Iterative Decoding for Noisy Network Coding for Two-Way Relay Channels

Michael Heindlmaier, Markus Staudacher (Jäger)
Institute for Communications Engineering, Technische Universität München, Munich, Germany
Email: michael.heindlmaier@tum.de, markus.jaeger@mytum.de

Abstract—This paper presents a practical implementation of Noisy Network Coding (NNC) for half-duplex Two-Way Relay channels (TWRC). With Noisy Network Coding, the relay quantizes the incoming signals and forwards them digitally. The receivers do not try to recover the relay quantization index but the codewords are embedded in the quantized signal. Our approach uses irregular repeat-accumulate low-density parity check (LDPC) codes to implement NNC. We derive the joint factor graph and the message passing rules for the corresponding joint iterative decoding scheme. Our simulation results confirm the performance advantages predicted by random coding arguments.

I. INTRODUCTION

The Two-Way Relay Channel (TWRC) is a prominent example for cooperative relaying because it contains challenging subproblems such as Multiple Access (MAC) interference and Broadcast (BC) with side information. One of the possible coding schemes for the TWRC is Quantize-and-Forward (QF), where the relay quantizes its incoming signal and forwards this information digitally. Although other coding schemes can achieve higher performance, Quantize-and-Forward (QF) is an attractive choice because it does not require the relay to decode. Several schemes were introduced for QF and the TWRC, e.g. [1], [2], [3]. QF was extended to general Gaussian networks by Avestimehr et al. in [4] in a strategy called Quantize-Map-and-Forward (QMF). The scheme was further generalized by Yassaee et al. [5] and Lim et al. [6] for general multi-hop networks. This scheme is today known as Noisy Network Coding (NNC). The coding scheme in [3] can be seen as a particular derivation of Noisy Network Coding (NNC) for the TWRC. The achievability proofs of all the mentioned QF schemes involve random codes, so they cannot be directly used in practice. We bridge this gap by proposing an iterative decoding scheme derived in Section IV for NNC and the TWRC. For the Relay Channel, a decoder for QMF has been studied in [7] with Low Density Parity Check (LDPC) and Low Density Generator Matrix (LDGM) codes. For the diamond channel, an iterative message passing decoder for QMF has been proposed in [8], [9].

Our main contributions are to formulate the decoding problem of NNC for the TWRC on a factor graph, to derive the corresponding message passing rules and to provide simulation results of practical codes for this setup.

This paper is organized as follows: We explain the system model in Section II. Section III reviews several coding schemes. Section IV introduces the factor graph of the system and defines iterative decoding schemes on this graph. We plot performance results of the implemented system in Section V.
respectively, is called the MAC code. Define $\alpha = n_{\text{MAC}}/n$ as the time fraction of this first phase. The overall spectral efficiency (in terms of number of information bits for each of the n time slots) of the MAC code at R_{j} is given by $R_{j} = \alpha \cdot R_{j}^\text{Mod} R_{j}^\text{CC}$.

Uplink (Multiple Access) Channel: The relay receives the output of the discrete memoryless channel that is governed by the distribution $P_{Y_{r}}|X_{1}, X_{2}$. In all our numerical examples, we use the following model: The relay receives the superposition of the two channel inputs corrupted by additive white Gaussian noise Z_{r}:

$$y_{r,t} = x_{1,t} + x_{2,t} + z_{r,t}, \quad t = 1, 2, \ldots, n_{\text{MAC}},$$

where $Z_{r,t} \sim \mathcal{N}(0, N_{r})$ and $\mathbb{E}[X_{1,t}^{2}] \leq P_{1}$, $\mathbb{E}[X_{2,t}^{2}] \leq P_{2}$. We use a high-rate scalar pre-quantization of Y_{r} to make this model match the discrete memoryless model.

Quantization at the Relay: We focus on scalar quantization in this work, a possibly suboptimal but practical choice: The scalar quantizer function $Q : Y_{r} \rightarrow \hat{Y}_{r}$ maps each received value $y_{r,t}$ to a representative $\hat{y}_{r,t}$ from a finite symbol alphabet \hat{Y}_{r}. The quantizer output block \hat{y}_{r} at the input is given by the mapping $\beta : Y_{r} \rightarrow \mathbb{F}_{2}^{\text{Quant}}$, where $\text{Quant} = \log_{2}(|\hat{Y}_{r}|)$ denotes the number of quantizer output bits per input symbol. Hence,

$$\hat{y}_{r,t} = Q(y_{r,t}), \quad \beta = \beta(y_{r,t}).$$

The individual bits in the block \hat{y}_{r} may be (and generally are) correlated. The quantizer outputs $k_{r} \triangleq n_{\text{MAC}} R_{\text{Quant}}$ quantized bits in total.

Encoding at the Relay: During the Broadcast (BC) phase with $n_{\text{BC}} = n - n_{\text{MAC}} = (1 - \alpha)n$ channel uses, the relay transmits the codeword $\mathbf{x}_{\hat{r}}(\hat{b})$ corresponding to the quantizer bit sequence $\hat{b} = \beta(y_{r})$. The mapping from \hat{b} to $\mathbf{x}_{\hat{r}}$ is found by a Joint Source Channel Code (JSCC) (see e.g. [10]): The binary quantizer output \hat{b} is mapped to a n_{BC}-bit codeword $\mathbf{c}_{\hat{r}}$ of the code $\mathcal{C}_{\hat{r}}$. The binary code \mathcal{C}_{r} has a code rate $R_{Y_{r}}^\text{SCC} = \frac{k_{r}}{n_{r}}$.

The relay modulator maps this codeword to the channel input $\mathbf{x}_{\hat{r}} = M_{\hat{r}}(\mathbf{c}_{\hat{r}})$. Again, we refer to a single channel input symbol by $x_{r,t} = M_{r}(c_{r,t})$, where $c_{r,t}$ collects the $n_{r}/n_{\text{BC}} = R_{r}^\text{Mod}$ bits determining the t-th broadcast transmit symbol. The mapping from \hat{b} to $\mathbf{x}_{\hat{r}}$ is called the BC code.

Downlink (Broadcast) Channel: The received signals at R_{1} and R_{2} are:

$$y_{j,t} = x_{r,t} + z_{j,t}, \quad t = 1, \ldots, n_{\text{BC}}$$

for $j \in \{1, 2\}$, $\mathbb{E}[X_{1,t}^{2}] \leq P_{r}$ and $Z_{j,t} \sim \mathcal{N}(0, N_{j})$.

Decoding at the Transceivers: R_{2} computes an estimate \hat{w}_{1} of w_{1} by using the received signal y_{2} and its own message w_{2} as side information. R_{1} also performs similar computations.

We briefly summarize the coding schemes to be compared in Section V. Due to space limitations we omit rate plots and refer to [11, Chapter 2].

III. PERFORMANCE LIMITS

A. Compress-and-Forward (CF)

Schuur et al. [2] and Kim et. al. [12] derived an achievable rate region using Tuncel’s results for Slepian-Wolf coding over broadcast channels [13]. The achievable rate region is the set $\mathcal{R}_{CF} \subset \mathbb{R}_{+}^{2}$ of rate tuples (R_{1}, R_{2}) satisfying

$$R_{1} \leq \alpha I(X_{1}; Y_{r}|X_{2}U), \quad R_{2} \leq \alpha I(X_{2}; \hat{Y}_{r}|X_{1}U)$$

subject to $\alpha I(Y_{r}; \hat{Y}_{r}|X_{2}U) \leq (1 - \alpha) I(X_{1}; Y_{2})$, $\alpha I(Y_{r}; \hat{Y}_{r}|X_{1}U) \leq (1 - \alpha) I(X_{1}; Y_{1})$ (4)

for some $P_{U|X_{1}} P_{X_{2}|U|P_{Y_{r}|X_{1}, X_{2}} P_{Y_{r}|Y_{2}|X_{1}}$ and $P_{X_{1}} P_{Y_{1}|X_{2}}$, $\alpha > 0$, $|U| \leq 4$, $|Y_{r}| \leq |Y_{1}| + 3$.

Decoder Structure: Two decoding steps are required at each receiver: The coding scheme requires reliable decoding of \hat{b} at the receiver. The BC code is decoded using its own message as a priori knowledge. Knowing \hat{b}, the desired message is decoded, again using its own message as side information. The decoder structure is shown in Fig. 2a.

B. Noisy Network Coding / Joint Decoding (NNC)

Schuur et al. derived an achievable rate region in [3] that employs a single decoding stage. Unlike CF, it does not require reliable decoding of the quantizer output \hat{b} but looks only for the intended message in a joint decoder. In the literature, this is called *simultaneous non-unique decoding* [14], because the decoder might return the correct message of interest, but a wrong quantization index. The achievable rate region is given by the set $\mathcal{R}_{NNC} \subset \mathbb{R}_{+}^{2}$ of rate tuples (R_{1}, R_{2}) satisfying

$$R_{1} \leq \alpha I(X_{1}; Y_{r}|X_{2}U)$$

$$R_{1} \leq (1 - \alpha) I(X_{1}; Y_{2}) - \alpha I(Y_{r}; \hat{Y}_{r}|X_{1}X_{2}U)$$

$$R_{2} \leq \alpha I(X_{2}; \hat{Y}_{r}|X_{1}U)$$

$$R_{2} \leq (1 - \alpha) I(X_{1}; Y_{1}) - \alpha I(Y_{r}; \hat{Y}_{r}|X_{1}X_{2}U)$$

(5)

for some $P_{U|X_{1}} P_{X_{2}|U|P_{Y_{r}|X_{1}, X_{2}} P_{Y_{r}|Y_{2}|X_{1}}$ and $P_{X_{1}} P_{Y_{1}|X_{2}}$, $\alpha > 0$. It suffices to consider $|U| \leq 3$, $|Y_{r}| \leq |Y_{r}| + 2$.

Decoder Structure: the decoder must jointly decode the BC code and the MAC code in a single-stage decoder using its own message as side information. \hat{b} is not required to be decoded (correctly). The decoder structure is shown in Fig. 2b.
IV. ITERATIVE DECODING

The decoding of both CF and NNC can be explained on the same factor graph that will be described in this section. The schemes differ in the exact decoding operations on this graph that are explained in more detail in Section IV-C.

The efficient operation of QF schemes requires multiple quantization levels and higher-order modulation in the downlink. To accommodate binary codes, we follow the design paradigm of Bit-Interleaved Coded Modulation (BICM) [15].

A. Coding and Modulation

For \(C_1 \) we use a linear code specified by the sparse parity check matrix \(H_1 \in \mathbb{F}_2^{n_1-k_1 \times n_1} \) where all codewords \(c_1 \in C_1 \) satisfy \(H_1c_1^t = 0 \). \(c_1^t \) denotes the transpose of the row vector \(c_1 \). The parity check matrix can be represented by a bipartite graph. The i-th parity check node, \(i \in \{1, \ldots, n_1-k_1\} \), is connected to all variable nodes indexed by the set \(S_i^{c_1} \). The i-th parity check parity equation thus reads as \(\sum_{j \in S_i^{c_1}} c_{1,j} = 0 \). We will use LDPC codes for \(C_1 \) and \(C_2 \).

At the relay, we use a linear joint source-channel encoder that maps the \(k_r \)-bit quantizer output sequence \(b \) to the codeword \(c_r \) of length \(n_r \). We can write \(c_r = bG_r \), with \(G_r \in \mathbb{F}_2^{n_r \times k_r} \) being the generator matrix relating quantizer output and relay codeword. \(b \) and \(c_r \) are row vectors. We use systematic Irregular Repeat-Accumulate (IRA) codes [16], [17] for this task, hence the codeword \(c_r \in C_r \) can be written as \(c_r = [b_{\pi}, b_{\pi RA}] \), where \(b_{\pi} \) is a permuted version of the information sequence \(b \) and \(b_{\pi RA} \) denotes the parity bits formed by the systematic code. The i-th encoding equation, \(i \in \{1, \ldots, n_r\} \), involves a subset of the bits of \(b \) indexed by \(S_i^{c_r} \), such that \(c_{r,i} = \sum_{k \in S_i^{c_r}} b_k \).

The bit labeling of the different constellation symbols of all modulators will be binary reflected Gray mapping [18], unless stated differently. As we separate binary coding and modulation at both encoder and decoder, this is a BICM approach.

B. Factor Graph

The factor graph is a graphical representation of the joint probability distribution

\[
P(\varepsilon_1, \varepsilon_2, x_2, y_2, b, c_r, c_r, y_1, y_2) = P(\varepsilon_1)P(\varepsilon_2)P(\varepsilon_1|x_1).
\]

The conditional distributions can be further factorized as

\[
P(\varepsilon_2|x_2) = \prod_{t=1}^{n_{MC}} P_{Y_2|x_2}(y_{2,t}|x_{2,t}),
\]

\[
P(\varepsilon_1|x_2) = \prod_{t=1}^{n_{MC}} P_{Y_1|x_2}(y_{1,t}|x_{1,t}, x_{2,t}),
\]

\[
P(\varepsilon_1 | c_1) = \prod_{t=1}^{n_{MC}} P_{X_1|c_1}(x_{1,t} | c_{1,t})
\]

\[
P(c_1 | \varepsilon_1, y_2) \propto \sum_{c_1} P(\varepsilon_1) \prod_{t=1}^{k_1-n_1} \frac{1}{\sum_{c_{1,t}} \{ \sum_{c_{1,k}} = 0 \}.}
\]

A simplified factor graph is shown in Fig. 3 from the perspective of Rx2. Rx2 knows its own transmitted signal \(x_2 \) and observes the received signal \(y_2 \). These two sequences serve as inputs for the decoder operating on the factor graph. The MAC code of Rx1 with codeword \(\varepsilon_1 \in C_1 \) is depicted on the top of the graph. The parity check matrix \(H_1 \) is represented by the interleaver II\(C_1 \) connecting code bit variable nodes and parity check nodes. The codeword \(\varepsilon_1 \) is unknown to Rx2 and should be decoded. The interleaver II\(C_1 \) relates \(b \) and \(c_r \); the interleaver II\(RA \) defines the accumulator. The factor graph in Fig. 3 is simplified with regard to two aspects:

1. For scalar quantizers one can describe the modulator of Rx1, the uplink channel and the quantizer by a single special factor node that connects \(\varepsilon_1, x_2, t \), and \(\hat{b} \) for all \(t \), with factor node kernel function \(P(b|\varepsilon_1, x_2, t) \). This is possible because of the factorization

\[
P(b|\varepsilon_1, x_2) = \prod_{t=1}^{n_{MAC}} P(b|\varepsilon_1, x_2, t).
\]

2. If we use bit-metric inputs to the decoder of the BC code and no output perform iterative demapping and decoding as in [19], we can account for the relay modulator, channel input and downlink channel as at the bottom in Fig. 3: Each code bit of \(c_r \) obtains a log-likelihood value from the channel observation \(L(c_r, i|y_2) \) that is kept constant during the decoding process. The performance loss due to this simplification is small [15] for a modulator applying binary reflected Gray mapping.

C. Decoding

Compress & Forward: As shown in Fig. 2a, one must first decode \(b \) with the observation \(y_2 \), but also taking into account the correlation of \(b \) with \(x_2 \). This results in bit-wise a-priori LLRs formed according to the distribution \(P_b(x_2|y_2) \) (corresponding to \(P_{Y_2|x_2} \)). One can interpret this as removing the edges from the special nodes to \(\varepsilon_1 \) in Fig. 3 in the first decoding step. The BC decoder output \(\hat{b} \) is used to form \(L(c_r, i|y_2) \) for the input of the MAC decoder.

Noisy Network Coding: For NNC, Rx2 tries to iteratively decode \(\varepsilon_1 \) using the whole graphical structure. The only inputs are \(x_2 \) and \(y_2 \). The decoder cares only about correct decoding of \(\varepsilon_1 \) and neglects bit errors in \(b \).

The typical Belief Propagation (BP) decoder usually resorts to bit-wise Maximum A-Posteriori (MAP)-decoding [20, Chapter 2.5]. The rule for bit-wise MAP-decoding for the k-th bit of \(\varepsilon_1 \) is given by

\[
c_{1,k}^{MAP} = \arg \max_{c_{1,k} \in \{0,1\}} P(c_{1,k}|x_2, y_2) = \arg \max_{c_{1,k} \in \{0,1\}} \sum_{c_{1,t} \sim c_{1,k}} P(\varepsilon_1 | x_2, y_2)
\]

where \(\sum_{c_{1,t} \sim c_{1,k}} \) indicates a summation over all components of the vector \(\varepsilon_1 \) except \(c_{1,k} \).

Note that the factor graph contains cycles and thus the sum-product computation will not necessarily lead to the correct result. However, it usually suffices for the graph to be locally tree-like to achieve a good decoding performance.
D. Message Passing Rules

Each edge carries one message $\mu(v)$ for each possible value v of the connected variable node V. The message updates at the regular variable and check nodes are the standard updates as in derived in [20]. The special factor node has a different update rule: As shown in Fig. 3 and Fig. 4, the special factor node is connected to a fixed number of variable nodes that depends on the modulation format rate R_{Mod}^1 and the quantizer rate R_{Quant}^1. The t-th special factor node is connected to $c_{1,t}$, b_i, and $x_{2,t}$, where the value of $x_{2,t}$ is known. To simplify notation, we stack $c_{1,t}$ and b_i into the vector $\underline{v}_t \triangleq [c_{1,t}, b_i]$. $v_{t,i}$ corresponds to the i-th entry of the vector \underline{v}_t, hence it corresponds to a bit of either $c_{1,t}$ or b_i. Define the special factor node kernel function as

$$ f_t^*(\underline{v}_t, x_{2,t}) = P(b_i|c_{1,t}, x_{2,t}). $$

For a special factor node f_t^* with connected variable nodes indexed by S_t^v (written as $\underline{v}_{S_t^v}$), one obtains the message update rule [21] $\forall v_j \in \{0, 1\}$:

$$ \mu_{f_t^* \rightarrow v_j} (v_j) = \sum_{v_{t,j} \in \{0, 1\}} f_t^*(\underline{v}_{S_t^v}, x_{2,t}) \prod_{i \in S_t^v \setminus \{j\}} \mu_{v_{t,i} \rightarrow f_t^*} (v_{t,i}) $$

For example, let $R_{\text{Mod}}^1 = 2$, $R_{\text{Quant}}^1 = 2$, as in Fig. 4 and let $c_{1,t} = [c_{1,1}, c_{1,2}]$, $b_i = [b_i, b_i]$. Suppose V_t corresponds to the most significant bit in the constellation label $c_{1,t}$, hence $v_j \triangleq c_{1,1}$. The update of (9) in this case is given by

$$ \mu_{f_t^* \rightarrow c_{1,1}} (c_{1,1}) = \sum_{c_{1,2}, b_j \in \{0, 1\}} P(b_j|b_j = 0, c_{1,2}, x_{2,t}^3) \cdot \mu_{c_{1,2} \rightarrow f_t^*} (c_{1,2}) \cdot \mu_{b_j \rightarrow f_t^*} (b_j) $$

and accordingly for the message for $c_{1,1} = 1$.

V. NUMERICAL RESULTS

We focus on one-dimensional modulation schemes to reduce computational complexity for simulations. All results apply to complex signaling as well.

We consider a symmetric scenario for our simulations, i.e. $P_1 = P_2$ and $N_1 = N_2$ and let the downlink have an SNR offset of 6dB. In this case both users have the same achievable rate, which depends on the time-sharing fraction α and the quantizer. The optimal quantizer and time fraction depend on the SNR. Though suboptimal, we choose a Lloyd-Max (LM) quantizer\(^2\). Methods to optimize quantizers are derived in [11]. For our simulations it is convenient to use a constant time-sharing fraction. Varying fractions require varying block lengths for the channel codes which makes a fair comparison difficult. We use channel codes with rate $R_1^CC = R_2^CC = \frac{1}{2}$ for both transceivers and set $\alpha = \frac{1}{2}$. Hence we obtain a sum rate of $2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$. With these parameters, the required SNR is $\frac{2}{\alpha} = 1.1$dB for NNC and 1.5dB for CF.

Code Parameters: For the bit error curves, both transceivers use the WiMAX Irregular Repeat-Accumulate (IRA) LDPC code with code rate $R_1^CC = R_2^CC = \frac{1}{2}$ for C_1, C_2, respectively. The block length is $n_1 = n_2 = 1152$, hence $k_1 = k_2 = 576$. The normalized degree distribution from node perspective is $0.4583x^2 + 0.3333x^3 + 0.2084x^6$ for the variable nodes, and $\frac{2}{3}x^6 + \frac{1}{3}x^7$ for the check nodes. Rx1 and Rx2 use BPSK modulation, hence $R_{\text{Mod}}^1 = R_{\text{Mod}}^2 = 1$ and $n_{\text{MAC}} = 1152$. The relay quantizes its signal with $R_{\text{Quant}}^1 = 3$ bits per received symbol, hence the Lloyd-Max quantizer output b_j consists of $k_j = 3 \cdot n_{\text{MAC}} = 3456$ bits. The joint source channel code is a systematic IRA LDPC code C_\ast, with rate $R_{\text{SCC}}^1 = \frac{1}{2}$, hence $n_{\text{SP}} = 2 \cdot k_j = 6912$. The normalized degree distribution from node perspective is $0.0613x^2 + 0.6325x^3 + 0.3062x^{13}$ for the variable nodes, and x^{6} for the check nodes. The relay uses 8ASK as modulation format, hence $R_{\text{Mod}}^1 = 3$ and $n_{\text{BC}} = \frac{n_{\text{SP}}}{3} = 2304$. As mentioned, this leads to $\alpha = \frac{1152}{1152+2304} = \frac{1}{3}$.

\(^2\)The Lloyd-Max (LM) quantizer has contiguous quantization regions which is advantageous for a Gray bit labeling of b_j.

Fig. 3: Simplified overall factor graph from the perspective of Rx2, with specific implementation choices. In this example, we have $R_{\text{Mod}}^1 = 2$ (2 bits/symbol for Rx1), $n_1 = 4$, $R_1^CC = \frac{1}{2}$, $n_{\text{MAC}} = 2$, $R_{\text{Quant}}^1 = 3$, $R_{\text{SCC}}^1 = \frac{1}{2}$. A systematic Irregular Repeat-Accumulate (IRA) code is used as the joint source channel code at the relay. Bold edges represent multiple edges, with the number of single edges indicated by the corresponding number. The information of the received sequence y_t is mapped to individual bit-metric likelihood values $L(c_{1,t}|x_{2,t})$ for each relay code bit $c_{1,t}$. Iterative demapping at the demodulator nodes is not employed. From the figure, the modulation format at the relay cannot be deduced. If we assume $R_{\text{Mod}}^1 = 3$ (3 bits/symbol), then $n_{\text{BC}} = 3$ and hence $\alpha = \frac{3}{5}$.

Fig. 4: Special factor node in abstract form.
Bit Error Curves Whole System: Fig. 5 shows the performance of the whole system, i.e., combined uplink and downlink. For CF, the estimated quantizer sequence \(\hat{b} \) that has been decoded by the BC decoder is used to compute \(\hat{w}_1 \). The performance depends on the bit labeling of the quantization indices: Recall that the LM quantizer leads to contiguous quantization regions, hence each index has two distinct neighboring indices. This approach minimizes the resulting error of the LLR input to the MAC decoder. For comparison, the curves in Fig. 5b also show the PER for the BC code only. Although the BC code suffers from an error floor for CF, this does not have an impact on the overall decoder. Even of there are some bit errors in \(\hat{b} \), the MAC code is strong enough to decode \(\hat{w}_1 \) correctly. As expected, NNC achieves the better performance. For comparison, we also plot the error curves if we use a natural labeling of the quantization regions. We observe that the BER and PER curves have approximately the same distance to each other as the respective theoretical limits. Possible reasons for the gap to the theoretical limits are the moderate code length and the use of off-the-shelf codes. Optimization of codes like in [7] is a promising direction for future improvement.

Remark 1: Note that the different performance curves are only due to different decoding algorithms. All schemes use the identical codes and hence the identical factor graph. The only difference is the LLR computation and the way the message passing decoder operates on this factor graph.

VI. CONCLUSION

This paper presents implementation aspects of Noisy Network Coding for half-duplex Two-Way Relay Channels. We derive the joint factor graph, the corresponding decoder message passing rules and propose practical design choices. Finding optimized code ensembles for the factor graph structure is a worthwhile challenge for future work.

REFERENCES

