
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

LEHRSTUHL FÜR COMPUTER GRAPHIK UND
VISUALISIERUNG

Visual Abstractions for Analyzing Uncertain
Multidimensional Data

Ismail Demir

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

LEHRSTUHL FÜR COMPUTER GRAPHIK UND
VISUALISIERUNG

Visual Abstractions for Analyzing Uncertain
Multidimensional Data

Ismail Demir

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. T. Huckle

Prüfer der Dissertation: 1. Univ.-Prof. Dr. R. Westermann

2. Univ.-Prof. Dr. J. Krüger,

Universität Duisburg-Essen

Die Dissertation wurde am 28.09.2016 bei der Technischen Universität

München eingereicht und durch die Fakultät für Informatik am 24.11.2016

angenommen.

To my family and friends

Abstract

Visualizing multidimensional data plays an important role in many areas of science and en-

gineering. Typically, such data sets are either generated by computer simulations or are

acquired from experimental measurements. Throughout this thesis, data from various do-

mains of applications are considered, such as weather forecasting, automotive engineering,

and computational fluid dynamics.

In the process of data generation or acquisition, uncertainty of different kinds is introduced.

During a simulation run, uncertainty arises mainly because of the discrepancy between the

computational model and the underlying true physics. Numerical errors due to approxima-

tions of analytical solutions constitute another source of uncertainty. Moreover, uncertainty

is always introduced by measurement errors and from interpolation techniques that are used

to compensate the lack of collected data.

Visualizing uncertain data is a challenging task, particularly when multidimensional data

has to be conveyed to the user. The reason behind this is the great amount of information

inherent in such data sets, whereas the user is typically limited to a two-dimensional screen.

Hence, methods of visual abstraction are necessary to reduce the degree of complexity, while

avoiding artifacts caused by occlusion or visual cluttering. Due to the advances in modern

graphics hardware, new opportunities arise to develop such methods.

This thesis provides substantial contributions to this field of research. First, we present a

method that enables an interactive visual exploration of multidimensional scalar fields. We

estimate progressive surfaces via Kriging interpolation by adding scattered samples. For this

purpose, we propose a GPU-accelerated updating scheme for the Kriging interpolation, which

enables the incremental construction of surfaces when new sample points are added. Hence,

results are quickly available, which allows the user to interactively steer the location, where

response surfaces are visualized, and to discover relevant dependency relations.

Secondly, we discuss visualizing 3D scalar field ensembles. Ensembles are usually generated by

running repeated simulations using different parameter settings, where each run constitutes a

single member. Treating ensembles as multivariate data using traditional visualization tech-

niques is unfeasible for larger numbers of members, yet it is important to reveal uncertainties,

Ismail Demir vii

correlations and trends in such data sets. To address these aspects, we present an alternative

visualization technique, which provides an abstract view, based upon a linear layout of 3D

space and by using combined bar and line charts.

Thirdly, we introduce a novel approach for visualizing 3D isosurface ensembles based on

rendering silhouettes instead of solid surfaces. Thus, occlusion effects are avoided, while

spatial coherence and the major shape of the surfaces are preserved. By providing interactive

mechanisms, such as picking, clustering, cutting and animation, the user is able to explore

the data on a more detailed level.

Fourthly, we present a novel concept to overcome the limitations of traditional voxel-based

surface ray-casting. We introduce a hierarchical closest-point octree representation to improve

upon the surface approximation quality of voxel grids. We demonstrate that, compared to a

standard voxel hierarchy, our approach results in a significantly lower memory consumption

and avoids block artifacts at higher zoom levels. Thus, we are able to load models of high

resolutions into GPU memory and achieve high-quality rendering results at interactive rates.

Finally, by extending this concept to ensembles of shapes, we use the closest-point grid to

quantify region-wise central tendencies and provide means to find the most central shape.

In addition, we construct a locally best-matching shape that communicates relevant local

features to the user. Our approach is capable of processing arbitrary non-parametric shapes

in two and three-dimensional space and neither requires closure nor orientability.

viii Ismail Demir

Zusammenfassung

Das Visualisieren mehrdimensionaler Daten spielt eine wesentliche Rolle in vielen Bereichen

von Wissenschaft und Technik. Typischerweise werden solche Datensätze entweder durch

Computersimulationen erzeugt oder aus experimentellen Messungen gewonnen. In dieser

Arbeit werden Daten aus verschiedenen Anwendungsbereichen in Betracht gezogen, wie etwa

aus der Wettervorhersage, der Fahrzeugtechnik und der numerischen Strömungsmechanik.

Der Prozess der Erzeugung oder Erfassung von Daten ist mit verschiedenen Arten von Un-

sicherheit verbunden. Während eines Simulationslaufes entsteht Unsicherheit vor allem wegen

der Diskrepanz zwischen dem Rechenmodell und der zugrundeliegenden tatsächlichen Physik.

Numerische Fehler aufgrund von Approximationen analytischer Lösungen bilden eine weit-

ere Quelle von Unsicherheit. Darüber hinaus wird Unsicherheit stets durch Messfehler und

von Interpolationstechniken, die verwendet werden, um einen Mangel an gesammelten Daten

auszugleichen, verursacht.

Unsichere Daten zu visualisieren ist eine schwierige Aufgabe, insbesondere dann, wenn dem

Benutzer mehrdimensionale Daten vermittelt werden sollen. Der Grund dafür ist der große

Informationsgehalt in solchen Datensätzen, wohingegen der Benutzer normalerweise auf einen

zweidimensionalen Bildschirm begrenzt ist. Daher sind Verfahren der visuellen Abstraktion

erforderlich, um den Grad an Komplexität zu reduzieren und Artefakte, die durch Verdeck-

ung oder visuelle Störungen verursacht werden, zu vermeiden. Dank der Fortschritte in der

Entwicklung moderner Graphikhardware entstehen neue Möglichkeiten, um solche Methoden

zu entwickeln.

Diese Arbeit leistet wesentliche Beiträge auf diesem Forschungsgebiet. Erstens stellen wir

eine Methode vor, die interaktive visuelle Exploration von mehrdimensionalen Skalarfeldern

ermöglicht. In einem Verfahren, bei dem schrittweise gestreut liegende Datenpunkte hinzuge-

fügt werden, nähern wir Flächen mithilfe der Kriging-Interpolation an. Zu diesem Zweck

schlagen wir ein GPU-beschleunigtes Aktualisierungsschema für die Kriging-Interpolation vor,

um Flächen schrittweise konstruieren zu können. Daher stehen Ergebnisse schnell zur Ver-

fügung, die den Benutzer in die Lage versetzen, relevante Abhängigkeiten zu entdecken und

interaktiv zu steuern, wo neue Flächen erzeugt werden.

Ismail Demir ix

Zweitens behandeln wir die Visualisierung von 3D Skalarfeld-Ensembles. Ensembles wer-

den in der Regel durch Ausführen von wiederholten Simulationen mit unterschiedlichen Pa-

rametereinstellungen erzeugt, wobei jede Ausführung ein einzelnes Element des Ensembles

darstellt. Ensembles unter Verwendung traditioneller Visualisierungstechniken als multivari-

ate Daten aufzufassen, ist für eine größere Anzahl von Elementen impraktikabel. Dennoch

ist es wichtig, Unsicherheiten, Korrelationen und Trends in solchen Datensätzen aufzuzeigen.

Hierfür präsentieren wir eine alternative Visualisierungstechnik, die eine abstrakte Ansicht

basierend auf einer Linearisierung des 3D-Raums liefert, und sich durch die Verwendung von

kombinierten Balken- und Liniendiagrammen auszeichnet.

Drittens stellen wir einen neuartigen Ansatz vor, um Ensembles aus 3D-Isoflächen basierend

auf Silhouetten anstelle von vollständigen Oberflächen zu visualisieren. Somit werden Verdeck-

ungseffekte deutlich vermindert, während räumliche Kohärenz und die eigentliche Form der

Flächen erhalten bleiben. Interaktive Mechanismen, wie Selektion, Clusterbildung, Schnittflä-

chen und Animation versetzen den Benutzer in der Lage, die Daten im Detail zu erkunden.

Viertens präsentieren wir ein neues Konzept, um die Grenzen von traditionellem Voxel-

basierten Ray-Casting zu überwinden. Wir stellen eine hierarchische Closest-Point Octree

Repräsentation vor, die die Approximationsqualität von Polygonflächen durch Voxelgitter

verbessert. Wir zeigen, dass unser Ansatz im Vergleich zu einer herkömmlichen Voxel-

Hierarchie zu einem deutlich geringeren Speicherverbrauch führt und Blockartefakte bei höheren

Zoomstufen vermeidet. Das ermöglicht uns, Modelle von hohen Auflösungen in den GPU-

Speicher zu laden, und qualitativ hochwertige Rendering-Ergebnisse bei interaktiven Bildraten

zu erzielen.

Schließlich erstrecken wir dieses Konzept auf Ensembles von Formen, wobei wir das Closest-

Point Gitter benutzen, um regionsweise zentrale Tendenzen zu quantifizieren und Mittel zur

Verfügung stellen, um die zentralste Form zu finden. Darüber hinaus erzeugen wir eine jew-

eils lokal am besten passende Form, um dem Benutzer lokale Features zu kommunizieren.

Unser Verfahren ist in der Lage, beliebige nichtparametrische Formen im zwei- und dreidi-

mensionalen Raum zu verarbeiten, und stellt keinerlei Anforderungen an Abgeschlossenheit

oder Orientierbarkeit.

x Ismail Demir

Acknowledgments

I gratefully acknowledge the support of all of the people who made this thesis possible. First

and foremost, I would like to thank my advisor, Prof. Dr. Rüdiger Westermann, for offering

me the great opportunity to pursue research in the fields of uncertainty visualization and

real-time rendering. I am truly grateful for his guidance, for his dedication to my work, and

for the numerous motivating discussions.

I would also like to thank the co-authors of my papers, Dr. Christian Dick, Mihaela Jarema

and Dr. Johannes Kehrer for supporting my work and helping me to obtain these results by

contributing their suggestions and ideas. It was always a pleasure to work with them.

Furthermore, I would like to thank my current and former colleagues, Dr. Stefan Auer, Boris

Bonev, Dr. Kai Bürger, Shunting Cao, Dr. Matthäus Chajdas, Rachel Chu, Dr. Christian

Dick, Sebastian Eberhardt, Marie-Lena Eckert, Martin Ender, Florian Ferstl, Dr. Roland

Fraedrich, Dr. Tiffany Inglis, Mihaela Jarema, Mathias Kanzler, Michael Kern, Dr. An-

dreas Klein, Alexander Kumpf, Henrik Masbruch, Dr. Tobias Pfaffelmoser, Vitaly Polisky,

Dr. Marc Rautenhaus, Dr. Florian Reichl, Prof. Dr. Nils Thuerey, Dr. Marc Treib, Dr.

Kiwon Um, Dr. Mikael Vaaraniemi, and Prof. Dr. Jun Wu, who have always been open for

discussions.

I would like to thank my colleagues Florian Ferstl, Mihaela Jarema, Dr. Marc Rautenhaus,

and furthermore, Dr. Torsten Enßlin and Dr. Jens Jasche from the Max-Planck-Institute for

Astrophysics for providing data sets.

I am enormously thankful to my family and my friends for giving me all the support that I

needed during this time.

This work was supported by the European Union under the ERC Advanced Grant 291372

SaferVis - Uncertainty Visualization for Reliable Data Discovery.

Ismail Demir xi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 4

1.4 List of Publications . 5

2 Fundamentals 7

2.1 Sources of Uncertainty . 7

2.1.1 Data Acquisition . 8

2.1.2 Data Transformation . 9

2.1.3 Visualization . 10

2.2 Classification of Uncertainty . 11

2.3 Mathematical Background . 12

2.3.1 Probability Space . 13

2.3.2 Random Variables . 14

2.3.3 Probability Density Functions . 15

2.3.4 Statistical Measurements for Uncertainty Quantification 17

2.3.5 Multidimensional and Multivariate Data Representations 22

2.3.6 Sample-Based Probability Analysis . 23

2.3.7 Numerical Methods . 25

2.4 Visualizing Uncertain Data Sets . 28

2.4.1 Data Dimensionality . 29

2.4.2 Uncertainty Dimension . 32

2.4.3 Approach . 34

Ismail Demir xiii

Contents

2.4.4 Composition . 36

2.4.5 Context . 38

2.5 GPU Acceleration . 38

2.5.1 Background . 39

2.5.2 Real-Time Rendering . 40

2.5.3 GPGPU Computing . 42

3 Progressive Visualization of Multidimensional Scattered Data 45

3.1 Introduction . 45

3.2 Related Work . 48

3.3 Kriging Interpolation . 50

3.3.1 Main Principles . 51

3.3.2 Ordinary Kriging . 51

3.4 Minimizing Uncertainty . 53

3.4.1 Largest Empty Circle Algorithm . 54

3.4.2 Extension to More Than Two Dimensions 55

3.5 Progressive GPU Kriging . 55

3.5.1 Computational Complexity . 56

3.5.2 CUDA Parallelization . 57

3.6 Visualizing Response Surfaces . 58

3.6.1 Response Surface Selection . 58

3.6.2 Slice-based Interpolation . 61

3.7 Results . 62

3.7.1 Multidimensional Real-World Data Set 62

3.7.2 Performance Analysis . 63

3.8 Limitations . 65

3.9 Conclusion and Future Work . 66

4 Comparative Visualization of 3D Scalar Field Ensembles 69

4.1 Introduction . 69

4.2 Related Work . 71

4.3 Overview . 73

4.4 Multi-Charts . 75

4.4.1 Linearizing the 3D Grid . 75

4.4.2 Chart Layout . 76

4.5 Multiresolution Ensemble Summaries . 77

4.5.1 Analyzing the Quantitative Distribution of Uncertainty 77

4.5.2 Analyzing Distribution and Relationship Among Members 80

xiv Ismail Demir

Contents

4.6 Brushing and Querying . 82

4.7 Spatial Clustering and Correlations . 85

4.7.1 Histogram Clustering . 85

4.7.2 Correlations . 87

4.8 Further Results . 90

4.8.1 Incompressible Fluid Flow Simulation 90

4.8.2 Cosmic Density Field . 91

4.9 Conclusion and Evaluation . 93

5 Silhouette-Based Visualization of 3D Isosurface Ensembles 97

5.1 Introduction . 97

5.2 Related Work . 99

5.3 Preprocess . 100

5.3.1 Mesh-Generation . 100

5.3.2 Clustering . 101

5.4 Rendering Shaded Silhouettes . 102

5.4.1 Drawing Silhouettes in the Fragment Stage 103

5.4.2 Density-Based Removal . 104

5.5 Visualizing Details on Demand . 105

5.5.1 Cutting Planes . 105

5.5.2 Clustering . 106

5.5.3 Picking and Brushing . 106

5.5.4 Animation . 107

5.6 Results . 107

5.7 Conclusion and Future Work . 108

6 Ray-Casting Based on Vector-to-Closest-Point Octrees 111

6.1 Introduction and Related Work . 111

6.2 VCP Representation . 114

6.2.1 Ray-Casting . 116

6.2.2 VCP Interpolation . 117

6.3 VCP Octree . 118

6.3.1 Mesh-based Generation . 119

6.4 GPU Implementation Issues . 121

6.4.1 VCP Leaf Data . 121

6.4.2 Reducing Run-time Memory Traffic . 122

6.4.3 Dynamic Memory Management . 123

6.4.4 GPU-CPU Upstreaming . 124

Ismail Demir xv

Contents

6.4.5 Interruption-Free Loading . 125

6.5 Results . 125

6.6 Conclusion and Future Work . 126

7 Visualization of Shape-Based Ensembles 129

7.1 Introduction . 129

7.2 Related Work . 131

7.3 Method Overview . 133

7.4 Generating the Vector-to-Closest-Point Ensemble 135

7.5 Modeling Vectors to Closest Points . 135

7.5.1 Quantifying the Local Centrality . 136

7.5.2 Finding the Median . 139

7.5.3 Spatial Attributes . 141

7.6 Clustering . 142

7.7 Ensemble Visualization . 143

7.7.1 Local Best Median . 143

7.7.2 Fuzzy Regions . 144

7.7.3 2D Ensembles . 144

7.7.4 Color . 144

7.7.5 Transparency . 145

7.7.6 Silhouettes . 145

7.8 Results . 146

7.9 Conclusion and Future Work . 148

8 Conclusion and Future Work 151

Bibliography 155

xvi Ismail Demir

1
Introduction

“What is not surrounded by uncertainty cannot be the truth.”

– Richard Feynman

1.1 Motivation

Advancements in new technology, research and science bring out an ever-growing supply of

data that has the potential of broadening the human knowledge. Traditionally, scientific data

are acquired from experimental measurements for the purpose of getting reliable information

about unknown quantities. Due to the advances in modern computer hardware, running

computer simulations has been proven as a means to efficiently generate large quantities of

data based on underlying physical models. Often, computer simulations are used to predict

prospective events based on measured data, e.g., in the disciplines of weather forecasting,

risk management or traffic engineering. Simulations are also useful as a substitute for cases,

where experimental measurements are too costly or impractical, for instance, in modeling

car crashes such that the design of the vehicle protects the passengers or in simulating dam

breaks.

However, grasping relevant information is very hard or even infeasible for human cognition,

when only raw data are presented to the user or the domain expert. Obviously, the difficulty

of this task increases further, when complexity and size of available data are growing due to

technological advances. Therefore, the demand of sophisticated visualization techniques rises

that enable the user to gain insight into vast quantities of data. Such techniques are typically

based on graphical representations of scientific data sets, which exploit the human skills of

visual perception. Their objective is to assist scientists in analyzing complex data sets, to

Ismail Demir 1

1.2 Contribution

recognize spatial or temporal structures and to extract characteristic features of particular

relevance.

This thesis focuses in particular on multidimensional data sets, meaning that raw data values

produced by the acquisition method live in multiple dimensions. Such data sets are encoun-

tered in various fields of research and engineering, e.g., in astrophysics and computational fluid

dynamics, where three-dimensional distributions of density or particles are analyzed. Data

sets of higher dimensions often come about in the context of sensitivity or regression analysis,

where a target value depends on many independent variables. Yet visualizing multidimen-

sional data is a challenging task, due to the inherent occlusion and attenuation effects as well

as the loss of depth perception on a two-dimensional screen. Hence, developing advanced visu-

alization techniques for multidimensional data sets, especially for more than two dimensions,

is a vital area in research and a great amount of work is devoted to that purpose [WB97].

So far, we have touched on the need for visualization techniques, but we did not take the

fact into account that real-world data can never be exact, as the opening quote by Richard

Feynman makes clear. In fact, we encounter uncertainty everywhere in reality and the concept

of error analysis is universally adopted in engineering, yet it remains a common practice in

the area of visualization to simply assume uncertainty away [BOL12]. This is problematic,

as it often gives the false illusion of precision or data quality that does not exist in reality.

Moreover, due to the progress in numerical methods and the ever-increasing amount of com-

putational power, information about uncertainty, such as probability distributions, variability

data and confidence intervals, is covered by many of today’s data sets. In the context of this

thesis, ensemble simulation is of particular relevance, a process where repeated simulation

runs are carried out for slightly modified parameter settings, thus yielding a distribution of

values at each sample point. In recent years, the awareness of uncertainty in the field of vi-

sualization has grown and manifold techniques have been developed focusing particularly on

that issue [PRJ12]. The purpose of these techniques is to aid experts in analyzing data sets,

where the visualization conveys the underlying uncertainty faithfully to the user. Yet there

still remain many unresolved issues, as integrating uncertainty into traditional visualization

approaches can often not be achieved in a straightforward way. In particular, visual cluttering

and occlusions effects are causes to this problem, which we address in this thesis.

1.2 Contribution

This thesis provides substantial contributions to the research domain of visualizing and analyz-

ing uncertain multidimensional data. We propose several approaches predicated on displaying

visual abstractions derived from given data sets. In particular, we provide means to explore

2 Ismail Demir

1.2 Contribution

higher dimensional scalar fields and ensembles of shapes and scalar fields in two or three

dimensions. By utilizing GPU acceleration, our methods are computationally efficient and

allow the user to discover data sets interactively. Our specific contributions are:

Progressive Response Surfaces. We present a novel method, which allows the user to in-

teractively explorate scalar-valued data sets via high quality and progressive response surface

prediction from multidimensional input samples in an efficient manner. We utilize Kriging in-

terpolation to estimate a response surface that minimizes the expectation value and variance

of the prediction error. To this end, we propose a progressive updating scheme for the Kriging

weights, built upon incremental matrix inversion. Our method requires only minor computa-

tional effort when new sample points are added and high efficiency is achieved by employing

parallelized operations on modern GPUs. This allows us to cope with even large data sets and

give immediate feedback to the user, as single sample points are added continuously to the

visualized response surfaces. In particular, this enables the user to monitor the surface, and

thus provides means to cancel the computation early, if no more significant changes occur.

By steering the generation process interactively to different points of interest, the user is able

to quickly discern relevant dependencies. This method is presented in Chapter 3.

Multi-Charts. We propose bidirectional linking between extended bar charts (multi-charts)

and volume visualization as a means to visually analyze three-dimensional scalar field ensem-

bles. Multi-charts linearize 3D data points along a space-filling curve, which is then drawn to

the same area of the screen. Statistical information on ensemble members is encoded into the

bars and line charts are then overlaid to compare individual members to rest of the ensem-

ble. Alternative linearizations based on statistical similarities allow for clustering of spatial

locations based on the underlying data distribution. Data are arranged at different scales to

quickly provide an overview and enable the user to interactively focus on regions of interest.

By brushing or querying value intervals and specific distributions, the corresponding spatial

points are simultaneously highlighted in the volumetric view. Additionally, we provide a pick-

ing mechanism in the volumetric view, where the corresponding locations are tagged in the

multi-chart view, which allows the user can go back and forth between the abstract and the

3D view to focus the analysis. This technique is discussed in Chapter 4.

Screen-space Silhouettes for Isosurface Visualization. We introduce a novel visual-

ization technique for ensembles of isosurfaces in three-dimensional space. Visualizing multi-

ple isosurfaces at once is a challenging task due to inherent occlusion effects, yet analyzing

uncertainty represented by such an ensemble is an important task. By using screen-space

silhouettes, we reduce the displayed information, while maintaining the major shape of the

surfaces. This approach retains spatial coherence without making any assumption about the

underlying surface distribution. We provide means to interactively explore the ensemble on

Ismail Demir 3

1.3 Outline

a finer level by additional mechanisms, namely, picking, clustering, cutting and animation.

This approach is introduced in Chapter 5.

Vector-to-Closest-Point Octrees. We propose a novel improvement of voxel-based ray-

casting to overcome the limitation of rendering block artifacts at high zoom levels. Traditional

voxel-based techniques handle this problem by using very high resolutions, thus wasting a

great amount of memory. By using a hierarchical vector-to-closest-point representation, we

can inherit the advantages of a voxel-based approach and achieve a significantly smoother de-

piction of the surface. We show that, although the VCP grid consumes more memory per cell,

it requires less memory overall, because it relies on a shallower tree hierarchy. We demon-

strate the potential of our method for rendering high-quality surface models at interactive

rates. This method is discussed in Chapter 6.

Visualizing the Centrality of Shapes. We propose a novel approach for analyzing the

centrality, i.e., the central tendency, of an ensemble of shapes in two- and three-dimensional

space based on the Vector-to-Closest-Point representation. This technique assists the user in

determining the most central shape, to quantify the region-wise centrality, and to construct a

locally best-matching shape. Unlike previous approaches, which build upon binary functions

or signed distance fields relying on orientable shapes, we make use of the closest point repre-

sentation. In doing so, our approach can handle arbitrary non-parametric shapes regardless

of dimension and orientability. Directional distributions based on the closest point vectors are

used to perform region-wise classifications. We demonstrate the effectiveness of our technique

by visualizing various synthetic data sets as well as a real-world weather forecast ensemble.

This technique is presented in Chapter 7.

1.3 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we discuss fundamentals

of visualizing and analyzing uncertain data. After presenting sources of uncertainty and a

classification scheme, we introduce the mathematical background behind of probability theory

in the context of uncertainty visualization. We then give an overview of popular visualization

techniques and establish a scheme that allows us to categorize our contributions. We end

this chapter with a discussion of GPU acceleration, since efficient rendering and computation

methods serve as the basis of our visualization techniques. Next, in Chapter 3, we introduce

our method for exploring multidimensional scalar-valued data by progressive response surface

prediction. In Chapter 4, we present our technique for visualizing and analyzing 3D scalar

field ensembles via multi-charts and volume visualization. Chapter 5 provides our approach

for visualizing ensembles of 3D isosurfaces by rendering screen-space silhouettes. Then, in

4 Ismail Demir

1.4 List of Publications

Chapter 6, our method to improve voxel-based ray-casting is introduced, which avoids typical

block artifacts by relying on a Vector-to-Closest-Point representation. Chapter 7 addresses

the analysis of shape-based ensembles with regard to their central tendencies, by building a

upon the Vector-to-Closest-Point representation. Finally, we conclude this thesis in Chapter 8

with a summary of our work and an outlook on future research directions.

1.4 List of Publications

Some of research results presented in this thesis have been originally published in the following

peer-reviewed conference papers and journal articles.

1. Demir I., Westermann R.: Progressive High-Quality Response Surfaces for Visually

Guided Sensitivity Analysis. Computer Graphics Forum (Proceedings of EuroVis 2013)

32, 3 (2013), 21–30. doi:10.1111/cgf.12089. [DW13].

2. Demir I., Dick C., Westermann R.: Multi-Charts for Comparative 3D Ensemble

Visualization. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec.

2014). doi:10.1109/TVCG.2014.2346448. [DDW14].

3. Demir I., Westermann R.: Vector-to-Closest-Point Octree for Surface Ray-Casting.

In Vision, Modeling & Visualization (2015), Bommes D., Ritschel T., Schultz T., (Eds.),

The Eurographics Association. doi:10.2312/vmv.20151259. [DW15].

4. Demir I., Kehrer J., Westermann R.: Screen-space Silhouettes for Visualizing

Ensembles of 3D Isosurfaces. In Proc. IEEE Pacific Visualization Symp. (Visualization

Notes) (2016). doi:10.1109/PACIFICVIS.2016.7465271. [DKW16].

5. Demir I., Jarema M., Westermann R.: Visualizing the Central Tendency of En-

sembles of Shapes. In Proc. SIGGRAPH Asia 2016 Symposium on Visualization (2016).

doi:10.1145/3002151.3002165. [DJW16].

Ismail Demir 5

http://dx.doi.org/10.1111/cgf.12089
http://dx.doi.org/10.1109/TVCG.2014.2346448
http://dx.doi.org/10.2312/vmv.20151259
http://dx.doi.org/10.1109/PACIFICVIS.2016.7465271
http://dx.doi.org/10.1145/3002151.3002165

1.4 List of Publications

6 Ismail Demir

2
Fundamentals

“You cannot be certain about uncertainty.”

– Frank Knight

2.1 Sources of Uncertainty

Generally speaking, uncertainty can be defined as the lack of certainty that is the lack of

reliability about information or knowledge. In the process of visualization, uncertainty is

introduced at various stages. In Figure 2.1, the visualization pipeline based on the model by

Haber and McNabb [HM90] is depicted. First, in the data acquisition stage, raw data are

collected by means of measuring or simulating. Next, in the data transformation stage, the

raw data is processed by filtering and mapping and thereby prepared for being presented to

the user. The filtering step comprises picking a subset of the initial data set and interpolating

missing values, usually in accordance with the user-selected focus. Optional transformations

altering the data in other ways, like normalizing or offsetting are also performed in this step.

Based on that output, geometry together with attributes is generated in the mapping step.

Finally, by rendering geometric data in the visualization stage, a graphical representation is

produced that is presented to the user. As shown in Figure 2.1, uncertainty emerges at every

step. It is worth noting that uncertainty also propagates to subsequent steps. Visualization of

uncertainty, i.e., uncertainty visualization, addresses the issue of showcasing the uncertainty

included in the data set to the domain expert. In contrast, uncertainty of visualization occurs

during the transformation and visualization stage and does not reflect imprecisions of the

original data [BOL12]. Therefore, this kind of uncertainty is undesirable, yet it cannot be

completely avoided, as we will see in the next sections.

Ismail Demir 7

2.1 Sources of Uncertainty

Visualization Data Transformation Data Acquisition

Collect Filter Map Render

U U U U

Visualization of

uncertainty

Uncertainty of visualization

Figure 2.1: Visualization pipeline extended by uncertainty according to Pang et al. and
Brodlie et al. [BOL12, PWL97], based on the model originally proposed by Haber
and McNabb [HM90]. Uncertainty is introduced at every stage in the pipeline.

2.1.1 Data Acquisition

It is generally known that empirical data, i.e., data acquired through experiments or obser-

vations, can never be free from uncertainty [Cha83]. Consequently, data generated by simu-

lations suffers from the same restriction, as both the input data and the underlying physical

principles were ultimately derived from empirical measurements. According to Kennedy and

O’Hagan [KO01], uncertainty accrues from various sources in the process of acquiring data:

• Parameter uncertainty. This kind of uncertainty represents the fact that values

gathered by experimentation or observation, which are used as inputs to mathematical

models, cannot be exact. An example is the viscosity of a fluid that has to be determined

through measurements.

• Model inadequacy. Since no mathematical model can perfectly reflect the real world,

there exists a discrepancy between the output of the simulation—assuming even input

parameters of perfect certainty—and the result of the real process. Typical examples

are simulations that (partially) ignore frictional forces.

• Residual variability. This defines a state of uncertainty due to unrecognized con-

ditions. That is, even if the initial conditions are completely specified, the real-world

process can produce diverging outcomes, as a consequence of two reasons. First, not

all conditions relevant for the outcome might be known and second, true randomness

might occur during the process.

• Parametric variability. When an experiment is performed, it is impossible to control

the initial conditions with perfect certainty. Yet it is desirable to predict the outcome

8 Ismail Demir

2.1 Sources of Uncertainty

of that experiment. Consequently, an additional extent of uncertainty must be included

in the simulation’s result, which is defined as parametric variability.

• Observation error. When comparing the real-world outcome of an experiment with

the simulation’s result, we must account for the fact that measuring the real outcome is

prone to errors. Hence, uncertainty increases accordingly, although it should be noticed

that this effect can be alleviated by repeatedly running the experiment.

• Code uncertainty. We cannot assume that computer simulations in practice produce

results of perfect certainty, due to the inherent effects of uncertainty in every real-world

scenario. Although considering such effects might be impractical, strictly speaking, they

cannot be neglected.

2.1.2 Data Transformation

In the data transformation stage, data is processed by filtering and mapping. In both steps,

uncertainty is introduced and propagated. During filtering, uncertainty occurs, because al-

tering raw data has the potential of amplifying their extent of uncertainty [PWL97], and

interpolating suffers from the inherent constraint that recovering unknown data points is al-

ways prone to errors. In particular, even if we can assume that initial data are given with

perfect certainty, interpolated values at points not included in the data set must be considered

as uncertain due to the inevitable interpolation error. Different strategies have been proposed

to address this issue [BOL12]:

• We can iterate over all points in the initial data set, and use the information afflicted

by uncertainty to compute a single value and estimate the extent of uncertainty. A

commonly used example is the combination of mean (or expectancy value) and standard

deviation. Interpolation is then carried out on these values by pretending that they are

certain and the extent of uncertainty is propagated by a suitable interpolation method.

Since in this process, a distribution of uncertain values is bundled into a single value, a

new degree of uncertainty is introduced. In particular, when using mean and standard

deviation, the newly introduced uncertainty grows the more, as the original values can

be approximated by a Gaussian distribution to a lesser degree.

• Alternatively, we can replace the original values with a probability density function

(PDF) and utilize an interpolation method based on PDFs. However, this procedure

generates also uncertainty, as substituting discrete values by a continuous PDF is ap-

parently an approximation prone to errors.

Ismail Demir 9

2.1 Sources of Uncertainty

• Suppose, we have knowledge about the underlying physical model of the data set. In this

case, we can design an interpolation scheme that incorporates the parametrization of this

model. Thus, the interpolation error can be reduced to a certain extent. For instance,

consider the case, where we know that our model can be described by a quadratic term.

Here, we can expect better outcomes by using spline instead of linear interpolation.

The mapping step can also induce uncertainty, since geometry is usually restricted by certain

specifications into which the filtered data must fit. As a typical example, consider triangle

meshes that are often used to render 3D images. Here, fitting smooth surfaces causes uncer-

tainty at every non-vertex point of the mesh. Hence, it is crucial to ensure that the geometry

exhibits a resolution fine enough to avoid this unwanted effect to the best degree possible in

accordance with hardware capabilities.

2.1.3 Visualization

Another source of uncertainty appears in the visualization stage, where the geometric data are

rendered to an image and presented to the user. As it distracts the expert from the uncertainty

intrinsic in the data to be analyzed, again, we consider this an undesired source of uncertainty

and aim at minimizing such effects. A brief overview on how this kind of uncertainty appears

is presented below, although this list should not be considered exhaustive.

• In the rendering step, geometry has to be discretized in order to be drawn to a pixel

raster. This process, i.e., rasterization, causes some extent of uncertainty, especially

when the image resolution is too low. To remedy this problem, interactive focus and

zooming techniques integrated into the visualization process can be utilized [BOL12].

• When rendering three-dimensional objects, shading and lighting techniques are used to

simulate their characteristics and various effects. In this procedure, another layer of

uncertainty is introduced caused by rendering algorithms, which involve inevitably a

trade-off between quality and framerate, and computational precision. Consequently,

by using different algorithms, striving for different framerates, and resorting to different

hardware, distinct images can be produced. In this situation, each image can possibly

have a different meaning to the user [PWL97].

• In many cases, rendering the output image depends on a vast number of parameters that

are either selected automatically or by user intervention. In any case, these parameters

can influence the outcome in a way not obvious to the expert. For instance, consider an

application visualizing the behavior of a fluid by drawing streamlines. These streamlines

have to be seeded at different domain points and slightly different starting points can

10 Ismail Demir

2.2 Classification of Uncertainty

Evaluation

Category

Concept Uncertainty

Epistemic
(systematic)

Type A
(statistical)

Type B
(other)

Aleatoric
(random)

Type A
(statistical)

Type B
(other)

Figure 2.2: Classification of uncertainty according to the NIST guidelines on evaluating and
expressing uncertainty of measurements [TK09].

yield significantly diverging results. Likewise, bringing in animation to show time-

dependent features constitutes a source of uncertainty. Here, the key is that some sort

of interpolation has to be used to compensate for different time spans between given

data points on the one hand and the framerate achieved by the hardware on the other

hand [PWL97].

• Lastly, uncertainty is involved at the level of the user’s perception, as the same image

can have other meanings to different users. Such effects can be caused by the user’s

visual and mental abilities or his scientific or cultural background [BHJ∗14]. As a

typical example of this situation, consider the differences of human’s cognition and

interpretation of colors [Lev97].

In conclusion, uncertainty emerges at all stages of the visualization pipeline, and it is essential

to be aware of these effects and to handle them in a proper fashion in order to be faithful to

reality when presenting data to the user.

2.2 Classification of Uncertainty

After discussing the sources of uncertainty, we will now focus on understanding how uncertain

data sets are classified. Figure 2.2 provides an overview on how uncertainty is classified

according to the NIST guidelines [TK09]. Uncertainty is commonly distinguished into two

categories, epistemic and aleatoric uncertainty [PRJ12, DKD09].

• Epistemic uncertainty refers to a systematic lack of information that could be known

in principle but remains unknown in practice. Low measurement accuracy, inadequate

Ismail Demir 11

2.3 Mathematical Background

models and purposefully hidden data are the causes of this kind of uncertainty. Among

other things, scientific or economic reasons can be behind that, e.g., when better mea-

surement instruments are too costly or when the latest models are lacking certain phys-

ical properties. As an example of this, consider a reference device used for calibration,

which itself exhibits a certain degree of uncertainty.

• Aleatoric uncertainty can be discovered by statistical means, that is, by running an

experiment multiple times and witnessing slightly different outcomes. It contains the

randomness inherent to the experiment and thus cannot be diminished by using better

measurement equipment or models. The unavoidable discrepancy between the outcomes

of repeated measurements is an example for this category.

In line with the NIST report, evaluating uncertainty, i.e., estimating its numerical value, can

be classified into two methodologies [TK09].

• Type A refers to uncertainty evaluated by statistical methods. By using probability

distributions, we can characterize this sort of uncertainty and then design visualization

schemes built upon that information. In particular, mean and standard deviation are

commonly used to address this issue, although this approach is problematic, if the

distribution cannot assumed to be Gaussian (see Section 2.3.4).

• Type B refers to uncertainty evaluated by other means. Scientific judgment, experi-

ence and general knowledge about properties of materials and instruments are typical

methods to estimate this quantity.

Uncertainty visualization mainly focuses on aleatoric uncertainties of type A [PRJ12]. By

visually conveying data in combination with their incorporated uncertainty to the user, it

ultimately aims at supporting the experts in analyzing and decision making [PWL97].

2.3 Mathematical Background

At the beginning of this chapter, a qualitative definition of uncertainty was presented. How-

ever, for embedding uncertainty information into tools for visualization, quantitative measure-

ments are necessary. To this end, we rely on probability theory—the branch of mathematics

addressing the study of random phenomena. In the following, we will describe, how uncer-

tainty can be expressed by mathematical models in particular in the context of visualization.

12 Ismail Demir

2.3 Mathematical Background

2.3.1 Probability Space

The probability space is a fundamental construct in probability theory. It is a mathematical

construct modeling a random experiment that consists of three components. We will first

introduce each component and then come back to the definition of a probability space [Fri97].

As a running example, let us consider an experiment where two (perfectly fair or unbiased)

dice are thrown.

The sample space Ω is a set of all possible outcomes from a random experiment. In our

example, it is given as

Ω = {1, 2, 3, 4, 5, 6}2 . (2.3.1)

The σ-algebra F ⊂ 2Ω is a set of all events of interest such that the conditions below are met.

An event is a subset of Ω that occurs if the outcome of the experiment is an element of the

event.

• F contains the empty set:

∅ ∈ F (2.3.2)

• F is closed under complementation:

A ∈ F ⇒ Ω \A ∈ F . (2.3.3)

• F is closed under countable unions:

Ai ∈ F (i ∈ N)⇒
∞
⋃

i=1

Ai ∈ F . (2.3.4)

Notice that, due to Eq. (2.3.2) and Eq. (2.3.3), F also contains the sample space Ω. Moreover,

Eq. (2.3.3) and Eq. (2.3.4) imply that F is also closed under countable intersections:

Ai ∈ F (i ∈ N)⇒
∞
⋂

i=1

Ai ∈ F . (2.3.5)

We now give some justifications for these restrictions. First, we want to be able to speak of

no event occurring, Eq. (2.3.2). Second, if we can speak of one event occurring, we also want

to speak of this event not occurring, Eq. (2.3.3). Lastly, we would like to speak of at least

one of multiple individual events occurring, Eq. (2.3.4).

In our running example, let us consider each possible event, namely F = 2Ω.

Ismail Demir 13

2.3 Mathematical Background

The probability measure on F is a function P : F → [0, 1] such that P (Ω) = 1 and

P

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P (Ai) (2.3.6)

for each pairwise disjoint sequence Ai ∈ F (i ∈ N). Because of the latter condition, P is said

to be countable additive.

In our scenario, we have

P (ω) =
1

36
for all ω ∈ Ω. (2.3.7)

We now define the probability space as the triple (Ω,F , P).

Note that often Ω is a topological space, e.g., Ω = R. In this case, it is implicitly assumed

that F is generated by the collection of open sets in Ω. F is then called a Borel algebra.

2.3.2 Random Variables

In real applications, random variables are typically used to represent the actual observa-

tion [Fri97]. We begin with some basic definitions.

A tuple (Ψ,G) is a measurable space, if Ψ 6= ∅ and G is a σ-algebra on Ψ.

Let (Ω,F) and (Ψ,G) be measurable spaces. A function X : Ω→ Ψ is said to be measurable,

if X−1 (B) ∈ F for every B ∈ G. That is, the preimage of every B ∈ G under X is in F .

When (Ω,F , P) is a probability space, then X is called a random variable.

In our running example, let us consider the sum of both dice. The corresponding random

variable is given as

X : Ω→ R, (ω1, ω2)→ ω1 + ω2. (2.3.8)

Proposition 1 Let (Ω,F , P) be a probability space, (Ψ,G) a measurable space and X : Ω→ Ψ

a random variable. Let Q : G → [0, 1] , B → P
(

X−1 (B)
)

. Then (Ψ,G, Q) is a probability

space. Q is called the (probability) distribution that is induced by X.

Proof. See [Fri97]. �

We denote by P (c (X)) the probability measure of the set of outcomes, or probability in short,

where X fulfills a certain condition c (X):

P (c (X)) = P ({ω ∈ Ω : c (X (ω))}) . (2.3.9)

14 Ismail Demir

2.3 Mathematical Background

For instance, the probability of the dice sum being equal to 3 can be stated as P (X = 3). To

compute this probability, we use the preceding proposition and Eq. (2.3.6):

P (X = 3) = P ({ω ∈ Ω : X (ω) = 3})
= P ({(1, 2) , (2, 1)})
= P ({(1, 2)}) + P ({(2, 1)})

=
1

36
+

1

36
=

1

18

(2.3.10)

2.3.3 Probability Density Functions

We now introduce the concept of probability density functions (PDFs). In many real-world

scenarios, outcomes of a random experiment are continuously distributed, i.e., Ω = R. More-

over, they do not take values that can be exactly predicted. As an example, suppose we are

interested in the temperature X at a given point in time and space. The probability, for

instance, that it will be exactly 0 ◦C is equal to 0, i.e., P (X = 0) = 0. Rather, we have to

ask for the probability that the temperature lies between, e.g., −0.5 ◦C and 0.5 ◦C to obtain

a useful information, i.e., P (−0.5 ≤ X ≤ 0.5). We begin with a basic definition [Fri97].

A function F : R→ R is called a distribution function if it is increasing and right-continuous

and satisfies the condition

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1. (2.3.11)

Proposition 2 Let (R,B, P) be a probability space. Note that B denotes the Borel algebra

on R. Then, the function F (x) = P ((−∞, x]) is a distribution function.

Proof. See [Fri97]. �

In our example, where two dice are rolled, the distribution function is given by F (x) =

P (X ≤ x). A jump discontinuity occurs at every integer in the range from 2 to 12. Hence, it

is not continuous (but still right-continuous). For instance, we have

F (2) =
1

36
, F (3) =

1

36
+

1

18
=

1

12
, . . . , F (12) = 1. (2.3.12)

Note that every distribution function can have at most countably many jump discontinuities

and it is continuous if and only if P ({x}) = 0 for every x ∈ R. Moreover, a probability

measure can also be constructed based on a distribution function as the following proposition

shows.

Ismail Demir 15

2.3 Mathematical Background

Proposition 3 Let F : R → R be a distribution function. Then, P ((−∞, x]) = F (x) is a

probability measure on (R,B).

Proof. See [Fri97]. �

Given a distribution function F such that for a random variable X, it holds F (x) = P (X ≤ x),

we can now compute the probability for X being within the interval (a, b] as

P (a < X ≤ b) = F (b)− F (a) . (2.3.13)

Let F be a distribution function that can be characterized by

F (x) =

x
∫

−∞

f (t) dt. (2.3.14)

Then we call f the probability density function (PDF) of F , or density in short.

Consider the following remarks.

• If a PDF f (x) exists, the distribution function is continuous. For a corresponding

random variable X, the probability for being within the interval (a, b] can then be

computed as

P (a ≤ X ≤ b) =

b
∫

a

f (t) dt. (2.3.15)

Hence, no PDF exists for the dice-throwing example.

• If a PDF f (x) is continuous at x, then we have

f (x) =
d

dx
F (X) . (2.3.16)

A frequently used distribution in many applications is the Gaussian distribution (or normal

distribution) [Cas02, Pat96]. Its PDF is given by

fN (µ,σ2) (x) =
1√

2πσ2
e− (x−µ)2

2σ2 . (2.3.17)

The parameters µ and σ2 specify mean and variance (see Section 2.3.4). For the Gaussian

distribution, this is denoted by N (µ, σ2
)

. In Figure 2.3, the PDF and distribution function

are shown for two parameter settings.

16 Ismail Demir

2.3 Mathematical Background

f (x)

x

0.8

0.6

0.4

0.2

0.0

1.0

-5 -3 1 3 5-1 0 2 4-2-4

0.8

0.6

0.4

0.2

0.0

1.0

-5 -3 1 3 5-1 0 2 4-2-4

F (x)

x

Figure 2.3: The probability density function (left) and the distribution function (right) of two
Gaussian distributions with parameters N (0, 1) and N (0, 0.2). These density
functions are also referred to as Gaussian bell curves.

The PDF of the normal distribution has a peak at µ and the probability of the outcome being

at most one standard deviation, i.e., σ, apart from the mean is roughly 68 %. As an example,

let us consider a temperature forecast (for a given point in time and space). Suppose, it can be

described by the Gaussian distribution N (0, 1) (see Figure 2.3). To compute the probability

that the temperature, X, will be between −0.5 ◦C and 0.5 ◦C, we proceed as follows.

P (−0.5 ≤ X ≤ 0.5) =

0.5
∫

−0.5

fN (0,1) (t) dt

=

0.5
∫

−0.5

1√
2π · 1

e− (t−0)2

2·1 dt ≈ 0.3829

(2.3.18)

Note that the last step can only be evaluated by numerical methods [HJ61], which is beyond

the scope of this thesis.

2.3.4 Statistical Measurements for Uncertainty Quantification

We now address some statistical measurements that are commonly used in the area of un-

certainty visualization. To begin with, we introduce the terms mean, variance and standard

deviation [Cas02, Fri97].

Ismail Demir 17

2.3 Mathematical Background

Mean

Let X be random variable defined on a probability space (Ω,F , P). Then the mean, or

expected value, is defined as the Lebesgue integral

E[X] =

∫

Ω

X dP. (2.3.19)

We now consider two special cases, where the mean can be defined in more concrete way.

Let X be discrete random variable defined on a probability space (Ω,F , P) such that it only

takes the values xi with probability pi, i ∈ N. Then, the mean is given by

E[X] =
∞
∑

i=1

xi · pi =
∞
∑

i=1

xi · P (X = xi) . (2.3.20)

Often, the mean is denoted by µ. Getting back to the dice-throwing example, we can compute

the mean as

E[X] =
12
∑

x=2

x · P (X = x)

= 2 · 1

36
+ 3 · 1

18
+ · · ·+ 12 · 1

36
= 7

(2.3.21)

Let X be random variable defined on a probability space (Ω,F , P) such that a PDF f (x) on

X exists. Then, the mean is given by integrating

E[X] =

∞
∫

−∞

x · f (x) dx. (2.3.22)

For instance, for the Gaussian distribution N (µ, σ2
)

, we have E[X] = µ [Pat96].

Intuitively, the expected value is the average outcome of a long series of repeated random

experiments. According to the law of large numbers, the probability of the average converging

to the expected value is 1 as the number of experiments grows to infinity. Moreover, it can

be shown that the mean is linear and monotonic. Let X and Y be random variables and

a, b, c ∈ R. Then:

E[aX + bY + c] = aE[X] + bE[Y] + c (2.3.23)

P (X ≤ Y) = 1⇒ E[X] ≤ E[Y] (2.3.24)

18 Ismail Demir

2.3 Mathematical Background

f (x)

0.4

0.3

0.2

0.1

0.0

0.5

-5 -3 1 3 5-1 0 2 4-2-4

x

0.20

0.15

0.10

0.05

0.00

0.25

2 4 8 10 126 7 9 1153

x

Figure 2.4: Left: The PDF of a bimodal probability distribution. Clearly, the mean—marked
by an arrow—misses the two peaks and instead takes a value where almost no
outcomes would occur. Right: The probabilities of the dice throwing experiment.
Here, the mean points to a useful value and fitting a Gaussian bell curve to that
distribution yields as a good approximation (green dotted line).

In many applications of visualization, the mean is used to represent a probability distribution.

As we have already mentioned before, this approach is problematic, if the distribution cannot

approximately assumed to be Gaussian. This is demonstrated in Figure 2.4 (left). Here,

a bimodal probability distribution is given, i.e., a distribution with two peaks (or modes).

As an example for such a distribution, consider the traffic density, where peaks often occur

during the morning and evening rush hours. Here, visualizing the mean would give no useful

information to the user, as it takes a value between the two peaks where almost no outcomes

occur.

On the other hand, consider Figure 2.4 (right). Here, the probabilities of the dice throwing

experiment are plotted. In this scenario, the mean conveys useful information, since, as a

matter of fact, most outcomes of that experiment are close to the mean value of 7. Moreover,

this distribution can be approximated by a bell curve to a good degree, which also indicates

that the mean is a good representative.

Variance and Standard Deviation

Let X be random variable defined on a probability space (Ω,F , P). Then the variance is

defined as the expected squared deviation from the mean:

Var[X] = E

[

(X − E [X])2
]

(2.3.25)

Ismail Demir 19

2.3 Mathematical Background

Note that this can also be stated as

Var[X] = E

[

X2
]

− (E [X])2 (2.3.26)

The variance is also denoted by σ2. It is a statistical measurement of the spread between

the outcomes of a random experiment. Hence, it is always a non-negative number. In our

running example, where two dice are rolled, we can compute the variance as

Var[X] =
12
∑

x=2

(x− E [X])2 · P (X = x)

= (2− 7)2 · 1

36
+ (3− 7)2 · 1

18
+ · · ·+ (12− 7)2 · 1

36

≈ 5.83

(2.3.27)

For the Gaussian distribution N (µ, σ2
)

, we have V ar[X] = σ2 [Pat96].

The standard deviation σ is defined as the square root of the variance, i.e.,

σ =
√

Var [X]. (2.3.28)

For the Gaussian distribution N (µ, σ2
)

, the standard deviation is σ and—as mentioned

earlier—there is a probability of ≈ 68 % that an outcome falls within the scope of one standard

deviation from the mean. In our example, the standard deviation is σ ≈
√

5.83 ≈ 2.41. Due

to the approximation by the bell curve, as shown in Figure 2.4 (right), we can estimate that

the probability of the dice sum being within 5 and 9—one standard deviation apart from the

mean—equals roughly 68 %. This is a good approximation of the exact probability of 2/3.

Similar to the variance, the standard deviation quantifies the variation. An advantage of

using the standard deviation is the fact that it is expressed in terms of the same units as the

random variable. Hence, for the user it is usually a more convenient way of characterizing

the distribution.

In many applications, the standard deviation serves as a quantification of uncertainty [TK09].

Moreover, in the field of visualization, a combination of mean and standard deviation is often

used to convey uncertain data sets to the user, as directly showing the PDF is—except for

the 1D case—usually too complex [BHJ∗14].

However, the standard deviation is subject to a similar restriction as the mean. Intuitively,

the reason behind this is that probability distributions more complex than the Gaussian

distribution contain information that cannot be adequately expressed by two scalar values

20 Ismail Demir

2.3 Mathematical Background

(mean and standard deviation). As a typical example in the context of simulation, consider

outliers, i.e., values significantly different from the mean, but produced only by very few

simulation runs. Taking outliers into account is of eminent importance in the field of risk

management, as rare events of high impact can constitute high risks. For instance, suppose

most simulation runs of a weather forecast system predict a moderate amount of snowfall,

while a blizzard is projected by few exceptions (outliers). Visualizing mean and standard

deviation would conceal that risk leading to a false illusion of certainty. Hence, using more

sophisticated visualization techniques is of paramount importance.

Other Quantities

Other statistical quantities that are of importance within the scope of this thesis, include the

covariance, the median and quantiles. Intuitively, the covariance specifies to which extent two

random variables change together. Formally, it is defined as follows.

Let X, Y be random variables on the probability space (Ω,F , P) such that E[X],E[Y] are

finite. Then the covariance is defined as

Cov (X, Y) = E [(X − E [X]) (Y − E [Y])] . (2.3.29)

Notice that Cov (X, X) = Var[X].

Let F (x) be a distribution function. Then the quantile function is defined as [Par79]

Q (u) = inf {x : F (x) ≤ u} . (2.3.30)

Hence, for a random variable X : Ω → R with distribution function F (x), the quantile Q(u)

specifies the value such that

P (X ≤ Q (u)) ≥ u. (2.3.31)

For instance, when rolling two dice, we have Q (0.9) = 10. Thus, the probability that the sum

of the dice will be less than or equal to 10 is at least 90 %.

Notice that the median is defined as the quantile Q(1/2).

Ismail Demir 21

2.3 Mathematical Background

2.3.5 Multidimensional and Multivariate Data Representations

Within the scope of this thesis, multidimensional and multivariate data representations are of

particular importance. As an example, consider a data set, where the fuel efficiency—i.e., the

dependent variable—of cars was measured. For each car, various parameters are known, like

horsepower, weight, cylinders, acceleration—i.e., the independent parameters. Such a data

set is multidimensional, because its outcomes depend on multiple input parameters, each

spanning one dimension. This gives rise to the following definition [Fri97, Van10].

Let (Ω,F , P) be a probability space, (Ψ,G) be measurable space, and T be a topological

space. Let

X : T → (Ω→ Ψ) , t→ X (t) (2.3.32)

be a collection of random variables. Then X is called a random field. If T = R
n for n ∈ N,

then X is said to be n-dimensional.

For instance, we can denote the expected fuel efficiency of a car with parameter settings

t = (t1, t2, . . .) for horsepower, weight, etc., by E [X (t)].

Next, consider a weather forecast simulation that predicts the (vector-valued) wind velocity

at a given point in time and space. Here, a random variable that models this scenario is mul-

tivariate, because it consists of multiple individual variables, namely the x, y, z-components

of the wind velocity. This gives rise to the following definition.

Let X be a random variable defined on the probability space (Ω,F , P) such that

X : Ω→ R
n for n ∈ N (2.3.33)

Then X is said to be multivariate with n components.

Of course, these two properties can be combined to model multidimensional multivariate data

sets. As an example, suppose, a simulation predicts the wind velocity over a geographical

region U ⊂ R
3 and within a time span T ⊂ R. Then, the collection

X : (U, T)→
(

Ω→ R
3
)

, (u, τ)→ X (u, τ) (2.3.34)

represents the according random field. By E [X (u, τ)] we can denote the expected wind

velocity at point u and time τ . Note that Ω corresponds to the (randomized) input parameters

given to the simulation.

Although the terms multidimensional and multivariate have distinct meanings, they are often

used vaguely in the literature [WB97]. To avoid cumbersome expressions like “multidimen-

22 Ismail Demir

2.3 Mathematical Background

sional multivariate data set”, we usually use the term of greater relevance in the respective

context.

Visualizing multidimensional or multivariate data is a great challenge, as much information

has to be conveyed to the expert in a way that enables him to gain the decisive insight without

being distracted by subsidiary details. This holds in particular, when an additional dimension

of uncertainty is introduced.

2.3.6 Sample-Based Probability Analysis

Usually, when visualizing uncertain data sets, underlying raw data are not available in the

form of probability density functions. The reason behind this is the fact that measurements

occur at discrete positions in time and space. Likewise, simulations produce discrete outcomes

for discrete settings of input parameters. Consequently, a finite number of discrete values is

given and by using an appropriate visualization tool, the data are presented to the domain

expert. The difficulty in this endeavor is to extract statistical information without direct

knowledge about the underlying distribution. To begin with, we introduce some elementary

definitions [Cas02, Fri97].

Let (Ω,F , P) be a probability space, (Ψk,Gk)(k=1,2) be a collection of measurable spaces and

X : Ω → Ψ1, Y : Ω → Ψ2 be random variables. Then, X and Y are said to be independent

if

P
(

X−1 (B1) ∩ Y −1 (B2)
)

= P
(

X−1 (B1)
)

P
(

Y −1 (B2)
)

for all B1 ∈ G1, B2 ∈ G2. (2.3.35)

Defined by induction, a set of at least 3 random variables is said to be (mutually) independent,

if any proper finite subset is independent.

Intuitively, this is the case, if the outcome of any random variable has no effect on the

probability distributions of the rest.

Let n ∈ N, F : R → R be a distribution function and Xk be a collection of independent

real-valued random variables such that F (x) = P (Xk ≤ x) , k = 1, . . . , n. Then, Xk is called

a random sample of length n.

Notice that this definition can be extended in a straightforward way to samples of ran-

dom fields and multivariate random samples. For random fields over a topological space

T , consider a collection of distribution functions T → (R→ R) , t → Ft. Now, we can de-

fine a sample of random fields of length n ∈ N as a collection of random variables such that

Xk = Xk,t (k = 1, . . . , n, t ∈ T). With regard to multivariate samples of m ∈ N components,

Ismail Demir 23

2.3 Mathematical Background

let us consider a collection of distributions, {1, . . . , m} → (R→ R) , l → Fl. Now, we can

define a multivariate random sample of length n ∈ N and m components as a collection of

random variables Xk,l (k = 1, . . . , n, l = 1, . . . , m). Of course, both properties can also be

combined, although we omit the formal definition.

Given a random sample Xk, (k = 1, . . . , n) on a probability space (Ω,F , P), the realizations

of each random variable, that is Xk (A) for a single event A ∈ F , are called sample points or

observations.

We now look upon two applications that are of particular importance throughout this thesis.

Ensembles

An ensemble consists of a number of possible states of a real system [Gib02]. Let (Ω,F , P)

be a probability space and T be a topological space. Let U ⊂ T be a (usually finite) subset of

points and Xk = Xk,u (k = 1, . . . , n, u ∈ U, n ∈ N) be a sample of random fields. Moreover,

let A1, . . . , An ∈ F be events. Then, each state or member, indexed by k ∈ {1, . . . , n},
comprises the sample points Xk,u (Ak) (u ∈ U) belonging to a sample of random fields. The

collection of all states is called the ensemble. Notice that this definition can be directly

extended to multivariate ensembles. Again, we refrain from giving the technical definition.

Based on the sample points, the objective is to recover a probability distribution function

fu : Ω → R, or some statistical quantities like mean or standard deviation at every point

u ∈ U . When T = R
d (d ∈ N), and U is resolved uniformly on a Cartesian grid, the points

u ∈ U are called grid points. Moreover, if we are only interested in describing the raw data set,

we can use the convenient form {1, . . . , n} × U → R. Ultimately, the goal of ensemble-based

visualization techniques is to visually convey the recovered quantities to the user. Ideally, this

is done in a way that lets the expert focus on the relevant features.

When an ensemble is produced by running multiple simulations, the events Ak (k = 1, . . . , n)

constitute the input parameters and the random variables Xk,u represent the deterministic

algorithms used for performing the simulation. Note that non-deterministic algorithms can

always be rewritten into a deterministic form by shifting the random elements to the input

parameters, i.e., by extending the sample space accordingly.

Ensemble visualization is discussed in Chapters 4, 5, 7. A data set that is frequently used

throughout this thesis comprises the results of a weather forecast simulation. In this example,

different meteorological quantities like temperature, humidity, wind velocity, are predicted.

Each ensemble member contains the outcome of a different simulation run at grid points over

a certain geographical area.

24 Ismail Demir

2.3 Mathematical Background

Scattered Data

Formally, a scattered data set is an ensemble consisting of 1 member at scattered points

u ∈ U ⊂ T within a topological space T . By scattered, we mean that points are not necessarily

aligned at a regular grid. However, here we pursue a different objective: By using interpolation

or approximation techniques, we generate a random field X : T ∋ t → X(t) subject to

minimizing the difference between the expected outcomes and the real-world values.

When visualizing the result, it is important to present the predicted values together with a

measure of uncertainty, e.g., the standard deviation. Otherwise, we would induce a false sense

of certainty about the reconstructed values. For instance, we would expect a greater degree of

certainty in the vicinity of the measured values. To generate such an outcome, we can resort

to the distance metric associated with T , provided that T is a metric space.

Visualizing scattered data sets is discussed in Chapter 3. A previously mentioned example

is the auto data set, where fuel efficiency was measured together with certain criteria of the

car. Visualizing this data set allows the expert to analyze the influence of such criteria on

the outcome and ideally to discover possibilities of optimization. For instance, Kriging is a

commonly used method for reconstructing a random field based on scattered data and was

used to predict the distribution of gold deposits based on a few measurements [Kri51].

2.3.7 Numerical Methods

When handling sample-based data sets, in the implementation stage, numerical procedures

are used to estimate PDFs or statistical quantities. We now introduce some of these methods

used within this thesis.

Let (Ω,F , P) be a probability space and let Xk (A) (k = 1, . . . , n, n ∈ N) be the outcome of

a real-valued random sample for an event A ∈ F , in the following, for the sake of simplicity

referred to as the sample. Moreover, let X : Ω→ R be an equally distributed random variable,

i.e., having the same distribution function F = F (x) as for every Xk. Lastly, let xk = Xk(A)

for all k = 1, . . . , n.

Basic Statistical Quantities

Although we have no prior knowledge about F , we can use the sample to estimate some

statistical quantities. According to the law of large numbers, these quantities will converge to

the true quantities of X derived from the underlying distribution F (recall that, by definition,

all Xk are identically distributed and mutually independent). However, in practice, we do not

Ismail Demir 25

2.3 Mathematical Background

have an infinite supply of sample values. Hence, there is a discrepancy between the sample-

based quantities and the true quantities of X. For this purpose, let X refer to the random

variable induced by the distribution function in accordance with the sample.

A numerically stable method to compute the sample-based mean and variance in one pass

goes back to an algorithm by Welford [CGL83, Wel62]. To begin with, we set µ← 0, q ← 0.

Then, by iterating over all k = 1, . . . , n, we update

q ← q +
k − 1

k
(xk − µ)2

µ← µ +
xk − µ

k

(2.3.36)

Finally, we end up with the sample-based quantities

E

[

X
]

= µ and Var
[

X
]

=
q

n
. (2.3.37)

To compensate for the discrepancy between the sample-based and the true quantities, we can

use Bessel’s correction and thus obtain [Upt08].

E [X] ≈ µ and Var [X] ≈ q

n− 1
. (2.3.38)

As mentioned earlier, relying on mean and variance is problematic, if the underlying distribu-

tion cannot be assumed as approximately Gaussian. However, we can derive other quantities

from the sample that are more robust to non-Gaussian distributions; namely, the median,

and the minimum and maximum of all sample values. The median is defined as the quantile

Q
(

1/2
)

(see Section 2.3.4). The motivation behind taking the minimum and maximum value,

is the fact that they are roughly equal to the lower and upper quantiles

min {xk : k = 1, . . . , n} ≈ Q

(

1

n

)

max {xk : k = 1, . . . , n} ≈ Q

(

1− 1

n

)

.

(2.3.39)

Thus, the user is provided with a range, where most of the outcomes probably occur and

with a threshold that separates the lower half from the upper half, i.e., the median. Unlike

the mean and variance, these quantities obviously do not rely on any particular shape of the

probability distribution in order to convey meaningful information. Of course, other quantiles

can be presented to the user as well. Another advantage of this practice is the fact that we

only communicate data to the user that actually exists in the sample. Hence, we do not have

to worry about the possibility of showing meaningless information that does not occur in

26 Ismail Demir

2.3 Mathematical Background

reality.

Mixture Models

There exist basically two strategies to provide the user with a deeper insight into the un-

derlying distribution. Either, we directly visualize the distribution of the samples, or we

first reconstruct an estimate of the underlying probability distribution derived from the given

sample. The latter case is in particular preferable, when the samples are prone to substantial

(measurement) errors or when smoothing operations are otherwise desirable, e.g., to simplify

the data such that the user is not distracted by visual clutter.

A commonly employed approach to reconstruct probability distributions is the use of mix-

ture models. They represent mixture distributions consisting of multiple components. Each

component corresponds to a single probability distribution. We begin with the following

definition [Dey10].

Let fl : R→ R (l = 1, . . . , m) be a set of m ∈ N probability density functions. Moreover, let

αl ∈ R
+
0 (l = 1, . . . , m). Then, any combination

f =
m
∑

l=1

αlfl, such that
m
∑

l=1

αl = 1 (2.3.40)

is called a mixture.

Typically, the PDFs fi are generated by a parametric family f (x|θ), such that

fl (x) = f (x|θl) . (2.3.41)

A frequently used algorithm for this purpose is the EM algorithm (Expectation-Maximization

algorithm) that produces a Gaussian mixture. That is, a mixture consisting of Gaussian PDFs,

each specified by mean and variance, i.e. θl =
(

µl, σ2
l

)

(see Section 2.3.3). It begins with an

initial guess for the parameter settings (α1, . . . , αm, θ1, . . . , θm), and then iteratively updates

these parameters. The updating process is based on the given sample points, such that a

weight is calculated for each pair of sample point and mixture component. These weights are

then used to determine the next parameter settings. A complete explanation of this algorithm

would go beyond the scope of this thesis. Instead, let us refer to Bilmes [Bil98].

Ismail Demir 27

2.4 Visualizing Uncertain Data Sets

Clusterings

The EM algorithm also yields a clusterization, namely it separates the sample points into

distinct groups or clusters. More precisely, it returns the probability that point xk belongs to

cluster (i.e., mixture component) l, for all pairs of sample points and clusters [GC11]. This

gives rise to the following definition [KMN98].

Let (Ω,F , P) be a probability space and let xk = Xk (A) (k = 1, . . . , n, n ∈ N) be a sample

for an event A ∈ F . Let m ∈ N. Then, a mapping

C : {1, . . . , n} × {1, . . . , m} → [0, 1] , (k, l)→ pk,l (2.3.42)

is called a clustering or clusterization of the sample, where pk,l is the probability of point xk

belonging to cluster l. It is said to be comprising m clusters. Moreover, if

pk,l ∈ {0, 1} for all k = 1, . . . , n, l = 1, . . . , m, (2.3.43)

then C is said to be a hard clustering. Otherwise, it is said to be a soft or fuzzy clustering.

Notice that a soft clustering is subject to some extent of uncertainty, which is intuitively

justified, because of the uncertainty introduced by empirical measurements or simulation

runs. However, it still is sometimes preferred to use hard clustering, e.g., for the sake of

simplicity. K-means and hierarchical clustering are commonly used algorithms that yield hard

clusterizations. The concept behind hierarchical clustering is introduced in Section 5.3.2. For

a comprehensive overview of clustering algorithms, let us refer to Jain [Jai10].

2.4 Visualizing Uncertain Data Sets

After establishing a mathematical foundation, we now discuss the visualization of multidi-

mensional uncertain data sets. As it has likely become apparent to the reader, visualizing

uncertain data is a difficult endeavor. Brodlie et al. have suggested some explanations, why

this is the case [BOL12]:

• Complexity. Uncertainty is a complex issue, as it is self-referential, i.e., there is always

uncertainty about uncertainty.

• Different representations. There are different ways of representing uncertainty that

have to be considered, when designing a visualization scheme. Measurement accuracy,

ensemble data and PDFs are some examples of such representations.

28 Ismail Demir

2.4 Visualizing Uncertain Data Sets

• Propagation. As already mentioned in Section 2.1, uncertainty propagates throughout

the whole visualization pipeline. Hence, linking uncertainty to a single source is not

faithful to reality.

• Extra dimension. Uncertainty adds an extra dimension, which has to be considered

during visualization. This is not a trivial task, for instance, because occlusion artifacts

have to be avoided and the human perception is limited to three dimensions.

• Prominence. Often, uncertainty is visualized in a prominent way and thus, areas of

greatest uncertainty tend to outshine areas of greater certainty, which is not desirable

in many applications.

• Another discipline. Many visualization techniques have been developed in interdis-

ciplinary collaboration. Brining in uncertainty requires cooperation with experts from

the field of statistics in order to evaluate and advance the theoretical background.

• Rendering hardware. Modern graphics hardware often requires a linear approxima-

tion of geometry, thus introducing the undesirable effect of rendering uncertainty.

Thus, for developing effective visualization systems, it is paramount to abstract from the

raw uncertainty information in a way that preserves the important features from an expert’s

point of view. Such abstractions are often based on simplifying the underlying probability

distributions or reorganizing the data, e.g. by clustering or segmentation.

Generally speaking, uncertainty visualization can be classified according to different criteria.

In the following, we give an overview of popular approaches and present some examples of the

respective visualization techniques. Hereby, we concentrate on multidimensional data as this

is the focus of the present thesis. In this section, we give a short overview of related work and

present a classification scheme, which allows us to put our contributions into context of the

research area of uncertainty visualization. A more thorough outline of work that is related to

ours is presented together with our specific contributions in the following chapters.

2.4.1 Data Dimensionality

According to Potter et al., uncertainty visualization can be categorized by data dimensionality

and uncertainty dimensionality [PRJ12]. Data dimensionality is discussed in this section.

The next section addresses the uncertainty dimension. Data dimensionality corresponds to

the independent variables, i.e., the dimension of the sample point’s space. Formally speaking,

this is the dimension of the topological space of the underlying random field, provided that

it is a Euclidian space (see Section 2.3.5). Some examples are shown in Figure 2.5.

Ismail Demir 29

2.4 Visualizing Uncertain Data Sets

a) b) c) d)

Figure 2.5: Examples for different data dimensionality. a) 1D: A typical box plot. b) 2D:
Slice-based spatial view from our Multi-Charts visualization scheme [DDW14]
(see Chapter 4, © 2014 IEEE). c) 3D: Combination of conventional isosurface with
volume rendering techniques [JS03] (© 2003 IEEE). d) Higher dimensions: Parallel
coordinates extended to include uncertainty information [FKLT10] (© 2010 IEEE).

One Dimension

For visualizing one-dimensional data with uncertainty, box plots are the most commonly used

technique [BHJ∗14]. In their basic form, they show five characteristic points, namely the

minimum, maximum, lower and upper quartile, i.e., Q
(

1/4
)

and Q
(

3/4
)

, and the median.

Various modifications have been proposed, e.g., such that information about the density

function is included [RM78].

Two Dimensions

Many techniques have been proposed for this case. Most prevalent is the use of color maps,

often extended by additional features, such as glyphs, contours and annotations [PRJ12]. For

instance, Potter et al. have introduced a visualization system that presents mean and standard

deviation based on ensemble data, by color-coding the mean and indicating standard deviation

in the form of overlaid contours [PWB∗09a]. Osorio and Brodlie have extended the concept

of contouring to probabilistic, i.e., uncertain, contours [AOB08]. Glyph-based visualization

techniques are introduced in Section 2.4.3.

Three Dimensions

When visualizing three-dimensional data, it is significantly harder to integrate information

about uncertainty into the visualization scheme. The reason for this lies in the fact that

any 3D view suffers from inherent occlusion effects. Moreover, as screens are limited to two

dimensions, some kind of transformation—typically a projection—is necessary to put 3D data

on a 2D screen. Of course, in this process, the spatial context cannot be preserved, which

constitutes another obstacle that has to be addressed. This problem can be rectified to a

30 Ismail Demir

2.4 Visualizing Uncertain Data Sets

certain extent by allowing the user to move and rotate the object in order to get a better

impression of its shape. Yet, the fundamental difficulty of dimensionality reduction prevails, in

particular when adding another dimension of uncertainty. Clearly, it is infeasible to visualize

full PDFs at every point in a 3D environment. Hence, sophisticated techniques are essential

to address this issue in a way that does not oversimplify uncertainty information and at the

same time avoids distracting the user by visual artifacts.

A great amount of research is devoted to visualizing uncertain 3D data sets. Djurcilov et al.

have proposed a technique for integrating volumetric uncertainty into direct volume rendering,

by either modifying the rendering equation or by running a post process [DKLP01]. Pöthkow

et al. introduced a method to visualize the positional uncertainty of isosurfaces, which relies

on the probability distribution of isosurfaces [PH11]. Pfaffelmoser et al. have built upon their

method by factoring in correlations in order to obtain more reliable probabilities [PRW11]. By

combining conventional isosurface with volume rendering techniques, surrounding regions of

uncertainty can be visualized as areas of lower opacity [JS03]. Recently, Athawale et al. have

introduced a probabilistic method to extract isosurfaces from uncertain scalar fields. Their

approach quantifies and visualizes spatial uncertainty based on a probabilistic marching cubes

algorithm [ASE16].

Higher Dimensions

The most prominent application of higher dimensional data is the integration of time as

another dimension. Typically, such data sets are visualized by sequentially animating over

time steps, which will be discussed in Section 2.4.3. Other applications include non-spatial

domains, where dimensions correspond to parameters that can represent basically any (nu-

merical) quantity. Visualizing such data sets is evidently an even more challenging task, as in

this case even projections are in most situations useless. This is due to the fact that our visual

cognition is limited to three dimensions, and with the possible exception of some very basic

views, most human beings cannot conceive renderings of higher dimensional projections, for-

getting even about the severe occlusion effects that would occur. Hence, completely different

approaches have to be developed for this issue.

Two common alternatives to handle higher dimensional data sets are parallel coordinates and

multiple views. Parallel coordinates are named after the fact that their axes are all aligned

parallel to each other. Data points are then inserted as line strips such that each vertex is

placed on the axis, which corresponds to the respective component of the data point vector.

Ge et al. have used parallel coordinate plots to visualize uncertainty in remotely sensed

data [GLLL09]. They classify data by utilizing a soft clusterization method and then show

probability, fuzzy membership and the associated uncertainty, which are produced by their

Ismail Demir 31

2.4 Visualizing Uncertain Data Sets

a) b) c)

Figure 2.6: Examples for different uncertainty dimension. a) Scalar: Segmenting scalar data
according to user-selected criteria of importance [KVUS∗05] (© 2005 IEEE). b)
Vector: Visualizing transport variabilities in flow field ensembles by enhanced
spaghetti plots [JKW16] (© 2016 WSCG). c) Tensor: Volume rendering to de-
pict the uncertainty from fiber orientation distribution function glyphs [JPGJ12]
(© 2012 IEEE).

classification algorithm, on parallel coordinates. Feng et al. generate density plots based on

uncertain data sets and then extend the concept of parallel coordinates to include uncertainty

information [FKLT10].

2.4.2 Uncertainty Dimension

Depending on the dimension of the measure of uncertainty, different visualization techniques

have been proposed. The dimensionality of uncertainty corresponds to the dependent vari-

ables, i.e., the dimension of the sample’s image space (see Section 2.3.5). Examples are

depicted in Figure 2.6.

Scalar

Visualizing scalar fields, i.e., where the sample’s image space is real-valued, is perhaps the

most thoroughly investigated area in the field of uncertainty visualization [PRJ12]. Numerous

methods have been proposed to address this kind of data. Here, we will pick out only a few

such examples. For instance, Mihai and Westermann have proposed a method for analyzing

the stability of certain relevant points, namely the critical points, in scalar field ensembles.

They derive statistical quantities from the ensemble, and then classify domain points accord-

ingly with respect to the occurrence and type of critical points that can occur [MW14]. Coninx

et al. have proposed a technique that combines a color-based approach with the integration

of Perlin noise to pack data with their associated and present it to the user [CBDT11]. Kniss

et al. have developed a system that visualizes fuzzy classifications by combining them into a

single probabilistic space. Their classification algorithm is based on segmenting scalar data

32 Ismail Demir

2.4 Visualizing Uncertain Data Sets

according to user-selected criteria of importance [KVUS∗05]. Also notice, that most of the

approaches mentioned in the previous section belong to the category of scalar fields.

Vector

When dealing with vector fields, where the sample’s image space is vector-valued (i.e., multi-

variate), approaching uncertainty becomes a significantly more complicated issue. Intuitively,

this is the case, because for vectors affected by uncertainty, deriving statistical quantities is

even more prone to errors and misinterpretations than for scalar values. For instance, the

concepts of mean and variance are apparently useless when vectors are pointing in very dif-

ferent or even opposite directions. Likewise, quantiles, and in particular the median, cannot

be defined meaningfully in a straightforward fashion.

Visualizing vector fields can be subcategorized into conveying global and local information

to the user. Depending on the application, a different strategy has to be chosen. Various

techniques have been developed that extend both kinds of techniques to uncertain vector

fields. Global visualization schemes are typically based on rendering pathlines of particles

that are injected into the vector field, which is interpreted as a flow field. Botchen et al.

have introduced a texture-based method to visualize uncertainty in non-stationary flow fields

by advecting a texture over time. They indicate uncertainty by blurring the respective re-

gions [BWE05]. A different approach has been proposed by Ferstl et al. that uses principal

component analysis to discover trends in an ensemble of streamlines. These trends are then

visualized as confidence regions, where streamlines will likely exist [FBW16]. Jarema et al.

have proposed a comparative visualization technique for analyzing transport variabilities in

flow field ensembles. They draw enhanced spaghetti plots using color and opacity to encode

temporal evolution and representativeness for each member [JKW16]. Local schemes are often

visualized by glyphs, which will be introduced in Section 2.4.3.

Tensor

Not so much work has been devoted to visualizing uncertain tensor fields as compared to the

aforementioned cases. As this issue is clearly beyond the scope of this thesis, we introduce

it only briefly by two examples. Jiao et al. have proposed a visualization technique for

ensembles of fiber orientation distribution function glyphs. Their method utilizes volume

rendering to depict the uncertainty extracted from the given ensemble [JPGJ12]. Zhang et al.

have developed a glyph-based method to visualize local differences between diffusion tensors

and have demonstrated the effectiveness of their approach in a user study [ZSL∗16]. We will

discuss glyph-based visualization techniques in Section 2.4.3.

Ismail Demir 33

2.4 Visualizing Uncertain Data Sets

b) c) d)a)

Figure 2.7: Examples of different approaches according to Pang et al. a) Attributes: Hy-
perslices from our contribution of visualizing progressive response surfaces, data
certainty represented by saturation [DW13] (see Chapter 3, © 2013 EURO-
GRAPHICS and Blackwell Publishing). b) Geometry: Uncertain surfaces ren-
dered as point clouds with a displacement proportional to uncertainty [GR02]
(© 2002 IEEE). c) Glyphs: Glyph-based representation of directional distri-
butions [JDKW15] (© 2015 IEEE). d) Animation: Time-varying appearance
of uncertainty by using a probabilistic transfer function (three frames are
shown) [LLPY07] (© 2007 IEEE).

2.4.3 Approach

Pang et al. have grouped the area of uncertainty visualization according to different ap-

proaches [PWL97]. Since then, various techniques have been developed that fit into those

categories. We now introduce these groups of approaches and present a few examples. Some

of them are shown in Figure 2.7.

Attributes

Modifying attributes of the geometry is perhaps the most easily understandable approach for

incorporating uncertainty. Here, in the process of rendering, shading and lighting techniques

are modified to produce renderings that feature information about uncertainty. Examples

of this include color-coding uncertainty, altering reflectivity coefficients and varying surface

normals.

Rhodes et al. have proposed a method for rendering isosurfaces such that a scalar extent of

uncertainty is color-coded by modifying the hue in the resulting visualization. By altering

opacity and hue, their approach can convey additional information along the uncertainty to

the user [RLBS03]. In a recent article by Potter et al., uncertainty is determined by using the

Shannon entropy which does not rely on the existence of a mean value, and is then mapped

to a coloring scheme [PGA13]. Hengl has proposed a method that uses the Hue-Saturation-

Intensity (HSI) coloring scheme to visualize both the predicted values and the uncertainty by

34 Ismail Demir

2.4 Visualizing Uncertain Data Sets

encoding them into different channels of the HSI scheme: That is, the value is encoded as

the hue, and the uncertainty as the saturation, where more certain values correspond to more

saturated colors [Hen03].

Geometry

Adding or modifying geometry is another popular approach to depict uncertainty. For in-

stance, contour lines or isosurfaces can be added to indicate the degree of uncertainty. Trans-

forming existing geometry, e.g., by translation or rotation, is another way of displaying un-

certainty.

As a typical example, consider spaghetti plots—a commonly used tool for showcasing iso-

contours of all members at the same time [All10]. Pfaffelmoser and Westermann have built

upon this technique by reconstructing probability density values based on the initial ensemble.

Then, on this basis, uncertainty and topology of isocontours are computed and visualized in

an effective way [PW13]. Lasagna plots are another extension of spaghetti plots that confine

contour lines to prevent overlapping and make use of color gradients to support the user in

interpreting the result [SCJ∗10]. Another approach was proposed by Grigoryan and Rhein-

gans. They render uncertain surfaces as point clouds and displace the points along the surface

normal by an offset proportional to the degree of uncertainty [GR02].

Glyphs

Another approach of visualizing uncertain data sets is the utilization of glyphs. Glyphs are

geometric objects that encode information through shape and color. As glyphs can easily show

directional quantities, they are often used in the context of vector or tensor fields. Although

glyphs can be regarded as a special case of using geometry, according to Pang et al., they

differ insofar as they represent discrete information [PWL97]. That is, glyphs do not convey

continuous information. Instead, information from connected regions is aggregated and then

a glyph is rendered at that region, which encodes the respective information.

For instance, Jarema et al. have proposed a technique for visualizing 2D vector field ensembles.

To construct glyphs, they first generate directional distributions by using mixture models.

Then, the result is mapped to a glyph-based representation, which is communicated to the

user. By employing an interactive panning and zooming mechanism, experts can gain detailed

insights into specific regions of interest [JDKW15]. Schultz et al. have introduced a system

to visualize fiber probability distributions based on an embedding into a Hilbert space. This

information is then rendered as a glyph-based view, which also provides an insight to the

underlying uncertainty [SSSSW13].

Ismail Demir 35

2.4 Visualizing Uncertain Data Sets

Animation

Animation introduces another dimension in visualization schemes, thus allowing for integrat-

ing an additional quantity without increasing the complexity of any single frame. However,

there are two obstacles that have to be considered when animation is employed: First, ani-

mations are necessarily sequential, meaning that the user can hardly recognize the connection

between frames that are further apart in the animation. Second, animations cannot be printed

out (except for printing out the individual frames), although this might not be such an im-

portant issue in an age of widely available computers and handheld devices.

Animation has been used in various ways in the context of uncertainty visualization. For in-

stance, Gershon has presented a system that presents an otherwise static image by segmenting

it into different components and then looping over these components. By using blurring tech-

niques, uncertain details can be emphasized [Ger92]. Lundström et al. have introduced a

method that uses animation to communicate uncertainty by using a probabilistic transfer

function in the context of direct volume rendering. This results in time-varying appearances

of uncertainty [LLPY07]. Another technique was proposed by Zuk et al. that reveals tempo-

ral uncertainty for archaeological data sets with different time stamps. By animating over the

time, uncertainties can easily be discovered by the expert [ZCG05]. Recently, Hao et al. have

introduced a method for visualizing temporal ensembles by employing 3D shape comparison

techniques to detect common changes in shapes over time and members. They use animation

to display these changes by continuously fading in and out member segments [HHB16].

Others

Other approaches include psycho-visual effects and sonification, i.e., communicating informa-

tion to the user by using sound. As these approaches are clearly beyond the scope of this

thesis, we do not go into further details. Instead, let us refer to Pang et al. for a detailed

overview on that issue [PWL97].

2.4.4 Composition

Based on the scheme proposed by to Bonneau et al. [BHJ∗14], we can classify uncertainty vi-

sualization techniques by the way in which they compose basic views. We finish our discussion

about the classification schemes with this section.

36 Ismail Demir

2.4 Visualizing Uncertain Data Sets

1D 2D 3D Higher Dimensions

b,d b,c,d a

Scalar Vector Tensor

a,b,c,d (b)

Attributes Geometry Glyphs Animation

a,b b,c,d d c

Multiple Views Integration

a,b,d c,d

Data Dimensionality

Uncertainty Dimension

Approach

Composition

Figure 2.8: Our techniques in context of the presented classification schemes. Notice that
some techniques fit into multiple categories of the same scheme. a) Progressive
Response Surfaces [DW13] (see Chapter 3). b) Multi-Charts [DDW14] (see Chap-
ter 4). Note that applying this method to vector field ensembles might be a
worthwhile future research direction. c) Screen-space Silhouettes for Isosurface
Visualization [DKW16] (see Chapter 5). d) Visualizing the Centrality of Shapes
(see Chapter 7). Note that our contribution “Vector-to-Closest-Point Octrees” is
not a visualization technique [DW15] (see Chapter 6), but it serves as a foundation
of d).

Multiple Views

Often, uncertainty can be seen by visualizing the differences between images generated from

different points of view or from different algorithms. A common approach for this is visualizing

multiple views side-by-side such that they can be compared by the expert.

An example of this method can be found in the work of Jiao et al., where they quantify

the differences between images produced by fiber tracking algorithms. By showing a side-by-

side comparison, each pair of these algorithms can be analyzed [JPS∗10]. Kehrer et al. have

proposed a model for comparing many categories of multi-variate data sets in a small-multiple

display. They organize categories in a hierarchical way, and then utilize this hierarchy to show

meaningful comparisons between multiple graphics [KPBG13].

Integration

As an alternative to drawing multiple views next to each other, they can be integrated or

overlaid in the same image. This has the advantage that the spatial coherence between the

different views is preserved. However, it comes at the expense of additional occlusion effects,

which has to be taken into careful consideration.

Wittenbrink et al. have presented several techniques of showing data with uncertainty in

the same view that can be applied both to spatial and temporal domains. For instance,

Ismail Demir 37

2.5 GPU Acceleration

they overlay line glyphs in order to indicate regions of greater uncertainty [WPL95]. Jospeh

et al. have developed a system for displaying uncertainty in isosurfaces. By visualizing

statistical information, they enable users to compare isosurfaces generated by different algo-

rithms. Uncertainty is visualized by various techniques, including overlaying, coloring and

transparency [JLRP99].

2.4.5 Context

Now that we have introduced various criteria for classifying uncertainty visualization, we

present an overview of our contributions and publications in the context of this scheme. This

is shown in Figure 2.8. In this table, each of our techniques is assigned to its respective

category of each classification scheme.

2.5 GPU Acceleration

Every visualization technique, when implemented, is built upon an underlying rendering sys-

tem, i.e., a system that produces images from geometric models. In particular, when im-

plementing 3D visualization techniques, it is paramount to have efficient rendering methods

at hand in order to achieve interactive frame rates. Modern graphics cards are capable of

running sophisticated visualization techniques in real-time. Hence, they provide the user with

feedback mechanisms that allow steering the visualization interactively, e.g., by moving the

camera or by rotating an object. Real-time rendering is the discipline concerned with this

issue, and since we rely throughout this thesis on efficient rendering algorithms, we will give

a brief introduction on this subject in the following.

Due to the progress in the development of modern graphics cards, they can nowadays also

be used in the context of highly efficient computations. This is of particular interest in the

context of uncertainty visualization, as these techniques often rely on transforming the raw

data, e.g., ensemble data, into a form that is suitable for rendering. The previously mentioned

mixture models, for instance, have this requirement. Consequently, using GPUs—graphics

processing units—constitutes a great advantage on this issue, as it enables the user to quickly

see results from the input data. For instance, when running a simulation in the background

that continuously supplies new data by reacting to the expert’s requests, visualizing the

output can be a challenging task, where GPU-accelerated computations can prove as helpful.

As being of great importance for some of the techniques presented in this thesis, we will also

give a short introduction on this topic.

38 Ismail Demir

2.5 GPU Acceleration

CPU GPU

Control

ALU ALU

ALU ALU

Cache

DRAM DRAM

0

1000

2000

3000

4000

5000

6000

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

CPU Double CPU Single GPU Double GPU Single

Figure 2.9: Left: Fundamental differences in design philosophies of CPUs and GPUs (adapted
from NVIDIA [NVI10]). GPUs devote more transistors to data processing, CPUs
have a greater priority on caching and flow control. Right: Comparison of the-
oretical floating point operations per second, in GFLOP/s, since 2002 [NVI10].
Notice the increasing gap between GPU and CPU.

2.5.1 Background

Let us begin with an overview of modern GPU’s capabilities and let us point out the dif-

ferences to traditional CPU-based implementations. Since 1945, when von Neumann first

described the concept behind the von Neumann architecture, software programs are typically

written in a sequential form [vN93]. That is, such programs are executed by sequentially

processing the specified instructions. Historically, the expectation was that each new gen-

eration of processors involved a further increase in computational power. Thus, users and

developers have continuously seen running their software faster without the need for modi-

fying the concept of sequential execution. However, this trend has stopped in the past years

and it will probably not resume in the foreseeable future. As a consequence, the paradigm

of writing strictly sequential programs has to be abandoned for achieving significant perfor-

mance improvements. Instead, by writing programs that run multiple threads concurrently,

major increases in performance are possible. This is due to the fact that modern processors

consist of multiple cores, where all cores execute instructions at the same time. Hence, the

computational throughput is in the best case multiplied by the number of cores that are used.

However, implementing parallelized algorithms is not a trivial task and not all algorithms can

be parallelized at all [Sut05].

Rendering is a discipline that highly benefits from parallelization, as geometry and frag-

ments can be processed independently from each other. Moreover, many of these instructions

are floating point operations leading to a design philosophy of GPUs that maximizes their

throughput of floating point operations [KH10]. Consequently, CPUs and GPUs have fun-

damental differences in their design philosophies. This is shown in Figure 2.10 (left). CPUs

Ismail Demir 39

2.5 GPU Acceleration

follow the multicore design that focuses on the optimization of sequential code by using con-

trol logic that distributes sequential instructions to multiple cores. Furthermore, they have

large cache memories to reduce latencies of complex applications. This allows for running dif-

ferent instructions for each thread. Thus, threads are typically of heavy weight and managing

and scheduling is done explicitly. In contrast, GPUs follow the manycore design that aims

at maximizing computational throughput instead of minimizing latency. As threads are very

lightweight and are managed on the hardware level, GPUs are adapted for running massive

numbers of numerical computations concurrently. Consequently, they do not perform as well

as CPUs on tasks that are not adapted to this design philosophy [KH10, Reg08]. The advan-

tages of GPUs are not only relevant in the context of rendering, but they can be expanded to

all areas of numerical computations, provided that efficient GPU implementations of such al-

gorithms are possible. Figure 2.10 (right) shows a comparison of floating point operations per

second for modern GPUs and CPUs. Clearly, the GPU outperforms the CPU significantly.

2.5.2 Real-Time Rendering

Real-time rendering is an interactive area of computer graphics, meaning that it produces im-

ages so quickly that action by the user is almost immediately followed by visual feedback. Due

to the advances in modern graphics hardware, efficiency and quality of computer-generated

images is ever-increasing [Möl08]. OpenGL, developed by the Khronos Group, and Direct3D,

by Microsoft, are currently the two major graphics application programming interfaces (API)

for desktop PCs [KH10]. Since the work in this thesis was implemented by exclusively us-

ing Direct3D for real-time rendering, we will only give a brief introduction to the Direct3D

APIs. However, all techniques presented in this work can also be implemented without any

restriction in OpenGL.

Introduction to Direct3D

Direct3D is a low-level graphics API for drawing 3D graphics and it is part of the DirectX soft-

ware development kit (SDK) [Mic16]. The Direct3D API can be used for rendering triangles,

lines and points, and starting from version 11, it can also be used for general-purpose parallel

operations. By fully utilizing the graphics hardware and emphasizing parallel processing, very

high computational throughput can be achieved. Direct3D provides an abstraction for various

GPU implementations, thus saving the developer the time of learning manufacturer-specific

hardware details. At the core of Direct3D is the graphics pipeline, where input data flows

from different sources and images (or computational results) come out. Parts of the graphics

pipeline are programmable, which makes Direct3D perfectly suitable for highly customized

40 Ismail Demir

2.5 GPU Acceleration

Input
Assembler

Stage

Vertex
Shader
Stage

Hull
Shader
Stage

Tessellator
Stage

Domain
Shader
Stage

Geometry
Shader
Stage

Rasterizer
Stage

Pixel
Shader
Stage

Output
Merger
Stage

Stream
Output
Stage

Memory Resources (Buffers, Textures, Constants)

Configurable Stage Flow Programmable Stage Data Legend:

Figure 2.10: Graphics pipeline for Direct3D 11 (adapted from Microsoft [Mic16]). Stages in
red are fully programmable using HLSL.

visualization techniques. Such programs are called shaders, and they are implemented in

HLSL, the High Level Shading Language for DirectX. We will now continue with an overview

of the graphics pipeline.

Graphics Pipeline

Figure 2.10 shows a data flow diagram through the stages of the programmable graphics

pipeline for Direct3D 11. It is worth noting that each stage can be configured. Moreover,

stages drawn in red feature shader cores and they are fully programmable using HLSL. We

will now go on with a description of each stage [Mic16].

• Input-Assembler Stage. In the first stage, primitive data, e.g., triangles represented

by vertex and index buffers, are read and assembled into primitive types, such as triangle

lists, that will be processed by the next pipeline stages.

• Vertex-Shader Stage. In this programmable stage, vertices passed from the input as-

sembler are processed, while optional per-vertex operations are carried out. For instance,

vertices can be transformed, and other attributes such as lighting can be computed.

• Geometry-Shader Stage. This stage is also programmable and it has the ability

to create or delete vertices. A geometry shader operates on primitives rather than on

vertices. Hence, they can be used to alter the topology of the scene’s geometry. Sprite

rendering and fur generation are typical examples of using a geometry shader.

• Stream-Output Stage. The purpose of this stage is to stream vertex data to buffers

in memory. Such data can then, for instance, be copied to a resource that can be read

by the CPU and fed back into the pipeline.

Ismail Demir 41

2.5 GPU Acceleration

• Rasterizer Stage. In this stage, vector information is rasterized into an image. This

is achieved by transforming each primitive into fragments (or pixels) that are covered by

the primitive’s area. In doing so, per-vertex values are interpolated across the fragments.

Moreover, clipping against the view frustum, perspective projection, and mapping to a

viewport is carried out.

• Pixel-Shader Stage. The rasterizer invokes a pixel shader for every fragment covered

by a primitive, which is executed in this programmable stage. It enables the implemen-

tation of highly customized shading techniques, such as lighting, post-processing and

even ray-casting as demonstrated in one of our contributions (see Chapter 6).

• Output-Merger Stage. Finally, the previously generated fragments are combined and

merged into the output image. Optionally, depth and stencil testing are performed to

remove fragments that are not visible to the viewer, e.g., when they lie behind another

object. Moreover, blending is optionally evaluated as a combination of multiple semi-

transparent fragments on the same screen-space position.

• Hull-Shader, Tessellator, Domain-Shader Stage. Here, more complex geometry

is converted into triangles. Since tessellation is beyond the scope of this thesis, we do

not go into further details on this issue.

• Compute-Shader Stage. Although not shown in Figure 2.10 (and not part of the

graphics pipeline), in this stage general-purpose computations can be carried out, sep-

arate from the actual rendering process. This technology is known under the name

DirectCompute. We discuss the subject of general-purpose computations in the next

section.

2.5.3 GPGPU Computing

General-purpose computing on graphics processing units (GPGPU) is a technique that uses

GPUs to solve general-purpose computation problems. It started in the last decade, when

developers discovered the great advantage of exploiting the numerical capabilities of GPUs

for general computations. At first, such problems had to be transformed into graphics oper-

ations, which were then usually carried out on the pixel shader using Direct3D or OpenGL

and written to a texture. However, this was a rather complicated task and it turned out

that shaders were lacking some crucial abilities, e.g., means to write to calculated memory

offsets. A major progress occurred in 2007, when NVIDIA released CUDA—a platform for

parallel GPU computing—and a new generation of graphics cards equipped with CUDA-

enabled chips. Since then, other platforms for GPU computing have been developed, namely,

OpenCL, by the Khronos Group, and DirectCompute, by Microsoft, as a part of the DirectX

42 Ismail Demir

2.5 GPU Acceleration

11 SDK [KH10]. We restrict our introduction to CUDA, as this was the only platform used

for GPGPU computations throughout the work presented in this thesis.

CUDA

CUDA—originally an acronym for Compute Unified Device Architecture—is a parallel com-

puting platform released by NVIDIA in 2007 that exploits the capabilities of the GPU. As

it can be seen as an extension to C, developers familiar with C benefit from a low learning

curve in CUDA [NVI10]. CUDA programs encompass two types of phases: Phases that are

executed on the CPU, i.e., the host, and phases that are executed on the GPU, i.e., the device.

The host code is written in standard C and it contains no or only little data concurrency.

The device code is written in an extension of C by CUDA-specific keywords for identifying

functions, that are executed concurrently on the GPU, the kernels [KH10]. The key idea

behind CUDA programs is to outsource the computational heavy tasks to the GPU, where

it can be processed much faster. Thus, the workflow of a typical CUDA application can be

described as follows.

• First, data that has to be processed concurrently, is copied from host memory to device

memory.

• Next, the CPU launches the execution of a kernel.

• The kernel is then executed by the GPU with random read and write access to device

memory.

• Finally, the result is copied back from device memory to host memory and processed by

the CPU.

To maintain scalability and efficiency, threads are partitioned into blocks, where each block

contains a fixed number of threads and shared memory resources. All threads within one block

have access to the block’s shared memory and to the global device memory. However, accessing

shared memory is significantly faster, and therefore it is necessary to organize threads in such

a way that the use of share memory (versus global memory) is maximized in order to achieve

high efficiency. In addition to that, there are many more pitfalls, when it comes to optimizing

efficiency and fully utilizing the GPU’s capabilities, which are clearly beyond the scope of this

thesis. For further information, we refer the reader to the “NVIDIA CUDA C Programming

Guide” [NVI10] and to Kirk and Hwu [KH10].

Ismail Demir 43

2.5 GPU Acceleration

CUBLAS

Various libraries have been developed that use sophisticated algorithms to perform common

tasks in computation based on CUDA. One such example is cuBLAS, a library provided by

NVIDIA that implements BLAS—Basic Linear Algebra Subprograms—on top of the CUDA

platform [NVI10]. BLAS is a de facto standard for linear algebra routines, such as matrix

multiplications or linear combinations [LHKK79]. By utilizing the GPU, cuBLAS is a powerful

tool for processing large data sets. We make use of cuBLAS in Chapter 3, where we utilize it

to perform our progressive Kriging interpolation scheme on the GPU. Similar to CUDA, the

developer must first copy data to the device memory, then call cuBLAS routines, and finally

copy the result back to the host.

44 Ismail Demir

3
Progressive Visualization of Multidimensional Scattered Data

In this chapter, we introduce a novel method that allows the user to interactively explo-

rate scalar-valued data sets via progressive response surface prediction from multidimensional

input samples. This chapter is largely based on our publication:

Demir I., Westermann R.: Progressive High-Quality Response Surfaces for Visually

Guided Sensitivity Analysis. Computer Graphics Forum (Proceedings of EuroVis 2013) 32, 3

(2013), 21–30. doi:10.1111/cgf.12089. [DW13]. © 2013 EUROGRAPHICS and Blackwell

Publishing.

3.1 Introduction

Major increases in computation power over the last decades enable us to handle more and

more complex and large data sets. More measurements for different variables can be taken

into account leading to multidimensional data sets, which can be used in computations and

analyzed in numerous ways. However, it is still challenging to visualize such data sets in a

way, which is intuitive and easy to understand for the end user. Since it is virtually impossible

for humans to recognize visual representations, which show more than three dimensions, it

is necessary to reduce the dimensionality of multidimensional data sets in some fashion in

order to make it comprehensible to the user. In this chapter, we focus on multidimensional

data sets, represented by scalar functions, f : Rn → R, where the values depend on many

independent variables. In many of these applications, the purpose is to examine the sensitivity

of a process and its outcomes with respect to the parametrization of the input variables, and

to finally optimize the result considering the detected dependency relations.

Ismail Demir 45

http://dx.doi.org/10.1111/cgf.12089

3.1 Introduction

mpg

horsepower acceleration

mpg

horsepower model year

mpg

model year origin

mpg

acceleration origin

mpg

origincylinders

mpg

displacement horsepower

mpg

model yearcylinders

mpg

accelerationcylinders

mpg

weightcylindershorsepower

mpg

cylinders

mpg

displacement weight

mpg

horsepower origin

displacement

mpg

acceleration

mpg

displacement model year

mpg

displacement origin

mpg

horsepower weight

mpg

acceleration model year

mpg

weight origin

mpg

weight model year

mpg

accelerationweight

mpg

cylinders displacement

Figure 3.1: Visualization of response surfaces for all pairs of parameters of a multidimensional
scalar function. Incremental update and visualization of the surfaces is performed
at less than 5 ms.

Very often, multidimensional functions are not given analytically, but values can only be

accessed at a discrete set of sampling points in the n-dimensional parameter space. Despite

often being a time-consuming preprocess to generate the results, sometimes the result can

be updated at very high rates from a given new parametrization. This possibility becomes

more and more feasible in numerical experimentations due to the ever-increasing capabilities

of computing architectures. As already recognized by van Wijk and van Liere [vWvL93], it is

particularly interesting, since it gives rise to a visual navigation system in higher dimensional

parameter domains and allows steering towards an ideal solution by interactive adjustments.

Nevertheless, visual exploration of multidimensional data in an intuitive way is a daunting

task, since recognizing visual representations beyond three dimensions is practically impos-

sible for human perception. Therefore, multidimensional data analysis, in general, requires

reducing the dimensionality of the multidimensional data set and thus, to enable visualizations

using common techniques for data with less than 4 dimensions.

A widespread approach for dimensionality reduction is to slice the data or to project it or-

thogonally onto some two-dimensional subspace of the n-dimensional parameter space, and

then to view the resulting value distributions in these subspaces. Since in general, the sample

positions are sparse in the selected subspaces, dimensionality reduction requires interpolation

between sample points to calculate a continuous representation in the employed 2D sampling

structures. This gives rise to an effective prediction scheme of the values at unobserved sites

and the dependencies between parameters and function values.

In particular, if the continuous approximation is visualized as a response surface, namely

46 Ismail Demir

3.1 Introduction

the graph of the continuous objective function plotted over the two-dimensional subspace, an

improved exploration of the relationships between parameters and the objective is conceivable.

The option to consider features of the surface’s topology such as extreme points, gradients, or

ridges, has the potential of greatly elevating the understanding of the dependency relations.

Unfortunately, calculating response surfaces from multidimensional input sample points is

computationally costly, for the reason that it requires a mechanism for interpolating between

scattered points in the sampling structure, over which the surface is formed. For large input

samples, a time consuming initial preprocess is then necessary to get the interpolation weights

for surface reconstruction. Even more notably, when input samples are created progressively,

for instance by user-driven parameter space navigation, every new sample point involves

reiterating the exhaustive preprocess, prohibiting an interactive visual analysis of the evolving

surface. Especially the memory consumption can quickly become a bottleneck, as many

sample points are needed to resolve a multidimensional space at a sufficiently fine resolution.

The contribution of this chapter is to propose a technique, which provides the user with an

intuitive visualization of higher dimensional scalar data sets. Our method enables an interac-

tive visual exploration of multidimensional scalar functions via high-quality response surfaces

(see Figure 3.1 for an example). The surfaces are computed via Kriging interpolation [Kri51],

a Gaussian process regression model for inference from scattered samples in a multidimen-

sional parameter domain. Kriging determines the interpolation weights solely by the data

configuration and the covariance model, and it finds the least squares estimate of a station-

ary random function that minimizes the variance of the random function increments. We

make the following contributions to the field of multidimensional scalar data interpolation

and visualization:

• Fast incremental updates of Kriging calculations. To make Kriging suitable for

interactive exploration of large sets of multidimensional scalar samples, we provide a

progressive updating scheme for the Kriging interpolation weights. This scheme builds

upon incremental matrix inversion [Ban37], and it enables updating the interpolation

weights with only minor computational effort when new sample points are added. We

employ a similar principle as underlying online learning algorithms [Opp98], where only

the last example is used for updating a learning network’s parameters. For data sets

being so large that the construction of a response surface would consume an unac-

ceptably amount of time, the scheme allows to construct the surface incrementally by

considering only one new sample point at a time. As Kriging requires exhaustive use of

matrix-vector and vector-vector operations to find the interpolation weights and data

estimations, we have implemented the entire scheme on the GPU, including incremental

updates of the inverse Kriging matrix and interpolation.

Ismail Demir 47

3.2 Related Work

• Response Surface Selection. To enable an interactive visual analysis of multidimen-

sional scalar functions, we have embedded the progressive updating scheme for Kriging

interpolation into a slice-based navigation interface similar to scatterplots and Hyper-

Slice [vWvL93]. We propose the use of parallel coordinates to interactively select the 2D

subspaces of the high-dimensional sample space, for which response surfaces should be

computed and visualized. As we provide immediate visual feedback about the structure

of the response surfaces in all subspaces, new sample values can be generated while

the user can steer the location of these points interactively to further refine regions of

interest.

The remainder of this chapter is organized as follows: Next, we discuss work that is related to

ours. In Section 3.3, we introduce the concept behind Kriging and sketch its use for scattered

data interpolation. Our progressive scheme, including a complexity analysis and GPU aspects,

is presented in Section 3.5.2. Then, we discuss approaches for selecting response surfaces via

slicing and projection. We finally present results using a real-world data set as well as detailed

performance statistics, and we conclude the chapter with a discussion about future extensions

of our work.

3.2 Related Work

Our scheme is built upon popular procedures for dimensionality reduction of multidimensional

data, in particular orthogonal projection and slicing [Asi85, FB94, vWvL93]. Scott provides

an overview of techniques in multidimensional data visualization [Sco92]. Another overview

is given by Grinstein et al. [GTC01]. Our model for displaying the reduced data is that of a

response surface, i.e., a continuous surface that predicts the objective values from given sample

points over a selected two-dimensional space [MM95, Mon06]. Unlike scatter plots [Cle85],

we aim at displaying continuous regions by drawing response surfaces, from which the user

can see correlations with less effort and estimate values at unmeasured sample positions.

A different approach is the use of parallel coordinates [Ins85, Weg90], where the data are

mapped to 1D graphs rather than points in a 2D subspace. Parallel coordinates perform a

dimensionality reduction and support findings of the existence of linear dependencies between

variables; however, spatial relationships are lost and topographic attributes as for response

surfaces cannot be determined.

To compute a continuous approximation of a discrete multidimensional function with re-

spect to a given sample, we employ methods for scattered data interpolation [FN91, Wen05].

Examples of frequently used methods for scattered data interpolation problems are radial

basis functions (RBFs) [Buh03], since they are able to interpolate arbitrary constraints in a

48 Ismail Demir

3.2 Related Work

smooth manner. Even though compactly supported radial basis functions can be used to ef-

ficiently interpolate large amounts of data, because they resemble sparse linear systems, they

do not provide the same approximation quality as basis functions of global support. On the

other hand, globally supported RBFs yield dense matrix structures and, hence, significantly

less efficient solution algorithms. Even though improved approaches exist, such as multipole

methods [CBC∗01] and incremental least-squares solutions [BK05], these procedures involve

a considerable amount of preprocessing, when new sample points emerge.

A different group of statistical means for predicting an underlying function from a given set of

discrete sample points are Gaussian processes models [OK78, Nea99]. They utilize a Gaussian

process to express the a priori uncertainty with reference to the function based on empirical

observations. These models try to characterize the dependency of an observation on a corre-

sponding input by a conditional distribution. If the observation, and hence, the function, is

a one-dimensional scalar, then we call the distribution a regression model. In geostatistics,

regression with Gaussian processes to predict a spatial phenomenon at unobserved sites is

known as Kriging, which constitutes a BLUE (best linear unbiased estimator) interpolation

scheme [Kri51, MB62, Mat63].

So far, in the field of visualization, only few approaches have adopted statistical prediction

of continuous representations from discrete sets of multi-dimensional samples for sensitivity

analysis. Examples include the work by Pieringer et al. [PBK10], where surface plots of

multidimensional functions have been used to analyze the sensitivity of surrogate models.

Torsney-Weir et al. [TWSM∗11] have employed Gaussian process models for predicting quality

metrics in image segmentation based on selected parameter settings. Moreover, they exploited

the concept of response surfaces to display the variation of the used objective function. Berger

et al. [BPFG11] have used nearest-neighbor and model-based statistical prediction methods

to derive objectives at unobserved locations in parameter space. In their system, they have

implemented statistical sampling in parameter space to obtain a set of training data, based

on which they train a response function. Recently, Schlegel et al. [SKS12] shed light on the

interpolation properties of Gaussian process regression, including Kriging interpolation, for

the purpose of interpolation and offered analytical descriptions of the underlying spatial basis

functions.

To the best of our knowledge, in none of the previous works, efficiently running continu-

ous statistical predictions was addressed in the context of discrete sets of multi-dimensional

samples, which are updated gradually. Present approaches are usually predicated on the

conjecture of a static set of observations at known positions in the parameter domain. The

opportunity to handle progressive updates of the internal representations, for instance, when

new observations emerge, has not been taken into consideration so far. Hence, we regard our

Ismail Demir 49

3.3 Kriging Interpolation

approach as an essential addition to these works that opens up new prospects for interactive

multidimensional data discovery.

3.3 Kriging Interpolation

Kriging interpolation is a probabilistic method to describe a quantity at unobserved sites

from a discrete set of observations at given locations. The principles underlying Kriging

interpolation were introduced by Krige [Kri51] in the context of geostatistics, and later put

into a formal concept by Matheron and Blondel [MB62, Mat63]. Underlying Kriging is the

notion of a random function, which describes a quantity over a spatial domain as a set of

random variables at the given locations. The spatial relations between the given observations

are expressed by the covariance structure for all pairs of variables, often represented by the

variance of the observed increments over distance, i.e., the variogram.

The main advantages of the Kriging method are the ability to interpolate between scattered

sample points, i.e., there is no need for the sample points to be aligned on a regular grid, and

the fact that Kriging is a best linear unbiased estimator (BLUE). That is to say, Kriging min-

imizes the mean squared error and has a mean error of 0 while using only linear combinations

of the given sample points.

Kriging first performs a structural analysis of the given observation to derive the dependency

structure, and then estimates interpolation weights for each given location by solving a least

squares problem. A thorough introduction to Kriging is given by Cressie [Cre93]. Even though

the interpolation properties of Kriging are well known, its use outside geostatistics is limited.

In our opinion this is mainly because of the inherent computational complexity for calculating

the linear interpolation weights. A major drawback of the Kriging interpolation is the rela-

tively high amount of necessary computations in order to calculate the linear weights. Solving

the Kriging equations directly for n observations involves inversion of an n× n matrix.

To overcome this limitation, we have developed a GPU-friendly method, which makes heavy

use of parallelization. Other acceleration schemes have been proposed, like ad-hoc methods

[Haa95] using locally adaptive covariance prediction, fixed rank Kriging [CJ08] using empirical

low-rank variances and covariances estimates, or a GPU implementation which intertwines

the calculation of Kriging weights and interpolation in a very efficient way [HCL∗11]. To

the best of our knowledge, possibilities to recompute Kriging weights progressively upon the

arrival of new sample points on the GPU has not been proposed until now.

50 Ismail Demir

3.3 Kriging Interpolation

3.3.1 Main Principles

The main idea behind Kriging is to spatially interpolate the quantity at a point x∗ by finding

linear weights λi of the k collected data points (xi, f (xi)) , 1 ≤ i ≤ k, yielding the interpolated

value

f̂ (x∗) =
k
∑

i=1

λi (x∗) f (xi) . (3.3.1)

The estimation is such that the error conditions mentioned before are satisfied. There have

been developed different types of Kriging, which employ different ways of calculating those

weights, such as simple, ordinary and universal Kriging. Here, we consider only ordinary

Kriging, since, aside from the sample, it only needs a covariance function to accomplish the

interpolation. The covariance is a probabilistic measurement, which specifies to which degree

two random variables change together. More formally, it is defined as

Cov (x, y) = E [(x− E [x]) · (y − E [y])] ,

where E denotes the expectation value operator. Intuitively the covariance should increase

when two points of the random field are closer together. Assuming that the underlying random

field is stationary, i.e., expectation value µ and variance σ2 are constant, and covariance

depends only on the distance between two points, we can use a simple model to estimate the

unknown covariance. Here, we use the Gaussian model given by

Cov (x, y) =







(

σ2 − n
)

exp
(

−‖x−y‖2

a·r2

)

x 6= y

σ2 x = y
,

where σ2 denotes the sill, to which the covariance tends if the distance between x and y

decreases, and r denotes the range, which determines how rapidly the covariance decreases

with a larger distance. Note that the sill is also equal to the variance, since the covariance

equals the variance if x = y. A nugget effect is modeled by n to prevent oscillatory results

when sample points with different values lie close together. The value of a allows further

adjustment of the impact of the range and is typically set to a = 1/3.

3.3.2 Ordinary Kriging

We now briefly introduce the ordinary Kriging method. In order to calculate the linear

interpolation weights λi (x∗) at the interpolation point x∗, let us consider the covariances

Ismail Demir 51

3.3 Kriging Interpolation

between all sample points Cov (xi, xj), and the covariances between the interpolation point

and all sample points Cov (xi, x∗), where 1 ≤ i, j ≤ k. To begin with, we try to find weights

λi (x∗) such that

Cov (xi, x∗) =
k
∑

j=1

λj (x∗) Cov (xi, xj)

holds for every i ∈ {1, . . . , k}. In other words, the covariance between any sample point xi

and the interpolation point x∗ is equal to the linear combination of the covariances between

xi and every sample point xj weighted by λj .

By defining the covariance matrix C as

C =











Cov (x1, x1) · · · Cov (x1, xk)
...

. . .
...

Cov (xk, x1) · · · Cov (xk, xk)











and the covariance vector c and weight vector x∗ as

c (x∗) =











Cov (x1, x∗)
...

Cov (xk, x∗)











as well as the weight vector

λ (x∗) =











λ1 (x∗)
...

λk (x∗)











The problem of finding the Kriging weights now comes down to solving the system of linear

equations

C · λ (x∗) = c (x∗) ,

where C is the full covariance matrix, (x∗) is the weight vector, and c is the covariance vector

to the sample point.

However, one obstacle needs to be overcome, namely the fact that the weights do not necessary

sum up to 1, which is generally required for the interpolation value to be unbiased. Therefore

we introduce a Lagrange multiplier ν (x∗) such that

C · λ (x∗) + 1 · ν (x∗) = c (x∗) , λT (x∗) · 1 = 1.

52 Ismail Demir

3.4 Minimizing Uncertainty

By defining the extended matrix and vectors

C+ =

(

C 1

1T 0

)

, c+ (x∗) =

(

c (x∗)

1

)

, λ+ (x∗) =

(

λ (x∗)

ν (x∗)

)

the problem can be rewritten as

C+ · λ+ (x∗) = c+ (x∗)

yielding the solution

λ+ (x∗) = C−1
+ · c+ (x∗) . (3.3.2)

In addition, we calculate the Kriging variance to obtain a measure for the uncertainty in the

current sampling

σ2
k (x∗) = σ2 − cT

+ (x∗) · C−1
+ · c+ (x∗)

= σ2 − cT
+ (x∗) · λ+ (x∗) . (3.3.3)

This uncertainty tells, where the density of observations is too low such that no reliable

estimate of the response surface is possible. In our current tool, the uncertainty is used to

guide the user towards regions in the parameter space where additional samples should be

retrieved.

It can easily be recognized that ordinary Kriging is an actual interpolation method meaning

that interpolating at the position of any given sample, i.e., x∗ = xi, returns exactly the

value of the very same sample, i.e., f̂ (x∗) = f (xi). That is because in this case we have

(C+)i = c (x∗) leading to the solution λ+ (x∗) = (0, . . . 0, 1, 0, . . . 0)T , where 1 lies at the

i-th position. However, this may also lead to difficulties when sample points lie very close

together or have even an identical position, which would imply a singular Kriging matrix

with two identical columns. To overcome this issue we can modify the implementation of the

covariance function in a way that it only returns σ2 if x and y refer to the actual same given

sample and apply the nugget effect in any other case. This modification results in a more

stable approximation method.

3.4 Minimizing Uncertainty

Since we are adding new sample points incrementally, it is desirable to add them in a way

that uncertain areas diminish as soon as possible. Therefore, when adding new points, we

favor such positions, where the distance to the nearest previously added sample position is

Ismail Demir 53

3.4 Minimizing Uncertainty

maximized, yielding a preferably even distribution. In this section, we will present an efficient

algorithm that achieves this goal approximately.

3.4.1 Largest Empty Circle Algorithm

To begin with, let us consider a two-dimensional finite point set P bounded by a rectangular

domain D ⊂ R
2. Our aim is now to find a point within D such that it is the center point of

the largest empty circle. By that we mean a circle, which does not contain any point in P .

This center point obviously satisfies the requirement of maximizing the distance to its nearest

point in P . We start by constructing a Delaunay triangulation for P , which is a triangulation,

such that no circumcircle of any triangle contains any point in P , also called the Delaunay

condition. There have been developed different algorithms for this construction, but since

we are adding points incrementally, we also use an incremental algorithm for the Delaunay

triangulation based on edge flipping as proposed by de Berg et al. [dBCvKO08]. However,

wo will not go into more detail here.

After constructing the Delaunay triangulation, we iterate over all triangles in order to find

the center of the largest empty circle. For this, we check for each triangle the radius of

its circumcircle and update the center position accordingly, if the radius is greater than the

largest radius found so far, and the center point lies within D. In addition, we check for

each triangle, if it is a border triangle, i.e., there is no neighbor at the edge e = p0p1. In

this case, we compute the perpendicular bisector of e and its nearest intersection ĉ with the

boundary of D. Now, we consider ĉ also as a possible center point of a circle with radius

‖p0 − ĉ‖ = ‖p1 − ĉ‖, since e is a border edge, which means that no other point in P lies

within this circle. Note that each triangle might have up to three border edges, in which case

we consider each border edge separately.

Finally, we consider the four vertices of D as possible center points. Also, note that after this

process, we have found the largest empty circle: Any other point that lies within a circumcircle

of a triangle is closer to at least one of its vertices. Furthermore, any center point that does

neither lie within a circumcircle of a triangle nor on the boundary of D can be improved by

moving it towards the boundary, thus increasing the radius of its largest empty circle. Finally,

any center point on the boundary of D, which is neither a vertex of D nor does it lie on a

perpendicular bisector of a border edge, is suboptimal, since it is closer to one vertex of its

nearest border edge than to the other and can thus be improved by moving it either closer to

the intersection with the perpendicular bisector or to a vertex of D.

Note that special care has to be taken, if P contains less than two points. This case, however,

will not be discussed here.

54 Ismail Demir

3.5 Progressive GPU Kriging

3.4.2 Extension to More Than Two Dimensions

Although it is possible to extend the Delaunay triangulation to higher dimensions, we refrain

from doing so, since the time consumption of this process increases rapidly with higher di-

mensions. Therefore, we make use of a different approach based on projection, which gives us

an efficient approximation of the optimal sample position for n ≥ 2 dimensions. We start by

constructing
(n

2

)

domains Dij , 1 ≤ i < j ≤ n, such that each domain covers the projection onto

two Cartesian axes of the sample positions. Then for every new sample, we add its projection

to all domains Dij and then run for each Dij the largest empty circle algorithm separately

yielding the center points cij with radii rij . Now, we construct an empty n−dimensional

center point c∗ and while there are at least two empty components of c∗, we copy the center

point cij with the greatest radius rij , which suffices the requirement that both components

c∗
i and c∗

j are still empty to these components. If there is still one empty component left, which

is the case, when n is odd, we assign a random number from its domain to it.

3.5 Progressive GPU Kriging

To perform ordinary Kriging interpolation, the inverse of the extended covariance matrix C+

is required. Since C+, and thus its inverse, have to be updated every time new sample points

are added, Kriging can be very time- and memory-consuming when implemented naively. To

address this problem we propose a method, which enables us to update the Kriging matrix

incrementally, meaning that the previous inverse matrix can be reused and only a small

matrix has to be inverted. This method is based on block-wise matrix inversion proposed

by [Ban37].

In block-wise inversion one assumes that the (k + l)× (k + l) matrix to be inverted is in block

form, i.e., it consists of an upper left k× k and lower right l× l matrix P and S, and a lower

left l× k and upper right k× l matrix R and Q. It is assumed that the block P is invertible.

Then, the matrix inverse can be computed as

(

P Q

R S

)−1

=

(

W X

Y Z

)

, with

Z =
(

S −RP −1Q
)−1

, X = −P −1QZ, Y = −ZRP −1

W = P −1 − P −1QY = P −1 −XRP −1.

In our scenario, since both C and C+ are symmetric due to the fact that Cov (x, y) =

Cov (y, x), we can assume P = P T , R = QT , S = ST . Thus, we arrive at the following

Ismail Demir 55

3.5 Progressive GPU Kriging

simplified formula

(

P Q

QT S

)−1

=

(

W X

XT Z

)

, with

Z =
(

S −QT P −1Q
)−1

, W = P −1 − P −1QXT . (3.5.1)

Our method for incrementing the inverse of the extended covariance matrix is now split into

two stages: From the given previous sample positions xi, 1 ≤ i ≤ k, the previous covariance

matrix C and its inverse C−1, and the added sample positions x′
j , 1 ≤ j ≤ l, the new inverse

covariance matrix C ′−1 is calculated in the following way. Let P := C, (Q)ij := Cov
(

xi, x′
j

)

,

and (S)jj̃ := Cov
(

x′
j , x′

j̃

)

, where 1 ≤ i ≤ k, 1 ≤ j, j̃ ≤ l. Then we have

C ′ =

(

P Q

QT S

)

which enables us to calculate C ′−1 by block-wise inversion. Here it is worth noting that it is

not necessary to store C since it is not required in order to calculate C ′−1. Only C−1 has to

be stored. Also, note that the only matrix that needs be inverted is of dimension l× l, where

l equals the number of added sample points.

In the second stage we calculate C ′−1
+ by a similar procedure. We now set P := C ′, Q :=

1, S := 0 and obtain

C ′
+ =

(

P Q

QT S

)

.

By applying the block-wise inversion, we finally obtain C ′−1
+ . Again, C ′ is not required in the

computation, and only C ′−1 has to be stored. The matrix to be inverted is of dimension 1×1.

Note that most operations in this process are matrix multiplications, which can be efficiently

parallelized on the GPU.

3.5.1 Computational Complexity

We now study the computational complexity of our proposed method and compare it with a

conventional matrix inversion algorithm, which does not exploit reusing the previous inverse

matrix.

In the progressive Kriging approach, the matrix C ′−1 is obtained by first calculating V :=

P −1Q, Z, X, and W , and then putting these intermediate results together. The reason

for calculating V explicitly is that it is used in subsequent steps. Since it takes O (pqr)

56 Ismail Demir

3.5 Progressive GPU Kriging

floating point operations to compute the matrix multiplication of one p × q and one q × r

matrix, O (pq) operations for adding two p× q matrices, and O (p3
)

operations for inverting

a p× p matrix, calculating V , Z, X and W respectively takes O (k2l
)

, O (kl2 + l3
)

, O (kl2
)

,

and O (k2l
)

operations. This gives a total of O (k2l + kl2 + l3
)

operations for increasing the

inverse covariance matrix by l new sample points. A similar consideration leads to O (k2
)

operations for computing C ′−1
+ .

Let us now consider a state-of-the-art GPU matrix inversion method as proposed by Ezatti

et. al. [EQOR11]. Their algorithm takes Θ
(

p3
)

operations to invert a matrix of size p × p,

i.e. Θ
(

(k + l)3
)

operations for calculating C ′−1
+ . Compared to the progressive approach this

yields a significantly higher run-time complexity when l is small compared to k, i.e., l = o (k).

In this case our method has a complexity of O (k2
)

as opposed to Θ
(

k3
)

for the conventional

method. In section 3.7.2 we verify this result in practice.

3.5.2 CUDA Parallelization

The capabilities of recent GPUs are employed via the CUDA programming language to per-

form both the calculation of the Kriging interpolation weights and the final interpolation of

the initial data sample in a highly efficient way. The first step when a new sample point arrives

and has to be considered in the Kriging interpolation is the calculation of the covariance vec-

tor with respect to the new sample position. This process is carried out in a straightforward

way by computing each element of the covariance vector by one CUDA thread in parallel. In

all our examples we used the Gaussian model with nugget effect as the covariance function.

Even for large samples, the overall time for performing this step is so small that it does not

affect the overall runtime.

From the discussion of (progressive) Kriging, it becomes clear that all time-critical compu-

tations, which are required when new sample points are added and have to be considered in

the interpolation step are matrix multiplications. Matrix-matrix multiplication can be paral-

lelized quite effectively on the GPU by computing each entry in the result matrix in parallel.

This concept can be further improved by a technique called tiling, which reduces redundant

memory accesses (see Kirk and Hwu [KH10]). In our current implementation we use cuBLAS

for virtually all matrix operations, a highly optimized GPU matrix library available in CUDA.

One of the great achievements of cuBLAS is that it makes efficient use of the GPU memory

hierarchy, trying to best utilize the fast memory segments that are shared by certain groups

of threads.

Updating the Kriging matrices C−1 and C−1
+ is done in a straightforward way by restating

Eq. 3.5.1 with cuBLAS functions. To calculate the weight vectors λ+ (x∗) at the interpolation

Ismail Demir 57

3.6 Visualizing Response Surfaces

points all at once with a single call to the cuBLAS library we utilize the fact that we can

combine all matrix-vector products of Eq. 3.3.2 to a single matrix-matrix product. That is to

say, we define

Ĉ+ =
(

c+ (x∗
1) c+ (x∗

2) · · ·
)

as a matrix containing all interpolation points, leading to

Λ̂+ = C−1
+ · Ĉ+,

where each column of Λ̂+ contains the weight vector of the corresponding interpolation

point.

The only exception where we do not make use of cuBLAS is for computing the Kriging

variance (see Eq. 3.3.3) as we need to calculate a dot product at each interpolation point.

Since cuBLAS does not provide a routine, which allows parallelized computation of many dot

products at once, we implemented a CUDA method for this task. It is based on the most

efficient parallel reduction method presented by Harris [Har07].

3.6 Visualizing Response Surfaces

Let P ⊂ R
n, n ≥ 2 denote a discrete multidimensional data set with a given scalar value

assigned to each element via the mapping f : P → R. Now, every tuple (p, f (p)) represents

a sample point, where p ∈ P indicates the position and f (p) the value of the sample point.

Our goal is to visualize this data set by a set of surfaces such that each surface represents the

scalar values over two distinct dimensions. For each selected parameter pair, we define a two-

dimensional planar sampling grid and interpolate the scalar values at the sample positions in

this grid via Kriging. These values are then used to form a surface. Each surface is rendered

as a triangle mesh on the GPU, using colors in HSL space to indicate differences in value

and uncertainty. The hue of a surface point is determined by its altitude, i.e., the scalar

value at the corresponding grid point, while its saturation is set inversely proportional to the

uncertainty. Additionally, we draw contour lines to provide the user a better classification of

the surface points.

3.6.1 Response Surface Selection

For selecting the response surfaces that should be visualized, we utilize the HyperSlice method.

Given a user-selected center point, for each pair of parameter space axes a 2D slice parallel

58 Ismail Demir

3.6 Visualizing Response Surfaces

cylinders

displacement

horsepower

weight

acceleration

model year

mpg

origin

5.45

217.79

98.47

3246.93

14.82

75.83

27.80

1.06

Figure 3.2: Utilizing parallel coordinates to adjust the center point (indicated by circles) in
HyperSlice. Parallel coordinates are color coded to show the sample density on
each parameter axis.

to the plane spanned by the two axes and going through the selected point is defined. For

every slice a separate response surface is computed.

More formally, for each pair 1 ≤ i, j ≤ n, the corresponding slice is defined by the set

{(c1, . . . ci−1, xi, ci+1, . . . cj−1, xj , cj+1, . . . , cn) | xi, xj ∈ R} .

The HyperSlice method enables the user to interactively change the center point and thereby

steer through the whole data set. In the original work, this was performed by pressing a

mouse button while the cursor points to a slice, and then dragging the center point according

to this slice. In contrast, we employ an approach, which makes use of parallel coordinates

to indicate the sample density in the region, where the center point is actually positioned.

In this way, the center point can be adjusted towards those parameter intervals that are

already well resolved, or, for instance, in a visual steering application, those intervals that

are poorly resolved can be prioritized for point selection. The proposed selection procedure

is demonstrated in Figure 3.2, where each sample point is represented by a polyline, which

has its vertices aligned at the parallel coordinate axes. To support the user in choosing the

position of the center point, every axis is color-coded from blue to red according to decreasing

sample density.

Besides visualizing the response surfaces of all selected slices in a structure similar to a scat-

terplot matrix (see Figure 3.1 for such a visualization according to the selected center point

in Figure 3.2), the use of parallel coordinates for center point selection gives rise to an al-

ternative visualization strategy: The user changes the coordinate of the center point along

one selected parameter axis interactively, while keeping all other coordinates fix. Thus, the

response surfaces for every pair of axes involving the selected axis remain unchanged, and

only for every other pair a change of the surface is triggered.

Ismail Demir 59

3.6 Visualizing Response Surfaces

mpg

model yearorigin

mpg

model yearorigin

(a) (b)

mpg

model yearorigin

(c)

mpg

model yearorigin

(d)

Figure 3.3: HyperSlice is used to display the fuel efficiency (mpg) according to origin and
model year for three different tuples of horsepower and weight: (a) (50, 1900), (b)
(80, 2500), (c) (150, 3600). Note that there is virtually no impact of origin. (d)
The whole sample is projected to the selected subspace and smoothly interpolated.
Now one can see that cars from one origin tend to have low fuel efficiency, meaning
that they generally differ in other attributes like horsepower or weight.

This is demonstrated in Figure 3.3, where we analyze data describing the fuel efficiency of au-

tomobiles in miles per gallon (mpg) [Aut93]. It contains a total of 398 sample points, where

each point corresponds to one specific car, comprising the values mpg, cylinders, displace-

ment, horsepower, weight, acceleration, model year, car name, and origin, a discrete value

representing different states (note here that the use of Kriging for nominal data like origin

is for demonstration purposes only, and that in general any interpolation of nominal data

requires some data-specific rational). Figs. 3.1 and 3.2 show visualizations of this data. By

choosing three center points with distinct values for horsepower and weight, one obtains three

response surfaces displaying the fuel efficiency according to origin and model year as shown

in Figure 3.3a,b,c.

In Figure 3.3d, all automobile sample points are projected to the subspace represented by the

same axes used in HyperSlice before, and a response surface is computed from the projected

sample. The advantage of projection over HyperSlice is that the whole sample is visualized

simultaneously, giving an immediate overview of the whole data set without requiring the

user to adjust a focal point. The corresponding response surface shows that cars from one

origin generally have low fuel efficiency. However, for now we do not know if this is really

caused by the origin or just by the fact that cars from other countries tend to differ in

other attributes, for instance they might generally have less horsepower. This difficulty arises

because the distances between sample positions in the high-dimensional sample space get lost

due to the projection. This leads to the false impression that some distant sample points lie

close together.

When HyperSlice was used in Figure 3.3a,b,c, the center point was placed at three different

positions, with vastly different values of horsepower and weight. In contrast to projection, Hy-

perSlice shows that the value of origin does not have a significant impact on the fuel efficiency

60 Ismail Demir

3.6 Visualizing Response Surfaces

even if entirely different values for horsepower and weight are chosen, which generally have

the greatest influence. For other slices not shown here, we obtain similar views. We can thus

conclude that the origin influences certain other attributes, for instance horsepower, which on

their part affect the fuel efficiency. This example also demonstrates the difference between the

surface projection and the HyperSlice method. Especially in an interactive session, where the

user moves the center point coordinate along the selected parameter axis, the corresponding

changes of the response surfaces can effectively reveal more subtle dependencies.

Based on this example, we can conclude, that it might be a good practice to first use projection

and then HyperSlice to visualize a multi-dimensional data set. The projection method gives

the user a general overview of the whole data set, even when only a small but representative

subset of the sample is considered. For instance, such a subset can be generated by randomly

selecting points from the initial sample. Relevant features can then be further analyzed using

HyperSlice, by incrementally adding sample points that are close to the currently selected

center point in all but two variables. Whenever the user changes the center point, new

sample points will always be selected according to this new position. Due to the specific

selection strategy of the next points to be considered, even for very large data sets a rather

small subset of the given sample might already suffice for an accurate analysis.

3.6.2 Slice-based Interpolation

Our next step is to apply Kriging interpolation to HyperSlice and projection. Since all slices

visualized in HyperSlice share the same space, the method requires only one Kriging matrix

containing the covariances of the actual multidimensional sample positions. This matrix

needs to be updated only when new sample points are added, because it does not depend

on the position of the currently selected slices. As the inverse Kriging matrix is required to

perform the interpolation, it has to be updated as well if the Kriging matrix was changed.

For each interpolation point, i.e., the grid points of the sampling structures used to represent

the selected slices, the covariance vector is calculated and used to determine the interpolation

weights of every other point via Eq. 3.3.2. These weights are finally used to compute the

interpolation values via Eq. 3.3.1.

More precisely, given an n−dimensional data set leading to
(n

2

)

slices, where each is displayed

at a grid resolution of ri×rj we need to perform
∑

1≤i<j≤n ri ·rj Kriging interpolations overall.

This formula can be simplified to
(n

2

) · r2 if ri = r for 1 ≤ i ≤ n.

The interpolation step can be fully parallelized since every interpolation can be computed

independently of each other. In order to calculate the covariance vectors at the interpolation

points we need to embed the 2D sampling structures into the multidimensional sample space.

Ismail Demir 61

3.7 Results

f2rotY

f2rotX

Calcar stress

f2rotY

f2rotX

Calcar stress

f2rotY

f2rotX

Calcar stressCalcar stress

f1rotX

f1rotY

Calcar stress

f1rotX

f1rotY

Calcar stress

f1rotX

f1rotY

f2rotY

f2rotX

Lateral stress

f2rotY

f2rotX

Lateral stress

f2rotY

f2rotX

Lateral stressLateral stress

f1rotX

f1rotY

Lateral stress

f1rotX

f1rotY

Lateral stress

f1rotX

f1rotY

(a) (b)

F = 2000F = 1500F = 1000F = 2000F = 1500F = 1000

F = 2000F = 1500F = 1000F = 2000F = 1500F = 1000

Figure 3.4: (a) Simulation setting, including arrow glyphs indicating simulated forces. (b)
Response surfaces for different force magnitudes depending on force direction.

This is performed by setting the coordinates of the interpolation points along the two spanning

parameter axes according to their relative position in the respective 2D subspace and filling

the remaining coordinates with the values of the center point. This also implies that each time

the center point is moved or the resolution of the sampling grid is changed the interpolation

process has to be repeated.

The projection method requires a procedure that differs mainly in the computation of the

covariances. Since in this case every sample position is projected to a 2D subspace, we

have to maintain a separate Kriging matrix and its inverse. For the Kriging matrix, we

use a covariance function that takes only those components of each sample position into

account that correspond to the respective subspace. The same holds for the computation

of the covariances at the interpolation points. Unlike embedding the grid points into the

multidimensional space, we project the sample positions to the selected subspace and then

calculate the covariance between the projected sample positions and the grid points.

3.7 Results

3.7.1 Multidimensional Real-World Data Set

In addition to the data that we have used so far for demonstrating the potential of response

surfaces for sensitivity analysis, we have employed our approach in a computational steering

setting for analyzing material stresses depending on applying forces. The underlying appli-

cation is an implant planning environment for hip joint substitutes, where in a step prior

to the surgery, a doctor tries to find the patient-specific best implant shape, size and posi-

tion [DGBW08]. The design of the steering tool was created such that external forces can act

on the surface of an implant, which has been inserted into the bone, and the resulting stresses

in the bone interior can then be simulated and visualized. To achieve a high degree of realism

of stresses that happen during walking, we consider an additional force of a constant scale

62 Ismail Demir

3.7 Results

applied by the muscles. Figure 3.4a shows the simulation scenery, where arrows indicate the

simulated forces.

The simulation calculates the internal stresses, i.e., the scalar von Mises stress norm, in less

than 200 milliseconds after the external forces have been specified. The volume visualization

in Figure 3.4a shows the simulated scalar field. In our specific scenario, we have investigated

the sensitivity to the introduced forces of the stresses at two critical points P1 and P2 in

the calcar region and the lateral femoral wall, marked by green crosses in Figure 3.4a. To

this end, we have incorporated the response surface approach into the simulation tool, thus,

allowing the user to alter the points interactively, at which the forces are acting and the force

magnitude through a navigation tool similar to the one shown in Figure 3.2. We stipulate a

force direction in polar coordinates of two virtual spheres enclosing the regions of contact that

are acting towards a sphere’s center, and compute the intersection points between the force

vectors and the implant and bone. Overall, we have 5 degrees of freedom, namely 2 angles

for each point and a force magnitude, and we obtain stress values for the points P1 and P2.

Upon simulating the stresses, the simulation module exports the values at P1 and P2, and

these values are then considered in the computation of new response surfaces. Figure 3.4b

shows the response surface visualization using HyperSlice after approximately 7000 altered

parameter settings have been used. In an interactive session, the expert would now begin

with refining the parameters in local extremum regions to analyze the stress sensitivity in

more detail, or he would compare the response surfaces for a different implant. As we will

show next, by using a traditional method for response surface construction from the given

sample, an interactive parameter domain exploration would be infeasible.

3.7.2 Performance Analysis

The performance analysis is structured in two parts. First, we measure the performance of

incrementally constructing the covariance matrices, when new points are added, and then

we measure the time to perform the Kriging interpolation at different grid resolutions. All

measurements were performed with HyperSlice on an NVIDIA GeForce GTX 580 graphics

card.

Figure 3.5 shows the time in milliseconds for computing the inverse of a covariance matrix,

when the inverse for a given number of points exists and one new point arrives. In our

tests, we have considered samples of different dimensions d ∈ {4, 6, 8, 10}, and we have made

the respective graphs distinguishable by using different colors. Note that for a particular d,

we compute
(d

2

)

surfaces and therefore, the same number of covariance matrices is required.

These are computed and inverted in parallel on the GPU. We compare the run-times to those

Ismail Demir 63

3.7 Results

0 2000 4000 6000 8000 10000 12000 14000 16000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Samples

T
im

e
p

er
 n

ew
 s

am
p

le
 (

m
s)

d = 4

d = 6

d = 8

d = 10

d = 4 (ref.)

d = 6 (ref.)

d = 8 (ref.)

d = 10 (ref.)

Figure 3.5: Computation times in ms for inverting the covariance matrix when sample points
are added incrementally. Times for different numbers of dimensions d are consid-
ered and compared with a direct non-incremental approach as reference.

being achieved with a state-of-the-art GPU matrix inversion method as proposed by Ezatti

et. al. [EQOR11]. Here, for each new sample point, the whole Kriging matrix has to be

inverted at once. The timings are shown in Figure 3.5 as dashed lines. By using a logarithmic

scale, one can observe that the progressive approach is by several magnitudes faster than the

conventional GPU approach.

Before the Kriging interpolation can be performed, the inverse Kriging matrices have to be

computed using the inverse covariance matrices. This step needs to be carried out only once,

before the interpolation takes place, and its time consumption is negligible compared to that

of the other parts.

The performance of the final interpolation of data estimates at the points of the discrete

sampling grids has been measured for different data sets comprising 100, 500, 1000 and 2000

points, and at different grid resolutions of 10×10, 20×20, 50×50 and 100×100. The timing

statistics is shown in Figure 3.6. We compared the times of our GPU-based implementation

and its CPU counterpart, computed on an Intel Xeon X5675 CPU at 3.07 GHz. It can be

clearly seen that the GPU method is significantly faster and allows moving the center point

nearly in real-time even for large samples. Since the resolution can be changed at any time

without affecting the Kriging matrix, it is possible to use a lower resolution grid, while adding

64 Ismail Demir

3.8 Limitations

10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Resolution

T
im

e
fo

r
in

te
rp

o
la

ti
o

n
 (

m
s)

GPU, 100

GPU, 500

GPU, 1000

GPU, 2000

CPU, 100

CPU, 500

CPU, 1000

CPU, 2000

Figure 3.6: GPU/CPU Computation times for Kriging interpolation at different resolutions
and for different sizes of samples.

new points or moving the center point and switching to a higher resolution grid for analyzing

the surfaces in more detail.

3.8 Limitations

This section discusses the limitations of our technique. First of all, our approach becomes

practically infeasible, if we want to analyze data sets with a great number of dimensions,

i.e., roughly more than n = 10 dimensions. The main reason is due to the fact that we

need to visualize
(n

2

)

surfaces, which leads for n ' 10 to very small surfaces that can hardly

be recognized and analyzed on any normal screen. This problem can be partially resolved

by displaying only a subset of all surfaces chosen by the user at one time. In that case,

however, it is harder to get an overview of the whole data set. Another reason is that the

computation time for the matrices and for performing the interpolation increases with the

number of surfaces, thus slowing down the whole process.

The covariance function also imposes a limitation not related to computation power. Since

we do not know the correct covariance model for a data set unless it is explicitly specified, the

expert has to choose a covariance function, such that it is a good approximation to the real

covariance. This can lead to inaccurate surfaces and even to inaccurate information about

Ismail Demir 65

3.9 Conclusion and Future Work

uncertainty. Another issue lies in the method itself that we use for visualizing the data set.

By projecting the sample to surfaces, we lose information about the distances between the

sample positions and for the HyperSlice method, we cannot visualize the whole sample at once.

Furthermore, it might not be the best choice to use only Cartesian axes, but our method can

be extended to projections and slices for different axes in a straightforward manner. However,

it is a non-trivial task to find optimal axes, which can be achieved for instance by projection

pursuit techniques as proposed by Friedman and Tukey [FT74].

3.9 Conclusion and Future Work

In this chapter, we have presented a novel approach for visualizing multidimensional data via

response surfaces using the Kriging interpolation. Kriging has the advantage that it allows

interpolating between scattered sample positions and results in smooth surfaces provided

that the covariance function is suitable for the given data set. It also provides us with a

measurement of uncertainty that supports the user in getting more confident results. For

constructing the surfaces, we have proposed two different methods: By projecting the sample

point onto each surface and then interpolating between these points, we obtain a general

overview of the whole data set, where the main structures become visible after only adding

relatively few points to the interpolation scheme. HyperSlice, in contrast, interpolates between

the given sample points in multidimensional space, in which each visualized surface represents

a plane with respect to different axes through a user-specified center point. This center

point can be changed by the user at any time. Due to the GPU-accelerated implementation,

interpolating and hence moving the center point can be done without lagging. Finally, we

tested our approach with real-world data and were able to obtain intuitive and effective results

by using our visualization technique.

Our approach opens up different aspects that can be investigated in the future: Firstly, by

integrating GPU-Kriging as proposed in Huang et al. [HCL∗11], the interpolation step can

be accelerated. Even though this step is not the bottleneck in our current implementation, it

might become so, when interpolating on higher resolution sampling structures or in 3D. A user-

study would provide insight to the question of how well the response surfaces’ topography can

guide the user towards specific features. Even though it was observed by Tory et al. [TSD09]

that colored point plots in a 2D domain can be remembered easier by the viewer than 2.5D

visualizations such as response surfaces, the surface representation can encode local features

and their relative positions and elevations in a more effective way. Local fluctuations of the

surface, especially in regions, where the sample set is sparse, can be easier quantified. By

analyzing functions for which the locations of extreme points are known, and by examining the

66 Ismail Demir

3.9 Conclusion and Future Work

occurrence of response surfaces in the vicinity of such points, shape-based feature indicators

might be discovered. Ideally, these indicators guide the user towards locally maximum or

minimum locations, even though the sample points, at which the extreme values occur, have

not yet been generated.

Ismail Demir 67

3.9 Conclusion and Future Work

68 Ismail Demir

4
Comparative Visualization of 3D Scalar Field Ensembles

In this chapter, we introduce a visualization technique based on bidirectional linking between

extended bar charts (multi-charts) and volume visualization. Our approach enables the expert

to visually analyze three-dimensional scalar field ensembles. This chapter is largely based on

our publication:

Demir I., Dick C., Westermann R.: Multi-Charts for Comparative 3D Ensemble Visu-

alization. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014).

doi:10.1109/TVCG.2014.2346448. [DDW14]. © 2014 IEEE.

4.1 Introduction

Various approaches exist to visually convey the information in 3D scalar fields. A classic ex-

ample of such methods is volume rendering. In combination with transfer functions, volume

rendering effectively reveals the location and shape of relevant features in an interactive envi-

ronment. Moreover, it is a spatially coherent visualization scheme, but it faces the problem of

occlusion and attenuation effects. Consequently, the number of features to be seen at the same

time is limited, which constitutes a restriction on the effectiveness of volume rendering, when

prior (spatial) knowledge about features is lacking. In particular, when exploring ensembles of

fields, quantitative comparisons between different parameters are of great importance, which

poses a further limitation on volume rendering.

By combining techniques from information visualization and volume rendering via brush-

ing and linking, this problem can be addressed [GRW∗00, DH02, PKH04, ZMH∗09]. These

methods begin with an overview of the data by drawing attribute views, and by brushing func-

tionality in these views, the user can then select data values meeting certain criteria. Now,

Ismail Demir 69

http://dx.doi.org/10.1109/TVCG.2014.2346448

4.1 Introduction

the attribute views are linked to a 3D view generated by volume rendering. In this scenario,

every selection in attribute space causes an instant visual feedback on the corresponding spa-

tial positions. Widespread attribute space representations are scatterplots, histograms, and

parallel coordinates.

In this chapter, we shed light on the use of brushing and linking in the context of volume

rendering for visualizing 3D scalar field ensembles, f : R3×{1, ..., m} → R. In such a scenario,

each ensemble member embodies the values of the same attribute at a set of locations in 3D

space. For larger numbers of ensemble members, e.g., 40,000 in one of our applications,

handling ensembles as multi-variate data with m parameters per spatial point and relying on

conventional visualization techniques for such data is infeasible.

Our method aims at quickly guiding the user towards locations, where the data values and

their distributions are similar or differ considerably over the ensemble members. Moreover,

we aspire to provide the user with a quantitative comparison scheme for specific members in

the context of all others. In theory, this task can be accomplished by determining confidence

intervals at each point in space and then visualizing these intervals by means of traditional

volume rendering. Yet due to the restrictions of volume rendering, it is a difficult task to

visually resolve the desired information in the generated views. Another well-researched

methodology is to condense the displayed information by focusing on particular features in

the data [PWL97, DKLP02], like isosurfaces, and display their potential deviations across the

ensemble. Recently, comparative visualization of data variations at designated positions in

space and time has become an encouraging strategy for 2D ensembles [HMC∗13, HMZ∗14].

We introduce an alternative visualization technique for 3D scalar field ensembles that does

deliberately not rely on prior knowledge about relevant features and their spatial occurrences.

In this situation, a global comparative visualization of the ensemble at the data level is essen-

tial. On the other hand, using a fully automated analysis procedure is generally prohibited,

due to the lack of confidence about what we are looking for.

As a solution, we propose a graphical interface that allows the user to visually analyze statis-

tical properties of 3D ensembles effectively and, consequently, to permit the user to guide the

analysis process towards features of interest. Our approach is built upon a novel volumetric

representation based on an abstract view, where spatial locations and variations of the data

values at these locations over the ensemble members can be distinguished simultaneously.

The abstract view is constructed by linearizing the 3D space and by using multiple stacked

and combined bar and line charts, the multi-charts. In the bar charts, statistical ensemble

summaries in sub-regions of the 3D domain are encoded, and the line charts showcase the

deviations of individual members at the same spatial locations. Our tool allows the user to

70 Ismail Demir

4.2 Related Work

interactively brush the multi-chart and in this process select regions exhibiting certain statis-

tical attributes. Linked 3D views provide an instantaneous visual feedback to these actions.

Furthermore, to provide a visual analysis of the relationships between the variations at spatial

locations apart from each other, we utilize a similarity-based sorting algorithm and clustering

methods based on these variations.

Our specific contributions of this chapter are:

• A 1D visual level-of-detail volume representation that relies upon a Hilbert curve lin-

earization.

• The simultaneous use of bar and line charts. Bar charts are used to present statistical

summaries. Individual ensemble members are visualized as superimposed line charts.

• By combining automated statistical data mining techniques and visually guided user

interaction, we aspire to detecting and analyzing relevant data characteristics.

The remainder of this chapter is organized as follows. First, we review work that is related

to ours. We then give an overview of our approach, including a description of the essential

functionality that it offers. In the next section, we introduce multi-charts, and we describe

their principal layout as well as the kind of statistical information they encode. This is

followed by a discussion of the similarity-based preparation of the chart, and the bidirectional

linking technique that we propose for 3D spatial views of the selected data points. We then

demonstrate applications of multi-charts in several real-world cases from meteorology, fluid

simulation, and astrophysics. We conclude this chapter with remarks on future research

directions.

4.2 Related Work

Our method can be classified as a summary-based ensemble visualization technique. We

compare sample attributes at fixed locations and also provide means to study the relations

between the attributes at different locations. Based on descriptive statistics for data analysis,

our approach considers the frequency of occurrences of data values over multi-dimensional re-

gions and in particular their correlations. In addition to ensemble visualization, our technique

overlaps with methodologies in the area of brushing and linking, and diagram techniques.

Uncertainty Visualization. A vast number of overviews and taxonomies of uncertainty vi-

sualization techniques has been published [JS03, MRH∗05, THM∗05, GS06, PRJ12, HBG∗12].

In the context of ensembles, uncertainty has often been revealed by visualizing quantities such

as mean and standard deviation via color maps, opacity, texture, animation, and glyphs [WPL02,

Ismail Demir 71

4.2 Related Work

DKLP02, RLBS03, LLPY07]. Feature-based approaches have been introduced to extract the

uncertainty information from 3D ensembles with regard to position and arrangement of par-

ticular structures, such as isosurfaces, and to visualize such characteristics by drawing con-

fidence envelopes [PWL97, ZWK10, PH11, PW12], geometric displacements [GR04], or by

using surface animation [Bro04].

Potter et al. [PWB∗09a] have confirmed the effectiveness of combining linked statistical visual-

ization techniques with user interaction for 2D weather ensembles. Thompson et al. [TLB∗11]

offered a volume rendering technique showcasing statistical summaries at multiple resolution

levels in 3D space. In meteorology and geoscience, spaghetti plots are broadly used to display

all isocontours of a scalar ensemble at the same time. Sanyal et al. [SZD∗10] improved upon

spaghetti plots by drawing glyphs and confidence ribbons to emphasize the spread of contour-

based ensembles. Höllt et al. [HMC∗13, HMZ∗14] have shown the use of time-series glyphs

for a comparative visualization scheme for 2D ensembles at two different points in time.

Brushing and Linking. Such methods are founded on the concept of arranging two or

multiple separate views next to each other, all representing the same data, to stress differ-

ent aspects [BC87, Shn98, WBWK00, Kei02]. Moreover, these views can be linked to each

other, so that selections in one view—performed by brushing or picking functionality—are

directly propagated to the other views. Modifications and additions of this methodology have

been suggested regarding alternative attribute views and enhanced algorithms that support

the user with smart selection strategies. Prevalent attribute space representations include

multi-dimensional scatterplots [PKH04], histograms [KBH04], and parallel coordinates [Ins85,

HLD02]. Augmenting brushing and linking techniques with focus and context mechanisms

has been proposed in various publications [Hau05, Dol07]. In particular, for the analysis of

multivariate 3D fields, a multitude of tools that are based on brushing and linked views has

been suggested [GBS∗99, GRW∗00, DH02, KLM∗08, ZMH∗09, KFH10, KMDH11]. Some of

these proposals can even handle time-dependent data. A number of multiple-view approaches

have been used in the context of volume rendering applications as well that strive for improved

feature discovery and sophisticated navigation techniques [TPM05, WS06, GXY12].

Diagram Techniques. Bar, box and line charts are regularly used in the area of information

visualization to analyze large sets of categorical and numerical data. Our approach is also

predicated on such primitives. Bar charts are broadly employed for summarizing categorical

data; in particular, showing aggregated values for the categories is a typical application of such

charts. To make bar charts suitable for presenting in-depth information of the categories, bars

have adapted such that this information is encoded at the pixel level [KHDH02, KHDL07].

On the other hand, box plots [EB03] use bars as basic elements, but they are augmented by

additional visual cues to communicate data values and other important characteristics of the

72 Ismail Demir

4.3 Overview

data, such as spread or quartile. Potter et al. [PKRJ10] have extended the concept of box

plots to also visualize statistical data summaries. Their approach makes use of the concept

of violin plots [HN98] in order to reveal distributions at the data level by drawing shapes of

the plotted primitives accordingly. More recently, Whitaker et al. [WMK13] have presented

contour boxplots that enable improved visualizations of uncertainty by drawing spaghetti

plots of isocontours or level sets, while considering the order of multivariate data. A two-

sided violin glyph was introduced by Höllt et al. [HMZ∗14] to express the data distributions

at two different locations in space. Voxel bars [MCW∗08] constitute another diagram based

technique as an extension of pixel bar charts, where groups of 3D voxels are packed into

graphical primitives in a 2D coordinate system. Then, their approach emphasizes features

and relationships via specific bar colorings.

4.3 Overview

Our method starts with an ensemble of scalar data sets given on a fixed 3D grid structure.

We restrict our discussion to 3D Cartesian grids, even though arbitrary grids can be handled

in much the same way as described. The data is first structured in a hierarchical manner,

computing at each node statistical information of the data values this node represents (see

Section 4.5). The visualization is then performed according to the following concepts and

principles:

Multi-Charts. First, an abstract volume representation is constructed. It is based on the

idea to view a 3D ensemble data set by linearizing the data locations and visualizing the

data variations over the ensemble members via bar and line charts, the multi-charts. The

data values are drawn as a dense sequence of primitives over a 1D domain, and multiple such

sequences are shown at once depending on the size of the plot area. Figure 4.1 shows the

basic layout of a multi-chart in the plot area.

Multiresolution Ensemble Summaries. Every bar encodes aggregate statistical informa-

tion about the data variations across multiple ensemble members in a certain spatial area,

and every line speaks for a particular member and allows comparing this member against

all others (see Figure 4.1). Since the viewport, into which the chart is drawn, has a fixed

resolution, only a limited number of locations can be visualized at once. Therefore, overviews

taken from a multi-resolution representation of the 3D ensemble are shown first. According

to the information seeking mantra “Overview first, zoom and filter, then details-on-demand”

proposed by Shneiderman [Shn96], the user can then zoom into the data to guide the analysis

towards those regions showing interesting behaviors.

Ismail Demir 73

4.3 Overview

Figure 4.1: Multi-chart visualization of a temperature ensemble forecast from the ECMWF
Ensemble Prediction System (EPS), ECMWF’s operational ensemble weather
forecast system [LP08]. The ensemble consists of 51 members of resolution
256 × 128 × 64 each. Each bar in the multi-chart is associated with a distinct
3D subdomain, and encodes the distribution of the ensemble members in this
subdomain by means of a histogram. In addition, a few user-selected ensemble
members are depicted using polylines. By means of brushing in the multi-chart
view (indicated by yellow background color), the user has selected regions where
the range over the ensemble members and thus the uncertainty is high. The
selected regions are instantly emphasized in the 3D view.

Brushing and Querying. To enable a data-driven analysis, the user can interactively

select regions, in which the data values meet certain criteria, and these regions are instantly

highlighted in the 3D view. Selecting is performed by brushing or querying in the chart

domain, as outlined in Figure 4.1 by the yellow shaded region. To ease the selection process,

regions, i.e., their corresponding bars, can be sorted automatically according to increasing or

decreasing values of derived statistical measures. The selection can also be manipulated in

the 3D view, with the multi-chart view being synchronized accordingly.

Spatial Clustering and Correlations. When analyzing ensembles, one further important

operation is clustering of regions, which show similar value distributions over the ensemble

members. Such operations can help domain experts to obtain insight into the sensitivity of

the simulation processes to the kind of parametrization, and they are especially important

74 Ismail Demir

4.4 Multi-Charts

to detect short- and long-range correlations in the data. To this end, we provide automatic

cluster mechanisms based on the similarity of value distributions (or local histograms), and

we arrange bars according to the data similarity in the corresponding regions automatically.

Spatial clustering is demonstrated in Figure 4.9.

We now describe the different components of the ensemble visualization technique and their

realization. Throughout the following discussion, the main focus is laid on an interactive visual

exploration of scalar 3D ensembles, to locate regions in which the data distributions exhibit

certain properties. Since locating and picking regions via 3D volume rendering is difficult,

we ease the navigation in 3D space via a slice-based visualization of the 3D domain, i.e., the

volume is decomposed into a set of slices having a width of one voxel block (see Figure 4.1).

In this view, spatial locations and relationships can be perceived far more effectively, and

interesting regions can be picked in an intuitive manner.

4.4 Multi-Charts

We assume that the ensemble data set is given on a 3D voxel grid. To provide multi-charts

at multiple levels of detail, we partition the voxel grid into approximately equally-sized voxel

blocks consisting of roughly 2ℓ×2ℓ×2ℓ voxels, where the level ℓ is selected by the user. ℓ = 0

denotes the finest level, where each voxel block consists of a single voxel. The multi-chart is

then constructed at the granularity of voxel blocks, i.e., each voxel block is represented by a

single bar, or by a single point, which is connected to its neighboring points via line segments.

Bar and line charts can be displayed together.

4.4.1 Linearizing the 3D Grid

Our multi-chart visualization method is based on linearizing the 3D grid of voxel blocks. We

have identified two particular design goals for this linearization: First, the linearization should

preserve spatial relationships as good as possible, in particular, linearization-adjacent voxel

blocks should also be adjacent in 3D space. Second, the linearization should be consistent over

multiple levels of detail, i.e., the eight voxel blocks that constitute a single voxel block at the

next coarser level should be adjacent within the linearization. This ensures visual coherence

when the user switches between two different levels of detail, in that a bar is decomposed into

eight adjacent bars when switching to the next finer level, or eight adjacent bars are merged

into a single bar when switching to the next coarser level.

Ismail Demir 75

4.4 Multi-Charts

To construct a linearization with these properties, we employ a space-filling curve. In partic-

ular, the Hilbert curve is known to preserve spatial relationships well, and due to its octree-

based hierarchical construction principle, leads to the desired consistency over multiple levels

of detail. Since the standard Hilbert curve is defined on grids with the same power-of-two

extent in each dimension, we use a generalized Hilbert curve [HRC08] that supports un-

equal power-of-two extents in each dimension. To allow for the application of our method

to a voxel grid of arbitrary size n1 × n2 × n3, we proceed as follows: Let ki := ⌊log2(ni)⌋,
such that 2ki is the largest power-of-two less or equal than ni (i = 1, 2, 3). Then, at level

ℓ ∈ {0, 1, ..., min{k1, k2, k3}}, the voxel grid is decomposed into 2k1−ℓ × 2k2−ℓ × 2k3−ℓ voxel

blocks. Thus, the voxel block grid has power-of-two extents, allowing for the construction of a

generalized Hilbert curve. Let blocks and voxels be identified by 3D integer indices, counting

from zero in each dimension. Voxel block (x̃1, x̃2, x̃3) then consists of all voxels (x1, x2, x3)

satisfying
⌊

x̃i · 2ℓ · ni

2ki

⌋

≤ xi <

⌊

(x̃i + 1) · 2ℓ · ni

2ki

⌋

(i = 1, 2, 3).

The resulting voxel blocks are almost of equal size (along each direction, their size varies by

at most one voxel), and exhibit compact shape (the ratio of the largest to the smallest edge

is at most two). Per construction, subsets of 2× 2× 2 voxel blocks constitute a single block

at the next coarser level. At level ℓ = 0, the blocks consist of between one and eight voxels.

To allow the user to explore the data set also at voxel granularity, an additional level ℓ = −1

is added, where voxel blocks consist of individual voxels. The linearization at this level is

derived from the linearization at level ℓ = 0, with each voxel block being further linearized in

lexicographical order.

4.4.2 Chart Layout

Now, the multi-chart is generated by displaying bars and line segments corresponding to

voxel blocks in the order imposed by the described linearization. To fully utilize the size of

the screen, the chart is displayed in a set of multiple rows. At the beginning of the visual

exploration process, the number of rows is set to eight, and we automatically select a level of

detail such that the number of bars per row is at most 256.

For navigation within the chart, we provide zooming and panning by operating the mouse.

Zooming can be performed independently for each axis, or simultaneously for both axes.

To simplify the navigation, the current position and extent of the viewport are displayed in

an overview window (see Figure 4.1). The user can prescribe a specific level of detail, or use

automatic level of detail selection coupled to horizontal zooming. The latter is implemented by

automatically switching to the next finer (coarser) level of detail, whenever the bar pixel width

76 Ismail Demir

4.5 Multiresolution Ensemble Summaries

exceeds (falls below) a certain threshold (we use a threshold of 64 and 8 pixels, respectively).

To achieve visual coherence, the width of the bars is decreased (increased) by a factor of

eight, when switching to the next finer (coarser) level, such that a bar and its associated

set of refined bars occupy the same position. The bars are displayed using a uniform width,

except for level ℓ = −1, where we have to use a variable width in order to compensate that

the bars at level ℓ = 0 are decomposed into a variable number of bars.

To further improve the visual coherence, when switching between levels of detail during zoom-

ing, we employ a background pattern based on vertical stripes that are aligned with the bars

(see Figure 4.2). The stripes are colored alternately using gray at two different intensities, and

are used to indicate the sets of refined bars resulting from the decomposition of the bars at the

previous coarser level. Consider the case of zooming into the chart (zooming out is similar).

When switching to the next finer level, the stripes initially remain unmodified, such that the

sets of refined bars become visible. Only when further zooming into the chart, the stripes are

also refined using a gradual transition. This transition is completed before switching to the

next finer lever again, such that the process restarts from the beginning.

While in our current implementation, we consider only data sets on 3D voxels grids, in

principle our method can also be applied to unstructured grids. This can be achieved by

using a hierarchy of rectangular grids to partition the 3D domain at multiple levels of details,

such that vertices of the unstructured grid lying in the same grid cell are assigned to the same

subset. Our method then is applied to these subsets, i.e., the subsets replace the voxel blocks

in the previous description. This construction principle also works, when the unstructured

grid is time-dependent, since the rectangular grid remains fixed.

4.5 Multiresolution Ensemble Summaries

To guide the visual exploration of the ensemble data set, we provide two different types of

multi-charts.

4.5.1 Analyzing the Quantitative Distribution of Uncertainty

Our first type of multi-chart (see Figure 4.3, top) is devoted to analyzing how uncertainty is

quantitatively distributed over the 3D domain. For each voxel of the data set, we compute

the range (i.e., the difference between the maximum and the minimum value) over the set

of ensemble members, and use this value to quantify the level of uncertainty at that voxel.

In order to reduce the influence of outliers, the quantile range between the p and (1 − p)

quantiles can be used alternatively (p ∈ [0, 0.5)). Then, we depict the distribution of the

Ismail Demir 77

4.5 Multiresolution Ensemble Summaries

Figure 4.2: From top to bottom: Zooming into the multi-chart. The bars are automatically
refined, when their width exceeds a certain threshold. To improve visual coher-
ence, a vertically striped background pattern is employed to illustrate set of refined
bars.

78 Ismail Demir

4.5 Multiresolution Ensemble Summaries

Figure 4.3: Two different types of multi-charts are provided. The bars are encoding his-
tograms, either showing per-voxel statistical quantities (here: the range over all
ensemble members) within the sub-region associated with each bar (top), or the
distribution of the ensemble members, based on the average of each ensemble
member within each sub-region (bottom). In the latter type of multi-chart, a
user-selected subset of the ensemble members can be additionally displayed via
horizontal line segments or polylines. In the top and bottom image, corresponding
bars show the same sub-region.

range values within each voxel block by means of a histogram encoded into a bar as follows:

The histogram is determined by means of kernel density estimation [Ros56, Par62], using 128

bins and Gaussian kernels. The vertical extent of the bar reaches from zero to the maximum of

the range values in the considered block. The histogram is visualized by using the histogram

density values (scaled by a user-specified factor) as the color intensity along the vertical range

of the bar. Between zero and the minimum range value, a constant color intensity of 0.25 is

used. In this way, the minimum and maximum range values become clearly visible.

In particular, the color intensity I ∈ [0, 1] as a function of the delta value δ is determined

from the density function f according to

I(δ) = f(δ)/ max{s, max
δ
{f(δ)}},

where s is a user-defined scaling constant. By including the maximum of the density function

in the denominator, oversaturation is avoided.

Notice that by showing the distribution of range values (rather than for example only depicting

their average or maximum), each voxel is accurately represented at all levels of detail, and the

method is robust in the context of outliers. To support the user in rapidly identifying regions

with low and high uncertainty, we additionally color-code the range value by means of a linear

Ismail Demir 79

4.5 Multiresolution Ensemble Summaries

green-red color scale, where green and red denote low and high uncertainty, respectively. Also,

note that this color-coding is redundant, in that the range value is already determined by the

distance from the zero line.

In addition to the range value, it is also possible to visualize per-voxel-block histograms

of other statistical quantities, such as the mean or the standard deviation when analyzing

ensemble data sets that are known to follow a Gaussian distribution.

4.5.2 Analyzing Distribution and Relationship Among Members

While the first type of multi-chart can effectively reveal the distribution of uncertainty over

the 3D domain, the second type (see Figure 4.3, bottom) is designed for providing a detailed

insight into the particular distribution of the ensemble members, as well as studying the

relationships among a subset of the members, or between a member and the entire ensemble.

For each ensemble member, we first compute the average of the values as well as the difference

(here referred to as delta value) between the maximum and the minimum value within each

voxel block. The delta value describes the spatial variance of each ensemble member in the

considered block. Our visualization approach is then based on representing each ensemble

member by its average value within each voxel block. Clearly, using average values can lead

to misinterpretations if the spatial variations are too high. In this case, it is necessary to

perform the analysis at a spatially higher resolution.

We visualize the distribution of the ensemble members by plotting the distribution of the

corresponding average values within each voxel block by means of a histogram encoded into a

bar. We proceed in the same way as for the first type of multi-chart, i.e., we again construct

the histogram via kernel density estimation, which is then depicted by means of adapting the

color intensity along the vertical range of the bar. To incorporate the delta values, for each

block, we compute the maximum delta value over the set of ensemble members, and depict

this maximum by means of color-coding of the entire bar using a linear green-red color scale.

Using green and red for low and high delta values, respectively, the red color indicates that it

is necessary to switch to a finer level of detail, in order to perform an accurate data analysis

in the respective sub-region associated with the bar.

In addition to showing the distribution of the ensemble members via bars, we provide the

possibility to visualize the ensemble members—or a user-specified subset—via lines, which are

laid over the bars. We have implemented two variants (see Figure 4.4): Depicting ensemble

member using horizontal line segments, or using polylines. Optionally, color-coding of the

lines can be used to support tracking of individual ensemble members or groups of ensemble

members throughout the diagram. Colors can be assigned automatically by member id using

80 Ismail Demir

4.5 Multiresolution Ensemble Summaries

Figure 4.4: Visualization of the distribution of the ensemble members. From left to right:
Histogram only, histogram and polylines, histogram and horizontal line segments,
polylines with color-coding of individual members.

a discrete color table, or manually by mouse operation. We further provide the option to

encode the delta value using a linear blue-red color scale, where blue and red denote low and

high delta values.

It can be seen that the polyline-based approach facilitates tracking of individual ensemble

members throughout the multi-chart. In contrast, it is almost impossible to track individual

members in the visualization based on horizontal line segments. However, the latter approach

can be employed as an alternative to histograms for visualizing the distribution of the ensemble

members, when the ensemble consists of only a few members. A drawback of the polyline-

based approach is that line segments can have a very high slope, when the bar width is small,

leading to visual cluttering. We address this issue by automatically hiding the polylines when

the bar width is less than 16 pixels.

To facilitate the interactive exploration of ensemble data sets with a large number of ensem-

ble members, the ensemble summaries are precomputed and stored on disk. In particular,

for each voxel block (on all levels), we precompute the histogram of the per-voxel ranges

and the histogram of the per-member averages, as well as statistical quantities such as the

minimum/maximum/mean of the per-voxel ranges, the minimum/maximum/mean/standard

deviation of the per-member averages, and the maximum of the delta values. In total, the

ensemble summaries require about 1 kB per voxel block (using 128 bins for the histograms).

Depicting individual ensemble members requires the per-member average values within each

voxel block. These values are stored in a separate data file, consecutively for each voxel block.

Note that on the finest level, where each voxel block consists of a single voxel, the initial

ensemble data set is stored.

The ensemble summaries are completely loaded into main memory at the beginning of the

interactive visualization session. This is required to enable the sorting of voxels blocks ac-

cording to specific criteria, as described in the following section. It is worth noting that the

Ismail Demir 81

4.6 Brushing and Querying

Figure 4.5: Sorting of the bars to support selection of regions with similar characteristics:
After sorting of the bars, the user brushes into the multi-chart (right, top). The
selection remains active after the bars have been rearranged into their original
order (right, bottom). The respective selection is also shown in the 3D view (left).
Here and in the following figures, only a single slice of the 3D volume is shown for
illustration purposes.

memory size of the ensemble summaries is independent from the number of ensemble mem-

bers, but depends on the spatial resolution of the data set. For very high-resolution data sets,

a viable option to reduce memory requirements is to skip pre-loading of histograms for the

very finest levels (which however disables sorting of voxel blocks according to histograms on

these levels). In contrast, the per-member average values are fetched from disk on demand,

i.e., only data values that are currently visible in the viewport are loaded into memory. To

hide disk access latencies, we have implemented a prefetching scheme based on rectangular

prefetching regions around the viewport (one per level of detail).

4.6 Brushing and Querying

The user can brush arbitrary bars interactively in the multi-chart view, and the spatial regions

corresponding to the selected bars are instantly highlighted in the 3D view. Brushed bars

are highlighted by a yellow background as shown in Figure 4.5 for the ECMWF temperature

ensemble forecast, introduced in Figure 4.1.

In addition, we provide the option to sort the bars with respect to different statistical mea-

sures, such as mean value and standard deviation of the average values per ensemble member

in each region, or the maximum/minimum/mean of the per-voxel statistics in each region.

Sorting with respect to histogram similarity will be described in the next section. By brush-

ing in the sorted representation, the user can select all relevant spatial regions in an easy

way. This is shown in Figure 4.5 (right, top), where the spatial regions exhibiting highest

difference between any two ensemble members are selected. Note that in this chart, the bar

height encodes only the range (difference between maximum and minimum), rather than the

82 Ismail Demir

4.6 Brushing and Querying

Figure 4.6: Top and bottom row: After zooming into two of the regions determined in Fig-
ure 4.5, visualizing histograms of per-voxel ranges reveals areas of particular high
uncertainty.

maximum over all ensemble members. In the 3D view, the selected regions are highlighted

instantly.

When switching back to the order imposed by the Hilbert curve, as shown in Figure 4.5

(right, bottom) (now the bar height encodes the maximum), the brushed selection remains

active (see yellow background), and, in the current example, the selected regions distribute

on roughly four clusters in the abstract multi-chart view. Due to the good preservation of

locality of the Hilbert curve order, these clusters correspond to spatial clusters, as shown in

Figure 4.5 (left). One can clearly see that a higher degree of uncertainty occurs in regions

exhibiting lower mean values. Interestingly, although not shown here, this property holds true

for the whole domain.

When relating each cluster in the multi-chart view with its corresponding geographical area on

the map, one finds that the third cluster from the left roughly embodies the region containing

the North Sea and Baltic Sea. To further analyze the selected regions, we visualize the

per-voxel range and zoom into the third (Figure 4.6, top row) as well as first and second

(Figure 4.6, bottom row) clusters. Since the delta values are relatively high for these regions,

as indicated by the bars’ red color, we switch to a chart depicting histograms of per-voxel

ranges. We then select regions where the uncertainty is particular high. This guides us to

a region containing two larger islands in the Baltic Sea, and two regions in the coastal area

between Greenland and Iceland.

To select regions based on specific data values or statistical measures, the user can also use

select queries. This is realized by using expressions, such as Min and Max on all the different

statistical measures. Min and Max queries give all bars and corresponding spatial regions

Ismail Demir 83

4.6 Brushing and Querying

Figure 4.7: Selection of bars by querying operations. Each pair of images, from top to bottom:
The user selects some bars (top), and asks for all other bars having a range that is
higher than the minimum / lower than the maximum / within the interval given
by the minimum and maximum of the ranges of the selected bars (bottom).

84 Ismail Demir

4.7 Spatial Clustering and Correlations

where the measures are respectively below and above a specified value. Range queries allow

selecting regions exhibiting measures in specific intervals. Furthermore, the user can select

particular members and let them highlight as a line chart in the multi-chart view. Some

typical query operations are shown in Figure 4.7.

4.7 Spatial Clustering and Correlations

Besides a visual ensemble analysis relying purely on the analysis of statistical measures in

selected spatial regions, an important requirement is to analyze the (relative) behavior of the

data values among selected regions of interest or different ensemble members. The rationale

behind this is to quickly identify regions showing similar data distributions and data variations

over the ensemble members, and to reveal dependencies between the data values in different

regions. To achieve this, we have integrated techniques for grouping and sorting of spatial

histograms. In addition, we consider the correlations between the data value in different

spatial regions to analyze their behavior relative to each other.

4.7.1 Histogram Clustering

Per-region histograms are computed as described in Section 4.5, and clustered based on their

similarity using the k-means algorithm [Llo82]. The similarity of two histograms h1, h2 :

{1, . . . , n} → R
+
0 with n ∈ N bins is computed by their mean squared distance as

1

n

n
∑

i=1

(h1 (i)− h2 (i))2 .

The user can select either the number of clusters to be generated or a similarity threshold, so

that only histograms having higher similarity than indicated by this threshold are grouped.

To find an initial guess of k means in order to start with the k-means algorithm, we proceed

as follows. We begin with an empty set of clusters and a fixed similarity threshold, and we

then iterate over all histograms. For every histogram, the cluster with the least difference

between the considered histogram and the respectively first histogram assigned to that cluster

is identified. If the difference is smaller than the threshold, the histogram is assigned to that

cluster. Otherwise, or if no cluster exists at all, a new cluster is generated and the histogram is

assigned to it. This step is repeated until all histograms have been assigned. If the number of

generated clusters is greater (less) than the requested number of clusters, we divide (multiply)

the threshold by 2 and start clustering all over again. This is repeated until the number of

clusters has crossed the desired number. The respectively first histograms that were assigned

Ismail Demir 85

4.7 Spatial Clustering and Correlations

0.5

0.6

0.7 0.8

1.0 0.3

Figure 4.8: Ordering histograms by approximating a TSP solution. We start with the node
marked as green and calculate the distance to all of its neighbors. We then proceed
with the neighbor, to which the distance is minimal, here 0.5. This is then repeated
for the next node, until no more unvisited nodes are left. The path obtained by
this algorithm is drawn in red.

to each cluster are used as initial cluster centroids in the upcoming k-means algorithm. Note

that the desired number of clusters can be selected and changed by user at any time.

After running the standard k-means algorithm (see Lloyd [Llo82]), the histograms in each

cluster are sorted by approximating the solution of a traveling sales person problem (TSP)

in a weighted undirected complete graph. For each cluster, the histograms in this cluster

comprise the nodes of the associated graph, and the similarities between histograms are used

as edge weights. An illustration of the graph of a cluster consisting of 4 histograms is depicted

in Figure 4.8. For every cluster, the algorithm starts with an empty list and selects the first

node belonging to the first histogram in this cluster, marked as green in the figure. The

following operations are then repeated until no more unvisited nodes are left in the cluster:

For the currently visited node, we compute the distance to all unvisited nodes and append

the node, to which the distance is minimized to the list. This node is then marked as visited

and will be traversed next. As a result, the list contains an approximate sorting according to

histogram similarities.

The benefits of our clustering approach are demonstrated in Figure 4.9. In our example, 10

clusters have been determined. To make the visualization easier to understand, a unique color

is assigned to each cluster, and all bars are scaled to a uniform height. The user has selected

some regions within the slice-based 3D view (Figure 4.9, top left). It can be observed that the

bars fall into two different clusters (Figure 4.9, top right). If one picks all bars in these clusters

(Figure 4.9, bottom right), one obtains a remarkable result, which is depicted in Figure 4.9

(bottom left): Clearly, it can be seen that mostly coastal areas have been selected, meaning

that these regions feature similar distributions of the ensemble members.

Let us now discuss another way of classifying histograms. For this consider two histograms of

86 Ismail Demir

4.7 Spatial Clustering and Correlations

Figure 4.9: Selection based on clustering of bars according to histogram similarity. After
brushing into the 3D view (top left), the selected regions fall into two clusters
(top right). By selecting the remaining bars from the two clusters that contain
initially selected bars (bottom right), regions with similar distributions are iden-
tified (bottom left).

which each has exactly one peak but at different positions. According to our previous method

based on the mean squared distance, these histograms would be classified as completely

different, although they might be seen as similar in the following sense: By translating one

histogram such that the peak fits the peak of the other histogram, the mean squared distance

would vanish. In other words, such histograms are congruent. To compute a quantifiable

value of congruence, we iteratively translate the first histogram step by step with regard to

both directions, and calculate the mean squared distance concerning the translated histogram

and the second histogram for each iteration. Since the histograms are created by kernel

density estimation, we can apply translations of any given extent. Finally, the minimum of

all distances is returned as the result. In this way, a translation-independent clusterization is

obtained.

4.7.2 Correlations

Besides a statistical analysis focusing purely on the data variations in certain regions, an

important task is to find regions in which the data values show certain correlations to each

other. While in principle, local correlations can be visualized via glyph-based approaches,

e.g., as proposed by Pfaffelmoser and Westermann [PRW11], visualizing long-range interde-

pendencies in 3D is challenging. It is, on the other hand, especially the existence of such

long-range interdependencies, which are important in a number of applications. For instance,

in meteorology, local features are often dependent on distant phenomena. To analyze such

dependencies, we have built into our tool means to compute a) the correlations between the

Ismail Demir 87

4.7 Spatial Clustering and Correlations

Figure 4.10: Visualization of the correlations between the sub-regions associated with the bars
based on per-member average values. Left and right image, respectively: After
picking a single bar (highlighted in yellow), the correlation between this sub-
region and each other sub-region in the viewport is computed and visualized by
color-coding of the bars.

average member values in the region represented by one selected bar and all other regions rep-

resented by bars in the current view, and b) the correlation between the variation of the data

values in two user-selected sub-regions over all members. In the former case, the correlations

are instantly visualized by mapping the correlation values to the colors of the involved bars,

as depicted in Figure 4.10, using a red-white-blue color scale, where red/white/blue denote

negative/no/positive correlation, respectively. Furthermore, we use the correlation as a dis-

tance metric for computing clusters of regions in which the data values are strongly correlated

using the k-means algorithm. Here, we exploit the fact that for correlations sufficiently close

to 1, the correlation property is transitive, thus making the metric an equivalence relation.

Regions not strongly correlated will fall apart into single-element clusters.

Correlation computation always yields a numerical value in the interval [−1, 1], serving as a

measure of the strength of the relationship between the values in pairs of regions. In partic-

ular, we make use of the Pearson’s correlation coefficient to measure the strength of a linear

association. Thus, negative and positive values indicate an inverse and positive correlation.

To generate robust results even under weak assumptions with regard to the distribution, we

utilize a variant of the quadrant correlation coefficient as proposed by Blomqvist [Blo50]. We

have modified this algorithm slightly, since it relies on the signum function, which turned out

to produce inconclusive results in many of our cases. Therefore we make use of a weakened

signum function as described below.

Let I = {1, . . . , m} denote an index set of m ∈ N ensemble members and let A, B denote two

distinct spatial areas represented by bars in our visualization. Also, let us denote the value

distribution of the ensemble with respect to areas A and B by hA : I → R
|A|, hB : I → R

|B|.

88 Ismail Demir

4.7 Spatial Clustering and Correlations

Figure 4.11: Two areas (left and right image, respectively) that were identified as being in-
versely correlated. To demonstrate the inverse correlation, several ensemble
members are depicted by means of colored polylines. Whereas red members
have higher values than blue members do in the left area, the situation is vice
versa in the right area.

Then, we obtain the modified quadrant correlation coefficient as

1

m

m
∑

i=1

wsgn
(

hA (i)− h̃A

)

· wsgn
(

hB (i)− h̃B

)

.

Here h̃A, h̃B describe the component-wise median of hA, hB, and we define wsgn : R
k →

[−1, 1] , k ∈ N as the weakened signum function

wsgn (x) =























1− neg (x) /pos (x) if pos (x) > neg (x)

−1 + pos (x) /neg (x) if neg (x) > pos (x)

0 else

,

where, pos (x) and neg (x) denote the number of positive and negative entries of the vector

x, respectively.

To demonstrate the kind of information that can be revealed by the proposed correlation

visualization, let us take another look at the temperature forecast ensemble introduced in

Figure 4.1. Here, we focus on the region containing Greenland (first block of selected bars

from the left in Figure 4.5, bottom) and the region containing the North Sea and Baltic

Sea (part of the third block of selected bars). To study the interdependencies between the

ensemble members in these regions, the user selects these regions and asks for the correlation

coefficient. In the current example, a correlation coefficient of −0.45 is computed, meaning

that the distributions in both regions are inversely correlated. To illustrate this result, in

Figure 4.11 a few representative ensemble members are shown.

Ismail Demir 89

4.8 Further Results

Figure 4.12: Ensemble data set for an incompressible 3D Navier-Stokes fluid simulation. Left:
A single member is visualized by streamlines and volume rendering. Right, top:
Multi-chart, showing the distribution of the ensemble members via histograms.
Right, bottom: Bars are clustered according to histogram similarity.

4.8 Further Results

In addition to the ECMWF temperature ensemble, used to demonstrate the effects of our

ensemble visualization technique, we now present further results on the basis of additional

scalar ensembles.

4.8.1 Incompressible Fluid Flow Simulation

We begin with an ensemble featuring an incompressible fluid flow evolving around an ellipsoid

obstacle, which was numerically simulated on a 145×49×49 Cartesian grid using the Navier-

Stokes equations. 56 simulation runs were performed using slightly different viscosities. The

vorticity magnitude produced by each simulation run after the same simulation time was

written out as the scalar ensemble field. A visualization of a single time step is shown in

Figure 4.12 (left).

For visualizing this ensemble, we start with an overview first to isolate regions, where the

data values show an outlier behavior compared to other regions. The overview is shown in

Figure 4.12 (right, top), where the distribution of the ensemble members is shown in a multi-

chart. It can be clearly seen that there are regions where the vorticity varies significantly

over the ensemble members, whereas in other regions, it changes only to a very small extent.

Another interesting aspect, which can be recognized by this view, is that small variations

occur only, where the vorticity is relatively small as well. In other words, there are no regions

where the ensemble exhibits constant high vorticity throughout all members.

Next, we study the distribution of vorticity among regions corresponding to the bars and try

to discover striking spatial relations between these distributions. For this, we order the bars

in such a way that bars with similar histograms are clustered. To make it easier for the user to

90 Ismail Demir

4.8 Further Results

Figure 4.13: Top row: Selection of the red cluster from Figure 4.12 via brushing. The selected
region is highlighted in the 3D view. Bottom row: Selecting the emphasized re-
gion in the 3D view yields a part of the cyan cluster. In both rows, the individual
ensemble members are additionally depicted by horizontal line segments, which
are color-coded according to ensemble member id.

visually recognize this order, a unique color is assigned to the bars of each cluster. The result

is shown in Figure 4.12 (right, bottom). We can now analyze common features of specific

clusters. For instance, the cluster colored red features a peak at higher values, meaning that

vorticity in this region is high throughout most of the simulations. By looking at individual

members, color-coded from blue to red, we find that a low vorticity occurs in this region only

for a few members. After selecting this cluster by brushing, we see the associated regions

in spatial context. As depicted in Figure 4.13 (top row), one can observe that these regions

are located around the obstacle and in an outer region behind the obstacle. Note however,

that a certain region behind the obstacle is not covered by that cluster. When we select

this region, we discover that it belongs to a cluster, which has no clear peak. Instead, the

ensemble members are distributed evenly with a steadily increasing vorticity, as can be seen

in Figure 4.13 (bottom row) from the color-coded line chart.

4.8.2 Cosmic Density Field

The third scalar ensemble field we analyze is a cosmic map comprising 40,000 different, yet

possible versions of the observable universe. Each version constitutes a scientifically plausible

cosmic density field on a 2563 voxel grid according to the available probabilistic model. A

volume rendering of one of these cosmic maps is shown in Figure 4.14 (left). For further

information let us refer to Jasche et al. [JKLE09]. For this data set, the ensemble summaries

occupy about 16 GiB, the per-member average values (which also include the initial ensemble

data set) about 2.8 TiB.

Our technique enables the user to visualize the entire ensemble, once the preprocess to generate

the multiresolution hierarchy has been performed. In the preprocess, all statistical data which

Ismail Demir 91

4.8 Further Results

Figure 4.14: Application of our multi-chart visualization method to study a large-scale data
set, consisting of 40,000 possible maps of the universe. Left: Volume rendering
of a single ensemble member. Image courtesy of Jasche et al. [JKLE09]. Top
right row: Multi-chart showing the distribution of the ensemble members. By
selecting bars corresponding to areas with high uncertainty, it can be observed
that these areas are primarily located in outer regions of the domain. Bottom
right row: After clustering the bars according to histogram similarity, a cluster is
selected, where the ensemble members have low values (here: density), yielding
two distinct regions.

is required to pursue the proposed visual ensemble analysis is pre-computed and saved. During

the visualization the pre-computed data are loaded into memory on-demand, according to the

currently selected visualization option. This enables the user to explore even large and high-

resolution ensembles at interactive rates.

Since this data set is rather extensive we restrict ourselves to analyze only a small region in

order to demonstrate the potential of our method.

In the analysis, we start by visualizing the uncertainty at a certain level of detail (see Fig-

ure 4.14, top right row). Note that in this figure, the bar height encodes the range over

the ensemble members (difference between maximum and minimum) rather than the maxi-

mum. By selecting bars indicating high uncertainty and linking to the 3D view, it can be

seen immediately that the uncertainty almost only occurs in the outer regions of the domain.

This conforms to the way the data set was generated. As far less observational data was

used for the galaxy reconstruction in the outer regions than in the inner ones, much higher

uncertainties are introduced in the outer regions.

We further cluster bars by histogram similarity and then pick a cluster, where the highest

density occurs largely on the bottom of each bar (see Figure 4.14, bottom right row). In

other words, most values in that region lie at the lower bound with a small ratio of outliers,

which accounts for the low intensity on the top of each bar. Since these bars belong to

two distant regions in space, we are now interested in finding out whether there exists a

certain correlation between these two regions. Therefore, we zoom into the region of selected

bars until the bars decompose into smaller bars at the next finer level. After picking both

regions and asking for the correlation between them, one finally discovers that the ensemble

92 Ismail Demir

4.9 Conclusion and Evaluation

Figure 4.15: Two areas (top and bottom image, respectively) in the cosmos ensemble data
set that were identified to be positively correlated. Several ensemble members
are exemplarily depicted. In both areas, red members exhibit higher values than
blue members do.

members at these two regions are positively correlated. This is also illustrated by a few chosen

members as demonstrated in Figure 4.15. Note that it will be a very daunting task to find

such relations by conventional methods like volume rendering. This is because of the occlusion

effects inherent to such methods and, in particular, because displaying even a small part of

the current ensemble becomes virtually infeasible for the user to recognize.

4.9 Conclusion and Evaluation

In this chapter, we have introduced a novel technique for the interactive visual exploration

of large 3D scalar field ensembles. When using this technique, we found that users spend

most of their exploration time in the abstract view, comprising bar and line charts to convey

region-specific statistical data measures. Since the abstract view does not suffer from occlu-

sion effects, prominent characteristics of the data distributions as well as interdependencies

between the data values in different regions are very effectively communicated to the user. By

linking to a view, where the spatial context of specific characteristics is shown, our technique

Ismail Demir 93

4.9 Conclusion and Evaluation

enables an effective exploration of the whole ensemble space. We consider it as an outstand-

ing feature of our technique that it does not limit the number of ensemble members to be

analyzed. In our opinion, this has the potential of significantly changing the way experts

investigate 3D ensembles in the future.

We have developed this method in close cooperation with a few domain experts from mete-

orology and astrophysics, however, we have not conducted a formal user study to assess the

technique’s effectiveness. Nevertheless, in the experiments we have accomplished so far, and in

which the domain experts participated actively, we have made some interesting observations

that we consider as noteworthy: Firstly, the linear organization of spatial locations and cor-

responding sample sets did not introduce any mental barriers in the analysis process. At the

beginning, we were not so sure that the abstraction from 3D physical space would be accepted,

yet it turned out that all users were immediately willing to accept this abstraction—and the

associated loss of spatial coherence in this abstraction—and perform their investigation in the

multi-chart view. Even more astonishingly, all users spent most of the analysis time in the

abstract view, while linking to the 3D view only very rarely to get an overview of the spatial

locations of the regions that they have actually analyzed. As stated by the domain experts,

the reason for this behavior was due to the fact that during multi-chart-based analysis, the

user essentially focuses entirely on the analysis of the variability of the ensemble members

regardless of the spatial context, where these variations occur. Only at the very end of the

analysis, when remarkable relationships between the members were identified in the abstract

view, they took a further look at the spatial view in order to discover the corresponding

regions in space.

Finally, in our experiments, all users confirmed the effectiveness of the multi-chart view,

mainly for the reason that they could not envision alternative techniques allowing for an

in-depth sample analysis at such a fine granularity. Several domain experts had used 3D

fields—or cross-sections through these fields—containing mean values and standard devia-

tions to analyze the ensembles. Yet there was strong agreement that this kind of analysis

does simply not allow any meaningful insights into the sample distributions across the ensem-

ble members. The experts found it especially appealing that sub-regions exhibiting strong

disparities have already been detected in the overview, and that by zooming into these ar-

eas, even the distribution characteristics of the sample values across the members could be

studied. All users confirmed that the richness of specific statistical features that could be re-

trieved, appeared to them as an outstanding functionality, especially due to the fact that all

selections could be steered interactively. Regarding the spatial view, there was an agreement

that a simultaneous visualization of correlations in the abstract and the spatial view would

amplify the value of the proposed analysis technique to a great degree.

94 Ismail Demir

4.9 Conclusion and Evaluation

Different aspects of our approach can be investigated in future research: By using compression

and parallelization strategies, handling large and high-resolution ensembles could be improved.

In particular, by bringing our technique into the cloud, remote computing capacities for sta-

tistical analysis would be on hand. Since our technique condenses the data effectively and

requires only limited information for graphical display, it seems very well suited for remote

cloud environments. Furthermore, the extension to time-varying ensembles will be challeng-

ing, as well as the integration of abstract parameter views to support a visual exploration

of multi-parameter data. By adapting the bar layout accordingly, our approach might also

be suitable for visualizing vector field ensembles. Although designing an adequate layout for

vector data will presumably be challenging task, it might be worthwhile to continue research

in that direction.

Ismail Demir 95

4.9 Conclusion and Evaluation

96 Ismail Demir

5
Silhouette-Based Visualization of 3D Isosurface Ensembles

In this chapter, we introduce a novel visualization technique for ensembles of isosurfaces

in three-dimensional space by drawing screen-space silhouettes. Our approach is spatially

coherent and maintains the major shape of the surfaces. This chapter is largely based on our

publication:

Demir I., Kehrer J., Westermann R.: Screen-space Silhouettes for Visualizing Ensembles

of 3D Isosurfaces. In Proc. IEEE Pacific Visualization Symp. (Visualization Notes) (2016).

doi:10.1109/PACIFICVIS.2016.7465271. [DKW16]. © 2016 IEEE.

5.1 Introduction

Scalar field ensembles play an important role in many areas of science and engineering. Recall

that ensembles are typically generated by N ∈ N repeated simulation runs, where different

input models or parameters are used in each run. For 3D scalar fields, this can be described

formally as a mapping {1, ..., N} × R
3 → R. Visualizing 3D scalar field ensembles is a

challenging task, since a large amount of data at each spatial location has to be conveyed to

the user, such that important information is neither lost nor occluded.

Different solutions exist to approach this problem. For instance, volume rendering is an effec-

tive technique to visualize the information stored in 3D scalar fields, especially with the help of

transfer functions. By interactively adjusting this function, the shape of relevant features can

be revealed. In this context, isosurfaces are of particular interest, i.e., locations exhibiting a

constant value [Han05]. However, volume rendering suffers from occlusion effects, even if only

a single scalar field is rendered. Consequently, this effect is amplified, when multiple ensemble

Ismail Demir 97

http://dx.doi.org/10.1109/PACIFICVIS.2016.7465271

5.1 Introduction

Figure 5.1: Visualization of a weather forecast ensemble from the ECMWF Prediction Sys-
tem [LP08]. This ensemble comprises wind velocity data and consists of 50 mem-
bers. For one isovalue, all members are visualized as silhouettes of isosurfaces.
Additionally, a mean ensemble member is rendered as a gray isosurface to enhance
the visual perception of the spatial context. Color is used to cluster members by
their similarity.

members are superimposed, which makes an expert’s analysis quickly unfeasible. As an alter-

native, different members can be visualized by drawing them next to each other [GAW∗11].

However, in this case, the spatial context between similar features in different members is

lost. Furthermore, this method is only feasible for a relatively small number of members, due

to the screen space limitation. Another approach is to provide the user with statistical data

derived from the original ensemble instead of the individual members [PH11, PRW11]. For

instance, mean and standard deviation can be computed at each spatial location and then

presented to the user. In such a scenario, however, differences between members are smoothed

out and important information, such as outliers, is lost.

To remedy the problem of occlusion, techniques from information visualization such as parallel

coordinates or histograms can be combined with volume rendering by utilizing brushing and

linking [GRW∗00, DH02, WBWK00, KH13]. The idea behind these approaches is to show

multiple linked views displaying different aspects of the original data. In this scenario, the

user selects regions of interest in one view and is then provided with visual feedback in all

linked views. Another approach is to cut the original volume into slices and to render each

slice separately. Then, ensemble members can be visualized via drawing spaghetti plots,

by overlaying isocontours of each member [PWB∗09a]. However, in this representation, the

spatial relationships between different slices are lost.

In this chapter, we propose a novel rendering approach to interactively visualize 3D isosurface

ensembles. Our method preserves spatial coherence, while occlusion effects do not disturb the

visual perception to a considerable degree. By providing interactive mechanisms, we enable

98 Ismail Demir

5.2 Related Work

the user to further explore the data on a more detailed level. A data set visualized by our

technique is presented in Figure 5.1. In particular, the main contributions of our approach

are:

• A novel efficient visualization technique for 3D isosurface ensembles based on rendering

semi-transparent silhouettes. Our method is spatially coherent both within each member

and between different members.

• An efficient implementation to convert 3D scalar field ensembles into polygonal meshes

for different isolevels. In this process, all information necessary for rendering is precom-

puted and stored at the vertex level. Thus, the workload during rendering is minimized,

meaning that even a large number of ensemble members can be displayed at interactive

frame rates.

• By integrating movable cutting planes directly into the 3D view, we enable the user to

gain more detailed insights at specific spatial locations without losing spatial coherence.

• Different hierarchical clustering algorithms based on isolevels enable the user to group

and analyze members according to their similarity. Since we compute all clusters in a

preprocess, the user can select and explore them interactively.

• Picking and brushing mechanisms as well as animations that enable the user to view

selected members of interest as complete isosurfaces, thus enhancing the spatial recog-

nition.

5.2 Related Work

Ensemble visualization belongs to the area of uncertainty visualization, which has been an im-

portant research topic in visualization for almost two decades [PWL97, JS03]. Many useful ap-

proaches have been published and a number of surveys exist [GS06, HBG∗12, KH13, BHJ∗14].

For example, diagram-based techniques have been proposed to augment the spatial context

by visual cues, such as glyphs, charts or box plots [PKRJ10, SSSSW13, DDW14, JDKW15].

Clustering algorithms are used to break down larger data sets into groups of similar charac-

teristics [Jai10, BKS04, BM10b, BHGK14, FBW16]. In our work, we use clustering to classify

silhouettes with respect to their similarity. Recently, research has also focused on analyzing

spatio-temporal ensemble data [PWB∗09b, KSDD14, HHB16, LMK∗15].

Spaghetti plots are a powerful technique to visualize 2D scalar field ensembles by simultane-

ously rendering an isocontour per member [PWB∗09a, SZD∗10, HMC∗13, HMZ∗14, PW13].

We extend this method to 3D data sets and provide interactive techniques to aid the user

Ismail Demir 99

5.3 Preprocess

in the visual analysis, such as animation and picking. However, these approaches are typi-

cally less suitable to understand the 3D shape of isosurface ensembles. Several methods have

been proposed to visualize isosurfaces extracted from 3D ensemble data, e.g., by means of

animation [Bro04], volume rendering [DKLP01, TLB∗11], or confidence envelopes [ZWK10,

PH11, PRW11]. Wei et al. automatically select isosurfaces based on their representative-

ness [WLS13]. Other methods aim at rendering multiple isosurfaces into a single 3D view [BBF∗11,

AWH∗12]. However, only a few ensemble members can be visualized simultaneously due to

cluttering and occlusion. Matković et al. [MGKH09] visualize ensemble data as families of

data surfaces in combination with cutting planes showing intersections with the surfaces. We

pursue a similar approach by using cutting planes to guide the user towards specific regions

of interest.

A number of methods exist for reducing 3D shapes to feature lines such as silhouettes, sugges-

tive contours, ridge and valley lines, or apparent ridges [CSD∗09, WMK13, WZ13, MWK14].

We compute silhouettes per member based on curvature due to its simplicity and computa-

tional efficiency [KWTM03], although other methods could be used as well.

5.3 Preprocess

To begin with, let us consider a scalar field ensemble given at the vertices of a 3D Cartesian

grid, f : {1, ..., N} × R
3 → R. That is, at each grid point, a scalar value in R is associated

with each member. Moreover, an isovalues is specified. Now, we generate a polygonal mesh

for each member. As a result, we end up with N meshes, where N ∈ N denotes the number

of ensemble members. Note that we repeat this process for each isovalue in a given set I ⊂ R.

Then, we generate a clusterization in due consideration of the current isovalue.

5.3.1 Mesh-Generation

Given a scalar field, i.e., one ensemble member, on a Cartesian grid and an isovalue, we first

make use of the marching cubes algorithm to extract the corresponding isosurface in the form

of a polygonal mesh. The marching cubes algorithm, originally proposed by Lorensen et

al. [LC87], however, produces a uniformly resolved mesh. Consequently, polygonal primitives

are generated at a very fine resolution, thus wasting memory. To overcome this drawback,

we apply a mesh decimation algorithm that takes the underlying geometry into account. Our

implementation is based on the quadric mesh simplification method as proposed by Garland

et al. [GH97]. As a result, we end up with an adaptively resolved triangle mesh. Next, for

every vertex x, we compute the following attributes and use them in the rendering process:

100 Ismail Demir

5.3 Preprocess

• We compute the vertex normal by taking the normalized gradient, i.e., n = −g/ ‖g‖,
where g = ∇fi (x) denotes the gradient and i refers to the member index. Since the

ensemble is given on a Cartesian grid, we make use of finite differences to compute the

respective derivatives numerically.

• The principal curvatures κ1, κ2 as well as the first principal curvature direction (PCD)

p are calculated according to the method described by Kindlmann et al. [KWTM03].

Let P = I −n ·nT, H =
(

∂2f
∂xi∂xj

(x)
)

, the Hessian matrix, and G = −PHP/ ‖g‖. Next,

we compute the trace T and the Frobenius norm F of G. Now, we obtain the principal

curvatures

κ1,2 =
T ±
√

2F 2 − T 2

2
.

Finally, p is obtained as the eigenvector of G corresponding to the eigenvalue κ1.

• We compute the outlyingness as the mean squared distance to all members, i.e.,

o =
N
∑

j=0

(fj(x)− fi(x))2 /N.

To save memory, these values are stored in a packed format. Position, principal curvatures

and the outlyingness are stored in 16-bit floats per component. Since the normal and PCD

are of unit length, we can store these vectors as a 32-bit unsigned integer. Here, the x and

y−component are stored in the first 16 bits and in the next 15 bits, respectively. The sign of

the z−component is stored in the last bit. These values are later reconstructed in a shader

program. In total, 20 bytes are consumed per vertex. As a result, we end up with N meshes

for each isovalue, where N ∈ N denotes the number of ensemble members, meaning that

N · |I| meshes are generated in total. See the results section for an analysis of the memory

requirement.

5.3.2 Clustering

For clustering, we compute a similarity matrix of size N ×N , where at each entry (i, j) the

difference between member i and j is stored. We compute the difference as

d (i, j) =
∑

x

(

√

|fi(x)− µ| −
√

|fj(x)− µ|
)2

/m,

where µ and m denote the current isovalue and the number of grid points, respectively. By

taking the square root, changes in values closer to the isovalue are considered of greater

importance.

Ismail Demir 101

5.4 Rendering Shaded Silhouettes

a) b) d)c)

Figure 5.2: Visualization using different rendering techniques. a) Semi-transparent surfaces.
b) 3D spaghetti plots of silhouettes. c) Shaded silhouettes. d) Shaded silhouettes
with density-based removal.

Clusters are then generated based on the similarity matrix by using an agglomerative hierar-

chical clustering method [Jai10]. We begin with N clusters, where each member is assigned

to one unique cluster. Then, we proceed by merging a pair of clusters of minimal distance.

This process is repeated until one cluster remains. Now, for each step we store the respective

cluster distribution. Here, distance is computed in the following way. Suppose, each cluster

contains exactly one member. Then, we obtain the distance as the corresponding entry in

the similarity matrix. Otherwise, we compute the distance by using a linkage criterion. For

instance, the average linkage criterion, defined as

d (A, B) =
∑

a∈A,b∈B

d (a, b) / (|A| |B|) ,

yields suitable results in our implementation [Bij73]. Again, this process is carried out for

each isovalue.

5.4 Rendering Shaded Silhouettes

In this section, we explain the proposed rendering technique for isosurface ensembles based

on the precomputed per-vertex attributes and clusters. For a user-selected isovalue and each

selected member, the corresponding mesh is rendered. Note that rendering solid isosurfaces

suffers from occlusion effects, in particular if multiple members are rendered simultaneously.

Although drawing isosurfaces with transparency reduces occlusion effects, perceptually multi-

ple layers of transparency cannot easily be distinguished, and quickly becomes infeasible when

too many surfaces are overlaid. This can be observed in Figure 5.2a. Therefore, we propose

a different approach based on rendering only silhouettes instead of whole surfaces. Silhouette

rendering is not a novel technique, yet to the best of our knowledge, it has not been used

for ensemble visualization so far. Figure 5.1 shows a weather forecast ensemble containing

50 members that is rendered using our method. In this view, the gray isosurface represents

102 Ismail Demir

5.4 Rendering Shaded Silhouettes

the mean of all members, which was generated by computing the average value at each grid

point. Clearly, the members can be distinguished and the spatial context is preserved. By

rotating the camera, a further improved recognition of the spatial structures is achieved.

5.4.1 Drawing Silhouettes in the Fragment Stage

Once the attributes are reconstructed in the vertex shader, rendering silhouettes is done in

the fragment stage. By using the normal n, the curvature along view direction κ and the view

vector v, we compute the silhouette coefficient as

σ =
∣

∣

∣v · nT

∣

∣

∣ /
√

τκ (2− τκ).

Here, τ denotes the silhouette thickness, such that a silhouette is present iff σ ≤ 1. Let us

refer to [KWTM03] for further details on the derivation. To efficiently compute κ in the

fragment shader, we make use of the precomputed principal curvatures κ1,2 and the PCD p

as introduced in the previous section. First, we obtain the angle ϕ between the PCD and the

view direction, projected onto the plane aligned with the normal at the fragment position,

as

cos ϕ = 〈v − 〈n, v〉n, p〉 .

Now, we calculate the curvature in view direction as

κ = κ1 · cos2 ϕ + κ2 · sin2 ϕ.

This equation holds, because PCDs are always aligned orthogonal to each other. Note that it

is not necessary to actually compute ϕ, since cos2 ϕ + sin2 ϕ = 1. By drawing fragments with

σ ≤ 1 as opaque using a solid color, and discarding all other fragments, we obtain 3D spaghetti

plots as can be seen in Figure 5.2b. However, this approach suffers from the drawback that

distinguishing different members of the same color is infeasible without rotating the camera.

To overcome this limitation, we make use of shading and transparency effects. Given an

RGB-color value c and silhouette coefficient σ, we return the fragment’s RGBA color c⋆ as

c⋆ =























(c, 1) if σ < 1
2

(

c · 1
2 , 1−

(

σ − 1
2

)

/1
2

)

if 1
2 ≤ σ ≤ 1

discard else.

The result is depicted in Figure 5.2c.

Ismail Demir 103

5.4 Rendering Shaded Silhouettes

5.4.2 Density-Based Removal

To reduce the amount of visual clutter, consider the observation that there are some regions

where the density of silhouettes is greater. Hence, we can eliminate a number of silhouettes in

such regions without losing important information, since all these silhouettes share a similar

shape. In doing so, unnecessary data are removed from the visualization, thus making it

easier to grasp for the user.

To identify silhouettes that are suitable for removal, we resort to the outlyingness o as ex-

plained in the previous section. This value indicates how much difference there is between the

value of the current member and all other members at a given position with respect to the

selected isovalue. Thus, lower values imply a greater density of isosurfaces and therefore a

greater density of silhouettes. This gives rise to the following algorithm, implemented in the

fragment shader. Let iM , sG denote the member index and group size. Here, the group size

determines the number of nuances for silhouette removal. Then, we obtain the group index

by

iG = iM (mod sG).

Let o∗
Min, o∗

Max ∈ R denote the global minimum and maximum outlyingness threshold. Now,

we compute the thresholds for group index iG as

oMin (iG) = o∗
Min + iG · (o∗

Max − o∗
Min) /sG

oMax (iG) = o∗
Min + (iG + 1) · (o∗

Max − o∗
Min) /sG.

Finally, we compute the outlyingness-based opacity as

α (iG, o) = clamp

(

o− oMin (iG)

oMax (iG)− oMin (iG)
, 0, 1

)

.

If the result equals 0, the fragment is discarded. Otherwise, the alpha-component of the

fragment shader output is multiplied by α (iG, o).

To identify regions where most members agree, the user can start out with a lower degree of

silhouette removal and then gradually increase this threshold to focus on finer structures. This

can be done by dynamically adjusting o∗
Min and o∗

Max. The result is shown in Figure 5.2d.

As an alternative to altering the opacity, we could also resort to color-coding the silhouette

density or adjusting the thickness, although this is not shown here. Note, that only parts of

silhouettes are removed, meaning that silhouettes in sparser areas remain unaffected.

104 Ismail Demir

5.5 Visualizing Details on Demand

a) b)

c) d)

Figure 5.3: Results from two ensemble data sets. a) An outlier was selected in the ECMWF
data set (bottom left) to get a better understanding of its shape. b) A cutting
plane allows us to analyze a feature in more detail. c) Overview of a Navier-
Stokes flow simulation comprising 56 runs. d) A cutting plane reveals the inner
structures. The underlying flow is depicted at the bottom right.

5.5 Visualizing Details on Demand

In line with the information seeking mantra “Overview first, zoom and filter, then details-

on-demand” proposed by Shneiderman [Shn96], we have implemented several mechanisms to

visualize user-selected details, namely, cutting planes, clustering, picking and brushing, and

animation. We will now discuss each of these mechanisms in more detail.

5.5.1 Cutting Planes

We have integrated cutting planes into our implementation that can be interactively moved

by the user. In this way, we enable the user to gain more detailed insights at specific locations

of interest. This process is illustrated in Figure 5.3b,d. Here, the cutting plane is placed

such that a selected feature is revealed by displaying the intersection curve between the

isosurface and the plane. Thus, the user is able to gain more specific insights with respect

Ismail Demir 105

5.5 Visualizing Details on Demand

to the structures between the ensemble members, as this information cannot be gathered by

analyzing the silhouettes alone.

Rendering cutting planes is accomplished in the fragment stage. To begin with, we locate

the relative position of the current fragment to the cutting plane with respect to the camera

position. For this, we compute the distance d from the fragment’s position to the cutting

plane along the view direction v. To prevent occlusion, fragments lying in front of the plane,

i.e., d < 0, are discarded. In order to render intersection curves of approximately equal

thickness ǫ, we consider a fragment as lying on the plane iff the following conditions are met:

a) The distance along the view direction, projected onto the surface normal, is within the

plane thickness, i.e.,

〈v, n〉 d ≤ ǫ;

b) the distance along the view direction is within the plane thickness, along the view direction,

projected onto the plane normal nP , i.e.,

d ≤ 〈v, nP 〉 ǫ.

In this case, the fragment is rendered by using the term 〈v, n〉 d to compute shading and

opacity in the same way as explained for the silhouette coefficient. Otherwise, we continue

with rendering silhouettes. To enhance the visual perception, we also render the cutting plane

itself as a semi-transparent rectangle.

5.5.2 Clustering

We utilize hierarchical clustering algorithms to enable the user to group members according to

their similarity with respect to the current isovalue. After the clusters have been computed in

the preprocess, they can be selected interactively in the running visualization. This is depicted

in Figure 5.1, where members are clustered into five groups. Color is used to indicate each

cluster. By showing or hiding clusters separately, the user can focus on cluster-specific features

without being distracted by the presence of other members. In this way, outliers can quickly

be identified and trends can be analyzed in more detail.

5.5.3 Picking and Brushing

We have developed picking and brushing functionality to provide means to view selected

members of interest as solid or semi-transparent isosurfaces. This improves the recognition

of selected members and at the same time can serve as a point of reference to facilitate the

spatial perception of the silhouettes. This can be seen in Figure 5.1, where the mean surface

106 Ismail Demir

5.6 Results

is visualized in gray. Note, however, that this method is only effective for displaying one

or a few members as otherwise occlusion effects prevail. In our implementation, we obtain

the currently picked member by checking the mouse coordinates against the screen space

coordinates in the fragment stage.

5.5.4 Animation

To quickly discover differences and similarities between a selected subset of members of in-

terest, we provide the user with the ability to animate over members. In this process, the

user first selects a subset of members by picking and brushing. Then, during the animation,

one member after another is visualized by a solid isosurface. To make the transitions easier

to understand, members are sorted in the following way. First, members are sorted by their

cluster index. Second, within each cluster, the order is such that more similar members are

closer in the sequence. For this, we make use of the precomputed similarity matrix and then

sort members in a greedy fashion.

5.6 Results

We now discuss some results to demonstrate the potential of our visualization technique.

To begin with, let us consider an ensemble comprising wind velocities of a weather forecast

simulation by the ECMWF Ensemble Prediction System [LP08]. This ensemble consists of

50 members of resolution 128× 256× 16. In Figure 5.1, for an isovalue of 30 m
s

the resulting

isosurfaces are visualized as silhouettes. An additional mean member is included, as explained

before. To store the data for visualizing all 51 members (including the mean), roughly 16

MiB are consumed per isovalue. On a standard desktop PC, the process of precomputation

takes ≈ 3 minutes for generating all meshes and another ≈ 2 minutes for computing the

similarity matrix. The time for computing the clusterization based on the similarity matrix

is negligible. Note that the computational cost is proportional to the grid resolution and the

number of members. Rendering the image in Figure 5.1 took 3.6 ms measured on an NVIDIA

GeForce GTX 580 graphics card at a viewport resolution of 1900 × 1200. This means that

our implementation enables the user to interactively analyze an ensemble of isosurfaces.

By observing the visualization in Figure 5.1, we can spot two regions, where most, if not all,

simulation runs agree on a wind velocity of 30 m
s

. One such region is located above the Baltic

Sea and the other region above the North Atlantic Ocean south of Greenland. Note that we

have also determined that the wind velocities within these regions are greater than 30 m
s

by

studying other isovalues, although this is not shown here. Moreover, there is another region

Ismail Demir 107

5.7 Conclusion and Future Work

located in the middle where only some members exhibit the aforementioned wind velocity. By

clustering the members into five groups and using color to indicate the cluster membership,

we can discover the main trends arising at that region. Here, we can also identify an outlier

and investigate the shape of that member’s isosurface by picking the respective silhouette.

This is shown in Figure 5.3a. Due to the preprocess, the user can change the number of

clusters interactively.

Let us now focus again on the second region. Here, we find a structure of curls on the top,

where only some members agree as this area is clearly separated from the mean isosurface. If

we place a cutting plane as shown in Figure 5.3b, we can analyze this feature in more detail

and discover the inner structures. By moving the plane, the spatial perception is enhanced,

and ellipsoid zones of higher wind velocity are revealed, indicating isolated air turbulences

predicted by some simulation runs.

As a second example, let us consider an ensemble featuring an incompressible fluid flow

evolving around an ellipsoid obstacle. 56 Navier-Stokes simulation runs were performed with

different viscosities on a Cartesian grid of resolution 145× 49× 49. After a given simulation

time, the vorticity magnitude was saved as the scalar field ensemble. The result is presented

in Figure 5.3c using our visualization technique. Clearly, it is easily possible to visually

distinguish members as only minimal occlusion effects occur. By inserting a cutting plane,

we can also gain insight into the inner regions and study the behavior of the flow simulation

in more detail as shown in Figure 5.3d. In this data set, the use of animation proved to be

helpful, since the shape changes gradually along the sequence of all members.

5.7 Conclusion and Future Work

In this chapter, we have presented a novel visualization technique for 3D scalar field ensembles.

Our approach is based on the idea of rendering silhouettes instead of solid isosurfaces. Hence,

occlusion artifacts are minimized without losing spatial coherence. We have also implemented

several ways to provide a more detailed analysis of the ensemble. That is, by enabling the

user to place cutting planes in the 3D view and by providing means of clustering and ani-

mation, the ensemble can be investigated according to different criteria. To study individual

members in the context of the whole ensemble, the user can resort to picking and brushing

functionality. Moreover, by precomputing all computationally involved parts in a preprocess,

we have accomplished rendering at interactive rates. We have demonstrated the effectiveness

of our approach by visualizing and analyzing two ensembles of very different characteristics.

In both cases, our method was able to reveal relevant features and supported the user to gain

insight into the spatial structures.

108 Ismail Demir

5.7 Conclusion and Future Work

The work presented in this chapter opens up different aspects that can be investigated in future

research: By extending our method to time-varying ensembles, the concept of animation might

prove as an effective tool. Integrating mechanisms to automatically detect relevant features

would allow placing cutting planes or other visual clues accordingly. By utilizing the GPU,

the preprocess could be significantly sped up, although we do not consider this as a critical

issue, as it has no effect on the rendering performance. Finally, a user study in collaboration

with domain experts would be an effective way of evaluating the practical benefits of our

method.

Ismail Demir 109

5.7 Conclusion and Future Work

110 Ismail Demir

6
Ray-Casting Based on Vector-to-Closest-Point Octrees

In this chapter, we propose a novel improvement of voxel-based ray-casting that, unlike clas-

sical voxel-based approaches, does not produce block artifacts. We use a hierarchical Vector-

to-Closest-Point representation, which yields a smooth approximation of the surface. This

method also serves as a foundation of the shape-based visualization technique presented in

the next chapter. This chapter is largely based on our publication:

Demir I., Westermann R.: Vector-to-Closest-Point Octree for Surface Ray-Casting. In

Vision, Modeling & Visualization (2015), Bommes D., Ritschel T., Schultz T., (Eds.), The

Eurographics Association. doi:10.2312/vmv.20151259. [DW15]. © 2015 EUROGRAPH-

ICS.

6.1 Introduction and Related Work

With the rising capabilities of modern GPUs, ray tracing algorithms have become more pop-

ular for real-time rendering applications. Since ray tracing is a technique based on finding

intersections between rays and the objects of the scene, it is crucial to employ efficient meth-

ods to achieve interactive frame rates. Voxel-based surface ray-casting on the GPU [GMIG08,

CNLE09, LK10a] has been introduced as an interesting alternative to rasterization-based poly-

gon rendering and triangle ray tracing. It inherits the benefits of ray-based GPU rendering

techniques [PBMH02, CHH02, EVG04, FS05, CHCH06, GPSS07, PGSS07, HSHH07, AL09]

to effectively exploit the GPU’s massively parallel design and use many processing units si-

multaneously. In addition, it can effectively perform fine-granularity occlusion culling on the

ray level. Moreover, the regular voxel grid gives rise to efficient ray traversal schemes, and

it allows generating levels of detail with prescribed (screen-space) error in a very simple and

efficient way.

Ismail Demir 111

http://dx.doi.org/10.2312/vmv.20151259

6.1 Introduction and Related Work

A limitation of voxel-based techniques is that they produce visual artifacts, when the size

of the voxels exceeds the pixel size in screen space. In this case, the underlying voxel grid

becomes visible in the form of block structures. As a consequence, classical voxel-based

techniques need to build very deep trees, so that even for extreme zoom-ins, the voxel size

can still match the pixel size. It is worth noting that the high-resolution representation is

also required in areas where the initial surface is smooth.

Different solutions have been proposed to remedy this problem. “Far Voxels” have been intro-

duced as an efficient LOD structure for polygonal models by Gobbetti and Marton [GM05].

They render the polygon structure, where the details are high, and render a voxel-based ap-

proximation of polygon clusters at coarser resolution levels. Laine et al. [LK10b] introduce

a sparse voxel octree (SVO), where the voxels are supplemented by piecewise linear contour

representations, which are then used during rendering to avoid block artifacts and generate

smooth object silhouettes. Their method was later enhanced by Kämpe et al. [KSA13] using

directed acyclic graphs (DAG) instead of octrees to reduce the memory consumption when

encoding identical regions. Similar to “Far Voxels”, Reichl et al. [RCBW12] employ a hy-

brid rendering method, which combines rasterization and ray-casting. Rasterization is used

in such cases where ray-casting voxel blocks would lead to visual artifacts, i.e., when in an

adaptively constructed octree the finest voxel resolution has been reached. Heitz et al. [HN12]

have presented a method for rendering signed distance field octrees with Gaussian descriptors

of the surface within the voxels. “Sphere Tracing” is a rendering technique proposed by Hart

for implicit surfaces defined by signed distance functions [Har96], which was later improved

upon by Keinert et al. [KSK∗14]. Bastos et al. presented a method built on Sphere Tracing

to efficiently render Adaptively Sampled Distance Fields (ADFs) on the GPU [BC08]. While

their method is restricted to signed distance isosurfaces, our method is able to handle arbi-

trary surfaces. “Enhanced Sphere Tracing” is a method proposed by Keinert et al. [KSK∗14],

which builds upon sphere tracing, a rendering method for signed distance bound geometry.

Already 17 years ago, a different methodology has been proposed by Gibson [Gib98], and

used for voxel-based surface rendering on fixed-function graphics hardware by Westermann

et al. [WSE99]. Gibson proposed to make use of a distance field to achieve a higher order

interpolant of a level-set surface in an intensity volume. Westermann et al. used this idea to

voxelize a polygon surface into a 3D scalar distance field and render the implicit surface via

slice-based volume rendering. For a thorough overview of algorithms for computing signed

distance fields starting from polygon models as well as a number of applications of such

procedures, let us refer to Jones et al. and Frisken et al. [JBS06, FPRJ00]. In the context

of fluid simulation, Auer et al. suggested a rendering technique for an equidistant, regular

low-resolution closest-point simulation grid [AMT∗12].

112 Ismail Demir

6.1 Introduction and Related Work

Figure 6.1: Rendering from a hierarchical Vector-to-Closest-Point (VCP) grid at different
zoom steps. Left: The Thai statue (10 million polygons) renders in less than
10 ms per frame at a maximum grid resolution of 2048× 1024× 1024. Right: For
the Sponza model the hierarchy is 3 levels shallower than for a sparse voxel hier-
archy in order to achieve roughly the same rendering quality (for the Thai statue
the gain is between 1 (left) and 5 levels (right)).

Contribution. In this chapter, we present a novel approach based on previous works to

overcome the limitations of voxel-based surface rendering. Inspired by the distance-to-closest-

surface representation by Gibson [Gib98], we present the hierarchical Vector-to-Closest-Point

representation (VCP) to enhance the surface approximation quality of a grid-based repre-

sentation. As demonstrated in Figure 6.1, as compared to a standard voxel hierarchy, our

VCP representation results in a significantly shallower tree, and it reduces the memory con-

sumption and tree traversal costs during rendering. The surface can be determined as the

zero-level-set of the VCP function, and smooth normals can be computed by interpolating

VCP vectors. Our rendering specific contributions are:

• An algorithm to construct a grid structure from a given arbitrary polygon mesh. Broadly

speaking, we start with a coarse grid and store at every grid point the VCP with respect

to the mesh. The grid is then refined in an octree-fashion, where it is required for precise

rendering, i.e., in close vicinity to the mesh. As a result, we obtain a hierarchical VCP

representation that is then used by the GPU.

• A method for efficiently ray tracing the given geometry by utilizing the described data

representation. This specifically includes a method of traversing through the VCP octree

data on the GPU as well as a technique for interpolating between VCPs, which is largely

consistent to the original mesh-based geometry.

• A significantly shorter model hierarchy compared to a classical voxel representation.

• The option to render a smooth surface at arbitrary zoom-ins from a VCP grid.

• The ability to include per-grid point attributes such as color that could also be utilized

in the context of texture coordinates, normal maps, and similar attributes.

Ismail Demir 113

6.2 VCP Representation

Figure 6.2: Illustration of the VCP representation in 2D. At each grid point, a vector to the
point closest to the original geometry (blue) is stored; this is visualized by a few
such vectors (black). The grid is adaptively refined in the vicinity of the object.

• A dynamic GPU memory management system that loads more refined subsets of the

given geometry into GPU memory in places, which are located close to the camera and

are visible in the current viewport. To maintain interactive frame rates, this process is

done in the background by utilizing multiple concurrent threads.

The remainder of this chapter is organized as follows. First, we discuss the construction of

the proposed VCP grid from high-resolution triangle meshes. In the next section, we discuss

our method to ray-cast the surface encoded in a hierarchical VCP grid on the GPU. Then, we

shed light on the embedding of the proposed rendering technique into a scalable out-of-core

system. We analyze the performance and memory consumption of our technique, compare

our results to those generated by alternative rendering techniques, and, finally, conclude the

chapter.

6.2 VCP Representation

To begin with, let us consider a geometric object, represented by a polygonal surface, which

is embedded in three-dimensional Cartesian space. The space is discretized via a uniform

Cartesian grid. This is illustrated in Figure 6.2 in two dimensions. Now, we compute for

each grid point the VCP vector with respect to the given geometry, i.e., the vector pointing

to the closest surface point. An algorithm to efficiently compute a VCP grid for very large

114 Ismail Demir

6.2 VCP Representation

1

2

3
4

Figure 6.3: Left: If only distance information is stored at the grid points, the feature (blue)
is blurred or lost during linear interpolation, since it is located within one grid
cell. Our interpolation scheme based on the VCP representation (black arrows),
however, conserves the feature to a better degree as illustrated by the red lines.
Hence, we can choose a smaller ǫ-band leading to more precise rendering results.
Right: Ray-casting through the VCP grid. At each step (marks 1, 2, 3) along the
ray (red), the VCP distance to the object (blue) is obtained. Once it is less than
ǫ, i.e., the distance from the dotted blue curve to the feature, this is considered as
a hit (mark 3). Interpolating between the current and the previous step results in
a point on the ray with a VCP distance of about ǫ (mark 4).

polygon meshes is presented below. Note that storing the full grid at a high resolution would

waste a significant amount of memory, as during rendering, the VCP data is only required

in a narrow ǫ-band around the object’s surface. Therefore, our approach uses an additional

regular grid, which comprises blocks of 23 cubical cells. A VCP representation is computed

only for those (non-empty) blocks, which overlap the narrow band, while for all other (empty)

blocks, we store one single scalar value indicating the minimum distance of all vertices of this

block to the surface. These values are used during ray-casting to adaptively vary the step-

size, i.e., a step as large as the stored minimum distance can never cross the surface. We will

later describe how to employ a hierarchical representation to adaptively prune empty space

comprising multiple empty blocks.

In principle, to implicitly encode the surface, one could also use a scalar distance field, which

stores at every grid point the shortest distance to the surface. Such a representation, however,

requires the use of signed distance values in order to accurately determine the distance-

0 isosurface. Computing signed distances, on the other hand, is non-trivial and generally

Ismail Demir 115

6.2 VCP Representation

speaking not even possible, e.g., if the surface is non-orientable or not closed. By contrast,

our technique can be applied to arbitrary geometry. In addition, the distance values in a

discrete grid approximate the surface with an error that is linear in grid spacing, while each

closest point defines the exact position of a surface point. Hence, a better approximation

quality is achieved with a VCP representation, as illustrated in Figure 6.3 (left).

Moreover, to enable lighting and shading computations, when working with a distance field,

normal vectors have to be stored, or obtained by sampling the gradient of the scalar field,

which is computationally expensive. As we will demonstrate, storing normals is not necessary

when working with a VCP representation, which saves a considerable amount of memory.

6.2.1 Ray-Casting

The VCP grid is rendered via parallel GPU ray-casting. For each ray, we simultaneously

compute the first and last intersection point with the object’s bounding box, and we let the

rays march through the VCP grid using varying step-sizes. This process is illustrated in

Figure 6.3 (right). At each sampling point, the allowed size of the next step is computed,

either by reading the scalar distance, d, value from the hit (empty) block, or by using the

length of the interpolated VCP vector in case a non-empty block is hit. If this distance is less

than ǫ, a ray-surface intersection point is assumed, otherwise the value is used as the step

size for the next sampling point. In particular, since we know that there is no object within

the distance d, we can safely set the step size to max {d− ǫ, ǫ/2}. In fact, the step size can

be chosen even greater in practice, as will be explained later on.

To determine the exact intersection point, the location between the current and the previous

sampling point at which the distance is exactly ǫ is interpolated. By doing this for every ray,

a smooth surface being a constant distance away from the exact surface is rendered. It is

clear that by decreasing ǫ, we can come arbitrarily close to this surface. Once a ray-surface

intersection is found, a local lighting model using the surface normal vector at the intersection

point is evaluated. The normal vector is given by the normalized VCP vector, since it is always

perpendicular to the surface.

At this point, the procedure could be extended to compute shadows by sending another ray

from the hit position to the light source. Likewise, additional non-camera rays could be sent

from the hit point to render reflection and refraction effects. This can be implemented in a

straightforward way, since our grid structure is independent of the camera position. Moreover,

we can also look up other attributes such as color at this point and use them to enhance the

visual appearance.

116 Ismail Demir

6.2 VCP Representation

a) b) c)

Figure 6.4: Comparison of three interpolation schemes. a) Trilinear interpolation produces
artifacts since adjacent VCP vectors pointing in opposite directions are canceled
out. b) Our intermediary scheme also leads to artifacts since triangles are sub-
stituted by planes, which have no boundary. c) Combining both methods avoids
artifacts of either case and is computationally cheap.

6.2.2 VCP Interpolation

To obtain the VCP at an arbitrary location, we interpolate between the 8 given vectors at the

vertices of the respective cell. For this, it is crucial to have an interpolation scheme, which is

consistent with the VCP geometry. A straightforward way would be to simply use trilinear

interpolation. However, as shown in Figure 6.4a, this method produces artifacts: Suppose,

we have VCP vectors (−ǫ, 0, 0) and (ǫ, 0, 0) at two adjacent grid points, meaning that they

are pointing to regions that are close in space but distant with respect to the surface. Now,

linearly interpolating in the middle of these two points would yield the vector (0, 0, 0) and

hence result in an intersection point during ray-casting. To remedy this problem, we propose

a specially designed interpolation scheme, which fits the purpose of interpolating VCP data

consistently. This method is illustrated in Figure 6.3 (left).

When interpolating at p′, we iterate over all 8 grid points pi and think of each VCP as

describing a plane. More precisely, each vector vcpi describes a (unique) plane Pi such that

Ismail Demir 117

6.3 VCP Octree

vcpi starting from pi is a perpendicular on Pi, i.e., vcpi ⊥ Pi and pi + vcpi ∈ Pi. We now

obtain the interpolated VCP with respect to pi as the perpendicular from p′ to Pi, i.e.,

vcp⋆
i =

((

vcpi ·
(

pi + vcpi − p′)) / (vcpi · vcpi)
) · vcpi.

Finally, the shortest vector is returned as the result, i.e.,

vcp⋆ = arg min
vcp⋆

i

{‖vcp⋆
i ‖} .

However, this approach also leads to rendering artifacts as can be seen in Figure 6.4b. This

comes from the fact that by substituting planes for a mesh, which originally consisted of

triangles, the boundaries of the triangles are lost. As a costly solution to this problem, one

could not only store VCP vectors but additionally the triangles to which they refer. A much

more feasible solution is to combine our method with the trilinear interpolation scheme, such

that the VCP with the greater length is returned as the final result. In this case, artifacts of

either case are avoided leading to a smooth rendering result. This is depicted in Figure 6.4c.

6.3 VCP Octree

The concept underlying our construction of a hierarchical octree structure is illustrated in

Figure 6.5. The octree is built bottom-up from the VCP grid outlined before. Each block

is initially considered as a leaf. For each block, we compute the minimum distance dmin, as

either the minimum of all scalar per-vertex distances of empty blocks or the minimum of all

VCP distances of the vertices of non-empty blocks. Whenever the minimum distance is greater

than a certain threshold, i.e., dmin > t, we mark the corresponding block as empty. In this

way we ensure that VCP information is only stored in the close vicinity of the surface, thus

lowering the memory requirement. To maximize the number of empty cells we minimize t such

that ray-casting produces no visual artifacts. For this, we set t equal to 2 times the distance of

two diagonally neighboring grid points with respect to the finest resolution. This ensures that

an intersection with the object is never lost during the hierarchy construction. The octree is

then constructed according to the following merging principles, where we consider groups of

23 blocks:

• If all nodes are marked as empty, they are combined to an empty leaf in the next octree

level (Figure 6.5b, nodes with only green child nodes).

• If all nodes are leaves but some of them are non-empty, we check, whether it is possible

to simplify that block to one single cell. For this, we test how well the VCP at the

vertices of the non-empty blocks can be interpolated from the 23 vertices of the single

118 Ismail Demir

6.3 VCP Octree

a) b)

Figure 6.5: a) In this 2D-illustration, each cell is surrounded by 4 neighboring grid points,
where a VCP is given at each grid point. Green cells correspond to empty leaves.
Blue / red cells correspond to non-empty leaves that can / cannot be merged at
the next level. b) The resulting octree after eliminating all nodes that can be
combined.

cell. We do so by computing the Euclidean distances di between the interpolated and

the exact VCP vectors: We iterate over all grid points pi contained by the current block

and compute the Euclidian distance di between the interpolated VCP according to the

block’s vertices vcp⋆(pi) and the original VCP given at the finest resolution vcp(pi). If

the maximum distance falls below a certain threshold, i.e.,

max {‖vcp (pi)− vcp∗ (pi)‖} < t,

the nodes are merged to a non-empty leaf in the next level. If the nodes cannot be

merged, an internal node is inserted at the next level pointing to corresponding leaves

(Figure 6.5b, nodes with only green and blue child nodes)

• Otherwise an internal node is inserted at the next level pointing to these nodes (Fig-

ure 6.5b, nodes with red child nodes).

6.3.1 Mesh-based Generation

In this section, we describe, how a full VCP grid is constructed from a given triangle mesh.

To begin with, let us consider the simplified case of computing the VCP from an arbitrary

point p in space to a single triangle given by points p1, p2, p3. This can be done efficiently by

calculating the barycentric coordinates of the (perpendicular) projection p′ from p onto the

triangle as proposed by Heidrich [Hei05]. Let

u = p2 − p1, v = p3 − p1, n = u× v, c = n · n, w = p− p1.

Ismail Demir 119

6.3 VCP Octree

Then, we obtain the barycentric coordinates as

γ = ((u× w) · n) /c

β = ((w × v) · n) /c

α = 1− β − γ.

If we have 0 ≤ α, β, γ ≤ 1, then p′ lies inside the triangle and equals also the VCP, i.e.,

vcp = p′. This holds because the VCP vector to a plane is necessarily perpendicular. If

p′ is outside of the triangle, the VCP must coincide with an edge (or a vertex). For this,

we compute the closest point vector to each edge and return the vector such that its length

minimal. To compute the closest point vector from p to a line segment given by p1, p2, let

u = p2 − p1 and

λ =
(p− p1) · d

d · d .

Let λ⋆ = clamp (λ, 0, 1). We finally obtain the VCP as vcp = p1 + λ⋆ · d. Note that it is also

possible to store other attributes such as color or texture coordinates at this point.

We now extend our approach to arbitrary meshes consisting of multiple triangles. Note that

in the case of polygon meshes our algorithm could be applied after decomposing each polygon

into a set of triangles (e.g. [dBCvKO08]). Instead of iterating over all triangles and store the

VCP with the least distance at each grid point, which is infeasible for any non-trivial mesh,

we propose an algorithm that consists of two stages.

Starting with an empty grid, we insert each triangle into the grid in the following manner.

First, we compute the bounding box for the current triangle and then update each grid point

within this box. More precisely, each grid point is updated, if it is currently empty or it is

pointing to another triangle with a greater VCP distance. Next, to expand the VCP data

computed so far, we utilize a region-growing algorithm. We iterate k times over all grid points

and compare the current grid point p with each surrounding grid point q in the following way.

If p is empty, i.e., points to no triangle, let p point to the same triangle as q. Otherwise, if

p, q point to triangles Tp, Tq, update p, such that it points to Tq if the VCP distance from

p to Tq is less than the current distance, i.e., to Tp. The number k depends linearly on the

aforementioned value ǫ.

For technical reasons, namely to enable multi-threading, this process cannot be done in-place,

meaning that we need to maintain an input and an output grid and swap their contents after

each region growing iteration.

120 Ismail Demir

6.4 GPU Implementation Issues

6.4 GPU Implementation Issues

To reduce the number of memory indirections on the GPU, the octree is not constructed up to

one single root node. Instead, the construction process is stopped at a certain level, where the

memory requirement falls below a given threshold. The data generated so far constitutes the

indirection pool of the octree. To traverse it efficiently on the GPU, the following information

is encoded at each node as a 32-bit signed integer. For internal nodes, a pointer to the node

index of its first child is stored; all child nodes are then stored at subsequent locations in

memory (up to index 0x40000000 - 1). An empty leaf is encoded by an integer greater than

or equal to 0x40000000 = 230, which represents the distance dmin to the nearest VCP with

respect to all grid points on the boundary of the spatial region referred by that node. We

compute this value by the formula
⌊

min {dmin/D, 1} · (230 − 1
)

+ 230
⌋

, where D represents a

certain cutoff-value. Finally, non-empty leaves are stored as negative integers -(leafIdx +

1), where leafIdx points to the index in the VCP leaf data structure, which is constructed

as given in the next paragraph.

6.4.1 VCP Leaf Data

For each non-empty leaf, 23 VCP vectors have to be stored. Note that leaves can overlap

if they belong to adjacent blocks in space as shown in Figure 6.6a. In this case, they share

4 VCP vectors, which allows us to reduce the memory requirement. For this, we sort the

leaves by using the following algorithm. First, leaves are ordered by their corresponding

octree level. Second, when leaves are on the same level (only in this case the possibility of

adjacency arises), they are sorted in xyz-order, where without loss of generality the x-axis

has the greatest length. Now, we construct the leaf data as a 3D texture in such a way that

cells share their VCP vectors, wherever it is possible as illustrated in Figure 6.6b. Finally, the

leaf indices are assigned to the indirection pool. For technical reasons, the cells in the texture

are arranged in a cuboid-like fashion rather than linearly, i.e., roughly 3
√

n × 3
√

n × 3
√

n cells

instead of n× 1× 1 cells. Otherwise, access on the GPU by texture coordinates would suffer

from insufficient floating point precision.

Another important aspect in achieving memory efficiency is the data type used to store VCP

vectors. To reduce the memory requirement, we propose a custom data type, which consumes

only 32 bit per VCP vector. We begin with transforming the VCP vector into spherical

coordinates (r, θ, ϕ) given as the radius, azimuthal angle, θ ∈ [−π/2, π/2], and polar angle,

ϕ ∈ [0, 2π]. We obtain the radius by normalizing the vector length with respect to a fixed

maximum radius, i.e., r = min {‖pcs‖ /rmax, 1}. To improve the precision for small radii, we

apply the square root to the radius, i.e., r ← √r. Now the three components are stored as

Ismail Demir 121

6.4 GPU Implementation Issues

Figure 6.6: Left: Two adjacent blocks overlap at 4 grid points (red) meaning that they share
the corresponding 4 VCP vectors, which allows us to reduce the required amount
of memory. Right: Cells with overlapping points are placed next to each other.
Between non-overlapping cells, there are empty regions (white background) which
remain unused. Note however that by construction unused points never arise.

r

vcp

Figure 6.7: The step size can be increased, when considering the surface (blue) as locally
planar. Given the angle between the vector vcp (black) and the ray direction r
(red), the distance to surface along the ray can then be computed by applying the
law of cosines.

normalized unsigned integers into 32 bit where r occupies the first 13 bits, θ the next 9 bits

and ϕ the remaining 10 bits.

6.4.2 Reducing Run-time Memory Traffic

It is not necessary to traverse the octree at each step along the ray beginning from the root.

Instead, we can simply remember the node index directly before the leaf. In many cases,

we can reuse this index as starting point, in particular, when the step size is small, which

is the real bottleneck of our technique. To further optimize the number of global memory

accesses, we store at each non-empty leaf the 8 VCP values in local memory. This enables us

to avoid reaccessing the same values in global memory, as long as we stay in the same cell,

while marching along the ray, i.e., when the step size is very small and would hence require

122 Ismail Demir

6.4 GPU Implementation Issues

a) b)

Figure 6.8: Comparison of the unoptimized (a) vs. the optimized approach (b). Here the
number of accesses to global memory is encoded by color intensity. Clearly, the
optimized version is much more efficient. Note that this also results in significantly
greater frame rates.

a lot of memory look-ups. Finally, as illustrated in Figure 6.7, we can increase the step size.

Considering the surface locally as planar would allow us to pick a step size of

s = d/

(

vcp

d
· r
)

,

where r denotes the normalized ray direction. In practice, however, this leads to rendering

artifacts because the surface is not planar on a larger scale. Therefore, we restrict the step size

optimization by a threshold, in our case 2ǫ. Figure 6.8 shows a comparison of the optimized

versus the unoptimized approach that clearly demonstrates its advantage. A similar algorithm

was employed by Hart in the context of sphere tracing [Har96].

6.4.3 Dynamic Memory Management

To improve the rendering quality, we have developed a system that dynamically loads more

refined subsets of the given geometry into GPU memory in places, which are located close

to the camera and visible in the current viewport. For this, we divide the bounding box of

the entire scene into subvolumes. Then, we consider each subvolume as a unique object and

construct the VCP hierarchy by restricting the VCP grid on the respective region. During the

rendering process, we continually compute the required set of subvolumes and load them into

memory. Loading is done in the background, which exploits the multithreading capability

of DirectX 11 and does not interrupt the rendering process. While ray-casting, we check at

each step, whether there is a refined VCP hierarchy available in GPU memory as long as

Ismail Demir 123

6.4 GPU Implementation Issues

a) b) c)

Figure 6.9: By dynamically loading more refined VCP hierarchies belonging to regions close
to the camera, the rendering quality is significantly enhanced. Rendering was
performed a) at a coarser resolution (to demonstrate the effect more clearly), b)
at a finer resolution, c) including further refined subvolumes.

the distance to the camera is less than a threshold, in our case 1/4 of the diameter of the

object’s bounding box. In this case, we perform a look-up in the refined structure in the same

way as explained in the previous section. The effect is demonstrated in Figure 6.9. As a

minor drawback of this approach, one can sometimes spot popping artifacts upon switching

to different subvolume levels. However, we regard this as acceptable, since our method dra-

matically reduces the runtime memory requirement on the GPU, thus enabling a significantly

finer resolution. Note that it is also be possible to extend this approach to multiple levels

of subvolumes, i.e., to further dividing subvolumes, although we have not implemented this

method.

6.4.4 GPU-CPU Upstreaming

To determine, which subvolumes are currently needed, we identify the subvolumes hit by rays

at early steps. While ray-casting, we compute at each step, which subvolume is currently hit.

Then, we increase a counter associated with that particular subvolume by the number 1/(a+ǫ),

where a is the accumulated step size. Afterwards, the counters are ordered decreasingly, which

results in a priority list. Finally, the associated subvolumes are loaded into GPU memory

according to their priority. To minimize the number of interlocked accesses to global memory

124 Ismail Demir

6.5 Results

Object Triangles VCP
Res/Mem

Sgn Dist.
Res/Mem

Voxel
Res/Mem

SVO
Res/Mem

Thai 10M 2K × 1K2

1.05 GiB
2K × 1K2

1.05 GiB
4K × 2K2

1.07 GiB
2K × 1K2

860 MiB

David 960M 2K × 1K2

980 MiB
2K × 1K2

980 MiB
4K × 2K2

960 MiB
2K × 1K2

770 MiB

Sponza 150K 1K × 5122

290 MiB
1K × 5122

290 MiB
1K × 5122

350 MiB
N/A

Table 6.1: For different objects, the following data is shown: the number of triangles of the
original mesh; resolution and memory consumption for different techniques.

(required for the counter to be consistent), we run a separate rendering process for this issue.

Here, it is sufficient to use a very small texture as rendering target, in our implementation of

size 24× 16 pixels.

6.4.5 Interruption-Free Loading

Also, notice that the set of required subvolumes to be loaded into GPU memory varies at a

significantly lower frequency than the frame rate. This is because the user typically moves

the camera around only at a certain pace. We can exploit this fact by updating the set of

required data significantly less frequently than regular rendering. However, even with this

improvement, there still occur some interruptions that can be notified by the user from time

to time. We address this issue by using the following strategy. For each frame, we measure

the rendering time and only if it is less than two-thirds the average time in the last n frames,

or after a certain timeout period is over, the process of gathering the required subvolumes

is carried out. In our implementation, n equals the number of frames rendered in the last 2

seconds.

6.5 Results

In this section, we show several results of our method. Then, we compare our approach

by performance and quality against ray-casting (1) on signed distance octrees, (2) on voxel

octrees, i.e., binary voxel grids organized as octrees, and (3) the sparse voxel octree (SVO)

implementation by Laine et al. [LK10b]. All measurements were performed on a desktop

PC equipped with an Intel Xeon X5675 CPU at 3 GHz and an NVIDIA GeForce GTX 580

graphics adapter with 3 GiB of memory. A viewport of resolution 1920 × 1200 was used

for all renderings. In Figure 6.10 renderings of the utilized objects are depicted. Table 6.1

Ismail Demir 125

6.6 Conclusion and Future Work

Figure 6.10: Objects used in our test cases. From left to right: Thai Statue, David, and Sponza
Atrium. All images were rendered with the implementation of our method.

shows relevant statistical properties about our test scenarios. Note that the resolution for all

techniques is chosen such that roughly the same amount of memory is consumed.

A comparison of the performance is presented in Table 6.2. Note that similar frame rates are

achieved in all scenarios, which we attribute to the fact the same geometry is rendered by a

ray-casting technique with roughly the same memory requirement.

Next, we study the different techniques with respect to the rendering quality they achieve. The

results are shown in Figure 6.11 with close-ups in the bottom row. Our method preserves fine

details better than the signed distances field for the previously mentioned reasons. Moreover,

the use of voxel ray-casting produces clearly recognizable artifacts due to the underlying block

structure of the voxel grid. The SVO method avoids such artifacts; however, in generally

smoother regions finer details appear somewhat blurred. It should be noted that the quality

of all techniques could be significantly increased by using a greater resolution.

6.6 Conclusion and Future Work

In this chapter, we have presented a novel rendering technique built upon a data representation

based on Vectors-to-Closest-Points with respect to the geometry of the scene. By using

126 Ismail Demir

6.6 Conclusion and Future Work

Scene VCP Sgn. Dist. Voxel SVO

Thai 1 8.6 8.2 8.0 8.1
Thai 2 11.7 11.1 10.6 11.0
Thai 3 20.4 19.8 19.4 18.2
David 9.1 8.7 8.2 8.9
Sponza 18.3 17.7 18.7 N/A
Raptor (Top) 16.7 16.2 15.9 14.2
Raptor (Bottom) 13.2 12.9 12.7 16.8

Table 6.2: Comparison of rendering times per frame. Each value is given in milliseconds.
The Thai scenes belong to Figure 6.1 (from left to right). David and Sponza are
(monochrome) renderings of the objects shown in Figure 6.10. The raptor scenes
correspond to Figure 6.11.

d)c)b)a)

Figure 6.11: Comparison of rendering quality for different ray-casting techniques: a) VCP b)
signed distance field c) voxel grid d) SVO. To demonstrate the differences, the
resolution was deliberately chosen at a lower level, with the constraint that the
memory consumption is roughly equal for each technique.

a regular grid as the underlying structure, we achieve an efficient GPU-implementation of

ray-casting. Since the grid is organized in an octree-like fashion, the memory consumption

is minimized. Furthermore, by relying on VCP vectors rather than employing voxel grids,

our technique has the advantage of avoiding artifacts, which are inherent to all voxel-based

methods. We have also presented an algorithm to generate VCP hierarchies, i.e., octree-

representations of VCP grids, from polygon meshes in a computationally efficient manner.

Our algorithm can be used for arbitrary large meshes by processing their faces sequentially, as

we have demonstrated for the David statue. We have also proposed and implemented several

ways to significantly enhance the performance of our ray-casting algorithm by exploiting the

underlying VCP representation. To circumvent the memory restrictions on the GPU, we

have implemented an algorithm that dynamically loads only a certain subset of the whole

Ismail Demir 127

6.6 Conclusion and Future Work

Figure 6.12: Left: Visualization of line fields by utilizing an underlying regular VCP grid.
Right: Phantom lines occur, when VCPs at adjacent grid points exhibit a too
high geodetic distance on the line set.

geometry at a finer resolution into GPU memory. This subset is determined by analyzing,

which parts of the scene in the current viewport lie in close vicinity to the camera. Finally,

we have presented various results that clearly demonstrate the potential of our approach in

the context of interactively rendering large meshes.

The work presented in this chapter gives rise to various future research directions. Firstly,

by implementing a DAG structure—inspired by Sparse Voxel DAGs [KSA13]—identical VCP

regions could be reorganized. Thus, we can expect a significantly lower memory requirement,

in particular for scenes exhibiting a high degree of self-similarity. Moreover, global illumina-

tion effects can be incorporated. For instance, by integrating non-camera rays, shadows and

specular reflections can be rendered.

Our method might also be of interest for rendering semi-transparent structures, as the use

of ray-casting renders computationally expensive sorting mechanisms in the fragment stage

redundant. For instance, consider the case of visualizing dense line fields with varying

(importance-based) opacity, as described by Günther et al. [GRT13]. Here, our approach

might prove as helpful, in particular as the underlying regular VCP grid structure gives rise

to fast opacity optimization strategies. An example of our approach in this context is shown

in Figure 6.12 (left). However, there also exist some issues that have to be overcome, before

this method can be further developed: For instance, when VCPs at adjacent grid points ex-

hibit a too high geodetic distance on the underlying structure, phantom features occur even

when using our interpolation scheme. This is shown in Figure 6.12 (right), where artifacts

occur between two lines, thus giving the user a false impression about the real data set.

128 Ismail Demir

7
Visualization of Shape-Based Ensembles

In this chapter, we propose a novel approach for visualizing the central tendency of ensem-

bles of shapes by building upon the vector-to-closest-point representation, which allows us

to determine the most central shape, to quantify the region-wise centrality of the shapes,

and to compute a locally most representative shape. This chapter is largely based on our

publication:

Demir I., Jarema M., Westermann R.: Visualizing the Central Tendency of Ensembles

of Shapes. In Proc. SIGGRAPH Asia 2016 Symposium on Visualization (2016). doi:

10.1145/3002151.3002165. [DJW16]. © 2016 Copyright is held by the owner/author(s).

Publication rights licensed to ACM.

7.1 Introduction

Ensembles that are generated by repeatedly running simulations are commonly used to es-

timate the uncertainty in the prediction of physical quantities: First, a representative set of

possible states of the quantity, which could evolve out of perturbed initial conditions and dif-

ferent models, is provided, i.e., the ensemble. Then, based on the variability of the ensemble

members at a given point in time, the uncertainty of the current prediction can be estimated.

By identifying a prediction that is a best representative of the whole ensemble, a central

tendency can be communicated to the user. Spaghetti plots based on iso-contours are often

used as a means to investigate the variability of a scalar field ensemble with regard to specific

features in the data. In this scenario, the contours of all ensemble members at a particular

time step are shown simultaneously by drawing overlaid spaghetti plot. Spaghetti plots, on

the other hand, are subject to visual clutter when there are too many overlapping features,

and they cannot express major trends and statistical attributes of the feature distribution

Ismail Demir 129

http://dx.doi.org/10.1145/3002151.3002165
http://dx.doi.org/10.1145/3002151.3002165

7.1 Introduction

a) b) c)

b)

c)

d)

Figure 7.1: a) Visualization of a 2D ensemble of wind velocity fields. The median iso-contour
determined by our method is shown in red, and the local centrality with respect
to the ensemble is color coded from dark blue (high centrality) to yellow (low
centrality). For the marked regions, (b) and (c) show the directional distributions
of vectors to closest points that were used to classify the centrality. d) For a 3D
scalar ensemble field, the locally best matching median surfaces are combined in
one single shape. Colors indicate different ensemble members.

in an intuitive manner. To circumvent these restrictions, descriptive statistics has been uti-

lized to illustrate the main features of contours, and to create abstract representations that

condense these features effectively. Contour boxplots [WMK13] are built upon the model of

statistical data depth to quantify the centrality of a contour surrounded by a set of contours.

Contour variability plots [FKRW16] provide a statistical model of the distribution of contours

and yield confidence intervals that stress their Euclidean spread.

Contour boxplots and variability plots generate indicator fields that allow a classification of

locations with respect to the contours. However, to this end, they require contours to be

closed and orientable. While these requirements are usually fulfilled by iso-contours, they are

generally speaking violated for arbitrary curves and surfaces—and sometimes even for iso-

surfaces. This can result in conflicting classifications, which can severely disturb the derived

statistical abstractions.

In this chapter, we propose an alternative method for visualizing and studying the central

tendency of shape-based ensembles, in particular, of ensembles of curves and surfaces, as illus-

trated in Figure 7.1. Our approach is motivated by the technique of Ferstl et al. [FKRW16],

where they use signed distance fields as indicator fields. Closed shapes are defined implicitly

as zero level-sets in these fields. In contrast, however, our method is built upon the vector-

to-closest-point representation. In this representation, every location is characterized by a

distance and direction to the closest point. Then, a shape is defined implicitly as the zero-

vector level-set. We use such representations as indicator fields, which allows us to process

arbitrary shapes and acquire an enhanced classification scheme of domain points with regard

to an ensemble of shapes.

Our specific contributions in this chapter are:

• A classification scheme for domain points with respect to the distribution of vectors to

130 Ismail Demir

7.2 Related Work

closest points. We study ensembles of vector-to-closest-point fields and classify point-

wise directional distributions by using mixtures of von Mises-Fisher distributions as an

underlying probabilistic model.

• Finding the globally most representative shape in a statistical sense. By computing the

classifications over the shape for each ensemble member, we determine the shape that

is most central to the entire sample in a least-squares fashion.

• Region-wise quantification of the centrality of the shapes: Incorporating the directional

distribution information into the visualization process allows us to classify the repre-

sentative quality of the local central tendency.

• Construction of a locally most central shape. In addition to the globally most central

ensemble member, we use the vector-to-closest-point distributions to determine the

locally best matching shape. These piecewise defined sections are then combined to

form a new shape.

We believe that our technique has great potential of enhancing and accelerating the investi-

gation of shape-based ensembles, and that it opens up new prospects in the field of ensemble

visualization. For instance, our method can be applied to ensembles of stream surfaces or

deforming flow surfaces with immensely dissimilar topologies and also to ensembles of surfaces

of material or anatomical structures, in order to generate atlas illustrations. For closed and

consistently oriented contours, we show that our technique results in the same or very similar

outcomes as existing approaches, and we further demonstrate that our approach is highly

effective for exploring ensembles of 3D shapes and non-orientable shapes.

7.2 Related Work

Our method belongs to the class of uncertainty visualization. For recent surveys on this

topic, let us refer to the summary article by Potter et al. [PRJ12] and the overview by

Bonneau et al. [BHJ∗14]. As we have mentioned before, when visualizing ensembles, the

assumption is that the uncertainty is characterized by a set of possible data occurrences,

rather than by a fully specified probabilistic model of uncertainty. Obermaier and Joy [OJ14]

categorize ensemble visualization techniques into two approaches, based either on features or

on locations. Our method can be understood as a hybrid approach, as we are using location-

based summary statistics to explore the feature-based variability of specific shapes.

Spaghetti plots of iso-contours are a popular approach for conveying the uncertainty inherent

in ensembles of 2D scalar fields [PWB∗09a, Wil11, SZD∗10]. Since the resulting visualizations

are often prone to visual clutter, various simplifications and visual abstractions have been

Ismail Demir 131

7.2 Related Work

suggested. Sanyal et al. [SZD∗10] introduced glyphs and graduated ribbons to express the

uncertainty along iso-contours. Several kinds of confidence bands were proposed by Whitaker

et al. [WMK13] and Ferstl et al. [FKRW16]. Their approaches are predicated on showing

regions that exhibit the Euclidean spread of a set of iso-contours. Both methods use indicator

fields to categorize locations in space with respect to an ensemble of contours. While the

approach of Whitaker et al. [WMK13] is based on binary fields indicating inside and outside

locations, Ferstl et al. [FKRW16] establish their method on the basis of probability theory,

by utilizing the concept of standard deviation of signed distance functions. It is worth noting

that both approaches require closed and consistently oriented contours.

Mirzargar et al. have extended the concept behind Contour boxplots to parametric curves [MWK14].

By using Principal Component Analysis (PCA), Ferstl et al. [FBW16] have proposed a method

to extract the main geometric tendencies in ensembles of curves for the same set of curves.

Visualizing the uncertainty with regard to position and structure of iso-surfaces was previously

achieved by drawing confidence envelopes [PWL97, ZWK10], surface displacements [GR04],

as well as by animating over a sequence of surfaces [Bro04, LLPY07]. Poethkow and Hege have

introduced the concept of numerical condition for the visualization of the variability of iso-

surfaces implicitly contained in uncertain scalar fields [PH11]. A probabilistic approach based

on level crossing for uncertain iso-surfaces that includes global correlations was suggested by

Pfaffelmoser et al. [PRW11], and was integrated into techniques for extracting surfaces from

ensembles unveiling local correlation structures [PWH11].

Ferstl et al. have used representations based on signed distance functions for the purpose of

ensemble-wise classification of domain points [FKRW16]. Initially, such representations were

proposed by Gibson to obtain a higher-order interpolant of surfaces that are embedded in 3D

scalar fields [Gib98]. For a comprehensive overview of applications of signed distance trans-

formations and algorithms for computing such functions from polygon models, refer to Jones

et al. and Frisken et al. [JBS06, FPRJ00]. By building upon signed distance functions, Bruck-

ner and Möller [BM10a] have developed a metric for the comparison of iso-contours in a scalar

field. Rathi et al. [RDT06] and Leventon et al. [LGF00], respectively, use PCA on distance

functions for analyzing shapes and for the construction of statistical shape models. By ap-

plying dimensionality reduction techniques to ensembles of distance functions, Fofonov et al.

represent contour time series as trajectories in a feature space of lower dimension [FML16].

Closest point representations, where a surface is implicitly encoded in a grid structure via

vectors to closest surface points, have been used in various approaches for solving differential

equations on surfaces [RM08, MR08]. In the context of fluid simulation, Auer et al. [AMT∗12]

have proposed a volume rendering technique based on ray-casting directly on a uniform closest

point grid. In Chapter 6, we improved upon this technique by introducing an hierarchical

132 Ismail Demir

7.3 Method Overview

Rendering Stage Preprocessing Stage

Compute
VCP

ensemble

Quantify
local

variability

Find the
median

Compute
spatial

attributes

Raycast
through

VCP grid

Render
median

and fuzzy
regions

Colorize,
e.g., by

variability

Figure 7.2: Overview of our method.

closest point representation and a tailored interpolation scheme that considers the closest

point geometry in order to intersect rays with a zero-vector level-set of closest point vectors

more precisely.

7.3 Method Overview

Our method starts with an ensemble {s1, ..., sN} of N 2D or 3D shapes, the ensemble members.

Without loss of generality, we assume that shapes are given either as polygonal curves or

surfaces. Nevertheless, any other representation is possible, as long as for a given location

we can compute the point closest to that location on the shape. In addition, notice, that

each ensemble member can be comprised of multiple shapes, i.e., one ensemble member can

be represented by multiple disjoint shapes. Such data sets can be generated by extracting

isosurfaces or isocontours from scalar fields, although we do not require the shapes to be

closed or orientable.

Starting with the initial ensemble, our method proceeds in two stages: The preprocessing

stage and the rendering stage (see Figure 7.2).

In the preprocessing stage, we first generate the bounding volume enclosing all shapes, and

we discretize this volume using a Cartesian grid structure. If the shapes were extracted from

values on a Cartesian grid, e.g., the shapes are level-sets in scalar fields given on such a grid,

we use the resolution of the initial grid to discretize the volume. Otherwise, we try to match

the resolution of the input shapes, i.e., we adapt the grid resolution to the smallest features

represented by the shapes.

For each shape and at each grid vertex, the vector to the closest point on this shape is com-

puted. This results in an ensemble of vectors to closest points at each vertex. We subsequently

call this grid the vector-to-closest-point ensemble (VCPE) grid. For the computation of the

VCPE grid, we basically utilize the algorithm presented in Chapter 6 and follow the GPU im-

plementation by Auer et al. [AMT∗12], with few adaptations to account for the fact that the

closest point computations are not restricted to a narrow band around the surface. Therefore,

Ismail Demir 133

7.3 Method Overview

the shape is first partitioned using a regular grid. One GPU thread then computes the closest

point of exactly one grid vertex, by sequentially going over the cells of this grid in increasing

distance of the cell centers to the vertex position. For each cell, the closest point to the shape

contained in this cell is computed, for instance, by iterating over all lines or triangles of the

polygonal structure. Processing of cells is stopped once the current closest point is closer than

the closest corner of the next cell. Since many grid vertices can be processed in parallel on

the GPU, the computation time was always below 5 seconds even for the largest shapes and

grid resolutions.

The ensembles of vectors at each grid vertex are now analyzed regarding their local directional

variability. Based on a statistical model describing the directional distribution of these vector

ensembles, we quantify the local variability at each vertex, and, in particular, we derive a

measure quantifying how central the position of the respective grid vertex is to the surrounding

closest points. Intuitively, a vertex is most central, i.e., it is suitable as a median point, if

its position coincides with the geometric center of the surrounding closest points and it is

possible to order these points along a single direction. The rationale underlying this approach

is to compute a measure of centrality that depends on both the distance to the closest points

and the modality of the directional distribution. For instance, a bimodal distribution with

an equal number of vectors captured by each mode and the modes being oriented inversely

to each other indicates perfect centrality. Figure 7.3 shows different cases that are relevant

in this regard. We now identify the most central shape by minimizing its overall centrality

to the other members. Finally, we generate local statistical attributes to convey the spatial

distribution of local centrality to the user.

Optionally, we now utilize a clustering algorithm to group members by their similarity. This

is particularly helpful, if the ensemble exhibits many different facets, such that identifying

a single member as a most central shape is impracticable, or results in a too high degree of

uncertainty, respectively.

The precomputed data are then visualized interactively using GPU volume ray-casting, by

either sampling the VCPE grid along the rays of sight, or performing a single lookup in case

of 2D shapes. We provide options to render the median shape by testing for intersections

with the most central shape, or fuzzy structures surrounding the median to convey the local

centrality. By using color to encode the centrality information, the user is able to discover

uncertainty and to identify outliers.

134 Ismail Demir

7.4 Generating the Vector-to-Closest-Point Ensemble

7.4 Generating the Vector-to-Closest-Point Ensemble

Let us consider an ensemble of shapes, specified by an index set I = {1, . . . , N}. Now, we

construct an ensemble of VCP volumes, where each shape results in one volume. As our

implementation is based on the Vector-to-Closest-Point (VCP) octree representation, we only

provide a short recap of that method, which was introduced in Chapter 6.

• Starting with an empty Cartesian grid at a lower resolution, we iterate over all primi-

tives, e.g., faces, of the given geometry and update all VCPs within its domain. That

is, at each grid point, we compute the VCP to the current primitive and store it, if its

distance is less than the previously computed VCP distance or if the grid point is still

marked as empty. Next, we utilize a region-growing algorithm. By repeatedly traversing

over all grid points, we update each point by comparing its distance to the distances to

primitives belonging to the surrounding grid points. The process is finished, when no

more changes occur. As a result, we end up with a completely filled VCP grid, which

constitutes the root level.

• We now construct the tree structure, i.e., an octree or quadtree, by refining the VCP grid

in a top-down fashion. Each grid cell is subdivided, if interpolating at one of its inner

grid points at the next finer level deviates more than a given threshold, t, from the true

VCP vector. Note that quality and memory consumption are inversely proportional to

the value of t. The fundamental idea behind the interpolation scheme for VCP vectors

is to consider the underlying geometry implicitly given by the closest points. That is, at

the interpolation point, we compute the VCP to all planes spanned by the VCPs at the

surrounding grid points. The shortest vector is then compared to a linearly interpolated

VCP vector, and of these two vectors the one with the greater length is returned as the

result.

7.5 Modeling Vectors to Closest Points

Given a VCPE grid, the vectors to closest points at each grid point are used in two different

ways: Firstly, their directional distribution is modeled statistically to enable quantifying the

local directional variability and, thus, deriving indicators of the centrality of each grid point

with respect to the ensemble of shapes. Secondly, the derived models are used to determine

the most central member, i.e., the median. Unlike generating a statistical mean member, our

algorithm guarantees that the median is an existing member of the initial ensemble. Thus,

our technique conveys information to the user, which truly exists in the original data set.

Ismail Demir 135

7.5 Modeling Vectors to Closest Points

a) b) c) d)

Figure 7.3: Different cases relevant for centrality quantification. a) With a uniform distribu-
tion, placing closest points along the same direction is not possible, resulting in
a low degree of centrality. b) Points are lying closer together, which implies that
the deviation decreases, and thus centrality is greater. c) Here, ordering along
a single direction and finding a suitable choice as the median is possible. d) Al-
though these closest point vectors can be ordered, the current point represents
a poor choice, as it deviates significantly from the mean vector to closest point
(colored in red).

7.5.1 Quantifying the Local Centrality

At each grid vertex, we compute a value representing the local centrality. This value quantifies,

how well the respective point in space is suitable as a median point. Intuitively, this happens,

if the point coincides with the geometric center of the surrounding closest points, and if it is

possible to order these points along a single direction. Figure 7.3 shows different cases that

are relevant in this regard.

Let {vcpi (p) : i ∈ I} denote a set of N = |I| closest point vectors at a grid vertex p. Moreover,

let d⋆
Cutoff denote a global cutoff-value with respect to the length of all closest point vectors,

which is used to scale the vectors to unit length. Now, we consider three criteria indicating

whether p can be deemed suitable for a point of the most central shape, each giving a value

ranging between 0 (least suitable) and 1 (most suitable):

Bimodality Angle

The point is likely to be representative, if the directions of the closest point vectors can be

modeled by two clusters having means with approximately the same direction, but contrary

orientation. To find out, if this is the case, we model the distributions of VCPs using mixtures

of probability density functions (PDFs). In doing so, we can characterize the directional

distributions with relatively few parameters: For each mixture component, its mean, the

variation around this mean, and the weight of the component. A suitable mixture model for

spherical data is a mixture of von Mises-Fisher (vMF) components. In 2D, this reduces to

136 Ismail Demir

7.5 Modeling Vectors to Closest Points

the von Mises distribution on the circle. In the following we restrict the discussion to the 3D

case. For the 2D case, let us refer to Fischer [Fis95].

A unit vector v follows a mixture of vMFs if its PDF is given by

f(v) =
M
∑

i=1

αi
κi

4π sinh(κi)
exp

(

κiµ
T
i v
)

, αi > 0,
M
∑

i=1

αi = 1,

where M is the number of vMF components, the unit vectors µi are their mean directions,

κi the concentration parameters, and αi the weights of the components. The concentration

parameter defines the shape of the distribution, with greater values indicating stronger con-

centrations in the vicinity of the mean direction. The parameters of a mixture of vMFs are

estimated using an implementation of the EM soft-moVMF algorithm introduced by Banerjee

et al. [BDGS05].

To qualitatively estimate the bimodality value, we strictly fit two vMF components. For

clearly unimodal distributions, one of the two weights αi will be 0; hence, the bimodality

value is also 0 and no further calculations are performed. If this is not the case, then we

compute the bimodality value as the smallest angle between the confidence cones of the two

components, normalized by π. Uniform distributions are also fitted using two components,

but the wide confidence cones result in very small bimodality values. To obtain a confidence

cone around each mean direction µ, we use two approaches [FLE87], depending on the size n

of each component. For n < 25, we need to apply a bootstrap technique. When n ≥ 25, a

simpler method is available. Calculating the mean resultant length R and estimated spherical

standard error σ̃ of the sample mean direction

σ̃2 = d/
(

nR
2
)

, where d = 1− 1

n

n
∑

i=1

(µ · vcpi)
2,

a 95% confidence cone for µ has a semi-vertical angle equal to q = arcsin(1.7308σ̃).

Visualizing the directional distributions, as can be seen in Figure 7.1bc and Figure 7.7a, is

achieved by drawing oriented glyphs, as proposed by Jarema et al. [JDKW15]. At each grid

point, the corresponding mixture of vMFs is represented by at most two lobes (one lobe per

component), where the mean direction, weight, and confidence cone of each component are

mapped to the orientation, length, and opening angle of the corresponding lobe.

Ismail Demir 137

7.5 Modeling Vectors to Closest Points

Length of Mean VCP

For this quantity, we first determine the mean closest point vector

vcp (p) =
1

N

N
∑

j=1

vcpj (p) .

Note that the geometric center of any given set of points xi ⊂ R
D, i ∈ I, D ∈ N in Euclidean

space, is obtained as

c =
1

N

N
∑

j=1

xi.

That is, the mean VCP points to the geometric center with respect to the closest surface

points of all members at any given position. Consequently, we can compute the distance

from p to the closest point on a locally optimal median shape as the length of the mean

closest point vector. This holds, first, since the geometric center minimizes the mean squared

Euclidean distance to each point. Second, because the closest point vector of the potential

median member vanishes at all of its surface points. Third, because this vector’s length is the

shortest distance to its underlying shape. We now compute the result as the scaled length of

the mean closest point vector. The Saturate function is here used to restrict the value to the

range [0, 1].

µ̂ (p) = Saturate

(

1

d⋆
Cutoff

· ‖vcp (p)‖
)

We consider this value in order to decide to which extent the point p can be regarded as good

representation of the geometric center. Here, smaller values correspond to better degrees.

Consequently, we use the value 1− µ̂ to determine the suitability as median.

Maximum Length of VCPs

This value represents the scaled length of the closest point vector with the greatest Euclidean

length, namely,

d̂Max (p) = Saturate

(

max {‖vcpi (p)‖ : i ∈ I}
d⋆

Cutoff

)

.

This value indicates how closely together the closest points of all members are located. Again,

smaller values stand for better degrees, because this implies that the maximum deviation

between all members decreases. In particular, if the maximum length is equal to 0, all

members are locally identical, meaning that any member is a perfectly good choice as the

median. Hence, we use the value 1− d̂Max to determine the suitability as median.

138 Ismail Demir

7.5 Modeling Vectors to Closest Points

Criterion Variable a) b) c) d)

Bimodality ϕ 0.0 0.0 0.9 0.95
Mean length 1− µ̂ 1.0 1.0 1.0 0.2

Maximum length 1− d̂Max 0.0 0.7 0.0 0.0
Centrality σ 0.0 0.7 0.95 0.44

Table 7.1: For the cases in Figure 7.3, the respective values of the different criteria are shown.
The last row contains the resulting centrality as computed by our method. In all
cases, our method coincides with the intuitive understanding of a good median
choice.

We compute the local centrality based on the aforementioned criteria as

σ = max

{

1− d̂Max,
√

ϕ̂ · (1− µ̂)

}

This formula accounts for all criteria and turned out to produce meaningful results in our test

cases. The values corresponding to the cases in Figure 7.3, as well as the resulting qualities

are shown in Table 7.1.

7.5.2 Finding the Median

To find the median, we calculate a global deviation with respect to the whole ensemble for each

member. The member with the smallest deviation in a least-square sense is then selected as

the median. For each ensemble member i ∈ I, we first select a sufficiently large set of points,

Pi. For polygonal meshes or line strips, we use the original vertex positions for that purpose.

Now, we iterate over all ensemble members j ∈ I and over all surface points pi ∈ Pi. For

each run, we gather the vectors vcpj (pi), i.e., the closest point vectors at all given surface

points with respect to all members. Here, vcpi (p) denotes the closest point vector at point p

for member i. Gathering is performed by bi- and tri-linear interpolation in the VCPE grid.

Based on the set of interpolated vectors, we quantify the local centrality, σ (pi), described in

the previous section.

We then obtain the global median deviation ∆i as the expected squared local centrality at a

uniformly randomly selected position on the shape’s surface. Note that it is not sufficient to

simply average over the centrality values, since the points pi are not necessarily distributed

uniformly, which would result in assigning unequal weights to regions that are sampled at

a denser or less dense resolution than the average. As an example, consider a shape given

as an adaptively resolved triangle mesh, where the vertex positions are used as the set of

surface points. Even if derived from a uniform Cartesian grid, the surface points need not

be resolved uniformly, as depending on the underlying geometry, distant closest point vectors

Ismail Demir 139

7.5 Modeling Vectors to Closest Points

Algorithm 1: Finding the Median

Input: Ensemble of N = |I| vector-to-closest-point grids vcpi

Result: Median index i ∈ I
/* Select surface points */

for i ∈ I do
Pi ← surface points of member i

end
/* Iterate over all members */

for i ∈ I do
/* Compute centrality */

for pi ∈ Pi do
σ (pi)← Centrality {vcpj (pi) : j ∈ I}

end
/* Insert into uniform grid */

Choose resolution r ∈ N
d

Ci ← ∅r
for pi ∈ Pi do

Let ci ∈ Ci, such that ci contains pi

ci ← ci ∪ σ (pi)
end
/* Compute global deviation */

∆i ← 0
weight (∆i)← 0
for ∅ 6= ci ∈ Ci do

∆i ← ∆i +
∑

σ∈ci
σ/ |ci| weight (∆i)← weight (∆i) + 1

end
∆i ← ∆i/weight (∆i)

end
return arg min {∆i : i ∈ I}

can point to locations close to each other. To overcome this issue efficiently, we proceed in

the following way. First, we insert the squared centrality values into a Cartesian grid of lower

resolution, such that each cell ci contains the average of all values σ (pi)
2, for all pi belonging

to ci. Second, we compute the average over all cells containing at least one value Ci, and

return the result as the global deviation with respect to the ensemble, i.e.,

∆i =
1

|Ci|
∑

ci∈Ci

σ (ci) .

Here, the key idea is to choose the grid resolution such that both the distribution of points

within each cell and the distribution of the cells near the initial shape’s surface are roughly

uniform. We achieve this by picking the finest resolution such that the largest primitive of

the original geometry fits into one cell, with the restriction that it is at most as fine as the

140 Ismail Demir

7.5 Modeling Vectors to Closest Points

underlying VCPE grid. Alternatively, we could utilize a binary search between 1 and the grid

resolution in each dimension. Finally, we obtain the median index as the member with the

least global deviation, i.e.,

Median (I) = arg min {∆i : i ∈ I} .

A complete overview is shown in Algorithm 1.

7.5.3 Spatial Attributes

We now discuss the generation of statistical spatial attributes, which are presented to the

user as fuzzy structures in addition to the median shape. In our implementation, the data

are stored in the VCPE grid in addition to the index of the median shape and the local

centrality data. This allows us to render simultaneously the shape and the fuzzy centrality

volume during ray-casting. We begin with computing a fuzziness at each point of the VCPE

grid. This value determines during rendering, whether a fuzzy or crisp structure should be

drawn at a respective point, as well as its opacity. For this purpose, we compute two different

values.

The minimal distance is given as the minimum of the Euclidean distances to all ensemble

members from a given point in space. Note that we can easily obtain this distance as the

length of the corresponding closest point vector, and thus we have

dMin (x) = min {‖vcpi (x)‖ : i ∈ I} .

Using the minimal distance as the fuzziness allows the user to see all regions where at least

one member resides.

Using the minimal distance enables the user to identify all regions of potential interest. How-

ever, it does not reveal how many members cross a certain region, i.e., the density of shapes

at a given point in space. To compensate for this, we propose a weighted distance value, given

as an adjusted mean of all distances,

dWeighted (x) =

∑N
i=1 (‖vcpi (x)‖ · exp (−α · ‖vcpi (x)‖))

∑N
i=1 exp (−α · ‖vcpi (x)‖)

,

where α ∈ R
+ denotes an importance parameter giving additional weight to smaller distances.

This allows us to retain regions containing outliers, whereas choosing α too small would result

in smoothing out fine structures distant to most other members. On the other hand, choosing

α too large would produce results similar to the minimal distance measure. In our test cases,

Ismail Demir 141

7.6 Clustering

α ≈ 3 yielded good results. Using the weighted distance criterion enables the user to quickly

identify outliers, as these are regions characterized by a relatively low fuzziness.

To finally store this data together with the VCPE grid, i.e., to extend the VCPE grid, we

extend the concept of closest point vectors by three scalar components, each encoded by 8

bits in our implementation. The minimum and weighted distances are stored in the first

two components. The local variability at the respective point in space is stored in the third

component. This value is later used to colorize the cloud accordingly.

7.6 Clustering

As the shapes are given in two or more dimensions, it is often impracticable to single out

a shape that can be selected as a most representative member. To remedy this problem,

we utilize a hierarchical clustering algorithm, where members are first grouped into clusters

and after that, we pick a median for each cluster. In the process of rendering, clusters are

overlaid, such that the spatial context is preserved. By using color and transparency, the user

can easily distinguish between different clusters. Note that the number of clusters has to be

limited to avoid occlusion artifacts. Therefore, the optimal number of clusters is a trade-off

between minimizing the global deviation and the visualization’s perceivability.

We will now give a short overview of the clustering method used in our implementation. For

further details, refer to Jain [Jai10]. For N members, we first generate a similarity matrix of

size N × N , where the similarity with respect to the underlying shapes i and j is stored at

entry (i, j) , i, j ∈ {1 . . . N}. We compute the similarity of two members by comparing their

VCPs at a uniform grid. For each grid point p, we sum up the squared distance between the

two vectors and return the total value as the similarity measure, namely

d (i, j) =
∑

p

‖cpi (p)− cpj (p)‖2 .

We now create for each member a new cluster and proceed by merging pairs of clusters until

only one cluster remains. In each step, two clusters of minimal distance are combined. For

this, we determine the distance in the following way. If each cluster contains a single member,

we use the distance from the similarity matrix. Otherwise, we calculate the distance according

to a linkage criterion, see [Bij73]. For our purpose, complete linkage clustering, defined as

D (I, J) = max {d (i, j) : i ∈ I, j ∈ J} ,

142 Ismail Demir

7.7 Ensemble Visualization

and average linkage clustering, defined as

D (I, J) =
1

|I| · |J |
∑

i∈I,j∈J

d (i, j) ,

turned out to produce useful results with respect to minimizing the variability of each cluster.

As this process is carried out as a precomputation step, the user can interactively choose

between different numbers of clusters and linkage criteria.

For each cluster distribution, we compute the corresponding medians. Here, we proceed

as explained above, with the exception that computing the variability is restricted to the

members of the respective cluster. The distribution with the least total deviation is then

preselected in the visualization, although it can be changed by the user at any time.

7.7 Ensemble Visualization

To visualize the median shape in combination with the local centrality information, we use

volume ray-casting to sample the extended VCPE grid along the view rays. Since both

the closest point vectors and centrality values are stored in the same grid, visualizing both

structures can be performed simultaneously in one rendering pass.

Ray-casting the VCPE grid is performed in essentially the same way as proposed in Chapter 6.

Thus, we give only a brief overview of this approach and explain the differences to this

implementation. To render the median shape via ray-casting, we march along the view rays

through the VCPE grid and interpolate the closest point vectors corresponding to the median

shape at the sampling points. For this, we use the same interpolation scheme as described

before. Now, we consider the length of the closest point vector. If it is less than a given

threshold ε > 0, we assume a hit with the shape and compute the color by a local illumination

model. At this point, the approach presented in the previous chapter terminates the ray

traversal. However, as we include transparency effects to visualize the centrality information,

we continue the process until the accumulated opacity reaches a prescribed threshold or the

ray position lies outside of the VCPE grid. In addition, the following visualization options

are provided.

7.7.1 Local Best Median

While traversing the VCPE grid along the rays, we test for the maximum centrality value of

all ensemble shapes. If this value is greater than a user-selected threshold, the shape for which

the value is determined is visualized, i.e., a unique color assigned to this shape is rendered

Ismail Demir 143

7.7 Ensemble Visualization

and the ray is terminated. In this way we obtain a shape composed of many different shapes,

depending on which of these shapes represent the median best locally. This combined shape

is one that does not exist in the initial ensemble, but allows determining local trends and

conveying the ensemble member that best follows the local trend.

7.7.2 Fuzzy Regions

To visualize the ensemble centrality around the median, we render a semi-transparent fuzzy

structure, similar to the approach by Grigoryan and Rheingans [GR04]. The fuzziness,

mapped to opacity, is computed according to a user-selected criterion: Either the minimal

distance, dMin, or the weighted distance, dWeighted, can be picked by the user. In the first case,

we choose a threshold d⋆
Min such that the structure is rendered only if the minimal distance is

less than the diameter of a grid cell. For this, we set the fuzziness to 1, if dMin < d⋆
Min, and to

0, otherwise. In doing so, we ensure that fuzzy structures only occur where initial members

exist. By determining the fuzziness according to dWeighted, the user is able to explore the den-

sity of shapes in each region. Again, to avoid visualizing non-existent data, we combine both

the weighted and the minimal distance in this case, i.e., we set the fuzziness to dWeighted, if

dMin < d⋆
Min, and to 0 otherwise. For coloring the fuzzy structures, we use the local centrality,

mapped from dark blue (high centrality) to yellow (low centrality).

7.7.3 2D Ensembles

We provide the option to visualize 2D VCPE grids. Therefore, a grid of depth 1 is generated,

and one single lookup per ray retrieves all the necessary information to determine, whether the

median shape is hit and what the local centrality at the sampling points is. This information

is then color-coded.

7.7.4 Color

We enhance the visualization by using color to encode additional information about the orig-

inal data set. For this purpose, we make use of the precomputed values stored together with

the closest point vectors. For coloring the fuzzy structures, we can use either the local cen-

trality or the weighted distance, depending on the user’s interest. By using the weighted

distance, the user immediately perceives the density of members in each region. Coloring

the shape is done by using the centrality, which enables the user to identify regions where

the median is a poor representation. Note that such regions can exist, as we always use an

existing member from the original data set as the median. Alternatively, we could also color

144 Ismail Demir

7.7 Ensemble Visualization

the shape by a single color, which is particularly helpful if more than one shape should be

drawn, e.g., if medians of different clusters should be visualized at once. Finally, we apply a

local illumination model, i.e., Lambertian lighting, to enhance the spatial perception.

7.7.5 Transparency

In addition to using color, we have integrated transparency effects in our visualization, by us-

ing front-to-back α-compositing. Transparency is mainly used to render the fuzzy structures,

where the value of opacity corresponds to the fuzziness as explained, scaled by a user-selected

value. In doing so, relevant information about the spatial distribution of all members is con-

veyed to the user without distracting her by visual clutter or occlusion artifacts. We can also

assign transparency to the shapes, which is useful if multiple shapes are rendered or if one sin-

gle shape contains interior structures. Note, however, that this is limited to a small number of

shapes as otherwise occlusion effects would prevail. We also allow the use of transparency as

a means to visualize the shape’s centrality. In this case, regions of lower centrality are drawn

with a lower opacity, allowing the user to focus specifically on regions that are representative

for the whole ensemble.

7.7.6 Silhouettes

To enhance the user’s recognition of the shapes, especially if fuzzy structures are visualized

in front of them, we extend our rendering technique by adding silhouettes to the shape. They

are blended over the shapes, such that they are never obscured by other structures. To detect

silhouettes, we extend the ray-casting algorithm by a second threshold ε⋆, given by

ε⋆ = ε · (1 + τ · λ) ,

where τ denotes the user-selected silhouette thickness and λ the distance traveled along the

ray, starting from the camera position. We now proceed as follows. If, while marching along

the ray, no silhouette was hit so far, and the current closest point length is less than ε⋆, we

consider this a silhouette hit and store the distance to the camera, i.e., λ0. If a surface hit

occurs in the following steps, we check whether the current distance to the camera is close

enough to the silhouette hit position, i.e., λ < λ0 + ε. In this case, the silhouette is discarded,

since it does not lie on the boundary of the shape. By letting the silhouette threshold depend

on λ, we ensure that all silhouettes are of roughly equal thickness, regardless of their distance

to the viewer.

Ismail Demir 145

7.8 Results

7.8 Results

To demonstrate the practical application of the proposed method, we discuss two synthetic

data sets, two real-world weather forecasting cases that occurred during an atmospheric re-

search campaign, and an ensemble of 3D fluid simulations. The first synthetic data set is

comprised of 50 Möbius bands, each represented by a 5K triangle mesh, which were slightly

perturbed to simulate an ensemble with changing geometry. The second synthetic ensemble

comprises 50 polygonal spheres of 4K triangles each, which have exactly the same geometry

in most regions, but turn inward and outward with varying strength and shape in one of

the hemispheres. Both synthetic data sets were discretized on a VCPE grid of resolution

128 × 128 × 128. The forecast data are obtained from the ECMWF Ensemble Prediction

System (ENS). The ensemble comprises an unperturbed control run (i.e., started from the

“best” initial conditions) and 50 perturbed members. Our example region covers the North

Atlantic and Europe, encompasses 335× 135× 62 voxels, and comprises geopotential height,

a typical measurement variable in weather forecasting. 2D and 3D polygonal iso-contours

were first extracted from the physical fields, resulting in up to 16K triangles per surface, and

these contours were then used as input to our approach. Our last ensemble features a Navier-

Stokes fluid simulation around an ellipsoid obstacle. Here, 56 simulation runs with different

viscosities were performed at a grid resolution of 145 × 49 × 49. The vorticity magnitude of

each run was written out as a scalar field, and polygonal iso-surfaces were extracted from

each ensemble member.

All presented results were generated on a standard desktop PC (Intel Xeon X5675 processor

with 6 × 3.0 GHz, 8 GB RAM and an NVIDIA Geforce GTX 680). The time required to

compute the VCPE grids, including the statistical modeling of the directional distributions

per vertex, took less than 15 seconds on the GPU in all of our experiments. This time scales

linearly in the number of grid points and the number of lines or triangles to which closest

points have to be computed.

In Figure 7.4, we demonstrate the use of our method to find a median surface in an ensemble

of non-orientable 3D surfaces, and to visualize the local centrality over the given surfaces

with respect to the median. As can be deduced from the surface coloring, the computed

median has very high centrality across the entire shape, while the other shapes show locally

low centrality, which is indicated by the color shift towards yellow.

In Figure 7.5, we use our method to analyze the central tendency in the ensemble of spheres.

Note that in this ensemble, roughly 3/4 of all spheres were perturbed outward, and the

remaining spheres were perturbed inward. Firstly, we show a rendering of the fuzzy centrality

volume to indicate the different shapes of the ensemble members. It can be seen that, in

146 Ismail Demir

7.8 Results

a) b) c)

Figure 7.4: From an ensemble of 50 slightly perturbed Möbius bands, the median surface
(middle) is computed using our method. The left and right surfaces show the
two ensemble member with the highest overall deviation from the median. Color
encodes centrality, ranging from dark blue (high) to yellow (low).

one hemisphere, all members have exactly the same geometry, while a high variability in the

shapes can be observed in the frontal region. Secondly, the median shape is shown, color

coded with local centrality. In the last two images, two members exhibiting low centrality are

shown, which is indicated by the color shift towards yellow.

In Figure 7.6 (left), we show the computed median surface for one of the 3D weather forecast

ensembles. Right, for the same ensemble, the locally best matching median surface is visu-

alized, by using color to indicate, which of the ensemble members provides the best median

surface locally. It can be seen that the surface in the bottom image shows details not present

in the median shape, i.e., meaning that locally the median is not always the best representa-

tive. The same experiment is shown in the top image in Figure 7.7a, and in Figure 7.7b for

the fluid ensemble. The visualization of the ECMWF data set reveals certain features that

become immediately apparent to the user. For instance, one can discover the major regions

where higher wind velocities are predicted, namely above the Baltic Sea and to the south of

Greenland. Note that by analyzing other iso-values, we can verify that higher velocities occur

within these regions, although this is not shown here. By studying the fuzzy structures, we

can spot a region located northwest of Africa exhibiting a lower degree of centrality. This

indicates the existence of outliers at that region. In the fluid ensemble, three representative

shapes extracted from disjunct subsets of members are shown on the top. The visualization

of a piecewise median is depicted at the bottom. By volume rendering the fuzzy structure,

the user gets an overview of the distribution regarding the remaining ensemble members.

Ismail Demir 147

7.9 Conclusion and Future Work

Figure 7.5: Visualization of an ensemble of locally perturbed 3D spheres. From left to right:
The fuzzy volume indicating local variability of the ensemble. The median surface;
color encodes centrality, ranging from dark blue (high) to yellow (low). Two
members of the ensemble being less central than the median.

Figure 7.6: Visualization of an ensemble of 3D iso-surfaces in wind velocity fields. Left: The
median surface. Color encodes centrality, ranging from dark blue (high) to yel-
low (low). Right: The locally best matching medians. Colors indicate different
ensemble members.

Figure 7.1abc and the bottom images in Figure 7.7a show 2D iso-contours in the ECMWF

ensembles. In both figures, spaghetti plots of all considered contours are shown, and the

computed median contours are highlighted in red. Here it is worth noting that our approach

yields exactly the same median contour as the contour boxplots [WMK13] do. In addition,

we show for selected regions the directional variability of vectors to closest points, which was

used to classify the local centrality. It can be seen that the directional variability is a good

indicator for classifying the domain locally. While in central regions we see a clear bimodality

with opposing directions, the distributions are tending towards unimodality or uniformity in

the more de-central regions.

7.9 Conclusion and Future Work

In this chapter, we have presented a novel approach for visualizing shape-based ensembles

in two or three dimensions while taking into account the spatial uncertainty that such an

148 Ismail Demir

7.9 Conclusion and Future Work

a) b)

Figure 7.7: a) Top: 3D weather forecast ensemble. The coloring indicates the locally best
matching median surface. Bottom: 2D slice from the same ensemble. First, a
spaghetti plot of all iso-contours for a selected threshold is shown. The contours
contributing to the median are highlighted. Next, the domain is colored according
to local centrality, and the distribution of vectors-to-closest-points is shown for a
selected region. b) Median and fuzzy regions are visualized in the same view for
an ensemble featuring vorticity magnitude of a fluid simulation. On the bottom
right a single member is rendered using streamlines.

ensemble entails. By combining the vector-to-closest-point representation with techniques

from probability theory, we have proposed a statistical model for the resulting directional

distributions. Based on this model, we classify regions and shapes with respect to central

tendencies and uncertainty. We validated our technique by testing it with ensembles of 2D

curves and comparing our results to those achieved by alternative approaches. In doing so,

we discovered a high degree of similarity. An outstanding benefit of our approach lies in the

fact that no assumptions about the input shapes are necessary and that our method can be

extended to three dimensions in a straightforward way. By exploiting a GPU-accelerated

ray-casting technique based on closest point grids, we provide the user with a tool for visually

guided analysis of multi-dimensional shape-based ensembles at interactive rates.

Our approach opens up different aspects that can be investigated in the future: Firstly, ana-

lyzing and comparing the shape medians that are computed by our and other approaches, in

particular with respect to local representativeness, can provide deeper insight into the effec-

tiveness of our technique and give rise to future improvements. According to our observations,

computing medians is a process that is susceptible to changes with respect to the VCPE grid

resolution and the weighting of variability values in the mean square integration over the

shapes. This issue can be addressed by pursuing investigations, where ground truth medians

are available. Lastly, a more extensive analysis of the locally best representative median, in

Ismail Demir 149

7.9 Conclusion and Future Work

the context of the application, where it is used, is paramount. This special shape is assembled

from sections of many different shapes, and it might be worthwhile to examine, to which

degree the resulting shape can communicate application-specific features with regard to local

tendencies to the domain expert.

150 Ismail Demir

8
Conclusion and Future Work

“Knowledge is an unending adventure at the edge of uncertainty.”

– Jacob Bronowski

In this thesis, we have presented several visualization techniques for uncertain multidimen-

sional data. Our approaches are predicated on showcasing visual abstractions that are derived

from given data sets: By hiding expendable information, our goal is to allow the domain ex-

pert to focus the analysis on relevant structures. Abstracting from raw data in such a manner

and developing visualization schemes that communicate these results to the user is a chal-

lenging task, especially, if uncertainty has to be considered. Due to the inherent nature of

uncertainty in all real-word scenarios, it is an important research topic that concerns many

disciplines in science and engineering. We have provided substantial contributions to this

field of research. To conclude this thesis, we give a short summary of the methods that we

have proposed, followed by an outlook over possible future research directions inspired by our

work.

For visualizing multidimensional data, we have proposed a novel approach that is based on

the Kriging interpolation scheme. As Kriging can handle scattered sample positions, gener-

ates smooth surfaces, and induces a measurement of uncertainty, our method is suitable for

manifold real-world data sets. To visualize multidimensional data, we provide the user with

multiple views, each consisting of two dimensions represented by a surface. To this end, we

have implemented two strategies: Projecting the sample onto each surface, where relatively

few sample points suffice to obtain a general overview; HyperSlice, where interpolation is car-

ried out in multidimensional space and then cutting planes are inserted at a user-selected focus

point. Our novel progressive GPU implementation allows the user to see results immediately,

while the sample can be arbitrary large.

Ismail Demir 151

We have developed different techniques for visualizing ensemble data: By bidirectional linking

between volumetric visualization and an abstract view, we enable the user to analyze 3D scalar

field ensembles at the data level. In the abstract view, we draw multi-charts, which can be

understood as an extension of bar and line charts that linearize 3D points along a space-filling

curve. Statistical information, such as histograms, is encoded in the bars, where individual

members are represented by overlaid line charts. As the abstract view does not suffer from

occlusion effects, distributions and spatial dependencies are effectively revealed to the expert.

Brushing and linking functionality in combination with volume visualization enables the user

to explore the whole ensemble space.

Isosurfaces are commonly used for visualizing 3D scalar fields. We have extended this method

to ensembles of scalar fields, built upon the essential idea of rendering silhouettes instead of

solid surfaces. In this way, occlusion effects are minimized and the spatial coherence is still

preserved. For an in-depth analysis, we provide several means to inspect the data set, such

as cutting planes that can freely be placed by the user, picking and brushing, clustering and

animation. We have demonstrated that our method is capable of revealing relevant features

and spatial dependencies between different members.

Moreover, we have proposed a novel rendering technique based on a Vector-to-Closest-Point

(VCP) representation. By using a regular grid, organized in an octree-like fashion, we achieve

a fast and memory efficient ray-casting implementation that takes full advantage of the GPU’s

capabilities. We avoid rendering block artifacts that are inherent to classical voxel-based

methods by smoothly interpolating between VCPs. To transform polygonal meshes into VCP

grids, we have developed an algorithm capable of processing even the largest meshes, we had

on hand, in a computationally efficient manner. We have demonstrated this for the David

statue, a mesh consisting of 960 million triangles. By generating the VCP structure at different

resolutions, and dynamically loading only subsets of the finest level into GPU memory, we

circumvent memory restrictions and still maintain very fine details from the original data.

Although the applications of this approach are not restricted to the area of visualization, we

have developed a visualization technique for shape-based ensembles based upon VCP rep-

resentations. By combining the VCP representation with statistical models for directional

distributions, we are able to classify regions and shapes according to centrality and uncer-

tainty. Due to the underlying VCP structure, our approach does not make any assumptions

about the given shapes, unlike similar alternatives that can be found in the literature, e.g.,

shapes do not need to be closed or orientable. We have implemented our solution for two and

three-dimensional shapes, and by integrating our GPU-based ray-casting method, we have

provided an interactive tool for visual exploration of arbitrary shapes.

We have demonstrated the effectiveness of all our approaches with a couple of real-world data

152 Ismail Demir

sets. As we have shown, various features were revealed by using our visualization schemes.

In the future, our methods might have the potential of providing insight into data sets from

various domains of application. Moreover, there are several future research directions based

on our work.

To discover shape-based feature indicators in higher dimensional data, our approach of render-

ing progressive response surfaces could be analyzed with functions that have known extreme

points. Knowledge about topological features discovered in this way might then be applied to

real-world data sets. In combination with multi-charts, our approaches could be combined and

extended to visualizing higher dimensional data, while still maintaining the spatial coherence

to a good degree. This is due to the fact that space-filling curves can be extended to higher

dimensions in a straightforward way. Likewise, an extension to time-varying data might turn

out to yield useful results, either by interpreting time as another multi-chart dimension, or

by utilizing animation. Time-varying data might also be of interest in the context of our

silhouette-based isosurface rendering technique. Here, animation is already used to iterate

over individual members and it might prove as equally effective for iterating over different

time steps.

Although not being a visualization technique by itself, our VCP ray-casting approach can

serve as a basis for advanced visualization methods that rely on high resolutions or incorporate

complex transparency effects. In addition, integrating secondary rays might support the user

in better understanding spatial context, for instance, by casting shadows. As mentioned

before, we have also developed a visualization technique based on VCP grids. Here, it might

be worthwhile to compare the medians found by using the VCP representation to medians that

are computed by other approaches. Moreover, the concept behind the locally best matching

median has to be validated more thoroughly, in particular in the context of application-specific

information concerning local trends.

Ismail Demir 153

154 Ismail Demir

Bibliography

[AL09] Aila T., Laine S.: Understanding the efficiency of ray traversal on gpus. In

Proc. High-Performance Graphics 2009 (2009).

[All10] Allen T.: Introduction to engineering statistics and lean sigma : statistical

quality control and design of experiments and systems. Springer, London New

York, 2010.

[AMT∗12] Auer S., Macdonald C. B., Treib M., Schneider J., Westermann R.:

Real-time fluid effects on surfaces using the closest point method. Computer

Graphics Forum 31, 6 (2012).

[AOB08] Allendes Osorio R., Brodlie K. W.: Contouring with uncertainty. The-

ory and Practice of Computer Graphics 2008. Proceedings. (2008), 59–66.

[ASE16] Athawale T., Sakhaee E., Entezari A.: Isosurface visualization of data

with nonparametric models for uncertainty. IEEE transactions on visualization

and computer graphics 22, 1 (2016), 777–786.

[Asi85] Asimov D.: The grand tour: a tool for viewing multidimensional data. SIAM

J. Sci. Stat. Comput. 6, 1 (Jan. 1985), 128–143.

[Aut93] Auto mpg data set. http://archive.ics.uci.edu/ml/datasets/Auto+MPG,

1993. UCI Machine Learning Repository.

[AWH∗12] Alabi O. S., Wu X., Harter J. M., Phadke M., Pinto L., Petersen H.,

Bass S., Keifer M., Zhong S., Healey C., Taylor II R. M.: Compara-

tive visualization of ensembles using ensemble surface slicing. In IS&T/SPIE

Ismail Demir 155

http://archive.ics.uci.edu/ml/datasets/Auto+MPG

Bibliography

Electronic Imaging (2012), International Society for Optics and Photonics,

pp. 82940U–82940U.

[Ban37] Banachiewicz T.: Zur Berechnung der Determinanten, wie auch der In-

versen, und zur darauf basierten Auflösung der Systeme linearer Gleichungen.

Acta Astronomica, Serie C, 3 (1937), 41–67.

[BBF∗11] Busking S., Botha C., Ferrarini L., Milles J., Post F.: Image-based

rendering of intersecting surfaces for dynamic comparative visualization. The

Visual Computer 27 (2011), 347–363.

[BC87] Becker R. A., Cleveland W. S.: Brushing scatterplots. Technometrics

29, 2 (1987), 127–142.

[BC08] Bastos T., Celes W.: Gpu-accelerated adaptively sampled distance fields.

In Shape Modeling and Applications, 2008. SMI 2008. IEEE International

Conference on (June 2008), pp. 171–178.

[BDGS05] Banerjee A., Dhillon I. S., Ghosh J., Sra S.: Clustering on the unit

hypersphere using von mises-fisher distributions. J. Mach. Learn. Res. 6 (Dec.

2005), 1345–1382.

[BHGK14] Beham M., Herzner W., Gröller M. E., Kehrer J.: Cupid: Cluster-

based exploration of geometry generators with parallel coordinates and radial

trees. IEEE TVCG 20, 12 (2014), 1693–1702.

[BHJ∗14] Bonneau G.-P., Hege H.-C., Johnson C. R., Oliveira M. M., Potter

K., Rheingans P., Schultz T.: Overview and state-of-the-art of uncertainty

visualization. In Scientific Visualization. Springer, 2014, pp. 3–27.

[Bij73] Bijnen E. J.: Cluster analysis – Survey and evaluation of techniques. Springer

Netherlands, Dordrecht, 1973.

[Bil98] Bilmes J.: A Gentle Tutorial of the EM Algorithm and its Application to

Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Tech.

rep., 1998.

[BK05] Botsch M., Kobbelt L.: Real-time shape editing using radial basis func-

tions. In Computer Graphics Forum (2005), pp. 611–621.

[BKS04] Bordoloi U. D., Kao D. L., Shen H.-W.: Visualization techniques for

spatial probability density function data. Data Science Journal 3 (2004), 153–

162.

156 Ismail Demir

Bibliography

[Blo50] Blomqvist N.: On a measure of dependence between two random variables.

The Annals of Mathematical Statistics 21, 4 (1950), 593–600.

[BM10a] Bruckner S., Möller T.: Isosurface similarity maps. Computer Graphics

Forum 29, 3 (2010), 773–782.

[BM10b] Bruckner S., Möller T.: Result-driven exploration of simulation param-

eter spaces for visual effects design. IEEE TVCG 16, 6 (2010), 1468–1476.

[BOL12] Brodlie K., Osorio R. A., Lopes A.: A review of uncertainty in data

visualization. In Expanding the frontiers of visual analytics and visualization.

Springer, 2012, pp. 81–109.

[BPFG11] Berger W., Piringer H., Filzmoser P., Gröller E.: Uncertainty-aware

exploration of continuous parameter spaces using multivariate prediction. Pub-

lished in Computer Graphics Forum 30, 3 (2011), pp. 911 – 920.

[Bro04] Brown R.: Animated visual vibrations as an uncertainty visualisation tech-

nique. In Proc. GRAPHITE (2004), pp. 84–89.

[Buh03] Buhmann M.: Radial basis functions theory and implementations. Cambridge

University Press, Cambridge New York, 2003.

[BWE05] Botchen R. P., Weiskopf D., Ertl T.: Texture-based visualization of

uncertainty in flow fields. In VIS 05. IEEE Visualization, 2005. (2005), IEEE,

pp. 647–654.

[Cas02] Casella G.: Statistical Inference. Thomson Learning, Australia Pacific

Grove, CA, 2002.

[CBC∗01] Carr J. C., Beatson R. K., Cherrie J. B., Mitchell T. J., Fright

W. R., McCallum B. C., Evans T. R.: Reconstruction and representation

of 3d objects with radial basis functions. In Proceedings of the 28th annual

conference on Computer graphics and interactive techniques (New York, NY,

USA, 2001), SIGGRAPH ’01, ACM, pp. 67–76.

[CBDT11] Coninx A., Bonneau G.-P., Droulez J., Thibault G.: Visualization of

uncertain scalar data fields using color scales and perceptually adapted noise.

In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in

Graphics and Visualization (2011), ACM, pp. 59–66.

[CGL83] Chan T. F., Golub G. H., LeVeque R. J.: Algorithms for computing the

sample variance: Analysis and recommendations. The American Statistician

37, 3 (1983), 242–247.

Ismail Demir 157

Bibliography

[Cha83] Chatfield C.: Statistics for technology : a course in applied statistics. Chap-

man and Hall, London New York, 1983.

[CHCH06] Carr N. A., Hoberock J., Crane K., Hart J. C.: Fast GPU ray tracing

of dynamic meshes using geometry images. In Proc. Graphics Interface (2006),

pp. 203–209.

[CHH02] Carr N. A., Hall J. D., Hart J. C.: The ray engine. In HWWS ’02: Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware (2002), pp. 37–46.

[CJ08] Cressie N., Johannesson G.: Fixed rank kriging for very large spatial data

sets. Journal of the Royal Statistical Society: Statistical Methodology 70, 1

(2008), 209–226.

[Cle85] Cleveland W. S.: The elements of graphing data. Wadsworth Publ. Co.,

Belmont, CA, USA, 1985.

[CNLE09] Crassin C., Neyret F., Lefebvre S., Eisemann E.: Gigavoxels : Ray-

guided streaming for efficient and detailed voxel rendering, feb 2009. to appear.

[Cre93] Cressie N.: Statistics for Spatial Data. Wiley Series in Probability and

Statistics. Wiley-Interscience, Jan. 1993.

[CSD∗09] Cole F., Sanik K., Decarlo D., Finkelstein A., Funkhouser T.,

Rusinkiewicz S., Singh M.: How well do line drawings depict shape. ACM

Trans. on Graph. (Proc. of SIGGRAPH) (2009).

[dBCvKO08] de Berg M., Cheong O., van Kreveld M., Overmars M.: Delaunay

Triangulations, 3rd ed. ed. Springer-Verlag TELOS, Santa Clara, CA, USA,

2008, pp. 191–218.

[DDW14] Demir I., Dick C., Westermann R.: Multi-Charts for Comparative 3D

Ensemble Visualization. IEEE Transactions on Visualization and Computer

Graphics 20, 12 (Dec. 2014). doi:10.1109/TVCG.2014.2346448.

[Dey10] Dey D.: Essential Bayesian models : a derivative of Handbook of statis-

tics: Bayesian thinking - modeling and computation, vol. 25. North-Holland,

Amsterdam, 2010.

[DGBW08] Dick C., Georgii J., Burgkart R., Westermann R.: Computational

steering for patient-specific implant planning in orthopedics. In Proceedings

of the First Eurographics conference on Visual Computing for Biomedicine

(2008), pp. 83–92.

158 Ismail Demir

http://dx.doi.org/10.1109/TVCG.2014.2346448

Bibliography

[DH02] Doleisch H., Hauser H.: Smooth brushing for focus+context visualization

of simulation data in 3D. Journal of WSCG 10, 1–3 (2002), 147–154.

[DJW16] Demir I., Jarema M., Westermann R.: Visualizing the central tendency

of ensembles of shapes. In SIGGRAPH Asia 2016 Symposium on Visualization

(New York, NY, USA, 2016), SA ’16, ACM. doi:10.1145/3002151.3002165.

[DKD09] Der Kiureghian A., Ditlevsen O.: Aleatory or epistemic? Does it matter?

Structural Safety 31, 2 (2009), 105–112.

[DKLP01] Djurcilov S., Kim K., Lermusiaux P. F., Pang A.: Volume rendering

data with uncertainty information. In Data Visualization 2001. Springer, 2001,

pp. 243–252.

[DKLP02] Djurcilov S., Kim K., Lermusiaux P., Pang A.: Visualizing scalar vol-

umetric data with uncertainty. Computers & Graphics 26, 2 (2002), 239–248.

[DKW16] Demir I., Kehrer J., Westermann R.: Screen-space Silhouettes for Visu-

alizing Ensembles of 3D Isosurfaces. In Proc. IEEE Pacific Visualization Symp.

(Visualization Notes) (2016). doi:10.1109/PACIFICVIS.2016.7465271.

[Dol07] Doleisch H.: SimVis: Interactive visual analysis of large and time-dependent

3D simulation data. In Proc. Winter Simulation Conference (2007), pp. 712–

720.

[DW13] Demir I., Westermann R.: Progressive High-Quality Response Surfaces for

Visually Guided Sensitivity Analysis. Computer Graphics Forum (Proceedings

of EuroVis 2013) 32, 3 (2013), 21–30. doi:10.1111/cgf.12089.

[DW15] Demir I., Westermann R.: Vector-to-Closest-Point Octree for Surface Ray-

Casting. In Vision, Modeling & Visualization (2015), Bommes D., Ritschel

T., Schultz T., (Eds.), The Eurographics Association. doi:10.2312/vmv.

20151259.

[EB03] Esty W. W., Banfield J. D.: The box-percentile plot. Journal of Statistical

Software 8, 17 (2003), 1–14.

[EQOR11] Ezzatti P., Quintana-Ortí E., Remon A.: High performance matrix in-

version on a multi-core platform with several gpus. In Parallel, Distributed and

Network-Based Processing (PDP), 2011 19th Euromicro International Confer-

ence on (2011), pp. 87 –93.

Ismail Demir 159

http://dx.doi.org/10.1145/3002151.3002165
http://dx.doi.org/10.1109/PACIFICVIS.2016.7465271
http://dx.doi.org/10.1111/cgf.12089
http://dx.doi.org/10.2312/vmv.20151259
http://dx.doi.org/10.2312/vmv.20151259

Bibliography

[EVG04] Ernst M., Vogelgsang C., Greiner G.: Stack implementation on pro-

grammable graphics hardware. In Vision Modeling and Visualization (2004),

pp. 255–262.

[FB94] Furnas G. W., Buja A.: Prosection views: Dimensional inference through

sections and projections. Journal of Computational and Graphical Statistics 3

(1994), 323–385.

[FBW16] Ferstl F., Bürger K., Westermann R.: Streamline variability plots for

characterizing the uncertainty in vector field ensembles. IEEE Transactions

on Visualization and Computer Graphics 22, 1 (Jan 2016), 767–776.

[Fis95] Fisher N.: Statistical Analysis of Circular Data. Cambridge Univ. Press,

1995.

[FKLT10] Feng D., Kwock L., Lee Y., Taylor R.: Matching visual saliency to

confidence in plots of uncertain data. IEEE Transactions on Visualization and

Computer Graphics 16, 6 (2010), 980–989.

[FKRW16] Ferstl F., Kanzler M., Rautenhaus M., Westermann R.: Visual anal-

ysis of spatial variability and global correlations in ensembles of iso-contours.

In Computer Graphics Forum (Proc. EuroVis) (2016). to appear.

[FLE87] Fisher N., Lewis T., Embleton B.: Statistical analysis of spherical data.

Cambridge Univ. Press, 1987.

[FML16] Fofonov A., Molchanov V., Linsen L.: Visual analysis of multi-run

spatio-temporal simulations using isocontour similarity for projected views.

IEEE Trans. Visual. and Comp. Graphics, to appear (2016).

[FN91] Franke R., Nielson G. M.: Scattered data interpolation and applications:

A tutorial and survey. In Geometric Modelling: Methods and Their Applica-

tions, Hagen H., Roller D., (Eds.). Springer, 1991, pp. 131–160.

[FPRJ00] Frisken S. F., Perry R. N., Rockwood A. P., Jones T. R.: Adaptively

sampled distance fields: A general representation of shape for computer graph-

ics. In Proceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques (2000), SIGGRAPH ’00, pp. 249–254.

[Fri97] Fristedt B.: A Modern Approach to Probability Theory. Birkhäuser, Boston,

1997.

160 Ismail Demir

Bibliography

[FS05] Foley T., Sugerman J.: Kd-tree acceleration structures for a

GPU raytracer. In HWWS ’05: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware (2005), pp. 15–

22.

[FT74] Friedman J. H., Tukey J. W.: A Projection Pursuit Algorithm for Ex-

ploratory Data Analysis. IEEE Trans. Comput. 23, 9 (1974), 881–890.

[GAW∗11] Gleicher M., Albers D., Walker R., Jusufi I., Hansen C. D.,

Roberts J. C.: Visual comparison for information visualization. Information

Visualization 10, 4 (2011), 289–309.

[GBS∗99] Goel A., Baker C., Shaffer C. A., Grossman B., Haftka R. T.,

Mason W. H., Watson L. T.: VizCraft: A multidimensional visualization

tool for aircraft configuration design. In Proc. IEEE Visualization (1999),

pp. 425–428.

[GC11] Gupta M. R., Chen Y.: Theory and use of the EM algorithm. Now Pub-

lishers Inc, 2011.

[Ger92] Gershon N. D.: Visualization of fuzzy data using generalized animation.

In Visualization, 1992. Visualization’92, Proceedings., IEEE Conference on

(1992), IEEE, pp. 268–273.

[GH97] Garland M., Heckbert P. S.: Surface simplification using quadric error

metrics. In Proc. SIGGRAPH ’97 (1997), pp. 209–216.

[Gib02] Gibbs J.: Elementary Principles in Statistical Mechanics: Developed with Es-

pecial Reference to the Rational Foundations of Thermodynamics. C. Scribner’s

sons, 1902.

[Gib98] Gibson S. F. F.: Using distance maps for accurate surface representation

in sampled volumes. In Proceedings of the 1998 IEEE Symposium on Volume

Visualization (1998), VVS ’98, pp. 23–30.

[GLLL09] Ge Y., Li S., Lakhan V. C., Lucieer A.: Exploring uncertainty in remotely

sensed data with parallel coordinate plots. International Journal of Applied

Earth Observation and Geoinformation 11, 6 (2009), 413–422.

[GM05] Gobbetti E., Marton F.: Far voxels: a multiresolution framework for inter-

active rendering of huge complex 3d models on commodity graphics platforms.

ACM Transactions on Graphics 24, 3 (2005), 878–885.

Ismail Demir 161

Bibliography

[GMIG08] Gobbetti E., Marton F., Iglesias Guitián J. A.: A single-pass gpu ray

casting framework for interactive out-of-core rendering of massive volumetric

datasets. Vis. Comput. 24, 7 (July 2008), 797–806.

[GPSS07] Günther J., Popov S., Seidel H.-P., Slusallek P.: Realtime ray

tracing on GPU with BVH-based packet traversal. In Proceedings of the

IEEE/Eurographics Symposium on Interactive Ray Tracing 2007 (Sept. 2007),

pp. 113–118.

[GR02] Grigoryan G., Rheingans P.: Probabilistic surfaces: Point based primi-

tives to show surface uncertainty. In Proceedings of the conference on Visual-

ization’02 (2002), IEEE Computer Society, pp. 147–154.

[GR04] Grigoryan G., Rheingans P.: Point-based probabilistic surfaces to show

surface uncertainty. IEEE TVCG 10, 5 (2004), 564–573.

[GRT13] Günther T., Rössl C., Theisel H.: Opacity optimization for 3d line fields.

ACM Transactions on Graphics (TOG) 32, 4 (2013), 120.

[GRW∗00] Gresh D. L., Rogowitz B. E., Winslow R. L., Scollan D. F., Yung

C. K.: WEAVE: A system for visually linking 3-D and statistical visualiza-

tions, applied to cardiac simulation and measurement data. In Proc. IEEE

Visualization (2000), pp. 489–492.

[GS06] Griethe H., Schumann H.: The visualization of uncertain data: Methods

and problems. In Proc. SimVis (2006), pp. 143–156.

[GTC01] Grinstein G., Trutschl M., Cvek U.: High-dimensional visualizations. In

Workshop on Visual Data Mining (2001), 7th Conf. on Knowledge Discovery

and Data Mining (KDD), pp. 77–87.

[GXY12] Guo H., Xiao H., Yuan X.: Scalable multivariate volume visualization and

analysis based on dimension projection and parallel coordinates. IEEE TVCG

18, 9 (2012), 1397–1410.

[Haa95] Haas T. C.: Local prediction of a spatio temporal process with an application

to wet sulfate deposition. American statistical Association 90, 432 (1995),

1189–1199.

[Han05] Hansen C.: The visualization handbook. Elsevier Butterworth-Heinemann,

Burlington, MA, 2005.

[Har96] Hart J. C.: Sphere tracing: A geometric method for the antialiased ray

tracing of implicit surfaces. The Visual Computer 12 (1996), 527–545.

162 Ismail Demir

Bibliography

[Har07] Harris M.: Optimizing parallel reduction in cuda, 2007. NVIDIA Developer

Technology.

[Hau05] Hauser H.: Generalizing focus+context visualization. In Scientific Visualiza-

tion: The Visual Extraction of Knowledge from Data. Springer, 2005, pp. 305–

327.

[HBG∗12] Heinzl C., Bruckner S., Gröller M. E., Pang A., Hege H.-C., Pot-

ter K., Westermann R., Pfaffelmoser T., Möller T.: Uncertainty

and parameter space analysis in visualization. IEEE VisWeek Tutorial, 2012.

[HCL∗11] Huang L., Chen K., Lai Y., Chang P., Song S.: Geological visualization

system with gpu-based interpolation. AGU Fall Meeting Abstracts (Dec. 2011),

B1600.

[Hei05] Heidrich W.: Computing the barycentric coordinates of a projected point.

Journal of Graphics, GPU, and Game Tools 10, 3 (2005), 9–12.

[Hen03] Hengl T.: Visualisation of uncertainty using the hsi colour model: com-

putations with colours. In 7th International Conference on GeoComputation

(2003).

[HHB16] Hao L., Healey C., Bass S.: Effective visualization of temporal ensembles.

IEEE TVCG 22, 1 (Jan 2016), 787–796.

[HJ61] Hooke R., Jeeves T. A.: “Direct Search” Solution of Numerical and Sta-

tistical Problems. Journal of the ACM (JACM) 8, 2 (1961), 212–229.

[HLD02] Hauser H., Ledermann F., Doleisch H.: Angular brushing of extended

parallel coordinates. In Proc. IEEE Symposium on Information Visualization

(2002), pp. 127–137.

[HM90] Haber R. B., Mcnabb D. A.: Visualization Idioms: A Conceptual Model

for Scientific Visualization Systems. In Visualization in Scientific Computing.

1990.

[HMC∗13] Höllt T., Magdy A., Chen G., Gopalakrishnan G., Hoteit I.,

Hansen C., Hadwiger M.: Visual analysis of uncertainties in ocean fore-

casts for planning and operation of off-shore structures. In Proc. IEEE Pacific

Visualization Symposium (2013), pp. 185–192.

[HMZ∗14] Höllt T., Magdy A., Zhan P., Chen G., Gopalakrishnan G., Hoteit

I., Hansen C. D., Hadwiger M.: Ovis: A framework for visual analysis of

ocean forecast ensembles. IEEE TVCG PP, 99 (2014).

Ismail Demir 163

Bibliography

[HN98] Hintze J. L., Nelson R. D.: Violin plots: A box plot-density trace syner-

gism. The American Statistician 52, 2 (1998), 181–184.

[HN12] Heitz E., Neyret F.: Representing appearance and pre-filtering subpixel

data in sparse voxel octrees. In Proceedings of the Fourth ACM SIGGRAPH

/ Eurographics Conference on High-Performance Graphics (2012), EGGH-

HPG’12, pp. 125–134.

[HRC08] Hamilton C. H., Rau-Chaplin A.: Compact Hilbert indices: Space-filling

curves for domains with unequal side lengths. Information Processing Letters

105, 5 (2008), 155–163.

[HSHH07] Horn D. R., Sugerman J., Houston M., Hanrahan P.: Interactive k-

d tree GPU raytracing. In I3D ’07: Proceedings of the 2007 symposium on

Interactive 3D graphics and games (2007), pp. 167–174.

[Ins85] Inselberg A.: The plane with parallel coordinates. The Visual Computer 1,

2 (Aug. 1985), 69–91.

[Jai10] Jain A. K.: Data clustering: 50 years beyond k-means. Pattern recognition

letters 31, 8 (2010), 651–666.

[JBS06] Jones M. W., Baerentzen J. A., Sramek M.: 3d distance fields: A

survey of techniques and applications. IEEE Transactions on Visualization

and Computer Graphics 12, 4 (July 2006), 581–599.

[JDKW15] Jarema M., Demir I., Kehrer J., Westermann R.: Comparative

Visual Analysis of Vector Field Ensembles. In Visual Analytics Science

and Technology (VAST), 2015 IEEE Conference on (Oct 2015), pp. 81–88.

doi:10.1109/VAST.2015.7347634.

[JKLE09] Jasche J., Kitaura F. S., Li C., Enßlin T. A.: Mapping of the uni-

verse beyond the known. http://www.mpa-garching.mpg.de/mpa/research/

current_research/hl2009-12/hl2009-12-en.html, 2009.

[JKW16] Jarema M., Kehrer J., Westermann R.: Comparative visual analysis of

transport variability in flow ensembles. Journal of WSCG 24, 1 (2016), 25–34.

[JLRP99] Jospeh A. J., Lodha S. K., Renteria J. C., Pang A.: Uisurf: Visualiz-

ing uncertainty in isosurfaces. In Proceedings of the Computer Graphics and

Imaging (1999), pp. 184–191.

164 Ismail Demir

http://dx.doi.org/10.1109/VAST.2015.7347634
http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2009-12/hl2009-12-en.html
http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2009-12/hl2009-12-en.html

Bibliography

[JPGJ12] Jiao F., Phillips J. M., Gur Y., Johnson C. R.: Uncertainty visualization

in hardi based on ensembles of odfs. In Visualization Symposium (PacificVis),

2012 IEEE Pacific (2012), IEEE, pp. 193–200.

[JPS∗10] Jiao F., Phillips J. M., Stinstra J., Krger J., Varma R., Hsu E.,

Korenberg J., Johnson C. R.: Metrics for uncertainty analysis and vi-

sualization of diffusion tensor images. In International Workshop on Medical

Imaging and Virtual Reality (2010), Springer, pp. 179–190.

[JS03] Johnson C. R., Sanderson A. R.: A next step: Visualizing errors and

uncertainty. IEEE Computer Graphics and Applications 23, 5 (2003), 6–10.

[KBH04] Kosara R., Bendix F., Hauser H.: TimeHistograms for large, time-

dependent data. In Proc. Joint Eurographics - IEEE TCVG Symposium on

Visualization (2004), pp. 45–54.

[Kei02] Keim D. A.: Information visualization and visual data mining. IEEE TVCG

8, 1 (2002), 1–8.

[KFH10] Kehrer J., Filzmoser P., Hauser H.: Brushing moments in interactive

visual analysis. Computer Graphics Forum 29, 3 (2010), 813–822.

[KH10] Kirk D., Hwu W.-m.: Programming massively parallel processors : a hands-

on approach. Morgan Kaufmann Publishers, Burlington, MA, 2010.

[KH13] Kehrer J., Hauser H.: Visualization and visual analysis of multi-faceted

scientific data: A survey. IEEE TVCG 19, 3 (2013), 495–513.

[KHDH02] Keim D. A., Hao M. C., Dayal U., Hsu M.: Pixel bar charts: a vi-

sualization technique for very large multi-attribute data sets. Information

Visualization 1, 1 (2002), 20–34.

[KHDL07] Keim D. A., Hao M. C., Dayal U., Lyons M.: Value-cell bar charts for

visualizing large transaction data sets. IEEE TVCG 13, 4 (2007), 822–833.

[KLM∗08] Kehrer J., Ladstädter F., Muigg P., Doleisch H., Steiner A.,

Hauser H.: Hypothesis generation in climate research with interactive vi-

sual data exploration. IEEE TVCG 14, 6 (2008), 1579–1586.

[KMDH11] Kehrer J., Muigg P., Doleisch H., Hauser H.: Interactive visual anal-

ysis of heterogeneous scientific data across an interface. IEEE TVCG 17, 7

(2011), 934–946.

Ismail Demir 165

Bibliography

[KMN98] Kearns M., Mansour Y., Ng A. Y.: An information-theoretic analysis

of hard and soft assignment methods for clustering. In Learning in graphical

models. Springer, 1998, pp. 495–520.

[KO01] Kennedy M. C., O’Hagan A.: Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63,

3 (2001), 425–464.

[KPBG13] Kehrer J., Piringer H., Berger W., Gröller M. E.: A model for

structure-based comparison of many categories in small-multiple displays.

IEEE Transactions on Visualization and Computer Graphics 19, 12 (Dec.

2013), 2287–2296.

[Kri51] Krige D. G.: A statistical approach to some basic mine valuation problems on

the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society

of South Africa 52, 6 (Dec. 1951), 119–139.

[KSA13] Kämpe V., Sintorn E., Assarsson U.: High resolution sparse voxel dags.

ACM Trans. Graph. 32, 4 (July 2013), 101:1–101:13.

[KSDD14] Kothur P., Sips M., Dobslaw H., Dransch D.: Visual analytics for com-

parison of ocean model output with reference data: Detecting and analyzing

geophysical processes using clustering ensembles. IEEE TVCG 20, 12 (2014),

1893–1902.

[KSK∗14] Keinert B., Schäfer H., Korndörfer J., Ganse U., Stamminger M.:

Enhanced Sphere Tracing. pp. 1–8.

[KVUS∗05] Kniss J. M., Van Uitert R., Stephens A., Li G.-S., Tasdizen T.,

Hansen C.: Statistically quantitative volume visualization. In VIS 05. IEEE

Visualization, 2005. (2005), IEEE, pp. 287–294.

[KWTM03] Kindlmann G., Whitaker R., Tasdizen T., Moller T.: Curvature-based

transfer functions for direct volume rendering: Methods and applications. In

Proc. IEEE Visualization (2003), pp. 513–520.

[LC87] Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3D

surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug.

1987), 163–169. URL: http://doi.acm.org/10.1145/37402.37422, doi:

10.1145/37402.37422.

166 Ismail Demir

http://doi.acm.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422

Bibliography

[Lev97] Levkowitz H.: Color theory and modeling for computer graphics, visual-

ization, and multimedia applications. Kluwer Academic Publishers, Boston,

1997.

[LGF00] Leventon M., Grimson W., Faugeras O.: Statistical shape influence

in geodesic active contours. In Proc. IEEE Computer Vision and Pattern

Recognition (2000), pp. 316–323.

[LHKK79] Lawson C. L., Hanson R. J., Kincaid D. R., Krogh F. T.: Basic linear

algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5, 3 (Sept.

1979), 308–323. doi:10.1145/355841.355847.

[LK10a] Laine S., Karras T.: Efficient sparse voxel octrees. In Proceedings of the

2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

(2010), I3D ’10, pp. 55–63.

[LK10b] Laine S., Karras T.: Efficient Sparse Voxel Octrees – Analysis, Extensions,

and Implementation. NVIDIA Technical Report NVR-2010-001, NVIDIA Cor-

poration, Feb. 2010.

[Llo82] Lloyd S. P.: Least squares quantization in PCM. IEEE Transactions on

Information Theory 28, 2 (1982), 129–137.

[LLPY07] Lundström C., Ljung P., Persson A., Ynnerman A.: Uncertainty vi-

sualization in medical volume rendering using probabilistic animation. IEEE

transactions on visualization and computer graphics 13, 6 (2007), 1648–1655.

[LMK∗15] Liu L., Mirzangar M., Kirby R. M., Whitaker R., House D. H.:

Visualizing time-specific hurricane predictions, with uncertainty, from storm

path ensembles. Comput. Graph. Forum 34, 3 (2015), 371–380.

[LP08] Leutbecher M., Palmer T.: Ensemble forecasting. Journal of Computa-

tional Physics 227, 7 (2008), 3515–3539.

[Mat63] Matheron G.: Principles of geostatistics. Economic Geology 58, 8 (1963),

1246–1266.

[MB62] Matheron G., Blondel F.: Traité de géostatistique appliquée, Tome I.

Memoires du Bureau de Recherches Geologiques et Minieres 14 (1962).

[MCW∗08] Mak W.-H., Chan M.-Y., Wu Y., Chung K.-K., Qu H.: VoxelBars: An

informative interface for volume visualization. In Advances in Visual Comput-

ing, vol. 5358 of Lecture Notes in Computer Science. Springer, 2008, pp. 161–

170.

Ismail Demir 167

http://dx.doi.org/10.1145/355841.355847

Bibliography

[MGKH09] Matković K., Gračanin D., Klarin B., Hauser H.: Interactive visual

analysis of complex scientific data as families of data surfaces. IEEE TVCG

15, 6 (2009), 1351–1358.

[Mic16] Microsoft Corporation: Direct3D (Windows). https://msdn.

microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85)

.aspx, 2016. Accessed: 2016-08-30.

[MM95] Myers R. H., Montgomery D. C.: Process Improvement with Steepest

Ascent, The Analysis of Response Surfaces, Experimental Designs for Fitting

Response Surfaces, 1st ed. John Wiley & Sons, Inc., New York, NY, USA,

1995, pp. 183–351.

[Möl08] Möller T.: Real-time rendering. A.K. Peters, Wellesley, Mass, 2008.

[Mon06] Montgomery D. C.: Response surface method and designs. John Wiley &

Sons, New Jersey, 2006.

[MR08] Macdonald C. B., Ruuth S. J.: Level set equations on surfaces via the

Closest Point Method. J. Sci. Comput. 35, 2–3 (June 2008), 219–240.

[MRH∗05] MacEachren A., Robinson A., Hopper S., Gardner S., Murray R.,

Gahegan M., Hetzler E.: Visualizing geospatial information uncertainty:

What we know and what we need to know. Cartography and Geographic In-

formation Science 32, 3 (2005), 139–161.

[MW14] Mihai M., Westermann R.: Visualizing the stability of critical points in

uncertain scalar fields. Computers & Graphics 41, 0 (2014), 13 – 25. doi:

http://dx.doi.org/10.1016/j.cag.2014.01.007.

[MWK14] Mirzargar M., Whitaker R. T., Kirby R. M.: Curve boxplot: Gen-

eralization of boxplot for ensembles of curves. IEEE TVCG 20, 12 (2014),

2654–2663.

[Nea99] Neal R. M.: Regression and classification using Gaussian process priors (with

discussion). Bayesian Statistics 6 (1999), 475–501.

[NVI10] NVIDIA Corporation: NVIDIA CUDA C programming guide. http:

//docs.nvidia.com/cuda/cuda-c-programming-guide/, 2010. Version 7.5.

Accessed: 2016-09-01.

[OJ14] Obermaier H., Joy K.: Future challenges for ensemble visualization. IEEE

Comp. Graphics and Applications 34 (2014), 8–11.

168 Ismail Demir

https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2014.01.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2014.01.007
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Bibliography

[OK78] O’Hagan A., Kingman J. F. C.: Curve fitting and optimal design for

prediction. Journal of the Royal Statistical Society. Series B (Methodological)

40, 1 (1978), 1–42.

[Opp98] Opper M.: On-line learning in neural networks. 1998, ch. A Bayesian ap-

proach to on-line learning, pp. 363–378.

[Par62] Parzen E.: On estimation of a probability density function and mode. The

Annals of Mathematical Statistics 33, 3 (1962), 1065–1076.

[Par79] Parzen E.: Nonparametric statistical data modeling. Journal of the American

statistical association 74, 365 (1979), 105–121.

[Pat96] Patel J.: Handbook of the normal distribution. Marcel Dekker, New York,

1996.

[PBK10] Piringer H., Berger W., Krasser J.: Hypermoval: Interactive visual

validation of regression models for real-time simulation. Computer Graphics

Forum 29, 3 (2010), 983–992.

[PBMH02] Purcell T. J., Buck I., Mark W. R., Hanrahan P.: Ray tracing on

programmable graphics hardware. ACM Transactions on Graphics 21, 3 (July

2002), 703–712.

[PGA13] Potter K., Gerber S., Anderson E. W.: Visualization of uncertainty

without a mean. IEEE computer graphics and applications 33, 1 (2013), 75–79.

[PGSS07] Popov S., Günther J., Seidel H.-P., Slusallek P.: Stackless kd-tree

traversal for high performance GPU ray tracing. Computer Graphics Forum

26, 3 (2007), 415–424.

[PH11] Pothkow K., Hege H.-C.: Positional uncertainty of isocontours: Condition

analysis and probabilistic measures. IEEE Transactions on Visualization and

Computer Graphics 17, 10 (2011), 1393–1406.

[PKH04] Piringer H., Kosara R., Hauser H.: Interactive focus+context visual-

ization with linked 2D/3D scatterplots. In Proc. International Conference on

Coordinated & Multiple Views in Exploratory Visualization (2004), pp. 49–60.

[PKRJ10] Potter K., Kniss J., Riesenfeld R., Johnson C. R.: Visualizing sum-

mary statistics and uncertainty. Computer Graphics Forum 29, 3 (2010), 823–

831.

Ismail Demir 169

Bibliography

[PRJ12] Potter K., Rosen P., Johnson C. R.: From quantification to visualization:

A taxonomy of uncertainty visualization approaches. In Uncertainty Quantifi-

cation in Scientific Computing. Springer Berlin Heidelberg, 2012, pp. 226–249.

[PRW11] Pfaffelmoser T., Reitinger M., Westermann R.: Visualizing the po-

sitional and geometrical variability of isosurfaces in uncertain scalar fields. In

Computer Graphics Forum (2011), vol. 30, Wiley Online Library, pp. 951–960.

[PW12] Pfaffelmoser T., Westermann R.: Visualization of global correlation

structures in uncertain 2D scalar fields. Computer Graphics Forum 31, 3

(2012), 1025–1034.

[PW13] Pfaffelmoser T., Westermann R.: Visualizing contour distributions in

2d ensemble data. In EuroVis-Short Papers (2013), The Eurographics Associ-

ation, pp. 55–59.

[PWB∗09a] Potter K., Wilson A., Bremer P.-T., Williams D., Doutriaux C.,

Pascucci V., Johnson C. R.: Ensemble-vis: A framework for the statistical

visualization of ensemble data. In 2009 IEEE International Conference on

Data Mining Workshops (2009), IEEE, pp. 233–240.

[PWB∗09b] Potter K., Wilson A., Bremer P.-T., Williams D., Pascucci V.,

Johnson C.: A flexible approach for the statistical visualization of ensemble

data. In Proc. IEEE ICDM Workshop Knowledge Discovery from Climate Data

(2009).

[PWH11] Pöthkow K., Weber B., Hege H.-C.: Probabilistic marching cubes. Com-

puter Graphics Forum 30 (2011), 931–940.

[PWL97] Pang A. T., Wittenbrink C. M., Lodha S. K.: Approaches to uncertainty

visualization. The Visual Computer 13, 8 (1997), 370–390.

[RCBW12] Reichl F., Chajdas M. G., Bürger K., Westermann R.: Hybrid

Sample-based Surface Rendering. pp. 47–54.

[RDT06] Rathi Y., Dambreville S., Tannenbaum A.: Statistical shape analysis

using kernel PCA. Proc. SPIE 6064 (2006), 60641B.

[Reg08] Rege A.: An introduction to modern gpu architecture. NVIDIA Corporation,

2008.

[RLBS03] Rhodes P. J., Laramee R. S., Bergeron R. D., Sparr T. M.: Uncer-

tainty visualization methods in isosurface rendering. In Eurographics (2003),

vol. 2003, pp. 83–88.

170 Ismail Demir

Bibliography

[RM78] Robert McGill John W. Tukey W. A. L.: Variations of box plots. The

American Statistician 32, 1 (1978), 12–16.

[RM08] Ruuth S. J., Merriman B.: A simple embedding method for solving partial

differential equations on surfaces. J. Comput. Phys. 227, 3 (Jan. 2008), 1943–

1961.

[Ros56] Rosenblatt M.: Remarks on some nonparametric estimates of a density

function. The Annals of Mathematical Statistics 27, 3 (1956), 832–837.

[SCJ∗10] Swihart B. J., Caffo B., James B. D., Strand M., Schwartz B. S.,

Punjabi N. M.: Lasagna plots: a saucy alternative to spaghetti plots. Epi-

demiology (Cambridge, Mass.) 21, 5 (2010), 621.

[Sco92] Scott D. W.: Multivariate Density Estimation: Theory, Practice, and Vi-

sualization (Wiley Series in Probability and Statistics), 1 ed. Wiley, Sept.

1992.

[Shn96] Shneiderman B.: The eyes have it: A task by data type taxonomy for

information visualizations. In Proc. IEEE Symposium on Visual Languages

(1996), pp. 336–348.

[Shn98] Shneiderman B.: Designing the User Interface. Strategies for Effective

Human-Computer Interaction, 3rd ed. Addison-Wesley, 1998.

[SKS12] Schlegel S., Korn N., Scheuermann G.: On the interpolation of data

with normally distributed uncertainty for visualization. IEEE Transactions on

Visualization and Computer Graphics 18 (2012), 2305–2314.

[SSSSW13] Schultz T., Schlaffke L., Schölkopf B., Schmidt-Wilcke T.: Hifive:

a hilbert space embedding of fiber variability estimates for uncertainty mod-

eling and visualization. In Computer Graphics Forum (2013), vol. 32, Wiley

Online Library, pp. 121–130.

[Sut05] Sutter H.: The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobb’s journal (2005).

[SZD∗10] Sanyal J., Zhang S., Dyer J., Mercer A., Amburn P., Moorhead

R. J.: Noodles: A tool for visualization of numerical weather model ensemble

uncertainty. IEEE TVCG 16, 6 (2010), 1421–1430.

[THM∗05] Thomson J., Hetzler E., MacEachren A., Gahegan M., Pavel M.:

A typology for visualizing uncertainty. In Proc. SPIE 5669, Visualization and

Data Analysis (2005), pp. 146–157.

Ismail Demir 171

Bibliography

[TK09] Taylor B. N., Kuyatt C. E.: Guidelines for Evaluating and Expressing the

Uncertainty of NIST Measurement Results (rev). DIANE Publishing, 2009.

[TLB∗11] Thompson D. C., Levine J. A., Bennett J., Bremer P.-T., Gyulassy

A., Pascucci V., Pébay P. P.: Analysis of large-scale scalar data using

hixels. In Proc. IEEE Symposium on Large Data Analysis and Visualization

(2011), pp. 23–30.

[TPM05] Tory M., Potts S., Möller T.: A parallel coordinates style interface for

exploratory volume visualization. IEEE TVCG 11, 1 (2005), 71–80.

[TSD09] Tory M., Swindells C., Dreezer R.: Comparing dot and landscape spa-

tializations for visual memory differences. IEEE Transactions on Visualization

and Computer Graphics 15, 6 (2009), 1033–1040.

[TWSM∗11] Torsney-Weir T., Saad A., Möller T., Hege H.-C., Weber B., Ver-

bavatz J.-M.: Tuner: principled parameter finding for image segmentation

algorithms using visual response surface exploration. IEEE Transactions on

Visualization and Computer Graphics 17, 12 (2011), 1892–1901.

[Upt08] Upton G.: A dictionary of statistics. Oxford University Press, Oxford, 2008.

[Van10] Vanmarcke E.: Random Fields : Analysis and Synthesis. World Scientific,

Singapore Hackensack, NJ, 2010.

[vN93] von Neumann J.: First draft of a report on the edvac. IEEE Ann. Hist.

Comput. 15, 4 (Oct. 1993), 27–75. doi:10.1109/85.238389.

[vWvL93] van Wijk J. J., van Liere R.: Hyperslice: visualization of scalar functions

of many variables. In Proceedings of the 4th conference on Visualization ’93

(1993), pp. 119–125.

[WB97] Wong P. C., Bergeron R. D.: 30 years of multidimensional multivariate

visualization. IEEE Computer Society Press, pp. 3–33.

[WBWK00] Wang Baldonado M. Q., Woodruff A., Kuchinsky A.: Guidelines for

using multiple views in information visualization. In Proc. Working Conference

on Advanced Visual Interfaces (2000), pp. 110–119.

[Weg90] Wegman E. J.: Hyperdimensional data analysis using parallel coordinates.

Journal of the American Statistical Association 85 (1990), 664–675.

[Wel62] Welford B. P.: Note on a method for calculating corrected sums of squares

and products. Technometrics 4, 3 (1962), 419–420. doi:10.1080/00401706.

1962.10490022.

172 Ismail Demir

http://dx.doi.org/10.1109/85.238389
http://dx.doi.org/10.1080/00401706.1962.10490022
http://dx.doi.org/10.1080/00401706.1962.10490022

Bibliography

[Wen05] Wendland H.: Scattered data approximation. Cambridge University Press,

Cambridge, UK New York, 2005.

[Wil11] Wilks D. S.: Statistical Methods in the Atmospheric Sciences. Academic

Press, 2011.

[WLS13] Wei T.-H., Lee T.-Y., Shen H.-W.: Evaluating isosurfaces with level-set-

based information maps. Comput. Graph. Forum 32, 3 (2013), 1–10.

[WMK13] Whitaker R. T., Mirzargar M., Kirby R. M.: Contour boxplots: A

method for characterizing uncertainty in feature sets from simulation ensem-

bles. IEEE TVCG 19, 12 (2013), 2713–2722.

[WPL95] Wittenbrink C., Pang A., Lodha S.: Verity Visualization: Visual Map-

pings. Tech. rep., Santa Cruz, CA, USA, 1995.

[WPL02] Wittenbrink C. M., Pang A. T., Lodha S. K.: Glyphs for visualizing

uncertainty in vector fields. IEEE TVCG 2, 3 (2002), 266–279.

[WS06] Wang C., Shen H.-W.: LOD Map - a visual interface for navigating mul-

tiresolution volume visualization. IEEE TVCG 12, 5 (2006), 1029–1036.

[WSE99] Westermann R., Sommer O., Ertl T.: Decoupling polygon rendering

from geometry using rasterization hardware. In Proceedings of the 10th Euro-

graphics Conference on Rendering (1999), EGWR’99, pp. 45–56.

[WZ13] Wu K., Zhang S.: A contour tree based visualization for exploring data with

uncertainty. Int’l. J. Uncertainty Quantification 3, 3 (2013), 203–223.

[ZCG05] Zuk T., Carpendale M. S. T., Glanzman W. D.: Visualizing temporal

uncertainty in 3d virtual reconstructions. In VAST (2005), vol. 2005, p. 6th.

[ZMH∗09] Zachow S., Muigg P., Hildebrandt T., Doleisch H., Hege H.-C.:

Visual exploration of nasal airflow. IEEE TVCG 16, 6 (2009), 1407–1414.

[ZSL∗16] Zhang C., Schultz T., Lawonn K., Eisemann E., Vilanova A.: Glyph-

based comparative visualization for diffusion tensor fields. IEEE transactions

on visualization and computer graphics 22, 1 (2016), 797–806.

[ZWK10] Zehner B., Watanabe N., Kolditz O.: Visualization of gridded scalar

data with uncertainty in geosciences. Computers & Geosciences 36, 10 (2010),

1268–1275.

Ismail Demir 173

	Introduction
	Motivation
	Contribution
	Outline
	List of Publications

	Fundamentals
	Sources of Uncertainty
	Data Acquisition
	Data Transformation
	Visualization

	Classification of Uncertainty
	Mathematical Background
	Probability Space
	Random Variables
	Probability Density Functions
	Statistical Measurements for Uncertainty Quantification
	Multidimensional and Multivariate Data Representations
	Sample-Based Probability Analysis
	Numerical Methods

	Visualizing Uncertain Data Sets
	Data Dimensionality
	Uncertainty Dimension
	Approach
	Composition
	Context

	GPU Acceleration
	Background
	Real-Time Rendering
	GPGPU Computing

	Progressive Visualization of Multidimensional Scattered Data
	Introduction
	Related Work
	Kriging Interpolation
	Main Principles
	Ordinary Kriging

	Minimizing Uncertainty
	Largest Empty Circle Algorithm
	Extension to More Than Two Dimensions

	Progressive GPU Kriging
	Computational Complexity
	CUDA Parallelization

	Visualizing Response Surfaces
	Response Surface Selection
	Slice-based Interpolation

	Results
	Multidimensional Real-World Data Set
	Performance Analysis

	Limitations
	Conclusion and Future Work

	Comparative Visualization of 3D Scalar Field Ensembles
	Introduction
	Related Work
	Overview
	Multi-Charts
	Linearizing the 3D Grid
	Chart Layout

	Multiresolution Ensemble Summaries
	Analyzing the Quantitative Distribution of Uncertainty
	Analyzing Distribution and Relationship Among Members

	Brushing and Querying
	Spatial Clustering and Correlations
	Histogram Clustering
	Correlations

	Further Results
	Incompressible Fluid Flow Simulation
	Cosmic Density Field

	Conclusion and Evaluation

	Silhouette-Based Visualization of 3D Isosurface Ensembles
	Introduction
	Related Work
	Preprocess
	Mesh-Generation
	Clustering

	Rendering Shaded Silhouettes
	Drawing Silhouettes in the Fragment Stage
	Density-Based Removal

	Visualizing Details on Demand
	Cutting Planes
	Clustering
	Picking and Brushing
	Animation

	Results
	Conclusion and Future Work

	Ray-Casting Based on Vector-to-Closest-Point Octrees
	Introduction and Related Work
	VCP Representation
	Ray-Casting
	VCP Interpolation

	VCP Octree
	Mesh-based Generation

	GPU Implementation Issues
	VCP Leaf Data
	Reducing Run-time Memory Traffic
	Dynamic Memory Management
	GPU-CPU Upstreaming
	Interruption-Free Loading

	Results
	Conclusion and Future Work

	Visualization of Shape-Based Ensembles
	Introduction
	Related Work
	Method Overview
	Generating the Vector-to-Closest-Point Ensemble
	Modeling Vectors to Closest Points
	Quantifying the Local Centrality
	Finding the Median
	Spatial Attributes

	Clustering
	Ensemble Visualization
	Local Best Median
	Fuzzy Regions
	2D Ensembles
	Color
	Transparency
	Silhouettes

	Results
	Conclusion and Future Work

	Conclusion and Future Work
	Bibliography

