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Abstract

Regularly varying stochastic processes are able to model extremal depen-
dence between process values at locations in random fields. We investigate the
empirical extremogram as an estimator of dependence in the extremes. We pro-
vide conditions to ensure asymptotic normality of the empirical extremogram
centred by a pre-asymptotic version. The proof relies on a CLT for exceedance
variables. For max-stable processes with Fréchet margins we provide conditions
such that the empirical extremogram centred by its true version is asymptoti-
cally normal. The results of this paper apply to a variety of spatial and space-
time processes, and to time series models. We apply our results to max-moving
average processes and Brown-Resnick processes.
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1 Introduction

The extremogram measures extremal dependence in a strictly stationary regularly
varying stochastic process and can hence be seen as a correlogram for extreme events.
It was introduced in Davis and Mikosch [7] for time series (also in Fasen et al. [16]),
and they show consistency and asymptotic normality of an empirical extremogram
under weak mixing conditions. Davis et al. [11] give a profound review of the esti-
mation theory for time series with various examples. For a discussion of the role of
the extremogram in dependence modelling of extremes we refer again to [7]. As it
is spelt out there, it is the covariance function of indicator functions of exceedance
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events in an asymptotic sense. Also in that paper classical mixing conditions as pre-
sented in Ibragimov and Linnik [20], on which we rely in our work, are compared
to the extreme mixing conditions D and D′ often used in extreme value theory (cf.
Embrechts et al. [15], Section 4.4, and Leadbetter et al. [22], Sections 3.1 and 3.2).

The extremogram and its empirical estimate have been formulated for spatial
d-dimensional stochastic processes by Cho et al. [6] and for space-time processes
in Buhl et al. [5] and Steinkohl [27], when observed on a regular grid. The ex-
tremogram is defined for strictly stationary regularly varying stochastic processes,
where all finite-dimensional distributions are in the maximum domain of attraction
of some Fréchet distribution. Among other results, based on the seminal paper [2]
by Bolthausen, [6] prove a CLT for the empirical extremogram sampled at different
spatial lags, centred by the so-called pre-asymptotic extremogram. Such results also
compare with a CLT for sample space-time covariance estimators derived in Li et al.
[23], also based on [2].

The pre-asymptotic extremogram can be replaced in the CLT by the true one,
if a certain bias condition is satisfied; in particular, the difference between the pre-
asymptotic and the true extremogram must vanish with the same rate as the one
given in the CLT. However, for many processes the assumptions required in [6] are
too restrictive to satisfy this bias condition. We explain this in detail and present two
models which exactly fall into this class; the max-moving average process and the
Brown-Resnick process. These two processes are max-stable with Fréchet margins.

In this paper, we prove a CLT for the empirical extremogram centred by the
pre-asymptotic extremogram for strictly stationary regularly varying stochastic pro-
cesses, which relies on weaker conditions than the CLT stated in [6]. Our proof also
partly relies on Bolthausen’s CLT for spatial processes in [2]; however, we make im-
portant modifications so that the bias condition mentioned above can be satisfied,
and thus a CLT for the empirical extremogram centred by the true one for many
more processes becomes possible. The proof is based on a big block/small block
argument, similarly to [7].

Our interest is of course in a CLT centred by the true extremogram, and whether
such a CLT is possible depends on the specific regularly varying process. If the pro-
cess has finite-dimensional max-stable distributions, in our framework equivalent to
having finite-dimensional Fréchet distributions, we can give conditions such that a
CLT of that kind is possible. Here we need the weaker mixing conditions of our
version of Bolthausen’s CLT compared to [6]. Furthermore, under conditions such
that a CLT centred by the true extremogram is not possible, a bias-corrected esti-
mator can be defined, which we do in the accompanying paper Buhl et al. [5] for the
Brown-Resnick process.

Our paper is organised as follows. In Section 2 we present the general model
class of strictly stationary regularly varying processes in Rd for d ∈ N. We also
define here the extremogram for such processes. In Section 3 we define the empirical
extremogram based on grid observations, and also the pre-asymptotic extremogram.
Section 4 is devoted to the CLT for the empirical extremogram centred by the pre-
asymptotic extremogram and to our examples of max-stable spatial processes; max-
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moving average processes and Brown-Resnick processes. We discuss in detail the
problem of a CLT for the empirical extremogram and compare our new conditions
for the CLT to hold with those in previous work, particularly with those given in
Cho et al. [6]. For processes with Fréchet margins we prove a CLT for the empirical
extremogram centred by the true extremogram. The proof of the CLT is given in
Section 5.

2 Regularly varying spatial processes

As a natural model class in extreme value theory we consider strictly stationary
regularly varying processes {X(s) : s ∈ Rd} for d ∈ N, where all finite-dimensional
distributions are regularly varying (cf. Hult and Lindskog [18] for definitions and
results in a general framework and Resnick [26] for details about multivariate regular
variation). As a prerequisite, we define for every finite set I ⊂ Rd the vector

XI := (X(s) : s ∈ I)
ᵀ
.

Throughout we assume that XI inherits the strict stationarity from {X(s) : s ∈ Rd},
which is guaranteed, if we consider lagged vectors of XI . Furthermore, |I| denotes

the cardinality of I. As usual, f(n) ∼ g(n) as n→∞ means that limn→∞
f(n)
g(n) = 1.

Definition 2.1 (Regularly varying process). A strictly stationary stochastic process
{X(s) : s ∈ Rd} is called regularly varying, if there exists some normalising sequence
0 < an → ∞ such that P(|X(0)| > an) ∼ n−d as n → ∞ and for every finite set
I ⊂ Rd

ndP
(XI
an
∈ ·
)

v→ µI(·), n→∞, (2.1)

for some non-null Radon measure µI on the Borel sets in R|I|\{0}, where R =
R ∪ {−∞,∞}. In that case,

µI(xC) = x−βµI(C), x > 0,

for every Borel set C ⊂ R|I|\{0}. The notation
v→ stands for vague convergence,

and β > 0 is called the index of regular variation.

For every s ∈ Rd and I = {s} we set µ{s}(·) = µ{0}(·) =: µ(·), which is justified
by stationarity.

The focus of the present paper is on the extremogram, defined for values in Rd
as follows.

Definition 2.2 (Extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary reg-
ularly varying process in Rd. For two µ-continuous Borel sets A and B in R\{0}
(i.e., µ(∂A) = µ(∂B) = 0) such that µ(A) > 0, the extremogram is defined as

ρAB(h) = lim
n→∞

P(X(0)/an ∈ A,X(h)/an ∈ B)

P(X(0)/an ∈ A)
, h ∈ Rd. (2.2)
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Our goal is to estimate the extremogram for arbitrary strictly stationary regu-
larly varying processes by its empirical version and prove asymptotic properties like
consistency and asymptotic normality. Such results also allow for semiparametric
estimation in a parametric spatial or space-time model as presented in Buhl et al.
[5].

Analogous asymptotic results for the empirical extremogram of time series have
been shown in Davis and Mikosch [7] and of d-dimensional random fields in Cho
et al. [6]. However, in certain situations, for example in the case of the Brown-
Resnick process (4.18), the rates obtained in [6] are too crude to allow for a CLT.
We apply a small block/large block argument in space (similarly to [7] for time
series), which leads to more precise rates in the CLT. Arguments of our proof are
based on spatial mixing conditions, and rely on general results of Bolthausen [2] and
Ibragimov and Linnik [20].

3 Large sample properties of the spatial empirical ex-
tremogram

The estimation of the extremogram is based on data observed on

Sn = {1, . . . , n}d = {sj : j = 1, . . . , nd}, the regular grid of side length n.

Let ‖ · ‖ be an arbitrary norm on Rd. Define the following quantities for γ > 0:

B(0, γ) =
{
s ∈ Zd : ‖s‖ ≤ γ

}
,

B(s, γ) =
{
s′ ∈ Zd : ‖s− s′‖ ≤ γ

}
= s+B(0, γ), (3.1)

H ⊆ {h = s− s′ : s, s′ ∈ Sn} ∩B(0, γ), a finite set of observed lags. (3.2)

We further define the vectorized process {Y (s) : s ∈ Rd} by

Y (s) := XB(s,γ);

i.e., Y (s) is the vector of values of X with indices in B(s, γ) as defined in (3.1). We
introduce the balls B(0, γ) in order to express events like {X(s) ∈ A,X(s+h) ∈ B}
or {X(s) ∈ A} for s ∈ Rd and h ∈ H ⊆ B(0, γ) as well as Borel sets A,B in R\{0}
through events {Y (s) ∈ C} for appropriately chosen Borel sets C in R|B(0,γ)|\{0}.
This notation simplifies the presentation of the proofs of consistency and asymptotic
normality considerably.

For j ∈ N let ej be the j-th unit vector in Rd. The choice of a regular grid Sn can
be extended to arbitrary observation sets provided that they increase to Zd and have
boundaries ∂Sn := {s ∈ Sn : ∃ z ∈ Zd\Sn and j ∈ N with ‖z−s‖ = ‖ej‖} satisfying
limn→∞ |∂Sn|/|Sn| = 0. The natural extension to grids with different side lengths
does not involve any additional mathematical difficulty, but notational complexity,
since our proofs are based on big/small block arguments common in extreme value
statistics, which are much simpler to formulate for a regular grid.
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For fixed n and observations on the grid Sn there will be points s ∈ Sn near
the boundary, such that not all components of Y (s) can be observed. However,
since we investigate asymptotic properties for Sn and the boundary points become
negligible, this is irrelevant for our results and we suppress such technical details.
As a consequence, our results apply to spatial as well as time series observations,
thus include the frameworks considered in Cho et al. [6] and Davis and Mikosch [7].

We shall also need the following relations and definitions, where the limits exist
by regular variation of {X(s) : s ∈ Rd}. Let C be a µB(0,γ)-continuous Borel set in

R|B(0,γ)|\{0} and C ×D a τB(0,γ)×B(h,γ)-continuous Borel set in the product space,
where we define

µB(0,γ)(C) := lim
n→∞

ndP
(Y (0)

an
∈ C

)
, (3.3)

τB(0,γ)×B(h,γ)(C ×D) := lim
n→∞

ndP
(Y (0)

an
∈ C, Y (h)

an
∈ D

)
. (3.4)

We enumerate the lags in H by H = {h1, . . . ,hp}. Following ideas of Davis and
Mikosch [7] (also used in Cho et al. [6]) we define µB(0,γ)-continuous Borel sets

D1, . . . , Dp, Dp+1 in R|B(0,γ)|\{0} by the property

{Y (s) ∈ Di} = {X(s) ∈ A,X(s+ hi) ∈ B} (3.5)

for i = 1, . . . , p, and {Y (s) ∈ Dp+1} = {X(s) ∈ A}. Note in particular that, by the
relation between {Y (s) : s ∈ Rd} and {X(s) : s ∈ Rd} and regular variation, for
every µ-continuous Borel set A in R \ {0},

µB(0,γ)(Dp+1) = lim
n→∞

ndP
(Y (0)

an
∈ Dp+1

)
= lim

n→∞
ndP

(X(0)

an
∈ A

)
= µ(A).

The extremogram can be estimated from data by the following empirical version.

Definition 3.1 (Empirical extremogram). Let {X(s) : s ∈ Rd} be a strictly sta-
tionary regularly varying process in Rd, observed on Sn, and set Sn(h) := {s ∈ Sn :
s+h ∈ Sn} for h ∈ H. Let A and B be µ-continuous Borel sets in R\{0} such that
µ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as n → ∞, the empirical
extremogram is defined for h ∈ H as

ρ̂AB,mn(h) :=

1

|Sn(h)|
∑

s∈Sn(h)

1{X(s)/am∈A,X(s+h)/am∈B}

1

|Sn|
∑

s∈Sn
1{X(s)/am∈A}

. (3.6)

The following pre-asymptotic extremogram plays an important role when proving
asymptotic normality of the empirical extremogram (3.6).

Definition 3.2 (Pre-asymptotic extremogram). Let {X(s) : s ∈ Rd} be a strictly
stationary regularly varying process in Rd. Let A and B be µ-continuous Borel sets
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in R\{0} such that µ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as
n→∞, the pre-asymptotic extremogram is defined as

ρAB,mn(h) =
P (X(0)/am ∈ A,X(h)/am ∈ B)

P(X(0)/am ∈ A)
. (3.7)

The next section is devoted to the asymptotic properties of the empirical ex-
tremogram and the inherent bias-variance problem with its solution.

4 Consistency and CLT for the empirical extremogram

In this section we derive relevant asymptotic properties of the empirical extremogram.
First we establish large sample properties of the empirical estimator of µB(0,γ)(C).
Based on these results, the asymptotic normality is established.

Throughout this section we assume that {X(s) : s ∈ Rd} is a strictly stationary
regularly varying process in Rd, observed on Sn.

We need the concept of α-mixing for such processes; see e.g. Bolthausen [2] or
Doukhan [14].

Definition 4.1 (α-mixing coefficients and α-mixing). Consider a strictly stationary
random field

{
X(s) : s ∈ Rd

}
and let d(·, ·) be some metric induced by a norm ‖ · ‖

on Rd. For Λ1,Λ2 ⊂ Zd set

d(Λ1,Λ2) := inf {‖s1 − s2‖ : s1 ∈ Λ1, s2 ∈ Λ2} .

Further, for i = 1, 2 denote FΛi = σ {X(s) : s ∈ Λi} the σ-algebra generated by
{X(s) : s ∈ Λi}.

(i) The α-mixing coefficients are defined for k, ` ∈ N ∪ {∞} and r ≥ 0 by

αk,`(r) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :
Ai ∈ FΛi , |Λ1| ≤ k, |Λ2| ≤ `, d(Λ1,Λ2) ≥ r}. (4.1)

(ii) The random field is called α-mixing, if αk,l(r)→ 0 as r →∞ for all k, ` ∈ N.

In what follows we have to control the dependence between vector processes
{Y (s) = XB(s,γ) : s ∈ Λ′1} and {Y (s) = XB(s,γ) : s ∈ Λ′2} for subsets Λ′i ⊂ Zd
with cardinalities |Λ′1| ≤ k and |Λ′2| ≤ `. In the context of Definition 4.1, this
means that the Λi in (4.1) are unions of balls Λi = ∪s∈Λ′i

B(s, γ). Since γ > 0 is
some predetermined finite constant independent of n, we keep notation simple by
redefining the α-mixing coefficients with respect to the vector processes as

αk,`(r) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :
Ai ∈ FΛi , Λi = ∪s∈Λ′i

B(s, γ), |Λ′1| ≤ k, |Λ′2| ≤ `, d(Λ′1,Λ
′
2) ≥ r}.

(4.2)
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Theorem 4.2. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process,
observed on Sn and let H = {h1, . . . ,hp} be a finite set of lags in Zd satisfying
H ⊆ B(0, γ) for some γ > 0. Suppose that the following conditions are satisfied:

(M1) {X(s) : s ∈ Rd} is α-mixing with α-mixing coefficients αk,`(r) defined in
(4.1).

There exist sequences m = mn, r = rn → ∞ with mn/n → 0 and rn/mn → 0 as
n→∞ such that the following hold:

(M2) m2
nr

2
n/n→ 0.

(M3) For all ε > 0:

lim
k→∞

lim sup
n→∞

∑
h∈Zd:k<‖h‖≤rn

md
n

P
(

max
s∈B(0,γ)

|X(s)| > εam, max
s′∈B(h,γ)

|X(s′)| > εam

)
= 0.

(M4) (i) lim
n→∞

md
n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖) = 0,

(ii)
∑

h∈Zd
αp,q(‖h‖) <∞ for 2 ≤ p+ q ≤ 4,

(iii) lim
n→∞

m
d/2
n nd/2 α1,nd(rn) = 0,

Then the empirical extremogram ρ̂AB,mn(h) for h ∈ H as in (3.6), centred by the
pre-asymptotic extremogram in (3.7), is asymptotically normal; more precisely,( n

mn

)d/2(
ρ̂AB,mn(h)− ρAB,mn(h)

)
h∈H

d→ N (0,Π), n→∞, (4.3)

where Π = µ(A)−4FΣF
ᵀ ∈ Rp×p, and the matrix Σ ∈ R(p+1)×(p+1) has for 1 ≤ i, j ≤

p+ 1 components

Σii = µB(0,γ)(Di) +
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Di) =: σ2
B(0,γ)(Di), (4.4)

Σij = µB(0,γ)(Di ∩Dj) +
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Dj), i 6= j. (4.5)

The matrix F consists of a diagonal matrix F1 and a vector F2 in the last column:

F = [F1, F2] with (4.6)

F1 = diag(µ(A)) ∈ Rp×p, F2 = (−µB(0,γ)(D1), . . . ,−µB(0,γ)(Dp))
ᵀ
.
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Remark 4.3. (i) In the proof (given in Section 5) we use a big block/small block
argument. For simplicity we assume that n/mn is an integer and subdivide Sn into
(n/mn)d non-overlapping d-dimensional blocks with side length mn. Theorem 1 of
Cho et al. [6] divides nd into nd/mn blocks; i.e., their sequence mn corresponds
to our md

n, so that their assumptions look slightly different. In our notation, they

require that m
2(d+1)
n /n→ 0 as n→∞, which is more restrictive than condition (M2)

of m2
nr

2
n/n → 0, and indeed too restrictive for processes such as the max-moving

average process and the Brown-Resnick process discussed below.

(ii) If the choice mn = nβ1 and rn = nβ2 with 0 < β2 < β1 < 1 satisfies conditions
(M3) and (M4), then for β1 ∈ (0, 1/2) and β2 ∈ (0,min{β1; 1/2− β1}) the condition
(M2) also holds and we obtain the CLT (4.3). �

The pre-asymptotic extremogram (3.7) in the central limit theorem can be re-
placed by the theoretical one (2.2), if it converges to the theoretical extremogram
with the same convergence rate as the empirical extremogram to the pre-asymptotic
extremogram; i.e., if( n

mn

)d/2
(ρAB,mn(h)− ρAB(h))h∈H → 0, n→∞. (4.7)

Relation (4.7) does not hold for every strictly stationary regularly varying spatial
process or time series for which (4.3) is satisfied. Theorem 4.4 states a necessary
and sufficient condition for processes with Fréchet marginal distributions such that
both (4.3) and (4.7) hold. For general regularly varying stochastic processes such a
result would hold under second order conditions on the finite-dimensional regularly
varying distributions of the process, but we do not pursue this topic further.

Theorem 4.4 (CLT for processes with Fréchet margins). Let {X(s) : s ∈ Rd} be a
strictly stationary max-stable process in Rd with standard unit Fréchet margins. Let
ρAB be its extremogram (2.2) and ρAB,mn the corresponding pre-asymptotic version
(3.7) for sets A = (a1, a2) and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 <
b2 ≤ ∞. Assume that the process is observed on Sn and let H = {h1, . . . ,hp} be a
finite set of lags in Zd satisfying H ⊆ B(0, γ) for some γ > 0. Furthermore, suppose
that conditions (M1)–(M4) of Theorem 4.2 hold for appropriately chosen sequences
mn, rn →∞. Then the limit relation (4.7) holds if and only if n/m3

n → 0 as n→∞.
In this case we obtain( n

mn

)d/2(
ρ̂AB,mn(h)− ρAB(h)

)
h∈H

d→ N (0,Π), n→∞, (4.8)

where Π is given in Theorem 4.2.

Proof. First note that, since all finite-dimensional distributions are max-stable dis-
tributions with standard unit Fréchet margins, they are multivariate regularly vary-
ing. Let V2(h; ·, ·) be the bivariate exponent measure defined through P(X(0) ≤
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x1, X(h) ≤ x2) = exp{−V2(h;x1, x2)} for x1, x2 > 0, cf. Beirlant et al. [1], Sec-
tion 8.2.2. From Lemma A.1(b) we know that for h ∈ H

ρAB,mn(h) =
[
ρAB(h) +

1

2md
n

V
2
2(h)

]
(1 + o(1)), n→∞,

where V
2
2(h) := a1a2

a2−a1 (V 2
2 (h; a2, b2) + V 2

2 (h; a2, b1) + V 2
2 (h; a1, b2) + V 2

2 (h; a1, b1))
as given in (A.3) and appropriate adaptations for a2 = ∞ and/or b2 = ∞ given in
(A.4). Hence, for h ∈ H,( n

mn

)d/2(
ρAB,mn(h)− ρAB(h)

)
∼
( n

m3
n

)d/2V 2
2(h)

2
,

which converges to 0 if and only if n/m3
n → 0.

Remark 4.5. The requirement n/m3
n → 0 as n → ∞ needed in Theorem 4.4

contradicts the condition m
2(d+1)
n /n→ 0 required in Cho et al. [6]; thus, under the

conditions stated in that paper, only the CLT (4.3) centred by the pre-asymptotic
extremogram can be proved. However, n/m3

n → 0 as n → ∞ does not contradict
the assumptions of Theorem 4.2 above, in particular, the much weaker assumption
(M2).

(ii) From Theorem 4.4 in relation to Remark 4.3 (ii) we conclude that we need
to choose β1 > 1/3 in order to satisfy the CLT (4.8). This is not a contradiction
to the conditions of Theorem 4.2 and we conclude that for β1 ∈ (1/3, 1/2) and
β2 ∈ (0,min{β1; 1/2− β1}), we have

n
d
2

(1−β1)
(
ρ̂AB,mn(h)− ρAB(h)

)
h∈H

d→ N (0,Π), n→∞. (4.9)

�

We discuss our findings for two prominent examples.

Example 4.6. [Max-moving average (MMA) process]
We start with a model for the process {X(s) : s ∈ Zd} corresponding to the discrete
observation scheme. It has been suggested in Cho et al. [6] based on a time series
model of Davis and Resnick [8]. Let Z(s) for s ∈ Zd be i.i.d. standard unit Fréchet
random variables and set

X?(s) := max
z∈Zd

φ‖z‖Z(s− z), s ∈ Zd, (4.10)

for some 0 < φ < 1. Then {X?(s) : s ∈ Zd} is a stationary max-moving average
(MMA) process, also considered in equation (25) of [6]. As in [6] we deduce the
following marginal distributions. The number N(j) of lag vectors h ∈ Zd with norm
j = ‖h‖ is of order O(jd−1) and

V1 :=
∑
h∈Zd

φ‖h‖ =
∑

0≤j<∞
φjN(j) <∞.
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The univariate margins are unit Fréchet with scale parameter V1; i.e.,

P(X?(0) ≤ x) = exp
{
− V1

x

}
, x > 0.

Define Qh(j) :=
∣∣{s ∈ Zd : min{‖s‖, ‖s + h‖} = j}

∣∣ ≤ 2N(j). With V2(h) :=
V2(h; 1, 1) =

∑
0≤j<∞Qh(j)φj , we have for the bivariate margins at lag h ∈ Zd,

P(X?(0) ≤ x,X?(h) ≤ x) = exp
{
− V2(h)

x

}
, x > 0.

We standardise the process (4.10) by setting

X(s) := X?(s)/V1, s ∈ Zd. (4.11)

As a consequence we can choose am = md
n in Definition 2.2. We further conclude

that the extremal coefficient (cf. Beirlant et al. [1], Section 8.2.7) at lag h ∈ Zd for
the process (4.11) is given by

θ(h) :=
V2(h)

V1
=

1

V1

∑
0≤j<∞

Qh(j)φj . (4.12)

Note that 2−θ(h) = 1
V1

∑
‖h‖/2≤j<∞ φ

j [2N(j)−Qh(j)], where we use that Qh(j) =
2N(j) for j < ‖h‖/2; see [6], p. 8.

We now verify the conditions of Theorem 4.2 for the process {X(s) : s ∈ Zd} as
in (4.11) and a chosen set of lags H ⊆ B(0, γ) for some γ > 0.
We start with an upper bound for the α-mixing coefficients αk,`(r) for k, ` ∈ N and
r > 0 defined in (4.2). To simplify notation, we use C throughout to denote some
positive constant, although the actual value of C may change from line to line. As
in equation (3.3) of Buhl and Klüppelberg [4] we use Corollary 2.2 of Dombry and
Eyi-Minko [13] to deduce

αk,`(r) ≤ Ck` sup
‖h‖>r

2− θ(h)

≤ Ck` sup
‖h‖>r

∑
‖h‖/2≤j<∞

φj [2N(j)−Qh(j)]

≤ Ck`
∑

r/2≤j<∞

2N(j)φj ≤ Ck`
∑

r/2≤j<∞

jd−1 φj , (4.13)

since N(j) is of order O(jd−1) as mentioned above. An integral bound yields for
fixed k, ` ∈ N,

αk,`(r) ≤ C
∫ ∞
r/2

td−1 φt dt = C| log(φ)|−dΓ
(
d,
r

2
| log(φ)|

)
(4.14)

≤ Cφr/2
d−1∑
k=0

rk| log(φ)|k

2kk!
= O(rd−1 φr/2), (4.15)

10



as r →∞. We denote by Γ(s, y) =
∫∞
y ts−1e−tdt = (s− 1)!e−y

∑s−1
i=0 y

i/i! for s ∈ N
the incomplete gamma function. Since rd−1φr/2 → 0, this implies that {X(s) : s ∈
Zd} is α-mixing; thus (M1) is satisfied.
Now we verify (M3). To this end we compute for s, s′ ∈ Zd and x > 0, using a Taylor
expansion, the limit as x→∞:

P(X(s) > x,X(s′) > x) = 1− 2P(X(0) ≤ x) + P(X(s) ≤ x,X(s′) ≤ x)

= 1− 2 exp
{
− 1

x

}
+ exp

{
− V2(s− s′)

V1x

}
=

2

x
− V2(s− s′)

V1x
+O

( 1

x2

)
=

1

x
(2− θ(s− s′)) +O

( 1

x2

)
≤ C

x

∑
‖s−s′‖/2≤j<∞

jd−1 φj +O
( 1

x2

)
by (4.13). Hence, for ε > 0, as n→∞,

P
(

max
s∈B(0,γ)

X(s) > εmd
n, max

s∈B(h,γ)
X(s′) > εmd

n

)
≤

∑
s∈B(0,γ)

∑
s′∈B(h,γ)

P
(
X(s) > εmd

n, X(s′) > εmd
n

)
≤

∑
s∈B(0,γ)

∑
s′∈B(h,γ)

{ C

εmd
n

∑
‖s−s′‖/2≤j<∞

jd−1 φj +O
( 1

m2d
n

)}
≤

∑
s∈B(0,γ)

∑
s′∈B(h,γ)

{ C

εmd
n

‖s− s′‖d−1φ
‖s−s′‖

2 +O
( 1

m2d
n

)}
≤C|B(0, γ)|2

εmd
n

(‖h‖ − 2γ)d−1φ
‖h‖−2γ

2 +O
( 1

m2d
n

)
,

where in the second last step we use the same bound as in (4.15), and in the last
step we use that ‖h‖d−1φ‖h‖/2 decreases for sufficiently large ‖h‖. Therefore, we
conclude

lim
k→∞

lim sup
n→∞

∑
h∈Zd:k<‖h‖≤rn

{
md
nP
(

max
s∈B(0,γ)

X(s) > εmd
n, max

s′∈B(h,γ)
X(s′) > εmd

n

)}
≤ lim
k→∞

lim sup
n→∞

C
∑

h∈Zd:k<‖h‖≤rn

{
(‖h‖ − 2γ)d−1φ

‖h‖−2γ
2

}
+ lim sup

n→∞
O
( rdn
md
n

)
= 0,

since rn = o(mn), where we use for the last inequality that
∣∣{h ∈ Zd : ‖h‖ ≤ rn}

∣∣ =
O(rdn).
Turning to condition (M4i), using (4.15), we have as n→∞,

md
n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖) ≤ Cmd
n

∑
j>rn

jd−1 α1,1(j)

11



≤ Cmd
n

∑
j>rn

j2(d−1) φj/2 ≤ Cmd
nr

2(d−1)
n φrn/2,

which follows again from an integral bound. Since

md
nr

2(d−1)
n φrn/2 = exp{d log(mn)− rn| log(φ1/2)|+ 2(d− 1) log(rn)},

if we choose mn and rn such that

log(mn) = o(rn), n→∞, (4.16)

then condition (M4i) is satisfied.
Now observe that for 2 ≤ p+ q ≤ 4, using again (4.15),∑

h∈Zd
αp,q(‖h‖) ≤ αp,q(0) + C

∑
j>0

jd−1 αp,q(j) ≤ αp,q(0) + C
∑
j>0

j2(d−1) φj/2 <∞.

This shows (M4ii).
Finally, we turn to the condition (M4iii) and compute, using (4.13) and (4.15),

md/2
n nd/2α1,nd(rn) ≤ Cmd/2

n n(3d)/2rd−1
n φrn/2

= C exp
{3d

2
log(n)− rn| log(φ)|+ d

2
log(mn) + (d− 1) log(rn)

}
.

Thus, we must choose rn such that

log(n) = o(rn), n→∞. (4.17)

To satisfy both (4.16) and (4.17) and the conditions rn = o(mn), mn = o(n), we can
thus choose mn = nβ1 and rn = nβ2 with 0 < β2 < β1 < 1. Hence, Remarks 4.3(ii)
and 4.5(ii) apply such that (4.9) holds for β1 ∈ (1/3, 1/2) and β2 ∈ (0,min{β1; 1/2−
β1}). �

Example 4.7. [Brown-Resnick process]
Consider a strictly stationary Brown-Resnick process, which has representation

X(s) =
∞∨
j=1

{
ξj e

Wj(s)−δ(s)
}
, s ∈ Rd. (4.18)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ,
the dependence function δ is non-negative and conditionally negative definite and
{Wj(s) : s ∈ Rd} are independent replicates of a Gaussian process {W (s) : s ∈ Rd}
with stationary increments, W (0) = 0, E[W (s)] = 0, and covariance function

Cov[W (s(1)),W (s(2))] = δ(s(1)) + δ(s(2))− δ(s(1) − s(2)).

All finite-dimensional distributions are multivariate extreme value distributions with
standard unit Fréchet margins. Representation (4.18) goes back to de Haan [12] and
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Giné et al. [17]; for more details on Brown-Resnick processes we refer to Brown and
Resnick [3], Davis et al. [9], and Kabluchko et al. [21]. Brown-Resnick processes have
been successfully fitted to time series, spatial data and space-time data. Inference
methods include both parametric and semi- or non-parametric approaches. Empirical
studies can for example be found in Buhl and Klüppelberg [4], Davis et al. [10], Buhl
et al. [5], Cho et al. [6], Huser and Davison [19], Padoan et al. [24] and Steinkohl
[27]. This important model is treated in detail in the accompanying paper [5]. In
that paper it is proved that the mixing conditions of Theorem 4.2 hold for sequences
rn = o(mn), mn = o(n) and that we can choose mn = nβ1 and rn = nβ2 with
0 < β2 < β1 < 1. Hence, Remarks 4.3(ii) and 4.5(ii) apply such that (4.9) holds for
β1 ∈ (1/3, 1/2) and β2 ∈ (0,min{β1; 1/2 − β1}). Moreover, we prove there that for
β1 ≤ 1/3, the empirical extremogram can be bias-corrected such that the resulting
empirical estimator satisfies a CLT to the true extremogram. We further derive a
semiparametric estimator for a parametrised extremogram based on a least squares
procedure, investigate its behaviour in a simulation study, and apply it to space-time
data. �

5 Proof of Theorem 4.2

The empirical extremogram as defined in (3.6) can be viewed as a ratio of estimates
of µB(0,γ)(C) and µB(0,γ)(D) for two suitably chosen sets C and D. Thus we first
derive a LLN and a CLT for such estimates, formulated in the two Lemmas 5.1 and
5.2 below.

We consider estimates of µB(0,γ)(C), where C is a µB(0,γ)-continuous Borel set in

R|B(0,γ)| \{0} (i.e. µB(0,γ)(∂C) = 0). In particular, there exists some ε > 0 such that

C ⊂ {x ∈ R|B(0,γ)| : ‖x‖ > ε}. In view of (3.3) a natural estimator for µB(0,γ)(C) is

µ̂B(0,γ),mn(C) :=
(mn

n

)d ∑
s∈Sn

1{Y (s)
am
∈C}. (5.1)

The proof is based on a big block/small block argument as follows. We choose
sequences mn and rn satisfying the conditions of Theorem 4.2, and divide the grid
Sn into (n/mn)d big d-dimensional blocks of side length mn, where for simplicity we
assume that n/mn is an integer. From those blocks we then cut off smaller blocks,
which consist of the first rn elements in each of the d dimensions. The large blocks are
then separated (by these small blocks) with at least the distance rn in all dimensions
and shown to be asymptotically independent. The construction is an extension of
the corresponding time series construction; an interpretation of the big and small
blocks in that framework can be found for example in Davis et al. [11] at the end of
page 15.

Lemma 5.1. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process

in Rd. Let C be some µB(0,γ)-continuous Borel set in R|B(0,γ)| \ {0}. Suppose that
the following mixing conditions are satisfied.
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(1) {X(s) : s ∈ Rd} is α-mixing with α-mixing coefficients αk,l(r) defined in (4.1).

(2) There exist sequences m := mn, r := rn → ∞ with mn/n → 0 and rn/mn → 0
as n→∞ such that (M3) and (M4i) hold.

Then, as n→∞,

E
[
µ̂B(0,γ),mn(C)

]
→ µB(0,γ)(C), (5.2)

Var
[
µ̂B(0,γ),mn(C)

]
∼
(mn

n

)d(
µB(0,γ)(C) +

∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C)
)

=:
(mn

n

)d
σ2
B(0,γ)(C). (5.3)

If µB(0,γ)(C) = 0, (5.3) is interpreted as Var
[
µ̂B(0,γ),mn(C)

]
= o(mn/n). In partic-

ular, we have

µ̂B(0,γ),mn(C)
P→ µB(0,γ)(C), n→∞. (5.4)

Proof. Strict stationarity and relation (3.3) imply that

E
[
µ̂B(0,γ),mn(C)

]
=
(mn

n

)d ∑
s∈Sn

P
(Y (s)

am
∈ C

)
= md

nP
(Y (0)

am
∈ C

)
→ µB(0,γ)(C), n→∞.

Further observe that

Var
[
µ̂B(0,γ),mn(C)

]
=
(mn

n

)2d
Var

[ ∑
s∈Sn

1{Y (s)
am
∈C}
]

=
(mn

n

)2d(
ndVar

[
1{Y (0)

am
∈C}
]

+
∑

s,s′∈Sn
s 6=s′

Cov
[
1{Y (s)

am
∈C},1{Y (s′)

am
∈C}

])
=: A1 +A2. (5.5)

By (3.3) and since P(Y (0)/am ∈ C)→ 0 as n→∞,

A1 =
(m2

n

n

)d
P
(Y (0)

am
∈ C

)(
1− P

(Y (0)

am
∈ C

))
∼
(mn

n

)d
µB(0,γ)(C)→ 0.

Let
L = L(n) := {h = (s− s′) ∈ Zd : s, s′ ∈ Sn, s 6= s′}

be the set of spatial lags on the observation grid. We divide the spatial lags in L
into different sets. Observe that a spatial lag h = (h1, . . . , hd) appears in L exactly∏d
j=1(n− |hj |) times. For fixed k ∈ N we therefore have by stationarity

( n

mn

)d
A2 = md

n

∑
h∈L

d∏
j=1

(
1− |hj |

n

)
Cov[1{Y (0)

am
∈C},1{Y (h)

am
∈C}]
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= md
n

( ∑
h∈L

0<‖h‖≤k

+
∑
h∈L

k<‖h‖≤rn

+
∑
h∈L
‖h‖>rn

)
d∏
j=1

(
1− |hj |

n

)
Cov

[
1{Y (0)

am
∈C},1{Y (h)

am
∈C}
]

=: A21 +A22 +A23. (5.6)

Concerning A21 we have,

A21 =md
n

∑
h∈L

0<‖h‖≤k

d∏
j=1

(
1− |hj |

n

)[
P
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
− P

(Y (0)

am
∈ C

)2]
.

We have by (3.3),

md
nP
(Y (0)

am
∈ C

)2
∼ µB(0,γ)(C)P

(Y (0)

am
∈ C

)
→ 0, n→∞.

Moreover, for h ∈ Zd \ {0}, by (3.4),

md
nP
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
→ τB(0,γ)×B(h,γ)(C × C), n→∞. (5.7)

Finally, by dominated convergence,

lim
k→∞

lim sup
n→∞

A21 =
∑

h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C). (5.8)

As to A22, observe that for all n ≥ 0 we have
d∏
j=1

(1− |hj |n ) ≤ 1 for h ∈ L. Furthermore,

since C is bounded away from 0, there exists ε > 0 such that C ⊂ {x ∈ R|B(0,γ)|
:

‖x‖ > ε}. Hence, we obtain

|A22| ≤
∑
h∈L

k<‖h‖≤rn

md
nP
(Y (0)

am
∈ C, Y (h)

am
∈ C

)
+md

nP
(Y (0)

am
∈ C

)2
≤

∑
h∈Zd

k<‖h‖≤rn

{
md
nP
(
‖Y (0)‖ > εam, ‖Y (h)‖ > εam

)
+

1

md
n

(
md
nP
(Y (0)

am
∈ C

))2}
.

From (3.3) we know that md
nP(Y (0) ∈ amC) → µB(0,γ)(C) and, hence, the second

summand can be estimated by (rn/mn)d → 0 as n → ∞. The first sum tends to 0
by (M3), exploiting the equivalence of norms on R|B(0,γ)|, and it follows that

lim
k→∞

lim sup
n→∞

A22 = 0
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Using the definition of α-mixing for A1 = {Y (0)/am ∈ C} and A2 = {Y (h)/am ∈
C}, we obtain,

|A23| ≤ md
n

∑
h∈L:‖h‖>rn

∣∣∣P(Y (0)

am
∈ C, Y (h)

am
∈ C

)
− P

(Y (0)

am
∈ C

)2∣∣∣
≤ md

n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖)→ 0, n→∞, (5.9)

by condition (M4i).
Summarising these computations, we obtain from (5.6) and (5.8) that

A2 ∼
(mn

n

)d ∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(C × C), n→∞,

and, therefore, (5.5) implies (5.3). Since mn/n→ 0 as n → ∞, equations (5.2) and
(5.3) imply (5.4).

For the proof of the next lemma, in contrast to Cho et al. [6], we proceed similarly
as in the proofs of Lemma 5.1 above and of Theorem 3.2 of Davis and Mikosch [7]
and keep the sequence rn (instead of mn in [6]) in (5.14) as the distance between
the large blocks. This construction allows for the much weaker conditions (M2).

Lemma 5.2. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process
in Rd. Let the assumptions of Theorem 4.2 hold for some γ ≥ 0. Let C be some

µB(0,γ)-continuous Borel set in R|B(0,γ)|\{0}. Then

ŜB(0,γ),mn :=
(mn

n

)d/2 ∑
s∈Sn

[
1{Y (s)

am
∈C} − P

(Y (s)

am
∈ C

)]
=
( n

mn

)d/2
(µ̂B(0,γ),mn(C)− µB(0,γ),mn(C))

d→ N (0, σ2
B(0,γ)(C)), (5.10)

as n → ∞ with µ̂B(0,γ),mn(C) as in (5.1), µB(0,γ),mn(C)) := md
nP(Y (0)/am ∈ C)

and σ2
B(0,γ)(C) given in (5.3).

Proof. Like Cho et al. [6] we follow Lemma 2 in Bolthausen [2] and define

I(s) := 1{Y (s)/am∈C} − P(Y (0)/am ∈ C), s ∈ Sn. (5.11)

Note that by stationarity,

ŜB(0,γ),mn =
(mn

n

)d/2 ∑
s∈Sn

I(s). (5.12)

The boundary condition required in equation (1) in Bolthausen [2] is trivially satis-
fied for the regular grid Sn.
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We first observe that 0 ≤ E[I(s)I(s′)] = Cov[1{Y (s)/am∈C},1{Y (s′)/am∈C}] and, us-
ing (5.3) for the asymptotic result, that

0 < σ2
B(0,γ) ∼ Var[ŜB(0,γ),mn ], Var[ŜB(0,γ),mn ] ≤

(mn

n

)d ∑
s,s′∈Zd

|E[I(s)I(s′)]| <∞,

(5.13)

such that
∑

s,s′∈Zd E[I(s)I(s′)] > 0. Finiteness in (5.13) follows from a classic result
found e.g. in Ibragimov and Linnik [20], Theorems 17.2.2 and 17.2.3, and the required
summability conditions of the α-mixing coefficients.
Next, we define

vn :=
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

E
[
I(s)I(s′)

]
. (5.14)

Decompose

vn =
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

E[I(s)I(s′)]

=
(mn

n

)d ∑
s,s′∈Sn

E[I(s)I(s′)]−
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]

= Var[ŜB(0,γ),mn ]−
(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]. (5.15)

Hence, using the asymptotic result in (5.13),

vn

Var[ŜB(0,γ),mn ]
= 1−

(mn

n

)d 1

σ2
B(0,γ)(C)

∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)](1 + o(1)).

Now note that (mn

n

)d ∑
s,s′∈Sn
‖s−s′‖>rn

E[I(s)I(s′)]

≤md
n

∑
h∈L:‖h‖>rn

d∏
j=1

(
1− |hj |

n

)
∣∣∣P(Y (0)

am
∈ C, Y (h)

am
∈ C

)
−
[
P
(Y (0)

am
∈ C

)]2∣∣∣
≤md

n

∑
h∈Zd:‖h‖>rn

α1,1(‖h‖)→ 0, n→∞,
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as in (5.9), with α-mixing coefficients defined in (4.2). Therefore,

vn ∼ Var[ŜB(0,γ),mn ]→ σ2
B(0,γ)(C), n→∞. (5.16)

Next we define the standardized quantities

Sn := v−1/2
n ŜB(0,γ),mn = v−1/2

n

(mn

n

)d/2 ∑
s∈Sn

I(s),

Ss,n := v−1/2
n

(mn

n

)d/2 ∑
s′∈Sn

‖s−s′‖≤rn

I(s′).

We now show condition (b) of Lemma 2 in Bolthausen [2]. To this end let i ∈ C be
the complex imaginary unit. If limn→∞ E

[
(iλ − Sn) exp{iλSn}

]
= 0 for all λ ∈ R,

then (by Stein’s Lemma) the law of Sn converges to the standard normal one and
we obtain (5.10) by (5.12) and (5.16).
First note that for arbitrary λ ∈ R,

(iλ− Sn) exp{iλSn}

=iλ exp{iλSn}
(

1− v−1/2
n

∑
s∈Sn

(mn

n

)d/2
I(s)Ss,n

)
− v−1/2

n exp{iλSn}
∑
s∈Sn

(mn

n

)d/2
I(s)(1− exp{−iλSs,n} − iλSs,n)

− v−1/2
n

∑
s∈Sn

(mn

n

)d/2
I(s) exp{−iλ(Ss,n − Sn)}

=:B1 −B2 −B3.

Since | exp{ix}| = 1 for all x ∈ R, we compute

|B1| = |λ|
∣∣∣1− v−1

n

(mn

n

)d ∑
s,s′∈Sn
‖s−s′‖≤rn

I(s)I(s′)
∣∣∣

and, using (5.14),

|B1| = |λ|v−1
n

(mn

n

)d∣∣∣ ∑
‖s−s′‖≤rn

I(s)I(s′)−
∑

‖s−s′‖≤rn

E
[
I(s)I(s′)

]∣∣∣
= |λ|v−1

n

(mn

n

)d∣∣∣ ∑
‖s−s′‖≤rn

(
I(s)I(s′)− E

[
I(s)I(s′)

])∣∣∣,
such that

E[|B1|2] = λ2v−2
n

(mn

n

)2d ∑
‖s−s′‖≤rn

∑
‖`−`′‖≤rn

Cov
[
I(s)I(s′), I(`)I(`′)

]
.
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We use definition (4.2) of the α-mixing coefficients for

Λ′1 = {s, s′} and Λ′2 = {`, `′},

then |Λ′1|, |Λ′2| ≤ 2, and for d(Λ′1,Λ
′
2) we consider the following two cases:

(1) ‖s − `‖ ≥ 3rn. Then 2rn ≤ (2/3)‖s − `‖ and d(Λ′1,Λ
′
2) ≥ ‖s − `‖ − 2rn. Since

indicator variables are bounded, by Theorem 17.2.1 of Ibragimov and Linnik
[20] we have

|Cov
[
I(s)I(s′), I(`)I(`′)

]
| ≤ 4α2,2

(
‖s− `‖ − 2rn

)
≤ 4α2,2

(1

3
‖s− `‖

)
.

The last inequality holds, since α2,2 is a decreasing function.

(2) ‖s−`‖< 3rn. Set j := min{‖s−`‖, ‖s−`′‖, ‖s′−`‖, ‖s′−`′‖}, then d(Λ′1,Λ
′
2) ≥ j

and, again by Theorem 17.2.1 of [20],

Cov
[
I(s)I(s′), I(`)I(`′)

]
≤ 4αp,q(j), 2 ≤ p+ q ≤ 4.

Therefore,

E[|B1|2] ≤ 4λ2

v2
n

(mn

n

)2d

[ ∑
‖s−`‖≥3rn

∑
‖s−s′‖≤rn
‖`−`′‖≤rn

α2,2

(1

3
‖s− `‖

)
+

∑
‖s−`‖<3rn

∑
‖s−s′‖≤rn
‖`−`′‖≤rn

αp,q(j)
]

≤ 4λ2

v2
n

(mn

n

)2d
ndrn

2d
[ ∑
h∈Zd:‖h‖≥3rn

α2,2

(1

3
‖h‖

)
+

∑
h∈Zd:‖h‖<3rn

αp,q(‖h‖)
]
.

The last inequality unfolds by stationarity as follows: we obtain nd by summation
over all s ∈ Sn, whereas r2d

n arises from summation over all s′ and `′ such that
‖s − s′‖ ≤ rn and ‖` − `′‖ ≤ rn, respectively. By (M4ii) the sums in brackets are
finite and thus

E[|B1|2] = O
((m2

nr
2
n

n

)d)
,

which converges to 0 as n→∞ by (M2).
Now we show that E[|B2|] → 0 as n → ∞. Since |1 − exp {−ix} − ix| ≤ x2/2 for
x ∈ R and |I(s)| ≤ 1 for s ∈ Sn, we find

|B2| ≤
1

2
λ2v−1/2

n

(mn

n

)d/2 ∑
s∈Sn

S
2
s,n.

By stationarity and (5.14) for the second equality below,

E[|B2|] ≤
1

2
λ2v−1/2

n

(mn

n

)d/2
ndE[S

2
0,n]
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=
1

2
λ2v−3/2

n

(mn

n

)d/2
md
n

∑
s∈Sn:‖s‖≤rn

∑
s′∈Sn:‖s′‖≤rn

E[I(s)I(s′)]

≤ 1

2
λ2v−3/2

n

(mn

n

)d/2
rdn m

d
n

∑
s∈Sn

E[I(0)I(s)]

= O
((mn

n

)d/2
rdn

)
= O

((mnr
2
n

n

)d/2)
,

where we used (5.13) to obtain md
n

∑
s∈Sn E[I(0)I(s)] = O(1). Again by (M2) we

find that E[|B2|]→ 0 as n→∞.
Next we estimate B3:

E[B3] = v
− 1

2
n

(mn

n

)d/2 ∑
s∈Sn

E
[
I(s) exp

{
− iλ(Ss,n − Sn)

}]
= v

− 1
2

n

(mn

n

)d/2 ∑
s∈Sn

E
[
I(s) exp

{
iλv
− 1

2
n

(mn

n

)d/2 ∑
s′∈Sn

‖s−s′‖>rn

I(s′)
}]

= v
− 1

2
n md/2

n nd/2E
[
I(0) exp

{
iλv
− 1

2
n

(mn

n

)d/2 ∑
‖s‖>rn

I(s)
}]
,

where the last equality holds by stationarity. We use definition (4.2) of the α-mixing
coefficients for

Λ′1 = {0} and Λ′2 = {s ∈ Sn : ‖s‖ > rn},

then |Λ′1| = 1, |Λ′2| ≤ nd and d(Λ′1,Λ
′
2) > rn. Abbreviate

η(rn) := exp
{

iλv
− 1

2
n

(mn

n

)d/2 ∑
‖s‖>rn

I(s)
}
,

then I(0) and η(rn) are measurable with respect to FΛ1 and FΛ2 , respectively,
where Λi = ∪s∈Λ′i

B(s, γ) for i = 1, 2. Now we apply Theorem 17.2.1 of Ibragimov
and Linnik to obtain

|E[B3]| ≤ 4v−1/2
n md/2

n nd/2α1,nd(rn)→ 0,

where convergence to 0 is guaranteed by condition (M4iii).

The proof of Theorem 4.2 follows now similarly as that of Corollary 3.4 in Davis
and Mikosch [7] (also used in Theorem 1 in Cho et al. [6]). In order to keep the
paper self-contained, we summarize the main ideas.

Sketch of the proof of Theorem 4.2. For Borel sets C,D ⊆ R|B(0,γ)|\{0} such
that µB(0,γ)(D) > 0, define the ratio

Rn(C,D) :=
P(Y (0)/am ∈ C)

P(Y (0)/am ∈ D)
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and the correspondent empirical estimator

R̂n(C,D) :=

∑
s∈Sn

1{Y (s)/am∈C}∑
s∈Sn

1{Y (s)/am∈D}
.

Recall the definition of H = {h1, . . . ,hp}. For 1 ≤ i ≤ p fix a lag hi = (h1
i , . . . , h

d
i ) ∈

H and denote as before

Sn(hi) = {s ∈ Sn : s+ hi ∈ Sn} with |Sn(hi)| =
d∏
j=1

(n− |hji |) ∼ n
d, n→∞.

Then the empirical extremogram as defined in (3.6) for Borel sets A,B in R\{0}
satisfies as n→∞,

ρ̂AB,mn(hi) ∼

∑
s∈Sn(hi)

1{X(s)/am∈A,X(s+hi)/am∈B}∑
s∈Sn

1{X(s)/am∈A}

∼

∑
s∈Sn

1{Y (s)/am∈Di}∑
s∈Sn

1{Y (s)/am∈Dp+1}
= R̂n(Di, Dp+1),

by definition (3.5) of the sets Di for i = 1, . . . , p. Moreover, the pre-asymptotic
extremogram defined in (3.7) can be written as

ρAB,mn(hi) =
P(X(0)/am ∈ A,X(hi)/am ∈ B)

P(X(0)/am ∈ A)
=

P(Y (0)/am ∈ Di)

P(Y (0)/am ∈ Dp+1)

= Rn(Di, Dp+1).

This implies that proving (4.3) requires a central limit theorem for the scaled vector
of ratio differences( n

mn

)d/2[
R̂n(Di, Dp+1)−Rn(Di, Dp+1)

]
i=1,...,p

. (5.17)

Now observe that for fixed i ∈ {1, . . . , p},

R̂n(Di, Dp+1)−Rn(Di, Dp+1) =
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)
−

µB(0,γ),mn(Di)

µB(0,γ),mn(Dp+1)

=
µB(0,γ),mn(Dp+1)/µ̂B(0,γ),mn(Dp+1)

(µB(0,γ),mn(Dp+1))2

×
[
µ̂B(0,γ),mn(Di)µB(0,γ),mn(Dp+1)− µ̂B(0,γ),mn(Dp+1)µB(0,γ),mn(Di)

]
=

µB(0,γ),mn(Dp+1)/µ̂B(0,γ),mn(Dp+1)

(µB(0,γ),mn(Dp+1))2

21



×
[(
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

)
µB(0,γ),mn(Dp+1)

−
(
µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)

)
µB(0,γ),mn(Di)

]
=

1 + op(1)

(µB(0,γ)(Dp+1))2

×
[(
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

)
µB(0,γ)(Dp+1)

−
(
µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)

)
µB(0,γ)(Di)

]
by (3.3), Lemma 5.1 and Slutzky’s lemma. For the vector in (5.17), recalling that
µB(0,γ)(Dp+1) = µ(A), and F ∈ R(p+1)×(p+1) as given in (4.6), we find( n

mn

)d/2[
R̂n(Di, Dp+1)−Rn(Di, Dp+1)

]
i=1,...,p

=
( n

mn

)d/2 1 + op(1)

(µB(0,γ)(Dp+1))2
F


µ̂B(0,γ),mn(D1)− µB(0,γ),mn(D1)

...
µ̂B(0,γ),mn(Dp)− µB(0,γ),mn(Dp)

µ̂B(0,γ),mn(Dp+1)− µB(0,γ),mn(Dp+1)


=:
( n

mn

)d/2 1 + op(1)

(µB(0,γ)(Dp+1))2
F µmn .

Thus, it remains to prove that( n

mn

)d/2
µmn

d→ N (0,Σ), (5.18)

where Σ is given in the statement of the Theorem. This can be done as in Davis and
Mikosch [7], Corollary 3.3 using the Cramér-Wold device and similar ideas as in the
proofs of Lemmas 5.1 and 5.2. In particular, note that for all i, j ∈ {1, . . . , p+ 1} as
n→∞,

Cov[µ̂B(0,γ),mn(Di), µ̂B(0,γ),mn(Dj)]

∼ mn

nd

(
µB(0,γ)(Di ∩Dj) +

∑
h∈Zd\{0}

τB(0,γ)×B(h,γ)(Di ×Dj)
)
.

�

A Taylor expansion for the pre-asymptotic extremogram

Lemma A.1. Let the assumptions of Theorem 4.4 hold.
(a) For h ∈ Rd the true extremogram is given by

ρAB(h) =
a1a2

a2 − a1

(
− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1)

)
, (A.1)
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where V2(·, ·) = V2(h; ·, ·) is the bivariate exponent measure (cf. Beirlant et al. [1],
Section 8.2.2) defined by

P(X(0) ≤ x1, X(h) ≤ x2) = exp{−V2(x1, x2)}, x1, x2 > 0.

For A = (a,∞) and B = (b,∞) we obtain

ρAB(h) = a
(1

a
+

1

b
− V2(a, b)

)
. (A.2)

(b) For fixed h ∈ Rd and the sequence mn satisfying the conditions of Theorem 4.2,
the pre-asymptotic extremogram satisfies as n→∞,

ρAB,mn(h) = (1 + o(1))
[
ρAB(h)+ (A.3)

1

2md
n

a1a2

a2 − a1

(
V 2

2 (a2, b2) + V 2
2 (a2, b1) + V 2

2 (a1, b2) + V 2
2 (a1, b1)

)]
.

For A = (a,∞) and B = (b,∞) this reduces to

ρAB,mn(h) =(1 + o(1))
[
ρAB(h) +

1

2md
na

(ρAB(h)− 2
a

b
)(ρAB(h)− 1)

]
. (A.4)

Proof. Throughout the proof all asymptotic results hold as n → ∞. Since {X(s :
s ∈ Rd} has standard unit Fréchet margins, we can and do choose an = nd in (2.1)
such that P(X(0) > nd) = 1− exp{−n−d} ∼ n−d.
(a) We first show (A.1). With this choice of an, equation (2.2) is equivalent to

ρAB(h) = lim
n→∞

ndP(X(0) ∈ ndA,X(h) ∈ ndB)

ndP(X(0) ∈ ndA)
.

We set A = (a1, a2) and B = (b1, b2). For the denominator we obtain by a first order
Taylor expansion

ndP(X(0) ∈ nd(a1, a2)) =nd[P(X(0) ≤ nda2)− P(X(0) ≤ nda1)]

=nd
[

exp{− 1

nda2
} − exp{− 1

nda1
}
]

(A.5)

=
1

a1
− 1

a2
+O(n−d)→ 1

a1
− 1

a2
=
a2 − a1

a1a2
> 0.

Since by homogeneity V2(kx1, kx2)) = k−1V2(x1, x2) for k > 0, we find for the
numerator

ndP((X(0), X(h)) ∈ nd(a1, a2)× nd(b1, b2))

=nd

[
exp

{
− 1

nd
V2(a2, b2)

}
− exp

{
− 1

nd
V2(a2, b1)

}
− exp

{
− 1

nd
V2(a1, b2)

}
+ exp

{
− 1

nd
V2(a1, b1)

}]
(A.6)
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=− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1) +O(n−d).

This yields (A.1).
Furthermore, V2(a,∞) = 1/a, V2(∞, b) = 1/b and V2(∞,∞) = 0, see for instance
Resnick [25], p. 268. Together with the fact that the denominator converges to 1/a,
this gives (A.2).

(b) For an estimate of the pre-asymptotic extremogram we need to improve the
first order asymptotics of part (a). For an interval (a, b) we abbreviate Φn(a, b) :=
exp{− 1

mdn
V2(a, b)}. From equation (3.7) together with (A.5) and (A.6) we obtain

ρAB,mn(h) =
P(X(0) ∈ md

nA,X(h) ∈ md
nB)

P(X(0) ∈ md
nA)

=
Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

exp{− 1
a2mdn

} − exp{− 1
a1mdn

}

= ρAB(h) +
1

exp{− 1
a2mdn

} − exp{− 1
a1mdn

}[
Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

−
(

exp
{
− 1

a2md
n

}
− exp

{
− 1

a1md
n

})
ρAB(h)

]
= ρAB(h) +

a1a2

a2 − a1
md
n(1 + o(1))[

Φn(a2, b2)− Φn(a2, b1)− Φn(a1, b2) + Φn(a1, b1)

−
(

exp
{
− 1

a2md
n

}
− exp

{
− 1

a1md
n

})
ρAB(h)

]
(A.7)

By a second order Taylor expansion of Φn it follows that, using (A.1) and (A.5),

ρAB,mn(h) =(1 + o(1))
[
ρAB(h)+

1

2md
n

a1a2

a2 − a1

(
V 2

2 (a2, b2) + V 2
2 (a2, b1) + V 2

2 (a1, b2) + V 2
2 (a1, b1)

)]
.

This shows (A.3).
Now let A = (a,∞) and B = (b,∞). Then a1a2/(a2 − a1) = a1 + o(1) as a2 → ∞
and the expression in the rectangular bracket in (A.7) becomes[

· · ·
]

= 1− exp
{
− 1

bmd
n

}
− exp

{
− 1

amd
n

}
+ exp

{
− 1

md
n

V2(a, b)
}

−
(

1− exp
{
− 1

amd
n

})
ρAB(h). (A.8)

Abbreviating V2 := V2(a, b), a second order Taylor expansion gives with (A.2) for
the right-hand side of (A.8),( 1

amd
n

− 1

2a2m2d
n

)
+
( 1

bmd
n

− 1

2b2m2d
n

)
−
( 1

md
n

V2 −
1

2m2d
n

V 2
2

)
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−
( 1

md
n

− 1

2am2d
n

)(1

a
+

1

b
− V2

)
+ o(m−2d

n )

=
1

2m2d
n

{(
V 2

2 −
1

a2
− 1

b2

)
+

1

a

(1

a
+

1

b
− V2

)}
+ o(m−2d

n ). (A.9)

Solving (A.2) for V2 gives V2 = V2(a, b) = 1
a(1 − ρAB(h)) + 1

b such that we obtain
for the expression in the curly brackets of (A.9),(1

a
(1− ρAB(h)) +

1

b

)2 − 1

a2
− 1

b2
+

1

a2
ρAB(h) =

1

a2
(ρAB(h)− 2

a

b
)(ρAB(h)− 1).

Going backwards with this expression proves (A.4).
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[5] S. Buhl, R. Davis, C. Klüppelberg, and C. Steinkohl. Semiparametric estimation
for isotropic max-stable space-time processes. Submitted. arXiv 1609.04967,
2016.

[6] Y. Cho, R. Davis, and S. Ghosh. Asymptotic properties of the spatial empirical
extremogram. Scandinavian Journal of Statistics, 43(3):757–773, 2016.

[7] R. Davis and T. Mikosch. The extremogram: A correlogram for extreme events.
Bernoulli, 15(4):977–1009, 2009.

[8] R. Davis and S. Resnick. Basic properties and prediction of max-ARMA pro-
cesses. Advances in Applied Probability, 21(4):781–803, 1989.
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