the	quaternion	clustering	procedure	described	in	chapter	4	as	an	
initialization	strategy	to	increase	the	rate	of	convergence.	Furthermore,	the	𝑃vÎÏÐ	model	
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proposed	in	chapter	6	still	has	room	for	improvement.	A	simplified 𝑃vÎÏÐ	model	was	used,	
which	considers	the	distributions	of	mRNA	exit-to-entry	vectors	and	relative	rotations	from	
adjacent	ribosomes	to	be	statistically	independent.	However,	it	is	clear	that	these	variables	
are	correlated.	Thus,	a	𝑃vÎÏÐ	model	that	incorporates	such	a	relationship	might	yield	better	
results.	

Visual	proteomics	aims	to	quantify	the	3D	organization	of	a	variety	of	complexes	within	the	
cellular	landscapes	of	in	situ	cryo-electron	tomograms.	To	accomplish	this	goal,	it	will	be	
important	to	develop	geometric	analysis	methods	that	handle	multiple	particle	classes	(i.e.	
different	types	macromolecular	complexes).	An	input	dataset	could	be	generated	by	
template	matching	a	tomogram	with	a	library	of	structural	templates,	followed	by	
refinement	with	subtomogram	averaging	and	classification.	In	a	multi-class	geometric	
analysis	scheme,	one	class	of	macromolecules	could	be	set	as	‘reference’	particles	(e.g.	
RuBisCO	complexes),	while	a	second	class	could	be	defined	as	‘neighbor’	particles	(e.g.	
RuBisCO	activases).	This	would	enable	the	detection	of	particles	in	the	neighbor	class	that	
are	adjacent	to	reference	particles.	Subsequent	geometric	analysis	with	the	methodology	
outlined	in	chapter	4	would	allow	the	identification	of	interacting	partners	and	their	
specific	3D	arrangements.	Fitting	atomic	models	into	subtomogram	averages	of	these	
interacting	partners	would	help	elucidate	the molecular	surfaces	that	mediate	their	
interaction.	An	additional	research	direction	worth	exploring	is	a	graph-based	method	for	
supramolecular	structure	detection.	This	approach	can	handle	multiple	particle	classes	and	
can	identify	flexible	structures	that	have	higher	topological	complexity	than	the	linear	
sequences	of	macromolecules	found	in	polysomes.		
	
Visual	proteomics	will	require	methods	for	the	parallel	statistical	analysis	of	geometric	
information	from	numerous	classes	of	molecular	complexes.	While	it	is	true	that	geometry-
based	methods	hinge	on	the	accuracy	of	macromolecule	identification	in	cryo-electron	
tomograms,	recent	advances	in	TEM	hardware,	including	direct	electron	detectors	[Cheng,	
2015]	and	the	Volta	phase	plate	[Fukuda	et	al.,	2015;	Khoshouei	et	al.,	2016],	have	
increased	the	quality	of	micrographs	by	an	order	of	magnitude	and	greatly	improved	the	
accuracy	of	tomographic	reconstructions.	Thus,	higher	specificity	and	sensitivity	of	
macromolecule	identification	is	to	be	expected,	empowering	geometric	analysis	to	dissect
the	complex	molecular	organization	of	native	cellular	volumes.	
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Abbreviations	
	

2D		 	 two-dimensional	
3D		 	 three-dimensional	
3PG	 	 3-phosphoglycerate	
aa-tRNA	 	 aminoacyl	tRNA	
AC3D	 	 auto-focused	classification	
ADP	 	 adenosine	diphosphate	
ATP	 	 adenosine	triphosphate	
C.	reinhardtii	 Chlamydomonas	reinhardtii	
CCD	 	 charged	coupled	device	
CCM	 	 carbon	concentration	mechanism	
CET	 	 cryo-electron	tomography	
CPCA	 	 constrained	principal	component	analysis	
CPU	 	 central	processing	unit	
cryo-FIB	 	 cryo-focused	ion	beam	
CTF	 	 contrast	transfer	function	
E.	coli	 	 Escherichia	coli	
EF-G	 	 elongation	factor	G	
EF-Tu	 	 elongation	factor	Tu	
EM	grid	 	 electron	microscopy	grid	
EPYC1	 	 essential	pyrenoid	component	1	
ER	 	 	 endoplasmic	reticulum	
FEG	 	 field	emission	gun	
FN		 	 false	negative	
FP	 	 	 false	positive	
FRM	 	 fast	rotation	matching	
FSC	 	 Fourier	shell	correlation	
G3P	 	 glyceraldehyde-3-phosphate	
GB		 	 Gigabyte	
GMM	 	 Gaussian	mixture	model	
MAP	 	 maximum	a	posteriori	
MRF	 	 Markov	random	field	
mRNA	 	 messenger	ribonucleic	acid	
MTF	 	 modulation	transfer	function	
NADPH	 	 nicotinamide	adenine	dinucleotide	phosphate	
NE		 	 nuclear	envelope	
NMR	 	 nuclear	magnetic	resonance	
NN		 	 near-neighbor	
NPC	 	 nuclear	pore	complex	
PDB	 	 protein	data	bank	
Pi	 	 	 inorganic	phosphate	
RAM	 	 Random-access	memory	
rbcL 	 RuBisCO	large	subunit	
RBCS	 	 RuBisCO	small	subunit	
RCA1	 	 RuBisCO	activase	
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RDF	 	 radial	distribution	function	
RS	 	 	 real	space	
RuBisCO	 	 Ribulose-1,5-bisphosphate	carboxylase/oxygenase	
RuBP	 	 ribulose-1,5-bisphosphate	
SNR	 	 signal-to-noise	ratio	
SPA single	particle	analysis
t-b		 	 top-to-bottom	
t-t	 	 	 top-to-top	
TEM	 	 transmission	electron	microscope	
TN		 	 true	negative	
TP	 	 	 true	positive	
tRNA	 	 transfer	ribonucleic	acid	
WBP	 	 weighted	backprojection	
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