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Abstract

Due to numerous technological advancements, 3D sensing is becoming more accurate and

affordable. Different types of 3D sensing techniques exist including LiDAR, Time-of-Flight

and Multi-View Stereo. While 3D sensors have been relatively expensive and require specialist

knowledge to operate, it is the launch of the Microsoft Kinect that made accurate and cheap

3D sensing a reality. Its success was accompanied by many new developments from the

computer vision research community which enabled many new applications.

3D sensors capture scans in the shape of collections of 3D points, called point clouds. Just

like images of cameras, point clouds are view dependent partial scans of the environment.

Unlike images, however, multiple scans can be assembled into more comprehensive 3D maps.

Assembling point clouds into more comprehensive ones requires aligning them along dis-

tinctive shapes that are common to the scans. This necessitates uncovering the relative trans-

formation between their local coordinate systems. The research community has developed

different techniques to deal with the point cloud registration problem. With the possibility

to register multiple scans into more comprehensive 3D models, it is no surprise that part of

the research community has focused on developing and using registration techniques to map

urban indoor and outdoor spaces in 3D. Such 3D maps are essential to many emerging appli-

cations including robot navigation and environment interaction, facility management, cultural

heritage archiving, virtual and augmented reality and many more.

This thesis deals with the topic of point cloud registration with special emphasis on the

applications of 3D mapping and indoor localization. Four contributions are presented. Con-

tribution 1 deals with the fundamental registration theory using the most popular registration

approach, namely using feature matching. Contribution 2 is more high level from the appli-

cation perspective as it deals with the non-rigid deformations of moving LiDAR scans and its

impact on scan matching which is performed to assemble 3D maps from the individual scans.

For that the filter presented in contribution 1 is deployed. An algorithm specifically tailored

for the registration of 3D maps generated from scan matching such that more comprehensive

3D maps can be assembled from smaller ones is presented in contribution 3. In contribution

4, the comprehensive 3D maps are used as reference point clouds against which object scans

obtained with the Kinect are registered for very accurate location retrieval.
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Kurzfassung

Große technologische Fortschritte in der Bildgebung und Sensortechnik haben die kostengünstige

Erfassung von Strukturen in 3D möglich gemacht. Es existieren verschiedene 3D Messtechni-

ken inklusive LiDAR, Time-of-Flight und Multi-view Stereo. 3D Sensoren erfassen Aufnahmen

(Engl. Scans) in Form von ”Punktwolken” (Engl. Point Clouds). Ähnlich wie Kamerabilder

sind standpunktabhängige Punktwolken Teilaufnahmen einer Umgebung. Entscheidend an-

ders sind sie jedoch darin, dass sie sich nach einer geeigneten Ausrichtung zu einer globalen

Aufnahme zusammenfügen lassen.

Das Zusammenfügen mehrerer Punktwolken erfordert, dass sie zueinander ausgerichtet

(Engl. Alignmnet) werden. Das wiederum erfordert das Ermitteln der relativen Transforma-

tionen zwischen deren lokalen Koordinatensystemen. Die Forschungsgemeinschaft hat meh-

rere Techniken für das Punktwolkenausrichten entwickelt. Viele der entwickelten Techniken

befassen sich vor allem mit dem Ausrichten zum Zweck der 3D Kartierung (Engl. Mapping)

von Innen- und Außenbereichen. Die so gewonnenen 3D Karten haben vielerlei Nutzen. Da-

zu gehören Roboter Navigation und Interaktion mit der Umgebung, Facility-Management,

Digitalisierung von kulturellem Erbe, Virtual - und Augmented Reality u.v.m.

Diese Doktorarbeit befasst sich mit dem Ausrichten von Punktwolken mit besonderem

Fokus auf die Anwendung der 3D-Kartierung und Lokalisierung. Sie beinhaltet vier Kernbei-

träge. Der 1. Beitrag befasst sich mit dem grundlegenden Problem des Ausrichtens aus einem

Satz von Punktkorrespondenzen. Im Beitrag werden Mechanismen eingeführt, die einen von

uns entwickelten Filter ermöglichen, robust gegen Außreiser zu werden und somit den in der

Literatur standardmäig eingesetzten Filter in der Performanz deutlich zu übertreffen. Im 2.

Beitrag wird zuerst das Phänomen des sogenannten Scan Skewing, der nicht rigiden Deforma-

tion von 3D LiDAR Scans, gründlich untersucht. Danach wird der im 1. Beitrag vorgestellte

Filter eingesetzt um Skew-resistentes Scan Matching, also das Zusammenfügen nacheinander-

folgenden LiDAR Scans zu einer umfassenden 3D Karte, zu erreichen. Im 3. Beitrag wird einen

Ansatz vorgestellt, der es erlaubt mehrere 3D Karten, die als Ausgang vom Scan Matching

herausgehen, zu einer umfassenderen 3D Karte zusammenzufügen. Im letzten Beitrag wird

ein System zur Ortsbestimmung durch das Ausrichten von Punktwolken kleiner 3D Scans in

großen 3D Karten vorgestellt.
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Chapter 1

Introduction

The digital revolution is rapidly expanding its reach to every aspect of human life. The

increased miniaturization of chips and devices and the increased connectedness of digitized

entities (Internet of the Things) is promising major changes in industry, households and public

and private spaces. The digital revolution also manifests itself in the increased automation

and the increasing deployment of robotic systems.

With increasing digitization of everyday objects, it becomes important to capture the

3-dimensional (3D) space in which they interact. Also, intelligent robotic systems need accu-

rate spatial knowledge and 3D maps of their surroundings to effectively interact with it and

navigate successfully inside it.

The 3D mapping of environments is particularly important for indoor spaces. After all,

humans spend most of their time indoors. A similar argument applies to industrial setups

where robots are expected to become essential companions of workers. Hence, it is not sur-

prising that the UN Committee of Experts on Global Geospatial Information Management

rated indoor positioning and mapping as one of the major emerging trends [8].

3D data of indoor environments can be captured using different 3D sensors and techniques

such as Light Detection and Ranging (LiDAR), structured-light sensing (for e.g. Microsoft

Kinect [9]), depth from stereo, structure from motion (SfM) [10] and Time-of-Flight (ToF).

3D sensors deliver a partial scan of the 3D environment which depends on many factors

including placement, range and field of view. Hence, it is usually important to make multiple

scans and register (or align) them in 3D to obtain comprehensive 3D maps. Moreover, the

registration is important to improve the map accuracy.

This dissertation deals with the topic of alignment (alternatively termed registration) of

3D point clouds in 3D space with special emphasis on applications relating to 3D indoor

mapping and location retrieval. In Section 1.1 the contributions of this dissertation towards

the topic are highlighted. A few important notes on convention and other issues are explained

in Section 1.2.
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2 CHAPTER 1. INTRODUCTION

1.1 Contributions of the Thesis

Point cloud registration has multiple applications. Amongst the most popular are 3D mapping,

3D reconstruction and object pose estimation.

There exist a number of methods of point cloud registration. They include: exhaustive

voting-based alignment [11], game theory-based alignment [12], probabilistic alignment (ex-

ample: Coherent Point Drift (CPD) [13]) and feature-based alignment [14].

Arguably, the most prominent approach to point cloud alignment is the feature-based

approach [14]. Like feature-based image matching, this approach is characterized by its sim-

plicity and the availability of multiple types of features suitable for different applications.

Feature-based registration of a pair of point clouds requires first setting up point corre-

spondences through feature matching and finally using the correspondences to estimate the

6 degree of freedom (DoF) alignment. The standard solver of the alignment from a set of

correspondences can be traced back to the works of B. K. P. Horn [15] and Arun et al. [16].

The solver is widely used, however, it suffers from the lack of resilience towards outliers. In

the first contribution we show how the Geometric Algebra Least Mean Squares (GA-LMS)

filter, which we had devised to substitute the standard solver [1], can be made outlier resilient

by devising mechanisms that exploit its adaptive and sequential nature.

We present a systematic study of a characteristic problem of modern LiDARs called “scan

skewing” and deploy a variant of the GA-LMS, again exploiting its adaptive nature, to reduce

the impact on the performance of scan matching of 3D LiDAR data in the second contribution.

Feature-based alignment can suffer from efficiency degradation when dealing with large-

scale point clouds. The problem is highly related to the fact that computing features re-

quires detecting keypoints followed by descriptor computation. Both require repeated nearest-

neighbor (NN) searches in 3D space in the unorganized point clouds∗. The third contribution

approaches this problem by presenting a novel algorithm tailored for the alignment of large-

scale indoor models that are the outcome of scan matching. It is shown to be initial alignment

insensitive, efficient and supports very low overlap.

In a final contribution a feature-based registration with a geometry-aware Random Sample

and Consensus (RANSAC) is used to perform very accurate indoor localization.

From a system perspective, the four contributions cover a chain of successively linked

applications whereby the filter presented in contribution 1 is used to reduce the impact of the

effect studied in contribution 2. The maps produced in contribution 2 form the input of the

algorithm of contribution 3 whose output forms the reference point clouds used in contribution

4. This is further illustrated in Figure 1.1.

∗Unorganized point clouds is a term adopted from the Point Cloud Library (PCL) [17] and refers to point
clouds in which the point index is not related to the spatial relationship. This is a fundamental difference to
images where the pixel adjacency defines the neighborhood of any point.



1.1. CONTRIBUTIONS OF THE THESIS 3

Chapter 3: Outlier-resilient registration of 
point sets from correspondences using 
the Geometric Algebra LMS (GA-LMS)

Matched query

Chapter 4: Skewing-aware scan matching 
using the GA-LMS for indoor mapping 
using 3D LiDAR scans

Chapter 5: Alignment of large-scale 
indoor point clouds to assemble more 
comprehensive 3D models of indoor 
spaces

Chapter 6: Registration of small object 
scans in comprehensive 3D maps to 
retrieve the exact location

Figure 1.1: The thesis contributions from a system perspective. Contribution 1 is related to the
fundamental theory of point set registration on the most basic level. Contribution 2 builds upon
contribution 1 and focuses on the application of scan matching: assembling elementary 3D scans into
a 3D map. Contribution 3 is concerned with the registration of 3D maps resulting from scan matching
into more comprehensive 3D maps. Contribution 4 uses the comprehensive 3D maps for accurate
indoor localization.

Following, is a summary of the contributions:

• Outlier-Resilient Registration from Correspondences using the GA-LMS:

A method for the feature-based alignment of a point cloud pair connected by corre-

spondence pairs is presented. Its novelty is attributed to the fact that it uses an un-

conventional mathematical formulation, namely Geometric Algebra (GA), to derive an

adaptive filter that estimates transformations by processing correspondences individu-

ally allowing to control the influence of each correspondence pair on the final outcome.

The main contribution, which is presented in Chapter 3, is a description and validation

of techniques that exploit the adaptive and sequential nature of the filter to endow it

with outlier-resilience.
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• Skew-Resistant Scan Matching for 3D Mapping using the GA-LMS:

In Chapter 4 an analysis of the scan skewing problem which is a phenomenon related

LiDAR-based 3D scanning is first presented. To the best of our knowledge, this is the

first systematic study on the problem. Furthermore, the adaptive and sequential nature

of the GA-LMS is exploited to reduce the impact of skewing to produce better 3D maps.

• Efficient Decoupled Roto-Translation Alignment of Large-Scale Point Clouds:

Separate 3D maps are typically acquired for different parts of a large building owing to

technical and non-technical limitations. They need to be aligned such that a comprehen-

sive reconstruction of the indoor environment results, which is important for providing

a single reference data set for location retrieval purposes. In order to eliminate the need

for time-consuming manual alignment, a method for the automatic alignment of large-

scale indoor point clouds is presented. The method presented in Chapter 5 is different

from the state-of-the-art in that it can handle very small overlaps between the point

cloud pair while being very efficient and insensitive to initial alignment.

• Indoor Localization using Point Cloud Registration:

In Chapter 6 a retrieval system is presented that uses only point cloud registration to

perform the retrieval of the location. The approach uses a feature-based retrieval system

with a robustified geometry-aware estimator and which is shown to achieve localization

accuracies in the cm-domain.

Parts of this thesis have appeared in the following papers: [1], [2], [4]–[6].

1.2 Convention

In the following parts of the thesis, a unified mathematical notation is adopted which is

outlined in Table 1.1. The ·T operator transposes a matrix or vector. The | · | operator around

a set refers to set size. The × implies vector cross-product. p(·) expresses the probability

function.
〈
·
〉

represents the Geometric Algebra 0-grade operator.

Table 1.1: Mathematical convention used in the thesis.

Entities Font type Example

Scalars Small letters a

Vectors Small bold letters a

Matrices/Tensors Capital bold letters A

GA Multivectors small “mathbbm” letters a

Sets & Spaces Capital “mathcal” letters A



Chapter 2

Background

2.1 Mapping

The area of 3D reconstruction and mapping has progressed substantially in recent years. Many

approaches to the reconstruction of 3D models that rely on accurate range scanners and even

cheap hand-held scanners have been presented. Mapping systems include scanners mounted

on wheel-based mapping platforms [18], backpack-mounted scanners [19] and hand-held scan-

ners [20] as shown in Figure 2.1. Also, numerous camera-based reconstruction algorithms

have been proposed such as [21] which performs urban reconstruction from a video.

Especially LiDAR-based mappers are interesting as they acquire relatively dense point

clouds with high accuracy. As opposed to multi-view reconstruction algorithms ([21]), they

generate individual 3D scans which have to be registered to one another such that a com-

prehensive 3D map is generated as illustrated in Figure 2.2. After registration such systems

can produce point clouds with impressive level of detail as shown in Figure 2.3. Different

techniques used in point cloud registration are surveyed in Section 2.2.

Figure 2.1: Four different types of LiDAR-based mappers. From left to right: LMT trolley-based
mapper [18]; backpack-based mapper (image source: [22] – reproduced with permission); ZEB1 hand-
held mapper (image source: [23] – reproduced under CC3.0); Leica static ScanStation C10 (image
source: [24] – reproduced with permission).

5
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xi
yi

Scan i Scan i+1
Scans after matching

xi
yi

xi+1
yi+1

Figure 2.2: 3D mapping with LiDARs. Registering multiple scans (shown here for 2D scans from a
top view) using scan matching allows retrieving the sensor motion and assembling a map as the one
shown in Figure 2.3.

Figure 2.3: A point cloud of a TUM corridor generated using the M3 Mapping Trolley of the NavVis
GmbH [25], part of the ceiling and walls have been removed manually.

2.2 Point Cloud Registration

3D-point cloud alignment is the problem of recovering the 6DoF transformation that aligns

two overlapping point clouds (PCDs) in a common frame. The alignment problem involves

two point sets: the target (also called scene) which is static and acts as a reference and the

source (also called model) for which the transformation that best aligns it to the target is

sought. In the following, the target point cloud (set) shall be mathematically referred to as

set T = {pt1,pt2, . . . ,pt|T |} and the source point cloud as set S = {ps1,ps2, . . . ,ps|S|}. A point

is expressed using the column vector p = [p(x) p(y) p(z)]T .

From a theoretical point of view we can distinguish between two cases: 1) A set of cor-

respondences identifying corresponding source-target pairs are known which is addressed in

Section 2.2.1; 2) No correspondences are known. In this case, there are two different alignment

problems:

• Coarse alignment which does not put restrictions on the initial alignment but is usually

less accurate and serves as an initialization for the fine alignment (see Section 2.2.2);

• Fine alignment which is initialization-sensitive (see Section 2.2.3).
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Source PCDTarget PCD

Figure 2.4: Correspondences establish an associative connection between source-target point pairs.

2.2.1 Registration from Correspondences - The Absolute Orientation Problem

Let’s assume the existence of a set of correspondences identifying which source point corre-

sponds to which target point as depicted in Figure 2.4. The correspondences can be math-

ematically expressed as: C = {{pcs1 ,pct1 }, {pcs2 ,pct2 }, . . . , {pcsN ,pctN}|pcsn ∈ S,pctn ∈ T }∗. The

registration problem can now be mathematically formulated as the minimization of the mean-

squared-error (MSE) cost function:

Cpt2pt(R, t) =
1

N

N∑
n=1

∥∥pctn −Rpcsn − t
∥∥2
2

(2.1)

with R and t = [tx ty tz]
T expressing the 3D orthogonal rotation matrix and 3D translation,

respectively. At least three correspondences are necessary to solve this problem. Typically

more correspondences are available making this is a Least Squares (LS) problem.

It can be easily mathematically shown that the minimization of (2.1) breaks down into

two steps [26]: compute the translation tmin after first recovering the optimal rotation Rmin

using the mean-subtracted point clouds by minimizing

1

N

N∑
n=1

∥∥∥p̂ctn −Rp̂csn

∥∥∥2
2
, with p̂csn = pcsn − pcs & p̂ctn = pctn − pct (2.2)

where pcs and pct are the centroids of the source and target point clouds, respectively. The

formulation in (2.2) is called the orthogonal procrustes problem. Shönemann [27] showed that

the rotation minimizing the cost function is obtained using the Singular-Value Decomposition

(SVD) of the point scatter matrix P̂csP̂ct
T

of the matrices P̂cs = [p̂cs1 p̂cs2 . . . p̂csN ] and

P̂ct = [p̂ct1 p̂ct2 . . . p̂ctN ] (Notice, at least three correspondences are necessary to compute the

scatter matrix). Hence,

Rmin = VUT for P̂csP̂ct
T

= UΣVT (2.3)

The translation can now be computed using the following formula:

tmin = pct −Rminpcs. (2.4)

The full derivation can be found in [26]. The original derivation is usually attributed to Arun

et al. [16].

∗Notice that, without loss of generality, the source and target cloud of the correspondences do not necessarily
preserve the original order of the points inside their respective point clouds.
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Notice, other formulations of (2.2) that use different rotation operators other than orthog-

onal rotation matrices exist. They include the quaternion-based formulation [15] or the one

that uses dual quaternions [28]. All three result in closed-form solutions to the minimization

problem and have been found to perform similarly accurate in non-degenerate cases [26].

The accuracy of these LS estimators is degraded by outliers as they treat all points equally.

The possibility to incorporate weights explicitly for the individual points exists. However, it

is not possible to ad-hoc decide to exclude certain correspondences because they lead to a

degradation of the solution or because the filter has converged obliterating the necessity to

spend extra computations. Finally, the derivations using these formulas are not straight-

forward. This applies especially to the quaternion-based estimator. In [1] we derive an

alternative filter that uses rotors of Geometric Algebra (GA) instead of quaternions. Although

rotors are isomorphic to quaternions, the derivations are much more tractable owing to the

tools offered by Geometric Calculus. In Chapter 3 the adaptive nature of the filter is exploited

to endow it with resilience towards outliers.

When not opting for an LS solution, one may compute the transformation using RANSAC

[29]. In each RANSAC iteration three correspondences are randomly sampled and used to

compute the transformation as explained above. The quality of each transformation hypoth-

esis is given by the number of source points which after transformation using the computed

hypothesis are not further away from their corresponding target point than a certain maxi-

mal distance. In Chapter 6 a simple trick is used to turn RANSAC into a “geometry-aware”

RANSAC that can effectively deal with a high false correspondence rate to result in very

accurate registration results.

2.2.2 Coarse Alignment

When registering two point clouds for which no correspondences are known and which have

not been roughly pre-aligned, a coarse alignment is necessary. Different categories for coarse

alignment exist. They are explained in the following while highlighting their characteristics.

2.2.2.1 Voting-based Alignment

The first category involves voting-based algorithms. These include [11], [30]–[32]. They avoid

establishing hard source-target correspondences. Instead, they are based on accumulating

votes inside the parameter space cast by different combinations of source-target points.

Typically, three correspondences are needed per vote. Accordingly, the algorithmic com-

plexity is O(|S|3 · |T |3). This means that slight increases in the number of points lead to large

increases in computational burden. Hence, these methods suffer from inefficiency due to their

brute force nature. Moreover, with growing dimensions the votes become increasingly sparse

requiring many more votes to sufficiently populate the space (curse of dimensionality).



2.2. POINT CLOUD REGISTRATION 9

Elevation Partitions

Azimuth Partitions

Local Reference Frame

Keypoint

A point inside the support and 
its surface normal

Descriptor Support

Figure 2.5: SHOT descriptor computation. A local reference frame (LRF) is computed for the keypoint.
The dot product of the normal of any point inside the support with the LRF z-axis is computed. The
descriptor is made up of 11-bin histograms of the dot product values. One histogram is computed
using all points inside one spatial partition of the spherical support around the keypoint. The support
is partitioned as follows: 2 elevation partitions (hemispheres), 8 azimuth partitions (only 2 shown here)
and 2 radial partitions (not shown in the figure). Hence, the descriptor vector has 352 elements.

In Chapter 5 an algorithm for the alignment of large-scale point clouds is proposed which

exploits characteristics of the data to break down the registration problem into multiple

problems of reduced complexity. One of them, namely the translation alignment in the ground-

plane, is solved using a voting-based approach albeit one that has a substantially reduced

complexity. Furthermore, the voting is cast into a probabilistic model (see Section 2.2.2.4) to

support low overlap cases.

2.2.2.2 Feature-based Alignment

This category involves methods that require computing point correspondences and using them

to estimate the transformation that best maps the source points to their respective target

points as explained in Section 2.2.1. The feature matching of local features (such as [33]–

[35]), which is essential for establishing correspondences, requires articulated shapes to gener-

ate distinctive descriptors. Also, keypoint detection and descriptor computation are usually

computationally demanding since each requires repetitive NN searches.

Aldoma at al. [36] compare different local shape descriptors implemented in the Point

Cloud Library (PCL) [37] in terms of 3D object retrieval performance. The Signature of

Histograms of OrienTations (SHOT) [38], [39] as well as the Unique Shape Context (USC) [40]

are shown to be among the best performing in terms of retrieval performance. SHOT is used

in this work since its descriptors are significantly smaller than USC descriptors.

The SHOT descriptor comprises concatenated histograms of surface normal dot products

w.r.t. to the local reference frame (LRF). The SHOT descriptor computation is explained

in Figure 2.5. In Chapter 6 a system for indoor location retrieval based on point cloud

registration using feature matching is presented.
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2.2.2.3 4-Point Congruent Sets (4PCS)

The relatively new approach of Four-Point Congruent Sets (4PCS) [41] also establishes ex-

plicit correspondences like the feature-based approaches. However, it is different in that each

correspondence is made of a pair of nearly co-planar 4-point sets. Hence, one correspon-

dence is enough to compute a 6DoF transformation. Each 4-point set (basis) correspondence

generates a transformation hypothesis which is verified in a RANSAC-like approach.

The 4-point correspondences are not found by feature matching but rather through geo-

metric consistency. The congruent set search for one target 4-point basis with the proximity

constraint δ is illustrated in Figure 2.3. Once a congruent set is found, the 6DoF alignment is

computed. Since 4PCS poses alignment as a Largest Common Point set (LCP) problem, the

hypothesis quality is given by the number of source points which after transformation have a

NN that is nearer than δ.

The co-planarity of the bases means that especially objects with large planar surfaces are

suitable for alignment with this approach which is a characteristic standard feature-based

approaches do not possess as they require articulated shapes for distinctive descriptor gener-

ation. The congruent set search is computationally intensive (finding co-planar bases, finding

pairs subtending a certain length, predicting intersection points, checking intersection point

incidence, see Figure 2.6) making the algorithm relatively slow on large scale point clouds.

Mellado et al. accelerated the 4PCS algorithms creating the Super4PCS (S4PCS) [42]. It

is used in our comparisons given its efficiency. Since 4PCS (and S4PCS) pose alignment as

an LCP problem, solutions that maximize overlap are favored which is occasionally harmful

when registering indoor datasets with large corridors as seen in the results in Section 5.6.5.

a

bc

dx

rab=||x-a||/||b-a||
rcd=||x-c||/||d-c||

a1

b1

c1

d1

d2

c2

b2

a2

xi,ab=ai+rab(bi-ai)/||bi-ai||

xi,cd=ci+rcd(di-ci)/||di-ci||

Target Source

x1,ab x1,cd

x2,ab

x2,cd

Not congruent because
||x2,ab – x2,ab||>δ

Congruent because
||x1,ab – x1,ab||<δ

Figure 2.6: 4PCS congruent basis search. The 4PCS uses 4 point bases made of (nearly) co-planar
points. The ratios rab and rcd for the two intersecting lines connecting a randomly chosen co-planar
4-point set {a,b, c,d} are computed in the target (left). Then, all point pairs of a length similar to
either ||b − a||2 or ||d − c||2 are pre-selected in the source (O(|S|2)) delivering candidate congruent
sets. In this example, the following two congruent sets were found: {a1,b1, c1,d1} and {a2,b2, c2,d2}
(right). For each candidate basis i, the predicted intersection points xi,ab and xi,cd are computed using
the basis points and the ratios rab and rcd. A set is only accepted as congruent to the target basis if
it satisfies ||xi,ab − xi,cd||2 < δ. Notice, in practice it is not possible to uniquely assign a strict order
to a pair of points (i.e. identifying a and b or c and d) hence all four combinations are tested when
predicting the intersection points leading to further computational burden.
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2.2.2.4 Probabilistic Alignment

Probabilistic approaches fit probability distributions on the underlying point data and cast

these models, after parameterization on the transformation parameters, into minimization

problems.

One notable example for probabilistic alignment is that of Jian and Vemuri [43] (henceforth

termed GMMREG). It fits a Gaussian Mixture Model (GMM) on the source and target clouds

and considers the alignment problem as a histogram distance minimization problem when

parameterizing one of the GMM models on the transformation parameters. They use the

L2 histogram distance and show that the L2 distance between two GMMs has a closed form

solution. In essence, the alignment problem amounts to minimizing:∫
(gmm(T (S,T))− gmm(T ))2. (2.5)

where gmm(P) is a GMM modeled from the point set P with |P| mixtures centered on the

points. T (S,T) is a function that transforms the point set S using transformation T.

The L2 distance between two GMMs (2.5) has a closed form solution which amounts to

evaluating |T | 3D Gaussians at |S| points. Hence it has the complexity O(|S| · |T |). When

combined with the iterative solver needed to minimize this L2 distance (2.5) this translates into

very slow convergence. Amongst all alignment algorithms tested this is by far the slowest. For

our typically large-scale point clouds the computation times are simply prohibitive. Because

of the iterative nature of the solver the algorithm is also sensitive towards the initial alignment

as shown in Section 5.6.4

Another notable representative of probabilistic alignment is Coherent Point Drift [13]. The

contribution presented in Chapter 5 is partly inspired by CPD. Like GMMREG, CPD also

uses GMMs, however, the (parametrized) GMM model is only fitted on the target cloud where

each target point represents a component of the mixture. Each source point is considered a

sample out of the GMM model. The transformation parameters are estimated by solving

a maximum likelihood (ML) problem using the Expectation Maximization (EM) algorithm.

More specifically, in CPD, the probability of sampling source point psi ∈ S out of the target

point ptj ∈ T after transformation by T is given as:

p(psi |T (ptj ,T)) = N (psi ;T (ptj ,T), σI) (2.6)

where I is the identity matrix and where N (x;µ,Σ) evaluates the Gaussian function centered

on µ and with covariance Σ at x. In using GMM modeling it follows that the probability of

sampling psi can be expressed as:

p(psi ; T) =
w

|T |
+ (1− w)

∑
ptj∈T

p(ptj) p(p
s
i |T (ptj ,T)). (2.7)
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The uniform probability (w/|T |), with 0 ≤ w < 1, is added to the mixture model in CPD

to account for parts not in the overlap (we use a similar approach to account for outliers

in Section 5.4.7). Here, we have neglected the scaling factor which CPD can also account

for. The rotation R and translation t are estimated by solving a maximum likelihood (ML)

problem which is built on top of the assumption of i.i.d. source point samples, i.e. maximizing

p(S; T) =
⋂

psi∈S
p(psi ; T). (2.8)

Notice, each time the likelihood is evaluated for a parameter hypothesis |S| · |T | 3D Gaussians

have to be evaluated. These evaluations have to be repeated as the ML solution is based on

the Expectation Maximization (EM) algorithm which is an iterative algorithm. In summary

the solution involves iterating over the following main steps:

1. Compute a pair-wise probability pi,j between each source-target point pair {psi ,ptj} ∈
S × T . Each probability involves evaluating a Gaussian function;

2. Update model parameters;

until a convergence criterion is reached. The first step represents the bottleneck of computa-

tions for CPD. Its complexity is O(|S| · |T |) and is repeated in every iteration which for our

large-scale point clouds with millions of points translates into very slow convergence. Even

when replacing the full Gaussian evaluations by the Fast Gaussian Transform [44] with com-

plexity O(|S|+ |T |) CPD remains relatively slow as shown in Figure 5.17. Moreover, the used

EM algorithm does not guarantee hitting the global optimum [45] which also means that differ-

ent initial alignments may lead to different results, as further demonstrated in Section 5.6.4.

Finally, the point-wise relationship given by the Gaussian function does not involve the local

geometry which provides vital clues about how associable two a source-target pair is.

An interesting observation is that CPD, contrary to feature-based approaches and to 4PCS,

does not establish hard correspondences but instead establishes a “soft” relationship between

point pairs. This is somehow similar to voting-based approaches. However, instead of using

every possible pair for casting votes in the transformation space, CPD describes the pair-wise

point relationships by probabilities.

CPD and GMMREG have a high degree of flexibility in dealing with different transforma-

tions including reflections, affine transformation and scaling. These properties, however, are

hardly of interest to our problem since we deal with rigid-body transformation estimation in

3D space. Their iterative nature means that they are sensitive to initial alignment as will be

shown in Section 5.6.4. Significant computational complexity is associated with the employed

solvers leading to very high computation times especially for large datasets. Nevertheless,

they (and especially CPD) remain inspirational as shown in Chapter 5.
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2.2.3 Fine Alignment with the Iterative Closest Point

Fine alignment, as the name implies, is concerned with refining the alignment result such that

errors inside the overlap region are minimized. It is typically run after a coarse alignment

step (see Section 2.2.2).

The Iterative Closest Point (ICP) algorithm is still considered the standard solution for

the fine alignment problem. Zhang [46] and Besl and McKay [47] are credited with developing

the ICP algorithm.

ICP, as its name implies, is an iterative algorithm. It alternates between two processes:

correspondence search followed by transformation update. The correspondence computation

builds upon the fundamental assumption that corresponding points are in close spatial prox-

imity which is the reason for the requirement of a good initial alignment. Thus it is common

to identify correspondences using NN search. The iterations are necessary as the NN search

becomes a more reliable correspondence finder as the transformation alignment becomes more

accurate which in turn leads to better correspondence estimation.

Since good correspondences are essential to obtain a good alignment a number of corre-

spondence refinements, also called correspondence rejectors, can be applied. The maximum

distance rejector filters out correspondences whose spatial distance is beyond a certain thresh-

old. This is also important to hinder parts that are not overlapping between source and target

from contributing to the alignment. It is also possible to reject correspondences whose normals

subtend an angle greater than a certain threshold angle. This implies the rotation alignment

is largely correct which again explains the requirement for good initial alignment. A number

of other rejectors are explained in [14].

At any iteration, once the correspondences have been computed, the transformation can

be computed by solving the absolute orientation problem (see Section 2.2.1) which uses the

so-called “point-to-point” (pt2pt) metric. However, it has been shown that a reformulation

of this problem using the so-called “point-to-plane” (pt2pl) metric leads to faster convergence

and more accurate ICP [48].

The pt2pl alternative of the cost function of (2.1) is

Cpt2pl(R, t) =
1

N

N∑
n=1

∥∥(pctn −Rpcsn − t)Tnctn
∥∥2
2

(2.9)

where nctn is the normalized surface normal vector of the respective target point. This formu-

lation aims at minimizing the perpendicular distances of the source points to the tangents of

the respective target points as illustrated in Figure 2.7.

Minimizing the non-linear cost function (2.9) can be done using the Levenberg-Marquardt

algorithm. It is common, however, to use the small angle assumption which allows to simplify

the derivation. In this case, it can be shown that the transformation can be determined by
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v3v2
v1

v3 v2
v1 n1

n2
n3

point-to-point point-to-plane

Figure 2.7: The point-to-point metric for surface registration aims at finding the transformation that
minimizes the sum distance between correspondences of two surfaces (in this case ‖v1‖2+‖v2‖2+‖v3‖2,
where vi are the translation vectors connecting source-target correspondences). The point-to-plane
metric aims at minimizing the perpendicular distances of the source points to the target surface tangent
of their respective corresponding target points (in this case (v1

Tn1)2 + (v2
Tn2)2 + (v3

Tn3
2), where

ni are the normalized surface normal vectors). Notice, for flat regions of the surface, the perpendicular
distance remains unchanged for a “sliding” movement along the flat region allowing faster convergence
by implicitly down weighting the flat region’s contribution and up weighting more salient regions with
articulated surface.

solving the following equation:

GGT [αx αy αz tx ty tz]
T = Gh. (2.10)

where αx, αy and αz are the rotation angles around the x, y and z axis, respectively, and with

G =

 pcs1 × nct1 pcs2 × nct2 · · · pcsN × nctN

nct1 nct2 · · · nctN

 and h =



(pct1 − pcs1 )Tnct1

(pct2 − pcs2 )Tnct2

· · ·

(pctN − pcsN )TnctN


. (2.11)

See [49, Appendix A] for the detailed derivation. In (2.10) a difference to the standard pt2pt

solution can be observed: The rotation and translation are estimated jointly when using the

pt2pl metric. This is fundamentally different to the solution of the pt2pt metric where the

solution involves first finding the optimal rotation and then the optimal translation using

centroid subtraction (see Section 2.2.1). The results in Chapter 4 show that this leads to a

measurable advantage of pt2pl as compared to pt2pt.

It remains to be said that there is a plethora of ICP variants that have been developed

over the years. The interested reader may refer to Pomerlau et al.’s extensive survey on the

topic [49].



Chapter 3

Point Cloud Registration with the

GA-LMS

As explained in Section 2.2.2.2, one principal approach to point cloud alignment requires

determining point correspondences between the points of the PCDs to be aligned. Once

correspondences have been computed, an LS estimator can used to estimate the MSE trans-

formation (see Section 2.2.1).

In practical systems, the correspondences are usually automatically determined using for

instance local-shape descriptor matching (see Section 2.2.2.2). Many correspondences can be

false in this case and a standard LS estimator may not lead to satisfactory results.

Recently, we devised a completely new approach for estimating the relative rotation be-

tween PCDs from point correspondences [1]. It is based on a least-mean-squares (LMS)

Adaptive Filter (AF) that uses Geometric Algebra (GA), a mathematical tool that allows

for representing geometric transformations in a very general fashion [50]–[52]. The Geomet-

ric Algebra LMS (GA-LMS) is derived using adaptive filtering theory [53], [54] applied on

Geometric Calculus [50] after re-posing the 3D rotation registration problem as a rotor esti-

mation problem [55]–[57]. The GA-based formulation allows for a tractable derivation while

emphasizing the geometrical intuition behind rotors, a notion that is less intuitive when using

matrix algebra to represent geometric transformations. In our first published work on the

topic [1] we used the GA-LMS for pure rotation registration. Our experiments demonstrated

that the GA-LMS alignment accuracy to be comparable to that of standard SVD-based solver

and thus is a valid replacement thereof.

In this chapter the GA-LMS’s adaptive nature is exploited to endow it with error resilience

as compared to the standard SVD-based LS estimator.

15



16 CHAPTER 3. POINT CLOUD REGISTRATION WITH THE GA-LMS

3.1 Geometric Algebra Background

Geometric (Clifford) Algebra was developed as a mathematical language to unify all the

different algebraic systems trying to express geometric relations. Some GA concepts are

introduced here. For an in-depth discussion, see [50]–[52].

Given a vector space A, the Geometric Algebra G(A) is comprised by the so-called mul-

tivectors, generated by multiplying the vectors in A via the geometric product [52], together

with the multiplicative identity (scalar) 1. Thus, whenever dealing with multivectors, the use

of the geometric product is implicit. For the case when dealing with “simple” vectors, the

geometric multiplication of a,b ∈ A is defined in terms of the inner (a ·b) and outer (a∧b)

products as ab = a · b + a ∧ b [50]. GA also defines the reverse operator which is analogous

to conjugation in complex numbers (in fact, complex numbers form a sub-Algebra of GA).

The reverse of multivector q is expressed as q̃. The norm operator | · | in GA generalizes the

norm operator ‖.‖ of linear algebra [52].

It is important to understand that GA is a powerful mathematical language. A GA entity

is in general a linear combination of a scalar, the basis vectors and their combinations (the

so-called n-vectors). Hence, for a 2D space, a multivector can be expressed as:

q = e0 + e1 e1 + e2 e2 + e1,2 e1,2 (3.1)

where e1 and e2 are the two basis vectors and e1,2 is the only 2-vector (also called bi-vector).

Anecdotally, it could be said GA allows adding apples and oranges! This property allows

expressing different geometrical operations such as rotations, translations and the entities to

be transformed using simple compact expressions. This is a fundamental property that we

exploited in our work on rotation alignment using the GA-LMS [1].

The reader may have noticed the use of the “mathbbm” font together with small letters to

express multivectors (example: q) in line with the introduced notation in Table 1.1. Rotors,

which are multivectors, are hence expressed using the same notation. Although vectors in the

context of GA are also multivectors, the standard notation (bold small letters) is still used,

as they have some special properties such as the one introduced above relating to geometric

multiplication.

3.2 The GA-LMS Filter for 6DOF Registration

The GA-LMS acts on a set of point correspondences. In keeping with the notation of Chapter 2

the correspondence set is expressed as C = {{pcs1 ,pct1 }, {pcs2 ,pct2 }, . . . , {pcsN ,pctN}|pcsn ∈ S,pctn ∈
T } where S and T are the source and target points, respectively.

To register the source points to the target points in C, the cost function (2.1) has to be

minimized. The GA-LMS as we present it in [1] only estimates the rotation alignment.
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To derive the GA-LMS, we re-posed the orthogonal Procrustes cost function (2.2) using

Geometric Algebra by substituting the matrix R with the rotor r and its reversed version r̃

in order to represent rotations as follows [1]:

CGA(r) =
1

N

N∑
n=1

|p̂ctn − r p̂csn r̃|2. (3.2)

Remember, p̂csn and p̂ctn are the corresponding source and target points after subtracting the

respective PCD centroids. We applied Geometric Calculus [50], [58] to devise an LMS AF to

estimate the best rotor that minimizes (3.2) [1]. Notice the similarity of (3.2) to the equivalent

formulation using quaternions. In fact, rotors are isomorphic to quaternions. Nevertheless,

you may be aware of the complexity of performing derivations, which are necessary to derive

the LMS (or generally gradient decent) filter, when using the standard quaternion formulation.

In [1] we derived the GA-LMS by calculating the gradient ∇CGA(r) (via Geometric Cal-

culus) and substituting it into the steepest-descent rule [53], which recursively provides a new

estimate for the rotor r at each iteration,

ri = ri−1 − µ∇̃CGA(ri−1), (3.3)

where
∇CGA(ri−1)=4r̃i−1

N∑
n=1

p̂ctn ∧ (ri−1p̂csn r̃i−1), (3.4)

and ∇̃CGA(ri−1) is the reversed gradient. Note that ∇CGA(ri−1) is a function of all the

correspondence pairs {p̂ctn , p̂csn }, n = 1, · · · , N , i.e., it needs all the available correspondences,

at each i, to update the estimate for r.

In [1] we approximate the gradient by its current value to generate the LMS variant in

line with AF theory. Hence, we set ∇CGA(ri−1) ≈ 4r̃i−1

[
p̂cti ∧ (ri−1p̂csi r̃i−1)

]
. This approx-

imation reduces the computational complexity of the algorithm since now it needs only the

correspondence pair at the current iteration {p̂csi , p̂cti }. Adopting that in (3.3) results in the

GA-LMS update rule,

ri = ri−1 + µ
[
p̂cti ∧ (ri−1p̂csi r̃i−1)

]
ri−1 . (3.5)

As we show in [1], Equation (3.5) is able to converge using only part of the available corre-

spondences, delivering an estimate as good as the SVD-based method used for comparison.

As Mr Wilder Lopes of the University of Sao Paulo mainly contributed the mathematical

derivations, the details are left out here. The interested reader may refer to [1] for the full

derivation.

In adopting a similar solution approach to that of the absolute orientation problem (Sec-

tion 2.2.1), the GA-LMS is simply extended here to compute the translation alignment through

the subtraction of the centroids as follows:

tmin = pct − rminpcsr̃min (3.6)

Notice, this is the GA version of (2.4). The results in this chapter will demonstrate that this

simple extension suffices to extend the GA-LMS to full 6DOF registration capability.
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3.3 Implementation and Robustification against Outliers

3.3.1 Filter Implementation

The GA-LMS was implemented using C++ as part of a shape matching system presented

in Chapter 6. It computes point correspondences using shape feature matching. The GA-

LMS update rule (3.5) was implemented using the Geometric Algebra ALgorithms Expression

Templates (Gaalet) [59]. The filter update code is as simple as shown in Listing 3.1.

Listing 3.1: Implementation of (3.5) using Gaalet. (∧) performs outer product and (∼) computes the

reverse of a multivector.

//Update rotor

r o tA f t e r = eva l ( ro tBe fo r e+mu∗( y ˆ( ro tBe fo r e ∗x∗(˜ ro tBe fo r e ) ) ) ∗ ro tBe fo r e ) ;

//Normalising

r o tA f t e r = normalize mv ( ro tA f t e r ) ;

3.3.2 Filter Robustification

Registration systems that establish correspondence pairs are not perfect. Many correspon-

dences can be invalid (false correspondences, also called outliers in this chapter). Our exper-

iments have shown that the GA-LMS in its basic form is not outlier-resilient [1]. Its accuracy

matches that of standard SVD-based methods and degrades proportionally to an increasing

outlier rate. To robustify the filter and achieve outlier resilience a number of improvements

that increase the accuracy significantly are presented here.

Adopting established techniques of the adaptive filtering community, as well as simple

geometric heuristics to improve the GA-LMS performance, the standard SVD-based registra-

tion is outperformed, while not significantly compromising speed. Most proposed techniques

exploit the fact that the GA-LMS is an adaptive filter that processes individual sample points

(correspondences in our case) separately and iteratively. This enables choosing how much

(Section 3.3.2.3) and how often (Section 3.3.2.2), if at all (Section 3.3.2.1), each correspon-

dence is allowed to contribute towards finding the optimal rotor.

To explain the proposed robustification techniques a source-target pair of the Stanford

Bunny dataset [60] is used. Specifically, the Bunny315 and Bunny000 point clouds are used as

source and target PCDs, respectively. These two PCDs are shown among others in Figure 3.1.

The figure of merit used to evaluate the AF performance is the mean squared error (MSE).

For that we define the true MSE which uses only inliers to calculate the estimation error. In

non-experimental scenarios, where the true correspondents are not known prior-hand, the AF

can not compute the true MSE. What the AF evaluates is what we call the filter MSE which

is defined as the MSE that is calculated using all correspondences (inliers and outliers).
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Figure 3.1: The Bunny dataset is composed of 10 scans of a rabbit model obtained from different view
points. Four specific scans (Bunny000, Bunny045, Bunny270 and Bunny315) are picked, where the
numeric postfix identifies the angle in the ground plane from which the bunny was scanned. Image
source: [5] – ©2016 IEEE.

.

3.3.2.1 Iteration Skipping

Having observed that outliers typically lead to an instantaneous increase in the MSE, the idea

is to skip the filter update that would lead to such an increase, thus discarding the otherwise

harmful contribution of the outlier correspondence to the filter update. The skipping is done

based on the filter MSE value.

As depicted in Figure 3.2, the true MSE is always lower when skipping and mostly mono-

tonically decreasing. Moreover, the frequent degradation in the true MSE when not skipping

(solid red line in Figure 3.2) no longer appears after skipping (solid green line in Figure 3.2),

suggesting that the contribution of the outliers is indeed being discarded through skipping.

As already mentioned in Section 2.2.1, it is not possible to ad-hoc detect and discard

potential outliers in standard LS registration algorithms. Iteration skipping is only possible

with the GA-LMS due to its iterative nature.

Iteration (correspondence)

0 50 100 150

M
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E
 (

dB
)

-35

-30

-25
True MSE, with skipping
Filter MSE, with skipping
True MSE, without skipping
Filter MSE, without skipping

Figure 3.2: Skipping iterations with increasing filter MSE (MSE computed using all correspondences
including inliers and outliers) vs. no skipping. When skipping, the true MSE (solid lines) is clearly
lower than when not skipping proving that skipping reduces the contributions from outliers leading to
better pose estimation. The strong reduction in MSE after the first iteration is due to the subtraction
of the centroids (3.6). Image source: [5] – ©2016 IEEE.
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Iteration (= correspondence + (feed - 1)"#correspondences)
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Figure 3.3: Refeeding the same set of correspondences multiple times can extract further information
from already processed samples. In this case, the correspondence pairs are fed 4 times into the GA-
LMS. The MSE at the end of each cycle is better than that of the previous cycle. The gain in the
3rd and 4th cycles is marginal since the orientation has been already recovered accurately in the 2nd
stage. Here we limited the number of correspondences to 33% of those in Figure 3.2 as this technique is
particularly useful when a limited number of correspondences are available or the step-size is relatively
small. Image source: [5] – ©2016 IEEE.

3.3.2.2 Sample Refeeding

From information theory, we know that data samples (correspondences in our case) that have

already been processed can provide new information if processed again at a later stage [53].

The intuitive explanation is that, especially when the step size is relatively small, a sample’s

residual error, given the current filter state, can lead to another filter update in the opposite

direction of the reversed gradient, according to (3.5). Hence, it is common in adaptive filtering

literature to refeed (reuse) the same set of data samples to obtain a better final outcome [61]–

[64].

This technique can lead to a noticeable improvement in the MSE in the case where the

number of correspondences is not enough for the filter to converge, or the step size is not

large enough to achieve convergence. The latter might be necessary to enforce filter stability

(well-behaved updates).

Figure 3.3 shows the MSE progression for the Bunny pair. However, in this experiment

only 33% of the correspondences used in the experiment of Section 3.3.2.1 are used. Clearly,

the multiple feeding strategy benefits the alignment. It remains to be said that multiple

feeding can not lead to a degradation of the alignment and hence can always be used. The

only downside to it is an increase in computational cost. Given that the filter is light-weight

(as seen in the results in Section 3.4.2) this extra cost can be easily accommodated.
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Figure 3.4: The geometric weight of correspondence {yi,xi} is computed by first computing the
Euclidean distance of xi to all other keypoints in the source cloud (solid blue-shaded lines), dsi,j ∀j ∈
{1, .., N}\i, and computing the corresponding distances dti,j ∀j ∈ {1, .., N}\i on the target side (dashed
blue-shaded lines). The number of keypoints which satisfy |dsi,j − dti,j | < ε (green ticks) is a vote for
correspondence i being an inlier. In this example, {y1,x1} gets vi = 3 votes. The weight is a function
of the votes: αi = vi/maxj vj . Hence, 0 < αi ≤ 1. Image source: [5] – ©2016 IEEE.

3.3.2.3 Geometric Correspondence Weighting

Here, the adaptive nature of the GA-LMS is exploited as it acts on each correspondence

individually. The idea behind this technique is to compute an individual weight for each

correspondence, which is used to control the correspondence’s contribution based on its prob-

ability being an outlier.

To compute the outlier probability a property of the Special Euclidean Group SE3 is

exploited, namely, that inter-point distances are preserved after transformation. Hence, for

each source key point, the number of remaining key points whose distances to it are preserved

also on the target side is determined. This number is proportional to the probability of it

being an outlier. This is perhaps better understood in the illustration of Figure 3.4. A similar

trick is used in the geometry-aware RANSAC proposed in Section 6.4.4.

Once the weight of each correspondence αi(0 < αi ≤ 1) is computed, (3.5) is slightly

modified to incorporate αi in the step-size computation such that correspondences with a

small probability of being an inlier contribute less towards the registration outcome. Hence,

by multiplying the geometric weight into the step size the modified filter update becomes:

ri = ri−1 + αiµ
[
p̂cti ∧ (ri−1 p̂csi r̃i−1)

]
ri−1. (3.7)

The results in Table 3.1 suggest that geometric correspondence weighting should not be en-

abled as the only robustification mechanism. The fact that each correspondence is weighted

by a factor smaller than one means that the filter step sizes are generally decreased. Hence,

its alignment improvement effect is only observed when combined with refeeding (see Sec-

tion 3.3.2.5).
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Figure 3.5: Statistical correspondence filter. (Left) Distances between target and aligned source key-
points after the first GA-LMS run and before correspondence filtering. The distances mainly cluster
around a certain distance as the filter typically will have recovered the rotation while a residual trans-
lation error exists. This is confirmed by the histogram of correspondence distance (middle). (Right)
The GA-LMS is first run using all correspondences (red). For the obtained rotor, the residual error is
assumed to be mainly a translatory component causing a constant shift in inlier source-target keypoint
pairs. The inliers are determined statistically (correspondences with a distance close to the median
distance). The filtered correspondences comprising mainly inliers are fed again into the GA-LMS for
a 2nd run. The second run converges to a better MSE (green). Image source: [5] – ©2016 IEEE.

3.3.2.4 Statistical Correspondence Filtering

As explained in Section 3.3.2.2, after a sufficient number of correspondence refeeds, no further

improvement to the MSE can be obtained. Given the used correspondence set, a lower limit on

the MSE will be reached and further improvements might be achievable if a new less outlier-

corrupted correspondence set is available. Throughout our experiments, we have observed that

once the filter has converged, the recovered orientation is usually accurate up to a few degrees,

even in cases with a high outlier ratio. This suggests that the remaining error in the pose is

composed mainly of a 3D translation error. Hence, when transforming the source keypoints

using the obtained transformation, and subsequently computing the Euclidean distance to

their respective target keypoints, the set of inlier correspondences should be identifiable. It

is specifically the set of correspondence pairs whose Euclidean distances are roughly similar.

The other subset should be composed of outliers.

Indeed, Figure 3.5 clearly shows a concentration of correspondences whose spatial dis-

tances, after applying the obtained GA-LMS transformation, are similar. We compute the

median distance d and retain only those correspondences whose spatial distances are within

d± 0.25σd, where σd is the standard deviation in the spatial distances. The GA-LMS is then

fed with those filtered correspondences, and is initialized with the most recently obtained

rotor. Figure 3.5 shows that a significant MSE improvement happens as soon as the second

GA-LMS run commences, as the computed centroids coincide more accurately.
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Table 3.1: Performance of combinations of the filter robustification techniques explained in Sec-
tion 3.3.2. Comparing B and C to A it can be seen that skipping and statistical correspondence
filtering lead to improvements individually. When combined, they lead to even better alignment (D).
Comparing E to A shows that geometric correspondence weighting alone deteriorates performance.
However, this is expected since weighting each step by αi < 1 means the step size is reduced and the
filter might not converge. Indeed, comparing E to F shows that geometric correspondence weight-
ing is only meaningful once combined with refeeding as it compensates for the reduced step size while
benefiting from the selective weighting. Columns G, H and J show that the combination of these mech-
anisms with increasing refeeding values reduces the angular alignment error. Column I, again shows
that geometric correspondence weighting improves results when combined with the other mechanisms.
Note, the angle error is computed as explained in Section 3.4.1.

Test A B C D E F G H I J

Number of feeds Section 3.3.2.2 1 1 1 1 1 2 1 2 2 4

Skipping Section 3.3.2.1 7 3 7 3 7 7 3 3 3 3

Statistical correspondence filtering Section 3.3.2.4 7 7 3 3 7 7 3 3 3 3

Geometric correspondence weighting Section 3.3.2.3 7 7 7 7 3 3 3 3 7 3

Angle error (◦) – According to Section 3.4.1 16.7 14.0 10.8 8.4 24.0 14.9 15.1 6.2 7.0 5.4

3.3.2.5 Combining Robustification Mechanisms

The results of the collective contributions of the robustification techniques on the bunny

set (introduced in Section 3.3.2) are shown in Table 3.1. It can be seen that while using

some of them individually might lead to a deterioration of the alignment, collectively they

reinforce one another as each one of them possesses different improvement properties leading to

substantially improved alignment results. The experiment in Section 3.4.3 also demonstrates

how the different mechanisms collectively lead to a substantial improvement in the alignment

accuracy of a different dataset with completely different characteristics.

3.4 Comparative Evaluation

In this section the proposed GA-LMS is compared to the standard SVD-based alignment

solver. For the experiments two different variants of the GA-LMS are used: GA-LMS+

is the standard GA-LMS with 4× refeed, statistical correspondence filtering and skipping;

GA-LMS++ is GA-LMS+ with additional geometric correspondence weighting. To compute

correspondences the feature matching system presented in Chapter 6 is used. However, here

we use Harris3D key points instead of Intrinsic Shape Signature (ISS) keypoints.
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3.4.1 Computing Alignment Error

The finally computed transformation is checked for correctness. To that end, first the error

transformation is computed as follows:

Te =

 Re te

0 0 0 1

 = T−1T̂. (3.8)

where T and T̂ are the 3D homogeneous transforms of the ground truth and the estimate,

respectively. Hence, ideally Te should be identity. Any departure from that indicates a

residual alignment error. Using the log map, the error rotation matrix Re is broken down

into a rotation axis and an error rotation angle αe.

The translation error te (not to be confused with te) is computed by determining the

source’s centroid, pcs, translation when applying the ground truth transform compared to

when applying the estimated transform. So, it is computed as follows:

te =
∥∥∥T (pcs,T)− T (pcs, T̂)

∥∥∥
2

(3.9)

where again T (x,T) is a function that transforms point x using transform T.

3.4.2 Bunny Dataset

For our experiments we use the Stanford Bunny dataset [60]. The four scans we use (Bunny000,

Bunny045, Bunny270 and Bunny315) are shown in Figure 3.1.

After correspondence computation each of the two previously introduced alignment esti-

mators (SVD and GA-LMS) are run to retrieve the alignment.

The results in Figure 3.6 clearly show that the GA-LMS+ and GA-LMS++ are more

accurate on average, in terms of both orientation estimation and translation estimation, than

the SVD solver. GA-LMS++, which employs the geometric correspondence weighting, is

better than GA-LMS+, as expected. However, the gain is small. This is mainly due to

the dispersion of the outliers throughout the bunny shape (Section 3.4.3 shows a case where

the gain is substantial). The GA-LMS+ is slower than the SVD-based method provided by

PCL [65]. Nonetheless, it is typically done in a few milliseconds which makes it suitable for

real-time applications. Moreover, we have determined that > 95% of the time is spent on the

MSE computation. This can be spared if no skipping is performed.
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Set SVD (LS) GA-LMS+ GA-LMS++

1 2.4◦ 1.8mm 0.04ms 0.8◦ 0.3mm 23ms 0.8◦ 0.3mm 23ms

2 9.9◦ 10.7mm 0.025ms 6.2◦ 4.0mm 8.0ms 5.5◦ 3.3mm 8.6ms

3 12.9◦ 12.0mm 0.02ms 9.5◦ 2.6mm 6.4ms 6.4◦ 1.7mm 7.0ms

Figure 3.6: Experiments using the Stanford Bunny dataset. Three pairs used from the bunny dataset
shown in Figure 3.1 (1: bunny045 vs bunny000; 2: bunny315 vs bunny000; 3: bunny315 vs bunny270).
The alignment angle error and translation error (see Section 3.4.1) and the required time are shown
for each case. These values represent the average values over 10 alignment attempts with different
correspondence sets. The true correspondence rate varies from 20% to 80%. One representative
visualization is shown for each case. Clearly, both GA-LMS variants are better than the SVD-based
approach, in terms of angle and translation accuracy while remaining suitable for real-time applications.
Image source: [5] – ©2016 IEEE.
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Figure 3.7: Estimation resilience against outliers. A set of randomly chosen outliers is added to con-
fuse the registration algorithms. The curves are averaged over 50 realizations to account for different
constellations of outliers. Conducting the experiment using a subset involving only half of the corre-
spondences shows a similar superiority of the GA-LMS w.r.t. SVD. The GA-LMS uses a 4× refeed
(Section 3.3.2.2) with geometric correspondence weighting (Section 3.3.2.3). Image source: [5] – ©2016
IEEE.

Using the first bunny pair shown in Figure 3.6, the resilience against outliers is shown

in Figure 3.7. The outlier correspondences are randomly added to true correspondences to

generate tougher alignment scenarios. The results clearly show the GA-LMS superiority as

compared to SVD. The same holds true even if half as many correspondences are used. Similar

experiments on the two other bunny pairs (not shown) confirmed these conclusions.

3.4.3 Alignment with Few Correspondences

The experiment shown in Figure 3.8 demonstrates the GA-LMS+ capability to deal with cases

that have a small number of correspondences, out of which many are false and distributed in an

unfavorable geometric fashion. Moreover, it shows how the different mechanisms collectively

help to achieve a substantially improved alignment. The GA-LMS+ does not benefit from

the multiple feeds before the statistical correspondence filtering is performed. However, as

soon as that is done, the multiple feeds are critical to overcome the problem with the limited

number of correspondences (see MSE progression after the statistical correspondence filtering

in Figure 3.8(c)). The statistical correspondence filtering is seen to significantly reduce the

number and ratio of outliers. In effect, the GA-LMS+ retrieves the alignment. The residual

orientation error (αe) is around 7◦. The GA-LMS++ shows even better performance. Due to

the geometric constellation of the outliers, the geometric correspondence weighting leads to

effective downweighting of the outliers contribution. The final outcome has an angle error of

αe = 0.8◦and nearly optimal translatory alignment. The SVD-based approach, on the other

hand, fails completely.
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(a) Correspondences (b) SVD-based alignment

(1)

(2)

(3)
(4)

(5)

(c) MSE for GA-LMS-based alignment

Figure 3.8: Aligning two large-scale indoor point clouds obtained inside a museum. The number of
correspondences is reduced to 25, out of which 11 are wrong (outliers). (a) shows the correspondences
are visualized with green indicating true correspondences as opposed to red. (b) shows the registration
result using standard SVD-based LS solver. The SVD-based solver fails to properly register the PCDs.
(c) shows the true MSE of different variants of the GA-LMS. The GA-LMS+ initially rises (1). The
MSE then reduces as more inliers are encountered (2). Nevertheless the orientation error remains
high until the statistical correspondence filtering (see Section 3.3.2.4) is performed (3). This filtering
increases the inlier rate and the AF keeps minimizing the MSE. The final alignment (4) is correct in
terms of translation and has a relatively small angle error as opposed to the SVD-based approach, which
fails completely. Due to the geometric correspondences weighting, GA-LMS++ is able to perform even
better, providing nearly optimal translatory and rotational alignment (5). Image source: [5] – ©2016
IEEE.
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3.5 Summary

In this chapter the Geometric-Algebra-based LMS adaptive filter (GA-LMS) is extended to

estimate the 6DOF alignment between two point clouds, related by 1-to-1 correspondences,

without prior alignment. Also, the adaptive-filtering properties of the GA-LMS are exploited

to evolve our previous approach [1] by applying a series of techniques that equip the GA-LMS

with outlier resilience. The improvements include:

1. Skipping correspondences that lead to an instantaneous increase in the filter MSE. In

line with intuition, the results confirm that the true MSE often improves when skipping

based on the filter MSE is performed.

2. Sample (correspondence) refeeding: Building upon knowledge from information theory,

the correspondences are refed repeatedly to use the residual error in combination with

the new filter state to lead to further reduction in the registration error.

3. Geometric weighting: A method that exploits a fundamental property of the Special

Euclidean Group is presented which allows to compute the probability that a corre-

spondence is an outlier. The computed probability is used as a weight to the step-size

to reduce the contributions from outliers.

4. Statistical correspondence filtering: Having observed that the filter typically recovers the

rotation a statistical filter is applied to determine the outlier correspondences identified

by being those whose source-target spatial distance is sufficiently different from the

median correspondence distance. The filter is then run only with the (presumed) inlier

correspondences leading to a more accurate registration.

The results show that the collection of the mechanisms when combined lead to a substan-

tial improvement in registration accuracy clearly outperforming the standard SVD-based LS

alignment solver for the tested datasets. The filter has a low computational footprint and is

done within a few milliseconds.

In the next chapter, the GA-LMS’s adaptive and nature is exploited to cope with a phe-

nomenon related to the sequential scanning nature of modern LiDARs.

Major parts of this chapter were published in the proceedings of the IEEE Winter Con-

ference on Applications of Computer Vision (WACV) 2016 [5].



Chapter 4

Analyzing Scan Skewing and its

Impact on Scan Matching

To capture point clouds of indoor environments, LiDAR (Light detection and ranging) sensors

can be used. LiDARs are active sensors which emit light rays in known directions and measure

the time required to capture the reflected beam which allows inferring the distance of a 3D

point along the ray and hence its 3D location w.r.t. the sensor.

(a) LiDAR mapper (b) A LiDAR scan (c) Scan matching

Figure 4.1: The LMT mapping trolley [18] with a Velodyne Puck LiDAR mounted on top is shown
in (a). The LiDAR acquires scans made of 3D points as the one shown in (b), where the height is
color-coded. Each tilted stripe of points (point plane) is scanned by one mechanically rotating laser
sequentially. One scan represents a relatively sparse sampling of the environment. Matching multiple
scans as illustrated in (c) is necessary to reconstruct an indoor environment in high quality.

LiDAR sensors typically provide a relatively sparse scan of the environment as shown in

Figure 4.1(b). Individual scans∗ of a LiDAR sensor mounted on a moving platform, as that

∗While LiDARs continuously obtain points using a rotating laser, it is customary to assemble all sequentially
scanned points during one full rotation into one scan.

29
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shown in 4.1(a), can be matched to estimate the scanner movement and “stitch” the scans

(see Figure 4.1(c)) to provide extensive and densely sampled point clouds.

Accurate Scan matching is challenging as tiny errors especially in the rotation lead to prop-

agating errors that manifest themselves in trajectory drift. A fundamental problem that can

lead to rotation estimation errors in scan matching is that of scan skewing. It’s a phenomenon

that is a direct consequence of platform mobility and the fact that one scan is comprised of

sequentially scanned points within a certain time frame. This problem is explained in greater

detail in Section 4.1 as it is the main focus of this work.

To the best of our knowledge, there exists no published systematic study of the scan

skewing phenomenon. Hence, the objectives of the contributions of this chapter are two-fold:

1. Systematically investigate & understand the impact of scan skewing (Sections 4.1, 4.3).

2. Reduce the impact of skewing without the aid of additional sensors (Section 4.4).

In dealing with the second objective, the GA-LMS filter introduced in Chapter 3 is used.

Here, however, a modified variant that incorporates the point to plane error metric is derived

(Section 4.4.1) and used.

4.1 The Skewing Problem

4.1.1 Scan Distortion

LiDAR’s typically have a physically rotating laser emitter and hence points are captured se-

quentially while completing a full rotation. Hence, a full rotation generates a scan. The Puck,

which is used in this work, has 16 such lasers (channels) rotating around the vertical axis each

tilted by an angle from the horizontal plane resulting in the distinct point arrangement seen

in Figure 4.1(b).

Assuming the LiDAR is stationary during one full rotation of the laser and disregarding

sensor noise and calibration errors, a geometrically correct sampling of the environment can

be achieved. However, as already mentioned, such sensors are typically mounted on mobile

platforms. Hence, the assumption of stationarity is mostly violated. Accordingly, the sensor

will have a slightly different pose when scanning each point.

The LiDAR captures scans in its local coordinate frame. Since one scan comprises all

points scanned in one complete rotation of the laser, the movement of the local coordinate

frame when iterating through the points should ideally be accounted for. Unfortunately, the

sensor is not capable of doing that as it does not know how it moved. Retrieving the motion,

after all, is the ultimate target of scan matching.

The inadvertent outcome of this phenomenon is a distortion in the scan as illustrated in

Figure 4.2. A simulation was designed to understand the severity of the problem as a function
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Figure 4.2: Illustration of the scan skewing problem. The LiDAR is depicted from above by the circular
shape with two vectors identifying its local coordinate system. Points on a wall are scanned using a
rotating laser sequentially in the following order: star, circle and diamond. In blue, a stationary sensor
is shown as opposed to the realistic case of a moving sensor shown in yellow. Since the angle between
every two consecutive laser beams is fixed, a different set of points are sensed when the LiDAR is
moving. Moreover, each new point is sensed from a slightly different pose than the one preceding
it. Hence, the movement of the local coordinate system while scanning the points translates into a
non-rigid deformation of the geometry when expressing all the scanned points in a common reference
frame. Image source: [4] – ©2016 IEEE.

of different types of motion. The results are shown in Figure 4.3. Especially rotational

movement is seen to incur noticeable non-rigid distortion affecting mainly points that are far

away from the sensor origin. Obviously, the stronger the motion, the stronger the distortions.

4.1.2 Theoretical Effect on Mapping

Let’s start with any point pi expressed in the global frame as pi = [pi(x) pi(y) pi(z)]
T . In

scan j’s local coordinate frame it can be expressed as pji =
[
pji (x) pji (y) pji (z)

]T
, where the

relationship between pi and pji is given by

pji = Ri(j)(R
j
0 pi + tj0) + ti(j), (4.1)

where Ri(j) and ti(j), is the individual rotation and translation of point i due to skewing while

capturing scan j. So, Ri(j) and ti(j) are w.r.t. scan j’s local coordinate frame which, without

loss of generality, can be defined as the LiDAR pose when scanning the first point of the

scan. Rj
0 and tj0, on the other hand, is the coordinate transformation that expresses points

expressed in the global coordinate frame (0) in the local coordinate frame (j).

Assuming a constant velocity and rotation speed motion model, the following approxima-

tions can be used: Ri(j) ≈ Ri(j+1), ti(j) ≈ ti(j+1). This means that for consecutive scans

the individual deformation for corresponding points is almost the same. Indeed, Figure 4.4

shows real scan results that agree with the outcome of this assumption. Intuitively, a like-wise

non-rigid transformation of two scans should not impact the matching. Indeed this can be

proven by rewriting the point set alignment cost function (2.1) between two consecutive scans
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Figure 4.3: A 2D scan generated for a synthetic indoor environment made up of planar walls. The
setup is shown in (a) from a top view. The LiDAR’s local coordinate system is shown as xL, yL as
opposed to the global coordinate system shown as xG, yG. The simulated LiDAR laser rotates around
the z-axis clock-wise. Different movement scenarios are simulated involving a translation along yG by
a constant speed v and an angular rotational speed θ around the (invisible) z-axis. The outcome is
shown in (b). Especially the rotational speed is seen to incur strong distortions. Also, the farther
away the points are from the sensor origin, the larger the distortion. Comparing quadrant 1 (scanned
last) to quadrant 4 (scanned first) the distortion is seen, as expected, to increase as the scan proceeds
towards later points since the local reference frame will have moved the most. Image source: [4] –
©2016 IEEE.

as follows:

C(j, j + 1) =
∑
i

∥∥∥Ri(j+1)(R
j+1
j pji + tj+1

j ) + ti(j+1) − (Ri(j)p
j
i + ti(j))

∥∥∥2
2

(4.2)

≈
∑
i

∥∥∥Ri(j+1)(R
j+1
j pji + tj+1

j )−Ri(j)p
j
i

∥∥∥2
2

(4.3)

≈
∑
i

∥∥∥Ri(j+1)(R
j+1
j pji + tj+1

j − pji )
∥∥∥2
2

(4.4)

=
∑
i

∥∥∥Rj+1
j pji + tj+1

j − pji

∥∥∥2
2

(4.5)

The terms ti(j+1) and ti(j) canceled by virtue of the subtraction combined with the above

assumption ti(j) ≈ ti(j+1). Similarly, the assumption Ri(j) ≈ Ri(j+1) allows factoring out the

deformation rotations. Since a rigid rotation does not change the norm, Ri(j+1) drops out

of the equation. What remains is a cost function independent of the skewing and dependent

only on the scan-to-scan transformation (expressed by Rj+1
j and tj+1

j ) whose estimation is

the original objective of the registration.

The preceding derivation might tempt the reader to conclude that the scan skewing prob-

lem does not affect the scan matching. However, the derivation is based on the assumption

that the point-wise deformation is similar for geometrically corresponding points. As will be

shown in Section 4.3 this is not necessarily true as the motion gets more complex. Especially
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Figure 4.4: Real scans produced by the Puck seen from above after matching. Three scans have been
chosen: two consecutive scans (1082th,1083rd) captured as the mapping platform was turning, and
one scan (1064th – captured around 2 seconds earlier) captured before the platform started to turn.
Noticeable scan skewing is observed for scans 1082 and 1083 seen by the deviation of their points from
the ideal straight line. These two scans exhibit a similar skewing seen by their near optimal alignment
along all parts. Image source: [4] – ©2016 IEEE.

changes in the rotation speed mean the distortion similarity assumption is violated. Moreover,

in scan matching it is typical to run not only matching (localization) but also mapping simul-

taneously, hence the name simultaneous localization and mapping (SLAM). Accordingly, even

if the matching of two consecutive scans were not to be affected by skewing, the mapping will

nonetheless be affected as skewed point clouds will be added to the map. Hence, a systematic

analysis of this problem is important.

The preceding argumentation should convince the reader that accounting for the skewing

is important for accurate scan matching. For mapping platforms equipped with inertial mea-

surement units (IMU) the data can be de-skewed by estimating the local coordinate frame

transformation between individual point scans and using the estimated transformation to

correct the distortion. This is possible because IMUs typically run at a substantially higher

sampling rate and their data can be considered reliable for short time frames as those spanned

between two consecutive scans. Good IMUs, however, are quite expensive. Moreover, to be

usable for de-skewing they require precise calibration w.r.t. the LiDAR. The latter is quite

challenging in practice.

Based on the preceding discussions, the objective of this work is to systematically investi-

gate scan skewing and develop a method to reduce its negative impact. For that an ICP-based

scan matching framework was built which is explained in greater detail in Section 4.2.
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4.2 Scan Matching Framework

A scan matching application based on the ICP algorithm (Section 2.2.3) was built using C++

and the PCL [17]. The ICP algorithm is run on consecutive scans to estimate the scan-to-scan

motion and hence recover the motion trajectory.

Each ICP run involves repetitive correspondence estimation with subsequent alignment

estimation processes. Our ICP implements three algorithms to estimate the alignment from

the correspondences:

1. Standard ICP minimization with the point-to-point (pt2pt) metric [46] using an SVD-

based LS filter which was explained in Section 2.2.1. Henceforth termed “ICPpt2pt”.

2. Standard ICP minimization with the linear least-squares (LLS) point-to-plane (pt2pl)

metric [66]. Henceforth termed “ICPpt2pl”.

3. Minimization using the Geometric Algebra Adaptive filter we developed (see Chapter 3).

Here, however, a new variant of the GA-LMS that uses the point-to-plane metric is used

(see Section 4.4.1).

It remains to be said that we use a simple trick to increase the accuracy of scan matcher:

Whenever matching a new scan, the scan-to-scan transformation of the previous scan is used to

initialize ICP. This not only helps ICP converge faster but also substantially improves the scan-

to-scan transformation estimates. The previous transformation is however not used to de-skew

the scan data as is employed in [67]. This would involve interpolating a transformation for each

point (or group of points) using the previous scan-to-scan transformation and some assumed

motion model. Our objective here is to account for the data skewing in the transformation

estimation filter instead of explicitly de-skewing the data using some assumed transformations.

4.3 Experimental Verification of Skewing Impact

4.3.1 Synthetic Dataset

To systematically investigate the problem of scan matching from the perspective of skewing

a synthetic scan dataset was used. It simulates a 3D Puck (also called VLP-16) scanner

[68]. The scanner scans points while rotating anti-clockwise around the z-axis from 0◦to 360◦.

Hence the scan proceeds through the quadrants 1, 2, 3 and 4 sequentially (this is important

information when designing the weighting function (4.23)).

To make the data as realistic as possible the scanner is moved along a smooth trajec-

tory generated by fitting a spline function on a series of user-defined way points. A similar

interpolation is applied on the scanner rotation to generate smooth scanner rotation.
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Figure 4.5: Synthetic and real LiDAR data are acquired for the hallway shown in (a). The textured
3D mesh of the hallway used to generate the synthetic data is shown with parts of the ceiling and walls
removed in (b). (c) shows the virtual trajectory followed by the simulated scanner. The gradual color
change modulates the time index starting with blue and ending with yellow. Three specific scans are
marked by their numbers. Image source: [4] – ©2016 IEEE.

Table 4.1: The four synthetic dataset variants with different types of distortions.

variant 1 2 3 4

Simulated noise no yes no yes

Simulated skewing no no yes yes

The synthetic scans were generated by moving a virtual scanner along the trajectory shown

in Figure 4.5(c) inside the 3D mesh model shown in Figure 4.5(b) which was captured in the

hallway shown in Figure 4.5(a). The mesh model has been captured using the NavVis M3

Mapping Trolley [25] which is a commercially available indoor mapper that employs multiple

LiDARs and an IMU together with state-of-the-art SLAM to produce accurate 3D maps. Four

different dataset variants with the characteristics shown in Table 4.1 were created.

4.3.2 Quantifying the Impact of Skewing on Scan Matching

Figure 4.6 shows the estimated trajectories obtained by running standard ICPpt2pt and

ICPpt2pl (Section 4.2) on the datasets introduced in Section 4.3.1. As expected, skewing

is seen to noticeably affect the scan matching leading to errors that manifest themselves in
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the form of trajectory drift.
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Figure 4.6: Estimated trajectories after scan matching for the synthetic dataset explained in 4.3.1
using standard scan-to-scan ICP (see Section 4.2). The trajectories are seen to coincide with the
ground truth (GT) trajectory to a large degree. However, the zoom-in (bottom) reveals that pt2pl
scan matching is substantially more accurate than pt2pt scan matching (compare 1 to 5, 2 to 6, 3 to 7
and 4 to 8) in accordance with wide-spread belief of the community (see Section 2.2.3). As expected,
the trajectories corresponding to no added distortions (1 & 5) are the closest to the ground truth
among their peers that use the same metric. Also, the trajectories with skewed data (3 & 7) have a
visible drift. Image source: [4] – ©2016 IEEE.

The apparent compensation of drift from skewing by drift from noise in pt2pl matching

(curve 4 in Figure 4.6) is by coincidence. To verify that we ran scan matching starting from

scan #415 (see Figure 4.5(c)) and found out that in that case the drifts add up.
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Figure 4.7: Scan-to-scan errors for a selected part of the trajectory. The upper two figures show the
ground-truth (GT) trajectory and the GT scan-to-scan rotation around the vertical axis, respectively.
Notice, the scanner is not simulated to be rigidly attached to the platform (no kinematic model)
hence a straight trajectory does not necessarily imply no scanner rotation. Focusing on the rotation
errors (bottom) the following observations can be made: pt2pt matching results in fluctuating and less
stable rotation error (compare solid to dashed curves); When adding just noise, pt2pl scan matching,
as expected, still results in very accurate rotation estimation (compare solid green and pink curves);
Scans with skewing lead to two types of rotation error: +ve error or -ve error (see oscillating pattern of
dark blue curves); The type of rotation error, surprisingly, does not depend on the rotation direction
only but also on the change in absolute rotation speed. For example, in the scan range 320-360 the
rotation is always negative, however, we observe -ve rotation error when the absolute rotation speed
is increasing and +ve error when the absolute rotation speed is decreasing. This pattern reverses for
+ve rotation angles. The rotation error does not necessarily go to zero when the rotation speed goes
to zero (300, 380, 420). The rotation error goes to zero only when the rotation speed change goes to
zero (scans around 280, 320, 340, 360, 400, 440). The observation about when the error goes to zero
is in accordance with the derivation of Section 4.1.2 which showed that when the rotation speed is
constant, the skewing does not affect the registration. Image source: [4] – ©2016 IEEE.

Having shown that skewing does indeed incur scan matching errors it is time to investigate

these errors in more detail. Since we use synthetic data we have accurate ground truth data

which we use to analyze the scan-to-scan errors in terms of rotation and translation. These

errors are shown in Figure 4.7. As expected, the results show that while the scanner is

rotating (in our case around the z-axis) the scan matching may exhibit a -ve or +ve error in

the rotation estimate around the z-axis (the sign is based on the right-hand-rule of rotation

around the axis). What is however unexpected is the observation that the type of error (-ve

or +ve) is not a function of rotation direction only but also of the change in angular rotation

speed (rate). A +ve (anti-clock-wise) rotation leads to a +ve rotation error (equivalent to
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clock-wise drift) in case of an increasing rotation rate as opposed to a decreasing rotation

rate which leads to a -ve rotation error (equivalent to anti-clock-wise drift). Conversely, a

-ve (clock-wise) rotation leads to -ve angle error in case of an increasing absolute† rotation

rate as opposed to a decreasing rotation rate in the absolute sense which incurs a +ve error.

Another interesting observation is that when the rotation speed stops changing (peaks and

minima in the ground-truth scan-to-scan rotation) the rotation error goes to zero. The latter

observation verifies the arguments of Section 4.1.2 which suggested that a constant rotation

speed incurs similar skewing deformation for corresponding points which was shown to have

no impact on the alignment of consecutive scans.

It remains to be said that the previously presented results show that ICPpt2pl consistently

outperforms ICPpt2pt. Comparing the trajectories of ICPpt2pt vs. ICPpt2pl shown in Fig-

ure 4.6 for the same type of dataset, the ICPpt2pt trajectories appear to be “compressed”.

This is a direct consequence of the fact that ICPpt2pt uses the pt2pt metric (Section 2.2.1)

where the solution involves estimating the translation alignment after the rotation through

centroid subtraction. Observing Figure 4.1(b) it can be seen that the centroid is heavily bi-

ased towards the scan center irrespective of the scan due to the nature of point acquisition.

This means the centroid is not a reliable measure to estimate the translation.

4.4 Skewing-Aware Matching with GA-LMSpt2pl

Having theoretically derived and experimentally verified the impact of skewing the objective

now is to reduce this impact. Since we now know which points are affected the most by

skewing it is conceivable to tune the contributions of points towards the final estimation from

ICP by suitable weighting. For that the Geometric Algebra Alignment filter (GA-LMS) which

was presented in Chapter 3 is to be employed. Its iterative nature with the adaptive step-size

lends itself to the problem at hand. It is conceivable to weight the step-size based on how

much a correspondence is affected by skewing.

Unfortunately, the GA-LMS in its original shape, as presented in Chapter 3, is derived

with the pt2pt error metric and hence equivalent to the ICPpt2pt. However, the results in

Section 4.3 show that a pt2pl metric results in a more robust trajectory estimation. Hence,

the GA-LMS that uses the point-to-plane metric, henceforth termed “GA-LMSpt2pl”, is first

to be derived.

†Theoretically, an increase in clock-wise (-ve) rotation rate in the absolute sense is a decrease in rota-
tion rate. Since a -ve rotation rate, however, implies reversal of rotation direction it may perhaps be more
comprehensible to speak about absolute rotation rates coupled with the rotation direction.
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4.4.1 Deriving GA-LMSpt2pl

4.4.1.1 Rotation Estimation

The following derivation has been contributed by Mr. Wilder Lopes of the University of Sao

Paulo. You may want to revisit Section 3.1 to review the basics of GA and our notation. To

derive the GA-LMSpt2pl the Linear-Algebra pt2pl cost function (without translation)

Cpt2pl(R) =
1

N

N∑
i=1

∥∥∥(p̂cti −Rp̂csi )Tni

∥∥∥2 (4.6)

is replaced by a GA formulation similar to the one in (3.2) as follows

Cpt2pl(r) =
1

N

N∑
i=1

∣∣∣(p̂cti − rp̂csi r̃) · ni
∣∣∣2. (4.7)

Remember, from now on vectors (variables in bold small letters) in the context of GA become

multivectors. The AF provides an estimate for the bivector r via a recursive rule of the form,

ri = ri−1 + µg, (4.8)

where i is the (time) iteration, µ is the AF step size, and g is a multivector-valued update

quantity related to the estimation error (analogous to the standard formulation in [53], p.143).

A proper selection of g is required to enforce Cpt2pl(ri) < Cpt2pl(ri−1) at each iteration.

This work adopts the steepest-descent rule [53], [69], in which the AF is designed to follow the

opposite direction of the reversed gradient of the cost function, namely ∇̃Cpt2pl(ri−1). This

way, g is proportional to ∇̃Cpt2pl(ri−1),

g , −b∇̃Cpt2pl(ri−1), (4.9)

in which b is a general multivector, in contrast with the standard case in which g would be a

matrix [53]. Setting g equal to the identity matrix results in the steepest-descent update rule

([53], Eq. 8-19). In GA though, the multiplicative identity is the multivector (scalar) 1 ([50],

p.3), thus g = 1.

Define C ′pt2pl(r) ,
∣∣∣(p̂cti − rp̂csi r̃) ·ni

∣∣∣2. Using the GA scalar product and the definition of

magnitude of a multivector, Cpt2pl can be expanded as

C ′pt2pl(r) =
∣∣∣(p̂cti − rp̂csi r̃) · ni

∣∣∣2 =
〈

[(p̂cti − rp̂csi r̃) · ni][(p̂cti − rp̂csi r̃) · ni]
〉

= [(p̂cti − rp̂csi r̃) · ni]2,
(4.10)

in which [(p̂cti − rp̂csi r̃) · nĩ] = [(p̂cti − rp̂csi r̃) · ni] due to the fact that vectors (grade-1

multivectors) are not affected by the reversion operator. Plugging (4.10) back into (4.7), the

gradient of Cpt2pl(r) can be obtained as follows

∇rCpt2pl(r) =
1

N

N∑
i=1

∇rC
′
pt2pl(r), (4.11)
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where ∇rC
′
pt2pl(r) = ∇r [(p̂cti − rp̂csi r̃) · ni]2. This way,

C ′pt2pl(r) = 2[(p̂cti − rp̂csi r̃) · ni]∇r [(p̂cti − rp̂csi r̃) · ni]

= −2[(p̂cti − rp̂csi r̃) · ni]∇r [(rp̂csi r̃) · ni]

= −2[(p̂cti − rp̂csi r̃) · ni]∇r〈rp̂csi r̃ni〉.

(4.12)

The last term in 4.12 is expanded as

∇r〈rp̂csi r̃ni〉 = ∂r〈ṙmi〉+ ∂r〈ti ˙̃r〉. (4.13)

The terms mi = p̂csi r̃ni and ti = nirp̂csi are obtained applying the cyclic reordering

property 〈ad · · · c〉 = 〈d · · · ca〉 = 〈cad · · · 〉 [52]. The first term on the right-hand side

of (4.13) is ∂r〈ṙmi〉=mi ([58], Eq. 7.10), and the second term is ∂r〈ti ˙̃r〉=−r̃tir̃=−r̃(nirp̂csi )r̃

(see Appendix of [1]). Plugging back into (4.13),

∇r〈rp̂csi r̃ni〉 = 2r̃(rp̂csi r̃ ∧ ni), (4.14)

where the relation ab− ba = 2(a ∧ b) was used ([51], p.39).

Substituting (4.14) in (4.12) results in

C ′pt2pl(r) = −4[(p̂cti − rp̂csi r̃) · ni]r̃(rp̂csi r̃ ∧ ni) = 4[ei · ni]r̃(ni ∧ rp̂csi r̃), (4.15)

which allows us to finally obtain the gradient of Cpt2pl(r)

∇rCpt2pl(r) =
4

N

N∑
i=1

(ei · ni)r̃(ni ∧ rp̂csi r̃). (4.16)

Substituting (4.16) into (4.9) (with b = 1, as aforementioned) and explicitly showing the

term 1/N results in

g =
4

N

N∑
i=1

(ei · ni)(ni ∧ rp̂csi r̃)r, (4.17)

which upon plugging into (4.8) and explicitly writing the time index yields

ri = ri−1 + µ
4

N

N∑
i=1

(ei · ni)(ni ∧ ri−1p̂csi r̃i−1)ri−1, (4.18)

Here again we approximate the gradient by its current value to get the LMS filter [53] (similar

to what we did to get (3.5)) i.e.

4

N

N∑
i=1

(ei · ni)(ni ∧ ri−1p̂csi r̃i−1)r≈4(ei · ni)(ni ∧ ri−1p̂csi r̃i−1)ri−1, (4.19)
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resulting in the GA-LMSpt2pl update rule,

ri = ri−1 + µ(i)(ni ∧ ri−1p̂csi r̃i−1)ri−1 , (4.20)

in which µ(i) = µ ei · ni where the factor 4 was absorbed by µ. Note that the step size µ is

weighted by the inner product between the error vector ei and the normal ni. Thus, the net

step size µ(i) becomes time-dependent, having its value down-weighted as long as ei has its

norm decreased at each AF iteration.

4.4.1.2 Estimating Translation

The standard Linear-Allgebra cost function for the pt2pl metric [66] incorporates an operator

that accounts for rotation and translation instead of just the rotation matrix R of (4.6).

Replacing this operator using GA is not straight-forward. Hence, a similar strategy as the

one we presented in [5] (also explained in Section 3.2) is used to estimate the translation: After

estimating the rotation with the centroid-subtracted source and target clouds ((4.6),(4.20)),

the translation is computed by subtracting the rotationally aligned source centroid from the

target centroid as in (3.6). This decoupled approach, although standard for pt2pt metrics, is

inferior to pt2pl which can estimate rotation and translation jointly. As already explained in

Section 4.3.2, this is especially problematic for the LiDAR data used here as there is a very high

density of points near the sensor origin (see Figure 4.1(b)) making the centroids an unreliable

measure of translation when these points happen to lie on walls. To compensate for this we

propose using curvature weights (4.24) to compute weighted centroids instead increasing the

contribution of points with high curvature in the centroid computation which represent well

localizable entities in the point clouds that are reliable for translation estimation.

4.4.2 Skewing-Aware GA-LMSpt2pl

The GA-LMSpt2pl, derived in Section 4.4.1, is used to reduce the impact of scan skewing.

More specifically, (4.20) is modified to incorporate a skewing weight w(i) as follows:

ri = r̃i−1 + w(i)µ(i)(ni ∧ ri−1p̂csi r̃i−1)ri−1 (4.21)

where

w(i) = fw(wc(i), ws(i)) (4.22)

with fw() being a function that combines the two weights. The skewing weight of correspon-

dence i, ws(i), is calculated as follows:

ws(i) = cos(θz(i)/4) (4.23)

where θz(i) is the xy-plane angle of the vector connecting the source scan origin to point i

and is limited to [0, 360)◦(i.e. θz(i) = atan(psi (y)/psi (x)). The weight for the first scanned
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Figure 4.8: The skewing iteration weights computed according to (4.23) for scan #405. The weights
are color-coded ([0, 1]− >[Green,Red]). Image source: [4] – ©2016 IEEE.

points (θz ≈ 0) is almost 1 whereas points scanned towards the end (θz ≈ 360) have a weight

that is almost zero as seen in Figure 4.8. Without loss of generality this function is designed

to incorporate the property of the simulated scanner whose first scanned point has θz(1) = 0

and which scans in clock-wise direction (see Section 4.3.1). A scanner rotating in a different

direction or starting from a different angle (as the one used to get the real data used in

Section 4.5) requires a simple and obvious adjustment of the weighting function.

The curvature weight wc, on the other hand, accounts for the importance of a point

geometrically as points with a higher curvature typically lie on edges and thus are more

distinctive for the alignment process. It is calculated using:

wc(i) = max(0.25,min(psi (c)/cr, 1.0)) (4.24)

where psi (c) is the curvature value of source point i and cr is a reference curvature value

indicating points lying on a highly curved surface. These weights are also used for the centroid

computation which is critical for the translation estimation (see Section 4.4.1.2).

Figure 4.9 compares scan matching between different variants of GA-LMSpt2pl that are

obtained when turning on and off skewing weighting and curvature weighting. The GA-

LMSpt2pl (Section 4.4.1) delivers a similar rotation estimation accuracy as the standard ICP

pt2pl proving it to be a credible substitute. More importantly, as seen in Figure 4.9(a), com-

bining skewing and curvature weighting substantially reduces the rotation estimation errors

in the scan regions involving rotations. Indeed, Figure 4.9(b) shows a significantly improved

rotation error distribution with errors being more frequently around zero degrees. Also, while

the standard GA-LMSpt2pl consistently underestimates the translation due to the unreliabil-

ity of the centroid estimation (see Section 4.4.1.2), the curvature weight effectively reduces

this problem leading to a more accurate trajectory that is less “compressed” as seen in Fig-

ure 4.9(c).
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(c) Estimated trajectories (with zoom-in)

Figure 4.9: Scan matching is run on the third synthetic dataset variant involving only skewing (Ta-
ble 4.1). The scan matching is conducted using ICPpt2pl and different variants of the GA-LMSpt2pl
(Section 4.4.1) involving no weighting (“No weighting”), skewing weights (4.23) (“Skewing weights”),
curvature weights (4.24) (“Curvature weights) and a combination of both weights (“Curvature + Skew-
ing weights”). The angle error curves in (a) show that a combination of skewing and curvature weights
according to (4.22) with fw(ws, wc) = ws · wc reduces orientation estimation errors (compare green
and orange curves) in the regions with strong rotations which is furthermore confirmed by the rotation
error histogram in (b). The translation error curves show that the curvature weight also helps in
reducing the underestimation of the translation in the GA-LMSpt2pl (compare blue and green curves
to pink curve). This leads to a more accurate trajectory that is less “compressed” as seen in (c). Image
source: [4] – ©2016 IEEE.
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4.5 Evaluation with Real Data

Real data corresponding to the synthetic scan data (see Section 4.3.1) were obtained using

the LMT trolley-mounted Velodyne Puck mapper shown in Figure 4.1(a). The GT motion

data was computed using Hector SLAM [70] running on SICK 2D LiDAR data.

Scan matching using ICPpt2pl and GA-LMSpt2pl with skewing and curvature weighting

was performed on the data. The GA-LMSpt2pl histogram of scan-to-scan angle estimation

error, shown in Figure 4.10(b) shows that the GA-LMSpt2pl with curvature and skewing

weights is only marginally better compared to the ICPpt2pl as opposed to the results with

synthetic data shown in Figure 4.7. Nevertheless, there is an improvement. However, here

again the trajectory “compression” due to separated rotation and translation alignment is

observed.

These results call upon the combination of GA-LMSpt2pl with ICPpt2pl to benefit from

the improved rotation estimation accuracy of the GA-LMSpt2pl while benefiting from the

superior translation estimation capability of the ICPpt2pl. The results in Figure 4.10 show

that the combination indeed results in the smallest scan-to-scan errors. Also the trajectory

compression is significantly reduced. However, the centroid estimation seems to be undoing

part of the translation estimation obtained from ICPpt2pl. Hence, in a final variant the

ICPpt2pl is combined with a GA-LMSpt2pl that only refines the rotation. This combination

has a better scan-to-scan angle error distribution compared to pure ICPpt2pl while having a

trajectory that does not have the same compression problems as those of pure GA-LMSpt2pl.

The reason why the improvements here are not as significant as those observed in Figure 4.9

may relate to measurement noise. The results of Figure 4.9 were produced with the synthetic

dataset with only skewing (no noise). Here, however, we are dealing with a real dataset that

also includes real noise. While we verified that noticeable improvements are achieved in the

synthetic dataset with noise and skewing, we note that the real sensor noise is not strictly

Gaussian. Moreover, its variance is a function of the point distance and the ray incidence

angle. Hence, the noise is stronger for far away points and for points with unfavorable surface

normal. Accordingly, accounting for skewing may not deliver the expected benefit as the

noise component may be more dominant especially for the points that are supposed to gain

the most from skew-aware scan matching.
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Figure 4.10: Evaluation with real data. ICPpt2pl + GA-LMSpt2pl implies running ICPpt2pl and then
refining the outcome with GA-LMSpt2pl. In the case of “only rot” the GA-LMSpt2pl only refines the
rotation. The GA-LMSpt2pl includes curvature and skewing weights with fw(ws, wc) = max(ws, wc).
(b) shows that the GA-LMSpt2pl in general has a better scan-to-scan rotation error distribution. (a)
shows that a combination of the ICPpt2pl with a GA-LMSpt2pl that only refines the rotation alignment
does not suffer from the trajectory compression problem. This combination has a better angle error
distribution than plain ICPpt2pl as shown in (b). Notice, that improvements in rotation estimation do
not necessarily translate to more accurate trajectories as the symmetric error histograms imply that
errors cancel over time. Image source: [4] – ©2016 IEEE.
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4.6 Summary

This chapter presents a study about the LiDAR scan skewing problem. To the best of our

knowledge this is the first systematic study on this phenomenon. In the study the source of

this phenomenon is first analyzed and its impact on scan matching is derived. The impact

is then quantified using synthetic scan data with controlled distortions to verify the validity

of the derivations and explanations. Finally, a new variant of the Geometric Algebra-LMS

(Chapter 3) that incorporates the point-to-plane metric (GA-LMSpt2pl) was derived and

used in conjunction with a skewing-aware iteration update scheme to reduce scan matching

estimation errors due to skewing. Significant gains in terms of rotation estimation accuracy

on synthetic data were achieved. Also experiments with real data were conducted. The results

with real data show smaller improvements as compared to the synthetic data hinting there

maybe other factors to consider in a further study.

Future developments could focus on developing the GA-LMSpt2pl to jointly estimate

rotation and translation to reduce the underestimation of translation. Also, the sequential

nature of the filter could be exploited to perform estimation using subsets of points employing

convergence criteria and thus save unnecessary computations especially when it comes to

correspondence estimation. This would be a major step towards what we call “Iterative-

Iterative Closest Point”.

Major parts of this chapter were published in the proceedings of the Indoor Positioning

and Indoor Navigation Conference 2016 (IPIN2016) [4].



Chapter 5

Decoupled Roto-Translation Alignment

of Large-Scale Indoor Point Clouds

Figure 5.1: Top left: two large scale indoor 3D models with surface normal and curvature data and
very small overlap (the curvature is color-coded). Bottom: cross-sectional view depicting the level
of detail of one of the indoor models shown above. Upper right: the alignment computed using the
proposed algorithm which is specifically designed to align indoor models and can handle very small
regions of overlap. Image source: [2] – ©2016 Elsevier.

The digitization of indoor spaces in the form of 3D maps has progressed dramatically in

recent years due to the development of accurate 3D range scanners and 3D sensors and the

conception of efficient algorithms for on-the-fly stitching of individual scans into comprehensive

3D models [20], [67], [70], [71]. Many applications benefit from the ability to capture accurate

3D models in short time. They include indoor navigation (as we show in [7]), assistive robotics,

facility management and building information management. Hence, especially large indoor

spaces such as malls, museums and large company buildings are attractive for 3D mapping.

47
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INDOOR POINT CLOUDS

It is not customary to acquire one complete 3D model for a huge building. Limitations

often require reconstructing multiple models that overlap at intersections such that they can

be later aligned into one comprehensive model. Technical limitations include drift (see Chap-

ter 4), memory and processing capacity or mobility constraints of the scanning arrangement

(for example, wheel-based mapping platforms, as the one shown in Figure 2.1, cannot over-

come steps). Non-technical limitations include building accessibility which manifests itself in

intermittent scanning times. Also, scan updates may be necessary and it would be extremely

cumbersome if entire buildings have to be remapped for that purpose.

There exists a body of research on the alignment of 3D models (see survey in Chap-

ter 2). Existing approaches have been developed for general alignment problems of different

3D shapes. Different approaches excel at handling different alignment problems. However,

their effectiveness quickly degrades when used for point cloud alignment of indoor models

with small overlap. Moreover, huge point clouds quickly render many algorithms unusable

unless a dramatic subsampling is performed which is undesirable as shape features may be

lost. This motivates the development of an approach which exploits characteristics of indoor

environments while remaining light-weight.

Starting with large-scale indoor 3D models this contribution presents an alignment ap-

proach that distinguishes itself by:

• handling very low overlap scenarios such as that shown in Figure 5.1,

• being invariant to initial alignment in 3D space,

• handling large-scale point clouds with millions of points efficiently.

To that end, prior knowledge about building interiors is exploited in the algorithmic design

which allows loosening the coupling between rotation and translation estimation such that the

high-dimensional estimation problem is broken down into multiple lower dimensional prob-

lems. Each is solved using strong cues that are inherent to the data. As shown in Figure 5.2,

the point clouds are first aligned to gravity (represented by the z-axis throughout the chapter)

using PCA (Section 5.2.1). Then their floors are aligned such that the translation along the

z-axis is recovered (Section 5.3.1). Subsequently, the point clouds are aligned rotationally

in the ground-plane using histogram signatures of surface normal directions (Section 5.2.2).

Finally, the translation in the ground-plane is recovered using what we call Curvature-Pair

Shift Histograms (CPSH) which we show can be interpreted as probability distributions over

the translation space (Section 5.3.2). In Section 5.4, we explain the probabilistic framework

built up from CPSHs computed on segment pairs of point clouds to explicitly handle cases

of very low overlap. The results in Section 5.6 demonstrate the superiority of this decoupled

sequential approach.
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Figure 5.2: Proposed large-scale point indoor point cloud alignment system. The alignment is broken
down into simplified problems which can be solved using strong features inherent to the data. An
algorithmic summary in the form of pseudo-code is provided in Algorithm 1 (p.70). Image source: [2]
– ©2016 Elsevier.
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5.1 Background

Only coarse registration methods are valid candidates for the problem at hand as no require-

ments are posed on the initial alignment.

As already explained in Chapter 2, different categories of coarse point cloud alignment

methods exist. One category includes voting-based algorithms, including [11], [30]–[32], in

which the 6DOF parameter space is quantized and exhaustive point-triplet alignment is used

to vote in the parameter space. These methods suffer from inefficiency due to their brute

force nature. Moreover, with growing dimensions the votes become increasingly sparse re-

quiring many more votes to sufficiently populate the space (curse of dimensionality). The

second category involves computing point correspondences and using them to estimate the

transformation that best maps the source points to their respective target points as explained

in [14] (see “coarse alignment”). The feature matching of local features (such as [33]–[35]),

which is essential for establishing correspondences, requires articulated shapes to generate

distinctive descriptors. Also, keypoint detection and descriptor computation are usually com-

putationally demanding since each requires repetitive nearest-neighbor (NN) searches leading

to registration times in the order of 10s of seconds for point clouds with millions of points

with an optimized C++ implementation (See Figure 5.18). This is due to the fact that any

point’s index inside the point cloud does not convey any information about its proximity to

other points.

The relatively new approach of Four-Point Congruent Sets (4PCS) [41] approaches the

alignment problem from the perspective of the Largest Common Point set (LCP) problem.

The alignment seeks the solution for which the largest subset of the source cloud is maximally

δ units away from the target after transformation. It is solved by establishing correspon-

dences of sets of four points (bases) (see Section 2.2.2.3). The correspondence computation

is relatively slow when dealing with large-scale point clouds. Mellado et al. accelerated the

4PCS algorithms creating the Super4PCS (S4PCS) [42]. It is used in the comparisons given

its efficiency and because indoor models have walls which are suitable for generating 4-point

congruent sets. The results in Section 5.6.5 show that the latter property isn’t always benefi-

cial especially when dealing with datasets of small overlap and large perpendicular corridors

as is common in human made structures.

Alignment using probabilistic frameworks constitutes yet another category. Probabilistic

approaches avoid establishing hard correspondences and rather establish a “soft” relationship

between point pairs described by probabilities. Two notable examples for probabilistic align-

ment were presented in Section 2.2.2.4, namely GMMREG [43] and CPD [13]. As already

explained, probabilistic algorithms have a high degree of flexibility in dealing with different

transformations including reflections, affine transformation and scaling. These properties,

however, are hardly of interest to the problem at hand since we deal with rigid-body transfor-
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mation estimation in 3D space. Their iterative nature means that they are sensitive to initial

alignment as opposed to ours as will be shown in Section 5.6.4. Significant computational

complexity is associated with the employed solvers leading to very high computation times

especially for large datasets as demonstrated by the results in Section 5.6.6. Nevertheless,

they remain inspirational as explained in Section 5.4.

The mentioned works present algorithms suitable for general purpose alignment problems

by cleverly including all degrees-of-freedom in one estimation problem. However, they fre-

quently fail on our large-scale datasets and/or are not very efficient as seen in Section 5.6.

The combination of large-scale data and small overlap while requiring insensitivity to initial

alignment makes joint 6DOF estimation error-prone and computationally demanding. Mean-

while, the availability of strong cues that help in solving individual estimation problems, as

shown in this contribution, calls upon breaking down the estimation problem into separate

estimations of reduced complexity with smaller parameter spaces and high success probability.

Hence, like the works of [72]–[74], we focus on prior knowledge related to the application. We

design an approach that partly decouples the rotation and translation estimation by strongly

exploiting the characteristics of indoor spaces. For the ground-plane translation estimation

inspiration is drawn from CPD while avoiding its drawbacks which are lack of efficiency, sen-

sitivity to initial alignment and limited robustness towards overlap. The proposed algorithm

is particularly robust on Manhattan datasets, which is a common assumption in 3D mapping

and reconstruction (see [74]–[77]). Yet when and how it also works on non-Manhattan cases

is explained and demonstrated with an example.

5.2 Rotation Alignment

We propose a decoupled approach to 3D rotation alignment which solves the rotation in two

steps. We first propose a method to align indoor building point clouds to gravity using Princi-

pal Component Analysis (Section 5.2.1). We then introduce a method to compute in-ground

rotation signatures from surface normals to solve the ground-plane alignment (Section 5.2.2).

5.2.1 Gravitational Rotation Alignment

In a first step, the source and target point clouds are rotationally aligned to gravity such

that walls become parallel to the z-axis. Note here that the coordinate variation for large

flat buildings is smallest along the vertical direction of the walls. Accordingly, Principal

Component Analysis (PCA) is first performed to align the third principal component to the

global z-axis. This simple approach is very reliable and fast. Since after this step there is

a small residual error left (see Figure 5.3(a)), we choose all surface normals which have an

angle < φnz w.r.t. to the global z-axis (i.e. the floor normals) and compute their median
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vector. The latter is used to compute a further refinement of the alignment such that the

median normal is aligned to the global z-axis (see Figure 5.3(b)). This approach results in

very accurate rotation alignment w.r.t. to gravity. The results in Figure 5.3(c) show that the

mean angle error is ≈ 0.05◦while the worst error is < 0.3◦.
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(b) After refinement
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Figure 5.3: Gravitational rotation alignment. (a) shows the alignment by simply computing the PCA
of the point cloud and aligning the third principal component to z. (b) is the outcome after the
refinement achieved by choosing the surface normals that belong to the floor and aligning the median
vector to the z-axis. (c) shows statistics of the angle between the global z-axis and the building’s (local)
z-axis after alignment. The statistics are computed by pre-rotating a gravitationally aligned building
point cloud with a random rotation around the three axis before attempting gravitational alignment.
10 random rotations per point cloud were simulated. 27 different point clouds were involved (270 data
points). Using the median vector instead of the mean vector in the refinement step results in more
accurate gravitational alignment with less than 0.05◦average angle error. Image source: [2] – ©2016
Elsevier.

5.2.2 Ground-plane Rotation Estimation

Starting with two point clouds that are rotationally gravitationally aligned (see Section 5.2.1)

we can rely on a primitive point-wise feature: the surface normal. We observe that the walls

and the dominant structures often deliver very reliable references for ground-plane rotation

alignment. Hence, we propose to compute histograms of normal directions arguing that the

resulting signature is similar up to a cyclic shift. Only points whose surface normals are nearly

parallel to the ground plane (Figure 5.4(a)) are considered. For each considered surface normal

nk = [nk(x) nk(y) nk(z)]
T (‖nk‖ = 1), the ground-plane angle φk is computed as:

φk = atan(
nk(y)

nk(x)
). (5.1)
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Then, a rotation signature is computed by forming the histogram of these angles hs with v

equidistant bin centers using Kernel Density Estimation (KDE) (Figure 5.4(b)). This process

is repeated for the target cloud producing ht. Finally, a cyclic cross-correlation is performed

using the signatures to estimate the rotation θ̂ in the x-y plane (Figure 5.4(c)). Hence,

θ̂ = argmax
l

Cxcorr(l; hs,ht) · 360/v . (5.2)

Cxcorr is the cyclic cross-correlation which is a function of the shift parameter l (0 ≤ l < v).
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Figure 5.4: Using the normal direction histogram signature to recover the rotation for the example in
Figure 5.1. In (a), the subset of points which are chosen to contribute to the signature computation of
(5.1) are shown. They constitute the subset of points whose normals are nearly parallel to the ground
(x-y) plane. In (b), the signature resulting from (5.1) is shown. In (c), the cyclic cross-correlation of
the source and target signatures is plotted. The peak determines the rotation alignment. The resulting
rotation alignment is correct as seen in Figure 5.10(c), however, a slightly different parameter setting
might have produced a stronger peak at one of the other dominant directions which are 90◦apart.
Resolving this ambiguity is explained in Section 5.3.3 and Section 5.4.5. Image source: [2] – ©2016
Elsevier.

Ground-plane rotation alignment works even in the case of very low overlap shown in

Figure 5.1. It is easy to see that for Manhattan datasets (which we don’t assume) it can work

even when there is no overlap at all. However, from Figure 5.4(c), the reader might rightfully

conclude that an ambiguity by multiples of 90◦exists since typically 4 large peaks exist in

the cross-correlation due to the fact that most buildings have walls that are perpendicular

to one another covering 4 dominant directions. The ambiguity is resolved in combination

with the subsequent ground-plane translation alignment using CPSHs as will be explained in

Section 5.3.3 and Section 5.4.5. When dealing with non-Manhattan datasets, on the other

hand, this ambiguity does not occur. Non-Manhattan datasets can be supported since cross-

correlation is used instead of explicit detection of dominant directions (see [78]). As an alter-

native one may do this explicit detection of dominant walls in the context of a “mixture of
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Figure 5.5: Experimental evaluation of the robustness of the surface normal direction histogram signa-
ture used in the ground-plane rotation alignment. Random Gaussian noise is added to the source-target
pair shown in Figure 5.1. Subsequently, the normals are re-estimated and finally the ground-plane ro-
tation alignment is reattempted. The rotation signature exhibits peaks in the same bins irrespective of
the noise intensity. Accordingly, the cross-correlation attains peaks at the same rotation shifts. Image
source: [2] – ©2016 Elsevier.

Manhattan frames” [79]. However, one would need to establish Manhattan-frame correspon-

dences to solve the rotation. It remains to be said that when dealing with non-Manhattan

datasets our proposed approach needs good overlap to guarantee that the signatures have

similar distinctive parts matchable by cross-correlation as seen in Figure 5.19.

Ground-plane rotation alignment using the normal direction histogram signature is very

robust because it depends on dominant structures found in all buildings, namely the walls.

Since the normals can be computed reliably on planar surfaces, the resulting signature is very

robust towards noise. To verify that, the following experiment is performed: Gaussian noise

is added to the source-target point cloud pair shown in Figure 5.4 first. Then the normals

are re-estimated. Finally, the ground-plane rotation alignment is performed. The results in

Figure 5.5 clearly show that adding noise with a standard deviation as high as 9 cm can be

handled. Even though the surface normals become noisy (seen through the widening of the

peaks) the histogram effectively averages out the errors and maintains the peak locations.

5.3 Translation Alignment

Once the source and target have been aligned in terms of rotation in 3D, translation alignment

commences. Again, we decouple alignment along gravity from the ground-plane alignment.

For the alignment along gravity we propose a method that exploits point distributions in

building interiors (Section 5.3.1). Following which translation alignment in the ground-plane

is performed using our newly introduced Curvature Pair Shift Histograms (Section 5.3.2).



5.3. TRANSLATION ALIGNMENT 55

5.3.1 Floor Alignment

Here again, we propose to use a very reliable feature which is a dominant characteristic of

indoor point clouds: the floor and the ceiling. More specifically, the histogram of z values (Fig-

ure 5.6(b)) for points with normals nearly parallel with the z-axis (Figure 5.6(a)) is computed.

We cross-correlate the signatures to retrieve the shift along z. Notice this is more robust than

simply taking the location of the strongest peak as sometimes datasets may have multiple

floors/ceilings (see example in Figure 5.20). Since the histograms are invariant towards rota-

tion in the ground-plane, this step can already be performed before the ground-plane rotation

alignment - as suggested in Figure 5.2).

The results in Figure 5.6(c) show that the alignment along gravity error evaluated on

many point clouds averages around 0 cm and is maximally 7 cm.
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Figure 5.6: The floor of rotationally aligned PCDs can be identified through a histogram analysis of
the z-values of their points. First, only the subset of points with normals nearly parallel to gravity
(z) are extracted as shown in (a). Subsequently, the histogram of their z-values is computed. The
histogram signatures of a source and target pair are cross-correlated to detect the common floor which
is identified in the signature shown in (b). This is more robust than simply taking the dominant
peak with the least z-value as some datasets have multiple floors and ceilings that may confuse the
detection. To analyze the accuracy of this approach an experiment similar to the one in Figure 5.3(c) is
performed wherein a point cloud is pre-rotated and translated along z randomly and then gravitational
rotational alignment followed by floor estimation is conducted (here we simply take the dominant peak
with the smallest z-value to be the floor). This is repeated 10 times per point cloud and performed on
27 different point clouds. The mean and maximum errors, as shown in (c), are around 0 cm and 7 cm,
respectively. Notice gravitational rotation alignment is also involved in this experiment as its success
is a pre-requisite for a successful floor alignment. Image source: [2] – ©2016 Elsevier.
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5.3.2 Ground-plane Translation Alignment

To estimate the ground-plane translation we propose the Curvature-Pair Shift Histogram

(CPSH). The idea and motivation for using CPSHs is first provided in Section 5.3.2.1. Sec-

tion 5.3.2.2 introduces a series of techniques for discriminative voting that we propose to make

CPSHs far more effective and fast. Finally, we provide some insights and further thoughts that

help the reader understand what inspired us to propose CPSHs for ground-plane translation

alignment in Section 5.3.2.3.

5.3.2.1 Proposed Curvature Pair Shift Histogram (CPSH) - Motivation and Idea

To compute the translation in the ground-plane it is possible to compute complex shape

features, such as [35], and match them to establish correspondences. However, this is inten-

tionally avoided due to its computational requirements and lack of robustness when structures

are ambiguous (such as repetitive structures which are characteristic of indoor spaces).

Since the rotation has been estimated (assuming the explained ground-plane rotation

ambiguity has been resolved), the difference in coordinate value along all dimensions for

corresponding point pairs is constant. However, we do not know the point correspondences.

Instead of computing and matching features, we propose to compute the x and y translations

from each source point to each target point. Then a bi-variate translation histogram of the x-y

translation values is computed. The correct translation should get as many hits as there are

truly corresponding source-target point pairs. All other false correspondences, on the other

hand, will distribute their votes on the entire translation space (D) with a low probability of

voting highly for a certain wrong translation. This is illustrated in Figure 5.7.

5.3.2.2 Discriminative Voting using Primitive Features

Computing the CPSH for a source-target cloud pair has complexity O(|S| · |T |) where S
and T are again the source and target point sets, respectively. For large-scale indoor point

clouds this can quickly lead to high computational times. Moreover, taking every source-

target point pair means more wrong translations are binned in the histogram increasing the

possibility that a wrong translation gets a higher probability value than the true one. Hence,

we seek to minimize the computational burden while also increasing the distinctiveness of the

correspondence choices.

At this point we note that, in contrast to ground-plane rotation estimation (Section 5.2.2),

points on corners are more important for the estimation than those on planes (consider the

ambiguity introduced by a source point pairing with target points lying on a wall). We

propose to use the readily available curvature values (which are a byproduct of surface normal

estimation) to consider only points with a curvature value above a certain threshold, thus
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Most probable x-shift
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Figure 5.7: Curvature-Pair Shift Histogram (CPSH) for ground-plane translation estimation. Starting
with rotationally aligned point clouds the translations of any source point (with high curvature) to
different target points (with high curvatures) are computed and binned in a histogram. This process
is repeated for different source points (different colors). The translations between truly corresponding
point pairs (connected by solid lines) will be binned to the same bin and thus accumulate. The
translations between non-corresponding points (dashed lines) distribute over the translation space. A
normalized CPSH can be considered a probability mass function (PMF). Accordingly, the strength of
each bin can be considered a probability that the respective translation is the alignment translation.
Notice, the example shows the CPSH just for the x-axis. In practice we compute the bi-variate
CPSH for x and y jointly as a 1D histogram is equivalent to a marginalized 2D histogram with lost
information. After all there is valuable information in the co-occurrence of shifts. Image source: [2] –
©2016 Elsevier.

the name “curvature-pair”. This already dramatically decreases the number of points that

contribute to the CPSH.

The voting process is furthermore improved by using the surface normal direction as yet

another primitive feature. It’s exploited by only allowing source-target point pair {psi ,ptj} to

vote if their normals have a small dihedral angle, i.e. (ncsi )Tnctj < cos(εφ) (the superscripts s

and t refer to source and target, respectively). Hence, only point pairs whose normals point

in almost the same direction are formed. Figure 5.8(d) shows how this selection mechanism

leads to a dramatic improvement in the CPSH, significantly amplifying the true translation

peak.

To make the voting process for the CPSH even more discriminative, another primitive

point-wise feature can be exploited: The height value (z-coordinate in our data). Since at

this point the point clouds will have been aligned along the height dimension, corresponding

points will have almost the same height. A certain threshold has yet to be used to consider

small misalignment errors (see Figure 5.6(c)). Using this approach, {psi ,ptj} can form a pair

only if |psi (z)−ptj(z)| < εz. Figure 5.8(e) shows further significant improvement in the CPSH

once incorporating this selection mechanism as well.

The collection of these selection mechanisms not only improves the CPSH quality dramat-

ically but also reduces the computation time by more than 95% as the number of voting point

pairs is significantly reduced.
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Figure 5.8: Enabling discriminative voting to compute more discriminative CPSHs and more efficiently.
In 5.8(a) a source and target cloud pair with high overlap is shown after rotation alignment and floor
alignment. In (b) the subset of source cloud points with high curvature values are shown. Different
normalized CPSHs are shown in (c), (d) and (e). (c) shows the normalized CPSH obtained when letting
every point pair with high curvature values vote in the CPSH. The maximum probability occurs at
the right translation. In (d) the bin strength at the translation is significantly amplified compared to
spurious peaks when allowing only source-target point pairs with a similar normal to vote (εφ = 30◦).
In (e) the peak at the right translation is even more dominant by adding a height constraint allowing
only points with a height value that is equal up to a threshold εz = 10 cm (set based on the height
alignment error statistics of Figure 5.6(c)) to vote. Image source: [2] – ©2016 Elsevier.

5.3.2.3 CPSH Insights

The choice for the CPSH bin size affects the alignment accuracy as well as the robustness

to noise. Coarser bins are more memory efficient and make the CPSHs more robust to noise

while reducing the alignment accuracy.

Using CPSHs is similar to a voting-based alignment scheme (see Section 2.2.2.1). However,

the decoupling of rotation and translation means that no longer three point pairs are required
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to cast a single vote as is the case in joint roto-translation estimation. Hence, the voting

complexity sharply reduces from O(|S|3 · |T |3) to just O(|S| · |T |) where S and T are the

source and target point sets, respectively. This is very beneficial given the large-scale point

clouds the algorithm is designed for.

The CPSH effectively uses soft correspondences (see Section 5.1). The coincidence of a

certain shift obtained from different point pairs re-enforces the belief that a particular ground-

plane translation is the true translation.

Normalized versions of the CPSHs whose area under the surface is 1 can be considered bi-

variate probability mass functions for the translation. Whenever speaking about probabilities

it shall implicitly refer to normalized CPSHs. Normalized CPSHs interpreted as probability

mass functions and computed from segment pairs of the source and target clouds are used in

Section 5.4 to pose the translation estimation problem as a maximum likelihood problem.

5.3.3 Resolving Ground-Plane Rotation Ambiguity I

In Section 5.2 the problem of ground-plane rotation ambiguity by multiples of 90◦was dis-

cussed. Considering CPSHs, it is easy to see that using the wrong rotation would disallow

true correspondences from voting at the same bin. Accordingly, it is expected that the CPSHs

for the three other dominant directions other than the correct one are likely not to have the

same dominant peak. Indeed, Figure 5.9 shows that the CPSHs of the example of Figure 5.8

evaluated at the three other (wrong) rotations are less peaky than the one obtained at the

correct rotation.
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Figure 5.9: The normalized CPSHs for the example of Figure 5.8 evaluated at the three other dominant
rotations (see Section 5.2) with the same parameters used for 5.8(e). Each of the dominant rotations is
obtained by adding θm to the correct ground-plane rotation. Clearly, none contains the same dominant
peak as Figure 5.8(e). Compare also the maximum probabilities to the one of Figure 5.8(e). The wrong
ground-plane rotation means true correspondences will not be binned similarly. Image source: [2] –
©2016 Elsevier.
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5.4 Segment-Based Alignment

The previously explained methods for rotation alignment and floor alignment are highly robust

towards small overlap. The same argument does not necessarily apply to the ground-plane

translation alignment as it needs enough overlap to generate an unambiguous CPSH. In this

section we explain how to use CPSHs in a segment-based ground-plane translation alignment

approach to handle low overlap cases. The underlying idea is to segment the source and the

target into multiple point clouds such that certain (unknown) segments will have significant

overlap and thus produce good CPSHs with clear identification of the true translation. In the

simplest case, the alignment with the highest score can be chosen. However, we present here

an approach where different alignment hypothesis are fused such that geometric consistencies

help to reinforce the true hypothesis and invalidate false hypotheses.

The proposed approach uses a probabilistic formulation (Section 5.4.3) that allows posing

the translation estimation problem as a Maximum Likelihood (ML) problem (Section 5.4.4)

which is extended to explicitly account for non-overlaps (Section 5.4.7) and applied on an

example case in Section 5.4.8. First, however, the motivation to consider a segment-based

translation alignment is provided (Section 5.4.1) together with a brief review of the Coherent

Point Drift (CPD) algorithm (Section 5.4.2) from which we draw some inspiration.

5.4.1 Motivation

The ground-plane translation alignment using the CPSHs explained in Section 5.3 exhibits

some robustness towards varying degrees of overlap. The translation alignment example of Fig-

ure 5.10(a) results in a CPSH whose maximum unambiguously occurs at the true translation

despite significant non-overlapping regions. This is mainly attributed to the discriminative

voting explained in Section 5.3.2.2. The example shown in Figure 5.10(c) is far more chal-

lenging as the overlap between the source and target clouds is much smaller. Outlier peaks

dominate the CPSH. Accordingly, using the translation value obtained at the maximum CPSH

point would lead to an erroneous result. In the remainder of this section we show how this

problem can be circumvented using a segment-based alignment approach with an underlying

probabilistic modeling that borrows ideas from CPD.

5.4.2 Connection to Coherent Point Drift (CPD)

Given that CPSHs represent probability mass functions it appears logical to draw inspiration

from probabilistic registration algorithms. Recall from Section 2.2.2.4 that CPD is a prob-

abilistic registration algorithm. It considers the source point cloud as a set of points that

have been drawn from a GMM distribution fitted on the target point cloud. The alignment is

recovered by maximizing the likelihood of the source points conditioned on the parametrized
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(a) (b)

(c) (d)

Figure 5.10: The source and target cloud pair (rotationally aligned as explained in Section 5.2) and
the corresponding CPSH are shown for an example with substantial overlap and one with a very small
overlap in figures (a)-(b) and (c)-(d), respectively. For the large overlap case the peak in the CPSH is
unambiguous and at the true translation (seen by the fact that the translation misalignment is minimal

and hence a peak near [0 0]
T

is expected). For the very small overlap case, the bin strength at the
true translation (identified by the data tip) is significantly lower than other outlier peaks. Regions
not overlapping contribute point pairs which vote for outlier translations thus increasing false peaks.
In the very low overlap case this leads to false translation hypotheses dominating the CPSH. Image
source: [2] – ©2016 Elsevier.

GMM. The solution involves iterating over the following main steps: 1)Evaluate a Gaussian

function for each source-target point pair {psi ,ptj} ∈ S × T ; 2)Update the transformation

parameters. The first step represents the bottleneck of computations for CPD. It involves

evaluating |S| · |T | Gaussians and is repeated in every iteration which for our large-scale point

clouds with millions of points translates into slow convergence. The used EM algorithm does

not guarantee hitting the global optimum [45] which means CPD is sensitive to the initial

alignment, as we further demonstrate in Section 5.6.4. Finally, the point-wise relationship

given by the Gaussian function does not involve the local geometry which provides vital clues

about how associable two points in the source and target are.
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Consider now drawing a source segment (instead of a source point) from a target segment

(instead of a target point) and shifting it by a certain translation. The CPSH value at the

translation can be interpreted as the probability analogous to that of drawing a source point

from a target point in CPD. However, now the probability value will have been computed from

a collection of points and is thus based on more shape information than the simple point-to-

point relationship of CPD. In replacing the Gaussian function in (2.8) with the CPSHs we

can fuse multiple CPSHs (as opposed to greedily choosing the best) to support low overlap

cases while remaining efficient and initial alignment insensitive. Like CPD, our approach

uses a mixture probability model as a basis for ML filtering but is fundamentally different

in defining the components of the mixture model which are the segments. This means that

there are far less mixture components in the mixture leading to a substantial reduction in

complexity. Also the probabilities are pre-computed over the entire transformation space in

non-parametric mass functions which, as we show later, mean that no longer an iterative and

initialization-sensitive solver is required. The details are explained in Section 5.4.3.

5.4.3 Probabilistic Formulation

Assuming we can segment the source cloud S and the target cloud T into (possibly overlap-

ping) segment sets PS and PT , respectively, such that

PS = {S1,S1, ..,SN}, PT = {T1, T2, .., TM}, (5.3)

where the point cloud segments Si and Tj satisfy

S =
⋃
Si

Si∈PS

, T =
⋃
Tj

Tj∈PT

. (5.4)

We can now compute the CPSH (see Section 5.3) for each source-target segment pair {Si,Tj}
which results in the CPSH function fi,j(t). An example segmentation with corresponding

CPSHs is shown in Figure 5.11.

Now, consider fi,j(t) to be the probability of observing source segment Si at location t ∈ D
(remember, D is the quantized translation space) given it was drawn from target segment Tj ,
i.e.:

p(Si, t|Tj) , fi,j(t). (5.5)

In using the analogy with CPD, p(Si, t|Tj) can be understood as the probability that an

observed source segment i in reality (perhaps partially) overlaps the target segment j and is

translated by t. One might argue that since the observed Si is assumed to be sampled from

Tj then t can be directly inferred. However, since it is not known out of which part of Tj Si
was cutout, t remains to be estimated.
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(a) Segmentation of rot. aligned clouds. (b) Segment pair CPSHs (vertical axis = norm. frequency).

Figure 5.11: CPSHs computed from source-target segments. The segments of the point clouds shown in
Figure 5.10(c) have been computed using the algorithm described in [2, Appendix B] and are identified
by the bounding boxes in (a). The two data tips identify a corresponding point pair illustrating that
the correct translation is t = [23.5 − 54.7]T . The resulting CPSHs for each source target pair are
shown in (b). For illustration purposes, the 2D normalized histograms are shown from a side view.
The CPSH for source segment 2 (S2) with target segment 3 (T3) exhibits the highest probability at the
true translation (as seen through the data tip) and the peak far dominates all others in the histogram
(what matters is the actual point cloud overlap and not the bounding-box overlap). None of the other
CPSHs exhibits a similarly dominant peak since all other segment pairs, apart from S2-T1, have an
overlap and hence the mismatch in structures disallows building an unambiguous CPSH. Judging based
on bounding boxes, S2-T1 in a first glance seems to have a large overlap. However, notice that S2 and
T1 do not actually share many points and hence fail to identify the true translation. Image source: [2]
– ©2016 Elsevier.

Inspired by CPD, we now describe p(Si, t) by a mixture model which accounts for Si’s
relation to each target segment Tj as follows:

p(Si, t) =
∑
Tj∈PT

p(Si, t|Tj) πj =
∑

j∈[1,M ]

fi,j(t) πj , (5.6)

where p(Tj) , πj are typically called the “mixture coefficients” and have to adhere to the

following constraint: ∑
j∈[1,M ]

πj = 1. (5.7)

The mixture coefficients can be understood in light of mixture modeling as “responsibility”

probabilities identifying the probability that a certain target segment is used to sample a

source segment. Hence, it is conceivable to compute πj based on certain properties of the

segments such as their size since the larger a segment the more likely it has also been mapped

in the source. As will be shown, however, we choose to treat them as latent variables, as is

common in mixture modeling, that are estimated as well.

We note again that, in contrast to CPD, (5.6) does not use a Gaussian Mixture Model

(GMM), but rather once-computed probability mass functions represented by the CPSHs.
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This is advantageous since the CPSHs model the probabilities using a collection of points

which implicitly embeds their local geometric relationship.

Our ultimate goal is to estimate t. We opt for a maximum likelihood (ML) estimation

whereby we seek to maximize Lnormal = p(PS |t). Assuming i.i.d. source segments Si, p(PS |t)

can be written as:

Lnormal = p(PS |t) =
∏
Si∈PS

p(Si|t). (5.8)

The highly valuable geometric relationship between individual segments is not lost in the i.i.d.

assumption. The individual segment pairs represented by the CPSHs are coupled through the

translation parameter t. Hence, translation hypotheses supported by the observed geometric

arrangement of segments are more likely to be chosen. Nevertheless, it is conceivable to use

a more complex joint probability model which for example considers the fact that mapped

areas are contiguous owing to the nature of the scanning process and hence the segments can

be more tightly coupled.

Now, we need to derive p(Si|t). We use Bayes’ rule to rewrite p(Si, t) as follows:

p(Si, t) = p(Si|t) p(t). (5.9)

Since we want the algorithm to work irrespective of the initial alignment, we model p(t) as a

uniform distribution over D making the following proportionality valid:

p(Si|t) ∝ p(Si, t). (5.10)

Now, we can expand the likelihood function of (5.8) using (5.10) and (5.6) to obtain

Lnormal(t, π1, · · · , πM ) ∝
∏
Si∈PS

p(Si, t) =
∏

i∈[1,N ]

∑
j∈[1,M ]

fi,j(t) πj . (5.11)

Notice, the likelihood is a function of t = [tx ty]
T and π1, · · · , πM . In essence, the estimation

problem can now include the hidden mixture coefficients in addition to the translation.

5.4.4 The Maximum Likelihood (ML) Estimation Problem

Here, we derive the maximum likelihood (ML) solution using the proposed CPSHs (henceforth

termed “normal” as opposed to “exponential” CPSHs which will be introduced shortly) and

subsequently show that transforming the CPSHs using an exponential function leads to a

more beneficial solution with an intuitive interpretability.

5.4.4.1 ML with normal CPSH

The estimation problem can be formulated as follows:

tnormal, π1,normal, · · · , πM,normal = argmax
t,π1,··· ,πM

Lnormal(t, π1, · · · , πM )

= argmax
t,π1,··· ,πM

∏
i∈[1,N ]

∑
j∈[1,M ]

fi,j(t) πj ,
(5.12)
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where tnormal and π1,normal, · · · , πM,normal are the estimated translation and mixture coeffi-

cients, respectively. Using log-likelihoods instead, we obtain:

tnormal, π1,normal, · · · , πM,normal = argmax
t,π1,··· ,πM

∑
i∈[1,N ]

log
∑

j∈[1,M ]

fi,j(t) πj (5.13)

Contemplating (5.13) it can be seen that multiple segment pairs that encompass the over-

lapping parts and whose CPSHs peak at the true translation will reinforce the hypothesis

corresponding to the true translation. This is the mechanism by which multiple segment

pairs contribute towards the final solution as opposed to a hard-decision approach where only

the segment pair with the best quality determines the final outcome.

(5.13) has to be solved numerically as fi,j ’s are non-parametric mass functions. But even

when fi,j are Gaussians (CPD), no closed form solution exists. In our case we note the

following characteristics for our problem:

• The likelihood’s elements are the CPSHs which are higher-level abstractions of collec-

tions of points implicitly involving the inter-point geometric relationships.

• The number of segments can be limited to keep the optimization problem tractable and

the complexity is not a function of the number of points.

• The conditional probabilities fi,j(t) already embed the translation parameter and are

precomputed once and do not need updates.

• We have decoupled the translation estimation from the rotation estimation where the

rotation can already be estimated before commencing with translation estimation. Ac-

cordingly, the estimation problem has a significantly reduced parameter space covered

by 2D histograms (or PMFs).

In achieving these characteristics we exploit fundamental properties of the application and

data. Needless to say, for more general alignment problems, CPD provides a more flexible

framework with the capability of handling different kinds of transformations.

Given the points above, we consider a grid-search-based maximization approach, whereby

a set of distinct mixture probability values is considered such that πj ∈ U . All permutations

of M (the number of target segments) mixture probability values sampled from U that add up

to 1 (i.e. satisfying (5.7)) result in a set of mixture coefficient sets K. Each mixture coefficient

set ∈ K represents a mixture coefficient set hypothesis. Each hypothesis requires computing

the sum of the log of the weighted average CPSH for each source segment.

Notice that |K| << |U|M due to the fact that only mixture sets which add up to 1 (5.7) can

be considered. Hence, by choosing an appropriately small set of possible mixture probability

values U and keeping the number of segments low, such grid-search-based maximization can

be ensured to achieve a target time limit. Also, the CPSH bin size can be tuned to ensure

fast computation.
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Figure 5.12: Computing the expCPSH. In (a), the mapping of equation (5.14) is seen (without normal-
ization by ci,j and normalized to keep probability values between 0 and 1) for the probability interval
that is commonly encountered in CPSHs. In this interval (5.14) represents a linear mapping with a
linear factor < 1. In (b), a CPSH and the corresponding expCPSH obtained using (5.14) are shown.
As expected, the CPSH shape is maintained in the expCPSH. Image source: [2] – ©2016 Elsevier.

5.4.4.2 ML with exponential CPSH (expCPSH)

We have observed the likelihood surfaces resulting from 5.13 to be “noisy” and highly am-

biguous as seen in Figure 5.13(a). The obvious reason is the logarithm which reduces the ratio

between strong and weak hypotheses. Dropping the log from (5.13) has constantly delivered

better results. However, we need to understand what implications such a formula change on

the CPSHs has.

The fundamental question is what kind of transformation do the CPSHs have to undergo

such that the likelihood function does not include the log? One might be tempted to think

of a transformation which involves an exponential function since the log of an exponential

reduces down to the exponent. Consider the transformation of CPSH fi,j to the expCPSH:

f̂i,j(t) =
efi,j(t)

ci,j
(5.14)

where ci,j is the normalization factor ensuring f̂i,j can be considered a probability density.

As Figure 5.12(a) shows, this transformation maps probabilities (in the probability interval

commonly encountered in CPSHs) essentially in a linear manner. This means that the CPSH

surface is maintained and the peak relationships are not altered. Hence, there is no intra-CPSH

distortion. Despite being effectively a linear transformation there exists the possibility that the

linear parameters are different between different CPSHs due to the normalization constants

ci,j and hence the inter-CPSH relationships being distorted. However, in Appendix A we show

that the normalization coefficient ci,j is almost equal irrespective of the CPSH.

While the expCPSHs maintain the inter and intra-CPSH hypotheses relationships, they

present a functional benefit and a mathematical convenience which become apparent when
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inserting (5.14) instead of the usual fi,j in (5.12) resulting in the “exponential” likelihood:

Lexp(t, π1, · · · , πM ) =
∑

i∈[1,N ]

loge(
∑

j∈[1,M ]

efi,j(t)

ci,j
πj). (5.15)

Noting again that ci,j ≈ c ∀{Si, Tj} ∈ PS × PT (see Appendix A), ci,j is irrelevant for the

maximization and is hence dropped delivering

L′exp(t, π1, · · · , πM ) ,
∑

i∈[1,N ]

loge(
∑

j∈[1,M ]

efi,j(t) πj). (5.16)

At this moment the intended simplification of a log on an exponential is not achievable as the

log precedes a summation. However, since the mixture coefficients add up to one (see (5.7)),

Jensen’s inequality can be used to move the log inside the sum obtaining a lower bound

L′exp(t, π1, · · · , πM ) ≥
∑

i∈[1,N ]

∑
j∈[1,M ]

loge(e
fi,j(t)) πj =

∑
i∈[1,N ]

∑
j∈[1,M ]

fi,j(t) πj , L′′exp(t, π1, · · · , πM ).
(5.17)

As will be shown in Section 5.4.8, the approximation of L′exp by L′′exp is very accurate while

simplifying the full exponential likelihood of (5.15) and facilitating an intuitive interpretation

of the results. The maximum approximate exponential likelihood can now be written as:

texp, π1,exp, · · · , πM,exp = argmax
t,π1,··· ,πM

L′′exp =
∑

i∈[1,N ]

∑
j∈[1,M ]

fi,j(t) πj (5.18)

The approximate exponential likelihood amounts to “simple” weighted mean computation

of the CPSHs for different weighting coefficient sets (mixture coefficients sets). The func-

tional benefit lies in the absence of the log term which no longer leads to a companding

of the CPSHs. Hence, only fewer dominant hypotheses are considered while insignificant

candidates are effectively neglected. Dominant outlier hypothesis are not likely to vote for

the same wrong translation, whereas the hypotheses corresponding to the right translation

(contributed by multiple truly overlapping source-target segment pairs) re-enforce one an-

other. The mathematical convenience lies in the fact that no actual transformation has to

be performed requiring no further computations. The transformation manifests itself in the

likelihood function change from (5.13) to (5.18).

The reader is invited to contemplate the observation that computing the mean CPSH is

an intuitive approach to fusing different CPSHs contributed by the source-target pairs. With

this derivation, intuition is supported by mathematics whereby we prove that the mean CPSH

is essentially the maximum likelihood solution when considering the CPSHs to be probability

mass functions which are part of a mixture probability model.
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5.4.5 Resolving Ground-Plane Rotation Ambiguity II

The same argument used in Section 5.3.3 to address the issue with rotation ambiguity (Sec-

tion 5.2) applies here: We compute how ambiguously the maximum likelihood value

L′′exp(texp, π1,exp, · · · , πM,exp) is identified in the likelihood function L′′exp(t, π1,exp, · · · , πM,exp)

as a quality for each of the four dominant rotation directions θr = θ̂ + (r − 1) · 90 (remem-

ber θ̂ is the estimated ground-plane rotation before disambiguation according to (5.2)) where

r = {1, 2, 3, 4}. Hence, the quality value is computed as:

qr =
L′′exp(texp, π1,exp, · · · , πM,exp)−mint(L′′exp(t, π1,exp, · · · , πM,exp))∑
t[L
′′
exp(t, π1,exp, · · · , πM,exp)−mint(L′′exp(t, π1,exp, · · · , πM,exp))]

(5.19)

Notice this formula is equally valid when no segmentation (the entire cloud is a segment) is

used where L′′exp(t) is essentially the (only) normalized CPSH. In the results we will refer to

the CPSH (or equivalently likelihood function) with the highest quality as the “winning” one.

5.4.6 Determining Overlap as Byproduct

This segment-based approach has a useful byproduct: By evaluating the posterior probabilities

p(Tj |Si, texp) =
p(Si, texp|Tj)πj,exp

p(Si, texp)
=

fi,j(texp)πj,exp∑
j∈[1,M ] fi,j(texp)πj,exp

, (5.20)

the correspondence probability between any source-target segment pair can be evaluated. By

suitable adaptation of the segmentation, as will be shown in Section 5.4.7, this makes it

possible to identify which segments have an overlap and which ones do not.

5.4.7 Accounting for Non-Overlap

We want to specifically handle cases where the overlap between the source and target may

be low. In that case, for many source segments there might be no corresponding target

segment. Hence, we propose to add another non-physical target segment, T0. The conditional

probability p(Si, t|T0) is modeled as a uniform distribution, hence:

p(Si, t|T0) =
1

|D|
. (5.21)

Remember, D is the set of all possible translations. CPD also uses a uniform distribution term

to account for outliers (see Section 5.4.2). Our approach is different in that the probability

component responsible for outliers is part of the mixture and associated with a (latent) mixture

coefficient (π0) whose value is estimated, whereas in CPD the outlier-accounting parameter (w

in 2.8) has to be preset by the user. Accordingly, the estimated mixture coefficients including

π0 allow us to identify which source segments are actually outliers as will be demonstrated in

Section 5.4.8.
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5.4.8 Demonstration

The segment-based alignment is applied on the very challenging example shown in Figures 5.1

after it has been rotationally aligned as shown in Figure 5.10(c). The used segmentation and

the resulting CPSHs are shown in Figure 5.11. The different likelihood functions evaluated

on the CPSHs are shown Figure 5.13. The figures illustrate how critical the exponential

mapping is to getting likelihood functions with unambiguous results. It can also be seen that

using the exponential likelihood or approximate exponential likelihood results in a correct

translation estimate despite the very limited overlap between the source and target. Also, the

approximation of the exponential likelihood (Lexp) by the approximate exponential likelihood

(L′′exp) does not introduce any visible distortions.

The mixture coefficient set that maximizes the approx. exp. likelihood (Figure 5.13(c))

is found to be: {π1, π2, π3, π0} = {0.1, 0.1, 0.7, 0.1}. So, the third physical target segment

is identified as being the most important which agrees with the fact that only T3 has a

significant overlap with any source segment (see Figure 5.11(a)). Notice the target has only

three segments. The fourth mixture probability value (π0) corresponds to the non-physical

segment that accounts for outlier segments (non-overlapping segments).

The posterior correspondence probabilities for the example in Figure 5.13, as evaluated

using (5.20), are as follows:

T1 T2 T3 T0 (non-physical)

S1 0.01 0.01 0.07 0.92

S2 0.04 0.00 0.97 0.00

S3 0.01 0.01 0.07 0.92

The correspondence probability for S2-T3 is almost 1.0 owing to the unambiguous peak in

the corresponding CPSH. S1 and S3, on the other hand, exhibit their highest correspondence

probabilities w.r.t. T0. They are effectively labeled as segments with no overlap with the

target.

5.5 The Algorithm in Summary

Now that the individual pieces of the algorithm have been developed and before delving into

the evaluation and results, we present here a summary of the algorithm in pseudo-code in

Algorithm 1.
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Algorithm 1: The proposed alignment algorithm pseudo-code. The function-
section relationships are as follows: RotAlignToGravity-5.2.1, RotAlignGrndPlane-5.2.2,
RunExpML-5.4.4.2 (q refers to quality as computed using (5.19)), ComputeCPSH-5.3.2,
CreateCloudSegments-[2, Appendix B]. RotateSegmentsXYPlane rotates the points of
all segments by a given angle around the z-axis. Rz(θ) builds a 3D rotation matrix that
represents rotation around the z-axis by θ.
Data: Source (S) and target (T ) point clouds.
Result: 3D Homog. transf. matrix to align S to T .

/* —–Grav. Rotation Alignment—– */
[Sgrav,Rg,s]← RotAlignToGravity (S,φnz );
[Tgrav,Rg,t]← RotAlignToGravity (T ,φnz );

/* —–Grav. Transl. Alignment—– */
[Sh, tz,s, Th, tz,t]← AlignFloor (Sgrav,Tgrav);

/* —–Ground-Plane Rotation Alignment—– */
θ̂ ← RotAlignGrndPlane (Sh,Th);

/* —–Ground-Plane Translation Alignment—– */
if segMode then
PS ← {S1,S1, ..,SN} ←CreateCloudSegments (Sh);
PT ← {T1, T2, .., TM} ←CreateCloudSegments (Th);

else
PS ← S1 ← S;
PT ← T1 ← T ;

/*Consider ground-plane rotation ambiguity*/
for r ← 1 to 4 do

θ(r)← θ̂ + (r − 1) · 90;

P̃S ← [S̃1, .., S̃N ]←RotateSegmentsXY(PS ,θ(r));
/*All combinations of source target segments*/
for i← 1 to N do

for j ← 1 to M do

fi,j(t)← ComputeCPSH (S̃i,T̃j ,εφ,εz)

t(r), L′′exp, q(r)← RunExpML (f1,1,...,fN,M );

/*Take result with highest quality*/
rf ← argmaxr q(r);
θz,f ← θ(rf );

tf =

 tx

ty

← t(rf );

/* —–Assemble alignment transformation —– */

T̂←


[
Rg,t

TRz(θz,f )Rg,s

]
Rg,t

T

 tf

tz,t − tz,s


0 0 0 1

;
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(a) L(t, π1,normal, · · · , πM,normal) (b) Lexp(t, π1,exp, · · · , πM,exp)

(c) L′′exp(t, π1,exp, · · · , πM,exp) (d) L′′exp(t, πj = 1/M∀j)

Figure 5.13: Different likelihood functions evaluated on the CPSHs shown in Figure 5.11(b). In (a)
the normal likelihood of (5.13), in (b) the exponential likelihood of (5.15) and in (c) the approximate
exponential likelihood of (5.18). All three likelihoods are shown as functions of t evaluated at the
respective estimated optimal mixture coefficient set (π1,normal, · · · , πM,normal in case of the normal
likelihood and π1,exp, · · · , πM,exp in the case of the exponential likelihoods). In (d) the approximate
exponential likelihood function is evaluated using a uniform mixture probability set, i.e. πj = 1/M .
The strongest peak of each function is identified by a data tip and the second strongest is identified
by an x mark. Clearly, the normal ML is very “noisy” and, as seen by the data tip, does not correctly
identify the true translation (the true translation alignment is t = [22.3 54.8]T m, see Figure 5.11)
since the logarithm operation down-weights the otherwise unambiguous peak of the only overlapping
segment pair (see Figure 5.11). Once replacing the CPSHs with expCPSHs, the translation is correctly
and unambiguously estimated. Comparing (b) to (c) it becomes evident that the approximation
using Jensen’s inequality introduced to get to the approximate exponential likelihood preserves the
likelihood function shape and the inter-hypothesis relationships. Comparing (c) to (d) it can be seen
that involving the mixture probabilities provides an added advantage as the true hypothesis is amplified
as compared to all other translations. Image source: [2] – ©2016 Elsevier.

5.6 Performance Evaluation

In this section we present results highlighting aspects relating to the strengths of the proposed

algorithm. We start out by presenting the parameter values used for the different algorithms

followed by a brief explanation of our evaluation methodology in Section 5.6.2. Then re-

sults regarding algorithm resilience towards sampling issues are presented in Section 5.6.3
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followed by results relating to algorithm sensitivity towards initial alignment in Section 5.6.4

and overlap sensitivity in Section 5.6.5. Comparative results on different datasets are pre-

sented in Section 5.6.6. We also evaluate the algorithm on a strictly non-Manhattan dataset

(Section 5.6.7) and an external dataset (Section 5.6.8).

5.6.1 Parameters and Evaluation Environment

For our proposed approach we use a Matlab implementation. For gravity rotation we set

φnz = 15◦. For the ground-plane rotation signatures we set v = 720 resulting in 0.5◦ bin

size. For the ground-plane translation εφ is set to 30◦ (see [80] for typical angle errors in

surface normal estimation) and the height threshold is set as εz = 10 cm given the maximum

error encountered in the results presented in Figure 5.6(c). The CPSH bin size is set to 0.5 m

along x and y which we found to provide a good compromise delivering alignment accuracies

comparable to those of other working methods (see Figure 5.17 & 5.18) while accommodating

the sensing inaccuracies.

We use the reference implementation of S4PCS provided online by the author [81] for

comparison purposes. The number of samples n and the LCP distance δ have been tuned

to provide good alignment results for the datasets shown in Figure 5.17. More specifically,

combinations of n = {10, 50, 200, 800, 1200, 2000, 2500, 4000, 5000} (see [41], Table 1) and

δ = {0.1, 0.125, 0.15, 0.2, 0.4}m were considered. The values were finally set to n = 2500

and δ = 0.15 m. The maximum run time was set to 150 s. The overlap rate was provided

manually for each dataset as we also do with CPD and GMMREG for which we also use

the reference implementations of the authors ([82], [83]). As in S4PCS, the overlap ratio is

provided manually to CPD. The value “normalize” is set to true.

We also compare against a feature-based approach. We use the feature-based alignment

system presented in Chapter 6 (without the pre-processor and without ICP), however, with

Harris3D key points instead of ISS and with Progressive Sample Consensus (PROSAC) [84]

instead of RANSAC for faster robust estimation of the transformation. The key point and

descriptor support radii are 0.3 m and 1.2 m, respectively. The algorithm is written in C++

and uses the PCL [17] library which already implements a parallelized version of SHOT that

uses all processor cores to perform repetitive point-wise operations (such as computing the

NNs of a point) in parallel. We furthermore accelerated the keypoint detection and parallelized

feature matching to run on all cores using OpenMP.

Time measurements are conducted using a PC equipped with an Intel i7-4770 quad-core

processor with 3.5GHz clock rate.
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5.6.2 Evaluation Methodology

Similar to the approach explained in Section 3.4.1, we compute the error transformation Te

and use it to compute the error angle αe and the translation error te. The rotation alignment

is considered successful if αe ≤ 1◦, while a translation is considered successful if te ≤ 1 m.

Note that the translation error also depends on the angle error. When not specifying whether

we speak about rotation or translation alignment success, then we require both conditions to

be satisfied. Whenever suitable we also report the mean squared error (MSE).

5.6.3 Sensitivity to Subsampling

Although the point clouds of indoor models commonly are obtained with the same sensor,

they may differ in their point densities in certain regions. This is mainly because of the

spatial relationship between the sensor and the sensed points. Hence, we want to investigate

the sensitivity of our proposed algorithm towards differing point densities.

We performed the following experiments: While keeping the target point cloud set fixed,

the number of source points is reduced by the subsampling factor o, i.e., keeping one out of

every o points. The experiment is run on two datasets with 100% and 70% overlap.

Table 5.1: Robustness towards point density difference. The alignment is performed after subsampling
the source cloud by the factor o. The alignment is repeated 100 times for each subsampling factor, each
time dropping a different randomly chosen subset of points to obtain statistically reliable results. For
each attempt, the alignment success is determined (see Section 5.6.2). The experiment is conducted
for the high overlap example source-target set seen in Figure 5.8 (named “100%”) and the one with
around 70% overlap shown in Figure 5.10(a). “NoSeg” refers to alignment without segmentation as
opposed to “WithSeg”.

100% NoSeg 70% NoSeg 100% WithSeg

o = 5 100 100 99

o = 10 100 100 99

o = 15 100 100 95

o = 20 100 100 99

o = 30 100 100 90

Table 5.1 shows the percentage of successful alignment attempts remains above 90% despite

severe down-sampling. It can also be seen that subsampling only adversely affects alignment

when using segmentation. Segments have much fewer points to participate in the voting.

Combined with the further reduction due to down-sampling this can result in having too

few votes to sufficiently populate the translation space resulting in non-conclusive CPSHs.

Indeed, after investigation of the cases that failed it turns out the rotation error is not due to

the ground-plane rotation alignment step but rather due to the rotation disambiguation step

explained in Section 5.4.5.
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It remains to be said that a subsampling rate of 30 is very severe. Moreover, sampling

densities may vary for small regions. In this experiment, however, we changed the point

density throughout the entire source cloud.

5.6.4 Sensitivity towards Initial Alignment

Here, we examine the robustness properties towards initial alignment. For this we use the

overlap example of Figure 5.8. However, first the source cloud is perfectly aligned to the target

cloud. Then, a misalignment in the shape of an in-ground plane rotation by θm is applied and

the alignment is attempted using our approach (without segmentation) as well as using CPD

and GMMREG. This process is repeated for different angular misalignments.

Figure 5.14: Rotation alignment error (as defined in Section 5.6.2) as a function of initial alignment.
The alignment is attempted after applying an angular misalignment of θm in the ground plane on the
perfectly aligned source-target cloud pair of Figure 5.8. The small images depict the source-target
cloud pair to be aligned, seen from a top-down view. Image source: [2] – ©2016 Elsevier.

The results in Figure 5.14 show that our proposed alignment algorithm has an angular

alignment error (see Section 5.6.2) of around 0◦ irrespective of the initial alignment. The

probabilistic approaches of CPD and GMMREG, on the other hand, completely fail at certain

initial alignments. As soon as the initial ground-plane rotation is > 90◦, the final alignment

error approaches 180◦. This is because the CPD and GMMREG’s iterative optimizers converge

“in the other direction” hitting a local maximum of the utility function (the likelihood in case

of CPD and the L2 distance in case of GMMREG).
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5.6.5 Sensitivity towards Overlap

Low overlap poses a challenge to all alignment algorithms. Here, we compare our proposed

algorithm with CPD, GMMREG, S4PCS and feature-based (Features) in terms of robustness

towards overlap when considering large scale indoor 3D models.

To understand the overlap robustness properties we use the pair of point clouds of Fig-

ure 5.10(a) after first aligning them perfectly and subsequently introducing a modest transla-

tional misalignment. Now, we align the point clouds after cropping out, in steps, parts of the

source and target clouds such that the overlap is reduced further. Three different cropping

steps are performed.

Unaligned O
v
er
la
p

GMMREG CPD Super4PCS Features Proposed-NoSeg Proposed-WithSeg

70% 7 7 7 3 3 3

60% 7 7 7 3 3 3

40% 7 7 7 3 7 3

10% 7 7 7 3 7 3

Figure 5.15: Sensitivity towards overlap. Starting with perfect rotation alignment and limited trans-
lation misalignment, the overlap between the source and target clouds of Figure 5.10(a) is decreased
in steps by cropping out parts of the source and target clouds that form part of the overlap. The
alignment is attempted using GMMREG, CPD, S4PCS, Features and using our proposed approach
with and without segmentation. The overlap value used in CPD and S4PCS is indicated for each pair.
The final alignment is shown from a top down view for each tested overlap scenario and respective
alignment algorithm. A 3 means the alignment was successful, as opposed to a 7. Image source: [2]
– ©2016 Elsevier.

The results in Figure 5.15 show that S4PCS fails to recover the alignment even in the

highest overlap case. It consistently aligns the large corridors to one another as it tries to

maximize the common point set (see Section 2.2.2.3). Also GMMREG fails to find the proper

alignment irrespective of the overlap as it gets stuck in local minima. The outcome of two

cases resembles that of S4PCS hinting again that a maximization of overlap is being sought.

CPD also fails in all instances. Interestingly, the final outcome is occasionally very similar to

that of GMMREG owing to their similar nature. Our proposed algorithm, which is specifically

tailored for aligning indoor point clouds, succeeds in the alignment in two out of four cases.
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It can be observed that the alignment fails when the overlap drops below 30% for each point

cloud. Using the segment-based approach, however, allows it to handle the two low overlap

cases as well. The feature-based approach succeeds in all overlap scenarios demonstrating the

robustness of our implementation and the proper tuning of the parameters.

The alignment result with our proposed approach using segments (Proposed-WithSeg) for

the case with 10% overlap is shown enlarged in Figure 5.16. It becomes evident how challenging

this case is as the overlap makes up a tiny fraction of each point cloud. Yet, the small overlap

between S3-T1 and S4-T1 is enough to overcome the challenge. The maximization in (5.18)

puts more emphasis on the CPSHs which have peaks that re-enforce one another helping to

suppress the false peaks.

Figure 5.16: The result obtained with the segment-based alignment on the smallest overlap case, which
is shown in Figure 5.15, is shown enlarged here. Also the used segmentation is shown superimposed
on the point clouds with source segments without any overlap with target segments having dashed
bounding boxes. The posterior correspondence probabilities for the ground-plane translation alignment
evaluated according to (5.20) are shown in the figure as well. The source segments S1 and S2, identified
by the dashed boxes, lead to the highest correspondence probabilities with T0, which is the non-physical
segment that accounts for non-overlap. Hence, S1 and S2 have been identified as not overlapping with
the target which they truly are. Noting the posterior probability for S4-T2 we draw the reader’s
attention not to be confused by the bounding boxes when understanding the posterior probabilities.
What matters is the overlap region in terms of points in the point clouds. Since S4 indeed does not
share many points with T2 it is no wonder the respective posterior is soo low. Image source: [2] –
©2016 Elsevier.
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5.6.6 Comparative Evaluation - Multiple Datasets

Here, we compare our proposed algorithm to S4PCS, CPD and the feature-based algorithm

on a number of datasets we obtained using our mapper [18]. GMMREG is not considered

because it is extremely slow.

Figure 5.17 shows the results obtained with point clouds captured at the “Alte Pinakothek”,

one of the world’s oldest galleries. The point clouds span dimensions of tens of meters and

comprise hundreds of thousands of points. Three pairs are chosen such that the alignment

problem is made increasingly challenging with decreasing overlap.

CPD fails in all three cases. Besides, the required run times are beyond any practical

deployment. S4PCS and feature-based alignment on the other hand, manage to align all

three cases correctly and relatively efficiently. Similarly, our proposed approach correctly

aligns all three cases even without having to use the segment-based approach. Also, the

required run times for our approach are comparable to those of S4PCS and the feature-based

system. In fact, without segmentation our approach is the fastest. These are very encouraging

results as we use a Matlab implementation whereas S4PCS uses C++ implementation and is

an algorithm designed to be very efficient. A similar argument applies to the feature-based

system which we highly optimized for speed (see Section 5.6.2).

Figure 5.18 shows the results obtained with point clouds captured at the Deutsches Mu-

seum, the world’s largest technical museum. This represents a more challenging data set

compared to the Alte Pinakothek data set. The point clouds span dimensions that can exceed

100m and comprise multiple million points. The overlap regions are smaller. Also shape

similarities in the form of large perpendicular corridors are particularly challenging for the

S4PCS approach which relies on solving the LCP problem. Again, three pairs are chosen such

that the alignment problem is made increasingly challenging.

The results in Figure 5.18 show that our proposed approach without segmentation can

handle the two pairs where the overlap remains above ≈ 30% for each point cloud. Once

segmentation is turned on, even the very low overlap pair with around only 10% overlap can

be handled. The segmentation is seen to increase the required computational time between 2

and 3 times. This is attributed to the fact that the segments are overlapping and not disjoint.

The likelihood maximization incurs no significant cost as a uniform set of mixture coefficients

is chosen (the latent variables are not estimated in this experiment). CPD and S4PCS fail

to find the correct alignment for all three cases. Similar to the results in Figure 5.15, S4PCS

is seen to maximize the overlap between the point cloud pairs as it attempts to maximize

the common point set. The only competing approach that works for all three cases is the

feature-based approach. However, we outperform it notably in terms of efficiency despite

using a Matlab implementation.
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|S| = 0.86M , |T | = 1.4M |S| = 0.7M , |T | = 2.8M |S| = 2.3M , |T | = 1.4M

o = 60% o = 60% o = 30%

CPD

7MSE = 864m trun = 1058 s 7MSE = 769m trun = 1160 s 7MSE = 150m trun = 2458 s

S4PCS

3MSE = 0.18m trun = 11 s 3MSE = 0.06m trun = 11 s 3MSE = 1.36m trun = 150 s

Features

3MSE = 0.007m, trun = 7 s 3MSE = 0.006m, trun = 7 s 3MSE = 0.008m, trun = 12 s

Proposed-NoSeg

3MSE = 0.06m, trun = 5 s 3MSE = 0.25m, trun = 5 s 3MSE = 0.13m trun = 6 s

Proposed-WithSeg

3MSE = 0.05m, trun = 9 s 3MSE = 0.04m, trun = 9 s 3MSE = 0.03m, trun = 11 s

Figure 5.17: Comparative test with Alte Pinakothek dataset. Each column represents a different
source-target cloud pair shown unaligned in the first row. The number of source points (|S|) and
target points (|T |) as well as the overlap value used in CPD and Super4PCS (o) is shown below each
pair. The alignment outcome obtained with the different approaches are shown in the rows below where
Proposed-NoSeg refers to segment-less ground-plane translation alignment as opposed to Proposed-
WithSeg. The run times include that required to resolve the rotation ambiguity (see algorithm in
Section 5.5). Successful alignment is marked by 3 and failure by 7. The method with the lowest run
time among all successful ones for a dataset is highlighted in green bold font. Image source: [2] –
©2016 Elsevier.
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|S| = 4.6M , |T | = 4.4M |S| = 3.6M , |T | = 2.8M |S| = 4.4M , |T | = 1.8M

o = 70% o = 30% o = 10%

CPD

7MSE = 3542m, trun = 5803 s 7MSE = 4224m, trun = 3097 s 7MSE = 6673m, trun = 5522 s

S4PCS

7MSE = 3117m, trun = 18 s 7MSE = 5142m, trun = 153 s 7MSE = 5279m, trun = 154 s

Features

3MSE = 0.08m, trun = 48 s 3MSE = 0.05m, trun = 30 s 3MSE = 0.07m, trun = 34 s

Proposed-NoSeg

3MSE = 0.06m, trun = 18 s 3MSE = 0.03m trun = 11 s 7MSE = 11112m, trun = 12 s

Proposed-WithSeg

3MSE = 0.06m, trun = 43 s 3MSE = 0.03m, trun = 23 s 3MSE = 0.50m, trun = 22 s

Figure 5.18: Comparative test with Deutsches Museum (DM) dataset. Each column represents a
different source-target cloud pair shown unaligned in the first row. The number of source points (|S|)
and target points (|T |) as well as the overlap value used in CPD and Super4PCS (o) is shown below
each pair. The alignment outcome obtained with the different approaches are shown in the rows
below where Proposed-NoSeg refers to segment-less ground-plane translation alignment as opposed
to Proposed-WithSeg. The run times include that required to resolve the rotation ambiguity (see
algorithm in Section 5.5). Successful alignment is marked by 3 and failure by 7. The method with the
lowest run time among all successful ones for a dataset is highlighted in green bold font. The dataset
is downloadable at https://www.lmt.ei.tum.de/downloads/CVIU_DM_Dataset. Image source: [2] –
©2016 Elsevier.

https://www.lmt.ei.tum.de/downloads/CVIU_DM_Dataset
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5.6.7 Non-Manhattan Experiment

The proposed alignment algorithm is tested on a dataset that has strong non-Manhattan

characteristics and is shown in Figure 5.19. As expected, the four dominant peaks in the

ground-plane rotation signature no longer appear. The subsequent step which uses cross-

correlation, which doesn’t explicitly require estimation of dominant directions like those of

[78], [79], still recovers the true alignment as it exploits the entire distribution of directions

of surface normals. A test with a smaller overlap, as expected, failed as the signatures grow

increasingly different. Hence, there is a limit to the robustness of this approach when dealing

with the not frequently encountered non-Manhattan datasets.
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Figure 5.19: Alignment test with point cloud data from a non-Manhattan building (shown left). Align-
ment conducted with the proposed approach without segmentation. The ground-plane rotation signa-
tures no longer show the dominant four peaks (c.f. Figure 5.4). The “winning” CPSH unambiguously
determines the correct ground-plane translation. The final alignment (shown using subsets of the
clouds that highlight the contours) is seen to be correct and accurate. Image source: [2] – ©2016
Elsevier.

5.6.8 External Dataset

We apply the algorithm on a 3rd party dataset of Oeseau et al. [77] shown in Figure 5.20. We

use the variant provided by Monszpart et al. [85] which already includes normals computed

using their RAPter algorithm. We segment the point cloud in two overlapping parts and

estimate the curvatures while maintaining the original normals. Despite the errors in the

normal estimation [80], the ground-plane rotation alignment is successful. As long as the

surface normals do not have systematic errors, the averaging effect of the histograms facilitates

successful ground-plane rotation alignment. The final alignment seen in Figure 5.20 is seen

to be correct and provides a very good initialization for fine alignment using ICP.
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Figure 5.20: Alignment test with the “Euler” dataset of [77]. Data acquired by static mapper (Leica
ScanStation P20) put at multiple locations in the environment (different to ours which is obtained
by a mobile platform - see Figure 2.1). Alignment conducted with the proposed approach without
segmentation using the supplied surface normals without alteration. The point cloud is segmented
into a source and target that have ≈ 50% overlap (shown on the left with color-coded curvature
values). The ground-plane rotation signatures have very dominant peaks leading to strong cross-
correlation at the true ground-plane rotation. The “winning” CPSH out of the four variants computed
for the four ambiguous rotations unambiguously determines the correct ground-plane translation. The
final alignment (shown using subsets of the point clouds that highlight the contours) is seen to be
correct and provides a good initialization for fine alignment. Notice the floor alignment along the
z-axis (Section 5.3.1) is successful despite having multiple floors and ceilings as the cross-correlation
correctly captures the floor-ceiling relationships. Image source: [2] – ©2016 Elsevier.

Figure 5.21: An example with extremely small overlap. The absence of salient features (objects with
corners) means that no reliable CPSH can be computed even if appropriate segments are available.
Image source: [2] – ©2016 Elsevier.

5.6.9 Limitations of the Algorithm

In Figure 5.21 a point cloud pair is shown which can not be aligned with our approach. The

overlap area makes up a very small fraction of either point cloud. More problematic is the

fact that the overlap area has not been even properly mapped (scan artifacts are seen as the

scanner never entered the corridor). Also, it is composed mainly of walls without any salient

shapes. Hence, even when using segmentation, the CPSH corresponding the segments of the

overlap area can not reliably determine the translation. Also the algorithm has a limited

robustness towards non-Manhattan datasets as the ground-plane rotation alignment becomes

less robust (see Section 5.6.7).
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Figure 5.22: Fast histogram computation using histogram convolution of the PMFs computed indi-
vidually for the source and target. The “standard” CPSH (computed as explained in Section 5.3.2) is
seen to be similar to the one computed by simply convolving the PMFs computed individually for the
source and target which is much faster (thus the name “fast”).

5.7 Fast Histogram Computation Using PMF Convolution

Despite outperforming even efficient algorithms in terms of speed we show here that there is

greater potential for efficiency. We address the computationally heavy histogram computation

necessary for the CPSH. Since we need to compute four different CPSHs for each source-target

segment pair we try to answer the question whether it is possible to circumvent this overhead in

computation which is necessary to resolve the ambiguity in ground-plane rotation alignment.

Ideally, the computationally heavy steps are done once and a less demanding computa-

tional operation can be used to assemble the CPSH for each of the four different ground-plane

rotations. To solve this problem we are served by probability theory which says that the

PMF of a subtraction of two independent random variables is simply the convolution of their

individual PMFs (with one being flipped). Hence we can easily compute the CPSH as follows

fi,j(t) = pT,j(t) ∗ pS,i(−t) (5.22)

where ∗ is the 2D convolution and pT and pS are the target and source PMFs, respectively.

Figure 5.22 shows that the CPSH computed this way is very similar to the one computed

using the standard approach (without discriminative voting).

The beauty of this approach lies in the fact that no intermediate subtractions have to

be computed while computing the CPSHs which dramatically reduces the computationally

burden. Just as important is that fact that to obtain the CPSH corresponding to a different

in-ground rotation the source segment PMF has to be simply rotated accordingly before

recomputing the convolution.

The CPSH computation is accelerated ≈ 100× using this method. The downside is that

this approach in its current shape cannot support discriminative voting using similar normals

(see Section 5.3.2.2).
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5.8 Summary

In this chapter, a method for the 6DOF alignment of large-scale indoor point clouds is pre-

sented. First the point clouds are rotationally aligned to gravity using PCA and then aligned in

translation along gravity by matching histograms of point distributions. The gravitationally-

aligned PCDs are subsequently aligned in terms of rotation and translation in the ground-plane

using a loosely coupled sequential two-step process which involves: computing histograms of

surface normal directions from horizontal normals and using cross-correlation to compute the

rotation; computing histograms of shift values between pairs of points with high curvature

values to estimate the translation, the so-called Curvature-Pair Shift Histograms (CPSH). An

extension is presented that involves computing the CPSHs on pairs of point cloud segments

and using a maximum likelihood (ML) estimator to fuse multiple hypotheses such that align-

ment problems with very small overlap can be supported. We show that the ML solution

amounts to a simple weighted averaging of the CPSHs. The results show that alignment of

point clouds involving multiple million points and with an overlap as low as 10% is achievable

with the algorithm irrespective of the initial alignment. We are at least as fast as the most

efficient algorithms we compared to despite using a Matlab implementation. We show that

the algorithm also works on non-Manhattan datasets.

Point clouds aligned with this algorithm can serve as reference clouds for the shape

matching-based localization presented in Chapter 6.

Major parts of this chapter have been accepted for publication in the Elsevier Journal on

Computer Vision and Image Understanding – Special Issue on Large-Scale 3D Modeling of

Urban Indoor or Outdoor Scenes from Images and Range Scans [2].





Chapter 6

Indoor Location Retrieval using 3D

Shape Matching

In the previous two chapters we dealt with obtaining extensive 3D maps of indoor spaces in

the form of point clouds. Meanwhile, the advent of the Microsoft Kinect and similar cheap

hand-held 3D sensors has made 3D shape sensing of the local environment easily possible.

The KinectFusion algorithm (KinFu) [86] can stitch multiple Kinect depth frames into a more

extensive surface scan allowing for the scanning of an object beyond single-view occlusions.

Registering such small object models inside large-scale point clouds would allow us to retrieve

the accurate location of the sensor and subsequently the person holding it. This contribution

(a) Scanning an object (SteamLocomotive) using a Kinect and KinFu [86] (left) to produce its 3D
query scan (right).

MatchedQuery

(b) Matching the query scan to its respective point cloud using the system explained in Section 6.1
retrieves the Kinect’s 6DoF pose identifying the person’s location.

Figure 6.1: Pose retrieval of a KinFu scan in a large-scale indoor point cloud to retrieve the location
of a person. Image source: [6] – ©2015 Eurographics.
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demonstrates that the 6DOF pose of local 3D shape scans obtained with a Kinect-like sensor

and KinFu (as shown in Figure 6.1(a)) can be retrieved in a large scale indoor point cloud to

accurately retrieve the indoor location of a user (as shown in Figure 6.1(b)). Feature-based

registration is used for that purpose (Section 2.2.2.2). Compared to the established camera-

based localization schemes [7], [87], [3], [88] which are based on content-based image retrieval

it has some fundamental advantages: First, the accuracy is no longer a function of the spatial

density of the recorded reference views. Second, the local shape of an object is not affected by

the lighting conditions. Third, by using KinFu, a view-independent and largely occlusion-free

query can be generated. Finally, the sensor’s 6DoF pose can be retrieved achieving superior

accuracy.

The used retrieval system (Section 6.1) computes descriptors of 3D keypoints of the KinFu

scan and the target point cloud. Good descriptor quality is crucial for successful retrieval.

The relatively large scans generated with KinFu in this work, as opposed to the standard

table-top scans, exhibit strong distortions in the form of bent surfaces and amplified noise

that adversely impact the descriptor quality.

One contribution lies in the analysis of these KinFu scanning artifacts, which arise due to

the largeness of the query scans which articulate 3D sensing distortions typical for Kinect-like

sensors (Section 6.2). Moreover, the effective reduction of these artifacts through proper 3D

sensor calibration using the CLAMS technique [89] together with pre-processing of the final

KinFu scan is explained (Section 6.3). The effectiveness of the location retrieval system is

demonstrated in Section 6.4 using real data obtained at the Deutsches Museum in Munich

achieving near-cm-level accurate localization. Finally, an extension based on a Multi-Classifier

System is presented that accelerates the location retrieval ten-fold while significantly improv-

ing the retrieval performance.
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Figure 6.2: Retrieval system: The KinFu query is pre-processed (see Section 6.3). Keypoints are
computed for the KinFu query scan and the target point cloud. A descriptor is computed for each
keypoint. The descriptors are matched to determine point correspondences between the query and the
target. A tentative alignment is computed using RANSAC and refined using ICP producing the 6DoF
homogeneous alignment transform T̂. Image source: [6] – ©2015 Eurographics.

6.1 Retrieval System

A point cloud registration system that performs initialization-insensitive part-in-whole shape

matching (as defined by Tangelder and Veltkamp in [90]) was built. It is used to retrieve the

6DoF pose of the KinFu scan (henceforth called query) in the indoor point cloud (henceforth

called target). Figure 6.2 shows that the KinFu scans are first pre-processed – as explained

in detail in Section 6.3 – to handle scanning distortions and produce reliable surface normals.

The normals for the target are also computed. As explained in Section 2.2.2.2, 3D keypoints

are first detected around which descriptors are computed. The descriptors of the query are

matched to the target descriptors to establish query-target point correspondences. A random

sample consensus (RANSAC) estimator is used to validate the correspondences and estimate

the 6DoF transformation that aligns the query to the target. The iteration with the highest

amount of inliers delivers the used transformation hypothesis. Finally, the Iterative Closest

Point (ICP) algorithm (Section 2.2.3) runs to retrieve the pose more accurately expressed as

the 6DoF homogeneous transformation T̂.

The only difference to the feature-based registration system used in Section 5.6 is the used

keypoint type. Here we use the Intrinsic Shape Signature (ISS) of Zhong [91] which has been

shown to outperform many standard detectors in terms of relative repeatability under various

distortions and transformations [92].

The results of Section 5.6 showed that feature-based registration compares favorably in

terms of speed and registration success when used with large-scale point clouds. Here, we will

show that it performs quite well also for this extreme case of part-in-whole matching. Notice,

the feature-based system is particularly relevant here due to the fact that we are dealing with

articulated objects. This is a distinct difference to 4PCS and Super4PCS [42] which are more

suited for cases with dominant semi-planar surfaces. In fact, several tests with S4PCS failed

to deliver appropriate results.
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Figure 6.3: KinFu overview. An incoming depth frame is aligned to the most recently predicted surface
to produce the transformation matrix Tk. The Signed Distance Function (SDF) of the registered frame
Fk is computed and fused with the cumulative SDF F1:k−1 to produce F1:k. A new surface is predicted
from the viewpoint Tk to be used in the alignment of the next depth frame. Image source: [6] – ©2015
Eurographics.

6.2 KinFu Scan Issues

The KinFu scans suffer from distortions that can be attributed to two main sources: the

sensor data and the KinFu reconstruction algorithm. The distortions are explained in detail in

Section 6.2.2 preceded by a brief explanation of KinFu in Section 6.2.1 to aid in understanding

the distortions.

6.2.1 KinFu Algorithm

As shown in Figure 6.3, KinFu has two main processing functions: registration and mapping.

These processing functions are interdependent whereby the outcome of registration is used

during mapping and the outcome of mapping is used for the registration of a newly incoming

depth frame.

During registration, a new incoming depth frame is registered to the local scene to retrieve

the 6DoF pose of the 3D sensor. ICP with the point-to-plane metric (Section 2.2.3) is used

for this purpose. In KinFu an incoming depth frame is registered against the most recently

updated 3D shape model of the scene obtained through mapping resulting in highly accurate

registration. This, however, requires updating the scene’s 3D scene model at frame rate.

To compute the 3D scene model at frame rate a volumetric scene representation based on

the truncated Signed Distance Function (SDF) [93] is used. The SDF captures for each point

in a cubic volume encompassing the scene the minimum distance to the 3D surface. Two

SDFs are maintained: One that accumulates the knowledge about the surface over multiple

frames and another computed only using the sensed surface in the current registered depth

frame.

KinFu uses a discretized lattice of 3D points as an approximation of a continuous SDF.

So a cubic volume of side length l is subdivided into voxels of side length (l/m). l is adapted

to the largeness of the scene (l = 300 cm in our case). m is usually limited by the graphics

card memory (we use m = 512 as in the original KinFu paper). The ratio l/m determines the

granularity with which the surface is mapped.
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Figure 6.4: KinFu uses the “projective distance” in the SDF computation which is an approximation
of the true smallest distance to the sensed surface. The projective distance s′ for point p in the SDF is
always an overestimation of the true distance s. The incurred error increases with increasing θ. Image
source: [6] – ©2015 Eurographics.

The SDF value at any point p in the lattice should be the smallest distance from the point

to the sensed surface. KinFu, however, approximates this distance, as shown in Figure 6.4,

by computing the projective distance. It is obtained along the ray connecting p to the sensor

origin. It is argued that this approximation still leads to good mapping results while allowing

computing the SDF at high frame rates.

For any depth frame k, the SDF volume Fk is computed. and subsequently fused with the

cumulative volume F1:k−1 using a per-voxel simple running average update rule. Specifically,

the new SDF value at point p is computed as follows:

Fk(p) =
W1:k−1(p)F1:k−1(p) + Wk(p)Fk(p)

W1:k−1(p) + Wk(p)
(6.1)

with W1:k−1 being the accumulated-weight volume, i.e. W1:k = W1:k−1 + Wk
∗.

Once the current mapping iteration is done, the surface is partially predicted from the

perspective of the currently registered frame. This is used to provide a reference surface to be

used in the registration of the next incoming depth frame. Hence, abrupt trajectory changes

and movements can lead to ICP failure. At the end of the scanning, the most recently obtained

cumulative SDF is used to produce a 3D mesh. The zero-crossings inside the SDF represent

the surface.

6.2.2 KinFu Query Scan Distortions

Surface bending. One fundamental issue we have faced is related to bent planar surfaces

as shown in Figure 6.6. This issue can be mainly attributed to the raw Kinect data. We have

observed that the raw 3D data suffers from non-linear distortions as shown in Figure 6.5(a).

Critically, planar surfaces appear curved and the curvature increases with increasing distance

from the scene. Teichman et al. [89] show that this is especially true for Kinect-like sensors

∗The multiplication in (6.1) is an element-wise multiplication.
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(a) Without CLAMS calibration. (b) With CLAMS calibration.

Figure 6.5: 3D sensor raw data (Asus Xtion Pro Live) of a wall scanned from two distances (1.5 m
& 2.5 m) shown as a point cloud from above. Despite IR camera calibration a bending of the wall is
observed. The curvature of the bending increases with increasing distance from the sensor. Calibration
with CLAMS [89] effectively reduces the bending.
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3

Region with increased
surface noise

Figure 6.6: Lab scene scanned using KinFu with Xtion Pro Live using three different approaches: (1)
Standing still; (2) Same as 1 but closer to the wall; (3) Scanning sideways while remaining close to
the wall. The generated point clouds prove that surface bending is less in (2) than in (1) due to the
decreased curvature of the raw 3D data at lower distances as shown in Figure 6.5. Maintaining a close
distance to the surface as in (3) further reduces the bending. Image source: [6] – ©2015 Eurographics.

(Microsoft Kinect, Asus Xtion, etc.). The Xtion is particularly interesting because it can

be carried around and thus lends itself for our application. In our case we use the Xtion

Pro Live.

Considering that KinFu essentially runs mapping and registration on each frame in suc-

cession, the bending of the raw 3D data is particularly harmful. Initial surfaces exhibiting

the bending will cause new depth frames to be registered slightly wrong. This in turn results

in a wrong mapping update in the cumulative SDF which in turn affects future registra-

tions. As a result the error propagates and with increasingly larger scans the bending effect

is accentuated.

To prove this the following experiment was performed: KinFu is used to scan a scene at

our lab which includes a large wall as well as some articulated objects to ensure accurate

registration. A number of different scans were performed. In the first, identified by label (1)
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in Figure 6.6 the Kinect is held far from the wall and is panned left and right. In the second,

a similar scan is performed, however at a close proximity from the wall. The generated point

clouds, shown in the same figure, clearly exhibit bending which increases towards the edges.

However and as expected, the bending of scan (2) is notably less than that in (1). In a third

experiment the wall is scanned while moving the Kinect parallel to it. As can be seen in

Figure 6.6, experiment (3) exhibits a substantially reduced bending compared to (1) and (2)

albeit at the cost of making the scene scanning complicated. The bending problem was less

severe when we used a Microsoft Kinect which, however, is less portable than the Xtion.

It remains to be said that the errors in depth impact also all coordinates of the scan

points computed from the depth image as these are computed using the pin-hole camera

model. Indeed, Figure 6.6 shows that the less the wall is bent, the larger is also the extent of

the scene and the scan dimensions are closer to reality which is important for the descriptors.

Sensor noise. Besides surface bending another issue we have to deal with is surface

noise which affects surface normal estimation. The used SHOT descriptor as well as all other

mentioned descriptors in [36] rely on surface normals.

Point pi’s surface normal can be typically computed by first computing the covariance

matrix of the points in pi’s neighborhood as follows:

Ci =
∑

pj∈Ni

(pi − pj)(pi − pj)
T (6.2)

where Ni is the set of points within radius rn of pi. The eigenvector corresponding to the

smallest eigenvalue of Ci is deemed as the normal vector.

Surface noise and surface distortions can have significant impact on the covariance matrix

C and the computed eigenvectors [94]. This is especially critical when rn is small. Unfor-

tunately, this is the case with our museum KinFu scans which have articulated small shapes

which require rn to be small (14 cm). Figure 6.10 shows the surface curvature of an example

query scan. The unprocessed scan surface is noisy and results in noisy normals.

A fundamental noise source is again the 3D sensor. Assuming a Gaussian error model,

Khoshelham and Elbrink [95] showed that the standard deviation in the measured depth of a

point by Kinect can be given as:

σd = σδd
2α (6.3)

where d is the depth of the point, σδ is the standard deviation of the measured disparity, and

α is a constant that depends on the Kinect camera parameters. So in essence, the Kinect

depth error increases quadratically with increasing depth. KinFu implicitly runs a maximum

likelihood estimation over multiple measurements from multiple frames by averaging new

SDFs into the cumulative SDF using (6.1). This results in substantially smoother surfaces

when comparing to the raw point clouds delivered in individual frames. Nevertheless, the
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noise will inevitably increase with increasing distance from the scene as the variance in the

estimate itself increases.

Due to the use of the projective distance when computing the SDF, see Figure 6.4, the

noise can furthermore be amplified for points with unfavorable scanning conditions (large θ in

Figure 6.4). This is because the projective distance will always overestimate the true smallest

distance to the sensed surface. For the case shown in Figure 6.4 the projective distance s′ for

the point p can be computed as a function of the true signed distance s as:

s′ = s/cos(θ) (6.4)

The error in Kinect depth measurement leads to an error in the signed distance function that

can, for the example shown in Figure 6.4, also be described by a Gaussian model. However,

the standard deviation is amplified and can be computed as:

σSDF = σd/cos(θ) (6.5)

Hence, the larger the angle between the surface normal and the sensor-to-SDF-point ray the

larger is the variance in the projective signed distance. Since the Kinect and the Xtion

both have a horizontal field of view (FoV) of around 60◦, the largest value for θ for the

case shown in Figure 6.4 is 60/2 = 30◦. In this case the standard deviation according to

Equation 6.5 increases by 15%. For surfaces that are not perpendicular to the sensor’s z-axis

(zk in Figure 6.4) even higher amplifications can occur.

Surface points lying on the fringe of a large KinFu scan are worse off in terms of surface

noise compared to other points. They are affected more by the variance amplification explained

above. Moreover, they are sensed by relatively few frames and thus will not benefit as much

from the SDF averaging. This explains the visible increase in surface noise seen in the right

part of the scans in Figure 6.6.

It is important to note that these two fundamental KinFu scan distortions, the surface

bending and the surface noise, arise particularly due to the largeness of the scans as opposed

to the relatively small scenes presented in the KinFu paper [86]. Hence, they deserve special

attention and proper processing to ensure good location retrieval performance.

6.3 Sensor Calibration and KinFu Scan Pre-Processing

Sensor calibration. One of the main issues with our relatively large KinFu query scans is

surface bending. Experiment (3) shown in Figure 6.6 showed that it is principally possible to

mitigate the bending issue in the raw data by scanning a scene from close proximity which

requires large translations to cover the entire scene. This may not be practical as the close

proximity greatly increases the probability of ICP failure as less salient objects are seen.
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Figure 6.7: Kinect-like sensors emit a specular pattern using an IR projector whose reflection is
captured by an IR camera. The projector-camera pair acts as a stereo camera used to recover the 3D
shape of the surface on which the specular pattern is projected. The images returned by the RGB
camera, which is calibrated w.r.t. the IR camera, can also be used to color the resulting point cloud.

Since Kinect-like 3D sensing is based on stereo-camera techniques (see Figure 6.7) one

might think of camera calibration (of the IR camera used to capture the specular pattern

reflection) as an obvious solution to the bending issue. Indeed, radial distortion will definitely

affect the disparity computation and the severity of its impact changes as a function of pixel

location. Note that the farther away the pixels from the center, the larger the distortion which

may explain why the depth values are less accurate towards the edges of the depth map.

While a standard camera calibration of the IR camera can accurately compute the focal

length, principal point and radial distortion coefficients, these parameters cannot be uploaded

onto the Kinect’s chip that performs the disparity computation (the Kinect computes the

disparity and subsequently depth values internally). The computed calibration can be at best

used to produce better point clouds from the depth maps that the Kinect finally delivers. We

performed standard IR camera calibration and as expected the improvements to the point

clouds were insufficient and the bending artifacts remained severe.

Teichman et al. [89] investigated 3D sensor calibration of Kinect-like sensors and showed

that such devices are essentially myopic in terms of their distortion characteristics. Like us,

they observed that depth images (and their derived point clouds) exhibit a bending that

increases with distance. As a solution they propose using mutliplicative depth compensa-

tion factors that are learned as a function of depth and pixel region. They are learned by

Calibrating, Localizing, and Mapping, Simultaneously (CLAMS).

CLAMS essentially runs simultaneous localization and mapping (SLAM) on the RGBD

data of a Kinect-like sensor. The sensor trajectory is estimated. This is used to build a 3D

model of the scene, however, only using reliable depth data (depth < 2 m). Finally, all depth

data from all pixels of each frame are used to compute the depth error at different pixel regions

and different depth levels to compute the compensating multiplicative factors.

We used the CLAMS technique to calibrate our Xtion RGBD sensor. The learned depth

multiplier images are shown in Figure 6.8. Applying the learned model on the raw 3D sensor

data leads to visible improvements as shown in Figure 6.5(b) and the bending is largely

removed. Using the undistorted depth images KinFu can produce scans without bending

artifacts as shown in Figure 6.9(a). If the scan is relatively small, however, and scanned from

a close distance no visible improvement can be observed as seen in Figure 6.9(b).
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4-6m2-4m0-2m

Figure 6.8: Learned depth multiplier images using CLAMS for three depth levels. Red regions imply
multiplicative factors that lead to depth value decrease. The color intensity is directly related to the
amount of applied correction. Clearly, at higher depth larger corrections are needed to compensate
the depth errors. Also, more compensation is necessary when deviating away from the principal point
to offset the bending. Image source: [6] – ©2015 Eurographics.

Without CLAMS Calibration

With CLAMS Calibration

(a) Astro-Spas KinFu Query Scan.

Without
CLAMS 

Calibration

With CLAMS 
Calibration

(b) Generator3 KinFu Query Scan.

Figure 6.9: Two query scans generated once with prior CLAMS sensor calibration and once without.
Especially large scans benefit from the calibration and do not exhibit the bending artifact. Image
source: [6] – ©2015 Eurographics.

KinFu surface pre-processing. Having obtained unbent KinFu scans we address the

remaining issues highlighted in Section 6.2. First, we reduce surface noise using a moving

least squares (MLS) filter. Spurious points and remaining noise that does not fit with the

local surface point statistics are treated using a sparse outlier removal (SOR) filter.

The MLS filter is a projection-based procedure that approximates surfaces locally by

polynomial functions [96]. This leads to a shape-aware smoothing of the point cloud in which
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After Pre-Processing

BeforePre-Processing

Figure 6.10: KinFu query pre-processing shown for SteamEngine. The color represents the surface
curvature. The greener, the higher the curvature value. Prior to retrieval MLS and SOR filters (see
Section 6.3) are used to reduce surface noise and eliminate spurious points. Especially flat surfaces as
well as edges benefit from the filtering. Image source: [6] – ©2015 Eurographics.

sharp discontinuities are preserved while effectively reducing noise.

To deal with the shadow surface problem as well as spurious points and remaining noise

an SOR filter [97] is used. The SOR filter learns the global point statistics to detect outliers

and filter them out. It computes the mean and the variance of the avearge distance to the

r-NNs of each point. The learned statistics are used to filter out points whose average r-NN

distance is substantially different from the learnt mean distance.

The combined effect of MLS and SOR filtering are less noisy surfaces as shown in Fig-

ure 6.10. Once filtering is finished, we estimate surface normals and disambiguate them to a

consistent orientation that agrees with that of the respective part in the target point cloud.

6.4 Evaluation

The used query scans and target clouds are introduced in Section 6.4.1 followed by an explana-

tion of the evaluation metrics in Section 6.4.2, the used retrieval parameters in Section 6.4.3,

the obtained results in Section 6.4.4 and finally the analysis in Section 6.4.5.

6.4.1 KinFu Queries and Reference Point Clouds

We recorded a set of 9 queries in the Deutsches Museum (DM) with an Xtion Pro Live.

The same set of depth images is fed to KinFu once undistorted with the learned CLAMS

model and once without distortion compensation. Once the query scans have been generated

they are pre-processed as explained in Section 6.3.

The target clouds have been recorded using the LMT mapping trolley [18]. The target

clouds cover up to 3500m2 of floor space and encompass multiple exhibition areas. Figure 6.11

shows the target cloud for the queries GF200-Plane, Generator1 and Generator3.
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Photo

Point Cloud

Figure 6.11: One of the used target clouds including the airplanes exhibition. A photo and the
corresponding part in the point cloud are shown from the indicated view point. Image source: [6] –
©2015 Eurographics.

6.4.2 Evaluation Metrics

While retrieving any query we measure the true correspondence rate (TCR). This is the

fraction of correspondences that adhere to the ground transformation T. Also, the finally

computed transformation using RANSAC and ICP is checked for correctness. This process is

repeated 100 times to give reliable results as RANSAC is random. The percentage of successful

retrievals from within the 100 runs defines the precision of retrieval. For each successful

retrieval we measure the accuracy of retrieval. For that, again, the error transformation Te is

first computed and used to derive the error angle αe and the translation error te as explained

in Section 3.4.1. The accuracy values are averaged over all successful runs of the respective

query.

6.4.3 System Parameters

The keypoint and descriptor radii have been tuned to 10 cm and 1 m, respectively. The order of

the polynomial for the MLS filter is 4. The MLS search radius is 5 times the mesh resolution.

For the SOR filter, r = 60 nearest neighbors is used for the statistics.

6.4.4 Evaluation Results

Comparing the TCR values in Table 6.1 it can be seen that the CLAMS calibration leads

to an increase in TCR in 6 out of 9 queries. For the remaining three queries the decrease
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Table 6.1: Retrieval results using the evaluation metrics introduced in Section 6.4.2. The results are
shown in terms of the true correspondence rate (TCR) and the retrieval precision for two cases: No
CLAMS calibration and with CLAMS calibration. The retrieval accuracy in terms of error angle (αe)
and error translation (te) averaged over all successful retrievals (thus “weighted” average) is shown for
the case with CLAMS. The evaluation metric are explained Section 6.4.2.

Query TCR (%) Precision (%) te (cm) αe (◦)

No CLAMS With CLAMS No CLAMS With CLAMS

FrancisTurbine 25.0 31.9 100 100 3 0.8

GirardTurbine 14.3 20.8 86 100 6 1.9

Astro-Spas 27.0 49.4 100 100 0 0.0

GF200-Plane 13.6 12.9 78 96 9 2.1

SteamLocomotive 7.5 14.4 15 92 5 5.7

SteamEngine 20.5 13.8 0 100 5 2.4

Balloon 16.2 23.7 0 70 4 0.5

Generator1 20.2 23.4 100 100 4 1.9

Generator3 7.8 7.4 74 65 17 9.3

Weighted average 16.9 22.0 61 91 6 2.5

in TCR is notable only in one query (SteamEngine) while it is less than 1% in the other

two. The increase in TCR can reach up to 22.4% and averages 5.1%. Nevertheless, it can be

seen that even after pre-processing, the TCR is relatively low averaging 22% which is a direct

consequence of the extreme case of part-in-whole matching that this application is.

The increase in TCR is seen to have a large impact on the retrieval precision which rises

from 61% to reach 91%.

Table 6.1 also shows that a true correspondence rate as low as 12.9% is sometimes enough

to lead to a 96% precision (GF200-Plane).

The average error in the retrieved orientation is 2.5◦and the average location accuracy

is 6 cm. These accuracy values are beyond any of those obtainable with a standard visual

localization system [98].

6.4.5 Analysis

The results in Section 6.4.4 show that proper calibration for our relatively large KinFu scans,

as opposed to simple IR camera calibration, leads to a significant improvement in retrieval

results. Especially large query scans such as FrancisTurbine, GirardTurbine, Astro-Spas and

SteamLocomotive benefit greatly from the calibration either in terms of true correspondence

rate (TCR) or precision or both.

The precision values for the queries SteamEngine and Balloon rise, as can be seen in

Table 6.1, from 0% to 100% after CLAMS calibration. While this is easily justifiable in
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Figure 6.12: The true correspondence rate (TCR) of GirardTurbine reduces substantially with increas-
ing target cloud floor size as opposed to FrancisTurbine hinting that the query itself is less distinctive.
Image source: [6] – ©2015 Eurographics.

the case of Balloon through the increase in TCR, it seems counter intuitive in the case of

SteamEngine whose TCR decreases after CLAMS calibration. A deeper inspection shows

that while the TCR decreases, the actual absolute number of true correspondences increases

by 33%. In fact, the absolute number of true correspondences, not shown in Table 6.1,

increases for all nine queries after CLAMS calibration. This increase is effectively exploited

by our RANSAC implementation which includes a built-in false correspondence rejector that

will be explained later.

The TCR of the GirardTurbine is 10% less than that of FrancisTurbine which is located

beside it in the museum. We argue that the problem is related to the lack of intrinsic dis-

tinctiveness of the shape itself. To prove this we compare the reduction in TCR of both

scans as we match each one of them to increasingly larger cutouts of their common target

cloud. We argue that a distinctive query exhibits a stable TCR irrespective of the target size.

The curves in Figure 6.12 indeed show a large decrease in the TCR of GirardTurbine as the

target cloud increases as opposed to FrancisTurbine whose TCR decreases at a far less rate.

The GirardTurbine query scans from multiple matching runs without CLAMS calibration are

visualized after alignment in red in Figure 6.13. It can be seen that occasionally the query

gets matched to the nearby turbines. This problem is not observed in the case of CLAMS

calibration. All 100 retrieval attempts succeed in that case.

An interesting case is the GF200-Plane query which does not benefit from the calibration

despite being relatively large. The plane body has few distinctive local features. Moreover the

target cloud includes many planes (see Figure 6.11) which are similar in shape. Accordingly,

the CLAMS calibration does not lead to an improvement. Despite the low true correspondence

rate, our RANSAC implementation still manages to retrieve the location correctly in 96/100

runs.

The results in Table 6.1 show that the average true correspondence rate is generally low

even after CLAMS calibration. This is mainly due to the fact that the queries make up a

tiny fraction of the large-scale target clouds. Despite the low true correspondence rates, the

final retrieval is very precise on average. This is a testimony to the robustness of RANSAC

and the used parameters. One fundamental feature of the RANSAC we implemented is a
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Wrong Location Correct Location 

Figure 6.13: The results of multiple retrievals of the GirardTurbine query (red) are shown overlapped
on the same target cloud (blue). Some retrieval attempts match the query to neighboring turbines
displaying the issue of distinctiveness. Image source: [6] – ©2015 Eurographics.

Unscannedpart

Figure 6.14: Occlusion in the target cloud due to exhibition restriction leading to a low true corre-
spondence rate for the GF200-Plane query.

built-in false correspondence rejector. The rejector validates any sampled correspondence

with already pre-sampled correspondences in the same iteration. The validation is achieved

by checking whether the spatial distances to the other samples on the query side are preserved

on the target side, exploiting a fundamental property of the Special Euclidean Group SE3 as

illustrated in Figure 6.15. RANSAC’s success depends on the probability of finding a subset

of points which are inliers. The probability of such can be given as

pv = p(s1, s2, s3) = p(s3|s2, s1)p(s2|s1)p(s1). (6.6)

with si meaning that sample i is an inlier. Given that p(si) = ps, when sampling randomly

pv becomes pv,rand = p3s. If however, the geometry aware sampling is used pv becomes

pv,geom = p(s3|s2, s1)p(s2|s1)p(s1) = p(s3|s1)p(s2|s1)p(s1) ≈ p(s1) = ps (6.7)

as we assume that geometrically consistent samples most likely are inliers given that the

first sampled correspondence is an inlier. Hence, the probability of picking an outlier-free
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set is significantly increased. This also has a direct consequence on the number of required

iterations, N , which is a function of pv and the required success probability pS :

N ≥ log(1− pS)/log(1− pv). (6.8)

ff
Point cloud 1

Point cloud 2False correspondence

True correspondence

Figure 6.15: Geometry-aware RANSAC. Two point clouds to be registered are shown connected by
true and false correspondences. First a correspondence is randomly sampled. Another correspondence
is sampled next. Only if the distance of its point in PCD 1 to correspondence 1’s point in PCD 1, f , is
also preserved in PCD 2 is this correspondence added proceeding to sampling the final correspondence
needed for RANSAC which is chosen similarly.

6.5 Retrieval Acceleration

Here, we deal with a fundamental problem of the proposed location retrieval system, namely

retrieval time. In this section an extension of the retrieval system is presented which acceler-

ates the retrieval by an order of magnitude while also improving the retrieval performance.

The main problem with the retrieval system shown in Figure 6.2 is that it requires matching

keypoints in the query with all keypoints found inside the large-scale reference point cloud to

establish correspondences. This not only leads to high computational times but also decreases

the accuracy as there are many more false correspondence candidates per query keypoint.

In the extension we propose to make the query-reference correspondence search faster

and more accurate by choosing a subset of the reference point cloud which is more likely to

encompass the object also captured by the query.

Choosing a subset of the reference point cloud is based on two fundamental steps: 1)Seg-

mentation of the reference point cloud into semantically meaningful objects; 2)The usage of a

Multiple Classifier System (MCS) for identifying which objects are more likely to correspond

to the query scan. This is illustrated in Figure 6.16. To segment the reference point cloud

into semantically meaningful objects we first run keypoint detection on the entire reference

point cloud and compute a histogram of keypoint location using Kernel Density Estimation

(KDE). The peaks of the histogram identify distinct objects. This is based on the observation
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Figure 6.16: Accelerating the location retrieval using an MCS. The reference point cloud is segmented
into 3D reference objects. An MCS is trained to pre-select a few relevant reference objects when
presented with a query scan. The location retrieval as explained in Section 6.1 is run only on the
subset point cloud assembled from the pre-selected reference objects.

Figure 6.17: Reference point cloud segmentation into semantically meaningful objects. Left: A point
cloud of an exhibition hall of the Deutsches Museum. Middle: Keypoints extracted from the point
cloud shown from above. Evidently, the keypoints concentrate around the interesting objects. Right:
Keypoint density histogram, shown using a contour plot. The peaks in the density plot (yellow regions)
are used to identify distinct reference objects. Image source: [99] – reproduced with permission.

that “interesting” objects have articulated shapes which set them apart from the surrounding

environment which is typically made up of walls and accordingly higher densities of keypoints

tend to occur around the objects as shown in Figure 6.17. Finally, a region growing algorithm

is used to associate points in the reference point cloud to the different objects identified by

the peaks in the histogram. The algorithm is explained in detail in [99]. Figure 6.18 shows

a few examples of segmented objects and corresponding query scans. The segmented objects

are seen to encompass the physical objects properly.

At this point we observe that different objects can vary significantly in size. Accordingly,

we postulate that simple features that measure size can already serve as good pre-selection

mechanisms when searching for the match of any query. Observing that segmented objects can

include or miss significant parts of point clouds available in the respective queries it becomes

apparent that the size features should not be computed from the point clouds directly but

rather from their keypoints. For instance, the “SteamLocomotive” reference object seen in
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KinectFusion query scans

Segmented reference objects

4

Figure 6.18: Examples of reference objects segmented from a reference point cloud of the Deutsches
Museum and corresponding KinectFusion query scans. From left to right: “SteamEngine4”, “Francis-
Turbine”, “SteamLocomotive” and “Astro-Spas”. Image source: [99] – reproduced with permission.

Figure 6.18 has many more points than its respective query scan. These points, however,

lie mainly on the nearby wall and would accordingly not produce any keypoints. A similar

argument applies to “FrancisTurbine”.

The keypoint spreads allow to filter objects based on size. However, they have a limited

discriminative power beyond that. The SHOT feature, on the other hand, captures more

interesting information about the 3D shape. However, the problem with SHOT is that it

needs a repeatable keypoint and local reference frame (see Section 2.2.2.2) to produce similar

feature vectors. We present an extensive investigation of this problem in [99].

Given the preceding arguments about pre-selection our objective is to use simple features

about size to already filter out many reference objects and then choose the most likely corre-

sponding objects using SHOT. Instead of building a system that performs such a two-stage

selection we opt to use a technique that automatically combines the classification results from

multiple features, a so-called Multiple Classifier System (MCS). We specifically implement

MCS using the intersection method of Ho et al. [100].

Using a training set of query scans and the segmented reference objects we train an MCS

that uses simple features derived from a 3D scan to learn how to effectively identify the

corresponding reference object when presented with any query scan. The MCS is trained

by deriving the following features from each reference object and each training query scan:

1)One SHOT feature with a 1.5 m radius centered on the keypoint density peak; 2)The key-

point density spread in the x-y plane capturing the horizontal object size 3)The keypoint

density spread along the z-axis capturing the object size vertically. The latter two features

are illustrated in Figure 6.19. The features are explained in greater detail in [99]. What is

important to mention here is that the density spread features can be computed very easily



6.5. RETRIEVAL ACCELERATION 103

keypoint

frequency
z

s
z

fr
eq

u
en

cy

xy keypoint spread

z keypoint spread

3D point cloud

Figure 6.19: The keypoint density spread in the x-y plane and along the z-axis are computed and used
as primitive features for quick pre-selection of relevant reference objects. In the example a 3D object
with identified keypoints are shown. The histogram of keypoints along the z-axis and in the x-y plane
are computed separately From each, a spread value is calculated.

and fast. In fact the keypoint spread in the x-y plane is a by-product of the segmentation

process. Also the single SHOT can be computed very quickly. Hence, this feature selection is

intentional as the objective is to provide a quick and reliable pre-selection mechanism.

The training step learns the thresholds that determine how many of the top retrievals to

consider from each separate feature. Once a query object is now presented to the system the

most similar reference objects are retrieved using each feature separately and only the top

results up to the learned threshold are maintained. Finally, only those reference objects that

appear in the short list of all three features are kept as potential matching candidates, hence

the name “intersection method”. For more details refer to [100].

The results in Table 6.2 show that the pre-selection mechanism succeeds in identifying

a short list of reference object candidates in 8/10 test queries. The short list of reference

objects makes up only 7% of the total list of reference objects on average leading to a dramatic

reduction in required matching time as well as reducing the potential for wrong matches in

the subsequent feature matching step. Indeed, this is confirmed by the results in Table 6.3

show that many query scans that the TCR for many test query scans rises from 0% to above

90% owing to the reduction of search space. Simultaneously, the retrieval time drops from 43 s

on average to just 1.4 s. It remains to be mentioned that there is a computational overhead

associated with computing the features that amounts to about 2 s. Nevertheless, in total a 10

fold speed-up is achieved while dramatically improving the retrieval success.
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Table 6.2: Pre-selection results using the MCS. The MCS status column indicates whether or not the
suggested reference objects short list contains the correct one, i.e. the one corresponding to the query
scan. The column # candidates indicates how many reference objects are suggested as a potential
candidate. The column % of database is the % of reference objects the short list of candidates makes
up of the total number of reference objects that would have otherwise been necessary to consider
as potential candidates if there were no pre-selection. The upper group of queries (delimited by the
horizontal line) marks the training set as opposed to the lower group which presents the testing set.

Query MCS status # candidates % of database

GirardTurbine X 4 2.9

FrancisTurbine X 8 5.8

Plane X 15 9.7

SteamLocomotive X 5 3.6

SteamEngine X 8 5.8

Generator1 X 15 9.7

Generator3 X 13 8.4

SteamEngine4 X 10 7.2

SteamEngine5 X 13 9.4

Engine1 X 17 11.0

Turbine3 X 14 10.1

Astro1 X - -

Astro6 X 5 2.8

Astro8 X 8 4.5

Generator7 X 16 10.3

Generator8 X 5 3.2

Werkzeug X - -

Average - 10.4 7.0
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Table 6.3: Results in terms of true-correspondence rate (TCR). The column TCR no-MCS indicates
the TCR results when matching against the full reference point cloud, as opposed to TCR MCS which
are TCR values when matching only against the subset point cloud formed from the short list of
reference objects obtained using the MCS pre-selection. Similarly, the retrieval times for the MCS and
no-MCS cases are presented. The MCS system is seen to increase the TCR on average from 56% to
91% while simultaneously reducing the retrieval time to 1.4 s from 43 s on average. The upper group of
queries (delimited by the horizontal line) marks the training set as opposed to the lower group which
presents the testing set.

Query TCR MCS [%] TCR no-MCS [%] Time MCS [s] Time no-MCS [s]

FrancisTurbine 100 100 0.6 27

GirardTurbine 100 100 0.6 29

Plane 100 96 2.0 68

SteamLocomotive 100 92 1.0 26

SteamEngine 100 100 1.4 27

Generator1 100 100 2.0 71

Generator3 100 65 2.1 70

SteamEngine4 100 0 1.3 28

SteamEngine5 87 0 1.7 29

Engine1 0 0 1.9 26

Turbine3 100 0 1.4 27

Astro6 100 93.5 1.1 42

Astro8 100 0 0.6 38

Generator7 95 96.5 2.8 72

Generator8 75 3.23 1.0 72

Average 90.5 56.3 1.4 43
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6.6 Summary

This chapter presents an indoor localization system that uses point cloud registration to

achieve highly accurate location retrieval inside a large-scale museum environment. From a

theoretical point of view, the system handles an extreme case of part-in-whole shape matching

problem.

The query scans, scanned by persons, are obtained through 3D scanning with the Kinect

3D sensor in combination with KinectFusion reconstruction algorithm. The query scans are

registered to large-scale indoor point clouds using a feature-based matching system with a

geometry-aware RANSAC that deals effectively with the inadvertent low true correspondence

rate.

The contribution also highlights a problem connected to 3D reconstruction of large objects

using Kinect-like sensors, which manifests itself in the shape of surface bending, and analyses

its impact on the resulting 3D scans.

The system is evaluated with data obtained from the Deutsches Musem. The queries are

matched against reference point clouds of up to 3500m2 floor space. Accurate retrieval results

with an average translation error of only 6cm and an average rotation error of less than 3◦

are demonstrated. The results furthermore quantify the impact of proper sensor calibration

using advanced techniques, such as CLAMS, on the retrieval results.

In a follow-up work, we developed a method to accelerate the system by pre-segmenting

the reference PCD into sementically meaningful objects (each object is a small point cloud)

using the Kernel Density Estimation Technique. A Multi-Classifier System (MCS) then pre-

selects a few of the candidate objects and assembles them into a point cloud with far less

points than the original one. Finally, the feature-based retrieval system is used to accurately

retrieve the location accurately. We demonstrated a speedup of around 10× with a substantial

improvement in the retrieval performance.

Major parts of this work appeared in the proceedings of the Eurographics Workshop on

3D Object Retrieval (3DOR) 2015 [6]. The follow-up work on accelerating the retrieval is

presented in detail in [99].



Chapter 7

Conclusions and Outlook for Future

Research

7.1 Conclusions

This dissertation deals with the topic of 3D mapping of indoor spaces. The main technical

problem treated in the thesis is that of point cloud alignment which is essential to 3D map-

ping. The thesis presents four major contributions that relate to alignment for mapping from

different levels starting out with the basic mathematical theory and going up all the way to

applications benefiting from 3D mapping. Each contribution builds upon the previous one

and hence in collection a comprehensive view on the topic is provided. The four contributions

and their inter-linkage are summarized in the following:

• Chapter 3 - Outlier-Resilient Alignment using the Geometric Algebra LMS:

This contribution relates to the fundamental theory of point cloud alignment. Starting

with a set of correspondences the problem is to determine the optimal rotation and trans-

lation that bring the two point clouds in alignment. Arun et al. showed the existence of

a closed-form solution based on the Singular Value Decomposition (SVD) back in 1987

[16]. The SVD is used as a standard solution for alignment from correspondences up till

today. Nevertheless, it suffers from its inherent sensitivity to outliers. In reformulating

the alignment problem using Geometric Algebra (GA) we managed to derive an iterative

adaptive filter (AF), the GA-LMS, that provides an alternative means to solving the

rotation alignment from correspondences [1]. In Chapter 3 an extension of the GA-LMS

to solve rotation and translation alignment is provided. Also, a series of mechanisms

that exploit the adaptive and sequential nature of the GA-LMS are presented which

are shown to endow the filter with outlier-resilience. The light-weight nature of the

GA-LMS in combination with the presented mechanisms make it a credible substitute

for the long used SVD-based solution.

107
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The GA-LMS in its current shape isn’t inherently outlier resilient. Rather, the proposed

mechanisms help to make it more accurate as compared to standard SVD-based align-

ment. This is due to the nature of formulation whereby the alignment problem is posed,

as in the standard Linear Algebraic formulation, as a least mean squares problem. It

would be interesting to investigate new GA-based formulations that do not use the LMS

criterion but rather some outlier-resistant criterion as demonstrated by Bouaziz et al.

[101]. Now, equipped with the new GA-based formulation which comes along with the

powerful GA Calculus, derivations may prove to be far less cumbersome and an iterative

solution may yet again be obtainable which can be again exploited to endow the filter

with certain desirable characteristics such as the capability to do online processing of

correspondences as they are determined.

• Chapter 4 - Skew-aware Scan Matching using the GA-LMS: Two fundamental

sub-contributions are presented. In the first, a study of the so-called “skewing” problem

of scans of modern LiDARs is presented. Scan skewing is the rigid deformation of

3D scans (point clouds obtained from one full scan sequence of the LiDAR) due to

sensor mobility combined with the sequential scanning nature of the LiDAR. The impact

of skewing on scan matching, the process with which consecutive LiDAR scans are

assembled into a comprehensive 3D map (point cloud) while simultaneously recovering

the sensor motion trajectory, is theoretically derived and experimentally verified using a

set of synthetic datasets with controlled distortion artifacts and accurate ground-truth.

This, to the best of our knowledge, is the first systematic study of the problem of skewing.

In the second sub-contribution the GA-LMS presented in Chapter 3 is re-derived for the

point-to-plane metric (GA-LMSpt2pl) and employed to reduce the impact of skewing on

scan matching. Specifically, we show how the adaptive nature of the GA-LMS can be

exploited to account for the severity of the skew for each point such that more accurate

scan matching with less trajectory drift can be achieved. Results with real LiDAR data

(VLP-16) are also presented.

Although the GA-LMSpt2pl clearly helps in reducing the rotation estimation errors dur-

ing scan matching it suffers from solving the rotation and translation in two separate

steps. Owing to the nature of the LiDAR scans and the fact that point cloud centroids

are used to estimate the translation, small translation errors accumulate into trajec-

tory compression which harms the overall scan matching outcome. It is expected that

replacing the rotor operator in the GA-LMSpt2pl formulation with a motor operator

that performs rotation and translation can help in deriving a new family of GA-based

alignment filters that can perform joint rotation-translation alignment and thus avoid

the compression problem while retaining the capability to effectively deal with skewing.
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• Chapter 5 - Alignment of large-scale indoor point clouds: While Chapter 4

addresses the problem of acquiring 3D maps from scan matching, in this contribution

we show how to automatically align multiple such 3D maps into more comprehensive

3D maps. We are motivated by the fact that it is more beneficial to reconstruct a

large building from multiple maps as many technical and non-technical challenges are

circumvented such as trajectory drift which is addressed in Chapter 4. We present

an automatic 6DOF alignment method that is insensitive to initial alignment and is

particularly efficient despite the huge amount of points per 3D model. To achieve that,

we show that it is possible to decouple the estimation of the alignment for the different

degrees of freedom by exploiting inherent characteristics to indoor environments. In

a first step the point clouds are aligned to and along gravity using PCA and point

distribution histograms. Subsequently, the ground-plane rotation is recovered up to a

degree of ambiguity using histograms of surface normal angles. Finally, the ground-plane

translation is computed by determining the peak of a bi-variate shift histogram built

from selected source-target point pairs, the CPSH. The method is further extended

to deal with very small overlap between the 3D models by re-interpreting CPSHs as

probability density functions which are fused using Maximum Likelihood estimation.

The superiority of the approach in terms of efficiency as well as insensitivity to initial

alignment and overlap size is demonstrated through experiments with real 3D maps

acquired inside large museum environments.

A refinement of the proposed algorithm may focus on the problem of needing to compute

four different CPSHs per segment pair to resolve the ambiguity in the ground-plane

rotation estimation. We presented a method for significantly accelerating the CPSH

computation in Section 5.7. This needs to be extended to enable all types discriminative

voting which have been found to greatly improve the CPSH quality.

• Chapter 6 - Indoor Location Retrieval using 3D Shape Matching: In Chapter 5

we show how to obtain extensive 3D maps of indoor environments. They can be used for

a plethora of applications. In a final contribution we show how such maps can be used for

the application of indoor location retrieval. This remains to date one of the big challenges

as the highly popular Global Positioning System (GPS) does not work indoors. The idea

is to use point cloud alignment to match a locally acquired 3D shape scan inside a large

scale indoor point cloud. This is not only motivated by the ability to acquire large scale

point clouds using scan matching and alignment of large-scale point clouds but also

by recent developments in 3D sensing that have brought about the highly celebrated

Kinect sensor (and similarly working structured-light sensors) as well as algorithms for

real-time stitching of multiple Kinect scans into one refined 3D model. Perhaps the best

known of these algorithms is KinectFusion (KinFu). In this contribution we demonstrate
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location retrieval inside a museum environment by matching KinectFusion 3D models

inside large-scale 3D maps. We explain the challenges relating to sensing accuracies

and distortions of Kinect-like sensors and show how to design a matching system that

can handle this extreme case of part-in-whole matching. Our results, obtained with

real data, show that location accuracies in the cm range are possible. We also present

an extension based on pre-selection of candidate parts of the 3D model using a Multi-

Classifier System (MCS) whereby the system is accelerated by an order of magnitude

while simultaneously increasing the accuracy.

The presented system may not be very practical to use as it requires a person to perform

a lengthy scan of an object using a Kinect-like sensor before matching can be triggered.

Interested researchers may investigate means for faster query acquisition.
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Appendix A

Exponential Mapping Normalization

Constant ci,j

Here we show that the normalization constant of the exponential mapping of (5.14) is almost

the same for any CPSH. The proof is done by induction: Starting with a uniform CPSH of v

bins, i.e. fi,j = 1/v, the exponential mapping would require a normalization factor:

c1 = v · b1/v =
v

2
(b1/v + b1/v) (A.1)

If the bin strength is now decreased for half of all CPSH bins by 1/v and necessarily the

strength of the remaining bins is increased by 1/v, then the normalization factor would become

c2 =
v

2
b0 +

v

2
b2/v =

v

2
(1 + b2/v) (A.2)

Since the exponential function is convex ba + ba ≤ b0 + b2a for 0 ≤ a it follows that:

c1 = v · b1/v =
v

2
(b1/v + b1/v) <

v

2
(1 + b2/v) = c2. (A.3)

By recursively applying the same procedure of setting half of the non-zero bins to 0 and nec-

essarily doubling the other half it can be seen that the normalization constant monotonically

increases until only two non-zero bins remain with 0.5 strength each. Here again, the normal-

ization value increases when one of the two is set to zero and the other becomes 1. Hence,

the maximum normalization factor is needed for the case with the peakiest distribution i.e.

the Dirac distribution. Vice versa the distribution with the smallest normalization factor is

the uniform distribution.

Evaluating the normalization factor for the two limiting cases for a typical CPSH which

may have a grid of 200× 200 and for b = 10 would result in cmin = 40002 and cmax = 40009.

Obviously the ratio of these two values is almost 1.0 and hence the normalization factor is

almost equal for different CPSHs.
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2.1 Four different types of LiDAR-based mappers. From left to right: LMT trolley-based

mapper [18]; backpack-based mapper (image source: [22] – reproduced with permission);

ZEB1 hand-held mapper (image source: [23] – reproduced under CC3.0); Leica static

ScanStation C10 (image source: [24] – reproduced with permission). . . . . . . . . . . . 5

2.2 3D mapping with LiDARs. Registering multiple scans (shown here for 2D scans from a

top view) using scan matching allows retrieving the sensor motion and assembling a map
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2.3 A point cloud of a TUM corridor generated using the M3 Mapping Trolley of the NavVis
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2.5 SHOT descriptor computation. A local reference frame (LRF) is computed for the keypoint.

The dot product of the normal of any point inside the support with the LRF z-axis is

computed. The descriptor is made up of 11-bin histograms of the dot product values.
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2.6 4PCS congruent basis search. The 4PCS uses 4 point bases made of (nearly) co-planar

points. The ratios rab and rcd for the two intersecting lines connecting a randomly chosen

co-planar 4-point set {a,b, c,d} are computed in the target (left). Then, all point pairs

of a length similar to either ||b− a||2 or ||d− c||2 are pre-selected in the source (O(|S|2))

delivering candidate congruent sets. In this example, the following two congruent sets

were found: {a1,b1, c1,d1} and {a2,b2, c2,d2} (right). For each candidate basis i, the

predicted intersection points xi,ab and xi,cd are computed using the basis points and the

ratios rab and rcd. A set is only accepted as congruent to the target basis if it satisfies

||xi,ab − xi,cd||2 < δ. Notice, in practice it is not possible to uniquely assign a strict order

to a pair of points (i.e. identifying a and b or c and d) hence all four combinations are

tested when predicting the intersection points leading to further computational burden. . . 10

2.7 The point-to-point metric for surface registration aims at finding the transformation that

minimizes the sum distance between correspondences of two surfaces (in this case ‖v1‖2 +

‖v2‖2 + ‖v3‖2, where vi are the translation vectors connecting source-target correspon-

dences). The point-to-plane metric aims at minimizing the perpendicular distances of the

source points to the target surface tangent of their respective corresponding target points

(in this case (v1
Tn1)2 + (v2

Tn2)2 + (v3
Tn3

2), where ni are the normalized surface nor-

mal vectors). Notice, for flat regions of the surface, the perpendicular distance remains

unchanged for a “sliding” movement along the flat region allowing faster convergence by

implicitly down weighting the flat region’s contribution and up weighting more salient

regions with articulated surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 The Bunny dataset is composed of 10 scans of a rabbit model obtained from different view

points. Four specific scans (Bunny000, Bunny045, Bunny270 and Bunny315) are picked,

where the numeric postfix identifies the angle in the ground plane from which the bunny

was scanned. Image source: [5] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Skipping iterations with increasing filter MSE (MSE computed using all correspondences

including inliers and outliers) vs. no skipping. When skipping, the true MSE (solid lines)

is clearly lower than when not skipping proving that skipping reduces the contributions

from outliers leading to better pose estimation. The strong reduction in MSE after the

first iteration is due to the subtraction of the centroids (3.6). Image source: [5] – ©2016

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Refeeding the same set of correspondences multiple times can extract further information

from already processed samples. In this case, the correspondence pairs are fed 4 times

into the GA-LMS. The MSE at the end of each cycle is better than that of the previous

cycle. The gain in the 3rd and 4th cycles is marginal since the orientation has been already

recovered accurately in the 2nd stage. Here we limited the number of correspondences to

33% of those in Figure 3.2 as this technique is particularly useful when a limited number

of correspondences are available or the step-size is relatively small. Image source: [5] –

©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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3.4 The geometric weight of correspondence {yi,xi} is computed by first computing the Eu-

clidean distance of xi to all other keypoints in the source cloud (solid blue-shaded lines),

dsi,j ∀j ∈ {1, .., N} \ i, and computing the corresponding distances dti,j ∀j ∈ {1, .., N} \ i
on the target side (dashed blue-shaded lines). The number of keypoints which satisfy

|dsi,j − dti,j | < ε (green ticks) is a vote for correspondence i being an inlier. In this example,

{y1,x1} gets vi = 3 votes. The weight is a function of the votes: αi = vi/maxj vj . Hence,

0 < αi ≤ 1. Image source: [5] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Statistical correspondence filter. (Left) Distances between target and aligned source key-

points after the first GA-LMS run and before correspondence filtering. The distances

mainly cluster around a certain distance as the filter typically will have recovered the rota-

tion while a residual translation error exists. This is confirmed by the histogram of corre-

spondence distance (middle). (Right) The GA-LMS is first run using all correspondences

(red). For the obtained rotor, the residual error is assumed to be mainly a translatory

component causing a constant shift in inlier source-target keypoint pairs. The inliers are

determined statistically (correspondences with a distance close to the median distance).

The filtered correspondences comprising mainly inliers are fed again into the GA-LMS for

a 2nd run. The second run converges to a better MSE (green). Image source: [5] – ©2016

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Experiments using the Stanford Bunny dataset. Three pairs used from the bunny dataset

shown in Figure 3.1 (1: bunny045 vs bunny000; 2: bunny315 vs bunny000; 3: bunny315

vs bunny270). The alignment angle error and translation error (see Section 3.4.1) and

the required time are shown for each case. These values represent the average values over

10 alignment attempts with different correspondence sets. The true correspondence rate

varies from 20% to 80%. One representative visualization is shown for each case. Clearly,

both GA-LMS variants are better than the SVD-based approach, in terms of angle and

translation accuracy while remaining suitable for real-time applications. Image source: [5]

– ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Estimation resilience against outliers. A set of randomly chosen outliers is added to confuse

the registration algorithms. The curves are averaged over 50 realizations to account for

different constellations of outliers. Conducting the experiment using a subset involving

only half of the correspondences shows a similar superiority of the GA-LMS w.r.t. SVD.

The GA-LMS uses a 4× refeed (Section 3.3.2.2) with geometric correspondence weighting

(Section 3.3.2.3). Image source: [5] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . 26
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3.8 Aligning two large-scale indoor point clouds obtained inside a museum. The number of

correspondences is reduced to 25, out of which 11 are wrong (outliers). (a) shows the

correspondences are visualized with green indicating true correspondences as opposed to

red. (b) shows the registration result using standard SVD-based LS solver. The SVD-based

solver fails to properly register the PCDs. (c) shows the true MSE of different variants of

the GA-LMS. The GA-LMS+ initially rises (1). The MSE then reduces as more inliers

are encountered (2). Nevertheless the orientation error remains high until the statistical

correspondence filtering (see Section 3.3.2.4) is performed (3). This filtering increases the

inlier rate and the AF keeps minimizing the MSE. The final alignment (4) is correct in

terms of translation and has a relatively small angle error as opposed to the SVD-based

approach, which fails completely. Due to the geometric correspondences weighting, GA-

LMS++ is able to perform even better, providing nearly optimal translatory and rotational

alignment (5). Image source: [5] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 The LMT mapping trolley [18] with a Velodyne Puck LiDAR mounted on top is shown

in (a). The LiDAR acquires scans made of 3D points as the one shown in (b), where

the height is color-coded. Each tilted stripe of points (point plane) is scanned by one

mechanically rotating laser sequentially. One scan represents a relatively sparse sampling

of the environment. Matching multiple scans as illustrated in (c) is necessary to reconstruct

an indoor environment in high quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Illustration of the scan skewing problem. The LiDAR is depicted from above by the circular

shape with two vectors identifying its local coordinate system. Points on a wall are scanned

using a rotating laser sequentially in the following order: star, circle and diamond. In blue,

a stationary sensor is shown as opposed to the realistic case of a moving sensor shown

in yellow. Since the angle between every two consecutive laser beams is fixed, a different

set of points are sensed when the LiDAR is moving. Moreover, each new point is sensed

from a slightly different pose than the one preceding it. Hence, the movement of the local

coordinate system while scanning the points translates into a non-rigid deformation of the

geometry when expressing all the scanned points in a common reference frame. Image

source: [4] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 A 2D scan generated for a synthetic indoor environment made up of planar walls. The setup

is shown in (a) from a top view. The LiDAR’s local coordinate system is shown as xL, yL

as opposed to the global coordinate system shown as xG, yG. The simulated LiDAR laser

rotates around the z-axis clock-wise. Different movement scenarios are simulated involving

a translation along yG by a constant speed v and an angular rotational speed θ around the

(invisible) z-axis. The outcome is shown in (b). Especially the rotational speed is seen to

incur strong distortions. Also, the farther away the points are from the sensor origin, the

larger the distortion. Comparing quadrant 1 (scanned last) to quadrant 4 (scanned first)

the distortion is seen, as expected, to increase as the scan proceeds towards later points

since the local reference frame will have moved the most. Image source: [4] – ©2016 IEEE. 32
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4.4 Real scans produced by the Puck seen from above after matching. Three scans have

been chosen: two consecutive scans (1082th,1083rd) captured as the mapping platform

was turning, and one scan (1064th – captured around 2 seconds earlier) captured before

the platform started to turn. Noticeable scan skewing is observed for scans 1082 and 1083

seen by the deviation of their points from the ideal straight line. These two scans exhibit

a similar skewing seen by their near optimal alignment along all parts. Image source: [4] –

©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Synthetic and real LiDAR data are acquired for the hallway shown in (a). The textured

3D mesh of the hallway used to generate the synthetic data is shown with parts of the

ceiling and walls removed in (b). (c) shows the virtual trajectory followed by the simulated

scanner. The gradual color change modulates the time index starting with blue and ending

with yellow. Three specific scans are marked by their numbers. Image source: [4] – ©2016

IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Estimated trajectories after scan matching for the synthetic dataset explained in 4.3.1

using standard scan-to-scan ICP (see Section 4.2). The trajectories are seen to coincide

with the ground truth (GT) trajectory to a large degree. However, the zoom-in (bottom)

reveals that pt2pl scan matching is substantially more accurate than pt2pt scan matching

(compare 1 to 5, 2 to 6, 3 to 7 and 4 to 8) in accordance with wide-spread belief of the

community (see Section 2.2.3). As expected, the trajectories corresponding to no added

distortions (1 & 5) are the closest to the ground truth among their peers that use the same

metric. Also, the trajectories with skewed data (3 & 7) have a visible drift. Image source:

[4] – ©2016 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Scan-to-scan errors for a selected part of the trajectory. The upper two figures show the

ground-truth (GT) trajectory and the GT scan-to-scan rotation around the vertical axis,

respectively. Notice, the scanner is not simulated to be rigidly attached to the platform (no

kinematic model) hence a straight trajectory does not necessarily imply no scanner rotation.

Focusing on the rotation errors (bottom) the following observations can be made: pt2pt

matching results in fluctuating and less stable rotation error (compare solid to dashed

curves); When adding just noise, pt2pl scan matching, as expected, still results in very

accurate rotation estimation (compare solid green and pink curves); Scans with skewing

lead to two types of rotation error: +ve error or -ve error (see oscillating pattern of dark

blue curves); The type of rotation error, surprisingly, does not depend on the rotation

direction only but also on the change in absolute rotation speed. For example, in the scan

range 320-360 the rotation is always negative, however, we observe -ve rotation error when

the absolute rotation speed is increasing and +ve error when the absolute rotation speed

is decreasing. This pattern reverses for +ve rotation angles. The rotation error does not

necessarily go to zero when the rotation speed goes to zero (300, 380, 420). The rotation

error goes to zero only when the rotation speed change goes to zero (scans around 280, 320,

340, 360, 400, 440). The observation about when the error goes to zero is in accordance

with the derivation of Section 4.1.2 which showed that when the rotation speed is constant,

the skewing does not affect the registration. Image source: [4] – ©2016 IEEE. . . . . . . . 37
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4.8 The skewing iteration weights computed according to (4.23) for scan #405. The weights

are color-coded ([0, 1]− >[Green,Red]). Image source: [4] – ©2016 IEEE. . . . . . . . . . . 42

4.9 Scan matching is run on the third synthetic dataset variant involving only skewing (Ta-

ble 4.1). The scan matching is conducted using ICPpt2pl and different variants of the

GA-LMSpt2pl (Section 4.4.1) involving no weighting (“No weighting”), skewing weights

(4.23) (“Skewing weights”), curvature weights (4.24) (“Curvature weights) and a com-

bination of both weights (“Curvature + Skewing weights”). The angle error curves in

(a) show that a combination of skewing and curvature weights according to (4.22) with

fw(ws, wc) = ws · wc reduces orientation estimation errors (compare green and orange

curves) in the regions with strong rotations which is furthermore confirmed by the rotation

error histogram in (b). The translation error curves show that the curvature weight also

helps in reducing the underestimation of the translation in the GA-LMSpt2pl (compare

blue and green curves to pink curve). This leads to a more accurate trajectory that is less

“compressed” as seen in (c). Image source: [4] – ©2016 IEEE. . . . . . . . . . . . . . . . . 43

4.10 Evaluation with real data. ICPpt2pl + GA-LMSpt2pl implies running ICPpt2pl and then

refining the outcome with GA-LMSpt2pl. In the case of “only rot” the GA-LMSpt2pl

only refines the rotation. The GA-LMSpt2pl includes curvature and skewing weights with

fw(ws, wc) = max(ws, wc). (b) shows that the GA-LMSpt2pl in general has a better

scan-to-scan rotation error distribution. (a) shows that a combination of the ICPpt2pl

with a GA-LMSpt2pl that only refines the rotation alignment does not suffer from the

trajectory compression problem. This combination has a better angle error distribution

than plain ICPpt2pl as shown in (b). Notice, that improvements in rotation estimation do

not necessarily translate to more accurate trajectories as the symmetric error histograms

imply that errors cancel over time. Image source: [4] – ©2016 IEEE. . . . . . . . . . . . . 45

5.1 Top left: two large scale indoor 3D models with surface normal and curvature data and

very small overlap (the curvature is color-coded). Bottom: cross-sectional view depicting

the level of detail of one of the indoor models shown above. Upper right: the alignment

computed using the proposed algorithm which is specifically designed to align indoor models

and can handle very small regions of overlap. Image source: [2] – ©2016 Elsevier. . . . . . 47

5.2 Proposed large-scale point indoor point cloud alignment system. The alignment is broken

down into simplified problems which can be solved using strong features inherent to the

data. An algorithmic summary in the form of pseudo-code is provided in Algorithm 1

(p.70). Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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5.3 Gravitational rotation alignment. (a) shows the alignment by simply computing the PCA

of the point cloud and aligning the third principal component to z. (b) is the outcome

after the refinement achieved by choosing the surface normals that belong to the floor and

aligning the median vector to the z-axis. (c) shows statistics of the angle between the global

z-axis and the building’s (local) z-axis after alignment. The statistics are computed by pre-

rotating a gravitationally aligned building point cloud with a random rotation around the

three axis before attempting gravitational alignment. 10 random rotations per point cloud

were simulated. 27 different point clouds were involved (270 data points). Using the

median vector instead of the mean vector in the refinement step results in more accurate

gravitational alignment with less than 0.05◦average angle error. Image source: [2] – ©2016

Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Using the normal direction histogram signature to recover the rotation for the example in

Figure 5.1. In (a), the subset of points which are chosen to contribute to the signature

computation of (5.1) are shown. They constitute the subset of points whose normals are

nearly parallel to the ground (x-y) plane. In (b), the signature resulting from (5.1) is

shown. In (c), the cyclic cross-correlation of the source and target signatures is plotted.

The peak determines the rotation alignment. The resulting rotation alignment is correct as

seen in Figure 5.10(c), however, a slightly different parameter setting might have produced

a stronger peak at one of the other dominant directions which are 90◦apart. Resolving

this ambiguity is explained in Section 5.3.3 and Section 5.4.5. Image source: [2] – ©2016

Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Experimental evaluation of the robustness of the surface normal direction histogram sig-

nature used in the ground-plane rotation alignment. Random Gaussian noise is added to

the source-target pair shown in Figure 5.1. Subsequently, the normals are re-estimated and

finally the ground-plane rotation alignment is reattempted. The rotation signature exhibits

peaks in the same bins irrespective of the noise intensity. Accordingly, the cross-correlation

attains peaks at the same rotation shifts. Image source: [2] – ©2016 Elsevier. . . . . . . . 54

5.6 The floor of rotationally aligned PCDs can be identified through a histogram analysis of

the z-values of their points. First, only the subset of points with normals nearly parallel

to gravity (z) are extracted as shown in (a). Subsequently, the histogram of their z-values

is computed. The histogram signatures of a source and target pair are cross-correlated to

detect the common floor which is identified in the signature shown in (b). This is more

robust than simply taking the dominant peak with the least z-value as some datasets have

multiple floors and ceilings that may confuse the detection. To analyze the accuracy of this

approach an experiment similar to the one in Figure 5.3(c) is performed wherein a point

cloud is pre-rotated and translated along z randomly and then gravitational rotational

alignment followed by floor estimation is conducted (here we simply take the dominant

peak with the smallest z-value to be the floor). This is repeated 10 times per point cloud

and performed on 27 different point clouds. The mean and maximum errors, as shown in

(c), are around 0 cm and 7 cm, respectively. Notice gravitational rotation alignment is also

involved in this experiment as its success is a pre-requisite for a successful floor alignment.

Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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5.7 Curvature-Pair Shift Histogram (CPSH) for ground-plane translation estimation. Start-

ing with rotationally aligned point clouds the translations of any source point (with high

curvature) to different target points (with high curvatures) are computed and binned in a

histogram. This process is repeated for different source points (different colors). The trans-

lations between truly corresponding point pairs (connected by solid lines) will be binned

to the same bin and thus accumulate. The translations between non-corresponding points

(dashed lines) distribute over the translation space. A normalized CPSH can be considered

a probability mass function (PMF). Accordingly, the strength of each bin can be consid-

ered a probability that the respective translation is the alignment translation. Notice, the

example shows the CPSH just for the x-axis. In practice we compute the bi-variate CPSH

for x and y jointly as a 1D histogram is equivalent to a marginalized 2D histogram with lost

information. After all there is valuable information in the co-occurrence of shifts. Image

source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Enabling discriminative voting to compute more discriminative CPSHs and more efficiently.

In 5.8(a) a source and target cloud pair with high overlap is shown after rotation alignment

and floor alignment. In (b) the subset of source cloud points with high curvature values are

shown. Different normalized CPSHs are shown in (c), (d) and (e). (c) shows the normalized

CPSH obtained when letting every point pair with high curvature values vote in the CPSH.

The maximum probability occurs at the right translation. In (d) the bin strength at the

translation is significantly amplified compared to spurious peaks when allowing only source-

target point pairs with a similar normal to vote (εφ = 30◦). In (e) the peak at the right

translation is even more dominant by adding a height constraint allowing only points with

a height value that is equal up to a threshold εz = 10 cm (set based on the height alignment

error statistics of Figure 5.6(c)) to vote. Image source: [2] – ©2016 Elsevier. . . . . . . . . 58

5.9 The normalized CPSHs for the example of Figure 5.8 evaluated at the three other dominant

rotations (see Section 5.2) with the same parameters used for 5.8(e). Each of the dominant

rotations is obtained by adding θm to the correct ground-plane rotation. Clearly, none con-

tains the same dominant peak as Figure 5.8(e). Compare also the maximum probabilities

to the one of Figure 5.8(e). The wrong ground-plane rotation means true correspondences

will not be binned similarly. Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . 59

5.10 The source and target cloud pair (rotationally aligned as explained in Section 5.2) and the

corresponding CPSH are shown for an example with substantial overlap and one with a

very small overlap in figures (a)-(b) and (c)-(d), respectively. For the large overlap case

the peak in the CPSH is unambiguous and at the true translation (seen by the fact that

the translation misalignment is minimal and hence a peak near [0 0]
T

is expected). For the

very small overlap case, the bin strength at the true translation (identified by the data tip)

is significantly lower than other outlier peaks. Regions not overlapping contribute point

pairs which vote for outlier translations thus increasing false peaks. In the very low overlap

case this leads to false translation hypotheses dominating the CPSH. Image source: [2] –

©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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5.11 CPSHs computed from source-target segments. The segments of the point clouds shown in

Figure 5.10(c) have been computed using the algorithm described in [2, Appendix B] and

are identified by the bounding boxes in (a). The two data tips identify a corresponding

point pair illustrating that the correct translation is t = [23.5 − 54.7]T . The resulting

CPSHs for each source target pair are shown in (b). For illustration purposes, the 2D

normalized histograms are shown from a side view. The CPSH for source segment 2 (S2)

with target segment 3 (T3) exhibits the highest probability at the true translation (as seen

through the data tip) and the peak far dominates all others in the histogram (what matters

is the actual point cloud overlap and not the bounding-box overlap). None of the other

CPSHs exhibits a similarly dominant peak since all other segment pairs, apart from S2-T1,

have an overlap and hence the mismatch in structures disallows building an unambiguous

CPSH. Judging based on bounding boxes, S2-T1 in a first glance seems to have a large

overlap. However, notice that S2 and T1 do not actually share many points and hence fail

to identify the true translation. Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . 63

5.12 Computing the expCPSH. In (a), the mapping of equation (5.14) is seen (without nor-

malization by ci,j and normalized to keep probability values between 0 and 1) for the

probability interval that is commonly encountered in CPSHs. In this interval (5.14) rep-

resents a linear mapping with a linear factor < 1. In (b), a CPSH and the corresponding

expCPSH obtained using (5.14) are shown. As expected, the CPSH shape is maintained

in the expCPSH. Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . 66

5.13 Different likelihood functions evaluated on the CPSHs shown in Figure 5.11(b). In (a) the

normal likelihood of (5.13), in (b) the exponential likelihood of (5.15) and in (c) the approx-

imate exponential likelihood of (5.18). All three likelihoods are shown as functions of t eval-

uated at the respective estimated optimal mixture coefficient set (π1,normal, · · · , πM,normal

in case of the normal likelihood and π1,exp, · · · , πM,exp in the case of the exponential likeli-

hoods). In (d) the approximate exponential likelihood function is evaluated using a uniform

mixture probability set, i.e. πj = 1/M . The strongest peak of each function is identified

by a data tip and the second strongest is identified by an x mark. Clearly, the normal ML

is very “noisy” and, as seen by the data tip, does not correctly identify the true translation

(the true translation alignment is t = [22.3 54.8]T m, see Figure 5.11) since the logarithm

operation down-weights the otherwise unambiguous peak of the only overlapping segment

pair (see Figure 5.11). Once replacing the CPSHs with expCPSHs, the translation is cor-

rectly and unambiguously estimated. Comparing (b) to (c) it becomes evident that the

approximation using Jensen’s inequality introduced to get to the approximate exponential

likelihood preserves the likelihood function shape and the inter-hypothesis relationships.

Comparing (c) to (d) it can be seen that involving the mixture probabilities provides an

added advantage as the true hypothesis is amplified as compared to all other translations.

Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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5.14 Rotation alignment error (as defined in Section 5.6.2) as a function of initial alignment. The

alignment is attempted after applying an angular misalignment of θm in the ground plane

on the perfectly aligned source-target cloud pair of Figure 5.8. The small images depict

the source-target cloud pair to be aligned, seen from a top-down view. Image source: [2] –

©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.15 Sensitivity towards overlap. Starting with perfect rotation alignment and limited transla-

tion misalignment, the overlap between the source and target clouds of Figure 5.10(a) is

decreased in steps by cropping out parts of the source and target clouds that form part

of the overlap. The alignment is attempted using GMMREG, CPD, S4PCS, Features and

using our proposed approach with and without segmentation. The overlap value used in

CPD and S4PCS is indicated for each pair. The final alignment is shown from a top down

view for each tested overlap scenario and respective alignment algorithm. A 3 means the

alignment was successful, as opposed to a 7. Image source: [2] – ©2016 Elsevier. . . . . . 75

5.16 The result obtained with the segment-based alignment on the smallest overlap case, which

is shown in Figure 5.15, is shown enlarged here. Also the used segmentation is shown

superimposed on the point clouds with source segments without any overlap with target

segments having dashed bounding boxes. The posterior correspondence probabilities for the

ground-plane translation alignment evaluated according to (5.20) are shown in the figure

as well. The source segments S1 and S2, identified by the dashed boxes, lead to the highest

correspondence probabilities with T0, which is the non-physical segment that accounts for

non-overlap. Hence, S1 and S2 have been identified as not overlapping with the target which

they truly are. Noting the posterior probability for S4-T2 we draw the reader’s attention

not to be confused by the bounding boxes when understanding the posterior probabilities.

What matters is the overlap region in terms of points in the point clouds. Since S4 indeed

does not share many points with T2 it is no wonder the respective posterior is soo low.

Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.17 Comparative test with Alte Pinakothek dataset. Each column represents a different source-

target cloud pair shown unaligned in the first row. The number of source points (|S|) and

target points (|T |) as well as the overlap value used in CPD and Super4PCS (o) is shown

below each pair. The alignment outcome obtained with the different approaches are shown

in the rows below where Proposed-NoSeg refers to segment-less ground-plane translation

alignment as opposed to Proposed-WithSeg. The run times include that required to resolve

the rotation ambiguity (see algorithm in Section 5.5). Successful alignment is marked by

3 and failure by 7. The method with the lowest run time among all successful ones for a

dataset is highlighted in green bold font. Image source: [2] – ©2016 Elsevier. . . . . . . . 78
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5.18 Comparative test with Deutsches Museum (DM) dataset. Each column represents a differ-

ent source-target cloud pair shown unaligned in the first row. The number of source points

(|S|) and target points (|T |) as well as the overlap value used in CPD and Super4PCS (o) is

shown below each pair. The alignment outcome obtained with the different approaches are

shown in the rows below where Proposed-NoSeg refers to segment-less ground-plane trans-

lation alignment as opposed to Proposed-WithSeg. The run times include that required

to resolve the rotation ambiguity (see algorithm in Section 5.5). Successful alignment is

marked by 3 and failure by 7. The method with the lowest run time among all success-

ful ones for a dataset is highlighted in green bold font. The dataset is downloadable at

https://www.lmt.ei.tum.de/downloads/CVIU_DM_Dataset. Image source: [2] – ©2016

Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.19 Alignment test with point cloud data from a non-Manhattan building (shown left). Align-

ment conducted with the proposed approach without segmentation. The ground-plane

rotation signatures no longer show the dominant four peaks (c.f. Figure 5.4). The “win-

ning” CPSH unambiguously determines the correct ground-plane translation. The final

alignment (shown using subsets of the clouds that highlight the contours) is seen to be

correct and accurate. Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . 80

5.20 Alignment test with the “Euler” dataset of [77]. Data acquired by static mapper (Leica

ScanStation P20) put at multiple locations in the environment (different to ours which

is obtained by a mobile platform - see Figure 2.1). Alignment conducted with the proposed

approach without segmentation using the supplied surface normals without alteration. The

point cloud is segmented into a source and target that have ≈ 50% overlap (shown on the

left with color-coded curvature values). The ground-plane rotation signatures have very

dominant peaks leading to strong cross-correlation at the true ground-plane rotation. The

“winning” CPSH out of the four variants computed for the four ambiguous rotations un-

ambiguously determines the correct ground-plane translation. The final alignment (shown

using subsets of the point clouds that highlight the contours) is seen to be correct and

provides a good initialization for fine alignment. Notice the floor alignment along the

z-axis (Section 5.3.1) is successful despite having multiple floors and ceilings as the cross-

correlation correctly captures the floor-ceiling relationships. Image source: [2] – ©2016

Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.21 An example with extremely small overlap. The absence of salient features (objects with

corners) means that no reliable CPSH can be computed even if appropriate segments are

available. Image source: [2] – ©2016 Elsevier. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.22 Fast histogram computation using histogram convolution of the PMFs computed indi-

vidually for the source and target. The “standard” CPSH (computed as explained in

Section 5.3.2) is seen to be similar to the one computed by simply convolving the PMFs

computed individually for the source and target which is much faster (thus the name “fast”). 82

6.1 Pose retrieval of a KinFu scan in a large-scale indoor point cloud to retrieve the location

of a person. Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . 85

https://www.lmt.ei.tum.de/downloads/CVIU_DM_Dataset
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6.2 Retrieval system: The KinFu query is pre-processed (see Section 6.3). Keypoints are

computed for the KinFu query scan and the target point cloud. A descriptor is computed for

each keypoint. The descriptors are matched to determine point correspondences between

the query and the target. A tentative alignment is computed using RANSAC and refined

using ICP producing the 6DoF homogeneous alignment transform T̂. Image source: [6] –

©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 KinFu overview. An incoming depth frame is aligned to the most recently predicted surface

to produce the transformation matrix Tk. The Signed Distance Function (SDF) of the

registered frame Fk is computed and fused with the cumulative SDF F1:k−1 to produce

F1:k. A new surface is predicted from the viewpoint Tk to be used in the alignment of the

next depth frame. Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . 88

6.4 KinFu uses the “projective distance” in the SDF computation which is an approximation

of the true smallest distance to the sensed surface. The projective distance s′ for point p

in the SDF is always an overestimation of the true distance s. The incurred error increases

with increasing θ. Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . 89

6.5 3D sensor raw data (Asus Xtion Pro Live) of a wall scanned from two distances (1.5 m &

2.5 m) shown as a point cloud from above. Despite IR camera calibration a bending of the

wall is observed. The curvature of the bending increases with increasing distance from the

sensor. Calibration with CLAMS [89] effectively reduces the bending. . . . . . . . . . . . . 90

6.6 Lab scene scanned using KinFu with Xtion Pro Live using three different approaches: (1)

Standing still; (2) Same as 1 but closer to the wall; (3) Scanning sideways while remaining

close to the wall. The generated point clouds prove that surface bending is less in (2)

than in (1) due to the decreased curvature of the raw 3D data at lower distances as shown

in Figure 6.5. Maintaining a close distance to the surface as in (3) further reduces the

bending. Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . . . 90

6.7 Kinect-like sensors emit a specular pattern using an IR projector whose reflection is cap-

tured by an IR camera. The projector-camera pair acts as a stereo camera used to recover

the 3D shape of the surface on which the specular pattern is projected. The images re-

turned by the RGB camera, which is calibrated w.r.t. the IR camera, can also be used to

color the resulting point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.8 Learned depth multiplier images using CLAMS for three depth levels. Red regions imply

multiplicative factors that lead to depth value decrease. The color intensity is directly

related to the amount of applied correction. Clearly, at higher depth larger corrections

are needed to compensate the depth errors. Also, more compensation is necessary when

deviating away from the principal point to offset the bending. Image source: [6] – ©2015

Eurographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.9 Two query scans generated once with prior CLAMS sensor calibration and once without.

Especially large scans benefit from the calibration and do not exhibit the bending artifact.

Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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6.10 KinFu query pre-processing shown for SteamEngine. The color represents the surface

curvature. The greener, the higher the curvature value. Prior to retrieval MLS and SOR

filters (see Section 6.3) are used to reduce surface noise and eliminate spurious points.

Especially flat surfaces as well as edges benefit from the filtering. Image source: [6] –

©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.11 One of the used target clouds including the airplanes exhibition. A photo and the corre-

sponding part in the point cloud are shown from the indicated view point. Image source:

[6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.12 The true correspondence rate (TCR) of GirardTurbine reduces substantially with increasing

target cloud floor size as opposed to FrancisTurbine hinting that the query itself is less

distinctive. Image source: [6] – ©2015 Eurographics. . . . . . . . . . . . . . . . . . . . . . 98

6.13 The results of multiple retrievals of the GirardTurbine query (red) are shown overlapped

on the same target cloud (blue). Some retrieval attempts match the query to neighboring

turbines displaying the issue of distinctiveness. Image source: [6] – ©2015 Eurographics. . 99

6.14 Occlusion in the target cloud due to exhibition restriction leading to a low true correspon-

dence rate for the GF200-Plane query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.15 Geometry-aware RANSAC. Two point clouds to be registered are shown connected by true

and false correspondences. First a correspondence is randomly sampled. Another corre-

spondence is sampled next. Only if the distance of its point in PCD 1 to correspondence

1’s point in PCD 1, f , is also preserved in PCD 2 is this correspondence added proceeding

to sampling the final correspondence needed for RANSAC which is chosen similarly. . . . . 100

6.16 Accelerating the location retrieval using an MCS. The reference point cloud is segmented

into 3D reference objects. An MCS is trained to pre-select a few relevant reference objects

when presented with a query scan. The location retrieval as explained in Section 6.1 is run

only on the subset point cloud assembled from the pre-selected reference objects. . . . . . . 101

6.17 Reference point cloud segmentation into semantically meaningful objects. Left: A point

cloud of an exhibition hall of the Deutsches Museum. Middle: Keypoints extracted from the

point cloud shown from above. Evidently, the keypoints concentrate around the interesting

objects. Right: Keypoint density histogram, shown using a contour plot. The peaks in the

density plot (yellow regions) are used to identify distinct reference objects. Image source:

[99] – reproduced with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.18 Examples of reference objects segmented from a reference point cloud of the Deutsches

Museum and corresponding KinectFusion query scans. From left to right: “SteamEngine4”,

“FrancisTurbine”, “SteamLocomotive” and “Astro-Spas”. Image source: [99] – reproduced

with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.19 The keypoint density spread in the x-y plane and along the z-axis are computed and used

as primitive features for quick pre-selection of relevant reference objects. In the example

a 3D object with identified keypoints are shown. The histogram of keypoints along the

z-axis and in the x-y plane are computed separately From each, a spread value is calculated.103
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the source cloud by the factor o. The alignment is repeated 100 times for each subsam-

pling factor, each time dropping a different randomly chosen subset of points to obtain

statistically reliable results. For each attempt, the alignment success is determined (see

Section 5.6.2). The experiment is conducted for the high overlap example source-target

set seen in Figure 5.8 (named “100%”) and the one with around 70% overlap shown in

Figure 5.10(a). “NoSeg” refers to alignment without segmentation as opposed to “WithSeg”. 73

6.1 Retrieval results using the evaluation metrics introduced in Section 6.4.2. The results are

shown in terms of the true correspondence rate (TCR) and the retrieval precision for two

cases: No CLAMS calibration and with CLAMS calibration. The retrieval accuracy in

terms of error angle (αe) and error translation (te) averaged over all successful retrievals

(thus “weighted” average) is shown for the case with CLAMS. The evaluation metric are

explained Section 6.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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6.2 Pre-selection results using the MCS. The MCS status column indicates whether or not the

suggested reference objects short list contains the correct one, i.e. the one corresponding

to the query scan. The column # candidates indicates how many reference objects are

suggested as a potential candidate. The column % of database is the % of reference objects

the short list of candidates makes up of the total number of reference objects that would

have otherwise been necessary to consider as potential candidates if there were no pre-

selection. The upper group of queries (delimited by the horizontal line) marks the training

set as opposed to the lower group which presents the testing set. . . . . . . . . . . . . . . . 104

6.3 Results in terms of true-correspondence rate (TCR). The column TCR no-MCS indicates

the TCR results when matching against the full reference point cloud, as opposed to TCR

MCS which are TCR values when matching only against the subset point cloud formed

from the short list of reference objects obtained using the MCS pre-selection. Similarly, the

retrieval times for the MCS and no-MCS cases are presented. The MCS system is seen to

increase the TCR on average from 56% to 91% while simultaneously reducing the retrieval

time to 1.4 s from 43 s on average. The upper group of queries (delimited by the horizontal

line) marks the training set as opposed to the lower group which presents the testing set. . 105
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