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Abstract—This paper presents a practical implementation of
Noisy Network Coding (NNC) for half-duplex Two-Way Re-
lay channels (TWRC). With Noisy Network Coding, the relay
quantizes the incoming signals and forwards them digitally. The
receivers do not try to recover the relay quantization index but
the codewords that are embedded in the quantized signal. Our ap-
proach uses irregular repeat-accumulate low-density parity check
(LDPC) codes to implement NNC. We derive the joint factor
graph and the message passing rules for the corresponding joint
iterative decoding scheme. Our simulation results confirm the
performance advantages predicted by random coding arguments.

I. INTRODUCTION

The Two-Way Relay Channel (TWRC) is a prominent ex-
ample for cooperative relaying because it contains challenging
subproblems such as Multiple Access (MAC) interference and
Broadcast (BC) with side information. One of the possible
coding schemes for the TWRC is Quantize-and-Forward (QF),
where the relay quantizes its incoming signal and forwards
this information digitally. Although other coding schemes can
achieve higher performance, Quantize-and-Forward (QF) is
an attractive choice because it does not require the relay to
decode. Several schemes were introduced for QF and the
TWRC, e.g. [1], [2], [3]. QF was extended to general Gaussian
networks by Avestimehr et al. in [4] in a strategy called
Quantize-Map-and-Forward (QMF). The scheme was further
generalized by Yassaee et al. [5] and Lim et al. [6] for general
multi-hop networks. This scheme is today known as Noisy
Network Coding (NNC). The coding scheme in [3] can be seen
as a particular derivation of Noisy Network Coding (NNC)
for the TWRC. The achievability proofs of all the mentioned
QF schemes involve random codes, so they cannot be directly
used in practice. We bridge this gap by proposing an iterative
decoding scheme derived in Section IV for NNC and the
TWRC. For the Relay Channel, a decoder for QMF has been
studied in [7] with Low Density Parity Check (LDPC) and Low
Density Generator Matrix (LDGM) codes. For the diamond
channel, an iterative message passing decoder for QMF has
been proposed in [8], [9].

Our main contributions are to formulate the decoding
problem of NNC for the TWRC on a factor graph, to derive the
corresponding message passing rules and to provide simulation
results of practical codes for this setup.

This paper is organized as follows: We explain the sys-
tem model in Section II. Section III reviews several coding
schemes. Section IV introduces the factor graph of the system
and defines iterative decoding schemes on this graph. We plot
performance results of the implemented system in Section V.
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Fig. 1: Block diagram.

II. SYSTEM MODEL

Fig. 1 depicts the system setup, as described below.

Notation: We write random variables with upper-case
letters, e.g. X , their outcomes (values) by lower-case letters,
e.g. x. Vectors are written with underlined letters, e.g. x. The
probability of X taking on the value x is written as PX(x),
where the subscript is sometimes omitted if clear from the
context. The indicator function 1{·} takes on the value 1 if
the event inside the brackets is true and 0 otherwise. Matrices
are written boldface, e.g. A. A† is the transpose of matrix A.

Encoding at the Transceivers: The system has two
transceivers Rx1 and Rx2, that exchange their independent
messages w1 ∈ {1, 2, . . . , 2nR1}, w2 ∈ {1, 2, . . . , 2nR2} in
n channel uses through a relay node r. Rx1 and Rx2 cannot
hear each other, so communication is possible only through
the relay. The communication is split into two phases: In the
multiple access (MAC) phase with nMAC < n channel uses,
Rx1 maps its observed message w1 of k1 = nR1 bits with
a binary code C1 to a codeword c1 of n1 bits. The binary
code C1 has channel coding rate RCC

1 = k1
n1

. The modulator
function maps the binary codeword to the channel input vector
x1 = M1(c1) of nMAC symbols. In particular, with slight abuse
of notation, a single symbol is obtained by x1,t = M1(c1,t),
where the vector c1,t collects the n1/nMAC = RMod

1 bits
determining the t-th symbol x1,t ∈ X1. X1 represents the
modulation alphabet of Rx1 and define RMod

1 = log2(|X1|).
Similarly for Rx2. The mapping from w1, w2 to x1, x2,



respectively, is called the MAC code. Define α = nMAC/n
as the time fraction of this first phase. The overall spectral
efficiency (in terms of number of information bits for each
of the n time slots) of the MAC code at Rxj is given by
Rj = α ·RMod

j RCC
j .

Uplink (Multiple Access) Channel: The relay receives the
output of the discrete memoryless channel that is governed by
the distribution PYr|X1X2

. In all our numerical examples, we
use the following model: The relay receives the superposition
of the two channel inputs corrupted by additive white Gaussian
noise Zr:

yr,t = x1,t + x2,t + zr,t, t = 1, 2, . . . , nMAC, (1)

where Zr,t ∼ N (0, Nr) and E
[
X2

1,t

]
≤ P1, E

[
X2

2,t

]
≤ P2.

We use a high-rate scalar pre-quantization of Yr to make this
model match the discrete memoryless model.

Quantization at the Relay: We focus on scalar quantization
in this work, a possibly suboptimal but practical choice: The
scalar quantizer function Q : Yr → Ŷr maps each received
value yr,t to a representative ŷr,t from the finite symbol
alphabet Ŷr. The quantizer output bit sequence bt for yr,t at
the input is given by the mapping β : Yr → FR

Quant
r

2 , where
RQuant
r = log2(|Ŷr|) denotes the number of quantizer output

bits per input symbol. Hence,

ŷr,t = Q(yr,t), bt = β(yr,t). (2)

The individual bits in the block bt may be (and generally
are) correlated. The quantizer outputs kr , nMACR

Quant
r bits

in total. With slight abuse of notation we denote the whole
quantized representation by ŷr = Q(yr) and the corresponding
bit sequence by b = β(yr).

Encoding at the Relay: During the Broadcast (BC) phase
with nBC = n − nMAC = (1 − α)n channel uses, the relay
transmits the codeword xr(b) corresponding to the quantizer
bit sequence b = β(yr). The mapping from b to xr is found
by a Joint Source Channel Code (JSCC) (see e.g. [10]): The
binary quantizer output b is mapped1 to a nr-bit codeword cr
of the code Cr. The binary code Cr has a code rate RJSCC

r = kr
nr

.

The relay modulator maps this codeword to the channel
input xr = Mr(cr). Again, we refer to a single channel input
symbol by xr,t = Mr(cr,t), where cr,t collects the nr/nBC =
RMod
r bits determining the t-th broadcast transmit symbol. The

mapping from b to xr is called the BC code.

Downlink (Broadcast) Channel: The received signals at
Rx1 and Rx2 are:

yj,t = xr,t + zj,t, t = 1, . . . , nBC (3)

for j ∈ {1, 2}, E
[
X2
r,t

]
≤ Pr and Zj,t ∼ N (0, Nj).

Decoding at the Transceivers: Rx2 computes an estimate
ŵ1 of w1 by using the received signal y2 and its own message
w2 as side information. Rx1 operates similarly.

1As the quantizer output b is correlated, one can compress these kr =

nMACR
Quant
r bits to nMACRQ bits, with a source coding rate RSC

r =
RQuant

r
RQ

≥
1. One can then map these nMACRQ bits to an nr-bit codeword cr , with
channel coding rate RCC

r =
nMACRQ

nr
. The overall joint source channel coding

rate is given by RJSCC
r = kr

nr
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Fig. 2: Decoder structures.

III. PERFORMANCE LIMITS

We briefly summarize the coding schemes to be compared
in Section V. Due to space limitations we omit rate plots and
refer to [11, Chapter 2].

A. Compress-and-Forward (CF)

Schnurr et. al. [2] and Kim et. al. [12] derived an achievable
rate region using Tuncel’s results for Slepian-Wolf coding over
broadcast channels [13]. The achievable rate region is the set
RCF ⊂ R2

+ of rate tuples (R1, R2) satisfying

R1 ≤ αI(X1; Ŷr|X2U), R2 ≤ αI(X2; Ŷr|X1U)

subject to αI(Yr; Ŷr|X2U) ≤ (1− α)I(Xr;Y2)

αI(Yr; Ŷr|X1U) ≤ (1− α)I(Xr;Y1) (4)

for some PUPX1|UPX2|UPYr|X1X2
PŶr|YrU

and PXr
PY1Y2|Xr

,
α > 0, |U| ≤ 4, |Ŷr| ≤ |Yr|+ 3.

Decoder Structure: Two decoding steps are required at
each receiver: The coding scheme requires reliable decoding
of b at the receiver. The BC code is decoded using its
own message as a priori knowledge. Knowing b, the desired
message is decoded, again using its own message as side
information. The decoder structure is shown in Fig. 2a.

B. Noisy Network Coding / Joint Decoding (NNC)

Schnurr et al. derived an achievable rate region in [3] that
employs a single decoding stage. Unlike CF, it does not require
reliable decoding of the quantizer output b but looks only for
the intended message in a joint decoder. In the literature, this
is called simultaneous non-unique decoding [14], because the
decoder might return the correct message of interest, but a
wrong quantization index. The achievable rate region is given
by the set RNNC ⊂ R2

+ of rate tuples (R1, R2) satisfying

R1 ≤ αI(X1; Ŷr|X2U)

R1 ≤ (1− α)I(Xr;Y2)− αI(Yr; Ŷr|X1X2U)

R2 ≤ αI(X2; Ŷr|X1U)

R2 ≤ (1− α)I(Xr;Y1)− αI(Yr; Ŷr|X1X2U) (5)

for some PUPX1|UPX2|UPYr|X1X2
PŶr|Yr

and PXr
PY1Y2|Xr

and α > 0. It suffices to consider |U| ≤ 3, |Ŷr| ≤ |Yr|+ 2.

Decoder Structure: the decoder must jointly decode the
BC code and the MAC code in a single-stage decoder using
its own message as side information. b is not required to be
decoded (correctly). The decoder structure is shown in Fig. 2b.



IV. ITERATIVE DECODING

The decoding of both CF and NNC can be explained on
the same factor graph that will be described in this section.
The schemes differ in the exact decoding operations on this
graph that are explained in more detail in Section IV-C.

The efficient operation of QF schemes requires multiple
quantization levels and higher-order modulation in the down-
link. To accommodate binary codes, we follow the design
paradigm of Bit-Interleaved Coded Modulation (BICM) [15].

A. Coding and Modulation

For C1 we use a linear code specified by the sparse parity
check matrix H1 ∈ Fn1−k1×n1

2 where all codewords c1 ∈ C1
satisfy H1c

†
1 = 0. c†1 denotes the transpose of the row vector

c1. The parity check matrix can be represented by a bipartite
graph. The i-th parity check node, i ∈ {1, . . . , n1 − k1}, is
connected to all variable nodes indexed by the set SC1i . The
i-th parity check equation thus reads as

∑
j∈SC1

i
c1,j = 0. We

will use LDPC codes for C1 and C2.

At the relay, we use a linear joint source-channel encoder
that maps the kr-bit quantizer output sequence b to the
codeword cr of length nr. We can write cr = bGr, with
Gr ∈ Fkr×nr

2 being the generator matrix relating quantizer
output and relay codeword. b and cr are row vectors. We use
systematic Irregular Repeat-Accumulate (IRA) codes [16], [17]
for this task, hence the codeword cr ∈ Cr can be written as
cr = [bπ, pIRA], where bπ is a permuted version of the informa-
tion sequence b and pIRA denotes the parity bits formed by the
systematic code. The i-th encoding equation, i ∈ {1, . . . , nr}
involves a subset of the bits of b, indexed by SCri , such that
cr,i =

∑
k∈SCr

i
bk.

The bit labeling of the different constellation symbols of
all modulators will be binary reflected Gray mapping [18],
unless stated differently. As we separate binary coding and
modulation at both encoder and decoder, this is a BICM
approach.

B. Factor Graph

The factor graph is a graphical representation of the joint
probability distribution

P (c1, c2, x1, x2, yr, b, cr, xr, y1, y2) = P (c1)P (c2)P (x1|c1)·
P (x2|c2)P (yr|x1, x2)P (b|yr)P (cr|b)P (xr|cr)P (y1, y2|xr).
The conditional distributions can be further factorized as

P (y2|xr) =

nBC∏
t=1

PY2|Xr
(y2,t|xr,t)

P (xr|cr) = 1{xr = Mr(cr)} =

nBC∏
t=1

1{xr,t = Mr(cr,t)}

P (cr|b) = 1{cr = bGr} =

nr∏
i=1

1{cr,i =
∑
k∈SCr

i

bk}

P (b|yr) = 1{b = β(ι(yr))} =

nMAC∏
t=1

1{bt = β(ι(yr,t))}

P (yr|x1, x2) =

nMAC∏
t=1

PYr|X1X2
(yr,t|x1,t, x2,t)

P (x1|c1) = 1{x1 = M1(c1)} =

nMAC∏
t=1

1{x1,t = M1(c1,t)}

P (c1) ∝ 1{c1 ∈ C1} =

k1−n1∏
i=1

1{
∑
k∈SC1

i

c1,k = 0}. (6)

A simplified factor graph is shown in Fig. 3 from the
perspective of Rx2. Rx2 knows its own transmitted signal x2
and observes the received signal y2. These two sequences serve
as inputs for the decoder operating on the factor graph. The
MAC code of Rx1 with codeword c1 ∈ C1 is depicted on the
top of the graph. The parity check matrix H1 is represented
by the interleaver ΠC1 connecting code bit variable nodes and
parity check nodes. The codeword c1 is unknown to Rx2 and
should be decoded. The interleaver ΠCrb relates b and bπ , the
interleaver ΠIRA defines the accumulator. The factor graph in
Fig. 3 is simplified with regard to two aspects:

1: For scalar quantizers one can describe the modulator of
Rx1, the uplink channel and the quantizer by a single special
factor node that connects c1,t, x2,t and bt for all t, with factor
node kernel function P (bt|c1,t, x2,t). This is possible because
of the factorization

P (b|c1, x2) =

nMAC∏
t=1

P (bt|c1,t, x2,t). (7)

2: If we use bit-metric inputs to the decoder of the BC code
and no not perform iterative demapping and decoding as in
[19], we can account for the relay modulator, channel input and
downlink channel as at the bottom in Fig. 3: Each code bit of
cr obtains a log-likelihood value from the channel observation
L(cr,t|y2) that is kept constant during the decoding process.
The performance loss due to this simplification is small [15]
for a modulator applying binary reflected Gray mapping.

C. Decoding

Compress & Forward: As shown in Fig. 2a, one must
first decode b with the observation y2, but also taking into
account the correlation of b with x2. This results in bit-wise
a-priori LLRs formed according to the distribution PBt|X2

(corresponding to PŶr|X2
). One can interpret this as removing

the edges from the special nodes to c1 in Fig. 3 in the first
decoding step. The BC decoder output b̂ is used to form
L(c1,k|b̂) for the input of the MAC decoder.

Noisy Network Coding: For NNC, Rx2 tries to iteratively
decode c1 using the whole graphical structure. The only inputs
are x2 and y2. The decoder cares only about correct decoding
of c1 and neglects bit errors in b.

The typical Belief Propagation (BP) decoder usually re-
sorts to bit-wise Maximum A-Posteriori (MAP)-decoding [20,
Chapter 2.5]. The rule for bit-wise MAP-decoding for the k-th
bit of c1 is given by

ĉMAP
1,k = argmax

c1,k∈{0,1}
P (c1,k|x2, y2) = argmax

c1,k∈{0,1}

∑
c1∼c1,k

P (c1|x2, y2)

where
∑
c1∼c1,k

indicates a summation over all components
of the vector c1 except c1,k.

Note that the factor graph contains cycles and thus the sum-
product computation will not necessarily lead to the correct
result. However, it usually suffices for the graph to be locally
tree-like to achieve a good decoding performance.
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Fig. 3: Simplified overall factor graph from the perspective of
Rx2, with specific implementation choices. In this example, we have
RMod

1 = 2 (2 bits/symbol for Rx1), n1 = 4, RCC
1 = 1

2
, nMAC = 2,

RQuant
r = 3, RJSCC

r = 2
3

. A systematic Irregular Repeat-Accumulate
(IRA) code is used as the joint source channel code at the relay.
Bold edges represent multiple edges, with the number of single
edges indicated by the corresponding number. The information of the
received sequence y2 is mapped to individual bit-metric likelihood
values L(cr,t|y2) for each relay code bit cr,t. Iterative demapping
at the demodulator nodes is not employed. From the figure, the
modulation format at the relay cannot be deduced. If we assume
RMod

r = 3 (3 bits/symbol), then nBC = 3 and hence α = 2
5

.
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Fig. 4: Special factor node in abstract form.

D. Message Passing Rules

Each edge carries one message µ(v) for each possible value
v of the connected variable node V . The message updates at
the regular variable and check nodes are the standard updates
as in derived in [20]. The special factor node has a different
update rule: As shown in Fig. 3 and Fig. 4, the special factor
node is connected to a fixed number of variable nodes that
depends on the modulation format rate RMod

1 and the quantizer
rate RQuant

r . The t-th special factor node is connected to c1,t,
bt and x2,t, where the value of x2,t is known. To simplify
notation, we stack c1,t and bt into the vector vt , [c1,t, bt].
vt,i corresponds to the i-th entry of the vector vt, hence it
corresponds to a bit of either c1,t or b. Define the special
factor node kernel function as

f?t (vt, x2,t) = P (bt|c1,t, x2,t). (8)

For a special factor node f?t with connected variable nodes
indexed by S?t (written as vS?

t
), one obtains the message update

rule [21] ∀ vj ∈ {0, 1}:

µf?
t→Vj (vj) =

∑
vi∈{0,1},i∈S?

t \{j}

f?t (vS?
t
, x2,t)

∏
i∈S?

t \{j}

µvi→f?
t
(vi)

(9)

For example, let RMod
1 = 2, RQuant

r = 2, as in Fig. 4 and
let c1,t = [c1,1c1,2], bt = [b1b2]. Suppose Vj corresponds to
the most significant bit in the constellation label c1,t, hence
vj , c1,1. The update of (9) in this case is given by

µf?
t→C1,1(c1,1 = 0) =

∑
c1,2,b1,b2∈{0,1}

P (b1b2|c1,1 = 0, c1,2, x2,t)·

µC1,2→f?
t
(c1,2) · µB1→f?

t
(b1) · µB2→f?

t
(b2) (10)

and accordingly for the message for c1,1 = 1.

V. NUMERICAL RESULTS

We focus on one-dimensional modulation schemes to re-
duce computational complexity for simulations. All results
apply to complex signaling as well.

We consider a symmetric scenario for our simulations, i.e.
P1 = P2 and N1 = N2 and let the downlink have an SNR
offset of 6dB. In this case both users have the same achievable
rate, which depends on the time-sharing fraction α and the
quantizer. The optimal quantizer and time fraction depend
on the SNR. Though suboptimal, we choose a Lloyd-Max
(LM) quantizer2. Methods to optimize quantizers are derived
in [11]. For our simulations it is convenient to use a constant
time-sharing fraction. Varying fractions require varying block
lengths for the channel codes which makes a fair comparison
difficult. We use channel codes with rate RCC

1 = RCC
2 = 1

2 for
both transceivers and set α = 1

3 . Hence we obtain a sum rate
of 2 · 12 ·

1
3 = 1

3 With these parameters, the required SNR= P1

Nr

is 1.1dB for NNC and 1.5dB for CF.

Code Parameters: For the bit error curves, both
transceivers use the WiMAX Irregular Repeat-Accumulate
(IRA) LDPC code with code rate RCC

1 = RCC
2 = 1

2 for
C1, C2, respectively. The block length is n1 = n2 = 1152,
hence k1 = k2 = 576. The normalized degree distribution
from node perspective is 0.4583x2 + 0.3333x3 + 0.2084x6 for
the variable nodes, and 2

3x
6 + 1

3x
7 for the check nodes. Rx1

and Rx2 use BPSK modulation, hence RMod
1 = RMod

2 = 1
and nMAC = 1152. The relay quantizes its signal with
RQuant
r = 3 bits per received symbol, hence the Lloyd-Max

quantizer output b consists of kr = 3 · nMAC = 3456 bits.
The joint source channel code is a systematic IRA LDPC
code Cr with rate RJSCC

r = 1
2 , hence nr = 2 · kr = 6912.

The normalized degree distribution from node perspective is
0.0613x2 + 0.6325x3 + 0.3062x13 for the variable nodes, and
x6 for the check nodes. The relay uses 8ASK as modulation
format, hence RMod

r = 3 and nBC = nr

3 = 2304. As mentioned,
this leads to α = 1152

1152+2304 = 1
3 .

2The Lloyd-Max (LM) quantizer has contiguous quantization regions which
is advantageous for a Gray bit labeling of bt.



Bit Error Curves Whole System: Fig. 5 shows the per-
formance of the whole system, i.e. combined uplink and
downlink. For CF, the estimated quantizer sequence b̂ that has
been decoded by the BC decoder is used to compute ŵ1. The
performance depends on the bit labeling of the quantization
indices: Recall that the LM quantizer leads to contiguous quan-
tization regions, hence each index has two distinct neighboring
Voronoi regions (This cannot be guaranteed if the quantizer has
noncontiguous quantization regions). We assign Gray labels to
the quantization indices. If one bit is flipped in b̂, we decide for
a neighboring quantization region. This approach minimizes
the resulting error of the LLR input to the MAC decoder. For
comparison, the curves in Fig. 5b also show the PER for the
BC code only. Although the BC code suffers from an error
floor for CF, this does not have an impact on the overall
decoder. Even of there are some bit errors in b̂, the MAC
code is strong enough to decode ŵ1 correctly. As expected,
NNC achieves the better performance. For comparison, we
also plot the error curves if we use a natural labeling of the
quantization regions. We observe that the BER and PER curves
have approximately the same distance to each other as the
respective theoretical limits. Possible reasons for the gap to
the theoretical limits are the moderate code length and the use
of off-the-shelf codes. Optimization of codes like in [7] is a
promising direction for improvement.

Remark 1: Note that the different performance curves are
only due to different decoding algorithms. All schemes use the
identical codes and hence the identical factor graph. The only
difference is the LLR computation and the way the message
passing decoder operates on this factor graph.

VI. CONCLUSION

This paper presents implementation aspects of Noisy Net-
work Coding for half-duplex Two-Way Relay Channels. We
derive the joint factor graph, the corresponding decoder mes-
sage passing rules and propose practical design choices. Find-
ing optimized code ensembles for the factor graph structure is
a worthwhile challenge for future work.
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