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Abstract

We use effective field theories to study the interactions of heavy quarks in the vacuum and
in medium. First, we show how the concept of a non-relativistic effective theory (in par-
ticular NRQCD and pNRQCD) is compatible with the inherent Poincaré invariance of the
underlying fundamental theory of QCD. Boost transformations, though not explicitly reali-
zed in the effective theory, may nevertheless be introduced as non-linear transformations on
the non-relativistic fields. By requiring the effective Lagrangian to be invariant under these
transformations, exact relations can be derived for the Wilson coefficients.

We also study the exotic bound states of heavy quarks, called hybrids, where the binding
gluons are in an excited configuration. Using arguments from both NRQCD and pNRQCD,
we derive a coupled Schrödinger equation, the eigenvalues of which give the leading order
masses of the hybrids. The results are compared to previous theoretical approaches like the
Born-Oppenheimer approximation, as well as results from experiments, lattice QCD and sum
rules.

Finally, we study the behavior of heavy quarks in a hot medium by calculating the Polyakov
loop and the Polyakov loop correlator at finite temperature in the weak coupling expansion.
For the Polyakov loop, we present a next-to-next-to-leading-order result, using the effective
theories EQCD and MQCD as well as a direct calculation. A comparison to lattice data is
also given. For the correlator, we present a next-to-next-to-next-to-leading-order result in the
short distance limit, which follows directly from the result for the Polyakov loop and a novel
exponentiated expression for the Polyakov loop correlator in terms of singlet and adjoint free
energies. We also compare these in a matching to pNRQCD.

Zusammenfassung

Wir untersuchen das Verhalten von schweren Quarks im Vakuum und bei endlicher Tempera-
tur mit Hilfe von effektiven Feldtheorien. Zunächst zeigen wir, wie das Konzept einer nicht-
relativistischen effektiven Theorie mit der zu Grunde liegenden Poincaré-Invarianz der funda-
mentalen Theorie QCD in Einklang gebracht werden kann. Obwohl Boost-Transformationen
in der effektiven Theorie nicht explizit realisiert sind, lassen sie sich dennoch in Form von
nicht-linearen Transformationen für die nicht-relativistischen Felder einführen. Indem wir die
Invarianz der effektiven Lagrange-Dichte unter diesen Transformationen fordern, erhalten wir
exakte Beziehungen zwischen den Wilson-Koeffizienten.

Weiterhin untersuchen wir exotische Bindungszustände von schweren Quarks, bei denen
sich die bindenden Gluonen in einem angeregten Zustand befinden und die deshalb Hybrids
genannt werden. Durch Verwendung von Argumenten aus NRQCD und pNRQCD erhalten
wir eine gekoppelte Schrödingergleichung, deren Eigenwerte die Hybrid-Massen in führender
Ordnung darstellen. Wir vergleichen unsere Ergebnisse mit vorherigen theoretischen Heran-
gehensweisen, und darüber hinaus auch mit experimentellen Resultaten, Gitter-QCD oder
Summenregeln.

Schließlich untersuchen wir das Verhalten von schweren Quarks in heißer Materie, indem
wir den Polyakov Loop und den Polyakov Loop Korrelator bei endlicher Temperatur und in
der Entwicklung für schwache Kopplung berechnen. Wir erhalten den Polyakov Loop in zwei-
ter Korrektur zur führenden Ordnung unter Verwendung der effektiven Theorien EQCD und
MQCD sowie durch direkte Berechnung. Das Ergebnis wird auch mit Gitter-QCD-Daten ver-



glichen. Für den Polyakov Loop Korrelator erhalten wir die dritte Korrektur zur führenden
Ordnung, welche direkt aus dem Ergebnis zum Polyakov Loop folgt sowie durch eine neue ex-
ponentielle Formulierung des Korrelators durch die freien Energien in Singlet- und adjungierter
Darstellung. Wir vergleichen diese ebenfalls mit pNRQCD durch ein Matching.
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Chapter 1

Introduction

1.1 Phenomenology of the Strong Interaction

The strong interaction is a particularly interesting field in particle physics in that great ad-
vances have been made over the last century, with the discovery of a multitude of strongly
interacting particles in collider experiments (half jokingly referred to as the particle zoo), which
ultimately turned out to be perfectly described by a comparatively simple theory as bound
states of only a few elementary particles called quarks; and yet they continue to this day to
challenge both theorists and experimentalists alike, with new particles still being discovered
(that require interpretation) or predicted (that require detection). The (by now) well estab-
lished theory for the strong force is called quantum chromodynamics (QCD), for recent reviews
on the state of the art and current open problems see [1–3]. Even though its Lagrangian takes
only one line to write down, it is an extremely rich theory allowing for vastly different phases
of matter that we are just beginning to understand.

One of the most fascinating aspects of the strong force is confinement, the property that
quarks or gluons at low energies can never be observed in isolation, but only in color neutral
bound states. Since confinement is a low-energy phenomenon, it is expected theoretically that
if nuclear matter is heated up to sufficiently high temperatures, where the average energy per
particle is larger than the confinement scale ΛQCD, it should undergo a phase transition from
confining to deconfined, the so-called quark gluon plasma (QGP). Such a phase transition has
indeed been seen at temperatures of around 160 MeV in lattice studies [4, 5]. A concurrent
phenomenon is the restoration of chiral symmetry, and the close proximity of the two transition
temperatures has sparked intense discussions whether the two effects are related, an issue
that is still not resolved. With heavy ion collisions, currently conducted in the experimental
facilities RHIC (Relativistic Heavy Ion Collider) at the Brookhaven National Laboratory and
LHC (Large Hadron Collider) at CERN (the European Organization for Nuclear Research),
there is also a great experimental effort to study this new phase of matter, which is believed
to have been the state of the universe in the early stages after the big bang [6].

A particularly useful probe for the QGP are heavy quarks, which may not be thermalized
at temperatures of a few hundred MeV because of their large mass and therefore can be used
to observe the hot medium. This idea was originally proposed by Matsui and Satz [7], who
argued that the screening of the strong force through the medium would lead to a breaking of
heavy quarkonium bound states. Since different excitations of quarkonium states correspond
to different sizes, they would melt at different temperatures, when the screening length would
become smaller than the mean distance. So the suppression of quarkonium states would
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be an indicator of the temperature of the QGP. While the main idea of using quarkonia as
an effective thermometer for the medium has remained, recent studies have shown that the
process of quarkonium melting is in fact dominated through a thermal decay width due to an
imaginary part in the interquark potential rather than through color screening, at least in the
weak coupling regime [8]. An exact prediction of the quarkonium yield in such experiments is
further complicated by other effects, such as cold nuclear matter or recombination effects, so
this problem is currently subject to very active study.

The advances in the understanding of quarkonium dissociation demonstrated in [8] have
been achieved through effective field theories (EFTs), which are among the most modern
tools used at the frontier of research, complemented by lattice calculations in QCD. While the
concept of describing heavy quark bound states through a potential has been used in numerous
models to varying success, it is EFTs that provide the appropriate framework for the definition
of a potential and establish a rigorous connection to the underlying theory of QCD [9]. In the
EFT approach, potentials arise naturally as non-local interaction terms for quarkonium fields,
but the theory is completely general and also describes all non-potential effects. Through this
approach it has been possible to achieve an accurate description of the quarkonium spectrum
in the vacuum for states below the open flavor threshold in a way that is firmly based on QCD,
which shows the great importance of EFTs for the study of multiscale systems [9, 10].

In an EFT a given hierarchy of scales is exploited through a systematic expansion of
the Lagrangian in ratios of these scales. The heavy scales are sequentially integrated out,
generating a tower of effective theories. At each step, equivalence with the fundamental theory
is ensured through a matching calculation, which determines the parameters of the EFT. Then
all higher energy effects are fully contained in the parameters and only the lower scales remain
dynamical. In this way high energy effects are factorized from low energy effects, and while the
former can usually be calculated through perturbation theory, the latter can be defined through
correlators of the effective degrees of freedom, which are then suitable for lattice evaluations.
Thus perturbative and non-perturbative methods are well connected through the EFT.

A great example for this are the exotic XYZ states, which were discovered recently and
continue to be subject of intense experimental study at facilities like BESIII, LHC, or also in
future experiments at Belle2 and Panda at FAIR, aiming at higher precision and statistics as
well as more information on production mechanisms or decays. They are typically found at or
above the open flavor threshold; a list of known exotics can be found e.g. in [1], although other
states have been found in the meantime like the famous “charmonium-pentaquark” state at
LHCb [11]. Also in lattice QCD there has been great effort and progress regarding the study of
excited quarkonia, even though a direct study is still far from being without problems [12–16].

A particularly clear indication for exotic properties is the appearance of electric charge in
states which are expected to belong to the charmonium or bottomonium spectrum based on
their mass and decay channels (these states are typically given the label Z). Since the combi-
nation of a quark and its antiquark is electrically neutral, the charge can only be generated
by some non-trivial light quark content, thus favoring a tetraquark interpretation. But also
non-trivial gluonic content may result in exotic properties, like quantum numbers that are
excluded in standard interpretations of quarkonia. In this case, the states are called hybrids
(i.e. a hybrid between a pure quark-antiquark bound state and a purely gluonic state like
glueballs) [17].

Even if there are no inherently exotic properties, just the number of states found in the
charmonium and bottomonium sectors suggests that there is more than one way to form a
bound state. Accordingly, there are numerous proposed models for exotic bound states. Among
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these are bound states between heavy-light mesons, or any other color combination between a
heavy and a light quark like diquarkonium, three-body treatments with a constituent gluon or
molecular approaches. Usually, these models are based on an assumption about the relevant
degrees of freedom and a phenomenological Hamiltonian. However, even if for some special
states a well defined theoretical description has been established, like for the X(3872) [18, 19],
a consistent framework for all these states with a well founded connection to QCD is still
lacking. In this work we will explore to what extent EFTs may be used to organize the
different descriptions for exotic quarkonia, focusing on hybrids.

The rest of this work is organized as follows. In the remaining sections of this introductory
chapter some basic theoretical concepts and tools are summarized, including QCD and EFTs
for heavy quarks at zero and finite temperature. The next chapter 2 deals with the question,
how the concept of boost transformations can be implemented in the non-relativistic framework
of certain EFTs. Since the underlying fundamental theory of QCD is relativistic and therefore
invariant under boosts, this symmetry needs to be somehow hidden in the effective theories.
We will demonstrate how non-linear field transformations can be used to implement boost
transformations. The EFTs studied in chapter 2 are then applied to study hybrid quarkonium
in chapter 3. Combining information from the perturbative short-range regime and lattice
results for intermediate ranges, a coupled Schrödinger equation is obtained whose eigenvalues
give the leading order hybrid masses. The quantum numbers of these states are explained, and
the results are compared to various other data, including experiments, direct lattice calculations
or results from sum rules.

In the second part of this work, the behavior of heavy quarks in a hot plasma is studied in
chapter 4. We calculate the Polyakov loop at O (g5) in perturbation theory (i.e. up to three
loops), which is the penultimate order at which perturbation theory can be used before the
expansion breaks down due to thermal low-energy effects. We use both resummed perturbation
theory and EFT methods and obtain results that are in agreement. A comparison to lattice
data is also presented. These results can be applied directly to the calculation of the Polyakov
loop correlator, for which we present a novel expression in terms of singlet and octet free
energies derived in the framework of Wilson-line exponentiation. This new result greatly
simplifies the calculation and allows us to give the perturbative expansion of the Polyakov
loop correlator for short distances up to O (g7). We also discuss the EFT description of this
operator. Finally, chapter 5 contains our conclusions and an outlook, while the appendices
give further detail on the calculations or related discussions.

Parts of the contents of this thesis have previously been published in [20], [21], and [22], or
are being prepared for publication [23, 24].
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1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is widely accepted as the theory for the strong interaction.
Strictly speaking, it is an SU(3) gauge theory (i.e. non-Abelian) with 6 massive Dirac fields
describing the quarks, which transform in the fundamental representation of SU(3), while
the gluons take on the role of the gauge field. The different components of the gauge group
representation are called colors and the different types of quark fields are called flavors. The
Lagrangian density is given by:

LQCD =
∑

q

q̄
(
i /D −mq

)
q − 1

4
F a
µνF

aµν . (1.1)

In this notation, several indices have been suppressed. The quark fields have a Dirac index,
which is contracted with the Dirac matrices implied by the shorthand /D ≡ Dµγ

µ, as well as
a color index, which is contracted with the color indices of the covariant derivative Dµ. The
mass terms mq act as unity with respect to both of these indices.

The 6 quark masses are vastly different, ranging from a few MeV to a few hundred GeV.
A common approximation to QCD is therefore to neglect the heavy quarks and treat the light
quarks as massless (this can be done rigorously in the context of effective field theories, which
also allow for the treatment of the heavy quarks, compare the following sections). The theory
is also chirally symmetric in this limit. The term “heavy quarks” usually refers to charm,
bottom, and top flavors (c, b, and t), while up and down (u and d) belong to the light quark
flavors. The strange quark flavor (s) is somewhat in-between, sometimes it is counted towards
the light quarks and in other cases its mass is not neglected.

Another observation is that the degree of the gauge group of this theory has only very
little effect on its properties; usually it only appears in the form of coefficients. It is therefore
straightforward to consider QCD as a special case of a more general class of theories, i.e. SU(N)
gauge theories with N colors and nf light quarks. For the majority of this work we will use
the term QCD to refer to this general class of theories.

The gauge fields enter the Lagrangian through the covariant derivatives: Dµ ≡ ∂µ + igAµ,
or through the related field strength tensor:

Fµν ≡
1

ig

[
Dµ, Dν

]
, (1.2)

where the square brackets denote the commutator:
[
X, Y

]
≡ XY − Y X. Here and in the

following, if a color index is suppressed on a field, it means it is contracted with a generator
of the gauge group T a: Aµ ≡ AaµT

a or Fµν ≡ F a
µνT

a.
Sometimes also the opposite sign is used for the gauge field in the covariant derivative. This

sign is arbitrary; it can be interpreted as a redefinition of the coupling constant g, and since
g always appears to even powers in perturbative results, i.e. in the combination αs ≡ g2/4π,
a sign change has no effects. Alternatively, it can be removed through a field redefinition of
the gauge fields in the path integral, which also does not affect results. This is a big difference
to U(1) gauge theories, where different elementary charges for different fields are possible; in
non-Abelian theories all fields carry the same charge, so a redefinition affects each field in the
same way. In this work we will use both signs, whichever will seem more convenient; the exact
sign will be specified where relevant.

The generators of the gauge group are denoted by T a, where a is the color index. When
necessary, the representation will also be given by an index T aR; if the representation index is
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missing, then the fundamental representation will be understood. We will also call these color
matrices. They share several features which are independent of the degree N of the gauge
group. First, the defining property for generators of a Lie group is, that any element U of the
group can be written as

U(αa) = exp [iT aαa] , (1.3)

for some real parameters αa. This relation applies to any representation of the group, but in
the fundamental representation, the resulting matrices U have to be unitary N ×N matrices
with determinant 1, which implies that the T a have to be hermitian and traceless. Any set of
independent N × N matrices that satisfy these properties can be used as color matrices for
that group; it will always contain N2 − 1 elements.

However, it is convenient to use a set of matrices that are orthogonal with respect to the
scalar product of the vector space of complex N × N matrices, which is 〈X, Y 〉 = X∗ijYij.
Because of the hermiticity of the color matrices, the condition for orthogonality can also be
written as

T a ∗ij T
b
ij = Tr

[
T aT b

]
∝ δab . (1.4)

Instead of normalizing the color matrices to 1 under this scalar product, it is conventional to
use instead

Tr
[
T aT b

]
=
δab

2
. (1.5)

Sometimes also a general normalization factor denoted as TF is used. However, this factor is
completely irrelevant for any results, since each generator in the Lagrangian is accompanied
by a power of the coupling g and vice versa. A different normalization for the color matrices
can therefore be fully absorbed by a redefinition of the coupling parameter. This also means
that in any result the power of TF will always be the same as the power of αs

1. We prefer
therefore to use the conventional choice of TF = 1/2.

The unit matrix does not belong to the color matrices, because it is not traceless, and
it is straightforward to see that it is orthogonal to any generator. The set of color matrices
complemented by the unit matrix (which contains exactly N2 elements) therefore forms an
orthogonal (but not normalized) basis for the space of complex N ×N matrices. This means
that for any matrix X we can write:

X =
1

N
Tr[1X]1 + 2Tr[T aX]T a . (1.6)

Through a slight rearrangement of this expression, we can obtain the Fierz identity:

T aijT
a
kl =

1

2
δilδkj −

1

2N
δijδkl . (1.7)

This relation is only valid in the fundamental representation, since it is only in this case that
the number of generators plus the unit matrix equals the dimension of the matrix space.

The commutator of two color matrices is necessarily orthogonal to the unit matrix, since
the trace of it vanishes trivially because of the cyclic property of the trace, so we can write:

[
T a, T b

]
= ifabcT c , (1.8)

1Or at least they will differ by a constant number, in case color matrices are already present in the initial
expression.
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where the coefficients fabc are called structure constants. It is straightforward to see that they
are real by taking the hermitian conjugation of Eq. (1.8) and keeping in mind that all color
matrices are hermitian. Because of Eq. (1.5) we can express them directly as:

fabc = −2iTr
[[
T a, T b

]
T c
]
. (1.9)

So we see that, while the first two indices of the structure constants are antisymmetric by def-
inition, for an orthogonal set of color matrices the structure constants are fully antisymmetric
in all indices. Other representations are then defined through Eq. (1.8): any set of matrices
that satisfy this relation may be used as generators of the gauge group in their respective rep-
resentation. If there is no similarity transformation that makes the generators block diagonal,
then the representation is called irreducible.

One can also define symmetric structure constants. In analogy to the antisymmetric struc-
ture constants, we write:

dabc = 2 Tr
[{
T a, T b

}
T c
]
, (1.10)

where the curly brackets denote the anticommutator {X, Y } ≡ XY + Y X. The symmetric
structure constants play a role in the decomposition of products of color matrices. Since the
product of two color matrices necessarily needs to be a linear combination of the unit matrix
and the color matrices (as those form a basis of matrix space), we can determine this expression
by calculating the projections:

T aT b =
1

N
Tr
[
T aT b

]
1 + 2 Tr

[
T aT bT c

]
T c =

δab

2N
1 +

(
1

2
dabc +

i

2
fabc

)
T c , (1.11)

where in the second term we have written the product through commutator and anticom-
mutator: T aT b = {T a, T b}/2 + [T a, T b]/2. In this way, any product of color matrices can
be decomposed in terms of structure constants, color matrices and the unit matrix by it-
erated application of this relation. Unlike the antisymmetric structure constants, however,
the symmetric structure constants have no direct relation to higher representations; for other
representations there is no way to simplify the anticommutator of two generators.

Through repeated use of the commutation relations (1.8) for the color matrices, or alterna-
tively through the explicit expressions for the structure constants and the Fierz identity, one
can show the Jacobi identity:

fabef ecd + f bcef ead + f caef ebd = 0 . (1.12)

From this one can see, that the structure constants themselves form a representation of SU(N),
the so-called adjoint representation. Its generators are defined as:

(T aA)bc = −ifabc . (1.13)

Inserting this in Eq. (1.8) and using the antisymmetry of the structure constants, one can
show that for the adjoint representation the commutation relation corresponds to the Jacobi
identity.

There is a useful relation between fields F that transform under the adjoint representation
and transformation matrices U in the fundamental representation by contracting the color
index with a color matrix:

F = FaT a SU(N)−−−→ UFU † . (1.14)
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The easiest way to show this is by considering only an infinitesimal transformation αa → 0.
The left-hand side transforms as:

Fa SU(N)−−−→ Fa + iαc (T cA)abF b +O
(
α2
)

= Fa + fabcαcF b +O
(
α2
)
, (1.15)

while the right-hand side gives:

UFU † = F − i
[
F , α

]
+O

(
α2
)

= FaT a + fabcαcF bT a +O
(
α2
)
. (1.16)

Since a finite transformation can be written as a succession of infinitesimal transformations,
and at each step left-hand and right-hand sides agree, we see that Eq. (1.14) is indeed valid also
for finite transformations. An alternative way to prove this directly for finite transformations
is through the Baker-Campbell-Hausdorff formula (see below).

Since QCD is a gauge theory, the gauge transformations are local, which means that the
parameters αa in Eq. (1.3) depend on the space-time coordinates. The quark fields transform
as:

q(x)
SU(N)−−−→ U(x)q(x) . (1.17)

In order for the Lagrangian to remain invariant, the gauge fields have to transform in a way
that the covariant derivatives transform as:

Dµ
SU(N)−−−→ U(x)DµU

†(x) , so Aµ(x)
SU(N)−−−→ U(x)Aµ(x)U †(x)+

1

ig
U(x)∂µU

†(x) . (1.18)

Such a transformation is only possible, if there are sufficient degrees of freedom. The gauge
field Aµ is a matrix that is constructed only from the color matrices; it therefore contains
no component proportional to the unit matrix and its trace vanishes. The transformed field
cannot have a component proportional to the unit matrix either, so also its trace has to vanish.

For the first term (which transforms like an adjoint field) it is straightforward to show that
the trace vanishes, since the trace is cyclic and the order of the matrices can be shifted such
that U(x) and U †(x) cancel each other. For the second term we may use the Baker-Campbell-
Hausdorff formula:

U(x)∂µU
†(x) =

∞∑

k=1

(−i)k
k!

[
∂µ, α(x)

]
k
, (1.19)

where the nested commutators are defined recursively as:

[X, Y ]k ≡
[
[X, Y ]k−1, Y

]
, with [X, Y ]1 ≡ [X, Y ] . (1.20)

The trace vanishes for all terms with k ≥ 2 because of the commutator; for k = 1 we have
[∂µ, α(x)] = [∂µα

a(x)]T a, so also this term contains no component proportional to the unit
matrix and its trace vanishes.

It is also straightforward to show that also the field strength tensor indeed has no component
proportional to the unit matrix and can be written as a linear combination of color matrices,
as claimed above. We write it explicitly:

Fµν = ∂µAν − ∂νAµ + ig
[
Aµ, Aν

]
, (1.21)

and we see that the trace over all these three terms vanishes. In addition, it follows from the
transformation of the covariant derivatives that the field strength tensor is an adjoint field:

Fµν(x) =
1

ig
[Dµ, Dν ]

SU(N)−−−→ 1

ig

[
U(x)DµU

†(x), U(x)DνU
†(x)

]
= U(x)Fµν(x)U †(x) . (1.22)
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So the gauge field part of the Lagrangian, which can also be written as:

− 1

4
F a
µνF

aµν = −1

2
Tr [FµνF

µν ] , (1.23)

is indeed gauge invariant, since the transformation matrices cancel in the trace. For the dif-
ferent components of the field strength tensor, the expressions (chromo) electric and (chromo)
magnetic fields are common:

Ei ≡ F i0 and εijkB
k ≡ −F ij , (1.24)

where εijk is the Levi-Civita tensor of rank 3.
In addition to the gauge symmetry, the fields in QCD show the typical behavior of Dirac or

vector fields under Poincaré transformations as well as the discrete P , C, and T transforma-
tions. The QCD Lagrangian is invariant under each of these transformations. In principle, it is
possible to add terms to the QCD Lagrangian which would break the CP symmetry. However,
the experimental bounds on the parameters of these extra terms are such that their effects are
extremely suppressed [25]. We will therefore not include any of these terms, so the discrete
symmetries are assumed to be exact. The as yet unsolved question why no such effects appear
in the strong force, even though they would be allowed theoretically, is known as the strong
CP problem.

1.2.1 Running Coupling

Like most quantum field theories, QCD suffers from ultraviolet (UV) divergences that need
to be renormalized in order to obtain meaningful predictions. A convenient regularization
technique for perturbative calculations is dimensional regularization, whereby the momentum
integrals appearing in loop diagrams are analytically continued to D = 4−2ε dimensions. The
divergences of the unregulated integrals are reobtained in the ε → 0 limit (or in some cases
this limit may even be finite).

The 1/ε poles of the dimensionally regulated diagrams need to be absorbed in redefinitions
of the parameters of the theory. Since QCD has only one free parameter (in the absence of
quark masses or CP breaking terms), the renormalization of these UV divergences can be
achieved by replacing the bare coupling constant gB through its renormalized value gR. Since
the coupling constant is the only parameter that needs to be redefined in order to renormalize
the QCD Lagrangian, this process is also known as charge renormalization. However, certain
operators may require further renormalization constants.

The explicit relation between gB and gR is given by:

g2
Bµ
−2ε = g2

R(µ)− g4
R(µ)

(4π)2

(
11

3
N − 2

3
nf

)(
1

ε
− γE + ln 4π

)
+O

(
g6
)
, (1.25)

where γE is the Euler-Mascheroni constant. The inclusion of the constant terms beside the
1/ε poles is arbitrary; different choices define different renormalization schemes. Here we have
chosen the so-called MS-scheme, which we will use throughout this work. Physical results
ultimately do not depend on the choice of scheme, as long as one consistently uses the same
scheme for any result.

The bare coupling in the dimensionally regularized theory needs to have mass dimension
2ε in order for the action to be dimensionless. For the renormalized coupling, this has been
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separated into the mass scale µ, which is in principle arbitrary, such that gR is dimensionless.
However, this step introduces an explicit µ dependence into the renormalized results in the
form of logarithms of µ2. Since the unrenormalized expression does not depend on µ, the
renormalized coupling gR needs to depend on µ implicitly in order to cancel the explicit de-
pendence. This scale dependence of the renormalized coupling constant is known as running
coupling.

The running is described by the so-called beta function, which is defined as the logarithmic
derivative of the coupling with respect to µ. It is usually expressed through αs instead of g,
and it can be expanded in powers of αs in perturbation theory:

β(αs) = µ2dαs(µ)

dµ2
= −

∞∑

k=0

βkαs(µ)

(
αs(µ)

4π

)1+k

. (1.26)

We can obtain the first coefficient of the beta function directly from Eq. (1.25) (after mul-
tiplying with µ2ε/4π) by taking the derivative on both sides. Since the bare coupling does
not depend on µ, the left-hand side gives zero, and through some rearrangement of the terms
on the right hand side and we get β0 = (11N − 2nf )/3. So we see that the sign of the beta
function depends on the number of colors and light quarks; for standard QCD it is negative.

This has great consequences on the scale dependence of the coupling constant. If we include
only the first term in the beta function, we can solve the differential equation for αs(µ) as:

αs(µ) =
αs(µ

′)

1 +
β0αs(µ

′)

4π
ln
µ2

µ′ 2

, (1.27)

where µ′ is some reference scale. This function has a pole at a certain scale, which is called
ΛQCD, and if we now choose µ′ = ΛQCD, then the running coupling takes on the form:

αs(µ) =

(
β0

4π
ln

µ2

Λ2
QCD

)−1

. (1.28)

Since β0 is positive, we see that the coupling constant becomes small at large energy scales
µ� ΛQCD, which is the opposite behavior compared to U(1) gauge theories, for instance. This
feature of QCD is known as asymptotic freedom. Conversely, the coupling constant becomes
large at small energy scales, which means that in this case perturbation theory cannot be used.
Note that Eq. (1.28) may only be used in the asymptotically free regime, since it was derived
from the assumption that terminating the expansion of the beta function after the first term
is a good approximation.

1.3 The Imaginary-Time Formalism

The main idea behind the imaginary time formalism is the observation that the exponential of
the Hamiltonian operator divided by the temperature T , which appears in the calculation of
thermal averages, has the same form as the time evolution operator, except that the exponent

2In calculations we may just equip each integral from the start with the appropriate power of µ to give
it integer dimension, i.e.

∫
d4x → µ−2ε

∫
dDx and

∫
d4p → µ2ε

∫
dDp, since the number of loop momenta is

always the same as the power of g, so charge renormalization will always provide the required µ terms.
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is real instead of imaginary. The two operators are formally equivalent by inserting t = −i/T ,
which relies on the assumption that the time coordinate t can be analytically continued to the
complex plane: t → −iτ . The new coordinate τ is called the imaginary time because of this
relation, although τ itself is a real parameter.

By exploiting this analogy, it can be shown that the calculation of thermal averages is
equivalent to calculating vacuum expectation values in a theory, where the time coordinate t
has been replaced by the imaginary time coordinate τ . This theory now has a Euclidean instead
of a Minkowski metric, because the square of the imaginary unit that comes from the change
t → −iτ yields another minus. Accordingly, all vector indices are written as lower indices in
this theory, and the usual Minkowski interpretation in terms of covariant and contravariant
vectors is dropped.

Also several other modification have to be done for this Euclidean theory: since ∂t → i∂τ ,
we also need to change A0 → iA0 in order for the covariant derivative to change uniformly
as D0 → iD0 (sometimes the index is also changed from 0 to 4 in the Euclidean theory, but
we will keep 0 in this work). In addition, while in the Minkowski theory one usually identifies
the gauge field with the upper index with the 3-vector field A, in the Euclidean theory it is
the gauge field with the lower index, so there is a sign difference of A between Minkowski and
Euclidean theory. Accordingly, the components of the field strength tensor change as E → iE
and B → −B. In order to also write the /D in the quark sector as a Euclidean product, we
redefine the Dirac matrices as (γE)0 = (γM)0 and (γE)i = −i(γM)i, such that /D → iDµ(γE)µ.
After these modifications, there is an overall minus sign in the Euclidean Lagrangian, which is
usually combined with the factor −i from the time integral in the action, such that the phase
factor in the path integral changes as exp[iSM ] → exp[−SM ]. In summary, the Euclidean
Lagrangian is obtained from the Minkowski through:

LE = −LM (D0 → iD0,γ → −iγ) . (1.29)

The imaginary time coordinate is restricted to take values between 0 and 1/T . The bosonic
fields obey periodic boundary conditions Aµ(1/T ) = Aµ(0), while the fermionic fields obey
antiperiodic boundary conditions q(1/T ) = −q(0). As a consequence, the connection to mo-
mentum space is obtained through a discrete Fourier transformation for the imaginary time
coordinate, which we denote by a sum-integral symbol:

Aµ(x) =

∫∑

K

eiKνxν Ãµ(K) ≡
∑

k0

∫

k

ei(k0τ+k·x)Ãµ(k0,k)

≡ T
∑

n∈Z

∫
ddk

(2π)d
ei(2πTτn+k·x)Ãµ(2πTn,k) , (1.30)

q(x) =

∫∑

{K}

eiKµxµ q̃(K) ≡
∑

{k0}

∫

k

ei(k0τ+k·x)q̃(k0,k)

≡ T
∑

n∈Z

∫
ddk

(2π)d
ei(πTτ(2n+1)+k·x)q̃(πT (2n+ 1),k) , (1.31)

where the dimensionally regularized integral is now performed in d = 3− 2ε dimensions. The
zero components of the momentum K = (k0,k) are called bosonic (for k0 = 2πTn) or fermionic
(for k0 = πT (2n+ 1)) Matsubara frequencies.

The discrete nature of the Matsubara frequencies has far reaching consequences. The
sum over all frequencies (called Matsubara sum) usually introduces the bosonic or fermionic
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distribution functions nB/F (k) = 1/(exp[k/T ]∓ 1) into the propagators. In addition, the fact
that for n = 0 the bosonic frequency vanishes (the so-called zero mode) introduces infrared
(IR) divergences to many diagrams, which are not removed with charge renormalization. The
treatment of these divergences requires a more careful approach than naive perturbation theory,
because soft gluonic modes need to be resummed [26, 27] (see also chapter 4).

Since in the imaginary-time formalism the time coordinate is traded in for the imagi-
nary time coordinate, it is only suitable for the study of time-independent operators in an
equilibrium system. In case one is interested in explicitly time-dependent quantities or non-
equilibrium dynamics, other forms of thermal field theory have to be used, i.e. the real time
formalism. Since we will only need the imaginary time formalism in this work, we will not
discuss these further here.

1.4 Effective Field Theories

In many physical systems there are several scales present which satisfy a certain hierarchy,
meaning that ratios of these scales are different from one by orders of magnitude (examples
will follow shortly). Multiscale systems are typically very difficult to solve, so one of the most
promising approaches to obtaining an approximate result is to expand in these ratios. This
is what effective field theories (EFTs) achieve in a systematic fashion by implementing the
expansion at the Lagrangian level.

The way an EFT is constructed from a fundamental theory is the following: one assumes
a scale hierarchy, i.e. that the scale which we will generically call M here is much larger than
any other scale in the system, and figures out the effective degrees of freedom as well as the
symmetries. Usually, this is done by considering how the system would be described if M
were infinitely large. Then the effective Lagrangian is given by the most general collection
of operators that can be constructed from these effective degrees of freedom and which are
allowed by the symmetries. Each of these operators is equipped with a coefficient, called Wilson
coefficient, and divided by the appropriate power of M to get the right mass dimension:

LEFT =
∑

i

ci(µM/M)

Mdi−4
Oi(µM) , (1.32)

where di is the mass dimension of the operator Oi.

The effective degrees of freedom are restricted to carry only energies or momenta which
are much smaller than M . This is denoted by writing Oi(µM), where µM acts as a cutoff
between the lower energy scales and M . In this way, M has been completely removed from
the dynamics of the effective theory, which is why this process is also known as integrating out
the scale M . All information from processes that happen at the scale M are contained in the
Wilson coefficients, which are also the only elements that may contain non-analyticities in M .

Unlike for theories that can be considered to be truly fundamental, like e.g. QCD or the
full Standard Model, there is no requirement on effective theories to include only operators
that are renormalizable. This means that usually there is an infinite number of operators to
be included in the EFT. However, each of these operators scales at most like µdiM , and if we
only include operators up to a maximal order in µM/M , then there is only a finite number of
them; this order is then the accuracy to which the calculation is performed. Renormalizability
is then not an issue: it can be performed order by order in the expansion parameter [28, 29].
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In practice, however, there may be more than one energy scale left in the EFT, so operators
with the same mass dimension may scale very differently, depending on which scale they are
associated with. In order to obtain a systematic expansion, it is essential that a power counting
is established, which determines the scaling behavior of each operator. Without such a power
counting, it is not possible to give a reliable estimate of the size of the contributions that
are neglected after the expansion terminates. Often the best way to establish such a power
counting is to construct lower order EFTs by integrating out further scales in order to uniquely
define the power counting for certain operators.

The Wilson coefficients of the effective Lagrangian need to be fixed in what is called a
matching calculation in order to ensure equivalence with the fundamental theory in the low
energy regime. This is usually done by calculating equivalent correlators in the effective and
in the fundamental theory up to the same order in the expansion parameter and equating the
results. In doing this, one needs to keep in mind that also operators in the fundamental and
the effective theory need to be matched.

In this way EFTs disentangle contributions from different energy scales: the high energy
processes at the scale M are factorized in the Wilson coefficients and the low energy processes
are dynamically generated by the effective degrees of freedom. This separation is also particu-
larly useful regarding the applicability of perturbation theory; since the matching calculation
is performed at the scale that is being integrated out, it can always be done perturbatively as
long as M � ΛQCD. Then calculations in the EFT may or may not be perturbative, depending
on the relation of the remaining energy scales to ΛQCD. In this way EFTs can also separate
perturbative from non-perturbative contributions.

1.4.1 NRQCD and pNRQCD

In the study of the interactions of heavy quarks, the heavy quark mass is a very convenient
parameter to integrate out, since it is typically much larger than e.g. the energy scales of
processes that lead to the formation of bound states. The effective degrees of freedom can be
figured out by considering the infinite mass limit. In that case, the heavy quark or antiquark
is a static particle, which may still act as a color source or sink and has a spin, but can no
longer be created or annihilated. Accordingly, in the effective theory they are described by two
independent, non-relativistic Pauli spinor fields: ψ annihilates a heavy quark and χ creates a
heavy antiquark. Since there is no pair creation or annihilation, the two fields anticommute
and quark and antiquark number are separately conserved.

The other effective degrees of freedom look the same as in QCD: gluons and nf flavors
of massless quarks described by Dirac spinors. Only in the effective theory they must not
have energies or momenta of the order of M or larger. All fields still carry color charge, so the
effective Lagrangian must obey the gauge symmetry. The discrete symmetries P , C, and T are
also present in the effective theory as well as rotational invariance, only boost transformations
are no longer explicit symmetries of the effective Lagrangian. More details on this can be
found in chapter 2.

Since the heavy quarks and antiquarks are described by non-relativistic fields, this theory
is called Non-Relativistic QCD (NRQCD) [30–32]. Its Lagrangian at next-to-leading order
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(NLO) is given by:

LNRQCD = ψ†
(
iD0 +

1

2M
D2 +

cF
2M

gB · σ
)
ψ + χ†

(
iD0 −

1

2M
D2 − cF

2M
gB · σ

)
χ

+

nf∑

l=1

q̄li /Dql −
1

4
F a
µνF

aµν +O
(
M−2

)
. (1.33)

Note that the spatial covariant derivative is identified with Di, so in vector notation the sign
in front of the gauge field differs from that of the temporal derivative: D0 = ∂0 + igA0 and
D = ∇− igA.

In case one is interested in situations where there is only a heavy quark but no antiquark
(or vice versa), like e.g. heavy-light mesons, the effective Lagrangian contains only the heavy
(anti)quark terms and the theory is called Heavy Quark Effective Theory (HQET) [33, 34].
Both theories have the same Lagrangian (except for the missing (anti)quark sector), but the
hierarchy of scales and power counting are different. Also C symmetry is obviously not satisfied
in HQET for the heavy (anti)quarks.

The construction of NRQCD is a very important step for the description of heavy quark-
antiquark bound states. However, attempts to study these bound states directly in NRQCD
often encounter serious problems, because there are still several physical scales present. In
order to disentangle these scales, one needs to construct another EFT. Typical scales in a
quarkonium system are the relative momentum pr, the distance r between quark and antiquark,
or the binding energy Eb, and the usual power counting is pr ∼ 1/r ∼ Mv and Eb ∼ Mv2,
where v � 1 can be interpreted as the non-relativistic velocity. These scales are usually also
referred to as the soft scale for Mv and the ultrasoft scale for Mv2, while M corresponds to
the hard scale.

So in order to integrate out the soft scale, we have to consider a heavy quark-antiquark
system at vanishing distance r. The individual quarks can no longer be resolved, so the effective
degrees of freedom have to be quarkonium fields that describe both particles together. Those
can have either a singlet or an adjoint color configuration (or singlet and octet in the case of
SU(3)), so they are called S and Oa. The remaining massless quarks and gluons can depend
only on the center-of-mass coordinate R, and any dependence on the relative coordinate r
needs to be expanded, which is why this is also called multipole expansion in analogy to
electrodynamics. The Wilson coefficients of this theory depend on the scale that is integrated
out, which is r, so they constitute non-local interactions in the form of potentials. Therefore,
this theory is called potential NRQCD (pNRQCD) [9, 10].

The Lagrangian now contains a double expansion in the parameters M and r. At leading
order (LO) in 1/M and next-to-leading order (NLO) in r, it is given by:

LpNRQCD =

∫
d3r
[
S†(i∂0 − Vs)S +O† a

(
iDab

0 − Voδab
)
Ob
]
− 1

4
F a
µνF

aµν +

nf∑

l=1

q̄li /Dql

+

∫
d3r

[
VA√
2N

(
S†(r · gEa)Oa +O† a(r · gEa)S

)
+
VB
2
dabcO† a(r · gEb)Oc

]
,

(1.34)

where Dab
0 is the covariant time derivative for the adjoint representation, Vs and Vo are the

static singlet and octet potentials, and VA and VB are the coefficients for the singlet-octet and
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octet-octet transitions under interactions with a chromoelectric field. Unlike the heavy mass
M , the distance r can take different values, so the Lagrangian is an integral over all possible
values of r. But only the quarkonium fields S and Oa (and the potentials) depend on r,
all other fields can depend only on R. All symmetries of NRQCD also remain in pNRQCD,
however, the local gauge symmetry is now reduced to transformations depending only on R,
which also do not resolve distances of the order of r.

Throughout this section it has been assumed that ΛQCD is much smaller than the scales
that are being integrated out. While this is certainly the case for the heavy quark mass M ,
it does not necessarily have to be for the other energy scales. For example, ΛQCD may be
comparable to r for some excited quarkonia, which means that it has to be integrated out
together with r. If one integrates out ΛQCD, that means that the effective degrees of freedom
may not contain any colored fields, so in the case of pNRQCD only the singlet field may
appear, together with pions or other light mesons. These two different versions of pNRQCD
are called strongly coupled or weakly coupled depending on whether ΛQCD is integrated out or
not, respectively (see [35] or [36] for a review). The matching calculation for the potentials as
well as calculations within the EFT may only be carried out perturbatively in weakly coupled
pNRQCD, so we will focus on this theory in this work.

1.4.2 EQCD and MQCD

At finite temperature, there appear more physical scales related to the properties of the
medium. Among these naturally is the temperature T (or rather πT , since T always appears
with a coefficient π in calculations), but also thermal screening masses (see below). Assuming
that the temperature is the largest scale (i.e. we work with QCD without heavy quarks), we
can construct an EFT that describes only the lower energy dynamics by integrating out the
temperature. In this case it is a bit more complicated to explain what are the effective degrees
of freedom.

We will use a geometric argument. The finite temperature theory of the imaginary time
formalism is essentially defined on a compactified (and Euclidean) space-time of Rd×S1, where
S1 denotes the circle of the imaginary time direction with periodic boundary conditions. If we
now consider the situation of infinite temperature, then this circle has a radius of zero, so there
is no longer any extent in the imaginary time direction. Accordingly, the effective degrees of
freedom cannot depend on the imaginary time and this coordinate no longer appears in the
EFT at all. Moreover, since the fermionic fields have to obey antiperiodic boundary conditions,
they vanish completely, because it is only possible for them to be both positive and negative
at the same point if they are zero everywhere. So the effective degrees of freedom contain
only the gluon fields, which depend only on the spatial coordinates. The P and C symmetries
remain in the EFT as well as rotations. Time reversal obviously has no more meaning, and
boost transformations already were not a symmetry of the fundamental theory, because the
existence of the medium explicitly breaks this symmetry (we are working in the rest frame of
the medium).

As there is no longer a time coordinate, the A0-field loses its interpretation as a gauge
field; what remains is just an adjoint scalar field. As such, there is nothing that prevents it
from having a mass term in the effective Lagrangian, so this has to be included as a matching
coefficient in the EFT. This mass provides a natural IR cutoff and thus the problems with IR
divergences at finite temperature are (at least partially) solved in this EFT. The chromoelectric
field is now simply the covariant derivative of this scalar field Ea = DabAb0, which is why this
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mass is called the electric mass mE. It turns out that this mass is the largest remaining scale in
this EFT. Because of this and the absence of a time coordinate, this theory is called electrostatic
QCD (EQCD) [37, 38] (for earlier and related works on this subject see Refs. [39–55]).

Because of the reduced dimension of this theory, the gluons no longer have mass dimension
(d − 1)/2, but instead (d − 2)/2, which we will express by a tilde over the fields. Then the
effective Lagrangian is given by

LEQCD =
1

2
Ẽa · Ẽa +

m2
E

2
Ãa0Ã

a
0 +

1

4
F̃ a
ijF̃

a
ij + . . . , (1.35)

where the dots contain interactions with four Ã0-fields, which are not suppressed by πT with
respect to the given terms, but instead by higher powers in αs, and of course also higher order
operators. The effective coupling constant becomes another matching coefficient gE and like
the fields it also changes its mass dimension from (3 − d)/2 to (4 − d)/2. The leading-order
results for these parameters are g2

E = g2T +O (α2
s ) and m2

E = (N/3 + nf/6)g2T 2 +O (α2
s ). We

will also call this leading order result for mE the Debye mass mD.
Since we assumed that the temperature is the largest scale in the system, the scale hierarchy

πT � mD needs to be satisfied. But mD is also proportional to the temperature, so it depends
only on the size of g whether this hierarchy is satisfied or not. More specifically, one needs√
N/3 + nf/6 g/π � 1, which is a much stronger requirement than g2/4π � 1 that usually

appears in perturbative vacuum calculations3. This means that EQCD can only be applied
for very large temperatures, where the plasma becomes weakly coupled enough to satisfy this
condition.

One can proceed and integrate out the scale mD to describe even lower energy processes.
The Ã0 field cannot have momenta lower than mD because of the mass in its propagator, so it
can no longer appear in this lower order EFT. What remains is a pure SU(N) gauge theory in
d space dimensions without any additional fields. Since only the chromomagnetic field is left
in this EFT, it is called magnetostatic QCD (MQCD).

The typical scale of this theory can be determined like for EQCD by looking at the gluon
propagator. In the matching, one finds that m2

D is given by the LO gluon self-energy for the
temporal gluon field A0 at vanishing momentum. Similarly, one can show that the self-energy
of the spatial gluon field A at vanishing momentum is of order g4T 2. Therefore, the typical
scale of MQCD, which is called the magnetic mass scale mM , is of order g2T . However, unlike
in EQCD, this magnetic mass is not related to a mass term in the effective Lagrangian, since
the spatial gluons are still gauge fields and a mass term would break the gauge symmetry.

The coupling constant gM is the same as gE at leading order. It follows that the terms in the
Lagrangian which are usually considered perturbations (the three- and four-gluon interactions)
are actually of the same order as the kinetic terms for the gluons, since all fields and derivatives
scale as mM . This means that MQCD is completely non-perturbative, even if g is a small
parameter. One can confirm this by looking at the gluon propagator and its self-energy: it
follows from straightforward power counting arguments that, if the momenta are of order g2T ,
then each loop order in a perturbative expansion contributes at the same order in g to the
self-energy, rendering the perturbative expansion useless. It is therefore impossible to continue
perturbation theory to any order at finite temperature; as soon as the magnetic scale enters a
calculation one has to include inherently non-perturbative contributions. However, the EFT

3For comparison, the latter expression is smaller than 0.1 for g smaller than 1.12, while for the former
expression one needs 0.21 with N = 3 and nf = 3.
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framework allows one to absorb all non-perturbative effects into a few parameters which are
defined in MQCD and need to be calculated e.g. on the lattice, and beyond that one may still
continue the perturbative expansion within EQCD as long as g is small enough [37, 38, 42].
Using this sequence of effective theories the weak coupling expansion of the QCD pressure has
been calculated [37] finding a solution to the well-known infrared problem [56].
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Chapter 2

Poincaré Invariance in Nonrelativistic
Effective Field Theories

2.1 Introduction and Outline

We have already discussed in the previous sections how effective theories for heavy quarks
are constructed. One feature of these effective theories is that the heavy quark or antiquark
fields are treated essentially as non-relativistic fields, even though the underlying fundamental
theory of QCD is fully relativistic. As a consequence, the theory no longer explicitly displays
the symmetry under boosts. However, this symmetry is only hidden in the EFT and appears
in the form of exact relations between certain Wilson coefficients. This issue will be explained
in detail in this chapter, including explicit constructions of the boost transformations as well
as the other elements of the Poincaré group. Apart from clarifying these conceptual issues,
the results of this chapter also have some very practical applications, since for each relation
that is found for the Wilson coefficients, one less matching calculation needs to be performed.

During the past few decades, there have been several different approaches to reducing the
number of coefficients or finding relations thereof in EFTs. In HQET, which is parametrized
by velocity and residual momentum of the heavy quark fields, requiring reparametrization
invariance (i.e. invariance under a shift of velocity resulting in a redefinition of its residual
momentum) yields relations between the Wilson coefficients [57]; in fact, reparametrization
invariance turned out to be equivalent to Poincaré invariance of the theory [58].

In [58] a direct implementation of Poincaré invariance was achieved and applied to NRQCD
and pNRQCD. Although non-relativistic EFTs no longer explicitly display the full symmetry,
in particular invariance under boosts, it is still hidden in the EFT, since it is a symmetry of the
underlying theory QCD. So one can show that it is possible to construct all generators of this
symmetry group in these EFTs. Since the symmetries of time translations, space translations,
and rotations are explicitly realized, the corresponding generators are obtained in the usual
way from the associated conserved Noether currents. For the generator of boosts one has
to make a general ansatz, including all operators allowed by the other symmetries up to a
certain order in the expansion parameters. By demanding that these generators satisfy the
commutation relations of the Poincaré algebra, one can obtain relations between the Wilson
coefficients of the EFTs.

Although this method yields the desired constraints and is probably the most fundamental
approach, since it works in the quantized theory, continuing in this way to higher orders of
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the expansion parameters quickly becomes a formidable task. Recently, another approach
was suggested for deriving constraints in EFTs through Poincaré invariance, which employs
Wigner’s induced representation [59]. It was proposed in [60] that a free non-relativistic field
φ in the rest frame, which has well defined transformation behavior under rotations R as
φ(x)→ D[R]φ(R−1x), should transform under a generic Lorentz transformation Λ as

φ(x)→ D[W (Λ, i∂)]φ(Λ−1x) , (2.1)

where the little group element W is a particular rotation associated with Λ. This little group
element is defined through the momentum after the Lorentz transformation, which leads to a
dependence on derivatives of φ in position space. This expression is then expanded, such that
one has the boost transformation at the same order as the Lagrangian.

While this seems to work well for non-interacting fields, in an interacting gauge theory
some problems arise. First, this boost transformation does not have the right behavior under
gauge transformations. One would like to have the boosted field to transform in the same
way as the original field would at the new coordinates, but this is not possible because of the
derivatives in the induced representation. Promoting the derivatives to covariant derivatives
fixes this problem, but introduces a new ambiguity in how the covariant derivatives should be
ordered. Even with this covariantized induced boost transformation, the Lagrangian of the
EFT is still not invariant, but requires the introduction of additional gauge field terms to the
boost. Nevertheless, the constraints obtained in this way agree with the previous results, and
the derivation is much simpler.

So in this chapter we will address some of the open questions related to this method. First,
the appearance of additional gauge field terms in the boost transformation, whose coefficients
turn out to be given by Wilson coefficients from the Lagrangian, is very reminiscent of the
construction of EFT Lagrangians, where one includes all terms allowed by the symmetries.
However, in the usual EFT approach each term gets a coefficient that contains the contributions
from the scales that were integrated out, while in the approach suggested in [60] the terms in
the boost that derive from the induced representation have no such coefficients. We are not
aware of an a priori justification for that assumption.

The second issue we want to study in this chapter deals with the question, which additional
terms to include in the boost. At higher orders in the expansion there may be several terms
one could add to the boost in order to make the Lagrangian gauge invariant, so it is not clear
which effects this ambiguity might have or if there is a loss in generality if one chooses only
one of several possible terms.

So we will take from [60] that the boost transformation of the non-relativistic fields is
realized in a nonlinear way, and that requiring invariance of the Lagrangian under this boost
leads to constraints on the Wilson coefficients, but apart from that we will not refer to the
induced representation and instead follow the EFT approach, where one includes all terms in
the boost transformation that are allowed by the other symmetries of the theory and gives
a matching coefficient to each of them. Even though we will start from the most general
expression, we will exploit the possibility to redefine the effective fields in order to remove
redundant terms from this ansatz.

Lastly, since the boost transformation defined in this way has to satisfy the Poincaré
algebra, we will also demonstrate how the usual commutation relations need to be modified
for nonlinear boost generators. Requiring all commutators of the Poincaré algebra to be
satisfied will lead to additional constraints on the boost parameters and Wilson coefficients.
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We should note here that, unlike in [58], this approach is defined for the classical and not
the quantized field theory. However, since in the fundamental theory of QCD there are no
quantum effects on the spacetime symmetries of the Poincaré group, we also do not expect
quantum effects to show up for the EFTs.

This chapter is organized as follows. In section 2.2 we study NRQCD, first discussing the
different generators of the Poincaré group in the EFT approach in 2.2.1 and how they satisfy
the Poincaré algebra. Then we derive the constraints of the Wilson coefficients up to order
M−2 in the two-fermion sector in 2.2.2, and up to order M−3 in the four-fermion sector in 2.2.3.
We also comment on the Noether charges obtained from these transformations in 2.2.2 and
how they correspond to the quantum field generators constructed in [58]. Next we continue
the discussion to pNRQCD in section 2.3. First we study how quarkonium fields are expected
to transform under boosts in 2.3.1, then we use field redefinitions to remove redundant terms
from the most general boost generator in 2.3.2, and finally we derive constraints on the Wilson
coefficients of pNRQCD in 2.3.3.

2.2 Constraints in NRQCD

As explained in section 1.4.1, Non-Relativistic QCD (NRQCD) is the EFT obtained from
QCD after integrating out the scale of the heavy quark mass M [30, 32]. Its Lagrangian up to
O (M−2) is given by:

LNRQCD = ψ†
{
iD0 +

c2

2M
D2 +

cF
2M

gB · σ +
cD

8M2

[
D·, gE

]
+

icS
8M2

[
D×, gE] · σ

}
ψ

+ χ†
{
iD0 −

c2

2M
D2 − cF

2M
gB · σ +

cD
8M2

[
D·, gE

]
+

icS
8M2

[
D×, gE] · σ

}
χ

+
1

2
Ea ·Ea − 1

2
Ba ·Ba +

nf∑

l=1

q̄li /Dql , (2.2)

where σ denotes the Pauli matrices, which are given by:

σ1 ≡
(

0 1

1 0

)
, σ2 ≡

(
0 −i
i 0

)
, and σ3 ≡

(
1 0

0 −1

)
. (2.3)

We have neglected O (M−2) interaction terms between only gluons or light quarks, because
they will be irrelevant to the following discussion (in fact, we will completely ignore the light
quarks from here on), as well as interactions between four heavy particles, since they will be
given separately. We also have made use of the equations of motion to remove all higher time
derivatives [61], as well as removed a possible mass term −Mψ†ψ + Mχ†χ through the field
redefinitions ψ → e−iMtψ and χ→ eiMtχ.

2.2.1 Poincaré Algebra for Field Transformations

The Poincaré group contains space-time translations, rotations and boosts. In this chapter we
will be mainly concerned with boosts, because the other transformations are fairly straight-
forward to implement. The translations act only on the coordinates, shifting the origin by a
constant vector aµ. The transformed field in the new coordinate system has to correspond
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to the original field at the coordinates before the transformation. But because of the field
redefinition we used to remove the O(M)-term from the Lagrangian there is an additional
factor of exp(−iMa0). So for an infinitesimal transformation (where we neglect all powers of
the transformation parameter beyond the linear), we have:

ψ(x)
Pµ−→ ψ′(x) = e−iMa0ψ(x+a) = (1− iMa0)ψ(x) +

[
aµ∂µ, ψ(x)

]
≡ (1− iaµPµ)ψ(x) , (2.4)

and analogous for the other fields, although the mass term is only there for the heavy quark, and
for the heavy antiquark it has opposite sign. We have written the derivative as a commutator
to stress the fact that it only acts on this field and not any other. The generators of translations
are then Pµ = i∂µ (i.e. P0 = i∂0 for time translations and P = −i∇ for space translations).
There is no dependence on the field apart from the mass term.

Rotations act both on the coordinates and on the field components. The coordinates are
transformed under infinitesimal rotations such that r in the new coordinate system corresponds
to r+α×r in the old, where the direction of α gives the rotation axis and the absolute value
gives the infinitesimal rotation angle. The components of the Pauli spinor fields are rotated
with the Pauli matrix σ/2, while the gauge fields transform as vectors:

A0(x)
J−→ A′0(x) = A0(x) +

[
α · (r ×∇), A0(x)

]
≡ (1 + iα · j0)A0(x) , (2.5)

ψ(x)
J−→ ψ′(x) =

(
1 +

i

2
α · σ

)
ψ(x) +

[
α · (r ×∇), ψ(x)

]
≡
(
1 + iα · j1/2

)
ψ(x) , (2.6)

χ(x)
J−→ χ′(x) =

(
1 +

i

2
α · σ

)
χ(x) +

[
α · (r ×∇), χ(x)

]
≡
(
1 + iα · j1/2

)
χ(x) , (2.7)

A(x)
J−→ A′(x) = A(x)−α×A(x) +

[
α · (r ×∇),A(x)

]
≡ (1 + iα · j1)A(x) . (2.8)

The E and B fields transform in the same way as A.
So, all the different rotation generators have a term r × (−i∇) for the coordinate trans-

formation and some matrix for the transformation of the components depending on the rep-
resentation of the fields. We use a capital J to denote the generators of rotations in general,
and a lowercase j with an index for the particular representation. Note that the sign of the
transformation of the components of the vector field is opposite to that of the coordinate
transformation. This is because we use the inverse transformation in order to connect the new
coordinate system to the old, or in other words, the components are rotated with a passive
transformation, while the coordinates rotate with an active transformation.

Derivatives acting on the transformed fields can be written such that they transform in
the same way as the gauge fields and the covariant derivatives have uniform transformation
behavior:

D′0 = ∂0 + igA′0 = D0 +
[
α · (r ×∇), D0

]
, (2.9)

D′ = ∇− igA′ = D −α×D +
[
α · (r ×∇),D

]
. (2.10)

For D′0 the commutator of the time derivative and the α-dependent term vanishes, while for
D′ the commutator gives a term that cancels the new derivative term that was introduced in
−α×D. In this way, we have e.g.

Dψ
J−→D′ψ′ = Dψ − (α×D)ψ +D

(
i

2
α · σ

)
ψ +

[
α · (r ×∇),Dψ

]
. (2.11)
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For any product of fields, the coordinate transformations take the form of a single commutator
of α · (r×∇) with the whole expression, while the component transformations appear for each
field or derivative individually.

Finally, for boosts we expect the transformed fields at coordinates (t, r) to correspond to
the original fields at (t+η ·r, r+ηt), where η is the boost parameter. So the generators K for
a generic infinitesimal boost transformation 1− iη ·K will always contain the term it∇+ ir∂0

for the coordinate transformations. The heavy quark and antiquark fields will also obtain a
term ±Mr in the generators from the field redefinitions.

For the gluon fields the transformation of the components is clear: they are those of a
vector field. We will again express them in the form of the covariant derivatives:

D′0 = D0 + [η · t∇ + η · r∂0, D0] + η ·D , (2.12)

D′ = D + [η · t∇ + η · r∂0,D] + ηD0 , (2.13)

from which follow the transformation rules for the E and B fields:

E′(x) = E(x) + [η · t∇ + η · r∂0,E(x)] + η ×B(x) , (2.14)

B′(x) = B(x) + [η · t∇ + η · r∂0,B(x)]− η ×E(x) . (2.15)

For the heavy quark and antiquark fields the transformation behavior is not clear, since
they were constructed to have only well-defined behavior under translations and rotations. A
generator like ±iσ, for instance, would satisfy the Poincaré algebra, but violate the required
behavior under parity transformations (see below). On the other hand, there needs to be
some way to implement boost transformations also for these non-relativistic fields, since it is
a symmetry of the underlying theory. So we will take the EFT approach and write down the
most general ansatz for the boost-transformed fields, i.e. including all terms that are allowed
by the other symmetries and attributing a Wilson coefficient to each of them, which has to
be determined through a matching calculation or some other means. In particular, this boost
transformation will be nonlinear in the fields, so we write:

ψ(x)
K−→ ψ′(x) =

(
1− iη · kψ(D,E,B, ψ, χ, x)

)
ψ(x) , (2.16)

χ(x)
K−→ χ′(x) =

(
1− iη · kχ(D,E,B, ψ, χ, x)

)
χ(x) . (2.17)

An important requirement determining which terms can appear in kψ and kχ is that they
need to have the right behavior under the discrete transformations P , C, and T , i.e. parity,
charge conjugation, and time reversal, respectively. The fields transform as

ψ(t, r)
P−→ ψ(t,−r) , ψ(t, r)

C−→ −iσ2χ
∗(t, r) , ψ(t, r)

T−→ iσ2ψ(−t, r) , (2.18)

χ(t, r)
P−→ −χ(t,−r) , χ(t, r)

C−→ iσ2ψ
∗(t, r) , χ(t, r)

T−→ iσ2χ(−t, r) , (2.19)

E(t, r)
P−→ −E(t,−r) , E(t, r)

C−→ −E∗(t, r) , E(t, r)
T−→ E(−t, r) , (2.20)

B(t, r)
P−→ B(t,−r) , B(t, r)

C−→ −B∗(t, r) , B(t, r)
T−→ −B(−t, r) . (2.21)

Since the boosted fields have to satisfy the same transformation behavior, with η replaced by
−η for P and T , we require

kψ
P−→ −kψ , kψ

C−→ −σ2k
∗
χσ2 , kψ

T−→ σ2kψσ2 , (2.22)

kχ
P−→ −kχ , kχ

C−→ −σ2k
∗
ψσ2 , kχ

T−→ σ2kχσ2 , (2.23)
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where we also keep in mind that the T operation takes the complex conjugate of all coefficients
in k.

The most general expression for kψ and kχ up to O(M−3) is then given by:

kψ(D,E,B, ψ, χ, x) = it∇ + ir∂0 +Mr − kD
2M

D − ikDS
4M

D × σ +
kE

8M2
gE

+
ikES
8M2

gE × σ − kD3

4M3
D(D2)− ikD3S

16M3
(D × σ)(D2)

+
ikB1

16M3
[D×, gB] +

ikB2

16M3
{D×, gB}+

kBS1

16M3
[D, (gB · σ)]

+
kBS2

16M3
{D, (gB · σ)}+

kBS3

16M3
[(D · σ), gB]

+
kBS4

16M3
{(D · σ), gB}+

kBS5

16M3
{D·, gB}σ , (2.24)

kχ(D,E,B, ψ, χ, x) = it∇ + ir∂0 −Mr +
kD
2M

D +
ikDS
4M

D × σ +
kE

8M2
gE

+
ikES
8M2

gE × σ +
kD3

4M3
D(D2) +

ikD3S

16M3
(D × σ)(D2)

− ikB1

16M3
[D×, gB]− ikB2

16M3
{D×, gB} − kBS1

16M3
[D, (gB · σ)]

− kBS2

16M3
{D, (gB · σ)} − kBS3

16M3
[(D · σ), gB]

− kBS4

16M3
{(D · σ), gB} − kBS5

16M3
{D·, gB}σ . (2.25)

Again we did not include any temporal derivatives, because we assume they have been removed
through the equations of motion. Every term in these expressions transforms as a vector under
rotations, which is important in order to satisfy one of the relations from the Poincaré algebra
(see below). Further symmetries constraining the form of the boosts are the gauge symmetry,
under which they have to transform like

K
U−→ UKU † +

[
it∇ + ir∂0, U

]
U † , (2.26)

and heavy quark or antiquark number conservation, which excludes terms like iψχ†σ with a
heavy quark and antiquark field. In the following it will be sufficient to study only the heavy
quark sector, since the antiquark sector will follow just from charge conjugation.

The nonlinear boost transformations defined in this way have to satisfy the Poincaré alge-
bra:

[
P0, Pi

]
= 0 ,

[
P0, Ji

]
= 0 ,

[
P0, Ki

]
= −iPi ,[

Pi, Pj
]

= 0 ,
[
Pi, Jj

]
= iεijkPk ,

[
Pi, Kj

]
= −iδijP0 ,[

Ji, Jj
]

= iεijkJk ,
[
Ki, Jj

]
= iεijkKk ,

[
Ki, Kj

]
= −iεijkJk . (2.27)

Note that we are not using covariant notation here and in the rest of this chapter; unless
otherwise specified we write all vector indices as lower indices.

The commutation relations of the Poincaré algebra not involving boosts are trivially satis-
fied, but for the boosts they provide nontrivial information. It is straightforward to check that
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the commutators of a boost with the generators of translations are satisfied. Also the commu-
tator of a boost with a rotation gives the right result, because we have implicitly constructed
all terms in the generators as vectors. We have confirmed this in an explicit calculation along
the lines of the following discussion, but since the result is not very interesting, we will not
show that calculation here. Finally, the commutator of two boosts really gives new constraints
on the boost parameters.

Since the boost for the heavy quark field is realized in a nonlinear way, calculating the
commutator is a bit more involved. Conceptually, it is nothing but the difference in performing
two successive operations in opposite orders. So we write the commutation relation as

[1− iξ ·K, 1− iη ·K] = i(ξ × η) · J . (2.28)

Applying this to the heavy quark field, we write the two successive boosts as:

ψ(x)
Kη−→ ψ′η(x) =

(
1− iη · kψ(D,E,B, ψ, χ, x)

)
ψ(x) ,

ψ′η(x)
Kξ−→ ψ′′ξη(x) =

(
1− iξ · kψ(D′η,E

′
η,B

′
η, ψ

′
η, χ

′
η, x)

)
ψ′η(x) . (2.29)

Expanding to linear order in ξ and η gives

[1− iξ ·K, 1− iη ·K]ψ(x) = ψ′′ξη(x)− ψ′′ηξ(x)

=
(

1− iξ · kψ(D′η,E
′
η,B

′
η, ψ

′
η, χ

′
η, x)

)
ψ′η(x)−

(
1− iη · kψ(D′ξ,E

′
ξ,B

′
ξ, ψ

′
ξ, χ

′
ξ, x)

)
ψ′ξ(x)

=
(

1− iξ · kψ(D,E,B, ψ, χ, x)
)(

1− iη · kψ(D,E,B, ψ, χ, x)
)
ψ(x)

− i
(
ηD0 · δD + (η ×B) · δE − (η ×E) · δB − i(η · k̂ψ)δψ − i(η · k̂χ)δχ

)
ξ · k̂ψ ψ(x)

− i
[
η · t∇ + η · r∂0, ξ · k̂ψ(D,E,B, ψ, χ, x)

]
ψ(x)− (ξ ↔ η)

= (ξ × η) · (r ×∇)ψ(x)−
[
ξ · k̂ψ(D,E,B, ψ, χ, x),η · k̂ψ(D,E,B, ψ, χ, x)

]
ψ(x)

− i
(
ηD0 · δD + (η ×B) · δE − (η ×E) · δB − i(η · k̂ψ)δψ − i(η · k̂χ)δχ

)
ξ · k̂ψ ψ(x)

+ i
(
ξD0 · δD + (ξ ×B) · δE − (ξ ×E) · δB − i(ξ · k̂ψ)δψ − i(ξ · k̂χ)δχ

)
η · k̂ψ ψ(x) ,

(2.30)

where we have introduced k̂ψ to mean kψ without the coordinate transformations it∇+ ir∂0.
The first line contains the terms one would have obtained from a naive application of the

commutator to the generators, while the second and third lines contain additional terms arising
from the fact that one has to use boosted fields in the generators of the second transformation.
In order to make the expression more concise, we have introduced a notation with “derivatives”
δ, which are defined such that they give the right ordering for noncommuting operators:

AδBf(B) ≡ ∂xf(B + xA)
∣∣∣
x=0

. (2.31)

In short, what this operation does is replace each field in k̂ψ (one at a time) with its boosted
expression, such that e.g.:

(ηD0 · δD)D2 = {η ·D, D0} . (2.32)
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For the boost transformation defined in Eq. (2.24) this gives at O(M−2)

[1− iξ ·K, 1− iη ·K]ψ(x)

=

{
(ξ × η) · (r ×∇) +

ikDS
2

(ξ × η) · σ − kDS
2M

(ξ × η) · σD0 −
ikE
4M2

(ξ × η) · gB

+
kES
8M2

(ξ × η) · (gB × σ) +
ik2
D

4M2
(ξ × η) · gB − kDkDS

8M2
(ξ × η) · (gB × σ)

− ik2
DS

16M2
(ξ × η) · gB +

ik2
DS

16M2
(ξ × η) ·

{
D, (D · σ)

}
− ikD3

2M2
(ξ × η) · gB

+
ikD3S

4M2
(ξ × η) · σ(D)2 − ikD3S

16M2
(ξ × η) ·

{
D, (D · σ)

}
+

kD3S

16M2
(ξ × η) · (gB × σ)

− ikB1

4M2
(ξ × η) · gB − kBS4

8M2
(ξ × η) · (gB × σ) +

kBS5

8M2
(ξ × η) · (gB × σ)

}
ψ(x)

= (ξ × η) ·
{
r ×∇ +

ikDS
2
σ

+
i

4M2
(kD3S − kDSc2)σ(D2) +

i

16M2
(k2
DS − kD3S)

{
D, (D · σ)

}

− i

16M2
(4kDScF + 4kE − 4k2

D + k2
DS + 8kD3 + 4kB1) gB

+
1

16M2
(4kDScF + 2kES − 2kDkDS + kD3S − 2kBS4 + 2kBS5)(gB × σ)

}
ψ(x) (2.33)

!
= i(ξ × η) ·

{
r × (−i∇) +

1

2
σ

}
ψ(x) . (2.34)

For the commutator of two boosts to be equivalent to a rotation, the coefficients thus need
to satisfy the following relations:

kDS = 1 , kD3S = 1 , c2 = 1 , (2.35)

cF + kE − k2
D + 2kD3 + kB1 = −1

4
, (2.36)

2cF + kES − kD − kBS4 + kBS5 = −1

2
. (2.37)

In this derivation we have used the equation of motion for the heavy quark field at O(M−1)

iD0ψ(x) =
{
− c2

2M
D2 − cF

2M
gB · σ

}
ψ(x) . (2.38)

2.2.2 Invariance of the Lagrangian

Now that we have constructed a nonlinear boost transformation for the heavy quark fields that
satisfies the Poincaré algebra, we can proceed to check which conditions need to be satisfied
such that the Lagrangian is invariant under this transformation. We will start with the heavy
quark sector. The Lagrangian at O(M−2) was already given in Eq. (2.2), but in order to
study the transformed Lagrangian at this order, we also need the O(M−3) terms that contain
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a derivative:

L(3)
∣∣∣
D

= ψ†
{

c4

8M3
(D2)2 +

cW1

8M3

{
D2, gB · σ

}
− cW2

4M3
Di(gB · σ)Di

+
cp′p

16M3

{
(D · σ),

{
D·, gB

}}
+

icM
8M3

{
D·,

{
D×, gB

}}}
ψ . (2.39)

The reason for this is that the term −iMr from the boost transformation adds a power of M
to the O(M−3) Lagrangian, but the commutator with this term vanishes unless there appears
a derivative.

By invariance of the Lagrangian we mean invariance up to total derivatives. With the
Lagrangian defined in Eqs. (2.2) and (2.39) we obtain the following transformation behavior
at O(M−2):

∂µ∆µL = L
(
D′,E′,B′, ψ′, χ′, x)− L

(
D,E,B, ψ, χ, x) (2.40)

= η · (r∂0 + t∇)L+ η · ψ†
{
i(1− c2)D +

1

2M
(c2 − kD)

{
D0,D

}

+
1

4M
(kDS − 2cF + cS)gE × σ +

i

4M2
(c2kD − c4)

{
D,D2

}
+

1

8M2
(cD + kE)

[
D0,E

]

+
i

8M2
(cS + kES)

{
D0, gE

}
× σ +

1

8M2
(2cM − cD + cFkDS)

{
D×, gB

}

+
i

8M2
(cS − cFkDS − cp′p)

{
D·, gB

}
σ +

i

8M2
(cFkDS − c2kDS − cp′p)

{
(D · σ), gB

}

+
i

8M2
(c2kDS + 2cFkD − cS − 2cW1 + 2cW2)

{
D, (gB · σ)

}}
ψ

+ ∇ · η ψ†
{
kD
2M

D0 −
ic2kD
4M2

D2 − icFkD
4M2

gB · σ
}
ψ

+ ∇ · η × ψ†
{
ikDS
4M

D0σ +
c2kDS
8M2

(D2)σ +
cFkDS
8M2

gB +
icFkDS
8M2

gB × σ
}
ψ . (2.41)

Here we included the total spatial derivatives in the last two lines for completeness, although
they will play no role in the following discussion. They arise from covariant derivatives in the
boost transformation of ψ† through

(Dψ)† = ∇ψ† − ψ†D . (2.42)

Only the time derivative will be important when we want to calculate the conserved Noether
charge associated with a boost transformation.

All terms which are not total derivatives have to vanish, from which we get the constraints

c2 = 1 , kD = 1 , c4 = 1 , kE = −cD , kES = −cS , kDS = 1 , (2.43)

cS = 2cF − 1 , 2cM = cD − cF , cp′p = cF − 1 , cW2 = cW1 − 1 . (2.44)

We see that they are consistent with the constraints obtained from the commutator of two
boosts. By combining both results we can simplify the additional constraints from the com-
mutator of two boosts:

kB1 = cD − cF +
3

4
− 2kD3 , kBS5 = kBS4 −

1

2
. (2.45)

35



Also note that the relation kDS = 1 is obtained from the commutator of two boosts at O(M−1)
and c2 = 1 at O(M−2), while from the invariance of the Lagrangian the situation is reversed.
Ultimately, if one were able to do an all orders calculation, it is believed that each calculation
by itself would give all constraints, since the Wilson coefficients of the Lagrangian enter the
calculation of the commutator of two boosts through the equations of motion, but at any finite
order both calculations provide complementary information.

So far kD3 has not been fixed, but it can be easily seen that there is a term

ψ†
1

8M3
(c4 − kD3)

{{
D0,η ·D

}
,D2

}
ψ (2.46)

in ∂µ∆µL that can not be canceled by any other term, because those all contain at least one
gluon field E or B. So we get the constraint kD3 = 1 at O(M−3).

If we compare this to the boost transformation used in [60] (which deals with NRQED
instead of NRQCD, but at low orders in 1/M the two calculations are analogous), we see that
the two are the same. The boost coefficients kD, kDS, kD3, and kD3S, which we have included
in our general EFT approach but are absent in [60], turned out to be constrained to be exactly
1. While this is not a general proof that all terms that appear in the induced representation
for non-interacting fields do not get loop corrections from the matching, i.e. that there can be
no coefficients different from 1, it shows at least that the assumption was justified for the low
order terms.

Noether Charges

Now that we have determined the boost transformation of the heavy quark fields we can obtain
the corresponding Noether charge K:

K =

∫
d3r

(
∂L

∂(∂0φi)
(−ikφφi)−∆0L

)

=

∫
d3r

(
∂L

∂(∂0φi)
(t∇ + r∂0)φi + ψ†k̂ψψ + χ†k̂χχ−ΠaAa0 − rL

)

=− tP +

∫
d3r
(
rh+ ψ†k̂ψψ + χ†k̂χχ

)
, (2.47)

=− tP +
1

2

∫
d3r
{
r, h+Mψ†ψ −Mχ†χ

}
−
∫
d3r ψ†

(
i

4M
D × σ +

cD
8M2

gE

)
ψ

+

∫
d3r χ†

(
i

4M
D × σ − cD

8M2
gE

)
χ+O(M−3) , (2.48)

where φi stands for all three fields ψ, χ, and A, while Π is the canonical momentum field
associated to A:

Πa
i =

∂L
∂(∂0Aai )

= −Ea
i +O(M−2) . (2.49)

P is the Noether charge associated with spatial translations

P =

∫
d3r

(
∂L

∂(∂0φi)
(−∇)φi

)
=

∫
d3r
(
ψ†(−iD)ψ + χ†(−iD)χ− Tr

[
Π×,B

])
, (2.50)

where we have used the equations of motion (i.e. the Gauss law)
[
D·,Π

]
= −

(
ψ†gT aψ + χ†gT aχ

)
T a , (2.51)
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in order to make the expression explicitly gauge invariant. The Hamiltonian density h is given
through the Hamiltonian

H =

∫
d3r

(
∂L

∂(∂0φi)
∂0φi − L

)
=

∫
d3r
(
ψ†hψψ + χ†hχχ+ Tr

[
Π2 +B2

])
≡
∫
d3r h ,

(2.52)
where hψ and hχ are defined through the Lagrangian as

L = ψ†(iD0 − hψ)ψ + χ†(iD0 − hχ)χ+ Tr
[
E2 +B2

]
, (2.53)

and we have made use of the Gauss law again. The initial expression
∂L

∂(∂0φi)
∂0φi − L and

h, as defined in the final expression, differ by a derivative term −∇ · (ΠaAa0), which vanishes
in H, but gives a contribution to K that exactly cancels the extra terms from the boost of
the A field. In the last expression for K, we have replaced rh by 1

2
{r, h} − 1

2
[h, r] in order

to obtain an explicitly hermitian expression; the antihermitian terms from ψ†k̂ψψ and χ†k̂χχ
cancel against 1

2
[h, r].

This K corresponds exactly to the boost operator of the quantized theory obtained in [58]
and extends it to O(M−2). Note that in [58] the field redefinitions that remove the O(M) terms
from the Lagrangian have not been performed, therefore their definition of h differs from ours
by Mψ†ψ−Mχ†χ, which thus appears explicitly in our expression for K. Also note that time
translations after the redefinition of ψ and χ are given by i∂0 ±M , so the proper Noether
charge of time translations is the Hamiltonian H given above plus M

∫
d3r(ψ†ψ−χ†χ), which

is exactly the same as in [58].

2.2.3 The Four-Fermion Lagrangian

We will now turn to the four-fermion sector of NRQCD, or more specifically the part consisting
of two heavy quark and two heavy antiquark fields. The lowest order terms of the Lagrangian
are given by:

L(2)
∣∣∣
4f

=
1

M2

{
f1(1S0)ψ†χχ†ψ + f1(3S1)ψ†σχ · χ†σψ

+f8(1S0)ψ†T aχχ†T aψ + f1(3S1)ψ†σT aχ · χ†σT aψ
}
. (2.54)

These coefficients are related by Poincaré invariance to the coefficients of the next order four-
fermion Lagrangian, which in this case is O(M−4) [62]. It is easy to see that the O(M) terms
of kψ and kχ cancel in the boost transformation of the leading order Lagrangian. Therefore,
the first constraints will be obtained at O(M−3).

The O(M−4) Lagrangian will contribute with only the O(M) terms of kψ and kχ, which are

given by ±Mr. Since in terms with two left-right derivatives (see below), like e.g. in ψ†
←→
Dχ ·

χ†
←→
Dψ, or in the terms with a chromomagnetic field B the O(M) terms cancel, only the

terms with at least one “center-of-mass” derivative (i.e. a derivative acting on two heavy fields
like ∇χ†ψ) give nonvanishing contributions after a boost transformation. Including only such
terms, the Lagrangian is given by:

L(4)
∣∣∣
4f, cm

= − if1cm

2M4

(
ψ†(
←→
D × σ)χ ·∇χ†ψ + (∇ψ†χ) · χ†(←→D × σ)ψ

)

− if8cm

2M4

(
ψ†(
←→
D × σ)T aχ ·Dabχ†T bψ + (Dabψ†T bχ) · χ†(←→D × σ)T aψ

)
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+
if ′1cm
2M4

(
ψ†
←→
Dχ · (∇× χ†σψ) + (∇× ψ†σχ) · χ†←→Dψ

)

+
if ′8cm
2M4

(
ψ†
←→
DT aχ · (Dab × χ†σT bψ) + (Dab × ψ†σT bχ) · χ†←→DT aψ

)

+
g1acm

M4

(
∇iψ

†σjχ
) (
∇iχ

†σjψ
)

+
g8acm

M4

(
Dab
i ψ

†σjT
bχ
) (
Dac
i χ
†σjT

cψ
)

+
g1bcm

M4

(
∇ · ψ†σχ

) (
∇ · χ†σψ

)
+
g8bcm

M4

(
Dab · ψ†σT bχ

) (
Dac · χ†σT cψ

)

+
g1ccm

M4

(
∇ψ†χ

)
·
(
∇χ†ψ

)
+
g8ccm

M4

(
Dabψ†T bχ

)
·
(
Dacχ†T cψ

)
. (2.55)

Covariant derivatives with color indices are understood in the adjoint representation. The
left-right derivatives are defined as follows:

ψ†(
←→
D )nTχ =

n∑

k=0

(−1)k
(
n

k

)(
Dkψ

)†
T
(
Dn−kχ

)
, (2.56)

where the order of the D’s is the same in each term and T stands for either the unit or a color
matrix. In particular it follows from this expression that

←→
D does not act on any field outside

of ψ† and χ.
From this we get at O(M−3)

∂µ∆̂µL(4f) =− 1

2M3

(
f1(1S0) + 4g1ccm

) [
(η · i∇ψ†χ)χ†ψ + h.c.

]

− 1

2M3

(
f8(1S0) + 4g8ccm

) [
(η · iDabψ†T bχ)χ†T bψ + h.c.

]

+
1

4M3

(
f1(1S0)− f1cm

) [
ψ†η · (←→D × σ)χχ†ψ + h.c.

]

+
1

4M3

(
f8(1S0)− f8cm

) [
ψ†η · (←→D × σ)T aχχ†T aψ + h.c.

]

− 1

2M3

(
f1(3S1) + 4g1acm

) [
(η · i∇ψ†σiχ)χ†σiψ + h.c.

]

− 1

2M3

(
f8(3S1) + 4g8acm

) [
(η · iDabψ†σiT

bχ)χ†σiT
bψ + h.c.

]

+
1

4M3

(
f1(3S1)− f ′1cm

) [
ψ†(η ×←→D )χ · χ†σψ + h.c.

]

+
1

4M3

(
f8(3S1)− f ′8cm

) [
ψ†(η ×←→D )T aχ · χ†σT aψ + h.c.

]

+
2

M3
g1bcm

[
ψ†(η · σ)χ(i∇ · χ†σψ) + h.c.

]

+
2

M3
g8bcm

[
ψ†(η · σ)T aχ(iDab · χ†σT bψ) + h.c.

]
, (2.57)

where we use ∆̂ to denote the boost transformation except for the coordinate transformations,
and h.c. means the hermitian conjugate of the preceding term in the brackets. None of these
terms has the form of a total derivative, so all coefficients have to be equal to zero, which
means:

g1acm = −1

4
f1(3S1) , g1ccm = −1

4
f1(1S0) , g8acm = −1

4
f8(3S1) , g8ccm = −1

4
f8(1S0) , (2.58)
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f1cm =
1

4
f1(1S0) , f ′1cm =

1

4
f1(3S1) , f8cm =

1

4
f8(1S0) , f ′8cm =

1

4
f8(3S1) , (2.59)

g1bcm = g8bcm = 0 . (2.60)

These relations were first derived in [62] and later confirmed in [63] for the singlet sector, which
is at this order equivalent to NRQED.

2.2.4 NLO Calculation in the Four-Fermion Sector

Going to next order in 1/M we have to include two-fermion terms in kψ and kχ, which we can
parametrize as follows:

k̂
(2f)
ψ =

a11

M4

←→
Dχχ† +

a12

M4
χ∇χ† +

a13

M4
χχ†
←→
D

+
a81

M4

←→
DT aχχ†T a +

a82

M4
T aχDabχ†T b +

a83

M4
T aχχ†

←→
DT a

+
ib11

M4

←→
D × σχχ† − ib12

M4
σχ×∇χ† − ib13

M4
σχ× χ†←→D

+
ib14

M4

←→
Dχ× χ†σ +

ib15

M4
χ∇× χ†σ +

ib16

M4
χχ†
←→
D × σ

+
ib81

M4

←→
D × σT aχχ†T a − ib82

M4
σT aχ×Dabχ†T b − ib83

M4
σT aχ× χ†←→DT a

+
ib84

M4

←→
DT aχ× χ†σT a +

ib85

M4
T aχDab × χ†σT b +

ib86

M4
T aχχ†

←→
D × σT a

+
c11

M4
(
←→
D · σ)χχ†σ +

c12

M4
σiχ∇iχ

†σ +
c13

M4
σiχχ

†←→Diσ

+
c14

M4

←→
Diσχχ

†σi +
c15

M4
σχ∇iχ

†σi +
c16

M4
σχχ†(

←→
D · σ)

+
c17

M4

←→
Dσiχχ

†σi +
c18

M4
σiχ∇χ†σi +

c19

M4
σiχχ

†←→Dσi

+
c81

M4
(
←→
D · σ)T aχχ†σT a +

c82

M4
σiT

aχDab
i χ
†σT b +

c83

M4
σiT

aχχ†
←→
DiσT

a

+
c84

M4

←→
DiσT

aχχ†σiT
a +

c85

M4
σT aχDab

i χ
†σiT

b +
c86

M4
σT aχχ†(

←→
D · σ)T a

+
c87

M4

←→
DσiT

aχχ†σiT
a +

c88

M4
σiT

aχDabχ†σiT
b +

c89

M4
σiT

aχχ†
←→
DσiT

a , (2.61)

k̂(2f)
χ = k̂

(2f)
ψ (ψ ↔ χ) . (2.62)

Here the definition of the left-right derivatives on the left-hand side of χχ† is a bit trickier. We
will understand them as follows

←→
DTχχ†Tψ = T (Dχ)χ†Tψ +D(Tχχ†Tψ) , (2.63)

and implicitly perform integration by parts on the second term. The overall spatial derivatives
introduced by this integration are irrelevant for everything that will be discussed in this chapter,

so we will ignore them. But this definition then implies that the left-derivative part of
←→
D acts

also on the terms outside the bilinear in which it appears. The left-right derivatives on the
right-hand side of χχ† are defined as above and act only within their bilinear.

As an example we give the boost transformation proportional to a11 and a13 due to the χ
field in ψ†χχ†ψ:

ψ†(k̂χ)χ†ψ =
a11

M4
(ψ†
←→
Dψ)ψ†χχ†ψ− a11

M4
ψ†ψψ†χ(∇χ†ψ) +

a13

M4
ψ†ψ(ψ†

←→
Dχ)χ†ψ+ . . . . (2.64)
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When we now calculate the commutator of two boosts atO(M−3) and consider only the two-
fermion part, we get some constraints on these boost coefficients a, b and c. As above, we see
that at this order only the terms with a center-of-mass derivative do not cancel automatically,
and none of the a coefficients can appear, because they do not give terms antisymmetric in ξ
and η.

There are three contributions to this commutator, the first is

−
[
ξ · k̂(2f)

ψ ,Mη · r
]

+
[
η · k̂(2f)

ψ ,Mξ · r
]

= − 2i

M3
(b11 + b12 + b13)(ξ × η) · σχχ† − 2i

M3
(b14 + b15 + b16)χχ†(ξ × η) · σ

− 2i

M3
(b81 + b82 + b83)(ξ × η) · σT aχχ†T a − 2i

M3
(b84 + b85 + b86)T aχχ†(ξ × η) · σT a

+
1

M3
(c11 + c12 + c13 − c14 − c15 − c16)(ξ × η) · (σχ× χ†σ)

+
1

M3
(c81 + c82 + c83 − c84 − c85 − c86)(ξ × η) · (σT aχ× χ†σT a) . (2.65)

The second contribution comes from the transformation of the χ fields inside k̂
(2f)
ψ

−(Mξ · rδχ −Mξ · rδχ†)(η · k̂(2f)
ψ ) + (Mη · rδχ −Mη · rδχ†)(ξ · k̂(2f)

ψ )

=
2i

M3
(b11 − b12 + b13)(ξ × η) · σχχ† +

2i

M3
(b14 − b15 + b16)χχ†(ξ × η) · σ

+
2i

M3
(b81 − b82 + b83)(ξ × η) · σT aχχ†T a +

2i

M3
(b84 − b85 + b86)T aχχ†(ξ × η) · σT a

− 1

M3
(c11 − c12 + c13 − c14 + c15 − c16)(ξ × η) · (σχ× χ†σ)

− 1

M3
(c81 − c82 + c83 − c84 + c85 − c86)(ξ × η) · (σT aχ× χ†σT a) . (2.66)

The last contribution comes from the term − 1
2M

(ξ × η) · σD0 that has already been derived
above. When we use the equation of motion for iD0ψ this becomes in the two-fermion sector

−i(ξ × η) · σ
2M3

{
f1(1S0)χχ† + f1(3S1)σχ · χ†σ + f8(1S0)T aχχ†T a + f1(3S1)σT aχ · χ†σT a

}

= − if1(1S0)

2M3
(ξ × η) · σχχ† − if8(1S0)

2M3
(ξ × η) · σT aχχ†T a

− if1(3S1)

2M3
χχ†(ξ × η) · σ − if8(3S1)

2M3
T aχχ†(ξ × η) · σT a

− f1(3S1)

2M3
(ξ × η) · (σχ× χ†σ)− f8(3S1)

2M3
(ξ × η) · (σT aχ× χ†σT a) . (2.67)

The sum of these three contributions has to vanish, so we have

0 =− i

2M3

(
8b12 + f1(1S0)

)
(ξ × η) · σχχ† − i

2M3

(
8b82 + f8(1S0)

)
(ξ × η) · σT aχχ†T a

− i

2M3

(
8b15 + f1(3S1)

)
χχ†(ξ × η) · σ − i

2M3

(
8b85 + f8(3S1)

)
T aχχ†(ξ × η) · σT a

+
1

2M3

(
4c12 − 4c15 − f1(3S1)

)
(ξ × η) · (σχ× χ†σ)

+
1

2M3

(
4c82 − 4c85 − f8(3S1)

)
(ξ × η) · (σT aχ× χ†σT a) , (2.68)
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which fixes the two-fermion boost parameters to be

b12 = −1

8
f1(1S0) , b15 = −1

8
f1(3S1) , b82 = −1

8
f8(1S0) , b85 = −1

8
f8(3S1) , (2.69)

c12 − c15 =
1

4
f1(3S1) , c82 − c85 =

1

4
f8(3S1) . (2.70)

At O(M−4) there is no new information from the two-boost commutator. The O(M−5)

terms of k̂
(2f)
ψ can either contain two derivatives or one gluon field for dimensional reasons, but

only the chromoelectric field has the right parity transformation behavior. So there can be no
O(M−5) terms with derivatives, and therefore the commutator of the O(M−5) k̂

(2f)
ψ with Mr

vanishes. The boost transformation of the fields inside k̂
(2f)
ψ at O(M−4) gives only temporal

derivatives, which have to be replaced through the equations of motion for ψ and χ and thus
contribute only at O(M−5). And there are no four-fermion O(M−3) terms that could give a
contribution at O(M−4) from − 1

2M
(ξ × η) · σD0.

In order to get the constraints from the boost transformation of L at O(M−4) we need
all four-fermion terms at O(M−4), most of which can be found in [62], and all center-of-mass
derivative terms at O(M−5), which were not included in [62].

L(4f)

M−4 = − g1(1S0)

8M4

(
ψ†
←→
D 2χχ†ψ + ψ†χχ†

←→
D 2ψ

)

− g1(3S1)

8M4

(
ψ†(
←→
D 2)σχ · χ†σψ + ψ†σχχ†(

←→
D 2)σψ

)

− g1(3S1,
1S0)

8M4

(
1

2
ψ†
{

(
←→
D · σ),

←→
D
}
χ · χ†σψ − 1

3
ψ†
←→
D 2χχ†ψ + h.c.

)

− g8(1S0)

8M4

(
ψ†
←→
D 2T aχχ†T aψ + ψ†χχ†

←→
D 2T aψ

)

− g8(3S1)

8M4

(
ψ†(
←→
D 2)σT aχ · χ†σT aψ + ψ†σT aχχ†(

←→
D 2)T aσψ

)

− g8(3S1,
1S0)

8M4

(
1

2
ψ†
{

(
←→
D · σ),

←→
D
}
T aχ · χ†σT aψ − 1

3
ψ†
←→
D 2T aχχ†T aψ + h.c.

)

− f1(1P1)

4M4
ψ†
←→
Dχ · χ†←→Dψ

− f1(3P0)

12M4
ψ†(
←→
D · σ)χχ†(

←→
D · σ)ψ

− f1(3P1)

8M4

(
ψ†
←→
Diσjχχ

†←→Diσjψ − ψ†
←→
Diσjχχ

†←→Djσiψ
)

− f1(3P2)

4M4

(
1

2
ψ†
←→
Diσjχχ

†←→Diσjψ +
1

2
ψ†
←→
Diσjχχ

†←→Djσiψ −
1

3
ψ†(
←→
D · σ)χχ†(

←→
D · σ)ψ

)

− f8(1P1)

4M4
ψ†
←→
DT aχ · χ†←→DT aψ

− f8(3P0)

12M4
ψ†(
←→
D · σ)T aχχ†(

←→
D · σ)T aψ

− f8(3P1)

8M4

(
ψ†
←→
DiσjT

aχχ†
←→
DiσjT

aψ − ψ†←→DiσjT
aχχ†

←→
DjσiT

aψ
)
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− f8(3P2)

4M4

(
1

2
ψ†
←→
DiσjT

aχχ†
←→
DiσjT

aψ +
1

2
ψ†
←→
DiσjT

aχχ†
←→
DjσiT

aψ

−1

3
ψ†(
←→
D · σ)T aχχ†(

←→
D · σ)T aψ

)

− if1cm

2M4

(
ψ†(
←→
D × σ)χ ·∇χ†ψ + (∇ψ†χ) · χ†(←→D × σ)ψ

)

+
if ′1cm
2M4

(
ψ†
←→
Dχ · (∇× χ†σψ) + (∇× ψ†σχ) · χ†←→Dψ

)

− if8cm

2M4

(
ψ†(
←→
D × σ)T aχ ·Dabχ†T bψ + (Dabψ†T bχ) · χ†(←→D × σ)T aψ

)

+
if ′8cm
2M4

(
ψ†
←→
DT aχ · (Dab × χ†σT bψ) + (Dab × ψ†σT bχ) · χ†←→DT aψ

)

+
g1acm

M4

(
∇iψ

†σjχ
) (
∇iχ

†σjψ
)

+
g8acm

M4

(
Dab
i ψ

†σjT
bχ
) (
Dac
i χ
†σjT

cψ
)

+
g1bcm

M4

(
∇ · ψ†σχ

) (
∇ · χ†σψ

)
+
g8bcm

M4

(
Dab · ψ†σT bχ

) (
Dac · χ†σT cψ

)

+
g1ccm

M4

(
∇ψ†χ

)
·
(
∇χ†ψ

)
+
g8ccm

M4

(
Dabψ†T bχ

)
·
(
Dacχ†T cψ

)

+
s1−8(1S0,

3S1)

2M4

(
ψ†gB · σχχ†ψ + ψ†χχ†gB · σψ

)

+
s1−8(3S1,

1S0)

2M4

(
ψ†gBχ · χ†σψ + ψ†σχ · χ†gBψ

)

+
s8−8(1S0,

3S1)

2M4
dabcgBa ·

(
ψ†σT bχχ†T cψ + ψ†T bχχ†σT cψ

)

+
s8−8(3S1,

3S1)

2M4
fabcgBa ·

(
ψ†σT bχ× χ†σT cψ

)
. (2.71)

For dimensional reasons the O(M−5) four-fermion Lagrangian can either contain three
derivatives or one derivative and one gluon field. Parity allows only the combination of a
chromoelectric field and a derivative. As stated above, only center-of-mass derivatives are
relevant for this order of the boost transformation.

L(4f)

M−5cm =
is1−8 cm

2M5

(
ψ†gE × σχ ·∇χ†ψ − (∇ψ†χ) · χ†gE × σψ

)

− is′1−8 cm

2M5

(
ψ†gEχ · (∇× χ†σψ)− (∇× ψ†σχ) · χ†gEψ

)

+
is8−8 cm

2M5
dabcgEa ·

(
ψ†σT bχ×Dcdχ†T dψ + (Dbdψ†T dχ)× χ†σT cψ

)

+
is′8−8 cm

2M5
fabcgEa

i

(
ψ†σiT

bχ(Dcd · χ†σT dψ) + (Dbd · ψ†σT dχ)χ†σiT
cψ
)
. (2.72)

In principle one can write more terms with a center-of-mass derivative, but those can be
integrated by parts, neglecting overall derivatives, and they give a derivative that acts only on
the chromoelectric field, e.g.

ifabcgEa ·
(
ψ†T bχDcdχ†T dψ + (Dbdψ†T dχ)χ†T cψ

)
= −(Dad · gEd) ifabcψ†T bχχ†T cψ . (2.73)

These terms obviously do not contribute to the boost transformation of the Lagrangian at
O(M−4), we therefore chose a minimal basis of operators where only the terms given above
have explicit center-of-mass derivatives.
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After a lengthy calculation of the boost transformation of the Lagrangian at O(M−4), we
obtain the following constraints:

a11 =
1

4
g1(1S0) , a12 = g1ccm , a13 =

1

4
f1(1P1) ,

a81 =
1

4
g8(1S0) , a82 = g8ccm , a83 =

1

4
f8(1P1) ,

b12 = −1

2
f1cm , b15 = −1

2
f ′1cm , b82 = −1

2
f8cm , b85 = −1

2
f ′8cm ,

b13 = −1

2
f ′1cm + b14 , b16 = −1

2
f1cm + b11 , b83 = −1

2
f ′8cm + b84 , b86 = −1

2
f8cm + b81 ,

c11 =
1

8
g1(3S1,

3D1) , c13 =
1

8

(
f1(3P2)− f1(3P1)

)
,

c14 =
1

8
g1(3S1,

3D1) , c16 =
1

12

(
f1(3P0)− f1(3P2)

)
,

c17 =
1

12

(
4g1(3S1)− g1(3S1,

3D1)
)
, c19 =

1

8

(
f1(3P1) + f1(3P2)

)
,

c81 =
1

8
g8(3S1,

3D1) , c83 =
1

8

(
f8(3P2)− f8(3P1)

)
,

c84 =
1

8
g8(3S1,

3D1) , c86 =
1

12

(
f8(3P0)− f8(3P2)

)
,

c87 =
1

12

(
4g8(3S1)− g8(3S1,

3D1)
)
, c89 =

1

8

(
f8(3P1) + f8(3P2)

)
,

c15 = −c12 , c18 = g1acm , c85 = −c82 , c88 = g8acm ,

s1−8 cm −
1

2
s1−8(1S0,

3S1)− cS
4
f1(1S0)− cS

4
f8(1S0)− 2b11 − 2b84 = 0 ,

s′1−8 cm −
1

2
s1−8(3S1,

1S0)− cS
4
f1(1S0)− cS

4
f8(1S0)− 2b14 − 2b81 = 0 ,

s8−8 cm −
1

2
s8−8(1S0,

3S1)− cS
4
f8(1S0)− b81 − b84 = 0 ,

s′8−8 cm +
1

2
s8−8(3S1,

3S1)− cS
4
f8(3S1)− 1

16
g8(3S1,

3D1) + c82 = 0 . (2.74)

So far none of these constraints involves only Wilson coefficients of the Lagrangian, they
rather define the boost parameters of k̂

(2f)
ψ and k̂

(2f)
χ . There remain two free parameters, c12

and one of either b11, b14, b81 or b84. But if we combine them with the relations obtained from
the commutator of two boosts, we get

c12 =
1

8
f1(3S1) , c15 = −1

8
f1(3S1) , c82 =

1

8
f8(3S1) , c85 = −1

8
f8(3S1) ,

s′8−8 cm +
1

2
s8−8(3S1,

3S1)− 2cS − 1

8
f8(3S1)− 1

16
g8(3S1,

3D1) = 0 . (2.75)

The last equation now gives a constraint on the Wilson coefficients without any boost param-
eters. The other relations we got for b12, b52, b82 and b85 from the commutator of two boosts
are consistent with the ones obtained from the transformation of the Lagrangian at O(M−4)
and O(M−2).

43



2.3 Constraints in pNRQCD

Potential Non-Relativistic QCD (pNRQCD) is the EFT obtained from NRQCD after integrat-
ing out the scale of the relative quark-antiquark momentum. This scale is of the same order
as the quark-antiquark distance r, so the expansion in this scale corresponds to a multipole
expansion. In weakly coupled pNRQCD we also assume the hierarchy 1/r � ΛQCD, which
means that the matching can be carried out in perturbation theory. The effective degrees of
freedom are color singlet S and octet Oa quarkonium fields instead of individual quark and
antiquark fields. They are the only fields that can depend on the distance r and the center-
of-mass coordinate R, all other fields depend only on R. Throughout this section, we prefer
to set N = 3 (hence the name octet instead of adjoint field); the extension to general N is
straightforward.

The Lagrangian of pNRQCD (without the gluonic part) can be written schematically as

LpNRQCD =

∫
d3rTr

[
S†(i∂0 − hS)S +Oa †(iDab

0 − habO )Ob − (S†haSOO
a + h.c.)

]
, (2.76)

where the trace refers to the spin indices of the quarkonium fields. Sometimes it is more
convenient to write the quarkonium fields as matrices in color space:

S =
1√
3
S 1 , O =

√
2OaT a , (2.77)

and the Lagrangian:

LpNRQCD =

∫
d3rTr

[
S†(iD0 − hS)S +O†iD0O −

(
O†hOO + c.c

)
−
(
S†hSOO + h.c.

)]
,

(2.78)
where the trace now is understood both in spin and in color space, and c.c means charge
conjugate. We will not use different symbols for the matrix or scalar singlet field, it should be
clear from context which one is meant, or sometimes it may be irrelevant. In the octet case
the matrix field is obvious from the absence of a color index. The coefficients for the matrices
are such that the trace over two fields is properly normalized. The covariant derivatives are
understood as commutators with everything to their right.

The matching to NRQCD is performed through interpolating fields

χ†(R− r/2)φ(R− r/2,R+ r/2)ψ(R+ r/2)

→ Z
(0)
S (r)S(r,R) + Z

(2)
O (r)rr · gEa(R)Oa(r,R) +O(r3) , (2.79)

χ†(R− r/2)φ(R− r/2,R)T aφ(R,R+ r/2)ψ(R+ r/2)

→ Z
(0)
O (r)Oa(r,R) + Z

(2)
S (r)rr · gEa(R)S(r,R) +O(r3) . (2.80)

The Wilson lines φ act as gauge links from the quark position to that of the antiquark. Correla-
tors of those interpolating fields in both theories have to give the same result, which determines
the matching coefficients Z.

2.3.1 Coordinate Transformations for Quarkonium Fields

The interpolating fields also determine how the quarkonium fields have to transform under the
spacetime symmetries. In fact, in the limit g → 0 one can neglect the Wilson lines and just
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determine the transformation of S and Oa from different color projections of Q = ψχ† (this
limit is not physical, since there is no non-interacting bound state, but this is irrelevant here).
The coordinate transformations do not depend on the color representation, so we can just use
Q for both singlet and octet.

First, we give here the transformations under the discrete symmetries:

Q(t, r,R)
P−→ −Q(t,−r,−R) , (2.81)

Q(t, r,R)
C−→ σ2Q

T (t,−r,R)σ2 , (2.82)

Q(t, r,R)
T−→ σ2Q(−t, r,R)σ2 . (2.83)

The transposed sign on the charge conjugated fields refers both to color and spin space. Also
note that charge conjugation exchanges the positions of the quark and the antiquark fields, so
r goes to −r.

Time translations are straightforward in pNRQCD; in the interpolating fields ψ and χ† are
evaluated at the same time, so also the time argument of the quarkonium fields is shifted in
the same way. The additional mass terms introduced through the field redefinitions of ψ and
χ add up, so we have

Q(t, r,R)
P0−→ Q′(t, r,R) = (1− 2iMa0)Q(t, r,R) +

[
a0∂0, Q(t, r,R)

]
. (2.84)

We assume in this chapter that the quark and the antiquark field have the same mass, so the
generator of time translations is P0 = i∂0 + 2M .

Space translations act only on the center-of-mass coordinate R; both quark and antiquark
are shifted by the same amount, so the relative coordinate remains unaffected. This means

Q(t, r,R)
Pi−→ Q′(t, r,R) = Q(t, r,R)−

[
a ·∇R, Q(t, r,R)

]
, (2.85)

with the generator for space translations P = −i∇R.
Under rotations both R and r transform in the same way. The component transformations

of ψ and χ with iσ each lead to a commutator with the quarkonium fields and the sigma matrix:

Q(t, r,R)
J−→ Q′(t, r,R) = Q(t, r,R) +

[
α · (R×∇R + r ×∇r + iσ), Q(t, r,R)

]
. (2.86)

It is conventional to use an upper index on the sigma matrices to denote whether it is supposed
to be multiplied to the quarkonium field from the left or the right:

σ(1)Q = σQ and σ(2)Q = −Qσ . (2.87)

This gives the generator of rotations as J = R × (−i∇R) + r × (−i∇r) + σ(1) + σ(2). Since
σ2σσ2 = −σT and σTQT = (Qσ)T , charge conjugation effectively exchanges σ(1) ↔ σ(2).

For boosts we will first determine how the coordinates of the quarkonium fields have to
transform. We still use the analogy with the interpolating fields in the g → 0 limit, but
now we need to write the quark and antiquark field explicitly instead of Q. So we have with
x1 = R+ r/2 and x2 = R− r/2

ψ(t,x1)χ†(t,x2)
K−→ ψ(t,x1)χ†(t,x2)− iMη · (x1 + x2)ψ(t,x1)χ†(t,x2)

+
[
η · (t∇1 + x1∂0), ψ(t,x1)

]
χ†(t,x2) + ψ(t,x1)

[
η · (t∇2 + x2∂0), χ†(t,x2)

]
+ . . .
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= (1− 2iMη ·R)ψ(t,x1)χ†(t,x2) +
[
η · (t∇R +R∂0), ψ(t,x1)χ†(t,x2)

]

+
1

2
(η · r)

([
∂0, ψ(t,x1)

]
χ†(t,x2)− ψ(t,x1)

[
∂0, χ

†(t,x2)
])

+ . . . , (2.88)

where the dots stand for all terms of the boost transformation that are not related to the
coordinate transformations. The first line corresponds to the usual coordinate transformations
under boosts for a scalar field with mass 2M , where only the center-of-mass coordinate partic-
ipates in the boost and the relative distance remains unaffected. In the second line, the time
derivatives acting on the quark and antiquark fields cannot be written as one derivative acting
on the whole quarkonium field, because they have opposite sign. But these time derivatives
can be replaced by space derivatives through the equations of motion:

1

2
(η · r)

([
∂0, ψ(t,x1)

]
χ†(t,x2)− ψ(t,x1)

[
∂0, χ

†(t,x2)
])

= (η · r)

[
i

4M
(∇2

1 −∇2
2), ψ(t,x1)χ†(t,x2)

]
+O(M−3)

= (η · r)

[
i

2M
∇R ·∇r, ψ(t,x1)χ†(t,x2)

]
+O(M−3) . (2.89)

Thus these terms give corrections of order 1/M and higher.
The other terms in the boost transformation of the quark and antiquark fields in the g → 0

limit can also be rewritten in terms of polar coordinates:

ψ(t,x1)χ†(t,x2)
K−→ . . . +

i

2M

[
η · (∇1 + ∇2), ψ(t,x1)χ†(t,x2)

]

− 1

4M

[
(η ×∇1)·,σψ(t,x1)χ†(t,x2)

]
+

1

4M

[
(η ×∇2)·, ψ(t,x1)χ†(t,x2)σ

]
+O(M−2)

= . . . +
i

2M

[
η ·∇R, ψ(t,x1)χ†(t,x2)

]
− 1

8M

(
σ(1) + σ(2)

)
·
[
(η ×∇R), ψ(t,x1)χ†(t,x2)

]

− 1

4M

(
σ(1) − σ(2)

)
·
[
(η ×∇r), ψ(t,x1)χ†(t,x2)

]
+O(M−3) . (2.90)

Here the dots denote the coordinate transformation terms. So we expect the boost generators
in the g → 0 limit to behave like

kQ
g→0
= it∇R + iR∂0 + 2MR− 1

4M
∇R −

1

4M

{
r, (∇R ·∇r)

}

− i

8M
∇R ×

(
σ(1) + σ(2)

)
− i

4M
∇r ×

(
σ(1) − σ(2)

)
+O(M−3) . (2.91)

This limit is interesting for the ansatz we are going to make for the singlet and octet boost
generators, since it determines which coefficients we expect to be of order 1 + O(αs). In the
last two terms of the first line we have used

r(∇R ·∇r) =
1

2

{
r, (∇R ·∇r)

}
− 1

2
∇R , (2.92)

in order to obtain terms that are explicitly hermitian or antihermitian.
Finally, we list here the behavior of the boost generators under the discrete symmetries:

kQ
P−→ −kQ , kQ

C−→ σ2k
T
Qσ2 , kQ

T−→ σ2kQσ2 . (2.93)
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Keep in mind that P changes the sign of both r and R, C changes the sign of only r, T
changes the sign of t and takes the complex conjugate. The transpose operation inherent to
C requires some further explanation. First, the sigma matrices change like:

σ2

(
σ(1/2)

)T
σ2 = σ(2/1) , σ2

(
σ(1/2)

)∗
σ2 = −σ(1/2) . (2.94)

For the singlet field, transposing in color space is trivial, so we can just write kS
C−→ σ2kSσ2.

For the octet field in matrix notation, we have to write the boost generator in two parts:

O
K−→ O′ = O − iη ·

(
k

(A)
O O +Ok

(B)
O

)
. (2.95)

The two parts then are exchanged under C as k
(A/B)
O

C−→ σ2

(
k

(B/A)
O

)T
σ2.

2.3.2 Redundancies and Field Redefinitions

In order to find the boost generators in pNRQCD, we will again use the EFT approach and
write down the most general form allowed by the symmetries. However, it will turn out that
several terms in this ansatz are redundant, i.e. one can make a field redefinition that removes
these terms from the boost generator without changing the form of the Lagrangian. So there
is no loss in generality if one chooses to work with a boost generator where these redundant
terms are absent. We will work out appropriate field redefinitions in this section. Since we
will calculate the transformation of the Lagrangian up to orders M0r1 and M−1r0 in the next
section, here we need to include all terms of order M0r2, M−1r0. We will use the notation
c(m,n) for the coefficients of terms of order M−mrn.

Singlet Field

For the singlet field we start with the most general ansatz for the boost generator allowed
by the other symmetries. However, note that we can eliminate some terms from the outset.
Also in the construction of the pNRQCD Lagrangian certain terms are neglected without an
explicit matching. For example, the term r ·∇r is completely neutral with respect to any
symmetry and also the power counting. So in principle one could add an infinite number of
these terms to any operator in the Lagrangian, which would mean that at each order in the
power counting one would have to match an infinite number of terms, making the construction
of the EFT impossible. But by comparison with NRQCD one sees that each derivative appears
with at least one power of 1/M , so also in pNRQCD one can neglect any term where there are
more derivatives than powers of 1/M because there would be no corresponding term in the
matching to NRQCD. The same argument applies to spin-dependent terms, where also each
sigma matrix has to be suppressed by a power of 1/M . The only exception to this are the
kinetic terms, where there may be one derivative more than powers of 1/M .

By extension, these rules also apply to the construction of the boost generator, not directly
(i.e. there can be terms in the boost generator where there are more derivatives and sigma
matrices than powers of 1/M), but in the following way. Operators that would lead to terms
in the transformation of the Lagrangian that cannot be canceled by any other terms can
immediately be ruled out. For example, operators that are antihermitian in the boost generator
lead to anticommutators with the time derivative from the leading term of the Lagrangian,
which can only be canceled by a term with a corresponding spatial derivative. Such a term
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would be e.g. ir ×
(
σ(1) − σ(2)

)
/(8Mr2), which is not ruled out by any symmetry argument,

but the resulting term in the transformed Lagrangian would have to be canceled through a
term iD ·r×

(
σ(1) − σ(2)

)
/(8Mr2) in hS, which is ruled out according to the arguments given

above. Hermitian operators in the boost generator are less problematic, because they lead to
commutators in the transformed Lagrangian, which usually reduces the number of derivatives
by one.

Keeping this in mind, and writing everything in terms of explicitly hermitian or antiher-
mitian operators (where we stay close to the nomenclature of [58]), the most general ansatz
is:

kS = it∇R + iR∂0 + 2MR− k
(1,0)
SD

4M
∇R −

1

4M

{
k

(1,0)
Sa′ r, (∇R ·∇r)

}

− 1

4M

{
k

(1,0)
Sa′′ (r ·∇R),∇r

}
− 1

4M

{
k

(1,0)
Sa′′′r·,∇r

}
∇R

− 1

4M

{
k

(1,0)
Sb

r2
r(r ·∇R)ri, (∇r)i

}
− ik

(1,0)
Sc

8M
∇R ×

(
σ(1) + σ(2)

)

− ik
(1,0)
Sd′′

8Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))
− ik

(1,0)
Sd′′′

8Mr2

(
(r ×∇R) ·

(
σ(1) + σ(2)

))
r

− i

8M

{
k

(1,−1)
Sa ,∇r ×

(
σ(1) − σ(2)

)}
+

i

8M

[
k

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

− i

8M

{
k

(1,−1)
Sb′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)i

}
+O

(
M−2r0,M−1r1,M0r3

)
. (2.96)

The coefficients depend on r, so they have to be included inside the anticommutators with the
derivative ∇r. We also have used the identity

δijεklm = δikεjlm + δilεkjm + δimεklj (2.97)

to eliminate some terms. For example, a term like ik
(1,0)
Sd′ (r×∇R)(r · (σ(1) +σ(2)))/(8Mr2) is

not linearly independent, because it is related to the operators of k
(1,0)
Sc , k

(1,0)
Sd′′ , and k

(1,0)
Sd′′′ through

this identity, which can be shown by multiplying Eq. (2.97) with rirj(∇R)k(σ
(1) + σ(2))l. A

similar situation is found for the operators of k
(1,−1)
Sa , k

(1,−1)
Sb′ , and k

(1,−1)
Sb′′ . Note that this identity

has not been used in [58].
As mentioned above, not all these terms in the boost generator are necessary, when one

exploits the freedom to perform field redefinitions; i.e. one can always redefine the fields as
long as the symmetry properties of the fields are not altered. In order to also keep the form
of the Lagrangian intact, we will only consider unitary transformations US = exp[uS] with uS
antihermitian, relating the new singlet field S̃ to the old one S as S = USS̃. The reason for
choosing only unitary transformations is that the time derivative from the leading term of the
Lagrangian appears only in commutators, since

U †Si∂0US = i∂0 + [i∂0, uS] +
1

2
[[i∂0, uS], uS] +

1

6
[[[i∂0, uS], uS], uS] + . . . . (2.98)

In this and the analogous expression for the redefinition of the octet field, the commutators
with the time derivative either vanish, give an electric field, or time derivatives of gluon fields,
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which can be removed through the equations of motion (i.e. redefinitions of the gluon fields).
So a unitary transformation does not introduce new time derivatives in the Lagrangian. It will
introduce other terms, but those will be of a form already present in the Lagrangian, so their
contributions can be absorbed in a redefinition of the Wilson coefficients.

In order to find a suitable unitary transformation, we need to look for terms which are
antihermitian and P , C, and T invariant. Such terms can easily be found by multiplying the
hermitian terms in kS with ∇R/M , which explains the nomenclature we use for US:

US = exp

[
− 1

4M2

{
q

(1,0)
Sa′′ r ·∇R,∇r ·∇R

}
− 1

4M2

{
q

(1,0)
Sa′′′r·,∇r

}
∇2

R

− 1

4M2

{
q

(1,0)
Sb

r2
(r ·∇R)2r·,∇r

}
− iq

(1,0)
Sd′′′

8M2r2
(r ·∇R)

(
(r ×∇R) ·

(
σ(1) + σ(2)

))

+
i

8M2

{
q

(1,−1)
Sa , (∇r ×∇R) ·

(
σ(1) − σ(2)

)}

− i

8M2

{
q

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
(r ×∇R) ·,∇r

}

+
i

8M2

{
q

(1,−1)
Sb′′

r2

(
(r ×∇R) ·

(
σ(1) − σ(2)

))
r·,∇r

}
+ . . .

]
, (2.99)

where the dots stand for higher order terms, which do not affect the calculations of this chapter.
The coefficients q are free parameters.

We can work out the transformation of the new field S̃ under boosts in the following way:

S̃ ′ = U ′†SS ′ = U ′†S(1− iη · kS)USS̃ =
[
1− U †S(iη · kS)US +

(
δU †S

)
US
]
S̃

≡
(

1− iη · k̃S
)
S̃ , (2.100)

where

δU †S(∇R,E,B) =
[
η · (t∇R +R∂0),U †S(∇R,E,B)

]

+
(
η∂0 · δ∇ + (η ×Ba) · δaE − (η ×Ea) · δaB

)
U †S(∇R,E,B) , (2.101)

with the δ operations defined as in Eq. (2.31).

The transformed boost generator k̃S has to be expanded to the same order as the original
kS, so only one extra term remains:

k̃S = kS +
[
k̂S − i

(
∂0δ∇ +Ba × δaE −Ea × δaB

)
, uS

]

+
1

2

[[
k̂S − i

(
∂0δ∇ +Ba × δaE −Ea × δaB

)
, uS

]
, uS

]

+
1

6

[[[
k̂S − i

(
∂0δ∇ +Ba × δaE −Ea × δaB

)
, uS

]
, uS

]
, uS

]
+ . . .

= kS + [2MR, uS] +O(M−2) . (2.102)

Inserting the explicit field redefinition from Eq. (2.99), we obtain

k̃S = kS +
1

2M

{
q

(1,0)
Sa′′ r, (∇R ·∇r)

}
+

1

2M

{
q

(1,0)
Sa′′ (r ·∇R),∇r

}

+
1

M

{
q

(1,0)
Sa′′′r·,∇r

}
∇R +

1

M

{
q

(1,0)
Sb

r2
r(r ·∇R)ri, (∇r)i

}
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− iq
(1,0)
Sd′′′

4Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))
+
iq

(1,0)
Sd′′′

4Mr2

(
r ·
(
∇R ×

(
σ(1) + σ(2)

)))
r

+
i

4M

{
q

(1,−1)
Sa ,∇r ×

(
σ(1) − σ(2)

)}
− i

4M

[
q

(1,−1)
Sb′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

+
i

4M

{
q

(1,−1)
Sb′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)i

}
+O

(
M−2

)
. (2.103)

These extra terms can be absorbed in the operators already present in Eq. (2.96), which
changes the coefficients in the following way:

k̃
(1,0)
Sa′ = k

(1,0)
Sa′ − 2q

(1,0)
Sa′′ , k̃

(1,0)
Sa′′ = k

(1,0)
Sa′′ − 2q

(1,0)
Sa′′ , k̃

(1,0)
Sa′′′ = k

(1,0)
Sa′′′ − 4q

(1,0)
Sa′′′ ,

k̃
(1,0)
Sb = k

(1,0)
Sb − 4q

(1,0)
Sb , k̃

(1,0)
Sd′′ = k

(1,0)
Sd′′ + 2q

(1,0)
Sd′′′ , k̃

(1,0)
Sd′′′ = k

(1,0)
Sd′′′ − 2q

(1,0)
Sd′′′ ,

k̃
(1,−1)
Sa = k

(1,−1)
Sa − 2q

(1,−1)
Sa , k̃

(1,−1)
Sb′ = k

(1,−1)
Sb′ − 2q

(1,−1)
Sb′ , k̃

(1,−1)
Sb′′ = k

(1,−1)
Sb′′ − 2q

(1,−1)
Sb′′ . (2.104)

The seven free parameters q in the unitary operator can be chosen in any convenient way.
Following the expected result in the g → 0 limit from Eq. (2.91), we choose to eliminate k̃

(1,0)
Sa′′ ,

k̃
(1,0)
Sa′′′ , k̃

(1,0)
Sb , k̃

(1,0)
Sd′′′ , k̃

(1,−1)
Sb′ , and k̃

(1,−1)
Sb′′ , as well as fix k̃

(1,−1)
Sa = 1. Then after dropping the tilde

notation, the general boost transformation is simplified as follows

kS = it∇R + iR∂0 + 2MR− k
(1,0)
SD

4M
∇R −

1

4M

{
k

(1,0)
Sa′ r, (∇r ·∇R)

}

− ik
(1,0)
Sc

8M
∇R ×

(
σ(1) + σ(2)

)
− ik

(1,0)
Sd′′

8Mr2
(r ·∇R)

(
r ×

(
σ(1) + σ(2)

))

− i

4M
∇r ×

(
σ(1) − σ(2)

)
+O

(
M−2r0,M−1r1,M0r3

)
, (2.105)

in which only four undetermined coefficients remain.

Octet Field

In a similar fashion, one can proceed to determine the most general boost transformation for the
octet field. The main difference is that all center-of-mass derivatives (except for the coordinate
transformations) have to be replaced by covariant derivatives in the adjoint representation
Dab = δab∇R − fabcgAc due to the color charge of the octet field. For the singlet field
there were no available operators at order M0r2, but for the octet there are two involving the
chromoelectric field. At order M−1r0 there are no new terms.

At this point it is more convenient to write the boost generator in components, i.e.

Oa K−→ Oa ′ =
(
δab − iη · kabO

)
Ob . (2.106)

The P transformation of the boost generator in component notation is the same as in matrix
notation, but the C and T transformations are slightly different. Introducing a sign factor
through (T a)T = (T a)∗ = (−)aT a (where the double appearance of the color index on (−)a

does not imply summation), the fields in the adjoint representation transform as

Oa C−→ σ2(−)aOaσ2 , Ea C−→ −(−)aEa , Ba C−→ −(−)aBa , (2.107)

Oa T−→ σ2(−)aOaσ2 , Ea T−→ (−)aEa , Ba T−→ −(−)aBa . (2.108)
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So the boost generator in component notation has to transform like

kabO
C−→ (−)a(−)bσ2k

ab
O σ2 , kabO

T−→ (−)a(−)bσ2k
ab
O σ2 . (2.109)

The transformation behavior under C can be checked by using the following identities:

(−)a(−)bδab = δab , (−)a(−)b(−)cfabc = −fabc , (−)a(−)b(−)cdabc = dabc , (2.110)

which follow from the commutation relations of the color matrices.
Then the most general ansatz for the boost generator for octets is:

kabO = δab(it∇R + iR∂0 + 2MR)− k
(1,0)
OD

4M
Dab

R +
i

8
fabck

(0,2)
Oa (r · gEc)r +

i

8
fabck

(0,2)
Ob r2gEc

− 1

4M

{
k

(1,0)
Oa′ r, (∇r ·Dab

r )
}
− 1

4M

{
k

(1,0)
Oa′′ (r ·Dab

R ),∇r

}
− 1

4M

{
k

(1,0)
Oa′′′r·,∇r

}
Dab

R

− 1

4M

{
k

(1,0)
Ob

r2
r(r ·Dab

R )ri, (∇r)i

}
− ik

(1,0)
Oc

8M
Dab

R ×
(
σ(1) + σ(2)

)

− ik
(1,0)
Od′′

8Mr2

(
r ·Dab

R

) (
r ×

(
σ(1) + σ(2)

))
− ik

(1,0)
Od′′′

8Mr2

(
(r ×Dab

R ) ·
(
σ(1) + σ(2)

))
r

− iδab

8M

{
k

(1,−1)
Oa ,∇r ×

(
σ(1) − σ(2)

)}
+
iδab

8M

[
k

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

− iδab

8M

{
k

(1,−1)
Ob′′

r2
r ×

(
σ(1) − σ(2)

)
ri, (∇r)i

}
+O

(
M−2r0,M−1r1,M0r3

)
. (2.111)

Again, we may perform a redefinition of the octet field through a unitary transformation
Õa = UabO Ob with UO = exp[uO], in order to reduce the number of undetermined coefficients in
kO. For this transformation matrix uO the same arguments apply as in the singlet case, so we
write:

uabO = − q
(0,2)
Oa

32M

{
(r ·DR), (r · gE)

}ab
+
q

(0,2)
Ob

32M
r2
{
DR·, gE

}ab

− 1

4M2

{
q

(1,0)
Oa′′ (r ·DR), (∇r ·DR)

}ab
− 1

4M2

{
q

(1,0)
Oa′′′r·,∇r

}
(D2

R)ab

− 1

4M2

{
q

(1,0)
Ob

r2

(
(r ·DR)2

)ab
r·,∇r

}

− iq
(1,0)
Od′′′

16M2r2

{
(r ·DR),

(
(r ×DR) ·

(
σ(1) + σ(2)

))}ab

+
i

8M2

{
q

(1,−1)
Oa , (∇r ×Dab

R ) ·
(
σ(1) − σ(2)

)}

− i

8M2

{
q

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
(r ×Dab

R )·,∇r

}

+
i

8M2

{
q

(1,−1)
Ob′′

r2

(
(r ×Dab

R ) ·
(
σ(1) − σ(2)

))
r·,∇r

}
+ . . . , (2.112)
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where {A,B}ab = Aab
′
Bb′b +Bab′Ab

′b, in which we understand Eab = −ifabcEc.

As in the singlet case, the new boost generator after this transformation is given by:

k̃abO = kabO +
[
2MR, uabO

]
+O

(
M−2

)

= kabO −
i

8
fabcq

(0,2)
Oa (r · gEc)r − i

8
fabcq

(0,2)
Ob r2gEc

+
1

2M

{
q

(1,0)
Oa′′ r, (∇r ·Dab

R )
}

+
1

2M

{
q

(1,0)
Oa′′ (r ·Dab

R ),∇r

}

+
1

M

{
q

(1,0)
Oa′′′r·,∇r

}
Dab

R +
1

M

{
q

(1,0)
Ob

r2
r(r ·Dab

R )ri, (∇r)i

}

− iq
(1,0)
Od′′′

4Mr2

(
r ×

(
σ(1) + σ(2)

))
(r ·Dab

R ) +
iq

(1,0)
Od′′′

4Mr2

(
(r ×Dab

R ) ·
(
σ(1) + σ(2)

))
r

+
iδab

4M

{
q

(1,−1)
Oa ,∇r ×

(
σ(1) − σ(2)

)}
− iδab

4M

[
q

(1,−1)
Ob′

r2

(
r ·
(
σ(1) − σ(2)

))
r×,∇r

]

+
iδab

4M

{
q

(1,−1)
Ob′′

r2

(
r ×

(
σ(1) − σ(2)

))
ri, (∇r)j

}
+O(M−2) . (2.113)

This formally gives the same relations for the transformed boost coefficients as for the singlet,
with the addition of the two coefficients for the chromoelectric field terms:

k̃
(0,2)
Oa = k

(0,2)
Oa − q

(0,2)
Oa , k̃

(0,2)
Ob = k

(0,2)
Ob − q

(0,2)
Ob ,

k̃
(1,0)
Oa′ = k

(1,0)
Oa′ − 2q

(1,0)
Oa′′ , k̃

(1,0)
Oa′′ = k

(1,0)
Oa′′ − 2q

(1,0)
Oa′′ , k̃

(1,0)
Oa′′′ = k

(1,0)
Oa′′′ − 4q

(1,0)
Oa′′′ ,

k̃
(1,0)
Ob = k

(1,0)
Ob − 4q

(1,0)
Ob , k̃

(1,0)
Od′′ = k

(1,0)
Od′′ + 2q

(1,0)
Od′′′ , k̃

(1,0)
Od′′′ = k

(1,0)
Od′′′ − 2q

(1,0)
Od′′′ ,

k̃
(1,−1)
Oa = k

(1,−1)
Oa − 2q

(1,−1)
Oa , k̃

(1,−1)
Ob′ = k

(1,−1)
Ob′ − 2q

(1,−1)
Ob′ , k̃

(1,−1)
Ob′′ = k

(1,−1)
Ob′′ − 2q

(1,−1)
Ob′′ . (2.114)

Again, we choose to eliminate k̃
(1,0)
Oa′′ , k̃

(1,0)
Oa′′′ , k̃

(1,0)
Ob , k̃

(1,0)
Od′′′ , k̃

(1,−1)
Ob′ , k̃

(1,−1)
Ob′′ , and the new terms k̃

(0,2)
Oa

and k̃
(0,2)
Ob , as well as fix k̃

(1,−1)
Oa = 1.

Then after dropping the tilde notation, the general boost transformation is simplified as
follows

kabO = δab(it∇R + iR∂0 + 2MR)− k
(1,0)
OD

4M
Dab

R −
1

4M

{
k

(1,0)
Oa′ r, (∇r ·Dab

R )
}

− ik
(1,0)
Oc

8M
Dab

R ×
(
σ(1) + σ(2)

)
− ik

(1,0)
Od′′

8Mr2

(
r ·Dab

R

) (
r ×

(
σ(1) + σ(2)

))

− iδab

4M
∇r ×

(
σ(1) − σ(2)

)
+O

(
M−2r0,M−1r1,M0r3

)
, (2.115)

in which only four undetermined coefficients remain.
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2.3.3 Invariance of the Lagrangian

Singlet Sector

As was shown in the previous section, the boost generators have to satisfy the commutation
relation Eq. (2.28)

[1− iξ ·K, 1− iη ·K]S =
(

(ξ × η) · (R×∇R)−
[
ξ · k̂S,η · k̂S

]

− i (η∂0 · δ∇ + (η ×Ba) · δaE − (η ×Ea) · δaB) (ξ · k̂S)

+ i (ξ∂0 · δ∇ + (ξ ×Ba) · δaE − (ξ ×Ea) · δaB) (η · k̂S)
)
S ,

(2.116)

which at leading order in 1/M evaluates to

(ξ × η) · (R×∇R)−
[
ξ · k̂S, 2Mη ·R

]
+
[
η · k̂S, 2Mξ ·R

]
+O(M−1)

= (ξ × η) · (R×∇R) + (ξ × η) · (k(1,0)
Sa′ r ×∇r) +

ik
(1,0)
Sc

2
(ξ × η) · (σ(1) + σ(2))

− ik
(1,0)
Sd′′

2r2
(ξ × η) ·

(
r ×

(
r ×

(
σ(1) + σ(2)

)))
+O(M−1)

!
= (ξ × η) ·

(
R×∇R + r ×∇r +

i

2

(
σ(1) + σ(2)

))
. (2.117)

This fixes three further coefficients: k
(1,0)
Sa′ = k

(1,0)
Sc = 1, and k

(1,0)
Sd′′ = 0.

The last remaining coefficient k
(1,0)
SD is fixed when we apply the boost transformation to the

singlet sector of the Lagrangian up to O(M−2) (where we follow the notation from Ref. [58])

L(S)
pNRQCD =

∫
d3rTr

[
S†
(
i∂0 +

1

2M

{
c

(1,−2)
S ,∇2

r

}
+
c

(1,0)
S

4M
∇2

R − V (0)
S − V

(1)
S

M
+
VrS
M2

+
VP 2Sa

8M2
∇2

R +
1

2M2

{
Vp2Sb,∇2

r

}
+

VL2Sa

4M2r2
(r ×∇R)2 +

VL2Sb

4M2r2
(r ×∇r)

2

− VS12S

M2r2

(
3(r · σ(1))(r · σ(2))− r2(σ(1) · σ(2))

)
− VS2S

4M2
σ(1) · σ(2)

+
iVLSSa
4M2

(r ×∇R) · (σ(1) − σ(2)) +
iVLSSb
4M2

(r ×∇r) · (σ(1) + σ(2))

)
S

]
. (2.118)

The transformed Lagrangian has to be invariant up to total derivatives; omitting the original
form, the extra terms are:

∂µ∆̂µL(S) =

∫
d3rTr

[
η · S†

(
i
(

1− c(1,0)
S

)
∇R −

1

2M

(
k

(1,0)
SD − c

(1,0)
S

)
∇R∂0

− i

M

(
VP 2Sa + VL2Sa +

1

2
V

(0)
S

)
∇R +

i

Mr2

(
VL2Sa +

r

2
V

(0) ′
S

)
r(r ·∇R)

+
1

2M

(
VLSSa +

1

2r
V

(0) ′
S

)(
σ(1) − σ(2)

)
× r
)
S

]
, (2.119)

where the prime means derivative with respect to r. None of these terms have the form of a
total derivative, so all coefficients have to vanish, which gives the following constraints:

k
(1,0)
SD = c

(1,0)
S = 1 , VP 2Sa =

r

2
V

(0)′
S − 1

2
V

(0)
S , VL2Sa = −r

2
V

(0)′
S , VLSSa = − 1

2r
V

(0)′
S . (2.120)
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These coincide with the results in the literature [58]. Note that with the last coefficient fixed
the boost generator for the singlet field up to this order is exactly the same as in the g → 0
limit, i.e. there are no loop corrections to any of the coefficients. Remember, however, that
this form of the boost generator has been a particular choice obtained through certain field
redefinitions; other choices are equally possible and may change the constraints derived above.
Our choice also corresponds to the one taken in [58].

Octet Sector

The calculation of the commutator of two boosts is completely analogous to the singlet case,
so also for the octet we have k

(1,0)
Oa′ = k

(1,0)
Oc = 1 and k

(1,0)
Od′′ = 0. The only remaining boost

coefficient is again k
(1,0)
D .

In [58], the octet sector of the pNRQCD Lagrangian is given as

L(O)
pNRQCD =

∫
d3rTr

{
O†

(
iD0 +

1

2M

{
c

(1,−2)
O ,∇2

r

}
+
c

(1,0)
O

4M
D2

R − V (0)
O − V

(1)
O

M
− VrO
M2

+
VP 2Oa

4M2
D2

R +
1

2M2

{
Vp2Ob,∇2

r

}
+

VL2Oa

4M2r2
(r ×DR)2 +

VL2Ob

M2r2
(r ×∇r)

2

− VS12O

M2r2

(
3
(
r · σ(1)

) (
r · σ(2)

)
− r2

(
σ(1) · σ(2)

))
− VS2O

4M2
σ(1) · σ(2)

+
iVLSOa
4M2

(r ×DR) ·
(
σ(1) − σ(2)

)
+
iVLSOb
2M2

(r ×∇r) ·
(
σ(1) + σ(2)

))
O

+

[
O†

(
V

(0,1)
OO

2
r · gE +

iV
(0,2)
OOa

8

[
(r ·DR), (r · gE)

]
+
iV

(0,2)
OOb

8
r2
[
DR·, gE

]

+
iV

(1,0)
OOa

8M

{
∇r·, r × gB

}
+
cFV

(1,0)
OOb

2M
gB · σ(1) − V

(1,0)
O⊗Ob

2M
gB · σ(2)

+
V

(1,0)
OOc

2Mr2
(r · gB)

(
r · σ(1)

)
− V

(1,0)
O⊗Oc

2Mr2
(r · gB)

(
r · σ(2)

)
+
V

(1,0)
OOd

2Mr
r · gE

− iV
(1,1)
OO

8M
{(r ×DR)·, gB}

+
icSV

(2,0)
OOa

16M2

[
DR×, gE

]
· σ(1) − iV

(2,0)
O⊗Oa

16M2

[
DR×, gE

]
· σ(2)

+
iV

(2,0)
OOb′

16M2r2

{
(r ×DR)·, gE

}
(r · σ(1))− iV

(2,0)
OOb′′

16M2r2

{(
(r ×DR) · σ(1)

)
, (r · gE)

}

− iV
(2,0)
O⊗Ob′

16M2r2

{
(r ×DR)·, gE

}
(r · σ(2)) +

iV
(2,0)
O⊗Ob′′

16M2r2

{(
(r ×DR) · σ(2)

)
, (r · gE)

}

+
1

16M2

{
V

(2,0)
OOc′(r · gE), (∇r ·DR)

}
+

1

16M2

{
V

(2,0)
OOc′′rigEj, (∇r)j(DR)i

}

+
1

16M2

{
V

(2,0)
OOc′′′rigEj, (∇r)i(DR)j

}
+

1

16M2

{
V

(2,0)
OOd

r2
rirj(r · gE), (∇r)i(DR)j

}

− iV
(2,0)
OOe

8M2r

{
(r ×DR)·, gB

}
)
O + c.c.

]}
, (2.121)
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where c.c. refers to the charge conjugate of every term inside the angular brackets. In the
terms of order M−1r1 and M−2r0 we include only those that contain a covariant derivative
acting on the octet field, because otherwise they do not contribute in the boost transformation
at the order we are interested in.

Note that in Ref. [58] the identity (2.97) was not used, so there a set of operators is

included that is not linearly independent. In particular, there are two other potentials V
(2,0)
OOb′′′

and V
(2,0)
O⊗Ob′′′ , which we have chosen to neglect in order to work only with linearly independent

operators. Ultimately, these potentials are found to be zero in [58] and the other constraints
do not depend on them, so the results remain unchanged.

Applying the boost operation to this Lagrangian, one obtains the following extra terms,
which have to vanish:

∂µ∆̂µL(O) =

∫
d3rTr

{
O†
(
i
(

1− c(1,0)
O

)
(η ·DR)− 1

4M

(
k

(1,0)
OD − c

(1,0)
O

)
η ·
{
D0,DR

}

− i

M

(
VP 2Oa + VL2Oa +

1

2
k

(1,0)
OD V

(0)
O

)
(η ·DR)

+
i

Mr2

(
VL2Oa +

r

2
V

(0)′
O

)
(η · r)(r ·DR)

− 1

2M

(
VLSOa +

1

2r
V

(0)′
O

)
(η × r) ·

(
σ(1) − σ(2)

))
O

+

[
O†
(

1

2

(
V

(1,1)
OO − V (0,1)

OO

)
(η × r) · gB

+
1

4M

(
cSV

(2,0)
OOa − 2cFV

(1,0)
OOb +

1

2
V

(0,1)
OO +

1

2

)
(η × gE) · σ(1)

− 1

4M

(
V

(2,0)
O⊗Oa − 2V

(1,0)
O⊗Ob +

1

2
V

(0,1)
OO − 1

2

)
(η × gE) · σ(2)

− 1

4Mr2

(
V

(2,0)
OOb′ − 2V

(1,0)
OOc

)
((η × r) · gE)

(
r · σ(1)

)

+
1

4Mr2

(
V

(2,0)
O⊗Ob′ − 2V

(1,0)
O⊗Oc

)
((η × r) · gE)

(
r · σ(2)

)

+
1

4Mr2

(
V

(2,0)
OOb′′ +

r

2
V

(0,1)′
OO

) (
(η × r) · σ(1)

)
(r · gE)

− 1

4Mr2

(
V

(2,0)
O⊗Ob′′ +

r

2
V

(0,1)′
OO

) (
(η × r) · σ(2)

)
(r · gE)

− i

8M

{(
V

(2,0)
OOc′ + V

(1,0)
OOa

)
(r · gE), (η ·∇r)

}

− i

8M

{(
V

(2,0)
OOc′′ − V

(1,0)
OOa + 2

)
(η · r), (∇r · gE)

}

− i

8M

{
V

(2,0)
OOc′′′(η · gE)r·,∇r

}
− i

8M

{
V

(2,0)
OOd

r2
(η · r)(r · gE)r·,∇r

}

+
1

2Mr

(
V

(2,0)
OOe − V

(1,0)
OOd

)
(η × r) · gB

)
O + c.c.

]}
. (2.122)
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Thus, one obtains the following constraints:

k
(1,0)
OD = c

(1,0)
O = 1 , VP 2Oa =

r

2
V

(0)′
O − 1

2
V

(0)
O ,

VL2Oa = −r
2
V

(0)′
O , VLSOa = − 1

2r
V

(0)′
O ,

cSV
(2,0)
OOa = 2cFV

(1,0)
OOb −

1

2
V

(0,1)
OO − 1

2
, V

(2,0)
O⊗Oa = 2V

(1,0)
O⊗Ob −

1

2
V

(0,1)
OO +

1

2
,

V
(2,0)
OOb′ = 2V

(1,0)
OOc , V

(2,0)
O⊗Ob′ = 2V

(1,0)
O⊗Oc

V
(2,0)
OOb′′ = −r

2
V

(0,1)′
OO , V

(2,0)
O⊗Ob′′ = −r

2
V

(0,1)′
OO ,

V
(2,0)
OOc′ = −V (1,0)

OOa , V
(2,0)
OOc′′ = V

(1,0)
OOa − 2 ,

V
(2,0)
OOc′′′ = 0 , V

(2,0)
OOd = 0 ,

V
(2,0)
OOe = V

(1,0)
OOd , V

(1,1)
OO = V

(0,1)
OO , (2.123)

which are in agreement with [58] once the linearly dependent operators are removed. Note
that in [58] the same field redefinitions have been performed as in this work. Again, the boost

coefficient k
(1,0)
OD is fixed to unity, so the boost generator for the octet field coincides with the

one expected from the g → 0 limit with covariant derivatives for the center-of-mass coordinate.

Singlet-Octet Sector

Finally, moving on to the singlet-octet sector, several terms that appear in the octet-octet
sector are absent due to cancellation by charge conjugate counterparts. Following [58], the
Lagrangian is given by:

L(SO, h)
pNRQCD =

∫
d3rTr

[
S†

(
V

(0,1)
SO r · gE +

cFV
(1,0)
SOb

2M
gB ·

(
σ(1) − σ(2)

)

+
V

(1,0)
SOc

2Mr2
(r · gB)

(
r ·
(
σ(1) − σ(2)

))
+
V

(1,0)
SOd

Mr
r · gE

− i

4M
V

(1,1)
SO

{
(r ×DR)·, gB

}
+

icS
16M2

V
(2,0)
SOa

[
DR×, gE

]
·
(
σ(1) − σ(2)

)

+
iV

(2,0)
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16M2r2

{
(r ×DR)·, gE

} (
r ·
(
σ(1) − σ(2)

))

− iV
(2,0)
SOb′′

16M2r2

{(
(r ×DR) ·

(
σ(1) − σ(2)

))
, (r · gE)

}

− iV
(2,0)
SOe

4M2r

{
(r ×DR)·, gB

}
)
O + h.c.

]
, (2.124)

where again we only include terms with covariant derivatives acting on the quarkonium fields
in the order M−1r1 and M−2r0 terms, and we have neglected the linearly dependent operator
with potential V

(2,0)
SOb′′′ .

Here we have included an index h to the Lagrangian, because all operators between the
round brackets are hermitian. In the pure singlet or octet sectors, these are the only operators
that are allowed, but in the singlet-octet sector, one may in principle also add antihermitian
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operators. Instead of canceling, they give terms of the form S†hO −O†hS. We are not aware
of any argument that would exclude such terms a priori, so we give here also the singlet-octet
Lagrangian for the antihermitian operators:

L(SO, a)
pNRQCD =

∫
d3rTr

[
S†

(
1

2M

{
rV

(1,0)
SOe ,∇r · gE

}
+
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− i
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]
. (2.125)

Such terms were not considered in [58].
The extra terms after the boost transformation are the following:

∂µ∆̂µL(SO, h) =
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d3rTr
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, (2.126)

∂µ∆̂µL(SO, a) =

∫
d3rTr
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, (2.127)

which brings us to the constraints

V
(0,1)
SO = V

(1,1)
SO , cSV

(2,0)
SOa = 2cFV

(1,0)
SOb − V

(0,1)
SO , V

(2,0)
SOb′ = 2V

(1,0)
SOc ,

V
(2,0)
SOb′′ = −rV (0,1)′

SO , V
(2,0)
SOe = V

(1,0)
SOd , V

(2,0)
SOf = V

(1,0)
SOe ,

V
(2,0)
SOg′ = 2V

(1,0)
SOf , V

(2,0)
SOg′′ = −2V

(1,0)
SOf , V

(2,0)
SOg′′′ = 0 . (2.128)

These are in agreement with [58] as well, after performing the field redefinitions, except for

the new potentials V
(1,0)
SOe , V

(1,0)
SOf , V

(2,0)
SOf , V

(2,0)
SOg′ , V

(2,0)
SOg′′ , and V

(2,0)
SOg′′′ .
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Chapter 3

Hybrid Quarkonium with Effective
Field Theories

3.1 Introduction

After discussing the conceptional issues of hidden symmetries in EFTs in the previous chapter,
we now want to turn our attention towards the application of EFTs to the study of exotics,
which is of great relevance as we have argued in the beginning of this work. The effective theo-
ries discussed in the previous chapter were instrumental in providing a well defined theoretical
framework for the study of heavy quarkonia away from threshold [9, 10, 35, 64–66]. Also in
the case of exotic quarkonia, the mass scale can be considered larger than any other scale of
the system, so one may integrate it out and arrive at NRQCD. However, the second step, i.e.
arriving at an effective field theory of the type of pNRQCD, whose matching coefficients are
the interaction potentials and the leading order dynamical equation is of the Schrödinger type,
is more difficult.

While in the case of quarkonium systems away from the threshold a dynamically generated
gap exists [35, 64–66], allowing us to integrate out the other degrees of freedom, when we con-
sider quarkonium systems at or above the strong decay threshold, this is no longer the case.
There is no mass gap between the heavy quarkonium and the creation of a heavy-light pair or a
heavy quark pair with gluonic excitations. Thus, constructing the effective field theory entails
considering, besides the heavy quark operators, all gauge invariant operators containing light
quarks, heavy quarks, and excited glue operators, e.g. pions, some heavy-light mesons, quarko-
nium hybrids, and glueballs. We discussed in the beginning how phenomenological models just
pick up some of these possible degrees of freedom and attach to them some phenomenolog-
ical interaction. In an effective field theory description, one should identify an appropriate
expansion parameter and establish a power counting weighting the operators. This is, at the
moment, still difficult.

In this chapter we restrict ourselves to considering a heavy quark, a heavy antiquark,
and excited glue degrees of freedom, aiming at a description of heavy quarkonium hybrids
under some special conditions. Heavy quarkonium hybrids (for a review see e.g. [67]) have
traditionally been described in models like the flux tube model [68, 69], the bag model [70],
the constituent gluon model [71], or in the so-called Born-Oppenheimer (BO) approximation
applied to QCD [67, 72, 73]. The adiabatic BO approximation has been the standard method to
describe the interaction between electrons and nuclei in molecules bound by electromagnetism
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since the early days of quantum mechanics [74, 75] up to now [76]. The BO approximation
assumes that the lighter electrons adjust adiabatically to the motion of the heavier nuclei.
It exploits the fact that the masses of the nuclei are much larger than the electron masses
and, consequently, the time scales for the dynamics of the two types of particles are very
different. It entails no restriction on the strength of the coupling between the slow and the fast
degrees of freedom. In concrete terms, the BO approximation provides a method to obtain the
molecular energies by solving the Schrödinger equation for the nuclei with a potential given by
the electronic static energies at fixed nuclei positions. In particular, in the case of the diatomic
molecule the electronic static energies turn out to be labeled by molecular quantum numbers
corresponding to the symmetries of the diatomic molecular system.

This procedure is rooted in the existence of two classes of degrees of freedom, the “fast”
and “slow” ones, and in the symmetries of the diatomic molecular system. This is the reason
why the same framework can be used to describe systems of different nature but with similar
characteristics. This turns out to be the case for heavy quarkonium hybrids, systems formed
by a heavy quark, a heavy antiquark, and excited glue. The BO approximation has been
used in this case, identifying the slow and fast degrees of freedom with the heavy quark-
antiquark pair and the gluons, respectively [67, 72, 73]. In the static limit the quark and the
antiquark serve as color source and sink at distance r, and the gluonic field arranges itself
in configurations described by the quantum numbers fixed by the symmetry of the system.
The gluonic dynamics are, however, collective and non-perturbative. Nevertheless, the gluonic
static energies (that are the analog of the electronic static energies) have been extracted from
the large time behavior of lattice evaluations of generalized quark-antiquark Wilson loops at
fixed spatial distance with initial and final states of the appropriate symmetry [72, 73, 77–82].
This method provides, in principle, these gluonic static energies, but does not provide the
gluonic wave functions.

Then, relying on a kind of BO approximation, the gluonic static energies have been
introduced as potentials in a Schrödinger-like equation [75] and some level structure has
been obtained [73, 83]. The structure of the hybrid multiplets has also been discussed in
Ref. [17, 84, 85] using the BO approximation and complementary information from the lattice.
These works relied on the adiabatic and single channel BO approximation, meaning respec-
tively that only the static potential and no mixing between different static energies have been
considered. To our knowledge, up to now no analytical description of quarkonium hybrids has
been worked out directly from QCD by constructing an effective field theory that realizes the
physical scale hierarchy typical of the system.1 This is what we address in the present chapter.

This chapter is organized as follows. In section 3.2 we introduce the Non-Relativistic
QCD Hamiltonian and discuss the description of the heavy quarkonium hybrid systems in
NRQCD in the static limit, defining the Fock states, their symmetries, and the corresponding
static energies. In section 3.3 we give the same characterization using potential NRQCD, i.e.
integrating out the soft scale of the momentum transfer and in case multipole expanding.

In particular, we match the NRQCD states and Hamiltonian to the corresponding objects
in pNRQCD. In this way, glueballs and gluelumps naturally emerge in pNRQCD, where the
gluelumps are defined as the color singlet combination of an octet color source coupled to a
gluonic field. The hybrid static potentials appear as matching coefficients of pNRQCD. The
higher degree of symmetry of the lower energy EFT induces a pattern of degeneracy in the
gluelump multiplets.

1This refers to the hybrid spectroscopy. Applications of NRQCD to hybrid production can be found in [86].
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In section 3.4 we introduce existing lattice evaluations of the hybrid static energies and
we relate them to the definitions and the discussion given in the previous sections. In sec-
tion 3.5 we add the first correction to the static limit, introducing operators of order 1/m in
NRQCD and pNRQCD. This allows us to obtain the appropriate Schrödinger equations as
dynamical equations in pNRQCD. At this time we still neglect the spin. We work out the
radial Schrödinger equations coupling the Σ−u and the Πu gluonic states (due to the so-called
Λ-doubling term) in detail, as these will generate all the lowest mass hybrid multiplets. We
characterize the hybrid multiplets by their JPC quantum numbers, and we discuss the relation
with the pattern of hybrid multiplets obtained in the BO approximation and other approaches.

In section 3.6 we solve the Schrödinger equation to get the masses of the predicted hybrid
multiplets. The static potentials appearing in the Schrödinger equation have been defined in
pNRQCD in section 3.3, they depend in the short range on two non-perturbative parameters.
We fix the first one from lattice determinations of the gluelump mass, and we extract the second
from a fit to the gluonic static energies. Then, we define an appropriate renormalon-free scheme
(RS) and we obtain the heavy quarkonium hybrid masses for cc̄, bc̄, and bb̄ systems.

In section 3.7 we compare our results for hybrid mass multiplets to the existing experimental
candidates and to results obtained using the BO approximation, direct lattice computations,
and QCD sum rules. The appendices contain detailed information about the symmetry of
the static system (appendix A.1), the RS scheme (appendix A.2), the derivation of the ra-
dial Schrödinger equation (appendix A.3), and the numerical solution of coupled Schrödinger
equations (appendix A.4).

3.2 Static NRQCD: Symmetries of the Static System

and Definition of the Gluonic Static Energies

We are considering a bound system made by a heavy quark Q, a heavy antiquark Q̄ and
some gluonic excitations: this we will generically call a heavy hybrid state.2 Since the quark
mass mQ is much larger than the typical hadronic scale ΛQCD, we can use NRQCD [30, 32] to
describe such a system. The Hamiltonian of NRQCD for the one-quark-one-antiquark sector
of the Fock space reads

HNRQCD = H(0) +
1

mQ

H(1,0) +
1

mQ̄

H(0,1) + . . . , (3.1)

H(0) =

∫
d3x

1

2
(Ea ·Ea +Ba ·Ba)−

nf∑

l=1

∫
d3x q̄l iD · γ ql , (3.2)

H(1,0) = −1

2

∫
d3xψ†

(
D2 + cF σ · gB

)
ψ , (3.3)

H(0,1) =
1

2

∫
d3xχ†

(
D2 + cF σ · gB

)
χ , (3.4)

where we explicitly allowed for the heavy quark and the antiquark to have different masses mQ

and mQ̄. The matching coefficient cF is equal to one up to loop corrections of order αs. The

2Usually the term hybrid identifies systems where QQ̄ is in a color octet configuration. In the present
treatment the distinction between this type of hybrid and QQ̄ in a color singlet state plus a glueball is often
irrelevant, therefore we will make it only when necessary.

61



physical states are constrained to satisfy the Gauss law3

(D ·E)a |phys〉 = g
(
ψ†T aψ + χ†T aχ+

nf∑

l=1

q̄lγ
0T aql

)
|phys〉 . (3.5)

Even though we include the light quarks here in the Hamiltonian and in the Gauss law, we
will not consider them as external dynamical sources in the rest of this chapter, in the sense
that we exclude excitations with nonzero isospin,4 transitions through light mesons, or decays
into heavy-light mesons, but we still allow for them to appear in the form of sea quarks, as in
light quark loops in perturbation theory or unquenched lattice calculations. The lowest gluonic
excitations are stable under these conditions, since the only remaining transitions require the
emission of a glueball, and this is only possible if the mass gap between initial and final state
is larger than the glueball mass.

In the static limit mQ, mQ̄ →∞ we have

HNRQCD = H(0) , (3.6)

which still contains the kinetic terms associated to the gluons, while the kinetic terms of the
heavy quarks vanish. In the static limit the one-quark–one-antiquark sector of the Fock space
is spanned by [35, 64, 65]

|n;x1,x2〉(0) = ψ†(x1)χ(x2)|n;x1,x2〉(0), ∀x1,x2 , (3.7)

where |n;x1,x2〉(0) is a gauge-invariant eigenstate of H(0) (defined up to a phase and satisfying

the Gauss law) with energy E
(0)
n (x1,x2); |n;x1,x2〉(0) encodes the purely gluonic content of

the state, and it is annihilated by χ†(x) and ψ(x) for any x. It transforms like 3x1⊗3∗x2
under

color SU(3). The normalizations are taken as follows

(0)〈n;x1,x2|m;x1,x2〉(0) = δnm , (3.8)

(0)〈n;x1,x2|m;y1,y2〉(0) = δnmδ
(3)(x1 − y1)δ(3)(x2 − y2) . (3.9)

Notice that since H(0) does not contain any heavy fermion field, |n;x1,x2〉(0) itself is also an

eigenstate of H(0) with energy E
(0)
n (x1,x2). We have made it explicit that the positions x1 and

x2 of the quark and antiquark, respectively, are good quantum numbers for the static solution
|n;x1,x2〉(0), while n generically denotes the remaining quantum numbers.

In static NRQCD, the gluonic excitations between static quarks have the same symmetries
as the diatomic molecule [75]. In the center-of-mass system, these correspond to the symmetry
group D∞h (substituting the parity operation by CP). According to that symmetry, the mass
eigenstates are classified in terms of the angular momentum along the quark-antiquark axis
(Λ = 0, 1, 2, . . . , to which one gives the traditional names Σ,Π,∆, . . . ), CP (g for even or u
for odd), and the reflection properties with respect to a plane that passes through the quark-
antiquark axis (+ for even or − for odd). Only the Σ states are not degenerate with respect
to the reflection symmetry. See appendix A.1 for more details.

3Since Πa = Ea +O(1/m2) we use the chromoelectric field Ea instead of the canonical momentum Πa here
and in the Hamiltonian above.

4States induced by the inclusion of these light degrees of freedom have been discussed in the BO approxi-
mation in [17, 84, 85].
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Translational invariance implies that E
(0)
n (x1,x2) = E

(0)
n (r), where r = x1 − x2. This

means that the gluonic static energies are functions of r and of the only other scale of the
system in the static limit, ΛQCD. The ground-state energy E

(0)

Σ+
g

(r) is associated to the static

quark-antiquark energy, while the other gluonic static energies E
(0)
n (r), n 6= 0, are associated to

gluonic excitations between static quarks. Following the analogy with the diatomic molecule,
the E

(0)
n (r) play the same role as the electronic static energies. However, in the present case

they are non-perturbative quantities and can be obtained in lattice QCD from generalized
static Wilson loops in the limit of large interaction times T [72, 73, 77–82]

Since the static energies are eigenvalues of the static Hamiltonian, one can exploit the
following relation:

(0) 〈n;x1,x2, T/2| n;x1,x2,−T/2〉(0) = N exp
[
−iE(0)

n (r)T
]
, (3.10)

where N =
[
δ(3)(0)

]2
is a normalization constant following from (3.9). Since the static states

|n;x1,x2〉(0) form a complete basis, any state |Xn〉 can be written as an expansion in them:

|Xn〉 = cn |n;x1,x2〉(0) + cn′ |n′;x1,x2〉(0)
+ . . . . (3.11)

From Eq. (3.10), it then follows

〈Xn, T/2|Xn,−T/2〉 = N|cn|2 exp
[
−iE(0)

n (r)T
]

+N|cn′ |2 exp
[
−iE(0)

n′ (r)T
]

+ . . . . (3.12)

For large T the exponentials will be highly oscillatory, or in the Euclidean time of lattice QCD
highly suppressed, so such a correlator will be dominated by the lowest static energy. This
allows us to obtain the lowest static energies without knowing the static states explicitly

E(0)
n (r) = lim

T→∞

i

T
ln〈Xn, T/2|Xn,−T/2〉 . (3.13)

The only condition that |Xn〉 has to satisfy is that it needs to have a nonvanishing overlap
with the static state, cn 6= 0. This can be ensured by requiring |Xn〉 to have the same quantum
numbers n as the static state. Doing this also allows us to not only get the ground state energy,
but also the lowest static energy for any set of excited quantum numbers n, because, if the
quantum numbers of |Xn〉 are fixed, then it can only have an overlap with static states of the
same quantum numbers.

A convenient choice for these |Xn〉 states gives the static energies in terms of Wilson loops,
so we define

|Xn〉 = χ(x2)φ(x2,R)T aP a
n (R)φ(R,x1)ψ†(x1)|vac〉 . (3.14)

Here the strings φ(x2,x1) are Wilson lines from x1 to x2, which are defined in general as

φ(x2, x1) = P exp

[
−ig

∫ x2

x1

dxµAµ(x)

]
, (3.15)

where P denotes the path ordering operator. By |vac〉 we mean the NRQCD vacuum, and
Pn is some gluonic operator that generates the right quantum numbers n. A list of possible
operators Pn is given in Table 3.1. The large time correlator of these states is given by a static
Wilson loop with insertions of Pn in the strings at the center-of-mass. These generalized static
Wilson loops are in principle the same quantities as those that are used to obtain the gluonic

63



static energies on the lattice, but with suitable lattice definitions for the operators Pn and
allowing for further manipulations like smearing. For more details see section 3.4.

For the ground state energy E
(0)

Σ+
g

(r) one has to insert a color-neutral gluonic operator with

JPC quantum numbers 0++ instead of T aP a
n . For the simplest choice, i.e. the unit matrix,

this then coincides with the usual static Wilson loop without insertions and gives the quark-
antiquark static energy. One can also replace T aP a

n by a color-neutral gluonic operator with
excited JPC quantum numbers. In this case one selects the lowest mass singlet plus glueball
states consistent with those JPC quantum numbers. It is possible to get additional information
about and a characterization of these gluonic static energies by using the lower energy effective
field theory called pNRQCD.

3.3 Static pNRQCD: Characterization of the Gluonic

Static Energies at Short Distances and Form of the

Potentials

In this section we discuss how it is possible to obtain a model independent characterization of
the gluonic static energies at short distance and a definition of the hybrid potential using the
low-energy effective field theory called pNRQCD [9, 10].

In the static limit and at leading order in the multipole expansion, the pNRQCD Hamil-
tonian is:

H(0) =

∫
d3Rd3r

(
Vs(r)S

†(r,R)S(r,R) + Vo(r)O
a †(r,R)Oa(r,R)

)
+HYM +O(r) . (3.16)

We will use the symbol H to distinguish pNRQCD Hamiltonians from the NRQCD symbol
H. We assume that the theory has been quantized in an Aa0 = 0 gauge for simplicity. At
leading order in the multipole expansion, the singlet and octet degrees of freedom decouple,
but the octet is still coupled to gluons because of the Gauss law. Vs(r) and Vo(r) are pNRQCD
matching coefficients corresponding to the static quark-antiquark potential in a singlet and in
an octet color configuration respectively (referred to as V

(0)
S/O in chapter 2). These potential

terms are generated by soft gluons, which are still dynamical in NRQCD but integrated out
in pNRQCD, so their effect has to be included explicitly in the Hamiltonian.

HYM has the same form as the pure Yang-Mills plus light-quark part of the NRQCD
Hamiltonian given in Eq. (3.2), but all fields are now understood as ultrasoft. The same
conditions on the light quarks as discussed in the previous chapter also apply here. The
inclusion or omissions of light quarks as sea quarks seems not to critically affect the pattern of
the lowest hybrid masses. This is indicated by the few existing unquenched lattice calculations
of the gluelump masses [87] and static energies [82].

In the r → 0 limit extra symmetries for the gluonic excitations between static quarks
appear. The glue dynamics no longer involve the relative coordinate r, in particular, there
is no longer a special direction dictated by the quark-antiquark axis. Therefore, the glue
associated with a gluonic excitation between static quarks acquires a spherical symmetry. So
in the center-of-mass system gluonic excitations between static quarks are classified according
to representations of O(3)⊗C [9], as opposed to the D∞h group in NRQCD. We will indicate
these quantum numbers by KPC , where K is the angular momentum operator of the gluons.
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Accordingly, in the short distance limit the static states have to be given through glueball
and gluelump operators, which we will call G and Ga respectively. While a gluelump itself
consists of the color singlet combination of a color octet source with gluons, here we will always
use the term “gluelump operator” to refer only to the gluonic operator, since the source will
always be given by the quarkonium octet field. The glueball and gluelump operators are
normalized as

〈0|Gm, i(R)Gn, j(R)|0〉 = δmnδij , and 〈0|Ga
m, i(R)Gb

n, j(R)|0〉 =
1

8
δmnδijδ

ab . (3.17)

Here the operators are assumed to be real. The first indices m and n label different types
of glueballs or gluelumps, the second indices i and j label the different components of the
respective KPC representation.

We can then match the eigenstates of the static NRQCD Hamiltonian to pNRQCD through

|n;x1,x2〉(0) ∼=
(
S†(r,R) n̂i Gn, i(R) +O(r)

)
|0〉 (3.18)

for the singlet plus glueball states and

|n;x1,x2〉(0) ∼=
(
Oa †(r,R) n̂i G

a
n, i(R) +O(r)

)
|0〉 (3.19)

for the gluelump states, where n̂ is some unit projection vector that fixes the D∞h quantum
numbers. Higher order terms in the multipole expansion will also be operators of this form,
so the states will no longer be purely singlet plus glueball or gluelump, but a combination
of all of these states with the right D∞h quantum numbers. We use the symbol

∼
= to read

“matches to”, meaning that, although the states or operators on both sides are defined in
different Fock spaces, calculating amplitudes in either theory gives the same results. In this
case the matching condition is that acting with the static Hamiltonian of either theory on the
respective state gives the same static energy.

Since the projection vector n̂ does not influence the static energy at leading order in the
multipole expansion, several static energies are degenerate in the short distance limit r �
1/ΛQCD. We can see this for the gluelump states by calculating that

H(0) |n;x1,x2〉 ∼=
[∫

d3R′ d3r′ Vo(r)O
a′ †(r′,R′)Oa′(r′,R′), Oa †(r,R)

]
n̂iG

a
n, i(R) |0〉

+Oa †(r,R) n̂i
[
HYM , G

a
n, i(R)

]
|0〉+O(r)

=
(
Vo(r) + ΛH +O

(
r2
)) (

Oa †(r,R) n̂iG
a
n, i(R) +O(r)

)
|0〉 . (3.20)

For the singlet plus glueball states the calculation goes analogously. The glueball or gluelump
mass ΛH is the energy eigenvalue of the states generated by G or Ga under the Yang-Mills
Hamiltonian. It depends on n but it is the same for any component of G or Ga, so the
projections have no influence on the leading order of the static energy. This approximate
degeneracy for small r is a direct consequence of the extension of the D∞h symmetry group to
O(3)⊗ C.

The glueball and gluelump masses ΛH are well defined as eigenvalues of the Yang-Mills
Hamiltonian, however, the operators that create the corresponding eigenstates are unknown.
This situation is similar to the previous section, where it is also unknown how to express the
exact static NRQCD states |n;x1,x2〉(0) in terms of NRQCD fields. So one can use the same
approach here to determine the values of ΛH : one uses operators with the same quantum
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Λσ
η KPC P a

Σ−u 1+− r̂ ·B, r̂ · (D ×E)

Πu 1+− r̂ ×B, r̂ × (D ×E)

Σ+ ′
g 1−− r̂ ·E, r̂ · (D ×B)

Πg 1−− r̂ ×E, r̂ × (D ×B)

Σ−g 2−− (r̂ ·D)(r̂ ·B)

Π′g 2−− r̂ × ((r̂ ·D)B +D(r̂ ·B))

∆g 2−− (r̂ ×D)i(r̂ ×B)j + (r̂ ×D)j(r̂ ×B)i

Σ+
u 2+− (r̂ ·D)(r̂ ·E)

Π′u 2+− r̂ × ((r̂ ·D)E +D(r̂ ·E))

∆u 2+− (r̂ ×D)i(r̂ ×E)j + (r̂ ×D)j(r̂ ×E)i

Table 3.1: Gluonic excitation operators at leading order in the multipole expansion in pNRQCD
up to mass dimension 3; r̂ denotes the unit vector in the direction of the quark-antiquark
distance r. Different projections of the same fields correspond to different D∞h representations,
which are degenerate in the small distance limit. The cross product with r̂ has two linearly
independent components, which correspond to the two components of Λ ≥ 1 representations of
D∞h; the same applies for the symmetric tensor operators of the ∆ representations. Note that
the KPC quantum numbers refer only to the gluon fields, not the transformation properties of
r̂, which is P and C odd. The Σ+

g is not shown since it corresponds to the ground state. This
table is taken from [9].

numbers as G or Ga and projects out the lowest energy eigenvalue through the large time
limit.

The NRQCD states |Xn〉 defined in (3.14) match in pNRQCD at leading order in the
multipole expansion to

|Xn〉 ∼=
(
Zn(r)Oa †(r,R)P a

n (r̂,R) +O(r)
)
|0〉 . (3.21)

The matching constant Zn accounts for effects at the scale 1/r, which have been integrated out
in pNRQCD, and so it depends on r in a non-analytic way. However, it gives a vanishing term
in the large time correlator (3.13), so it has no influence on the static energies. Table 3.1 shows
a set of convenient gluon operators P a

n corresponding to the lowest hybrid quantum numbers.
The expected pattern of degeneracies in the short distance limit also can be read off from this
table:

Σ−u ∼ Πu , Σ−g ∼ Π′g ∼ ∆g ,

Σ+ ′
g ∼ Πg , Σ+

u ∼ Π′u ∼ ∆u , (3.22)

where a prime indicates an excited state [9] (see also [88]).
The large time correlators are then given by

〈Xn, T/2|Xn,−T/2〉 = N e−iVo(r)T 〈0|P a
n (T/2)φabA (T/2,−T/2)P b

n(−T/2)|0〉+O
(
r2
)
. (3.23)

The temporal Wilson line in the gluonic correlator ensures the gauge invariance of the ex-
pression. In Aa0 = 0 gauges, which we assumed in the Hamiltonian, it can be replaced by a
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Kronecker delta, but in other gauges it is needed. The gluonic correlator can only be evaluated
non-perturbatively, since it contains no physical scale except for ΛQCD, but on general grounds
we can argue that

〈0|P a
n (T/2)φabA (T/2,−T/2)P b

n(−T/2)|0〉 = |cn|2e−iΛHT + |cn′ |2e−iΛH′T + . . . , (3.24)

so that we achieve the following matching condition between the static energy E
(0)
n (r) in

NRQCD and the static potential Vo(r) in pNRQCD [cf. Eq. (3.13)]

E(0)
n (r) = lim

T→∞

i

T
ln〈Xn, T/2|Xn,−T/2〉 = Vo(r) + ΛH +O

(
r2
)
. (3.25)

Again, for the singlet plus glueball states the calculation is analogous. The ground state
corresponds to a singlet without a glueball operator, so

E
(0)

Σ+
g

(r) = Vs(r) +O
(
r2
)
. (3.26)

At small distances, r � 1/ΛQCD, Vs and Vo can be calculated perturbatively. They are
known at three loops with some partial results at four loops [89–95]. For a detailed comparison
of Vs to the lattice data in the short range, see [96–98].

Equations (3.25) and (3.26) can be systematically improved by calculating higher orders in
the multipole expansion. In particular, one can look at how the O(3)⊗ C symmetry is softly
broken to D∞h in the short-distance limit. The leading correction coming from the multipole
expansion to (3.25) and (3.26) is at O(r2) and can be calculated in pNRQCD in terms of non-
perturbative correlators to be eventually evaluated on the lattice or in QCD vacuum models.
Such a correction is necessary in order to form a bound state, since Vo(r) itself is repulsive.

In this chapter we consider only states of the lowest lying symmetry multiplet, i.e. the Σ−u
and Πu states. They are generated from a gluelump with quantum numbers 1+−. A good
gluonic operator P a overlapping with this gluelump, which can be used in the large time
correlator (3.25), is the chromomagnetic field Ba, so we will call this gluelump operator Ga

B.

For the projection on the Σ−u state the unit vector r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)T will
be used, which gives the direction of the quark-antiquark axis. The other two projection
vectors for the Πu states have to be orthogonal to r̂ and each other, but apart from that we

are free to take any two convenient vectors. We will use r̂± =
(
θ̂ ± iϕ̂

)
/
√

2, where θ̂ =

(cos θ cosϕ, cos θ sinϕ,− sin θ)T and ϕ̂ = (− sinϕ, cosϕ, 0)T are the usual local unit vectors in
a spherical coordinate system. The advantage of this choice is that with these complex vectors
the projections of the gluelump operator transform as r̂± ·Ga

B → e±iα r̂± ·Ga
B under rotations

by an angle α around the quark-antiquark axis.

The leading order matching condition is then given by

∣∣1Σ−u ;x1,x2

〉(0) ∼
= Oa †(r,R) r̂ ·Ga

B(R) |0〉+O(r) , (3.27)
∣∣1Π±u ;x1,x2

〉(0) ∼
= Oa †(r,R) r̂± ·Ga

B(R) |0〉+O(r) . (3.28)

Note that by this definition the index ± on the Πu states refers to the sign under rotations,
while the index − of the Σ−u state refers to the sign under reflections.

67



3.4 Lattice Determination of the Gluonic Static Ener-

gies in NRQCD

The gluonic NRQCD static energies are calculated on the lattice through the logarithm of
large time generalized static Wilson loops introduced in Eq. (3.13) divided by the interaction
time. The generalized static Wilson loops are constructed using for the initial and final states
NRQCD operators with the quantum numbers needed to select the desired static energy [see,
for instance, Eq. (3.14)].

The static energies for heavy quark-antiquark pairs have been computed in lattice QCD by
several authors [72, 73, 77–82]. In this section we review the latest available data sets obtained
by Juge, Kuti, and Morningstar in [73, 81] and by Bali and Pineda in [99], which have been
used in this chapter.

Static energies were obtained in quenched lattice QCD by Juge, Kuti, and Morningstar
on anisotropic lattices using an improved gauge action introduced in [100]. They extracted
the static energies from Monte Carlo estimates of generalized large Wilson loops for a large
set of operators projected onto the different representations of the D∞h group. The distance
r between the heavy quark-antiquark pair is fixed in the starting time slice. The use of
anisotropic lattices with the temporal spacing much smaller than the spatial spacing is crucial
to resolve the gluon excitation spectrum. The static energies for the Σ, Π and ∆ gluonic
excitations were first computed in [73] and then in larger lattice volumes in [81]. The lattice
data from the latter reference consists of four different runs with lattice volumes: (182×24)×54,
(162× 20)× 80, 143× 56, and the final one is a finite volume check. The corresponding lattice
spacings for these runs are ∼ 0.12 fm, ∼ 0.19 fm, ∼ 0.22 fm, and ∼ 0.27 fm.

Lattice simulations were carried out by Bali and Pineda in [99] focusing on the short range
static energies for the Πu and Σ−u potentials. They performed two sets of computations using
a Wilson gauge action in the quenched approximation. The first set was performed on an
isotropic lattice with volume 243× 48 at β = 6.2 and lattice spacing ≈ 0.07 fm, the second set
on three anisotropic lattices with spatial spacings ≈ 0.16, 0.11, 0.08 fm and temporal spacing
of one fourth of the spatial spacing, with β = 5.8, 6.0, 6.2, respectively. The isotropic data
was used as a consistency check and the anisotropic data was extrapolated to the continuum
limit.

The static energies computed on the lattice using generalized static Wilson loops contain
divergent self-energy contributions in the temporal lines, in principle associated to the heavy
quark mass. These self-energy contributions have to be removed in order to obtain the absolute
value of the static energies. They could be removed by comparing the ground state static
energy, Σ+

g , with the Coulombic potential computed in perturbation theory at very short
distances. In practice, however, lattice data is not available for such short distances in which the
perturbative regime is valid. Instead, to remove the divergence, Juge, Kuti, and Morningstar
fitted the Σ+

g static energy to Λ0 +ec/r+κr and subtracted the value Λ0, while Bali and Pineda
chose to give the values of the static energies relative to the value of the Σ+

g static energy at
r = r0 ≈ 0.5 fm.

The ground state static energy, Σ+
g , and the first gluonic excitation, Πu, have been computed

in unquenched lattice simulations in [82]. The light quarks have unphysically large masses
which are equivalent to a pion mass of 650 MeV. Two lattice volumes were used, 163 × 32
and 243 × 40 with β = 5.6 and a lattice spacing of ≈ 0.076 fm. Two quenched calculations
were carried out in the same work and the results were found to agree within errors with the
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Figure 3.1: The lowest hybrid static energies [81] and gluelump masses [88] in units of r0 ≈
0.5 fm. The absolute values have been fixed such that the ground state Σ+

g static energy
(not displayed) is zero at r0. The behavior of the static energies at short distances becomes
rather unreliable for some hybrids, especially the higher exited ones. This is largely due to the
difficulty in lattice calculations to distinguish between states with the same quantum numbers,
which mix. For example, the Σ+′′

g static energy approaches the shape corresponding to a singlet
plus 0++ glueball state (also displayed) instead of the 0++ gluelump. This picture is taken
from [99].

unquenched Σ+
g and Πu static energies below the quark-antiquark string breaking distance.

As explained in the previous section, in the short distance limit the heavy quark-antiquark
pair gives origin to a local octet source, and the spectrum of gluonic static energies is related
to the gluelump spectrum. In Fig. 3.1 the lattice data from Ref. [81] is plotted and compared
with the gluelump spectrum, computed also on the lattice, of Ref. [88]. We can see that the
two lowest-lying hybrid static energies are the Πu and Σ−u states and they clearly tend to form
a degenerate multiplet in the short range. The Πg − Σ+′

g , ∆g − Σ−g − Π′g and ∆u − Π′u − Σ+
u

multiplets are also expected to be degenerate in the short range [9], cf. Table 3.1.

3.5 The Schrödinger Equation: Matching at O(1/m)

3.5.1 Beyond the Static Limit

In this section we go beyond the static limit to obtain the bound state equation that gives the
hybrid masses. Therefore, we consider the 1/m corrections to the NRQCD static Hamiltonian,
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see Eqs. (3.3) and (3.4). We then match the NRQCD states and Hamiltonian to pNRQCD,
obtaining the Schrödinger equation that describes the hybrids and the corresponding eigen-
states.

The spectrum of the static Hamiltonian H(0), as of any Hermitian operator, provides a full
basis of the corresponding Fock space. Therefore, we can express any state, in particular also
the eigenstates |N〉 of the full Hamiltonian H, as a superposition of static states:

|N〉 =
∑

n

∫
d3x1 d

3x2 |n;x1,x2〉(0)ψ(N)
n (x1,x2) . (3.29)

In this notation, N is a shorthand for all quantum numbers of the system described by the full
Hamiltonian, which are generally different from the static quantum numbers n. The relation
in Eq. (3.29) is written in the most general way, but quantum numbers that are incompatible
with N do not, in fact, appear in the sum over n. For example, if a certain static quantum
number is also a good quantum number in the non-static system, then the sum in Eq. (3.29) can
only contain one value for it. By writing the integrations over x1 and x2 explicitly, we already
anticipate that the heavy quark and antiquark positions are not good quantum numbers, which
is natural in the non-static system of the full Hamiltonian.

We want to use quantum mechanical perturbation theory in order to determine the leading
coefficients in (3.29) in the 1/m expansion. An important distinction to make here is whether
to use degenerate or non-degenerate perturbation theory. In any quantum mechanical system
with a Hamiltonian H(0) +∆H and a full set of unperturbed eigenstates satisfying H(0)|n〉(0) =

E
(0)
n |n〉(0), the first two perturbative corrections to a non-degenerate energy eigenvalue of H(0)

are given by

En = E(0)
n + (0)〈n|∆H|n〉(0) +

∑

n′ 6=n

∣∣(0)〈n′|∆H|n〉(0)
∣∣2

E
(0)
n − E(0)

n′

+ . . . . (3.30)

The first correction to the leading term is usually small for a suitably chosen ∆H, but the
second correction term can only be considered small if 〈∆H〉/∆E(0) � 1, otherwise the second
correction would be of the same order as the first, and the perturbative series would break
down. If there is no degeneracy between the energies, i.e. ∆E(0) ∼ E

(0)
n , then this condition is

satisfied. The corresponding full eigenstate is given at leading order by exactly one unperturbed
state.

However, if some of the energies are close enough or even identical, then because of the
vanishing denominator in the second order term this expansion cannot be valid. Instead, one
has to calculate the matrix elements of H(0)+∆H between all degenerate states and diagonalize
the result. The full eigenstates at leading order are then no longer a single unperturbed state
but a superposition of the degenerate states, and the coefficients of this superposition form the
eigenvectors that diagonalize H(0) + ∆H in the degenerate sector. The next correction to the
energy is given by a term similar to the second order in the non-degenerate case, but the sum
over n′ now contains none of the degenerate states (so there is no vanishing denominator), and

the single state |n〉 and the energy E
(0)
n have to be replaced by the superposition of degenerate

states and the corresponding energy eigenvalue, respectively.
In our case the static states are clearly degenerate regarding the quark and antiquark

positions x1 and x2. The question whether there are degeneracies related to the other quantum
numbers n of the static states is harder to answer. We know that in the short distance limit
the states belonging to the same gluelump multiplet are degenerate, and we can assume a
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mass gap of order ΛQCD between the lowest gluelump and higher excited multiplets as well as
the ground state (cf. Fig. 3.1 and Ref. [87]). Neglecting pion contributions is crucial for this
assumption. At larger distances r ∼ Λ−1

QCD it is also reasonable to assume a mass gap of order
ΛQCD between the Πu and Σ−u states, while at even larger distances the Σ−u static energy starts
to cross with higher excited states, although we do not expect those crossover regions to be of
importance to the low lying hybrids. In any case at very large distance open flavor channels
that we neglect will also play a role. So depending on the value of r the static energies may or
may not be degenerate, but since the lowest lying hybrids are expected to be located around
the minimum of the potential, which is close to the short distance part, we will use degenerate
perturbation theory with respect to the Πu and Σ−u states.

The leading term for the energy in degenerate perturbation theory is obtained by diagonal-
izing the matrix elements between the degenerate states. For the static plus 1/m Hamiltonian,
this can be done in two steps. We can write the matrix elements as

(0)〈n′;x′1,x′2|H(0) +H(1)|n;x1,x2〉(0) =
(
δn′nE

(0)
n + E

(1)
n′n

)
δ(3)(x′1 − x1)δ(3)(x′2 − x2) , (3.31)

where we use the abbreviation H(1) = H(1,0)/mQ+H(0,1)/mQ̄. The new energy term E
(1)
n′n in this

expression is a matrix-valued differential operator acting on the delta functions. Diagonalizing
the matrix elements corresponds to finding the sets of eigenfunctions ψ

(N)
n of E(0) + E(1)

satisfying ∑

n

(
δn′nE

(0)
n + E

(1)
n′n

)
ψ(N)
n = EN ψ(N)

n′ , (3.32)

where the eigenvalue EN gives the mass of the hybrid state as mH = mQ + mQ̄ + EN up
to corrections of order 1/m2. So the first step corresponds to determining this differential
operator, the second to solving the resulting eigenvalue problem.

We will first determine E
(1)
n′n in the short distance limit, since it is in this regime where we

have a strong degeneracy between the Σ−u and Πu states. Accordingly, we will not calculate the
matrix elements for the full 1/m Hamiltonian, but only for the leading order in the multipole
expansion. The importance of each term can be determined by the standard power counting of
weakly-coupled pNRQCD. All powers of 1/r including derivatives in r scale as mv with v � 1,
while all other dynamical fields scale as the next lower energy scale, which can either be ΛQCD

or mv2, which is the scale of the potential terms. In this case the hierarchy mv � ΛQCD � mv2

seems more appropriate.
In the octet sector the 1/m pNRQCD Hamiltonian is given by

H(1) =

∫
d3Rd3r Oa †(r,R)

[
−∇2

rδ
ab

m
− (D2

R)
ab

4m
+
V (1)(r)δab

m
+ . . .

]
Ob(r,R) . (3.33)

Here we have assumed for simplicity that the quark and the antiquark have the same mass
m, otherwise we would have to distinguish between reduced and total mass, i.e. replace the
first denominator by 2mQmQ̄/(mQ + mQ̄) and the second by 2(mQ + mQ̄) etc. These are not
all 1/m operators, the dots contain other terms that involve the gauge fields E and B at the
same or higher orders in the multipole expansion, including spin interactions.

According to the power counting, the first term of H(1), which is the kinetic term for
the relative distance, scales as mv2, while all other terms scale at most as Λ2

QCD/m (in the

weak coupling regime V (1) is of order m2v4 [64, 65]). We will include only the kinetic term,
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which means that our calculation will be valid up to corrections of order Λ2
QCD/m. The static

Hamiltonian H(0) itself is of order mv2 in the heavy quark part, which contains the singlet and
octet potentials, and of order ΛQCD in the Yang-Mills part, which gives rise to the gluelump
mass. So we see that at least the potential term of H(0) and the kinetic term of H(1) are of the
same order, which is in accordance with the virial theorem of standard quantum mechanics.

In the long-distance limit, we cannot rely on the multipole expansion. Both E
(0)
n and E

(1)
n′n

may be expressed as the expectation value of some generalized Wilson loop acting on quark-
antiquark color singlet states. These generalized Wilson loops, involving the insertion of gauge
fields in a static Wilson loop, can in principle be determined from lattice calculations. They
have been in the case of E

(0)
n , see section 3.4, but they have not been in the case of E

(1)
n′n.

Hence we will be able to use the full non-perturbative information only for the static energies,
while we will have to rely on short distance approximations, and in particular on the leading
order term in the multipole expansion, in the case of the 1/m terms. This is a reasonable
approximation for the lowest hybrid states that are expected to lie near the minimum of the
potential, which is sufficiently close to the origin (a quantitative analysis can be found in
section 3.6).

In summary, we will use nearly degenerate perturbation theory for the static states Πu and
Σ−u belonging to the same 1+− gluelump multiplet at short distances. We will use both per-

turbative and non-perturbative information for the static energies, E
(0)
n , while we will evaluate

E
(1)
n′n at short distances at leading order in the multipole expansion.

We turn to the evaluation of the matrix elements of the kinetic term in the short distance
limit, which will lead to a coupled Schrödinger equation. The kinetic term acts on the static
states corresponding to the lowest gluelump in the following way:

Hkin |n;x1,x2〉(0) ∼= −
[∫

d3R′ d3r′Oa′ †(r′,R′)
∇2

r′

m
Oa′(r′,R′), Oa †(r,R)

]
n̂ ·Ga

B(R) |0〉

= −
(
∇2

r

m
Oa †(r,R)

)
n̂ ·Ga

B(R) |0〉 , (3.34)

where n̂ can be either r̂ or r̂± for Σ−u or Πu, respectively. The matrix elements are then given
by

(0)〈n′;x′1,x′2|Hkin |n;x1,x2〉(0)

= −〈0| n̂′ ∗ ·Ga′

B(R′)

[
Oa′(r′,R′),

(
∇2

r

m
Oa †(r,R)

)]
n̂ ·Ga

B(R) |0〉

= −〈0| n̂′ ∗ ·Ga
B(R) n̂ ·Ga

B(R) |0〉∇
2
r

m
δ(3)(r − r′)δ(3)(R−R′)

= −n̂′ ∗(θ′, ϕ′) · n̂(θ, ϕ)
∇2

r

m
δ(3)(r − r′)δ(3)(R−R′) . (3.35)

To evaluate the expectation value of the gluonic operators we have used the fact that the
gluelump operators create orthonormal states. The dependence on the coordinates of the
projection vectors has been made explicit in the last line.

If we now let the differential operator corresponding to these matrix elements act on the
wave functions, which is equivalent to a convolution of Eq. (3.35) with ψ

(N)
n (r), then we obtain

the following differential equation (replacing r′ with r)

∑

n=Σ,Π±

n̂′ ∗(θ, ϕ) ·
(
−∇2

r

m
+ E(0)

n (r)

)
n̂(θ, ϕ) Ψ(N)

n (r) = EN Ψ
(N)
n′ (r) . (3.36)
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Comparing this result with Eq. (3.32), the scalar product of n̂′ and n̂ gives the δn′n in front of

the static energy, and the first term gives the differential operator E
(1)
n′n, which will have a more

complicated expression, because the derivatives act not only on the wave function, but also on
n̂. The wave functions only need to depend on r, because we have neglected the kinetic term
for R, so the center-of-mass coordinate is still a good quantum number. This corresponds to
a hybrid at rest without any recoil effects between heavy quarks and gluons.

3.5.2 The Radial Schrödinger Equation

The Laplace operator ∇2
r can be split into a radial and an angular part, such that

− ∇2
r

m
= − 1

mr2

(
∂r r

2 ∂r + ∂x
(
1− x2

)
∂x +

1

1− x2
∂2
ϕ

)
, (3.37)

where we have replaced the angle θ by x = cos θ. The radial part ∂r r
2 ∂r acts only on the

wave function Ψn(r), and the scalar product of the projection vectors just gives a Kronecker
delta: n̂′ · n̂ = δn′n.

The angular part usually has eigenfunctions in the spherical harmonics, however, the pres-
ence of the projection vectors modifies the defining differential equations in the diagonal entries
n′ = n to

−
[
∂x
(
1− x2

)
∂x +

1

1− x2

(
∂2
ϕ − 2iλx∂ϕ − λ2

)]
vλl,m(x, ϕ) = l(l + 1)vλl,m(x, ϕ) , (3.38)

where λ labels the different projection vectors, λ = 0 for r̂ and λ = ±1 for r̂±. An explicit
solution for these orbital wave functions can be given as

vλl,m(x, ϕ) =
(−1)m+λ

2l

√
2l + 1

4π

(l −m)!

(l +m)!(l − λ)!(l + λ)!
P λ
l,m(x)eimϕ , (3.39)

P λ
l,m(x) = (1− x)(m−λ)/2(1 + x)(m+λ)/2 ∂l+mx (x− 1)l+λ(x+ 1)l−λ . (3.40)

A derivation of these functions can be found in textbooks such as [75]. They are defined for
|m| ≤ l and |λ| ≤ l, and for λ = 0 they are identical to the spherical harmonics.

The quantum numbers l and m correspond to the eigenvalues of the angular momentum
L = LQQ̄ +K, where LQQ̄ is the angular momentum operator of the heavy quarks, and K is
the gluon angular momentum operator. These eigenvalues appear when the operator acts on
the state, not only the wave function:

L2

∫
dΩ
(
vλl,m r̂

λ ·Ga
B O

a †) |0〉 = l(l + 1)

∫
dΩ
(
vλl,m r̂

λ ·Ga
B O

a †) |0〉 , (3.41)

L3

∫
dΩ
(
vλl,m r̂

λ ·Ga
B O

a †) |0〉 = m

∫
dΩ
(
vλl,m r̂

λ ·Ga
B O

a †) |0〉 . (3.42)

The states with the orbital wave functions vλl,m are eigenstates of the angular momentum,
but not yet of parity and charge conjugation, because acting with P or C turns λ into −λ.
We list here the transformation properties of all elements of the states:

vλl,m
P→ (−1)lv−λl,m , vλl,m

C→ (−1)lv−λl,m , (3.43)

r̂λ
P→ (−1)λ+1r̂−λ , r̂λ

C→ (−1)λ+1r̂−λ , (3.44)
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l JPC{s = 0, s = 1} E
(0)
n

H1 1 {1−−, (0, 1, 2)−+} Σ−u , Πu

H2 1 {1++, (0, 1, 2)+−} Πu

H3 0 {0++, 1+−} Σ−u
H4 2 {2++, (1, 2, 3)+−} Σ−u , Πu

H5 2 {2−−, (1, 2, 3)−+} Πu

Table 3.2: JPC multiplets with l ≤ 2 for the Σ−u and Πu gluonic states. We follow the naming
notation Hi used in [17, 83–85], which orders the multiplets from lower to higher mass. The
last column shows the gluonic static energies that appear in the Schrödinger equation of the
respective multiplet.

Ga
B

P→ Ga
B , Ga

B
C→ −(−)aGa

B , (3.45)

Oa
s

P→ −Oa
s , Oa

s
C→ (−1)s(−)aOa

s . (3.46)

The factor (−)a comes from T a = (−)a(T a)T , but since it appears in front of the octet field and
of the gluelump operator, it cancels for the gluelump states. The quantum number s labels
the total spin of the quark and the antiquark and can have values 0 or 1.

For λ = 0 we already have parity and charge conjugation eigenstates:

v0
l,m r̂ ·Ga

B O
a †|0〉 P→ (−1)l v0

l,m r̂ ·Ga
B O

a †|0〉 , (3.47)

v0
l,m r̂ ·Ga

B O
a †|0〉 C→ (−1)l+s v0

l,m r̂ ·Ga
B O

a †|0〉 . (3.48)

For |λ| = 1 we can define even and odd parity or charge conjugation states:

1√
2

(
v1
l,m r̂

+ ± v−1
l,m r̂

−) ·Ga
B O

a †|0〉 P→ ∓(−1)l
1√
2

(
v1
l,m r̂

+ ± v−1
l,m r̂

−) ·Ga
B O

a †|0〉 , (3.49)

1√
2

(
v1
l,m r̂

+ ± v−1
l,m r̂

−) ·Ga
B O

a †|0〉 C→ ∓(−1)l+s
1√
2

(
v1
l,m r̂

+ ± v−1
l,m r̂

−) ·Ga
B O

a †|0〉 . (3.50)

We see that the combination with a relative minus sign has the same P and C transformation
properties as the λ = 0 state, while the positive combination has opposite behavior.

Now the angular momentum L and the spin S can be combined with the usual Clebsch-
Gordan coefficients to form eigenstates of the total angular momentum J = L+S. Since at this
level of the approximation nothing depends on the spin, all the different spin combinations have
the same energy and appear as degenerate multiplets. The JPC quantum numbers are then
{l±±; (l − 1)±∓, l±∓, (l + 1)±∓}, where the first entry corresponds to the spin 0 combination
and the next three entries to the spin 1 combinations. For l = 0 there is only one spin 1
combination as well as only one parity or charge conjugation state (see below), so we have
{0++, 1+−}. In Table 3.2 the first five degenerate multiplets that can be obtained are shown,
arranged according to their energy eigenvalues (see section 3.6).

The λ = 0 state will be convoluted with the radial wave functions ψ
(N)
Σ (r), while the radial

wave functions ψ
(N)
±Π (r) will be convoluted with the |λ| = 1 states that have the relative ± sign

between the two projection vectors and orbital wave functions. The differential term n̂′ · ∇2
r n̂

in the coupled Schrödinger equation not only changes the differential equations for the orbital
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wave functions, it also adds additional diagonal and offdiagonal terms. The offdiagonal terms
change the radial Σ wave function to Π and vice versa, however, they can not change the parity
of the states. This means that ψ

(N)
Σ mixes only with ψ

(N)
−Π , and ψ

(N)
+Π decouples. We then have

the following coupled radial Schrödinger equation for one parity state,

[
− 1

mr2
∂rr

2∂r +
1

mr2

(
l(l + 1) + 2 2

√
l(l + 1)

2
√
l(l + 1) l(l + 1)

)
+

(
E

(0)
Σ 0

0 E
(0)
Π

)](
ψ

(N)
Σ

ψ
(N)
−Π

)
= EN

(
ψ

(N)
Σ

ψ
(N)
−Π

)
,

(3.51)
and for the other we get the conventional radial Schrödinger equation

[
− 1

mr2
∂r r

2 ∂r +
l(l + 1)

mr2
+ E

(0)
Π

]
ψ

(N)
+Π = EN ψ(N)

+Π . (3.52)

There is a special case for l = 0 in that the offdiagonal terms in the coupled equation
vanish, so the radial Schrödinger equations for ψ

(N)
Σ and ψ

(N)
−Π also decouple. In fact, ψ

(N)
−Π is

irrelevant, since there are no orbital wave functions with |λ| = 1 for l = 0. The same applies

to ψ
(N)
+Π . So for l = 0 there exists only one parity state, and its radial wave function is given

by an almost ordinary Schrödinger equation with the E
(0)
Σ potential, the only unusual element

is that the angular part is 2/mr2 even though l = 0.
In appendix A.3 we describe the derivation of the radial Schrödinger equations in more

detail. For the uncoupled radial Schrödinger equations there exist well established numerical
methods to find the wave functions and eigenvalues. These can also be extended to the coupled
case, more details on the specific approach that we chose to get the numerical results are given
in appendix A.4 and [101].

3.5.3 Comparison with Other Descriptions of Hybrids

We now compare the pattern of hybrid spin-symmetry multiplets that we have obtained in our
approach with the one obtained in different pictures. The BO approximation for hybrids, as
it has been employed in Refs. [17, 70, 72, 73, 84, 85], produces spin-symmetry multiplets with
the same JPC constituents as our Hi multiplets in Table 3.2, however, in all the existing BO
papers the masses of opposite parity states are degenerate.

In Ref. [17, 84, 85] the underlying assumptions of the BO approximation are given in more
detail. Two main points are identified, an adiabatic approximation and a single-channel ap-
proximation. The adiabatic approximation states that the time scales for heavy and light
degrees of freedom are very different, such that the light degrees of freedom adapt instanta-
neously to changes in the quark and antiquark positions and therefore always form a static
eigenstate. This is equivalent to the 1/m expansion we have used here, where the hybrid
states are expressed in terms of static states. The single-channel approximation states that
at leading order the light degrees of freedom remain always in the same static eigenstate, be-
cause transitions to other states are suppressed by a mass gap of order ΛQCD. We make the
same assumption regarding transitions to static states corresponding to excited gluelumps, but
for the lowest gluelump states we go beyond the single-channel approximation, since at short
distances they are nearly degenerate.

Consequently, we obtain terms that mix the static states through a coupled Schrödinger
equation, in a way that is firmly based on QCD. Taking into account these mixing terms, we
find that the degeneracy between opposite parity states is broken. In the BO approximation
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in the context of atomic molecules this effect is also known as Λ-doubling [75]. In the context
of hybrids, Λ-doubling and the modified orbital wave functions vλl,m have been discussed here
for the first time.

In the constituent gluon picture [71], hybrids are assumed to be composed of a gluonic
excitation bound to a heavy-quark antiquark pair. The gluons are assumed to appear in JPC

representations unlike the case of pNRQCD or BO descriptions, in which the gluonic states
appear in Λσ

η representations. The quantum numbers of the resulting hybrid are obtained by
adding those of the gluon and those of the heavy-quark antiquark pair using the standard rules
for addition of angular momentum. In this way one gets the same JPC quantum numbers as
we do, but they are arranged in larger multiplets.

If, in the constituent gluon picture, we couple a chromomagnetic (i.e. 1+−) gluonic ex-
citation with an S-wave heavy-quark antiquark pair in a spin singlet {0−+} or spin triplet
{1−−} state, then we get exactly the quantum numbers of H1. Similarly, for P -wave quarko-
nium with quantum numbers {1+−, (0, 1, 2)++} (corresponding to different spin states) we get
H2∪H3∪H4. H5 would then be included in the combination with the next quarkonium quan-
tum numbers. Since for pNRQCD in the limit r → 0 we recover spherical symmetry, we can
see the constituent gluon picture as the short distance limit of the pNRQCD or BO pictures.
Furthermore, one can interpret the finer multiplet structure of pNRQCD with respect to the
constituent gluon picture as the effect of the finite distance r between the heavy-quark pair.

The flux tube model [68, 69] (for a more recent comparison of the flux tube model with
the constituent gluon picture see e.g. [102]) arises from the idea that for QCD in the strong-
coupling regime one can think of the gluonic degrees of freedom as having condensed into a
collective stringlike flux tube. In this picture the spectrum of gluonic static energies can be
interpreted as the vibrational excitation levels of the string. The lowest excitations of such a
string will correspond to non-relativistic, small, transverse displacement oscillations and as such
should be well described by the Hamiltonian of a continuous string. The eigenstates of such
a Hamiltonian are characterized by the phonon occupation number and their polarizations,
while the spectrum corresponds to the different phonon occupation numbers.

The hybrid quantum numbers are constructed by specifying the gluonic states via phonon
operators. The value of Λ corresponds to the number of phonons with clockwise polarization
minus the number of phonons with anticlockwise polarization. From here one can construct
the JPC quantum numbers of the hybrid states in an analogous way to the BO picture. The
first excited energy level is a one-phonon state, which necessarily corresponds to a Λ = 1 state,
unlike in the pNRQCD case, where the first excited energy level can be Λ = 0, 1. Thus, the
pattern of the spin-symmetry multiplets emerging from the flux tube model in the case of the
first excited static energy is the one in Table 3.2 except for the nonexistence of H3.

3.6 Solving the Schrödinger Equation: Hybrid Poten-

tials and Masses

In order to obtain the hybrid masses, we have to identify the specific form of the hybrid po-
tentials EΣ(r) and EΠ(r) to be used in the coupled Schrödinger equations in (3.51) and (3.52).
In section 3.3 we have reviewed the EFT understanding of these potentials arriving at the
expression for the short distance hybrid potential in Eq. (3.20) and the matching condition
with the static energies given in Eq. (3.25).
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It is well known that the quark mass depends on the renormalon subtraction scheme used.
This dependence is canceled in standard quarkonium by the analogous dependence of the
singlet potential Vs [103, 104], leaving the total static energy of the singlet, which corresponds
to the physical observable, scheme invariant. Similarly, the hybrid static energies are scheme
independent, but not Vo and ΛH , which depend on the renormalon subtraction scheme used.
It has been shown that in the On-Shell (OS) scheme the perturbative expansion of the octet
potential has a poor convergence. This bad behavior is due to the presence of singularities in
the Borel transform of the perturbative series. These singularities are, however, artificial and
cancel out in physical observables such as the static energies.

One of the several possible schemes to improve the convergence of the matching coefficients
is the so-called Renormalon Subtracted (RS) scheme. In the RS scheme the singularities in
the Borel plane (renormalons) are subtracted from the matching coefficients. In Ref. [105]
this scheme has been worked out for the heavy quark mass and the static singlet potential, in
Ref. [99] the analogous work was done for the octet potential and the lowest gluelump mass.
Note that, when working in the RS scheme for the octet potential and gluelump mass, the
quark mass in the hybrid static energy also has to be taken in the RS scheme. We have used the
RS octet potential V RS

o (r) up to order α3
s in perturbation theory and ΛRS

H at the subtraction
scale νf = 1 GeV. We have summarized the necessary formulas for the octet potential in the
RS scheme in appendix A.2.

The next-to-leading order corrections to the hybrid static energies at short distances are
proportional to r2. The specific proportionality constant depends on non-perturbative dynam-
ics and can be expressed in terms of chromoelectric and chromomagnetic field correlators in
the EFT. It could be calculated on the lattice, but no calculations of these objects exist at the
moment, or in QCD vacuum models.5 We choose to fix this coefficient through a fit to the lat-
tice data for the static energies. We are going to consider that this term takes different values
for hybrid static energies corresponding to different representations of D∞h, thus breaking the
degeneracy of the short range pNRQCD description of the Πu and Σ−u static energies at leading
order in the multipole expansion. The final form for the short distance hybrid potential we
are going to use is then [cf. Eq. (3.25)]

En(r) = V RS
o (νf ) + ΛRS

H (νf ) + bnr
2 , νf = 1 GeV , (3.53)

and the values of the heavy quark and the 1+− gluelump masses in the RS scheme at νf = 1 GeV
are: mRS

c = 1.477(40) GeV, mRS
b = 4.863(55) GeV, and ΛRS

H = 0.87(15) GeV [99, 105].
We have prepared two different fits for the hybrid potentials to be used in the Schrödinger

equations. The first relies only on information from the short distance regime and fits the
quadratic term to the lattice data only up to distances where weakly coupled pNRQCD no
longer makes sense. Going to larger distances in this potential is inconsistent. The second fit
uses the short distance expression for the potential only for distances where weakly coupled
pNRQCD is expected to work well, and uses some generic fit function to describe the lattice
data of the static energies for larger distances. Comparing the results obtained from both of
these fits gives some idea of the importance of the long range regime for hybrids.

In order to obtain the short range quadratic coefficients bn of Eq. (3.53) in either case, we
use lattice data from Refs. [81, 99] described in section 3.4. To do these fits, it must be taken
into account that the two sources of lattice data have different energy offsets with respect to
the theoretical hybrid potential due to the different methods for the subtractions of the mass

5For a computation in the framework of the stochastic vacuum model see [106].
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Figure 3.2: Lattice data from Bali and Pineda [99] is represented by red squares, the data from
Juge, Kuti, and Morningstar [81] is represented by the green dots. In the left (right) figure we
have plotted the data corresponding to Σ−u (Πu). The lattice data has been corrected by the

offsets of (3.55). The black dashed line corresponds to V
(0.5)

Σ (V
(0.5)

Π ), the blue continuous line

to V
(0.25)

Σ (V
(0.25)

Π ), see text.

divergence of the lattice calculations. We extract bn and the energy offsets from both sets of
lattice data by fitting the function

V(r) = V RS
o + c+ bnr

2 , (3.54)

with c and bn as free parameters.
The RS scheme does not affect the coefficient of the quadratic term bn. The constant

term c is affected both by the RS scheme and by the subtraction scheme used in the lattice
calculation, however, at leading order in the multipole expansion the Πu and Σ−u potentials
are degenerate. Therefore, we perform a fit of both potentials of the form (3.54) to the lattice
data of both groups, restricting the value of c to be the same for both potentials but different
for each group and, conversely, restricting the value of bn to be the same for both groups but
different for each potential.

We first give the results for the short range fit. The weakly-coupled pNRQCD description
of the hybrid static energy of (3.53) is only valid up to r . 1/ΛQCD. Taking perturbation
theory up to its limit of validity, we fit (3.54) to lattice data in the range of r = 0 − 0.5 fm.
We obtain the following offsets for the two lattice data sources

cBP = 0.105 GeV, cKJM = −0.471 GeV , (3.55)

and the values for the coefficient of the quadratic term are

b
(0.5)
Σ = 1.112 GeV/fm2, b

(0.5)
Π = 0.110 GeV/fm2 . (3.56)

The potentials obtained from using the coefficients of the quadratic terms of (3.56) in Eq. (3.53)

will be called V
(0.5)

Π and V
(0.5)

Σ respectively (corresponding to the Πu and Σ−u configurations).

We have plotted V
(0.5)

Π and V
(0.5)

Σ in Fig. 3.2 with the lattice data corrected for the different
offsets using the values from (3.55).

For the second potential fit, which includes as much information as possible from the long
range lattice data, we proceed as follows. For r ≤ 0.25 fm we use the potential from (3.53) with
different bn factors for each of the low lying hybrid static energies Πu and Σ−u . Accordingly,
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we will call the potentials from this fit V (0.25). The bn factors are obtained through a fit of the
function (3.54) for each potential to lattice data up to r = 0.25 fm from both sources with the
offsets of (3.55). The quadratic term factors resulting from this fit are

b
(0.25)
Σ = 1.246 GeV/fm2, b

(0.25)
Π = 0.000 GeV/fm2 . (3.57)

For r ≥ 0.25 fm we use a fit of the function

V ′(r) =
a1

r
+
√
a2 r2 + a3 + a4 , (3.58)

to all the lattice data with r ≥ 0.25 fm using the offsets of (3.55). The particular form of (3.58)
is not related to a specific model, but approaches the generally expected behavior at short and
large distances. Indeed, in the long distance a linear behavior in r is expected as a string
picture emerges [81, 107–109]. The parameters have been left unconstrained (e.g. no universal
string tension or short-range coupling have been imposed) to better reproduce the lattice data
in the distance region where it is available. To ensure a smooth transition between the two
pieces of the potential, we impose continuity up to first derivatives. The parameters obtained
are

aΣ
1 = 0.000 GeVfm , aΣ

2 = 1.543 GeV2/fm2, aΣ
3 = 0.599 GeV2, aΣ

4 = 0.154 GeV ,

aΠ
1 = 0.023 GeVfm , aΠ

2 = 2.716 GeV2/fm2, aΠ
3 = 11.091 GeV2, aΠ

4 = −2.536 GeV . (3.59)

In Fig. 3.2 we can see both potential fits together with the lattice data. The V (0.25) po-
tentials do a good job reproducing the whole range of lattice data, in fact, fitting with a
potential of the form (3.58) also for r < 0.25 fm does not change the results significantly. The
V (0.5) potentials describe the lattice data well up to r . 0.55− 0.65 fm, which corresponds to
1/r & 0.36− 0.30 GeV.

We have solved the coupled Schrödinger equations with both V (0.5) and V (0.25) potentials
using the RS heavy quark masses. The results are displayed in Table 3.3. The states obtained
with V (0.25) lie above the ones obtained using V (0.5). The masses of the states with smaller sizes
have a better agreement, since both potentials agree in the short range. The largest source
of uncertainties for the hybrid masses lies in the RS gluelump mass, which is known with an
uncertainty of ±0.15 GeV.

If we look at the results obtained with V (0.5) for the average of the inverse distance 〈1/r〉,
which are displayed in Table 3.3, we see that for the lowest states the condition that 〈1/r〉 falls
inside the region where the lattice data is well described by the fit is only marginally fulfilled.
The condition that 〈1/r〉 & Ekin, which is at the base of the multipole expansion, is instead
fulfilled by almost all the states. Interestingly, adding a long range tail to the potential, as
we do for V (0.25), pushes the heavy quarks closer together, in this way better justifying the
short distance expansion of the matrix element of Hkin that we performed in (3.36). For this
reason we will use the V (0.25) potential in the following section as our reference potential for
the comparison with data and other approaches.

3.7 Comparison with Experimental Data and Other De-

terminations of the Hybrid Masses

We compare our results for the hybrid masses with experimental observations in section 3.7.1,
predictions obtained using the leading Born-Oppenheimer approximation in section 3.7.2, and
direct lattice results and sum rule calculations in sections 3.7.3 and 3.7.4, respectively.
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multiplet JPC
cc̄ bc̄ bb̄

mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ mH 〈1/r〉 Ekin PΠ

H1 {1−−, (0, 1, 2)−+} 4.05 0.29 0.11 0.94 7.40 0.31 0.08 0.94 10.73 0.36 0.06 0.95

H ′1 4.23 0.27 0.20 0.91 7.54 0.30 0.16 0.91 10.83 0.36 0.11 0.92

H2 {1++, (0, 1, 2)+−} 4.09 0.21 0.13 1.00 7.43 0.23 0.10 1.00 10.75 0.27 0.07 1.00

H ′2 4.30 0.19 0.24 1.00 7.60 0.21 0.19 1.00 10.87 0.25 0.13 1.00

H3 {0++, 1+−} 4.69 0.37 0.42 0.00 7.92 0.42 0.34 0.00 11.09 0.50 0.23 0.00

H4 {2++, (1, 2, 3)+−} 4.17 0.19 0.17 0.97 7.49 0.25 0.14 0.97 10.79 0.29 0.09 0.98

H5 {2−−, (1, 2, 3)−+} 4.20 0.17 0.18 1.00 7.51 0.19 0.15 1.00 10.80 0.22 0.10 1.00

H1 {1−−, (0, 1, 2)−+} 4.15 0.42 0.16 0.82 7.48 0.46 0.13 0.83 10.79 0.53 0.09 0.86

H ′1 4.51 0.34 0.34 0.87 7.76 0.38 0.27 0.87 10.98 0.47 0.19 0.87

H2 {1++, (0, 1, 2)+−} 4.28 0.28 0.24 1.00 7.58 0.31 0.19 1.00 10.84 0.37 0.13 1.00

H ′2 4.67 0.25 0.42 1.00 7.89 0.28 0.34 1.00 11.06 0.34 0.23 1.00

H3 {0++, 1+−} 4.59 0.32 0.32 0.00 7.85 0.37 0.27 0.00 11.06 0.46 0.19 0.00

H4 {2++, (1, 2, 3)+−} 4.37 0.28 0.27 0.83 7.65 0.31 0.22 0.84 10.90 0.37 0.15 0.87

H5 {2−−, (1, 2, 3)−+} 4.48 0.23 0.33 1.00 7.73 0.25 0.27 1.00 10.95 0.30 0.18 1.00

H6 {3−−, (2, 3, 4)−+} 4.57 0.22 0.37 0.85 7.82 0.25 0.30 0.87 11.01 0.30 0.20 0.89

H7 {3++, (2, 3, 4)+−} 4.67 0.19 0.43 1.00 7.89 0.22 0.35 1.00 11.05 0.26 0.24 1.00

Table 3.3: Hybrid energies obtained from solving the Schrödinger equation with the RS heavy
quark masses for the V (0.5) potentials (upper table) and for the V (0.25) potentials (lower table).
All values are given in units of GeV. The values of the heavy quark and the 1+− gluelump
masses in the RS scheme at νf = 1 GeV are: mRS

c = 1.477(40) GeV, mRS
b = 4.863(55) GeV,

and ΛRS
H = 0.87(15) GeV (see [99, 105]). For the bc̄ systems we have used the corresponding

reduced mass in the Schrödinger equation. The first row for each multiplet corresponds to the
ground state, the second row corresponds to the first excited state. PΠ is the integral over
the square of the wave function associated with the Πu potential. It can be interpreted as
the probability to find the hybrid in a Πu configuration, thus it gives a measure of the mixing
effects.

3.7.1 Identification of Hybrids with Experimental States

The list of candidates for heavy quark hybrids consists of the neutral heavy quark mesons
above open flavor threshold. An updated list [1] of the states fulfilling these conditions can be
found in Table 3.4. Most of the candidates have 1−− or 0++/2++, since the main observation
channels are production by e+e− or γγ annihilation, respectively, which constrains the JPC

quantum numbers. It is important to keep in mind that the main source of uncertainty of our
results in section 3.6 is the uncertainty of the gluelump mass ΛRS

H = 0.87± 0.15 GeV. We have
plotted the candidate experimental states in Fig. 3.3, except for the single one corresponding
to the bottomonium sector, overlaid onto our results using the V (0.25) potential with error
bands corresponding to the uncertainty of the gluelump mass.
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Figure 3.3: Comparison of the experimental candidate masses for the charmonium sector with
our results using the V (0.25) potential. The experimental states are plotted in solid blue lines
with error bars corresponding to the average of the lower and upper mass uncertainties (see
Table 3.4). Our results for the H1, H2, H4 and H ′1 multiplets have been plotted in error bands
corresponding to the gluelump mass uncertainty of ±0.15 GeV.

Three 1−− states fall close to our mass for the charmonium hybrid from the H1 multiplet,6

the Y (4008), Y (4230), and Y (4260). The 1−− hybrid from the H1 multiplet is a spin singlet
state, and as such the decays to spin triplet products are suppressed by one power of the heavy
quark mass due to heavy quark spin symmetry. All these three candidate states decay to spin
triplet charmonium, which in principle disfavors the hybrid interpretation. Nevertheless, there
might be enough heavy quark spin symmetry violation to explain those decays [110]. On the
other hand, the interpretation of these states as charmonium hybrids would make the decay
into two S-wave open charm mesons forbidden [111], which would explain why such decays
have not been observed for the Y (4260). Nevertheless, the recent observation of the transition
Y (4260)→ X(3872)γ [112] makes the identification of Y (4260) as a hybrid highly unlikely.

The Y (4220) is a narrow structure proposed in [113] to fit the line shape of the annihilation
processes e+e− → hcπ

+π− observed by BESIII and CLEO-c experiments. Its mass is quite
close to the one of the H1 multiplet. Like the previous states, it is a 1−− state that would
be identified as a spin singlet hybrid. However, unlike the previous states, the Y (4220) has
been observed decaying to spin singlet quarkonium, which makes it a very good candidate for
a charmonium hybrid. However, the Y (4220) falls very close to the Y (4230) [114] and it is
possible that they are the same structure observed in different decay channels.

The JPC quantum numbers of the Y (4140) and Y (4160) have not yet been fully determined,
however, their charge conjugation and mass suggest that they can be candidates for the spin
triplet 1−+ member of the H1 multiplet. Nevertheless, their mass is also compatible within
uncertainties with the spin singlet 1++ member of the H2 multiplet. In the case of the Y (4160),
it decays into D∗D̄∗ which favors a molecular interpretation of this state.

If the X(4350) turns out to be a 2++ state it can be a candidate for the spin singlet

6Note that our hybrid multiplets are spin degenerate, i.e. do not include corrections to the mass due to spin
effects.
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State M (MeV) Γ (MeV) JPC Decay modes 1st observation

X(3823) 3823.1± 1.9 < 24 ??− χc1γ Belle 2013

X(3872) 3871.68± 0.17 < 1.2 1++ J/ψ π+π−, J/ψ π+π−π0, Belle 2003

D0D̄0π0, D0D̄0γ,

J/ψ γ, ψ(2S) γ

X(3915) 3917.5± 1.9 20± 5 0++ J/ψ ω Belle 2004

χc2(2P ) 3927.2± 2.6 24± 6 2++ DD̄ Belle 2005

X(3940) 3942+9
−8 37+27

−17 ??+ D∗D̄, DD̄∗ Belle 2007

G(3900) 3943± 21 52± 11 1−− DD̄ Babar 2007

Y (4008) 4008+121
− 49 226± 97 1−− J/ψ π+π− Belle 2007

Y (4140) 4144.5± 2.6 15+11
− 7 ??+ J/ψ φ CDF 2009

X(4160) 4156+29
−25 139+113

−65 ??+ D∗D̄∗ Belle 2007

Y (4220) 4216± 7 39± 17 1−− hc(1P ) π+π− BESIII 2013

Y (4230) 4230± 14 38± 14 1−− χc0 ω BESIII 2014

Y (4260) 4263+8
−9 95± 14 1−− J/ψ π+π−, J/ψ π0π0, Babar 2005

Zc(3900)π

Y (4274) 4293± 20 35± 16 ??+ J/ψ φ CDF 2010

X(4350) 4350.6+4.6
−5.1 13.3+18.4

−10.0 0/2++ J/ψ φ Belle 2009

Y (4360) 4354± 11 78± 16 1−− ψ(2S) π+π− Babar 2007

X(4630) 4634+ 9
−11 92+41

−32 1−− Λ+
c Λ−c Belle 2007

Y (4660) 4665± 10 53± 14 1−− ψ(2S) π+π− Belle 2007

Yb(10890) 10888.4± 3.0 30.7+8.9
−7.7 1−− Υ(nS)π+π− Belle 2010

Table 3.4: Neutral mesons above open flavor threshold excluding isospin partners of charged
states.

charmonium state of the H4 multiplet, although its decay violates heavy quark spin symmetry.
The three higher mass 1−− charmonia, the X(4360), X(4630), and Y (4660),7 have a mass

that is compatible with the excited spin singlet member of the H1 multiplet within uncertain-
ties, although none of them falls very close to the central value. The X(4360) and Y (4660)
decay into a spin triplet product, which violates heavy quark spin symmetry.

There is so far only one bottomonium candidate for a hybrid state, the Yb(10890), which
can be identified with the spin singlet 1−− state of the H1 bottomonium hybrid multiplet.
However, its decay to the Υ violates heavy quark spin symmetry, which is expected to be a
good symmetry for bottomonium states.

3.7.2 Comparison with the Leading Born-Oppenheimer Approxi-
mation

In a recently published paper Braaten, Langmack, and Smith [17, 84, 85] used the BO approx-
imation to obtain the hybrid masses from the gluonic static energies computed on the lattice.

7It has been suggested that X(4630) and X(4660) might actually be the same particle [115].
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cgc̄ bgb̄

H1/2 4.246 10.864

H3 4.566 11.097

H4/5 4.428 10.964

H ′1/2 4.596 11.071

Table 3.5: Predicted multiplet masses from [17, 84, 85] before adjusting to lattice data. The
prime on a multiplet stands for the first excited state of that multiplet. All values are given
in units of GeV.

They did not consider the hybrid potential mixing in the Schrödinger equation, which leads to
the Λ-doubling effect, cf. section 3.5.3. Considering the mixing terms results in the breaking of
the degeneracy between the H1 and H2 multiplets as well as the H4 and H5 multiplets. In their
approach they account for the breaking of this degeneracy by using different energy offsets for
positive and negative parity potentials. These offsets were set in the charmonium sector to
reproduce the spin averages of the hybrids from the direct lattice calculations of Ref. [116] and
in the bottomonium sector to reproduce the mass splittings between the 1−−, 1++, and 0++

states from the NRQCD lattice computations of Ref. [83].
We have listed the results from [17, 84, 85] suitable for comparison with our results in

Table 3.5, and we have plotted them together with our results obtained using the V (0.25)

potential in Fig. 3.4 for both charmonium and bottomonium hybrids. The predicted H1/2

mass from Braaten et al. (before adjusting to lattice data) should be compared with our H2

mass, since this multiplet is a pure Πu potential state. Similarly, their H4/5 mass should be
compared with our H5 mass. The H3 multiplet is a pure Σ−u potential state in both approaches
and can also be compared. We can see that there is a good agreement with our results from
Table 3.3. If we shift the masses by the difference in the H1/2 state ∼ 30 MeV, then the other
states agree within 40 MeV. The mass shift of 30 MeV should be accounted for through the
uncertainty of the gluelump mass and other systematic errors, so we can take the 40 MeV
discrepancy between our results and those of [17, 84, 85] to be the uncertainty coming from
the fitting of the potentials and the solution of the Schrödinger equation. Overall, comparing
with the results from [17, 84, 85], we can see that the effect of introducing the Λ-doubling
terms lowers the masses of the multiplets that have mixed contributions from the two hybrid
static energies.

3.7.3 Comparison with Direct Lattice Computations

The spectrum of hybrids in the charmonium sector has recently been calculated by the Hadron
Spectrum Collaboration [116] using unquenched lattice QCD. The calculations were done using
an anisotropic lattice with a Shekholeslami-Wohlert fermion action with tree-level tadpole
improvements and three-dimensional stout-link smearing of the gauge fields. The calculations
were performed on two lattice volumes 163 × 128 and 243 × 128 with a spatial spacing of
∼ 0.12 fm. The light quarks were given unphysically heavy masses equivalent to a pion mass
of ≈ 400 MeV.

To interpret their results, the Hadron Spectrum Collaboration organizes the hybrid states
into spin-symmetry multiplets. They generate these spin-symmetry multiplets in the con-
stituent gluon picture. The spin-symmetry multiplet resulting from combining a 1+− gluonic
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Figure 3.4: Comparison of the hybrid multiplet masses in the charmonium (upper figure) and
bottomonium (lower figure) sectors obtained by Braaten et al. [17, 84, 85] (before adjusting to
lattice data) with the results obtained using the V (0.25) potential. The Braaten et al. results
correspond to the dashed lines, while the solid lines correspond to the results obtained using
V (0.25). The degeneracy of the masses of the H1/2 and H4/5 multiplets in Braaten et al. is
broken by the introduction of the mixing terms in our approach.

constituent with an S-wave heavy-quark pair generates the JPC quantum numbers correspond-
ing to our H1 multiplet. The P -wave heavy-quark pair generates a multiplet with the JPC

quantum numbers corresponding to the ones in our H2, H3 and H4 multiplets. Then the lattice
results can be assigned to the S-wave or P -wave multiplets according to their JPC quantum
numbers. The Hadron Spectrum Collaboration then argues that the closeness in the masses
of the states of each multiplet validates the constituent gluon picture.

Similarly, the direct lattice results can be assigned to the pNRQCD (or BO) multiplets of
Table 3.2, however, this assignment is ambiguous because some JPC quantum numbers appear
more than once in the H2, H3, and H4 multiplets. We choose to work with the same assignment
as was used in [17, 84, 85] (see Table 3.6), which assigns states to a specific multiplet based
on the closeness in mass. Looking at Fig. 3.5, the direct lattice calculation seems to support
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multiplet JPC m spin average

H1 1−− 4.285(14) 4.281(16)

0−+ 4.195(13)

1−+ 4.217(16)

2−+ 4.334(17)

H2 1++ 4.399(14) 4.383(30)

0+− 4.386(09)

1+− 4.344(38)

2+− 4.395(40)

H3 0++ 4.472(30) 4.476(22)

1+− 4.477(19)

H4 2++ 4.492(21) 4.517(23)

1+− 4.497(39)

2+− 4.509(18)

3+− 4.548(22)

Table 3.6: Spectrum of charmonium hybrids calculated by the Hadron Spectrum Collabora-
tion [116]. We have added the experimental value mηc = 2.9837(7) GeV. All values are given
in units of GeV.

the result of the pNRQCD and BO approaches that the hybrid states appear in three distinct
multiplets (H2, H3, and H4) as compared to the constituent gluon picture, where they are
assumed to form one supermultiplet together (cf. also the discussion in [17, 84, 85]).

The results from [116] are given with the ηc mass subtracted and are not extrapolated
to the continuum limit. In Table 3.6 we list their results with the experimental value of
mηc = 2.9837(7) GeV added. In Fig. 3.5 the results from [116] have been plotted together with
our results using the V (0.25) potential. We have also computed the spin averaged mass of each
multiplet in order to compare with our results from Table 3.3.

Comparing the spin averages of the masses of the hybrid states from [116] to our results,
we see that the masses obtained using the V (0.25) potentials are closer to the direct lattice
calculations than the ones obtained using the V (0.5) potentials. For the states obtained from
V (0.25) our masses are 0.1 − 0.14 GeV lower except for the H3 multiplet, which is 0.11 GeV
higher. It is interesting to note that the H3 multiplet is the only one dominated by the Σ−u
potential. For the states obtained using V (0.5) the differences roughly double.

To further illustrate this comparison, we give the mass splittings between the different mul-
tiplets in Table 3.7. Again, we find a better agreement of the lattice data with our calculation
with the V (0.25) potentials. In particular, the mass difference between H1 and H2, which in
our calculation is directly related to the Λ-doubling effect, is very close to our mass difference.
The worst agreement is again found for the H3 multiplet.

In the bottomonium sector direct lattice calculations have been carried out by Juge, Kuti,
and Morningstar [83] and by Liao and Manke [117]. Juge, Kuti, and Morningstar did quenched
simulations using anisotropic lattices with improved gauge-field actions for the gluons. The
heavy quarks were treated in NRQCD for anisotropic lattices containing just a covariant tem-
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Figure 3.5: Comparison of the results from direct lattice computations of the masses for char-
monium hybrids [116] with our results using the V (0.25) potential. The direct lattice mass
predictions are plotted in solid lines with error bars corresponding to the mass uncertain-
ties. Our results for the H1, H2, H3, and H4 multiplets have been plotted in error bands
corresponding to the gluelump mass uncertainty of ±0.15 GeV.

splitting Ref. [116] V (0.5) V (0.25)

δmH2−H1 0.10 0.04 0.13

δmH4−H1 0.24 0.12 0.22

δmH4−H2 0.13 0.08 0.09

δmH3−H1 0.20 0.64 0.44

δmH3−H2 0.09 0.60 0.31

Table 3.7: Mass splittings between H1, H2, H3, and H4 charmonium hybrid multiplets for the
potentials V (0.5) and V (0.25) compared with the spin averages from the direct lattice calculation
of [116]. All values are given in units of GeV.

poral derivative term. Since the hybrid masses were expected to be large, anisotropic lattices
with the temporal lattice spacing much smaller than the spatial spacing were used to reduce
the statistical fluctuations. Two lattice volumes were used, 153× 45 with β = 3.0 and 103× 30
with β = 2.6.

They studied the correlation functions of five operators on the lattice, three of them corre-
sponding to hybrid operators. They identified three hybrid states corresponding to the ground
states of the H1, H2, and H3 multiplets and one excited state of the H ′1 multiplet. Since no spin
(or any relativistic) effects were included, the results given by Juge, Kuti, and Morningstar
are the masses of the degenerate multiplets, which correspond to the ones in Table 3.2.

In Ref. [83] the values of the multiplet mass splitting are given in units of r0 relative
to the mass of the 1S bottomonium states. We have used the most up-to-date value for
r0 = 0.486 ± 0.004 fm from [5]. Using this value as well as the spin average of the 1S
bottomonium mass states we have computed the values for the multiplet masses from their
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multiplet Ref. [83] JPC(multiplet) Ref. [117]

H1 10.830(30) 1−+(H1) 11.39(15)

H2 10.865(54) 0+−(H2) 10.99(33)

H3 11.138(28) 2+−(H2) 12.16(14)

H ′1 11.216(37)

Table 3.8: Masses of the bottomonium hybrids from direct lattice calculations. We present
the results of the runs with size 103 × 30, β = 3.0, and spatial lattice spacing a ≈ 1.13 fm of
Ref. [83] and with size 163 × 128, β = 6.3, and a ≈ 0.0521 fm from Ref. [117]. All values are
given in units of GeV.

splitting Ref. [83] V (0.5) V (0.25)

δmH2−H1 0.04 0.02 0.05

δmH3−H1 0.31 0.36 0.27

δmH3−H2 0.27 0.34 0.22

δmH′1−H1
0.39 0.10 0.19

Table 3.9: Mass splittings between the H1, H2, H3, and H ′1 bottomonium hybrid multiplets
for the potentials V (0.5) and V (0.25) compared with the values from Ref. [83]. All values are
given in units of GeV.

largest lattice volume in Table 3.8.
Liao and Manke [117] calculated the bottomonium spectrum using quenched lattice QCD

on an anisotropic lattice. They were able to go beyond the non-relativistic approximation by
using a very fine discretization in the temporal spacing, which also allowed them to extrapolate
the results for the hyperfine splitting of the standard bottomonium to the continuum. They
used a standard Wilson action for the gluons with various link smearing, while for the heavy
quarks in the gluonic background they used an anisotropic clover action. They explored five
different lattice spacings from 0.04 fm to 0.17 fm and two anisotropy ratios.

They determined the masses for three bb̄ mesons with explicit exotic quantum numbers.
The results for the level splittings are presented in an analogous way to the Juge, Kuti, and
Morningstar paper, and we have used the same spin independent masses for the 1S and 1P
bottomonium states in order to generate the values displayed in Table 3.8.

We have plotted the results from Juge, Kuti, and Morningstar and the ones from Liao and
Manke together with our predictions for the masses of the bottomonium hybrid multiplets in
Fig. 3.6. If we compare our results from Table 3.3 with the values from direct lattice calculations
from Table 3.8, we observe that our results are systematically lower by 0.05 − 0.15 GeV
except for the excited H ′1 state, for which the deviation is larger: 0.4 GeV and 0.26 GeV for
the potentials V (0.5) and V (0.25), respectively. To eliminate possible systematic uncertainties
we can look at the level splitting displayed in Table 3.9. The values of the level splitting
show considerable agreement, improving from using the V (0.5) potentials to using the V (0.25)

potentials, with the only exception of the H ′1 state. In particular, the Λ-doubling effects seen
in the mass splitting between H2 and H1 agree quite well with lattice predictions.

In general, the comparison of our results with direct lattice computations of hybrid masses
shows a systematic energy offset but a reasonable agreement for the mass splittings between
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Figure 3.6: Comparison of the results from direct lattice computations of the masses for
bottomonium hybrids from Juge, Kuti, and Morningstar (JKM) [83] and Liao and Manke
(LM) [117] with our results using the V (0.25) potential. The direct lattice mass predictions
are plotted in solid lines with error bars corresponding the mass uncertainties. Orange lines
correspond to the results of JKM and blue lines to the ones of LM. The JPC quantum numbers
in the figure correspond to the LM states. Our results for the H1, H2, H3, and H ′1 multiplets
have been plotted in error bands corresponding to the gluelump mass uncertainty of±0.15 GeV.

multiplets, particularly for the lower mass ones. The bottomonium sector results show more
consistency with direct lattice computations than the charmonium sector, as expected.

3.7.4 Comparison with QCD Sum Rules

The method of QCD sum rules consists of a treatment in which hadrons are represented by
their interpolating quark currents, taken at large virtualities, instead of in terms of constituent
quarks. The correlation function of these currents is treated in the context of the operator
product expansion, where the short and long distance physics are separated. The former is
calculated using perturbation theory, whereas the latter is parametrized in terms of universal
vacuum condensates or light-cone distribution amplitudes. The result of the calculation can
then be related via dispersion relations to a sum over hadronic states.

A recent analysis of QCD sum rules for hybrid operators has been performed by Chen
et al. for bb̄ and cc̄ hybrids in [118] and for bc̄ hybrids in [119]. Using hybrid operators and
computing correlation functions and spectral functions up to dimension six condensates, they
stabilized the sum rules and gave mass predictions for the heavy quark hybrids.

The pattern of hybrid states encountered by Chen et al. in [118], which we show in Ta-
ble 3.10 and, plotted against our results using the V (0.25) potential, in Fig. 3.7, is the same for
cc̄ and bb̄ hybrid states. The lightest set of states they found corresponds to our H1 multiplet.
The next set of states consists of 0+−, 1+−, and 1++, which belong to the H2 multiplet, 2++

and 0++, which are part of the multiplets H3 and H4, respectively, and 0−−, which does not
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multiplet JPC cc̄ bb̄ JP bc̄

H1 1−− 3.36(15) 9.70(12) 1− 6.83(16)

0−+ 3.61(21) 9.68(29) 0− 6.90(22)

1−+ 3.70(21) 9.79(22) 1− 6.95(22)

2−+ 4.04(23) 9.93(21) 2− 7.15(23)

H2 0+− 4.09(23) 10.17(22) 0+ 7.37(31)

1+− 4.53(23) 10.70(53) 1+ 7.77(24)

1++ 5.06(44) 11.09(60) 1+ 8.28(37)

H4 2++ 4.45(27) 10.64(33) 2+ 7.67(18)

H3 0++ 5.34(45) 11.20(48) 0+ 8.55(44)

0−− 5.51(50) 11.48(75) 0− 8.48(67)

Table 3.10: Left panel: masses of the cc̄ and bb̄ hybrids obtained using QCD sum rules
from [118]. Right panel: masses of bc̄ hybrids from [119]. All values are given in units of
GeV.

appear in any of the multiplets we have considered.
For charmonium the masses of the H1 multiplet are between 3.36 GeV and 4.04 GeV with a

spin average of 3.75(20) GeV, which is lower than our result for the H1 multiplet (see Table 3.3).
The elements of H2 show an important dispersion, but overall tend to be larger than our value
for the mass of the H2 multiplet, like in the case of the 2++ and 0++ masses when compared
with our results for H3 and H4. A similar pattern emerges for bb̄ hybrids. The H1 multiplet
ranges between 9.7 GeV and 9.93 GeV with a spin average of 9.81(19) GeV, which is about
1 GeV below our estimates. Nevertheless, the 1+−, 1++, 2++, and 0++ states are within errors
of our results.

The bc̄ hybrids have also been studied with QCD sum rules by Chen et al. in [119]. In
this case, since the heavy quark and antiquark are not the same, the interpolating currents
that couple to the hybrids have no definite C-parity. The assignment of the bc̄ states to each
multiplet has been done by analogy of the interpolating currents that generate these states in
QQ̄ and bc̄. In Fig. 3.8 the results from Chen et al. for bc̄ hybrids are plotted alongside our
results using the V (0.25) potential. The spin average for the bc̄ H1 multiplet is 7.00(16) GeV,
which falls about 0.5 GeV below our result.
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Figure 3.7: Comparison of the mass predictions for charmonium hybrids in the upper figure
and for bottomonium hybrids in the lower figure, obtained using QCD sum rules [118], with
our results using the V (0.25) potential. The solid lines correspond to the QCD sum rules masses
with error bars corresponding to their uncertainties. Our results for the H1, H2, H3, and H4

multiplets have been plotted in error bands corresponding to the gluelump mass uncertainty
of ±0.15 GeV.
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Figure 3.8: Comparison of the mass predictions for bc̄ hybrids, obtained using QCD sum
rules [119], with our results using the V (0.25) potential. The solid lines correspond to the QCD
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Chapter 4

The Polyakov Loop and the Polyakov
Loop Correlator at NNLO

4.1 Introduction

The Polyakov loop is an order parameter for deconfinement in pure SU(N) gauge theories at
non-zero temperature T . It is defined as the thermal average over the trace of the Polyakov
loop operator1:

L = 〈T̃r[L(r)]〉 ≡ 1

dR
Tr

〈
P exp

[
ig

∫ 1/T

0

dτA0(τ, r)

]〉
, (4.1)

where P denotes path ordering of the exponential of the temporal component of the gauge
field A0 integrated along the compactified imaginary time direction, and g is the coupling
constant2. Here we have defined the Polyakov loop in a general representation R of SU(N), so
the gauge fields are understood as matrices in this representation R, and the normalized trace
T̃r is divided by the dimension dR of this representation. The thermal expectation value of a
single Polyakov loop is invariant under translations, so we can choose it to be at the origin in
the following.

The non-zero expectation value of the Polyakov loop above some temperature indicates the
onset of color screening and thus deconfinement [120]. Early lattice studies of the Polyakov
loop and its correlators were instrumental in establishing the existence of a deconfinement
transition in non-Abelian gauge theories from first principle calculations [121, 122]. The phys-
ical interpretation of the logarithm of the Polyakov loop expectation value is the free energy
of a static quark FQ/T = − lnL (see e.g. discussions in Ref. [122]). The free energy of a static
quark in a gluonic plasma is finite due to color screening, but becomes infinite below the phase
transition temperature Tc.

While in the presence of nf > 0 flavors of light quarks the Polyakov loop is no longer an
order parameter for deconfinement [123], its value at sufficiently high temperatures is still a
measure of the screening properties of the deconfined medium. It is easy to see that at leading
nontrivial order the Polyakov loop expectation value is L = 1 + CRαsmD/2T , or equivalently

1We will use the symbol L both for the (matrix valued) operator and its traced thermal expectation value.
It should be clear from context, i.e. whether it appears inside a thermal average or not, which one is meant.

2Note that this definition implies D0 = ∂0− igA0, which we choose simply to minimize the number of minus
signs.
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FQ = −CRαsmD/2, where CR is the quadratic Casimir of the representation R defined by
T aRT

a
R = CR1dR . For the fundamental and adjoint representations, the quadratic Casimirs are

CF = (N2 − 1) /2N and CA = N . The Debye mass mD is given by

m2
D =

(
N

3
+
nf
6

)
g2T 2 , (4.2)

The next-to-leading-order (NLO) contribution to the Polyakov loop is of O (g4). The first
calculation of the NLO contribution was performed long ago [124]. However, several years
later, it was shown that this calculation was not correct and the correct NLO contribution was
calculated independently by two groups [125, 126].

The Polyakov loop has been studied in lattice QCD both in SU(N) gauge theories [127–130]
and in the physically relevant case of 2+1 flavor QCD [4, 5, 131–136]. For the understanding of
the screening properties of the deconfined medium it is important to connect lattice calculations
with perturbative calculations at high temperatures and to see to what extent these calculations
agree. In this perspective it is important to compute next-to-next-to-leading order (NNLO)
corrections, which will considerably reduce the uncertainties of the NLO result by fixing the
scale dependence of the coupling constant at leading order. The computation of the Polyakov
loop at NNLO accuracy is one purpose of this chapter.

One feature of the lattice results on the Polyakov loop is Casimir scaling [130], the property
that the ratio of static quark free energies in different representations should be given by
the ratio of the quadratic Casimirs of those respective representations. One outcome of our
analysis is that Casimir scaling holds up to O (g7). This is important for understanding the
lattice results for the Polyakov loops in higher representations [130, 137, 138].

In analogy to a single Polyakov loop, the correlator of two traced Polyakov loops gives the
free energy of a static quark-antiquark pair [122]. This operator does not have an interpretation
as an order parameter, since a quark and an antiquark are also allowed to exist in the vacuum
in the form of a quarkonium bound state. But the Polyakov loop correlator is related to the
interactions of heavy quarks in a thermal medium and may be an important quantity to study
the thermal modifications of interquark potentials. It can be decomposed into color singlet
and adjoint contributions, which is why the related free energy has also been called the color
averaged potential.

The Polyakov loop correlator has been extensively studied on the lattice both in pure
SU(N) gauge theories [127, 129, 139] as well as in QCD [136, 140, 141], calling for a more
thorough understanding in analytic calculations for weak coupling. It is presently known at
NNLO [122, 126], and a matching to pNRQCD in the small distance limit has also been
performed, clarifying the relation to singlet and adjoint contributions. The new result for the
Polyakov loop will allow us to give the correlator at one higher order. We will also present an
exponentiated expression for the Polyakov loop correlator, which greatly reduces the number
of relevant Feynman diagrams, and in which a separation into singlet and adjoint contributions
naturally emerges. This however is not identical to the one in pNRQCD, which we will clarify
in a matching.

The rest of this chapter is organized as follows. In the next section we outline our strategy
for the perturbative calculation to O (g5) and discuss the power counting. The calculation of
the necessary loop integrals is presented in section 4.3, which also contains the main result of the
chapter. In section 4.4, we comment on the higher order perturbative terms discussing Casimir
scaling and outlining the O (g6) calculation. In section 4.5, we compare the perturbative O (g5)
result with available lattice results.
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The Polyakov loop correlator, its exponentiation, and its relation to singlet and adjoint
free energies is then explained in more detail in section 4.6. The explicit calculation is given
in section 4.7, and finally section 4.8 discusses the matching to pNRQCD. Several technical
details of the calculations are presented in appendices B.

4.2 Outline of the Perturbative Calculation

In this section, we will outline the perturbative calculation of the Polyakov loop. We will
perform calculations directly in QCD as well as using the effective field theory approach. The
direct calculation of the NNLO correction to the Polyakov loop is rather involved and its details
will be discussed in the next section. On the other hand, as we will see, the calculation that
relies on the effective field theory approach is rather simple, because we can draw on previous
results.

4.2.1 The Structure of the Perturbative Series

The following way of defining the path ordered exponential is particularly suited for pertur-
bative expansions:

L =
1

dR
Tr

〈
P exp

[
ig

∫ 1/T

0

dτA0(τ,0)

]〉

=
∞∑

n=0

(ig)n
∫ 1/T

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn
1

dR
Tr
〈
A0(τ1,0)A0(τ2,0) · · ·A0(τn,0)

〉
. (4.3)

The Feynman diagrams for the Polyakov loop can then be drawn as a straight line from 0 to
1/T in the imaginary time direction to which n gluons are attached. The line represents the
contour integrations over the gauge fields. In the gauges we are going to use for this calculation,
where the gluon propagator is diagonal in color space, it is possible to split each diagram into
a color coefficient and a kinematic part. The color coefficient contains the trace over the color
matrices from the gauge fields and any structure constants coming from interaction vertices
as well as symmetry factors, while the kinematic part contains the integrations over Euclidean
time, spatial momenta, etc., as well as the propagators and the Lorentz structures.3

It has been shown in [142, 143] that the perturbative series for any closed Wilson line can
be rearranged such that it takes the form of an exponential of a series over the same diagrams
but with altered color coefficients, several of which are zero. This result has been generalized
in [144, 145] for the exponentiation of any Wilson line operator. In the case of the Polyakov
loop we have

L = 1 +K


CR + C2

R + CR

(
CR −

N

2

)
+ C2

R


+ . . .

= exp

[
CRK

( )
− 1

2
CRN K

( )
+ . . .

]
= exp (D1 +D2 + . . . ) , (4.4)

3Since three- and four-gluon vertices contain a sum over several terms, it may be necessary for some diagrams
to split each term separately into color coefficient and kinematic part. This is not required for any diagram
appearing in this chapter; only in the case of tadpoles there appear two terms from the vertex, but they give
the same contribution, so we just include a factor 2 in the color coefficient.
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where we use K for the kinematic part of a diagram. Here we have written the color coefficients
explicitly, but in the following we will generically use the symbol C for the color coefficient of
a diagram and C̃ for the exponentiated coefficient. The gluon propagators are understood as
resummed. The dots represent diagrams with three or more gluons, which are at least O (g6)
and therefore beyond our accuracy. There is also a diagram with three propagators connected
by a three-gluon vertex, which would be O (g4) at leading order, but since a three-gluon vertex
with only temporal indices vanishes, this diagram gives no contribution in all gauges where the
propagator is block diagonal in the temporal and spatial components, so it has been neglected
in the expression above. We note that the free energy of the static charge corresponding to
the above expression is proportional to CR and thus obeys Casimir scaling at this order. We
use the abbreviations D1 and D2 for the product of kinematic part and color factor of the
remaining one- and two-gluon diagrams in the exponent.

First, we perform the integral over the Euclidean time in the expression for D1 and D2 to
get

D1 = CR(ig)2

∫ 1/T

0

dτ1

∫ τ1

0

dτ2

∑

K

∫
eik0(τ1−τ2)D00(K) = −CRg

2

2T

∫

k

D00(0,k) , (4.5)

D2 = −1

2
CRN(ig)4

∫ 1/T

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4

∑

K,Q

∫
eik0(τ1−τ3)eiq0(τ2−τ4)D00(K)D00(Q)

= −CRNg
4

4T

∫

k, q

[
1

12T
D00(0,k)D00(0, q)−

∑

k0

′ 1

k2
0

D00(K)
(
2D00(0, q)−D00(k0, q)

)
]
.

(4.6)

The sum with a prime denotes a Matsubara sum without the zero mode. Up to this point
the discussion is independent of the choice of gauge for the perturbative calculations. In this
chapter we will use Feynman gauge, static gauge, and Coulomb gauge. In appendix B.1, we
discuss the gluon propagators and self-energies in these gauges.

The integration momenta k and q can either be of the order of the temperature scale πT or
of the scale of the Debye mass mD. In principle, they may also scale with the nonperturbative
magnetic mass mM . The magnetic mass enters the temporal propagators not directly but
only through self-energies. Hence, as we will show at the end of this section, momentum
regions scaling with mM contribute only to O (g7). We use dimensional regularization to
treat both infrared and ultraviolet divergences. In this regularization scheme the different
momentum scales can be separated by expanding the integrand according to the hierarchy
πT � mD � mM .

We start considering D1. Separating out the contributions from the scales πT , mD, and
mM we write

D1 = −CRg
2

2T

∫

k

1

k2 + Π(0, k)

= −CRg
2

2T

{∫

k∼πT

−Π
(1)
T (0, k)

k4
+

∫

k∼mD

[
1

k2 +m2
D

− Π
(1)
mD(0, k)

(k2 +m2
D)

2 +
Π

(1)
mD(0, k)2

(k2 +m2
D)

3

− 1

(k2 +m2
D)

2

(
dΠ

(1)
T

dk2
(0, 0) k2 + Π

(2)
T (0, 0) + Π(2)

mD
(0, k) + Π(1)

mM
(0, k)

)]}
+O

(
g6
)
.

(4.7)
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Here Π
(i)
T , Π

(i)
mD , and Π

(i)
mM denote the contributions to the self-energy of the A0 field at i-loop

order coming from loop momenta of order πT , mD, and mM . There can also be self-energies
where the loop momenta are not all of the same scale, but these do not contribute until
O (g6). The self-energies entering the above equation depend on the choice of gauge. The

terms proportional to Π
(1)
T and Π

(1)
mD , together with tree-level D2, give rise to the known O (g4)

term in the expression of the Polyakov loop [125, 126]. The 2-loop scale πT contribution to the

self-energy Π
(2)
T as well as the

dΠ
(1)
T

dk2
(0, 0) k2 term give rise to terms of O (g5), some of which

have been identified in Ref. [126] and are related to the running of the coupling constant. The

terms proportional to Π
(2)
mD and

(
Π

(1)
mD

)2
are new and also contribute at O (g5) to the Polyakov

loop. In section 4.3, we will discuss the calculation of these terms in detail. Finally, the term
proportional to Π

(1)
mM does not contribute to the Polyakov loop at O (g5) and O (g6). This will

also be shown in section 4.3.
Concerning D2, it is easy to see that the leading order contribution of the first term in

Eq. (4.6) in any gauge comes only from the scale mD and is of O (g6), which is beyond the
accuracy of this calculation. It was already identified in Ref. [126]. The second and third
terms in Eq. (4.6) do not contribute in static gauge because D00(K) vanishes for non-zero k0.
In Coulomb gauge the second term starts to contribute at O (g7) and the third at O (g8), since
the leading order propagators with non-zero Matsubara frequencies are scaleless and need at
least one loop insertion in order not to vanish. In Feynman gauge the second term in Eq. (4.6)
contributes already at O (g5) for k ∼ πT and q ∼ mD, while the third starts to contribute at
O (g4) when both momenta are of the scale πT . There is no O (g5) contribution from the third
term, since the scale mD can only enter Feynman gauge propagators with non-zero frequencies
through loops, which would at least be of O (g7).

In summary we see that the O (g5) contribution to the Polyakov loop receives two different
contributions. The first comes from terms with mixed scales like the two-loop self-energy at a
scale mD with loop momenta of order πT or two-gluon exchange. The second comes from the
two-loop self energy with loop momenta of order mD. In the effective field theory approach
that will be discussed in the next subsection these two contributions correspond to two different
steps of the calculation: the determination of the matching coefficients and the calculation of
the correlators in the effective theory, respectively.

4.2.2 The Polyakov Loop in an Effective Field Theory Approach

The separation between the scales πT and mD that was used in the calculation of the previous
section can also be achieved with EQCD, which has already been described in the introduc-
tion 1.4.2. In this chapter we will also need the effective four-field interactions, for which the
Lagrangian is given by:

LEQCD =
1

2
Tr
[
F̃ 2
ij

]2

+ Tr

[[
D̃i, Ã0

]2
]

+m2
E Tr

[
Ã2

0

]

+ λE

(
Tr
[
Ã2

0

])2

+ λ̄E

(
Tr
[
Ã4

0

]
− 1

2

(
Tr
[
Ã2

0

])2
)

+ . . . , (4.8)

where at leading order λE = (6+N−nf )g4T/24π2 and λ̄E = (N−nf )g4T/12π2 (see e.g. [38]).
In this case it is more convenient to write the fields as matrices in color space in the usual
way Ã0 = Ãa0T

a, where the color matrices are understood in the fundamental representation.
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The second quartic interaction is a vanishing operator for N = 2 or N = 3, so any result
can only depend on λ̄E if N > 3. The couplings gE, λE, and λ̄E have been calculated to
next-to-leading order (NLO) [38]. The three-dimensional gauge coupling gE is known to next-
to-next-to-leading order [146]. The NLO correction to m2

E has been calculated in Ref. [37]

m2
E =m2

D

[
1 +

αs

4π

(
5

3
N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

))]
− CFnfα2

sT
2 . (4.9)

Here and in the rest of this section we express all matching parameters in terms of the renor-
malized coupling. Thus the pole that appears with the first coefficient of the beta function
β0 = 11N/3− 2nf/3 has already been canceled.

In EQCD we can write the Polyakov loop in the following way [125]

L = Z0 −Z2
g2

2 dR T
Tr
〈
Ã2

0

〉
+ Z4

g4

24 dR T 2
Tr
〈
Ã4

0

〉
+ . . . . (4.10)

The matching coefficients Zn are equal to 1 at leading order; at higher orders they can be
written as an expansion in αs, i.e. only in even powers of g. In the power counting of EQCD,
every power of Ã0 counts as

√
gT , so the term proportional to Z4 starts to contribute at O (g6).

In EQCD only the scales mD and mM are still dynamical, which means that no loop momenta
of order πT appear in the evaluation of the Feynman diagrams. The contributions of such
loops are contained in higher order corrections to the matching coefficients Zn and the EQCD
parameters.

For the determination of Z0 and Z2 from QCD it is convenient to use the static gauge. In
this gauge we can write

L = 1− g2

2 dR T 2
Tr
〈
A2

0

〉
+

g4

24 dR T 4
Tr
〈
A4

0

〉
+ . . . . (4.11)

Now we can separate each contribution into a static and a nonstatic piece, i.e. we can write

〈
A2

0

〉
=
〈
A2

0

〉
s
+
〈
A2

0

〉
ns
. (4.12)

The notation 〈. . . 〉ns means that there appear only loop momenta of order πT in the evaluation
of the corresponding Feynman diagrams, which corresponds to a strict perturbative expansion
in g without any resummation of self-energies. The notation 〈. . . 〉s then means that some or
all loop momenta are of order mD or mM . The corresponding Matsubara frequencies have to
be zero, hence the name “static”. We can write down a similar decomposition for Tr

〈
A4

0

〉
.

The sum over all nonstatic pieces exactly gives Z0. Since in static gauge the scale πT can
enter the temporal propagators only through loops, the nonstatic part of the A4

0 contribution
will contribute first at O (α4

s ). The leading order result for the A2
0 piece can be found in

Ref. [126] and gives

Z0 = 1 +
CRα

2
s

2

[
N

(
1

2ε
+ 1− γE + ln

πµ2

T 2

)
− nf ln 2

]
+O

(
α3
s

)
. (4.13)

The pole in ε is not related to charge renormalization, but corresponds to an infrared divergence
in the nonstatic part that cancels against an ultraviolet divergence in the static piece, or
equivalently in the EQCD calculation.
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The sum over the static pieces then contains all contributions from the scales mD and
mM and thus corresponds to the EQCD representation of the Polyakov loop without the unit
operator. Up toO (g5) it is sufficient to consider only the quadratic terms, i.e.

〈
A2

0

〉
s

= Z2

〈
Ã2

0

〉
.

The two gauge fields in
〈
A2

0

〉
s

themselves can carry either momenta k � πT or k ∼ πT ,
however, in the latter case they only start to contribute to the static piece at three-loop order.
The first loop from the two gauge fields in the correlator is scaleless, so another loop is needed
to introduce the scale πT and a third one to include the scale mD in order to be counted
towards the static piece. This corresponds to diagrams like L10 and L12 in Fig. 4.1 when only
the tadpole or the subloop momentum is of order mD and the two other momenta are of order
πT . The two scale πT integrations give a contribution of O (α2

s ) to Z2 and only one propagator

with a momentum of order mD remains, which corresponds to the leading order of
〈
Ã2

0

〉
.

In the former case we can relate the QCD field A0 to
√
Z2Ã0 in EQCD, where the wave

function normalization constant Z2 can be obtained from the small momentum expansion of
the propagator:

DQCD
00 (k � πT ) = Z2D

EQCD
00 (k) + . . . . (4.14)

The dots stand for higher powers in the small k2 expansion, which correspond to higher order
two-point interactions in EQCD. From this expression it follows that

Z2 =

(
1 +

dΠT

dk2

(
k2 = 0

))−1

, (4.15)

and with the result from [126] we have up to corrections of O (α2
s )

Z2 = Z2 = 1 +
αs

4π

[
11

3
N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
. (4.16)

Now that we have determined the matching coefficients to the desired order, we can write
the weak coupling expansion for

〈
Ã2

0

〉
as

1

dR
Tr
〈
Ã2

0

〉
= −CRmE

4π

(
1 + a1

g2
E

mE

+ a2
g4
E

m2
E

+ a3
g6
E

m3
E

+ a4
λE
mE

+ . . .

)
, (4.17)

using simple dimensional analysis. In the above expression we explicitly wrote down all the
terms contributing up to O (g6) and ignored the magnetic mass scale mM . We will return to
the contribution from the scale mM later.

In Eq. (4.17) the terms proportional to ai come from the i-loop self-energy of the Ã0

field. The coefficient a1 is known [125, 126]. We are primarily interested in the NNLO, i.e.
O (g5) contribution to L. It is evident from Eqs. (4.9), (4.16), and (4.17) that the mixed
scale contributions from the previous section come from the O (αs) corrections to Z2 and m2

E,
while the pure scale mD term comes from the two-loop self-energy contribution contained in
the coefficient a2. One can perform a similar analysis for

〈
Ã4

0

〉
and see that it contributes at

orders α2
sm

2
E, α3

smE, etc. It is also easy to generalize the analysis for
〈
Ã2n

0

〉
, n ≥ 3, and see

that these terms do not contribute at O (g5).
The only remaining task is now to calculate the coefficient a2. This can be done using the

EQCD calculation of the pressure [37]

p = −T
(
fE + fM −

1

V
lnZMQCD

)
. (4.18)
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Here we use the same notation as in Ref. [37], i.e. fE denotes the contribution from the scale
πT , fM denotes the contribution from the scale mD, and ZMQCD is the partition function of
MQCD, which is completely nonperturbative. Ignoring the contribution from MQCD it is easy
to see that since

fM = − 1

V
ln

∫
DÃa0DÃai exp

[
−
∫
d3xLEQCD

]
, (4.19)

it follows that
1

dR
Tr
〈
Ã2

0

〉
=

CR
N2 − 1

〈
Ãa0Ã

a
0

〉
=

2CR
N2 − 1

∂fM
∂m2

E

. (4.20)

Using the expression for fM from [37] we get

1

dR
Tr
〈
Ã2

0

〉
=− CRmE

4π
+
CRNg

2
E

(4π)2

[
1

2ε
+

1

2
− γE + ln

πµ2

m2
E

]

+
2CRN

2

(4π)3

g4
E

mE

(
89

48
− 11

12
ln 2 +

π2

12

)
+O

(
g4
)
. (4.21)

The first term corresponds to the well-known leading order result. The second term is
identical to the O (g4) static contribution to

〈
A2

0

〉
(cf. Eq. (44) of Ref. [126]). The 1/ε pole

in this term is exactly the ultraviolet divergence that cancels against the infrared pole in the
nonstatic contribution to

〈
A2

0

〉
[126]. The scale dependence cancels in the same way. The last

term gives the coefficient a2 we are interested in.
We still need to calculate the O (g5) contribution arising from the O (αs) corrections to

mE and Z2 times the leading order result for Tr
〈
Ã2

0

〉
/dR = −CRmD/4π. Using Eqs. (4.9)

and (4.16) we find that this O (g5) contribution is

3CRα
2
smD

16πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFnfα

3
sT

4mD

. (4.22)

With this result and Eq. (4.21) we find the O (g5) contribution to the Polyakov loop

L
∣∣∣
g5

=
3CRα

2
smD

16πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]

− CRN
2α3

sT

mD

(
89

48
− 11

12
ln 2 +

π2

12

)
− CRCFnfα

3
sT

4mD

. (4.23)

The above equation is one of the main results of this chapter. In the next section we will
obtain this result via direct calculations in QCD.

The contribution from the scale mM to
〈
Ã2

0

〉
, which we have neglected so far, can be

calculated using MQCD, the effective theory obtained from EQCD by integrating out the
electric scale mE ∼ mD. The only scale in MQCD is the dimensionful coupling constant
gM ∼

√
mM , which is given at leading order as gM = gE. Since in this theory we have only

the three-dimensional gauge fields, we write

L = ZM0 +
ZM1
2m3

D

〈
F̃ a
ijF̃

a
ij

〉
MQCD

+ . . . . (4.24)

The matching constant ZM0 contains the contributions to L from the scales πT and mD, so
ZM0 = L up to O (g5). The matching constant ZM1 has been calculated in Ref. [147] for
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the fundamental representation. We have repeated that calculation, but allowed for general
representations; the result is

ZM1 =
CRNα

2
sπ

12 (N2 − 1)
+O

(
g5
)
, (4.25)

and for CR = CF one obtains the expression from [147]. Since
〈
F̃ a
ijF̃

a
ij

〉
∼ m3

M ∼ g6
M , we see

that the contribution from the magnetic scale first appears at O (g7). Through the explicit cal-
culations presented in section 4.3 and appendix B.3 we will see that the magnetic contributions
at O (g5) and O (g6) indeed vanish.

The O (g7) contribution to the Polyakov loop can be obtained using lattice calculations
in MQCD. However, for interesting temperature ranges the separation of the scales mD and
mM is not obvious. Therefore, it is more practical to calculate

〈
Ã2

0

〉
using lattice calculations

in EQCD. Such lattice calculations have been performed with the aim to estimate the QCD
pressure using the EQCD approach in Ref. [148]. We will use this lattice EQCD result when
comparing the weak coupling expansion of the Polyakov loop with lattice results in QCD in
section 4.5.

4.3 Calculation of the O
(
g5
)

Correction to the Polyakov

Loop

In this section we will present the calculations of the O (g5) contribution to the Polyakov loop
directly in QCD. From the discussion in the previous section it is clear that the diagrams that
contribute at O (g5) always have at least one momentum integral of order mD, while the self-
energy contributions may arise from the scales πT , mD, or mM . In what follows we will refer
to them as contributions from the scale πT , mD, or mM , even though all the loop diagrams
also involve the scale mD. We will perform the calculations in Coulomb gauge and in Feynman
gauge. The contribution from the diagram D2 is only relevant in Feynman gauge. It involves
one integral over the scale mD and another sum-integral over the scale πT , so we will refer to
it as a part of the contribution from the scale πT .

4.3.1 Contribution from the Scale πT

All self-energies relevant for the contribution from the scale πT in Feynman gauge are known
and can be found in Ref. [37] (they use a slightly different convention for the MS-scheme,
which can be converted into our convention by replacing the renormalization scale Λ2 in their
expressions by 4πe−γEµ2):

Π
(1)
T (0, 0) ≡ m2

D(ε) =
g2T 2

3

[(
N +

1

2
nF

)
+N

(
−γE + 2

ζ ′(−1)

ζ(−1)
+ ln

µ2

4πT 2

)
ε

+
1

2
nf

(
1− γE + 2

ζ ′(−1)

ζ(−1)
+ ln

µ2

16πT 2

)
ε

]
, (4.26)

dΠ
(1)
T

dk2
(0, 0) = − g2

(4π)2

[
5

3
N

(
1

ε
− 1

5
+ γE + ln

µ2

4πT 2

)
− 2

3
nf

(
1

ε
− 1 + γE + ln

4µ2

πT 2

)]
,

(4.27)
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Π
(2)
T (0, 0) =

g4T 2

(4π)2

[
2

3
N2

(
1

ε
+ 1 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

µ2

4πT 2

)

+
1

3
Nnf

(
1

ε
+ 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

µ2

8πT 2

)
− CFnF

]

=
g2

(4π)2

[
2Nm2

D(ε)

(
1

ε
+ 1 + γE + ln

µ2

4πT 2

)
− g2T 2CFnf

]
. (4.28)

In the last line we have reexpressed some terms through m2
D(ε), i.e. the leading order Debye

mass with O(ε) corrections. This will be crucial for the cancellation of the 1/ε-poles. The O(ε)
terms of m2

D(ε) are necessary at this point.

With these we can calculate the first scale πT contribution from diagram D1 at O (g5) in
Feynman gauge (FG):

D1

∣∣∣
FG

g5, πT
=
CRg

2

2T

∫

k∼mD

1

(k2 +m2
D)

2

(
dΠ

(1)
T

dk2
(0, 0) k2 + Π

(2)
T (0, 0)

)

=
3CRα

2
smD(ε)

16πT

[
7

3
N

(
1

ε
+

23

21
+ 2 ln

µ2

2TmD

)
− 2

3
nf

(
1

ε
+

1

3
+ 2 ln

2µ2

TmD

)]

− CRCFnfα
3
sT

4mD

. (4.29)

The scale πT contribution from D2 is given by

D2

∣∣∣
FG

g5, πT
=
CRNg

4

2T

∑

q0

′
∫

q∼πT

∫

k∼mD

1

q2
0 (q2

0 + q2) (k2 +m2
D)

=
CRNα

2
smD(ε)

4πT

(
1

ε
+ 4 + 2 ln

µ2

2TmD

)
, (4.30)

and together they give

(D1 +D2)
∣∣∣
FG

g5, πT
= −CRCFnfα

3
sT

4mD

+
3CRα

2
smD(ε)

16πT

[
11

3
N

(
1

ε
+

71

33
+ 2 ln

µ2

2TmD

)
− 2

3
nf

(
1

ε
+

1

3
+ 2 ln

2µ2

TmD

)]
. (4.31)

We see now that the coefficient of the 1/ε-terms is proportional to the first coefficient
of the beta function β0 = 11N/3 − 2nf/3. This suggests that they are removed through
charge renormalization, which is indeed the case. The first counterterm comes from charge
renormalization of the O (g3) term. We need to be careful with the ε → 0 limit, so we will
keep the dimension d general until the last step:

D1

∣∣∣
g3

= −CRg
2

2T

∫

k∼mD

1

k2 +m2
D

= −CRg
2Γ
(
1− d

2

)
md−2
D µ2ε

2(4π)
d
2T

gB→gR−→ −CRg
2Γ
(
1− d

2

)
md−2
D (ε)µ2ε

2(4π)
d
2T

[
1− d

2

αsβ0

4π

(
1

ε
− γE + ln 4π

)
+O

(
α2

s

)]
. (4.32)
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The factor d/2 comes from the power of αs: g
2md−2

D ∝ α
d/2
s . Including the counterterm for the

charge renormalization we get the full contribution from the scale πT :

(D1 +D2)
∣∣∣
g5, πT

=
3CRα

2
smD

16πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFnfα

3
sT

4mD

.

(4.33)
We no longer indicate Feynman gauge in this final result for the scale πT contribution, because
it is gauge invariant.

The corresponding calculation goes the same way for both Coulomb (CG) and static gauge
(SG). D2 is scaleless at O (g5), so only D1 contributes. It has been shown in [37] that the
electric mass parameter mE of EQCD is given up to O (α2

s ) by

m2
E = Π

(1)
T (0, 0) + Π

(2)
T (0, 0)− Π

(1)
T (0, 0)

dΠ
(1)
T

dk2
(0, 0) . (4.34)

Since mE is a gauge invariant parameter, we can eliminate Π
(2)
T (0, 0) in Coulomb or static

gauge from this equation and express it through the Feynman gauge results and
dΠ

(1)
T

dk2
(0, 0),

which is the same for Coulomb and static gauge and can be found e.g. in [126]:

dΠ
(1)
T

dk2
(0, 0) = − g2

(4π)2

[
11

3
N +

2

3
nf (1− 4 ln 2) + β0

(
1

ε
+ γE + ln

µ2

4πT 2

)]
. (4.35)

With this we have

Π
(2)
T

∣∣∣
CG/SG

=

(
Π

(2)
T −m2

D(ε)
dΠ

(1)
T

dk2

)∣∣∣∣
FG

+m2
D(ε)

dΠ
(1)
T

dk2

∣∣∣∣
CG/SG

= − g2

(4π)2

(
2Nm2

D + g2T 2CFnf
)
. (4.36)

The contributions from the scale πT are now

D1

∣∣∣
CG/SG

g5, πT
=
CRg

2

2T

∫

k∼mD

1

k2 +m2
D

(
dΠ(1)

dk2
(0, 0) + Π(2)(0, 0)

)

=
3CRα

2
smD(ε)

16πT

[
71

9
N − 2

9
nf (1 + 12 ln 2) + β0

(
1

ε
+ 2 ln

µ2

2TmD

)]

− CRCFnfα
3
sT

4mD

. (4.37)

This is the same result that we got in Feynman gauge from D1 + D2, so including the coun-
terterm we obtain the same scale πT contribution in Coulomb and static gauge:

(D1 +D2)
∣∣∣
g5, πT

=
3CRα

2
smD

16πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFnfα

3
sT

4mD

.

(4.38)

4.3.2 Contribution from the Scale mD

The contribution from the scale mD consists of the two-loop self-energy and the square of the
one-loop self-energy. It corresponds to the full g4

E contribution of
〈
Ã2

0

〉
in EQCD. The relevant
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Figure 4.1: All Feynman diagrams contributing to Π
(2)
mD(0, k ∼ mD). Dashed lines represent

temporal gluons, curly lines spatial gluons, and dotted lines with arrows are ghost propagators.
The diagrams are labeled L1, . . . , L12 from top-left to bottom-right. L7, . . . , L12 are self-energy
insertions into one-loop diagrams, while L1, . . . , L6 are new two-loop configurations.

diagrams for the two-loop self-energy are given in Fig. 4.1. The contribution from the square
of the one-loop self-energy is not displayed, it corresponds to two one-loop insertions into the
temporal gluon propagator. Together they also give a gauge invariant result:

D1

∣∣∣
g5,mD

= −CRg
2

2T

∫

k∼mD

[
− Π

(2)
mD(0, k)

(k2 +m2
D)

2 +
Π

(1)
mD(0, k)2

(k2 +m2
D)

3

]

= −CRN
2α3

sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (4.39)

The calculation itself is quite involved, so we will not go into further details here. We use
the method of integration by parts to reduce the three-loop integrals corresponding to each
diagram down to a handful of known master integrals. A list of all integrals and their results
in different gauges is given in appendix B.2.

4.3.3 Contribution from the Scale mM

Finally, we have to consider the contribution from the scale mM . The temporal gluon mo-
mentum k cannot be of order mM , because then the propagator would have to be expanded
in 1/m2

D and the k integration would be scaleless. But the loop momenta in the self-energy
diagrams may be of order mM and such diagrams start to contribute at O (g5). However, by
the arguments from EQCD and MQCD in the previous section we expect the scale mM to
enter the Polyakov loop only at O (g7), so the O (g5) contributions have to vanish, which is
indeed the case.

There are two diagrams at this order (cf. Fig. 4.2); both have one spatial gluon that carries
the momentum of order mM . The first is the diagram, where the spatial gluon connects at two
three-gluon vertices, and the second is the tadpole diagram, where the spatial gluon connects
at a four-gluon vertex. From the three-gluon vertices there comes a factor (2k + q)i(2k + q)j,
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Figure 4.2: All O (g5) diagrams that can give a contribution from the scale mM . The bubble
stands for the resummed propagator.

where k is the momentum of order mD and q is of order mM , but only 4kikj needs to be kept,
because the rest is of higher order. According to the power counting, each power of q in the
numerator adds a power of g to the result, while terms with odd powers of the momenta in the
numerator vanish. So the first higher order contributions (i.e. the terms quadratic in q) are of
O (g7). For the same reason, we only have to expand the propagator of the temporal gluon
with momentum k + q in the left diagram of Fig. 4.2 to leading order in q. Then we have

D1

∣∣∣
g5,mM

=
CRg

2

2T

∫

k∼mD

Π
(1)
mM (0, k)

(k2 +m2
D)

2

=
CRNg

4

2

∫

q∼mM
Dij(0, q)

∫

k∼mD

[
δij

(k2 +m2
D)

2 −
4kikj

(k2 +m2
D)

3

]

=
CRNg

4

2

∫

q∼mM
Dii(0, q)

Γ
(
2− d

2

)

(4π)
d
2m4−d

D

[
1− 4 Γ

(
1 + d

2

)

dΓ(3)Γ
(
d
2

)
]

= 0 . (4.40)

Also the O (g6) contributions from the scale mM need to vanish. These are the two-loop
self-energy diagrams with one loop momentum of order mM . We have also checked their
cancellation explicitly; the details of this are given in appendix B.3.

4.3.4 Result

Now we have all contributions to the Polyakov loop at O (g5):

lnL =
CRαsmD

2T
+
CRα

2
s

2

[
N

(
1

2
+ ln

m2
D

T 2

)
− nf ln 2

]

+
3CRα

2
smD

16πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]
− CRCFnfα

3
sT

4mD

− CRN
2α3

sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
+O

(
g6
)
. (4.41)

The second line contains the contribution from the scale πT and the third line the contribution
from the scale mD.
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Figure 4.3: Connected three-gluon diagrams.

4.4 Higher Order Contributions

4.4.1 Casimir Scaling

It is known from lattice calculations that the logarithm of the Polyakov loop obeys Casimir
scaling, at least approximately [130, 137, 138]. Casimir scaling is observed by any quantity,
in our case the free energy FQ of a static charge in representation R, if it is proportional to
the quadratic Casimir operator CR of that representation. In other words, FQ/CR should be
independent of the representation R.

A necessary condition for the breaking of Casimir scaling is the appearance of a term not
proportional to CR. A term like that was identified for L− 1 in Ref. [126] at O (g6). The term
is

δ〈L〉 =
1

2

(
CRαsmD

2T

)2

. (4.42)

This term, however, does not break the Casimir scaling of the free energy FQ, since it is nothing
else than the second order term in the expansion of exp(−FQ/T ), when FQ is taken at leading
order. In fact, this term does not appear in FQ. Note that the exponentiation formula given
in (4.4) provides a way of calculating FQ directly. It is then clear that at the level of two-gluon
diagrams there is no breaking of Casimir scaling. Hence, we may ask, to which order of the
perturbative series can Casimir scaling be observed?

There are several equivalent prescriptions on how the color coefficients in the logarithm of
a closed Wilson line can be determined. It will not be necessary here to go into details on
how they are calculated exactly (see appendix B.6 and section 4.6); it is sufficient to know
that for so-called connected diagrams, where every gluon is connected to every other gluon
through gluon, ghost, or light quark propagators, the standard color factor and the one in the
logarithm are the same.

At the three-gluon level we have several unconnected diagrams (cf. Fig. B.6) and a few
connected diagrams. By three-gluon diagrams we mean diagrams that correspond to three
sum-integrals. We exclude sum-integrals from self-energy or vertex-function insertions from
this definition, because if the corresponding tree-level diagram obeys Casimir scaling then also
any self-energy or vertex-function insertion does.

The unconnected three-gluon diagrams are all scaleless in Coulomb or static gauge unless
each gluon carries a momentum of order mD, which means that they start to contribute at
O (g9). We will see below that Casimir scaling is already broken at a lower order, so we can
ignore the unconnected three-gluon diagrams in Coulomb gauge on the basis of this argument.
In other gauges these diagrams contribute at O (g6), but, as we will show in appendix B.6,
their color coefficients obey Casimir scaling.

The connected three-gluon diagrams are shown in Fig. 4.3. Their color factors are all given
by −CRN2/4, except for the second from left where it is 0. All of these depend linearly on
CR, so at the three-gluon level Casimir scaling is still observed.
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In general, the color factor of any diagram without light quarks is given as the trace over
a product of color matrices in the respective representation divided by the dimension of the
representation, where every color index is contracted with that of another color matrix or a
structure constant from the interaction vertices. By repeated use of the commutation relation,
the Jacobi identity or the quadratic Casimir

[
T aR, T

b
R

]
= ifabcT cR , fabef ecd + f bcef ead + f bdef eca = 0 , (4.43)

T aRT
a
R = CR1 , facdf bcd = Nδab , (4.44)

one can express every such color factor as a combination of the following terms

C
(n)
R = f i1a1i2f i2a2i3 · · · f inani1 1

dR
Tr [T a1R T

a2
R · · ·T anR ] (4.45)

and CR or N .
C

(1)
R is trivially zero and C

(2)
R and C

(3)
R can be calculated independently of the representation:

C
(2)
R = −CRN , C

(3)
R = − i

4
CRN

2 . (4.46)

But starting from C
(4)
R there is no longer a simple unique formula like Eq. (4.46) valid for all

representations. For the fundamental and the adjoint representation one can replace every
structure constant by color matrices and then use the Fierz identity to calculate the C

(n)
R

explicitly:

fabc = −2iTr
[
T aF
[
T bF , T

c
F

]]
, (4.47)

(T aF )ij (T aF )kl =
1

2

(
δilδkj −

1

N
δijδkl

)
. (4.48)

In this way we obtain

C
(4)
F =

1

8
CFN

2 (3N − 4CF ) , C
(4)
A =

1

8
N3 (13N − 24CF ) , (4.49)

or alternatively

C
(4)
F

C
(4)
A

=
CF
N

N2 + 2

N2 + 12
. (4.50)

If we can find a diagram whose color coefficient is given by C
(4)
R , then we have found a Casimir

scaling breaking term. Such a diagram can appear only at O (g8) or higher, because in the
Feynman rules of QCD every color matrix and structure constant comes with a factor of
g. Figure 4.4 shows some similar diagrams where the dependence on C

(4)
R is immediately

apparent. The diagram on the left has the color coefficient C
(4)
R exactly and the other two have

C
(4)
R +CRN

3/8, because in both cases two color matrices have to be commuted to get the form

of C
(4)
R and the commutator gives iC

(3)
R N/2.

If we add up the contributions proportional to C
(4)
R from all three diagrams, then the

contour integrations simplify a lot and we get Kronecker deltas for the Matsubara frequencies
of each of the four gluon propagators attached to the Polyakov loop contour times a coefficient
of 1/8T 4. One of these four Kronecker deltas is redundant and the Matsubara frequency in the
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Figure 4.4: Diagrams at O (g8) with a color coefficient C
(4)
R .

internal loop (the square in the left diagram, or the twisted square in the other two diagrams)
remains different from zero. So the momentum integrals are not scaleless, because the scale
πT remains in the calculation, and we have a possible genuinely nonvanishing contribution at
O (g8) that breaks Casimir scaling.

There are other diagrams similar to these three, which can be obtained from Fig. 4.4 by
contracting one or two propagators in the internal loop to a four-gluon vertex. Their color
coefficients also involve C

(4)
R , so they will give other terms of O (g8) that break Casimir scaling.

In principle, light quark loops can also give rise to color factors that break Casimir scaling.
If such a light quark loop has two or three external gluon legs, then it can be included as a
contribution to the self-energy or the vertex function and it will not affect Casimir scaling.
With four or more external legs the color factor is no longer proportional to the quadratic
Casimir, which can be checked in a similar calculation to the one above replacing the internal
gluons in Fig. 4.4 with light quark propagators, but such diagrams also start to contribute at
O (g8).

One could in principle imagine that all those terms cancel and only Casimir scaled terms
remain, but that would imply some underlying mechanism that enforces Casimir scaling to
all orders of perturbation theory. Such a mechanism, if it exists, has not been discovered so
far. The approximate Casimir scaling observed in lattice calculations may be explained by the
strong suppression of the O (g8) contributions that possibly violate Casimir scaling.

4.4.2 Outline of the O
(
g6
)

Calculation

We will outline here the necessary steps for the calculation of the O (g6) contributions, the last
order accessible by perturbation theory. The amount of work one has to do is greatly reduced by
choosing the appropriate gauge. As explained above, all the unconnected three-gluon diagrams
(see Fig. B.6) are scaleless at leading order and start to contribute only at O (g9) in Coulomb
or static gauge. In Feynman gauge, however, the six diagrams of Fig. B.6 whose modified color
coefficients in the logarithm of the Polyakov loop do not vanish all contribute at O (g6), so
this is not the most efficient gauge to perform this calculation.

There are also unconnected three-gluon diagrams consisting of only two unconnected pieces,
a single gluon and a piece of three propagators connected by a three-gluon vertex. These are
not displayed in Fig. B.6, because in gauges that are diagonal in temporal and spatial indices
they vanish on account of the three-gluon vertex with three temporal indices, just like the
corresponding two gluon diagram, but in nondiagonal gauges they also have to be considered.

The connected diagrams of Fig. 4.3 can only contribute at O (g6) when all momenta are
of the scale πT ; the scale mD contributions are of higher order. However, in Coulomb or
static gauge all of them vanish. The first three diagrams are essentially the same gluonic
configuration, but with different path ordering prescriptions along the Polyakov loop contour,
so we will only discuss the leftmost diagram; the others are analogous (apart from the second
having a vanishing color coefficient). In static gauge all Matsubara frequencies have to be zero
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because of the temporal propagators, so the integrals are scaleless and vanish. In Coulomb
gauge the Matsubara frequencies are not necessarily all zero, but the integrand vanishes by
itself: Call k the momentum flowing from the first to the last point on the Polyakov loop
contour, p the momentum flowing from the first to the second point, and q the momentum
flowing from the third to the fourth point. The results of the p and q integrations can only
be proportional to k because of rotational symmetry, where each vector comes from the three-
gluon vertices. But these vectors k are then contracted with the transverse projector from the
spatial propagator, which gives zero. The rightmost diagram in Fig. 4.3 vanishes because of
the four-gluon vertex in all gauges where the gluon propagator is diagonal in temporal and
spatial indices.

The two-gluon diagram D2 has already been discussed above; only the first term in Eq. (4.6)
contributes in Coulomb or static gauge at O (g6). It gives a contribution of −CRNα2

sm
2
D/48T 2

when both momenta are of the scale mD. When one or both momenta are of the scale πT ,
then the first nonvanishing contribution is of O (g7) or O (g8), respectively.

The O (g6) contribution from diagram D1 contains several different elements: the three-
loop self-energy with all momenta of order mD, products of one-loop and two-loop self-energies
[essentially the last line of Eq. (4.7) times Π

(1)
mD(k)/ (k2 +m2

D)] or the one-loop self-energy cubed
from the expansion of the resummed propagator, the two-loop self-energy at the scale mD with
one loop momentum of order πT and the other of order mD, and the two-loop or square of
one-loop self-energy with all momenta of order πT .

Fortunately, most of these contributions can be inferred in the EFT approach from an
already existing EQCD calculation. As explained previously [see Eq. (4.20)], the correlator of

two Ã0 fields in EQCD can be obtained from the pressure or vacuum energy density, which
has been calculated at the four-loop level in [149]. From this we get

1

dR
Tr
〈
Ã2

0

〉
s

=− CRmE

4π
+
CRNg

2
E

(4π)2

[
1

2ε
+

1

2
− γE + ln

πµ2

m2
E

]

+
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2

(4π)3

g4
E

mE

(
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48
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12
ln 2 +

π2

12

)

+
CR (N2 + 1)λE

2(4π)2
+
CRλ̄E
4(4π)2

(
4N2 − 6

N
−N2 − 1

)

+
CRN

3g6
E

(4π)4m2
E

(
43

4
− 491π2

768

)
+O

(
g5
)
. (4.51)

If we now insert the explicit expression for λE and λ̄E in terms of g and the one-loop corrections
to gE, mE, and Z2, then we have almost the full O (g6) contribution to the logarithm of the
Polyakov loop. The only thing that is missing is the contribution from D2 given above and
the two-loop and square of one-loop self-energy contributions with all momenta of order πT
in Coulomb or static gauge.

The one-loop correction to the EQCD coupling constant is given by [38]

g2
E = g2T

{
1 +

αs

4π

[
1

3
N − 8

3
nf ln 2 + β0

(
1

ε
+ γE + ln

µ2

4πT 2

)]}
. (4.52)

Because of the 1/ε pole in the g2
E term in Eq. (4.51) we also need the O(ε) terms of both
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g2
E [146] and Z2:

g2
E
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, (4.53)
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]
. (4.54)

Here γ1 is the coefficient of the linear term in the expansion of ζ(1−x) for small x. Combining
all these terms and inserting the renormalized coupling, we then have

lnL
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(4.55)

The first 1/ε pole, a UV divergence from the scale mD, has to cancel against a corresponding
IR divergence in the scale πT integrals. The 1/ε pole in the last line comes from the charge
renormalization in the MS scheme of the O (g4) contribution from the scale πT , i.e. the first
term in Eq. (4.7), and it cancels the UV divergence in the one-loop vacuum part of the self-
energy.

There are also O (g6) contributions from two-loop diagrams with two momenta of order
mD and one momentum of order mM . From the MQCD analysis of the Polyakov loop we know
that the scale mM can only appear first at O (g7), so these contributions ultimately have to
cancel. We have checked this cancellation explicitly in appendix B.3.
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Figure 4.5: The free energy of a static quark FQ for the SU(3) gauge theory in weak coupling
expansion at LO, NLO and NNLO. The bands are obtained by varying the renormalization
scale µ between πT and 6πT . Also shown are the lattice data for FQ obtained on lattices with
temporal extent Nτ = 4 and 8 [137].

4.5 Convergence of the Perturbative Series and Com-

parison with the Lattice Results

In this section, we discuss the convergence of the perturbative series for the Polyakov loop,
or equivalently the free energy of a static quark, and compare the weak coupling results with
lattice QCD results. For a reliable comparison of the lattice and the weak coupling results we
need to consider a temperature range that extends to sufficiently high temperatures. We will
start with a comparison to pure SU(3) lattice data (i.e. nf = 0), which have been calculated
in [137] up to temperatures of 24Tc, with Tc being the deconfinement transition temperature.
Later we will also comment on the results of a more recent full QCD calculation with nf = 3
published in [150].

In Fig. 4.5 we show the perturbative results for the free energy of a static quark at various
orders in perturbation theory for pure SU(3) gauge theory (nf = 0). We use one-loop running
for αs. To determine the renormalization scale for different values of T/Tc we used the relation
r0Tc = 0.7498(50) [151], where r0 is the Sommer scale [152]. The value of ΛMS was determined
in Ref. [96]: r0ΛMS = 0.637+0.032

−0.030. With this we get Tc/ΛMS = 1.177. One can see that the scale
dependence of the leading order (LO) results is quite large and becomes even larger at NLO.
The scale dependence of FQ is first reduced at NNLO and is, in fact, quite small, making a
meaningful comparison with the lattice results possible. In Fig. 4.5 we also show the lattice
results for the static quark free energy for nf = 0 from Ref. [137]. The lattice results appear to
agree with the LO and NLO results, given their large scale uncertainty, but are slightly larger
than the NNLO results at small T .

We should keep in mind, however, that the comparison of the lattice and the perturbative
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Figure 4.6: The entropy of a static quark SQ for nf = 0 (left) and nf = 3 (right, picture taken
from [150]) in weak coupling expansion at LO, NLO and NNLO. The bands are obtained by
varying the renormalization scale µ between πT and 6πT (left) or 4πT (right). Also shown
are the lattice results for SQ; cf. the description in the text.

results for FQ is not as straightforward as Fig. 4.5 may suggest. This fact seems to be generally
overlooked in the literature. The perturbative calculations are performed in the MS scheme,
while on the lattice the calculation is performed in a scheme in which the static quark-antiquark
energy at zero temperature is normalized such that it is equal to the string potential V (r) =
−π/(12r) + σr at large distances, with σ being the string tension. To match the two schemes
one has to normalize the static energy at zero temperature in the perturbative calculation at
each order to the lattice potential at short distances. This then corresponds to a constant shift
Cshift in physical units of the perturbative static energy, which is different at different orders
of perturbation theory.

This matching has been carried out for both nf = 0 [96] and nf = 3 [97]. The shift of the
static energy implies that one has to add Cshift/2 to the perturbative result for FQ before the
comparison with the lattice results can be made. However, Cshift is sensitive to the perturbative
order, to the resummation of the logarithms associated with the running coupling constant,
as well as to the ultrasoft scale (see e.g. discussions in Ref. [98]). Thus, the uncertainty in
the determination of Cshift will be the dominant systematic uncertainty in the comparison of
the weak coupling and lattice calculations for FQ. For this reason we did not add Cshift in the
comparison of the lattice and the perturbative result for FQ in Fig. 4.5.

We can avoid this problem by calculating the entropy of the static quark defined as

SQ = −∂FQ(T )

∂T
. (4.56)

In this quantity the normalization constant Cshift drops out. In perturbation theory it is
straightforward to calculate the entropy of a static quark by taking the temperature derivative
of Eq. (4.41) times T . In order to calculate the entropy of a static quark on the lattice, we use
the lattice data on the renormalized Polyakov loop obtained on Nτ = 4 lattices in Ref. [137].
We interpolate these data using different smoothing splines and calculate the derivatives of the
splines using the R package [153]. The statistical errors of the interpolation and the derivative
were calculated using the bootstrap method. Furthermore, we considered different spline
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Figure 4.7: EQCD type and mixed contributions to FQ at O (g5) (upper panel) and O (g6)
(lower panel) for nf = 0. The bands correspond to the variation of the renormalization scale
from πT to 6πT . The thick black line corresponds to the higher order EQCD type contributions
from lattice EQCD estimated in Ref. [148] for the renormalization scale µ = 4πT ; cf. the
description in the text.

interpolations, varying the number of knots and the value of the smoothing parameter. We
enlarged the statistical error to take into account the difference between the different splines, if
those were outside the statistical error. In this way we obtained the total error for the entropy
in lattice QCD.

In Fig. 4.6 we compare the entropy of a static quark estimated in lattice QCD and in the
weak coupling calculations. As in the case of the static quark free energy, the scale dependence
of the LO and NLO results is quite large. Within this large scale uncertainty the perturbative
calculations and the lattice data agree. The scale dependence of the NNLO result is much
smaller. The NNLO result, however, lies below the lattice data. The same also applies for
the nf = 3 lattice data from [150] also shown in Fig. 4.6 (taken directly from that reference).
The analytic plots in that picture were created using the result of this work, and one-loop
running αs with ΛQCD = 315 MeV. The agreement for larger temperatures is somewhat better
for nf = 3, though still not perfect. This implies that higher order corrections in the weak
coupling expansion may still be important. In view of this, below we discuss some higher order
terms in the weak coupling expansion of the static quark free energy and have a closer look on
the convergence of the perturbative series.

As discussed above, in the weak coupling expansion we have three types of contributions,
purely nonstatic, i.e. arising from the scale πT , purely static contributions corresponding to
the scales mD and mM , which can be calculated within EQCD, and mixed contributions,
where some loop momenta are of order mD or mM and others are of order πT . Here we
will discuss the latter two types of contributions, referring to them as EQCD type and mixed
type contributions, respectively. Together they have been called the static contribution in the
previous sections, but here we want to distinguish between them.
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The EQCD type contributions arise from the weak coupling expansion of Tr
〈
Ã2

0

〉
with the

expansion parameter Ng2
E/(4πmE) [c.f. Eq. (4.51)], using only the leading order results for

the matching parameters Z2, gE, and mE and neglecting quartic or higher order interactions.
Beyond four-loop order the condensate Tr

〈
Ã2

0

〉
contains a nonperturbative contribution of

order g8
E/m

3
E, which was calculated using lattice simulations of EQCD [148]. Furthermore,

in Ref. [148] a simple parametrization of those higher order contributions to the condensate
beyond four-loop order was given.

In Fig. 4.7 we show the EQCD type contributions at O (g5) and O (g6) as well as the sum
of all higher order contributions calculated in lattice EQCD, which we plot using Eq. (4.1) of
Ref. [148]. The bands shown in the figure correspond to the variation of the renormalization
scale µ from πT to 6πT . The magnitude of the different contributions is decreasing with
increasing order, the O (g6) contribution is smaller than the O (g5) contribution, and the sum

of all the higher order contributions to g2/(2TdR) × Tr
〈
Ã2

0

〉
[starting from O (g7)], which

includes the nonperturbative contributions, is about the same size as the O (g6) contribution.
Thus, we conclude that the weak coupling expansion for the purely static contribution is
converging reasonably well and there are no large nonperturbative corrections to the Polyakov
loop from the static chromomagnetic sector. Furthermore, as shown in Fig. 4.7, the sum of
the higher order corrections to the static quark free energy is positive and thus would shift the
perturbative result away from the lattice data.

Now let us discuss the mixed contributions, which come from higher order corrections to
the matching parameters and higher interaction terms in EQCD. In Fig. 4.7 we show the O (g5)
and O (g6) mixed contributions. The latter is evaluated by using Eq. (4.55) and omitting the
last two lines as well as the 1/ε pole. In contrast to the EQCD type contributions, the mixed
contributions can be positive or negative depending on the choice of the renormalization scale.
At O (g5) the mixed contribution is smaller than the EQCD type contribution, while at O (g6)
the mixed contribution is of the same size or larger (depending on the renormalization scale).
Furthermore, the two mixed contributions are about the same size, which means that the full
O (g6) contribution might be large. Clearly, for rigorous statements about the convergence of
the weak coupling expansion and comparison with lattice QCD results a complete calculation
of the O (g6) contribution will be necessary.

4.6 Free Energies for a Static Quark-Antiquark System

In analogy to the relation between the free energy of a static quark and the Polyakov loop,
the free energy of a static quark-antiquark pair is correspondingly given by the Polyakov loop
correlator [122]:

exp

[
−FQQ̄(r)

T

]
=

1

N2

〈
Tr
[
L(r)

]
Tr
[
L†(0)

]〉
. (4.57)

The dagger on the second Polyakov loop, which corresponds to the antiquark contribution,
turns the fundamental into the antifundamental representation. This quantity depends only
on the relative distance r. Just like for the single Polyakov loop, the free energy is defined with
respect to the medium, i.e. FQQ̄ is the difference between the free energy of the medium in
the presence of a static quark-antiquark pair and the free energy of the medium without static
quarks. This time we will restrict ourselves to quarks in the fundamental representation.

In the weak coupling regime (i.e. for large temperatures) this quantity can be calculated
in perturbation theory. For the Polyakov loop we have found an exponentiation formula in
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Sec. 4.2, which makes it possible to express the free energy directly through a set of Feynman
diagrams. For the correlator we will also obtain a similar expression here (cf. also appendix B.10
for an alternative though less useful exponentiation).

The method we use is the replica trick for Wilson lines [144, 145], which we will outline
here. First, consider the Polyakov loop correlator as an amplitude with uncontracted indices:

exp

[
−FQQ̄(r)

T

]
=
δijδkl
N2
〈Lij(r)L∗kl(0)〉 ≡ δijδkl

N2
〈M〉ij, kl , (4.58)

where i and k are the color indices of the Polyakov loop operator at imaginary time τ = 1/T ,
while j and l are at τ = 0. Then define a multiplication of amplitudes A and B as Aij′, kl′Bj′j, l′l
(note that herein lies the difference to appendix B.10, where the indices k and l are exchanged).
Exponentiation is to be understood as a power series with respect to this multiplication. In
order to find the exponentiated expression of the thermal average of the amplitude 〈M〉, we
have to determine an amplitude that can be interpreted as the logarithm of 〈M〉.

Now consider the nth power of this amplitude and expand in n:

〈M〉nij, kl = exp[n ln〈M〉]ij, kl = δijδkl + n ln〈M〉ij, kl +O
(
n2
)
, (4.59)

so in order to find the logarithm of 〈M〉, we have to calculate the linear term in an expansion
of 〈M〉n in n. There is an alternative way of doing this. We can define a theory that contains
n exact copies or replicas of the QCD fields, which interact like in QCD for each replica, but
there is no interaction between different replica fields. In this theory, we can write the nth
power of the thermal average of the amplitude as the thermal average of n replicas of the
amplitude:

〈M〉nij, kl =
〈
M(n)

ii′, kk′M
(n−1)
i′i′′, k′k′′ · · ·M

(1)
j′j, l′l

〉
, (4.60)

where the upper indices label the different replicas.
The Feynman diagrams in this replica theory are almost the same as in QCD, except that

now there is replica path ordering: all color matrices associated to gluons of a higher replica
index ρ are to be placed to the left of those associated to a lower index, regardless of where
the gluons are attached to the Polyakov loop contours. Again, this is to be understood in
the context of splitting the Feynman diagrams D into a color and a kinematic part, where
the color part C contains all color matrices, structure constants, or symmetry factors, and the
kinematic part K contains all propagators, contour integrations and other coefficients:

D{ρ}ij, kl = C{ρ}ij, kl(D)K(D) , (4.61)

where {ρ} denotes the set of all replica indices, while the absence of such an index denotes the
corresponding expression in QCD without replicas. Replica path ordering affects only the color
coefficients, the kinematic parts are just like in QCD, so the sum over different replica indices
and the expansion in n can be performed exclusively in the color part. Consequently, the
amplitude 〈M〉 and its logarithm can be written as a sum over the same Feynman diagrams,
but the color parts for each diagram have to be modified in the following way:

〈M〉ij, kl =
∑

D

Cij, kl(D)K(D) = exp
[
ln〈M〉

]
ij, kl

= exp

[∑

D

C̃(D)K(D)

]

ij, kl

, (4.62)
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where ∑

{ρ}

C{ρ}ij, kl(D) = δijδkl + n C̃ij, kl(D) +O
(
n2
)
. (4.63)

We will present an explicit example of such a determination of the coefficients of the logarithm
shortly.

First, we will show how the exponential can be evaluated, after the coefficient has been
determined. In principle, it is nothing but the matrix exponential of an N2 × N2 matrix,
however, in this case it will turn out to be much simpler. We can use the Fierz identity

δijδkl =
1

N
δikδlj + 2T aikT

a
lj ≡ (PS)ik(PS)∗jl + (PA)aik(PA)a ∗jl , (4.64)

where the first part can be understood as a projector on the color singlet space with (PS)ik =
δik/
√
N and the second part as a projector on the color adjoint space with (PA)aik =

√
2T aik.

As projectors they satisfy
(PR)a ∗ik (PR′)

b
ik = δRR′δ

ab , (4.65)

where the representation indices R and R′ can stand for either singlet S or adjoint A, and the
color indices a and b are absent for the singlet or run from 1 to N2−1 for the adjoint projector.

With these projectors we can split any amplitude A like

Aij, kl = (PR)aik(PR)a ∗i′k′Ai′j′, k′l′(PR′)bj′l′(PR′)b ∗jl ≡ (PR)aikAabRR′(PR′)b ∗jl , (4.66)

and because of the orthogonality of the projectors the exponential of A can be expressed as

exp[A]ij, kl = exp[P a
RAabRR′P b ∗

R′ ]ij, kl = (PR)aik exp[A]abRR′(PR′)
b ∗
jl . (4.67)

In principle, what we did up until now is nothing but a basis transformation for the amplitudes;
the matrix exponential with the new indices R, R′ and a, b still has N2 × N2 elements. But
through the specific nature of the Feynman diagrams the exponential in this basis will be
greatly simplified.

All color coefficients C̃ can be expressed as linear combinations of products of color matrices
with all color indices contracted. We can use the Fierz identity (4.64) to show that any
two fundamental color matrices with their color indices contracted can be expressed entirely
through Kronecker deltas, so we can write any color coefficient as:

C̃ij, kl = c1δijδkl + c2δikδjl . (4.68)

With this and the other properties of the fundamental color matrices, i.e. tracelessness and
orthogonality, it is straightforward to see that the projected color coefficients satisfy

C̃abRR′ = (PR)a ∗ik C̃ij, kl(PR′)bjl = C̃RδRR′δab . (4.69)

This means that ln〈M〉 is diagonal in this projection and exponentiation is trivial:

exp

[
−FQQ̄

T

]
=
δijδkl
N2

exp

[∑

D

C̃(D)K(D)

]

ij, kl

=
δijδkl
N2

(PR)aik exp

[∑

D

C̃(D)K(D)

]ab

RR′
(PR′)

b ∗
jl
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=
δijδkl
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(PS)ik exp
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[∑
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]
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)
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exp
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C̃S(D)K(D)

]
+
N2 − 1
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C̃A(D)K(D)

]

≡ 1

N2
exp

[
−FS
T

]
+
N2 − 1

N2
exp

[
−FA
T

]
. (4.70)

In this way we have split the free energy of a static quark-antiquark pair into a singlet and
an adjoint free energy, which can be defined directly as

exp

[
−FS
T

]
=

1

N

〈
Tr
[
L(r)L†(0)

]〉
, (4.71)

exp

[
−FA
T

]
=

2

N2 − 1

〈
Tr
[
L(r)T aL†(0)T a

]〉
. (4.72)

This procedure can easily be generalized to similar correlators of Polyakov loops in different
representations or with more than two loops. For example, in a diquark Polyakov loop corre-
lator (i.e. a correlator of two Polyakov loops without complex conjugation) one has antitriplet
and sextet projectors (or rather N(N ± 1)/2-plet projectors for general N) that together form
unity instead of Eq. (4.64), and the projected color coefficients are still diagonal as in Eq. (4.69),
which gives an analogous definition of antitriplet and sextet free energies (cf. appendix B.10).

Or in the case of a baryonic Polyakov loop correlator (consisting of three Polyakov loops
with N = 3), one has one singlet, two octet, and one decuplet projector, but the projected
color coefficients are no longer fully diagonal: the two octet representations can mix, reflecting
the ambiguity in which color indices to (anti)symmetrize, so Eq. (4.69) has to be modified as

C̃abRR′ = C̃RR′δd(R)d(R′)δ
ab , (4.73)

where d(R) is the dimension of the respective representation. In fact, this version of Eq. (4.69)
also applies to the diquark or quark-antiquark Polyakov loop correlators, so it may be true for
any combination of representations and loops, although we will not attempt a general proof
here. In any case, this projection of the amplitudes in the baryonic Polyakov loop correlator
then defines a singlet and a decuplet free energy through simple exponentials and two octet
free energies through the trace of the exponential of a 2× 2 matrix:

exp

[
−F3Q

T

]
=

1

27
exp

[
−F1

T

]
+

8

27
Tr

{
exp

[
− 1

T

(
F88 F88′

F8′8 F8′8′

)]}
+

10

27
exp

[
−F10

T

]
. (4.74)

There are, however, two major problems related to the definition of singlet, adjoint, or
other free energies such as these. First, the definition is gauge dependent, and second, each
of these free energies contains UV divergences, which cancel only in the full expression for the
Polyakov loop correlator.

Let us first discuss the divergences (and return to the quark-antiquark case). There are
two types of divergences, the first is a linear divergence proportional to the length of a Wilson
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line, so in this case 1/T , and can be understood as a mass correction to the (infinite) mass of
the static quark. They factorize, which means that they affect singlet and adjoint free energies
in the same way, and can be removed by multiplication with exp[−2ΛF/T ], where ΛF is a
divergent constant and the index F refers to the fundamental representation. In dimensional
regularization such divergences are absent.

The second kind of divergence is logarithmic and comes from gluons clustering around the
endpoints of a Polyakov loop [154–156]. All gluons contributing to this divergence have to be
contained in an infinitesimal area around the endpoints, which means that the divergence does
not depend on any characteristics of the Wilson line like length or curvature, except for when
two or more endpoints coincide (i.e. at cusps or intersections), in which case the divergence
also depends on the angles at this point. There may also be more than one divergent cluster, in
which case the ones closer to the singular point constitute a subdivergence with respect to the
other ones. Such divergent clusters can be added to any Feynman diagram4 and will factorize
from the sum over all diagrams (cf. figure 16 in [156]), so the divergence of the correlator is
proportional to the correlator itself.

Keeping in mind that the divergences at the endpoints of the two Polyakov loops are
unrelated, we can write for the divergent part of the amplitude:

Div〈M〉ij, kl = ∆ii′, jj′〈M〉i′j′, kl + 〈M〉ij, k′l′∆ll′, kk′ −∆ii′, jj′〈M〉i′j′, k′l′∆ll′, kk′ , (4.75)

where we have used the fact that both Polyakov loops have exactly the same configuration at
their endpoints5, so accordingly the divergences ∆ have to be identical. The last term is there
to remove a double counting of terms with divergences at both Polyakov loops.

Then we define the renormalized correlator through the subtraction of the divergent part:

〈M〉(R)
ij, kl = 〈M〉ij, kl −Div〈M〉ij, kl = (δii′δjj′ −∆ii′, jj′)〈M〉i′j′, k′l′(δll′δkk′ −∆ll′, kk′)

≡ Zii′, jj′〈M〉i′j′, k′l′Zll′, kk′ . (4.76)

We can invert this relation and insert Eq. (4.75) iteratively to further illustrate the divergence
structure:

〈M〉 = 〈M〉(R) + Div〈M〉 = 〈M〉(R) + ∆〈M〉+ 〈M〉∆−∆〈M〉∆
= 〈M〉(R) + ∆〈M〉(R) + 〈M〉(R)∆

+ ∆2〈M〉+ ∆〈M〉∆ + 〈M〉∆2 −∆2〈M〉∆−∆〈M〉∆2

= 〈M〉(R) + ∆〈M〉(R) + 〈M〉(R)∆ + ∆2〈M〉(R) + ∆〈M〉(R)∆ + 〈M〉(R)∆2

+ ∆3〈M〉+ ∆2〈M〉∆ + ∆〈M〉∆2 + 〈M〉∆3 −∆3〈M〉∆−∆2〈M〉∆2 −∆〈M〉∆3

= · · · =
(
∞∑

m=0

∆m

)
〈M〉(R)

(
∞∑

n=0

∆n

)
. (4.77)

So with Eq. (4.75) the divergences and subdivergences for each loop really do form a geometric
series (which was implicit in the previous discussion), wherein ∆ corresponds to irreducible
gluon clusters, and the renormalization tensors Z are the inverse of that series.

4If that diagram is already divergent, then adding such a cluster generates a subdivergence.
5A Wilson line with final endpoint k and initial endpoint l in the antifundamental representation is equivalent

to a Wilson line with final endpoint l and initial endpoint k in the fundamental representation.
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Again, we can use Eq. (4.64) to argue that

Zii′, jj′ = z1δii′δjj′ + z2δijδi′j′ . (4.78)

Of course, we can multiply the renormalization tensors Zii′, jj′ by some finite tensor, which
corresponds to a different renormalization scheme. The scheme also depends on which finite
terms are included in ∆. If we take the traces over the Polyakov loops, then the contour is
smooth at this point, which means that there are no logarithmic divergences [154, 155]. So we
can partially fix the renormalization scheme by requiring that the renormalized Polyakov loop
correlator be identical to the unrenormalized one with respect to the logarithmic divergences,
so δijZii′, jj′ = δi′j′ , from which it follows that

z1 +Nz2 = 1 . (4.79)

If we now use the same projectors for the renormalized singlet and adjoint free energies as for
the unrenormalized, then we have:

exp

[
−F

(R)
S

T

]
= (PS)∗ik〈M〉(R)

ij, kl(PS)jl = (PS)∗ikZii′, jj′〈M〉i′j′, k′l′Zll′, kk′(PS)jl

= (PS)∗ikZii′, jj′

(
(PS)i′k′ exp

[
−FS
T

]
(PS)∗j′l′

+ (PA)ai′k′ exp

[
−FA
T

]
(PA)a ∗j′l′

)
Zll′, kk′(PS)jl

=
1 + (N2 − 1)z2

1

N2
exp

[
−FS
T

]
+

(N2 − 1)(1− z2
1)

N2
exp

[
−FA
T

]

≡ (1− ZS) exp

[
−FS
T

]
+ ZS exp

[
−FA
T

]
, (4.80)

exp

[
−F

(R)
A

T

]
=

1

N2 − 1
(PA)a ∗ik 〈M〉(R)

ij, kl(PA)ajl =
1

N2 − 1
(PA)a ∗ik Zii′, jj′〈M〉i′j′, k′l′Zll′, kk′(PA)ajl

=
1

N2 − 1
(PA)a ∗ik Zii′, jj′

(
(PS)i′k′ exp

[
−FS
T

]
(PS)∗j′l′

+ (PA)bi′k′ exp

[
−FA
T

]
(PA)b ∗j′l′

)
Zll′, kk′(PA)ajl

=
1− z2

1

N2
exp

[
−FS
T

]
+
N2 − 1 + z2

1

N2
exp

[
−FA
T

]

≡ ZA exp

[
−FS
T

]
+ (1− ZA) exp

[
−FA
T

]
. (4.81)

So we see that the singlet and adjoint free energies mix under renormalization, which makes
their definition somewhat ambiguous.

Here we have introduced the renormalization constants

ZS = (N2 − 1)ZA =
N2 − 1

N2
(1− z2

1) , (4.82)

such that ZS, ZA = O(αs). These relations can also be inverted as

exp

[
−FS
T

]
=
(

1− Z̃S
)

exp

[
−F

(R)
S

T

]
+ Z̃S exp

[
−F

(R)
A

T

]
, (4.83)
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exp

[
−FA
T

]
= Z̃A exp

[
−F

(R)
S

T

]
+
(

1− Z̃A
)

exp

[
−F

(R)
A

T

]
, (4.84)

with

Z̃S = (N2 − 1)Z̃A =
−ZS

1− ZS − ZA
=
N2 − 1

N2

z2
1 − 1

z2
1

. (4.85)

We also see that we can construct a multiplicatively renormalizable quantity through

exp

[
−F

(R)
S

T

]
− exp

[
−F

(R)
A

T

]
= (1− ZS − ZA)

(
exp

[
−FS
T

]
− exp

[
−FA
T

])

= z2
1

(
exp

[
−FS
T

]
− exp

[
−FA
T

])
. (4.86)

As it turns out, both singlet and adjoint free energy seem to be free of logarithmic di-
vergences in Coulomb gauge, at least up to the currently known perturbative orders. This is
why they are usually calculated only in this gauge6. The general renormalization properties
demonstrated here may give another motivation that considering these gauge dependent quan-
tities in Coulomb gauge may be meaningful: in general gauges the separation into singlet and
adjoint is somewhat arbitrary, since both free energies have to be mixed in order to obtain a
finite result. But if there are no divergences in Coulomb gauge, then ZS/A = 0 and there is no
mixing between singlet and adjoint.

It is quite interesting to note that performing a gauge transformation leads to expressions
of exactly the same form. Under gauge transformations described by the local SU(N) matrix
U(x) the uncontracted Polyakov loop correlator transforms as:

〈M〉ij, kl → Uii′(r)U∗kk′(0)〈M〉i′j′, k′l′U∗jj′(r)Ull′(0) , (4.87)

where we have suppressed the imaginary time argument τ = 0. The singlet and adjoint free
energies then transform as:

exp

[
−FS
T

]
→ (PS)∗ikUii′(r)U∗kk′(0)〈M〉i′j′, k′l′U∗jj′(r)Ull′(0)(PS)jl

= (PS)∗ikUii′(r)U∗kk′(0)

(
(PS)i′k′ exp

[
−FS
T

]
(PS)∗j′l′

+ (PA)ai′k′ exp

[
−FA
T

]
(PA)a ∗j′l′

)
U∗jj′(r)Ull′(0)(PS)jl

=
1

N2
Tr
[
U(r)U †(0)

]
Tr
[
U(0)U †(r)

]
exp

[
−FS
T

]

+
2

N
Tr
[
U(r)T aU †(0)

]
Tr
[
U(0)T aU †(r)

]
exp

[
−FA
T

]

≡ (1− u(r)) exp

[
−FS
T

]
+ u(r) exp

[
−FA
T

]
, (4.88)

6Another reason is that in the small distance limit they reproduce the vacuum static potentials divided by
the temperature.
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exp

[
−FA
T

]
→ (PA)a ∗ik Uii′(r)U∗kk′(0)〈M〉i′j′, k′l′U∗jj′(r)Ull′(0)(PA)ajl

= (PA)a ∗ik Uii′(r)U∗kk′(0)
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(PS)i′k′ exp

[
−FS
T

]
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−FA
T

]
(PA)b ∗j′l′

)
U∗jj′(r)Ull′(0)(PA)ajl

=
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Tr
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U †(0)T aU(r)

]
Tr
[
U †(r)T aU(0)

]
exp

[
−FS
T

]

+
4

N2 − 1
Tr
[
U †(0)T aU(r)T b

]
Tr
[
U †(r)T aU(0)T b

]
exp

[
−FA
T

]

≡ u(r)

N2 − 1
exp

[
−FS
T

]
+

(
1− u(r)

N2 − 1

)
exp

[
−FA
T

]
. (4.89)

Again, the transformed free energies, expressed through the old free energies, depend only on
one quantity:

u(r) = 1−
∣∣∣∣

1

N
Tr
[
U(r)U †(0)

]∣∣∣∣
2

. (4.90)

Also here we see that the separation of the Polyakov loop correlator into singlet and adjoint
free energies is not unique, as performing a gauge transformation mixes the two expressions.
Here the transformation constant may also depend on the distance between the two loops, in
contrast to the renormalization constant.

In this calculation we have assumed that the gauge transformation does not depend on
the gauge fields themselves. However, this does not include all possible transformations. In
order to go from Feynman to Coulomb gauge, for instance, there is not one local SU(N) ma-
trix U that turns every gauge field that satisfies the Feynman gauge condition into one that
satisfies the Coulomb gauge condition. Different field configurations will need different trans-
formation matrices, so in order to go from one gauge to the other, we need a field dependent
transformation. This means that it is not possible to pull such matrices out of the thermal
average.

However, we may perform the above calculation just as well for the operators inside the
correlators for the singlet and adjoint free energies given in Eqs. (4.71) and (4.72) before taking
the thermal average. The corresponding expressions for the transformation behavior of those
operators are valid also for field dependent transformations. This will be relevant for the
matching to pNRQCD in section 4.8.

4.7 Calculation of the Normalized Polyakov Loop Cor-

relator

The great advantage of exponentiated formulas, such as were derived in the previous section,
is that they reduce the number of Feynman diagrams one has to calculate at a given order in
perturbation theory, since many of the color coefficients in the exponent are zero. We will show
this explicitly for the two-gluon diagrams. First, all diagrams where no gluons are exchanged
between the two loops have color coefficients that are proportional to the identity δijδkl, so they
trivially factorize out of the exponentiation. They give a contribution that corresponds to the
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Figure 4.8: All unconnected diagrams. Some diagrams can be flipped to give four other
diagrams that are not explicitly displayed. The line with the right arrow is the Polyakov loop
for the quark, and the line with the left arrow corresponds to the antiquark.

individual contributions of each Polyakov loop, i.e. exp[−2FQ/T ]. So it makes sense to divide
the Polyakov loop correlator by these two Polyakov loops, which corresponds to calculating
FQQ̄−2FQ and can be interpreted as the interaction part of the correlator, because it contains
only those diagrams where gluons are exchanged between the loops.

For connected diagrams, i.e. diagrams where every gluon is connected to every other gluon
through vertices or propagators, the color coefficient in the exponent is the same as the standard
coefficient in QCD, so the first diagrams where the modification of the color coefficient obtained
from the replica trick becomes relevant are the two-gluon diagrams shown in Fig. 4.8. For each
diagram we have to sum over every possible assignment of replica indices and perform the
corresponding replica path ordering:

∑

{ρ}

C{ρ}
( )

= n(n− 1) C
( )

+ n C
( )

,

∑

{ρ}

C{ρ}
( )

= n(n− 1) C
( )

+ n C
( )

,

∑

{ρ}

C{ρ}
( )

=
n(n− 1)

2
C
( )

+
n(n− 1)

2
C
( )

+ n C
( )

,

∑

{ρ}

C{ρ}
( )

=
n(n− 1)

2
C
( )

+
n(n− 1)

2
C
( )

+ n C
( )

, (4.91)

where the first term counts the possibilities of having two gluons with different replica indices
and the second term counts the possibilities of them having the same replica index. For the
latter two diagrams the first term is split into the possibilities of one gluon having a higher
or a lower index than the other gluon, a distinction that is in fact unnecessary, because both
orderings have the same standard color coefficient.

We see that for the first diagram the terms linear in n cancel trivially, so this diagram does
not contribute to the logarithm of the Polyakov loop correlator. For the third diagram it is
straightforward to see that both standard color coefficients are equal, since the gluon attached
only to the top Polyakov loop contributes only with a unity matrix to the color coefficient,
because (T aT a)ij = δij(N

2 − 1)/2N , so also here the linear order of n cancels. These two
diagrams are the first examples of a more general statement: whenever one can draw a line
crossing both Polyakov loops such that there are gluons on both sides of it but no gluon crosses
the line, then this diagram does not contribute to the logarithm of the correlator.
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This can be shown in the following way. Whenever it is possible to draw such a line, then
the color coefficient C can be written as a product of two coefficients A and B, one for the left
and one for the right part. The statement that each color coefficient can be written through
Kronecker deltas applies to both parts separately, so we can write

Cij, kl = Aij′, kl′Bj′j, l′l = (a1δij′δkl′ + a2δikδj′l′)(b1δj′jδl′l + b2δj′l′δjl)

= a1b1δijδkl + (a1b2 + a2b1 + a2b2N)δikδjl = (b1δij′δkl′ + b2δikδj′l′)(a1δj′jδl′l + a2δj′l′δjl)

= Bij′, kl′Aj′j, l′l , (4.92)

which means that the two parts (and in fact any two color coefficients) commute. But then
the replica path ordering and counting of replica indices can be done for each part separately:

∑

{ρ}

C{ρ}ij, kl =
∑

{ρ1}

A{ρ1}ij′, kl′

∑

{ρ2}

B{ρ2}j′j, l′l . (4.93)

Since each part is at least of order n, the sum over every replica index combination for the
whole color coefficient will be at least of order n2.

Before calculating the projected color coefficients for the nonvanishing diagrams, we will
clarify some conventions related to the complex conjugation on the antiquark Polyakov loop.
There is a minus sign from the ig factor in the exponent, which we will use to revert the
direction of the contour integration in the kinematic parts of the diagrams (indicated as an
arrow to the left in Fig. 4.8), so for the calculation of the color coefficients we will only use
charge conjugated color matrices without this minus sign. Then we have

C̃S
( )

= CS
( )

=
δikδjl
N

T aijT
a ∗
kl =

1

N
Tr
[
T aT a

]
=

1

2N
(N2 − 1) , (4.94)

C̃A
( )

= CA
( )

=
2T b ∗ik T

b
jl

N2 − 1
T aijT

a ∗
kl =

2

N2 − 1
Tr
[
T aT bT aT b

]
= − 1

2N
, (4.95)

C̃S
( )

= CS
( )

− CS
( )

=
δikδjl
N

[
(T aT b)ij(T

b ∗T a ∗)kl − (T aT b)ij(T
a ∗T b ∗)kl

]

=
1

N
Tr
[
T aT bT aT b − T aT bT bT a

]
= −1

4
(N2 − 1) , (4.96)

C̃A
( )

= CA
( )
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( )

=
2T c ∗ik T

c
jl

N2 − 1

[
(T aT b)ij(T

b ∗T a ∗)kl − (T aT b)ij(T
a ∗T b ∗)kl
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=
2

N2 − 1
Tr
[
T aT bT cT aT bT c − T aT bT cT bT aT c

]
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1

4
, (4.97)
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1
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4
(N2 − 1) , (4.98)
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Tr
[
T aT bT aT cT bT c − T aT bT bT cT aT c

]
=

1

4
. (4.99)
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Continuing in the same way for the three-gluon diagrams, we get

2FQ − FS
T

= K
{
N2 − 1

2N
− N2 − 1

4

(
+ +

)
+
N(N2 − 1)

8

(
2 + 2

+ + + + + + + + + + +

+ 2 + 2 + + + + + 2 − −

− − − −
)

+ . . .

}
, (4.100)

2FQ − FA
T

= K
{
− 1

2N
+

1

4

(
+ +

)
− N

8

(
2 + 2 + +

+ + + + + + + + + − −

− − + + 2 − − − − −
)

+ . . .

}
,

(4.101)

where the dots include four-gluon diagrams and higher. Here we have neglected several other
diagrams that vanish trivially in gauges where the gluon propagator is diagonal with respect
to temporal and spatial components, such as Coulomb gauge, static gauge, or Feynman gauge.
At the present order, there are 22 diagrams that vanish because a three-gluon vertex with
three temporal indices gives zero, and 3 diagrams that vanish because a four-gluon vertex with
four temporal indices gives zero.

We can expand the resulting expression for the normalized Polyakov loop correlator:

exp

[
2FQ − FQQ̄

T

]
=

1

N2
exp

[
2FQ − FS

T

]
+
N2 − 1

N2
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= 1 +
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+

(N2 − 1) (N2 − 2)

48N3
K3

( )

+
N2 − 1

4N
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(

+ + + + + + − −
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− N2 − 1

8N
K
( )

K
(

+ +

)
+O

(
α4

s

)
. (4.102)

Note that this expansion is only valid for αs(1/r) � rT , since the leading term in each free
energy is the singlet or adjoint static potential, which are proportional to αs(1/r)/rT . So if
rT is too small, then the denominator overtakes the αs-suppression from the numerator and
the whole expression becomes large. In this case the Polyakov loop correlator is essentially
given by the singlet free energy alone, since the contribution from the adjoint free energy is
exponentially suppressed and the singlet term is exponentially enhanced.
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The kinetic parts of the remaining diagrams will be determined through the method of
integration by regions. This means that the integration over each gluon momentum is split
into regions where the momentum scales the same as one of the relevant physical scales of the
system, as was also explained in section 4.2. In this case we have the inverse distance 1/r
between the two Polyakov loops, the temperature scale πT , and the Debye mass scale mD,
and we assume the hierarchy 1/r � πT � mD. The magnetic mass scale mM is also present,
but does not enter the calculation at this order. In each region the integrand is expanded
according to this hierarchy. Depending on the scale of the gluon momentum, the propagator
can either be free or resummed.

The evaluation of the kinetic parts becomes particularly simple in Coulomb gauge, because
then all unconnected diagrams except for the one-gluon exchange vanish at this order. This
can be seen by calculating the free propagator for the temporal gluons in position space:

D00(τ, r) =
∑

K

∫
eik0τ+ik·r

k2
=

Γ
(
d
2
− 1
)

4π
d
2 rd−2

∑

n∈Z

δ
(
τ − n

T

)
. (4.103)

For all practical purposes, only the δ(τ) term is relevant, since the argument of the propagator
will always lie inside (−1/T, 1/T ), and the endpoints do not contribute to any integral. This
delta function requires the propagators to have the same imaginary time arguments at both
ends, so any two- or three-gluon diagram in Eq. (4.102) with crossed propagators vanishes
when the free propagator is used, which happens for k ∼ 1/r and k ∼ πT . For k ∼ mD one
has to use a resummed propagator, which depends on k0 and this relation cannot be used. We
will discuss this case in more detail below.

We want to calculate the normalized Polyakov loop correlator in the short distance limit up
to order g7, which means that we have to calculate the one- and two-gluon exchange diagrams
up to order g5 and the three-gluon exchange diagrams up to order g7. We will label the
kinetic parts of the one- and two-gluon diagrams by DI , DX and DT , such that the last line
of Eq. (4.102) reads −(N2 − 1)/8N ×DI(DX + 2DT ) (the last two diagrams are identical for
symmetry reasons, so each of them gives DT ). We will start with the calculation of DI :

DI = (ig)2

∫ 1/T

0

dτ1

∫ 0

1/T

dτ2

∑

K

∫
eik0(τ1−τ2)+ik·rD00(k0,k) =

g2

T

∫

k

eik·rD00(0,k) . (4.104)

Splitting the integration into the different momentum regions, we have for k ∼ 1/r:

DI,1/r =
g2

T

∫

k∼1/r

eik·r

k2

(
1− Π(0, k � πT )

k2
+O

(
g4
))

=
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T

∫
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g2

(4π)2

[
31

9
N − 10

9
nf + 2β0 ln

µ

k

]

+
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)
g2π2T
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(
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=
αs
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(
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4π

[
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9
nf + 2β0(γE + lnµr)
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s
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9
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(
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N +

7
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nf

)
(rπT )3 +O

(
(rπT )5, α3

s

)]
. (4.105)
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Here we have used the (charge-renormalized) temporal gluon self-energy in Coulomb gauge,
expanded for momenta much larger than the temperature. The second line gives the result for
loop momenta of the same order as k, which corresponds to the vacuum part, while the third
line gives the contributions coming from loop momenta of order πT , which corresponds to the
matter part. Accordingly, the first part of the result gives the static potential in the vacuum
(without the color factor) and the second part gives thermal corrections as a series in rπT .

The next contribution comes from the region k ∼ πT , where we have to expand the
numerator exp[ik · r] for small r:

DI,πT =
g2

T

∫

k∼πT

1− 1
2
(k · r)2

k2

(
1− Π(0, k ∼ πT )

k2
+O

(
(kr)4, g4

))

= α2
s

[
N

(
− 1

2ε
− 1 + γE + ln

T 2

πµ2

)
+ nf ln 2 +

(
4

3
N + nf

)
ζ(3)(rT )2

]
+O

(
α3

s

)
.

(4.106)

The first term in the expansion of the numerator does not depend on r and is exactly the same
as −2 times the scale πT contribution to a single Polyakov loop (without the color factor),
which can be found in [126]. The second order term in this expansion can be calculated by
the same methods. The integrals without the self-energy are all scaleless, and it can be shown
that the higher powers in r all vanish in the integral with the one-loop self-energy, so there are
no (rπT )4 or higher thermal corrections at order α2

s . There also exists a result for all orders
of rπT in [125], which corresponds to DI,1/r +DI,πT , see appendix B.7.

The last contribution comes from the region k ∼ mD, where again the numerator is ex-
panded, but now also the expansion of the denominator in terms of the self-energy is different:

DI,mD =
g2

T

∫

k∼mD

1− 1
2
(k · r)2

k2 +m2
D

(
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. (4.107)

Again, the terms coming from the zeroth order expansion of the numerator are equal to −2
times the scale mD contribution to a single Polyakov loop. The second order term in this
expansion is a standard integral in dimensional regularization. Higher terms in r also come
with higher powers of mD by dimensional analysis, so they are suppressed by additional powers
of g.

Combining the contributions from the different scales, we have:

DI =
αs
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[
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+
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, (4.108)

where the terms are ordered with increasing power of r and g. The scale of αs is µ everywhere
(so as yet undetermined); however, the logs of µ can be absorbed in an αs evaluated at a
different scale, which is identical to this expression up to terms of higher order:
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+
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. (4.109)

This transformation is to a certain extent arbitrary, since e.g. also the β0γE terms may be
included by an extra factor exp[−γE] in the scale of αs. We choose not to do this simply
because it is rather unconventional.

For the Polyakov loop correlator we need the square and cubic powers of this expression
up to O (g7):
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D3
I =

α3
s (1/r)

r3T 3
− 3α2

s (1/r)αs(4πT )mD(4πT )

r2T 3
+O

(
α4

s

)
. (4.111)

We have explicitly kept the same scale dependence of αs as in DI .
We will next discuss the third line of Eq. (4.102). This is a product of two diagrams. Since

the first is at least of O(αs), the others need to be calculated at O (g5), so we do not have to
consider loop insertions. All these diagrams have crossed gluons, so in Coulomb gauge they all
vanish at tree level (see above). Tree level propagators are used when the gluon momentum is
of order r or πT , for mD one uses the resummed propagator and diagrams with crossed gluons
no longer vanish. But since gluons with a momentum of order mD increase the order of the
diagram by g, only one gluon is allowed to have such a momentum, otherwise the diagram
would be O (α3

s ).
In the two DT diagrams, if the scale mD momentum is carried by the gluon connecting

the two Polyakov loops, then the other gluon gives a scaleless integral. If this gluon carries
a momentum of order πT instead, then this integral is scaleless without loop insertions. So
the only contribution to DT comes when the gluon connecting the Polyakov loops carries a
momentum of order 1/r and the other of order mD. Also in DX one gluon momentum needs
to be of order 1/r and the other of order mD, but here there are two possible distributions of
these momenta.

We will now show that at leading order the sum of DX and 2DT vanishes. This can be seen
in the following way: for the gluon with the scale mD momentum the separation r between
the two Polyakov loops vanishes at leading order, and the time arguments of the other gluon
are identical because of the delta function in the Coulomb gauge propagator. So the scale mD

gluon in DX has the same contour integration as in DT (one endpoint to the left and one to the
right of the other gluon), but there is a relative minus because of the opposite orientation of
the two loops. In DX there is also a factor 2 because of the different possibilities to distribute
the momenta. In the multipole expansion of DX there are higher terms m2

Dr
2 etc, which are

not canceled by 2DT , but those are suppressed by higher powers in g and can be neglected.
We will now show this in the explicit calculation. We can use the Coulomb gauge propaga-

tor (4.103) with d = 3 (there are no divergences at this point), and the d-dimensional integral
of (k2 +m2

D)
−1

gives −mD/4π for d→ 3. Then we have
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∣∣∣
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DT

∣∣∣
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= (ig)4
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where we labeled the imaginary time coordinates in clockwise order starting from the antiquark
loop. So the combination DX + 2DT is O (g7) and therefore the third line of Eq. (4.102) does
not contribute to the Polyakov loop correlator until O (g9).

A similar thing happens to the unconnected diagrams of the second line of Eq. (4.102)
(i.e. all except for the last two). We need to calculate these diagrams at O (g7). If all gluon
momenta are larger than mD then each of these diagrams vanishes in Coulomb gauge because
of the crossed propagators, but on the other hand only one gluon may carry a momentum
of order mD, because otherwise it would be O (α4

s ) or smaller. For the first two unconnected
diagrams and the last one it does not matter which gluon carries the scale mD momentum; any
choice leaves two other gluons of higher scale momenta that are crossed and therefore vanish
in Coulomb gauge. For each of the remaining four diagrams there is only one possibility to
choose the scale mD gluon such that the other gluons are not crossed. The scale πT does not
appear, since the corresponding integrals are scaleless at tree level, and loop insertions are not
allowed at this order in g, so the remaining gluons each carry a momentum of order 1/r.

Again, the sum over all these unconnected diagrams, which we will collectively call D3g,
vanishes at leading order. The argument is analogous to the previous case: the scale mD gluon
does not distinguish between the two Polyakov loops, it starts in front of and ends behind the
two parallel gluons connecting the two loops in each case, but for two of them the direction of
the integration is the opposite of the other two. We also give the explicit calculation (where
we use the fact, that a diagram turned upside down is identical to the original diagram for
symmetry reasons):
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∣∣∣
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In this calculation, the first two lines give the sum of the third and fourth diagram in the
second line of Eq. (4.102), while the next two lines correspond to the fifth and sixth diagram.
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The remaining contributions to the Polyakov loop come from the last two diagrams in
the second line of Eq. (4.102). The sum of those, which we will call DH , is much simpler to
calculate than the individual diagrams, because in this case the contour integrations can be
combined in such a way, that they yield the condition that all Matsubara frequencies in the
gluon propagators have to be zero. So DH is given by g4/2T times the spatial momentum
integrals for the gluon propagators and vertices, which we will call D′H .

This can be shown in the following way. We will label the gluon momenta in the two
diagrams in the same way, so that they are easier to combine. In the H-shaped diagram, the
momentum k flows from the antiquark loop to the quark loop along the temporal gluons on the
left side, the momentum p flows from the antiquark loop to the quark loop along the temporal
gluons on the right side, and the momentum q flows through the spatial gluon connecting the
two temporal gluon legs from left to right, starting and ending on the quark loop. So if we
again use the same labels for the imaginary time coordinates as before, then τ1 connects to a
propagator with momentum k, τ2 to p, τ3 to p+ q, and τ4 to k − q. In the case of the second
diagram, the lower two temporal gluon legs are crossed, so τ1 and τ2 change their roles.

In Coulomb gauge and with these momentum labels, we may drop the q-terms from the
three-gluon vertices, since those cancel in the product with the spatial propagator. The other
momenta appear with a factor 2 in the vertices:

D′H(k0, p0, q0) = 4g2

∫

k

∫

p

∫

q

eik·rD00(K)D00(K −Q)
(
kiDij(Q)pj

)
D00(P )D00(P +Q)eip·r .

(4.115)
The result of the contour integrations is:

DH = (ig)4
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where in the second step we exchanged the integration variables τ1 with τ2 and rewrote the
boundaries of the integrations, δk0 means a Kronecker delta that selects the zero mode (so
δk0 = δ0nk for k0 = 2πTnk), and the second term in the next-to-last line vanishes because it is
odd in q0 while D′H is even.
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In the calculation of D′H , again only the scale 1/r contributes at leading order, since the
scale πT in any of the propagators leads to scaleless integrals. The result reads:

D′H(0, 0, 0) = − g2

(4π)3r

(
3− π2

4

)
+O

(
g3
)
. (4.117)

We have calculated this result explicitly (see appendix B.8), however, it can also be obtained by
comparison to the O (α3

s ) result for the Polyakov loop correlator from [126] (where static gauge
was used instead of Coulomb gauge); we will see when we collect the different contributions to
the final result for the Polyakov loop that with this value for D′H the two calculations agree.

In order to study if there can be a contribution of O (g3) from D′H , we will discuss the cases
when one, two, or three momenta are of scale mD. If only k or p are of scale mD while all other
momenta are still of order 1/r (in order to avoid scaleless integrals or higher powers of g), then
we get an O (g5) contribution, because there is always a power of k or p in the numerator and
another power is required from the expansions of the propagators or exponentials in order to
obtain an integrand that is even in the momenta, so the result is proportional to m3

D. If only q
is of the scale mD then there is no contribution, because all propagators except for the spatial
have to be expanded in q, and mD does not appear in the spatial propagator, so that integral
is scaleless.

Also when k ∼ q ∼ mD and p ∼ 1/r (or equivalently p ∼ q ∼ mD and k ∼ 1/r) the scale
mD integrations of the leading order expansions of the propagators and exponentials are odd
under a simultaneous sign change of both momenta, so only the next order in the expansion
contributes, which leads to a result proportional to m2

D and therefore of O (g4).
This leaves only the case when all gluon momenta are of the scale mD and both exponentials

need to be expanded:

D′H(0, 0, 0)
∣∣∣
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= 4g2

∫
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∫

p

∫

q

(k · p)q2 − (k · q)(p · q) + . . .
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D) (q2)2 ((p+ q)2 +m2
D) (p2 +m2

D)
.

(4.118)

The k and p integrations both have a vector k or p in the numerator, and the only other mo-
mentum in the denominator is q, so the results of both these integrals have to be proportional
to q for symmetry reasons. When these are then contracted with the transverse projector
from the spatial gluon propagator, then they also vanish. This means that only the first order
contributions from the expansions of both exponentials contribute, which is of O (g5). So there
are no contributions to D′H at all at O (g3), and we have:

DH = −α
3
s

rT

(
3

2
− π2

8

)
+O

(
α4

s

)
. (4.119)

We now can put all the different contributions together to get the final perturbative result
for the Polyakov loop. We will first collect all terms up to O (α3

s ) and compare with the result
from [126]:
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This result agrees exactly with the one in [126], except that we have added a few more powers
of rπT , and that we could also fix the scale of αs in some more terms through the relation to
the one-gluon exchange diagram.

The next order is then:
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4.8 Free Energies in pNRQCD

The Polyakov loop correlator can be written as the correlator of static color sources ψ and χ
at a distance r from imaginary time 0 to 1/T :

exp

[
−FQQ̄

T

]
=

1

N2δ6(0)
Tr
〈(
ψ(1/T, r)χ†(1/T,0)

) (
χ(0,0)ψ†(0, r)

)〉
(4.122)

Accordingly, the singlet and adjoint free energies are given by:

exp

[
−FS
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]
=

1

Nδ6(0)

〈
Tr
[
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]
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[
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]〉
, (4.123)

exp

[
−FA
T

]
=

2
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〈
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[
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]
Tr
[
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]〉
. (4.124)

Since the sources are static, their dynamics involve only the (imaginary) time direction. So
one only has to add the following terms to the QCD Lagrangian:

Lψχ =

∫
d3x

[
ψ†D0ψ + χ†D0χ

]
. (4.125)

This corresponds to the NRQCD Lagrangian at leading order in the 1/M expansion, which is
also called the static limit. In this theory, ψ is the operator that annihilates the heavy (static)
quark, and χ is the operator that creates the heavy (static) antiquark. The spin indices that
are present in NRQCD are to be neglected in this case.

Since we have assumed the hierarchy 1/r � πT � mD, we may use another EFT where
the expansion for small r is systematically incorporated: pNRQCD. In this theory, the effective
degrees of freedom are quark-antiquark fields in color singlet or octet configurations: S and Oa.
Up until this point we have always kept the number of colors N general, however, pNRQCD
is usually defined only for N = 3, hence the name octet for the adjoint field. But since the
generalization to arbitrary N is straightforward, we will keep N general while still calling the
adjoint field “octet” out of convention.

The Lagrangian density for static fields up to linear order in r is given by:

LpNRQCD =
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]
,

(4.126)

where the singlet and octet fields S and Oa depend on both the relative coordinate r and the
center-of-mass coordinate R, while gluons and light quarks depend only on R. The Wilson
coefficients at next-to leading order are given by

Vs(r) = −(N2 − 1)Vo(r) = −N
2 − 1

2N

αs(1/r)

r

[
1 +

αs

4π

(
31N

9
− 10nf

9
+ 2β0γE
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,

VA(r) = VB(r) = 1 . (4.127)
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In this theory, one can also define singlet and octet (adjoint) free energies:
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We have taken these results from [126] and added the information from Sec. 4.3 about theO (g5)
Polyakov loop. The value of the center of mass coordinate is irrelevant because of translational
invariance, however, by comparison to the expressions for the NRQCD correlators we set it to
R = r/2. We can also express the Polyakov loop correlator with these free energies:

exp

[
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=
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. (4.130)

If we compare them to the free energies defined with the exponentiation formula (in
Coulomb gauge):
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we see that they almost agree, but there is a difference of a factor 2 in the linear term in rT .
In order to understand this difference, we must match the two correlators in both theories.

It is rather straightforward to see that they are not the same in principle; after all, FS and FA
depend on the choice of gauge while fs and fo do not. In addition, fs and fo give the Polyakov
loop correlator only at leading order in the small r expansion. But still we can quantify the
difference by a proper matching calculation.

More specifically, we will match the operator ψ(r)χ†(0). This transforms as Nr × N0

under gauge transformations, which in principle also the matching pNRQCD operators have
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to satisfy. However, all pNRQCD operators transform locally at the center of mass in either
representation. We therefore have to introduce spatial Wilson lines φ in order to transport the
gauge dependence to the quark or antiquark positions from NRQCD:

φ(x1,x2) ≡ P exp

[
ig

∫ 1

0

ds(x1 − x2) ·A(sx1 + (1− s)x2)

]
, (4.134)

where we suppressed the imaginary time argument.

But in pNRQCD all gauge fields need to be multipole expanded. So the Wilson lines going
from R to R± r/2 have to be rewritten in an expanded form:

φ(R± r/2,R) = 1± 1

2

∫ 1

0

ds r · igA(R± sr/2)

+
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4
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2
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8
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1

8
(r · igA(R))2 +O

(
r3
)
.

(4.135)

This expansion of the Wilson line does not include matching coefficients, because the gauge
transport only works if all coefficients are exactly like in the expression above.

So the matching of ψ(r)χ†(0) consists of a series of pNRQCD operators with these ex-
panded Wilson lines to the left and right. The other operators also need to have the same
behavior under P , C, and T transformations, which S1 and OaT a as well as the Wilson lines
automatically satisfy. Since all operators need to involve exactly one singlet or octet field be-
cause of heavy quark number conservation, the additional operators need to be neutral under
P , C, and T 7.

So at O (r2) in the multipole expansion, we have:

ψ(r)χ†(0) = φ(r, r/2)

[
Zs√
N
S1 +

√
2ZoO

aT a +
√

2ZEs r (r · igEa)ST a
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ZEo r√
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2Z ′Eo d
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(
r3
)]
φ†(0, r/2) .

(4.136)

All the fields inside the square brackets have R = r/2. The matching coefficients have been
chosen such that Zs and Zo are 1 + O(αs). The different projections of this operator which
generate FS and FA are then given by:

1√
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]
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,

(4.137)

7Note that in imaginary time τ = it
T−→ (−i)(−t) = τ , and thus A0

T−→ −A0, A
T−→ −A, and E

T−→ −E,
while all coefficients are still complex conjugated.
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Now we can calculate the corrections to the pNRQCD free energies, by inserting these
matching relations into the respective correlators8:
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. (4.140)

We have suppressed the time arguments of the gauge fields; since they obey periodic boundary
conditions, it does not matter if they are evaluated at imaginary time 0 or 1/T . Some terms
have been neglected, because they do not contribute at this order in r, and several terms
cancel. We see again that the corrections to the pNRQCD free energies are gauge dependent,
because they involve the gauge fields A instead of the gauge invariant combinations E or B.

The calculation of the correlators for the leading order corrections can be done in the

8We have seen in section 4.6 that singlet and adjoint free energies are in general mixed under renormalization.
Since fs and fo are finite, such a divergence structure can only be reproduced in pNRQCD, if also in the
matching the two correlators are mixed. However, as we have seen before, these divergences are absent in
Coulomb gauge. So we may ignore any mixing effects and thus get a consistent result in the way presented
here.
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following way. The quark-antiquark fields can be replaced by the leading order propagators:
〈
(r · igAa) (r · igAa)S(1/T )S†(0)

〉
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)
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(4.141)

When both singlet and octet fields appear, then the insertion of a vertex is necessary:
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The leading contribution from the electric fields comes from the −∂τAa term, and we can use
the imaginary time derivative to integrate by parts:
∫ 1/T

0
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We can also replace the coefficients Zs, Zo, and VA by 1, because higher order corrections
to these coefficients are beyond the accuracy of this calculation. The corrections to the free
energies then simplify to:
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For the calculation of the gauge field correlator, we need to use the same gauge as for FS
and FA, i.e. Coulomb gauge:
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When we insert this into the expression above, then we also expand the exponentials of the
potentials, since they also are of O(αs). Then the leading order corrections are:
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. (4.150)
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In this way we can exactly reproduce the difference between the free energies in NRQCD and
pNRQCD at the given order.

We have seen that there are no corrections at O (g5). However, there are several contribu-
tions at this order that we have neglected in this calculation. We do not attempt here to show
that they all cancel, but this should be a straightforward extension of the arguments presented
here.

138



Chapter 5

Conclusions and Outlook

In this thesis, the behavior of heavy quarks has been studied both in the vacuum and in a hot
medium. For the vacuum part, this work constitutes the first treatment of hybrid quarkonia
in an EFT framework. At finite temperature, we present a new perturbative order in the
calculation of both the Polyakov loop and the Polyakov loop correlator for weak coupling. In
all these studies, effective field theories have proved to be an extremely useful tool, for whose
construction the study of the symmetries of the respective system is pivotal as a guiding
principle. Therefore, in the first part of this work, we have first studied how the hidden boost
symmetry in non-relativistic EFTs can be used to derive exact relations between the matching
parameters in chapter 2.

The following application of NRQCD and pNRQCD to the description of hybrids in chap-
ter 3 is only the first step towards a fully consistent framework for hybrids. Still, this first EFT
discussion of hybrids has already yielded some advancements over previous work, introducing
the concept of Λ-doubling, which has been known in the context of atomic molecules and is
responsible for the mass splitting between nearly degenerate states with opposite parity. This
is reflected in the appearance of coupled radial Schrödinger equations for the heavy quark
content of the hybrid states, which mix contributions from different static states. Our results
are in agreement with lattice calculations and also fall into the mass range of experimental
candidates for exotic quarkonia, although a clear identification is not yet possible.

In chapter 4, we have calculated the Polyakov loop in perturbation theory at the third
non-trivial order, in an EFT framework as well as in a direct calculation. In a comparison
to existing lattice data in a temperature range well beyond the critical temperature, where
perturbation theory is supposed to work, we found that the perturbative result is reasonably
close, but still does not quite agree with the lattice result within statistical errors (at least in
the pure gauge case nf = 0). We conclude that there is still room for the disagreement to
be settled with the next perturbative correction. This is an issue that should be addressed in
the future by calculating the next order of the Polyakov loop in perturbation theory. Beyond
this order the perturbative expansion breaks down due to effects at the magnetic scale, so this
result would give the best attainable (purely) perturbative expression for the Polyakov loop.
A better knowledge of the Polyakov loop would in turn lead to new results for the correlator,
in the same way as has been demonstrated in the latter half of chapter 4, where we have
calculated the correlator to NNNLO in the short distance limit.

This research provides ample opportunity for extension in some of the following directions.
The principle of using non-linear field transformations for not explicitly realized symmetries
can be applied to any other EFT as well, whenever a symmetry is not explicitly realized in
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the EFT but has to be hidden in some form.
In order to improve our theoretical knowledge about the hybrids, studies that go beyond

leading order in the expansion parameters are required for more reliable results. In particular,
the inclusion of spin dependent terms would be very interesting, since the effects of these
terms, while not being NLO because of their higher suppression in 1/M , would still give very
clear signals as they are the only contributions that can differentiate between the otherwise
degenerate spin-symmetry multiplets. Another important direction is the description of decays
and production mechanisms of hybrids. Then, this framework may also be applied to the study
of tetraquarks, as proposed in [17]. This would require the determination of the static energies
with a non-trivial light-quark content, but the derivation of coupled Schrödinger equations
would be analogous and the discussion on the quantum numbers would apply as well.

At finite temperature, there are several other quantities which can be expressed through
Wilson line operators apart from the Polyakov loop. Among these are the jet quenching
parameter or the heavy quark diffusion coefficient, which describe energy loss in the medium.
As such they are relevant for comparisons with experimental results, so an improved theoretical
knowledge is desirable. The methods for the Polyakov loop calculation, and maybe also to some
extent the results, can be used to study these parameters.

The Wilson line operator that relates to the interquark potential is the rectangular Wilson
loop, both in the vacuum and at finite temperature. This operator depends on a rectangular
path in space-time. If like in this case such a path has corners, so-called cusps, then there are
divergences associated to these cusps and the corresponding renormalization group equation
depends on the cusp anomalous dimension. This cusp anomalous dimension is a universal
function that depends only on the angles at the cusp, and has applications to many other
quantities related to Wilson line operators. For example, it has been shown that the cusp
anomalous dimension and the static potential agree in a certain limit at low orders in per-
turbation theory. At higher orders [157] deviations from this relation are expected, but it
should be possible to calculate them with the same techniques as for the potential. Since the
cusp anomalous dimension has many applications to other fields in QCD, like heavy quark
production or parton distribution functions, such a study would definitely be worthwhile.

Another very promising approach to obtain results at finite temperature is through a spec-
tral function representation. If a Euclidean expression is written as the Laplace transform of
a spectral function, then the Minkowski analog is given by the Fourier transform of that func-
tion. This makes the spectral function a very powerful tool, because it contains information on
both the real and the imaginary time behavior. Unfortunately, the extraction of the spectral
function out of a finite set of lattice data is a mathematically ill-posed problem, so some prior
knowledge on the function is required. Therefore, an analytic study of the spectral function
would be of great importance.

In all these proposed directions, effective field theories may lead to very elegant descriptions
of the respective problem, enhancing our knowledge of the physical processes of the system
and guiding theoretical approaches through the systematic use of fundamental or emergent
symmetries.
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Appendix A

Vacuum

A.1 Symmetries of the Static System

A system of two static opposite color sources (in our case the system formed by a heavy quark
in position x1 and a heavy antiquark in position x2) remains invariant under the following
symmetry transformations: rotations R(α) by an angle α ∈]−π, π] around the axis defined by
the two sources, space inversion P in combination with charge conjugation C, reflections M
across a plane containing the two sources, and combinations thereof. These transformations
form the group D∞h, which is the symmetry group of a cylinder.

Since the static Hamiltonian is invariant under these transformations, we can use the
quantum numbers of the representations of D∞h to label its eigenstates. The conventional
notation for the representations of D∞h is Λσ

η . Λ is the rotational quantum number, it can
take non-negative integer values 0, 1, 2, 3, . . . , which are traditionally represented by capital
Greek letters Σ,Π,∆,Φ, . . . corresponding to the atomic orbitals s, p, d, f, . . . , respectively.
The eigenvalue of CP is given as the index η. It can take the values +1 or −1, for which the
labels g (gerade, i.e. even) and u (ungerade, i.e. odd) are used. The other index σ gives the
sign under reflections as + or −, however, it is only written explicitly for the Σ-states, because
for Λ ≥ 1 the states with opposite σ are degenerate with respect to the static energy.

Physically, this can be understood in the following way. The static system itself has no
preferred orientation for the plane across which the reflections are defined. In fact, through
a combination of rotation and reflection operations one can define a new reflection operation
M ′ = R(−α)MR(α), where the reflection plane is rotated by an angle α. The Σ-states are
rotationally invariant, so M and M ′ give the same eigenvalue, but for Λ ≥ 1 they do not. If in
the simplest case α is chosen to be π/2, then M and M ′ have opposite eigenvalues. However,
the static Hamiltonian H(0) does not depend on the choice of M or M ′, so consequently its
eigenvalues, the static energies, cannot depend on σ unless Λ = 0.

Mathematically, this can be explained by looking at the irreducible representations of D∞h.
We can write D∞h = O(2)⊗Z2, where Z2 corresponds to the sign η under CP transformations.
There are two different one-dimensional irreducible representations of O(2) and countably
infinite two-dimensional ones. The two one-dimensional representations both map the rotations
to unity and differ by the sign under reflections. These correspond to Λ = 0 and positive or
negative σ.
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The two-dimensional representations are given by

R(α) =

(
cos Λα sin Λα

− sin Λα cos Λα

)
, M =

(
1 0

0 −1

)
. (A.1)

The basis for these representations was chosen such that M is diagonal. It is possible to make
a basis transformation that takes M → −M while R(α) remains the same. This means that
the sign under reflections is irrelevant for the two-dimensional representations and σ cannot
label different representations. Since the static energies depend only on the representation,
they must be independent of σ for Λ ≥ 1.

It is also possible to make a basis transformation that takes R(α) → R(−α) while M
remains the same. This means that negative values for Λ do not correspond to a different
representation but just to a different choice of basis, so by convention Λ is defined to be non-
negative. Λ can only take integer values, because R(2π) is required to be unity. Note that for
Λ = 0 the two-dimensional representation is diagonal and reduces to the two one-dimensional
representations.

In the context of the spectrum of the static Hamiltonian, the two-dimensionality of the
irreducible representations of D∞h means that any eigenstate of H(0) with Λ ≥ 1 consists of
two components, which correspond to σ = ±1 in the basis given above. For the calculations
in this chapter it is advantageous to choose a different basis such that R(α) is diagonal:

R(α) =

(
eiΛα 0

0 e−iΛα

)
, M =

(
0 σ∗M
σM 0

)
. (A.2)

There are many ways in which one can make such a basis transformation, and this manifests
itself in the phase σM appearing in M , which is completely arbitrary. In this basis we can label
the two components by λ = ±Λ such that they transform with eiλα under rotations. Because
M now is offdiagonal, irrespective of the choice of σM , the two components are exchanged

under reflections, i.e. λ
M→ −λ.

The advantage of this choice of basis is that, if we introduce the angular momentum operator
K of the light degrees of freedom, then λ is the eigenvalue of r̂ ·K, where r̂ is the orientation
of the quark-antiquark axis. Λ is then given by the absolute value of r̂ ·K, which is also
true for Λ = 0. The operator K2 represents the fully three-dimensional rotations, i.e. the
group SO(3), so the static states are not eigenstates of K2 except for the limit of vanishing
quark-antiquark distance, where this symmetry is restored.

A.2 RS Scheme

The RS octet potential is defined as follows [99, 105]

V RS
o (νf ) = Vo − δV RS

o (νf ) , (A.3)

with

Vo(r, ν) =

(
CA
2
− CF

)
αVo(ν)

r
, (A.4)

δV RS
o (νf ) =

∞∑

n=1

NVoνf

(
β0

2π

)n
αn+1

s (νf )
∞∑

k=0

ck
Γ (n+ 1 + b− k)

Γ (1 + b− k)
. (A.5)

144



The value of NVo = 0.114001 was computed in Ref. [99]. The value of αVo up to order α3
s is

given by [158]

αVo (ν) = αVs (ν)−
(

3

4
− π2

16

)
C2
Aα

3
s (ν) +O

(
α4

s

)
, (A.6)

where αVs is

αVs (ν) = αs (ν)

(
1 + (a1 + 2γEβ0)

αs (ν)

4π

+

[
γE(4a1 + β0 + 2β1) +

(
π2

3
+ 4γ2

E

)
β2

0 + a2

]
α2

s (ν)

16π2

)
. (A.7)

The parameters b and the first three ck appearing in δV RS
o are given by

b =
β1

2β2
0

, c0 = 1 , c1 =
1

4bβ3
0

(
β2

1

β0

− β2

)
,

c2 =
1

32b(b− 1)β8
0

(
β4

1 + 4β3
0β1β2 − 2β0β

2
1β2 + β2

0(β2
2 − 2β3

1)− 2β4
0β3

)
. (A.8)

A.3 Derivation of the Radial Schrödinger Equation in

Detail

The Laplace operator ∇2
r can be split into a radial and an angular part, such that

− ∇2
r

m
= − 1

mr2

(
∂r r

2 ∂r + ∂x
(
1− x2

)
∂x +

1

1− x2
∂2
ϕ

)
, (A.9)

with the variable x = cos θ. The angular part of this acts on both the wave function and the
projection vector in (3.36), and since we know n̂ explicitly for the 1+− gluelump, we can work
out the action of the angular part of n̂′ · (−∇2

r/m) n̂ in the form of a matrix acting on the
three-component wave function Ψ(N). Then we get

[
− 1

mr2
∂r r

2 ∂r +
1

mr2
(∆x + ∆ϕ) + V (r)

]
Ψ(N)(r) = ENΨ(N)(r) , (A.10)

where we have defined V (r) = diag
(
E

(0)
Σ (r), E

(0)
Π (r), E

(0)
Π (r)

)
and

∆x =




−∂x
(
1− x2

)
∂x + 2 −

√
2∂x
√

1− x2 −
√

2∂x
√

1− x2

√
2
√

1− x2∂x −∂x
(
1− x2

)
∂x +

1

1− x2
0

√
2
√

1− x2∂x 0 −∂x
(
1− x2

)
∂x +

1

1− x2


 ,

(A.11)

∆ϕ =




− 1

1− x2
∂2
ϕ

√
2√

1− x2
i∂ϕ −

√
2√

1− x2
i∂ϕ

√
2√

1− x2
i∂ϕ − 1

1− x2

(
∂2
ϕ − 2xi∂ϕ

)
0

−
√

2√
1− x2

i∂ϕ 0 − 1

1− x2

(
∂2
ϕ + 2xi∂ϕ

)



. (A.12)
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The three columns correspond to n̂ = r̂, r̂+, r̂− and the three rows to n̂′ = r̂, r̂+, r̂− in that
order.

This is a coupled Schrödinger equation, which differs from the standard example of the
hydrogen atom by the appearance of different potentials for the different wave function com-
ponents and the more complicated angular part. But like the hydrogen atom, it can be solved
by a separation ansatz Ψ(N)(r) = ψm(ϕ)ψl(x)ψ(N)(r). The angular wave functions ψm(ϕ) and
ψl(x) are matrices acting on the vector ψ(N)(r). They are eigenfunctions of their respective
differential operators ∆ϕ and ∆x in the following sense:

∆ϕψm(ϕ) = ψm(ϕ)M , and (∆x +M)ψl(x) = ψl(x)L , (A.13)

where M and L are matrices. If we also require ψm(ϕ) and ψl(x) to commute with the
potential matrix V (r), and in addition ψm(ϕ) to commute with ∆x, then the full Schrödinger
equation reduces to a coupled radial Schrödinger equation for ψ(N)(r) with an effective potential
Veff (r) = V (r) + L/mr2:

0 =

[
− 1

mr2
∂r r

2 ∂r +
1

mr2
(∆x + ∆ϕ) + V (r)− EN

]
ψm(ϕ)ψl(x)ψ(N)(r)

= ψm(ϕ)

[
− 1

mr2
∂r r

2 ∂r +
1

mr2
(∆x +M) + V (r)− EN

]
ψl(x)ψ(N)(r) (A.14)

= ψm(ϕ)ψl(x)

[
− 1

mr2
∂r r

2 ∂r +
1

mr2
L+ V (r)− EN

]
ψ(N)(r) (A.15)

= ψm(ϕ)ψl(x)

[
− 1

mr2
∂r r

2 ∂r + Veff (r)− EN
]
ψ(N)(r) . (A.16)

We will now show that such matrices do indeed exist. A solution for ψm(ϕ) can immediately
be found by making the ansatz ψm(ϕ) = eimϕ 1, where 1 is the unit matrix. With this we have

∆ϕψm(ϕ) = ψm(ϕ)




m2

1− x2
−
√

2m√
1− x2

√
2m√

1− x2

−
√

2m√
1− x2

m2 − 2mx

1− x2
0

√
2m√

1− x2
0

m2 + 2mx

1− x2



. (A.17)

Also for the next wave function ψl(x), a solution in the form of a diagonal matrix can be
found, although now the diagonal entries differ from each other. The diagonal elements of
∆x +M (without constant terms) all have the same form

− ∂x
(
1− x2

)
∂x +

m2 − 2λmx+ λ2

1− x2
, (A.18)

with λ = 0, 1,−1 for the first, second, and third entries, respectively. The eigenfunctions of
this differential operator are generalizations of the associated Legendre polynomials, for λ = 0
they even coincide, and their derivation can be found in textbooks such as [75].

Including the factor eimϕ and proper normalization, they are given by

vλl,m(x, ϕ) =
(−1)m+λ

2l

√
2l + 1

4π

(l −m)!

(l +m)!(l − λ)!(l + λ)!
P λ
l,m(x)eimϕ , (A.19)

P λ
l,m(x) = (1− x)

m−λ
2 (1 + x)

m+λ
2 ∂l+mx (x− 1)l+λ(x+ 1)l−λ . (A.20)
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The eigenvalue is l(l + 1), and just like for the spherical harmonics, solutions exist only for l
a non-negative integer, |m| ≤ l, and |λ| ≤ l. They are normalized such that

∫
dΩ vλ ∗l′,m′(x, ϕ)vλl,m(x, ϕ) = δl′lδm′m , (A.21)

and they also satisfy the orthogonality relations

l∑

m=−l

vλ
′ ∗
l,m(x, ϕ)vλl,m(x, ϕ) =

2l + 1

4π
δλ
′λ , (A.22)

l∑

λ=−l

vλ ∗l,m′(x, ϕ)vλl,m(x, ϕ) =
2l + 1

4π
δm′m . (A.23)

The easiest way to construct these functions is to use ladder operators for m and λ. These
operators and their action on the vλl,m functions are given by
(
∓
√

1− x2 ∂x −
mx− λ√

1− x2

)
e±iϕ vλl,m(x, ϕ) =

√
l(l + 1)−m(m± 1) vλl,m±1(x, ϕ) , (A.24)

(
±
√

1− x2 ∂x −
m− λx√

1− x2

)
vλl,m(x, ϕ) =

√
l(l + 1)− λ(λ± 1) vλ±1

l,m (x, ϕ) . (A.25)

If we now look at the offdiagonal elements of ∆x + M , we see that they are given exactly
by the ladder operators for λ. So for ψm(ϕ)ψl(x) = diag

(
v0
l,m(x, ϕ), v1

l,m(x, ϕ), v−1
l,m(x, ϕ)

)

Eq. (A.13) becomes

(∆x + ∆ϕ)ψm(ϕ)ψl(x) = ψm(ϕ)ψl(x)



l(l + 1) + 2

√
2l(l + 1) −

√
2l(l + 1)√

2l(l + 1) l(l + 1) 0

−
√

2l(l + 1) 0 l(l + 1)


 . (A.26)

Before we write down the resulting radial Schrödinger equation, we will exploit the fact that
we are free to multiply this expression by any constant matrix, which gives another solution to
the angular differential equation with a modified but equivalent eigenvalue matrix L. If this
constant matrix is (1, 2)-block diagonal, then also V (r) remains unchanged. In this way we
will define a new orbital wave function matrix ψl,m(x, ϕ) as

ψl,m(x, ϕ) =
1√
2




√
2 v0

l,m(x, ϕ) 0 0

0 v1
l,m(x, ϕ) v1

l,m(x, ϕ)

0 −v−1
l,m(x, ϕ) v−1

l,m(x, ϕ)


 . (A.27)

The advantage of this redefinition is that now in the radial Schrödinger equation the effec-
tive potential is (2, 1)-block diagonal.
[
− 1

mr2
∂r r

2 ∂r +
1

mr2
(∆x + ∆ϕ) + V (r)

]
ψl,m(x, ϕ)ψ(N)(r)

= ψl,m(x, ϕ)


− 1

mr2
∂r r

2 ∂r +
1

mr2



l(l + 1) + 2 2

√
l(l + 1) 0

2
√
l(l + 1) l(l + 1) 0

0 0 l(l + 1)


+ V (r)


ψ(N)(r)

= EN ψl,m(x, ϕ)ψ(N)(r) . (A.28)
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We see here explicitly the decoupling of the opposite parity states described in the main part

of this chapter. One solution is of the form
(
ψ

(N)
Σ (r), ψ

(N)
−Π (r), 0

)T
, the other

(
0, 0, ψ

(N)
+Π (r)

)T
.

If those are multiplied by the orbital wave function matrix ψl,m(x, ϕ), and spin and an-
gular momentum indices are combined through Clebsch-Gordan coefficients, then we get the
following expressions for the hybrid states:

∑

ml,ms

∫
d3r C ml,ms

j,m; l, s

[
v0
l,ml
r̂ ψ

(N)
Σ +

1√
2

(
v1
l,ml
r̂+ − v−1

l,ml
r̂−
)
ψ

(N)
−Π

]
·Ga

B O
a †
s,ms|0〉 , (A.29)

∑

ml,ms

∫
d3r C ml,ms

j,m; l, s

1√
2

(
v1
l,ml
r̂+ + v−1

l,ml
r̂−
)
ψ

(N)
+Π ·Ga

B O
a †
s,ms|0〉 . (A.30)

The first gives the hybrid multiplets H1, H ′1, H3, H4, and H6, the second gives H2, H ′2, H5, and
H7, for different values of l, s, and N . Note that the different P and C eigenstate combinations
come out correct.

We will now show that the hybrid states we have constructed are in fact eigenstates of the
total angular momentum operator L = LQQ̄+K, where K is the angular momentum operator
of the gluons and LQQ̄ the one of the relative coordinate of the quark-antiquark system. The
center-of-mass coordinate R is fixed in the current approximation, which corresponds to a
hybrid at rest, so there is no contribution to the total angular momentum from this coordinate.

The 1+− gluelump operator is a (pseudo) vector, so K acts on it as
[
Ki, G

a
B j

]
= i εijkG

a
B k . (A.31)

The relative angular momentum operator in the octet sector is given by

LQQ̄ =

∫
d3r d3ROa †(r,R)




−i
√

1− x2 sinϕ∂x +
ix cosϕ√

1− x2
∂ϕ

i
√

1− x2 cosϕ∂x +
ix sinϕ√

1− x2
∂ϕ

−i∂ϕ



Oa(r,R) . (A.32)

Acting with LQQ̄ on the hybrid states is equivalent to acting with the differential operator
between the two octet fields on the wave functions and projection vectors. In a slight abuse
of notation, we will also use the symbol LQQ̄ for this differential operator. It should be clear
which one is meant by whether it acts on a state or on a wave function.

It is straightforward to show that

− i∂ϕ n̂T (x, ϕ) = n̂T (x, ϕ)



−i∂ϕ −i 0

i −i∂ϕ 0

0 0 −i∂ϕ


 for all n̂ = r̂, r̂± , (A.33)

and by construction the orbital wave functions satisfy −i∂ϕ vλl,m(x, ϕ) = mvλl,m(x, ϕ). So acting
with L3 on the hybrid states (before combining spin and angular momentum indices) gives

L3

∫
d3r Oa †(r,R)

∑

n, i

n̂i(x, ϕ)Ga
B i(R)Ψ(N)

n (r)|0〉

=

∫
d3r Oa †(r,R)

∑

n, i, j

n̂i(x, ϕ)






−i∂ϕ −i 0

i −i∂ϕ 0

0 0 −i∂ϕ


+




0 i 0

−i 0 0

0 0 0






ij

Ga
B j(R)Ψ(N)

n (r)|0〉
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=

∫
d3r Oa †(r,R)

∑

n, i

n̂i(x, ϕ)Ga
B i(R)

(
−i∂ϕ Ψ(N)

n (r)
)
|0〉

= m

∫
d3r Oa †(r,R)

∑

n, i

n̂i(x, ϕ)Ga
B i(R)Ψ(N)

n (r)|0〉 . (A.34)

For L2 we can write

L2 = L2
QQ̄ + 2LQQ̄ ·K +K2 . (A.35)

We already know the effect of L2
QQ̄

on n̂ from the previous section:

L2
QQ̄ n̂ =

(
−∂x

(
1− x2

)
∂x −

1

1− x2
∂2
ϕ

)
n̂ =

∑

n′

n̂′ (∆x + ∆ϕ)n′n . (A.36)

Note that here and in the following we use the indices n and n′ to denote matrices that are
defined in the basis of the different static states, Σ−u and Π±u , which correspond to the projection
vectors r̂ and r̂±, respectively. In contrast, the indices i and j will always be used for the
components of vectors and matrices defined in three-dimensional position space.

The last term in Eq. (A.35) K2 just gives a constant factor k(k + 1), which is equal to 2
in our case. So there only remains to determine the effect of LQQ̄ ·K on n̂. We can write it
as a matrix of differential operators, where the matrix nature comes from the action of the K
part on the gluelump. An explicit calculation gives

LQQ̄ ·K n̂i =
∑

j




0 0 −
√

1− x2 cosϕ∂x

0 0 −
√

1− x2 sinϕ∂x√
1− x2 cosϕ∂x

√
1− x2 sinϕ∂x 0



ij

n̂j

+
∑

j




0 −∂ϕ − x sinϕ√
1− x2

∂ϕ

∂ϕ 0
x cosϕ√
1− x2

∂ϕ

x sinϕ√
1− x2

∂ϕ −
x cosϕ√
1− x2

∂ϕ 0




ij

n̂j

=
∑

n′

n̂′i




−2
1√
2
∂x
√

1− x2
1√
2
∂x
√

1− x2

− 1√
2

√
1− x2∂x −1 0

− 1√
2

√
1− x2∂x 0 −1



n′n

+
∑

n′

n̂′i




0 − i√
2

1√
1− x2

∂ϕ
i√
2

1√
1− x2

∂ϕ

− i√
2

1√
1− x2

∂ϕ 0 0

i√
2

1√
1− x2

∂ϕ 0 0



n′n

. (A.37)

We now see that in L2
QQ̄

+ 2LQQ̄ ·K + K2 all offdiagonal elements of ∆x and ∆ϕ cancel,
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as well as all constant terms in the diagonal elements. What remains is

(
L2
QQ̄ + 2LQQ̄ ·K +K2

)∑

n

n̂(x, ϕ)Ψ(N)
n (r)

=
∑

n, n′

n̂′(x, ϕ)




L2
QQ̄

0 0

0 L2
QQ̄

+
2ix∂ϕ + 1

1− x2
0

0 0 L2
QQ̄

+
−2ix∂ϕ + 1

1− x2




n′n

Ψ(N)
n (r)

= l(l + 1)
∑

n

n̂(x, ϕ)Ψ(N)
n (r) . (A.38)

The last equality follows, because the diagonal entries are exactly the defining differential
equations for the orbital wave functions.

A.4 Numerical Solution of the Schrödinger Equations

The Schrödinger equations in (3.51) and (3.52) can be solved numerically (see e.g. [159, 160]).
In the uncoupled case the nodal theorem can be used to determine the energy eigenvalues. Any
value E one inserts in these equations in the place of EN defines a linear differential equation
of second order. These have in general two linearly independent solutions. Such a solution can
only be interpreted as a wave function, if it is normalizable.

Two independent solutions can be distinguished by their behavior at the origin,

ψ
(N)
+Π (r) ∝ rl +O(rl+1) or ψ

(N)
+Π (r) ∝ r−l−1 +O

(
r−l
)
. (A.39)

The second expression is singular at the origin and therefore not normalizable. The first
expression defines initial conditions for the wave function and its derivative, such that for any
value of E the differential equation (3.52) has a unique solution. This solution generally diverges
for large r, only for particular values of E = EN does it approach zero and is normalizable.
These are the desired wave function solutions of the Schrödinger equation. The order N of the
eigenvalue is equal to the number of zeros in the wave function. For the special case of l = 0
the initial conditions for ψ

(N)
Σ are the same as for ψ

(N)
+Π with l = 1.

A similar approach can be used to determine the energy eigenvalues of the coupled Schrö-
dinger equation (3.51) for l ≥ 1. A system of two linearly coupled differential equations of
second order has in general four linearly independent solutions, of which now two are singular
at the origin. The remaining two can also be distinguished by their behavior at the origin,
which is given by (

ψ
(N1)
Σ (r)

ψ
(N1)
−Π (r)

)
∝
( √

l rl−1

−
√
l + 1 rl−1

)
+O

(
rl
)
, (A.40)

or (
ψ

(N2)
Σ (r)

ψ
(N2)
−Π (r)

)
∝
(√

l + 1 rl+1

√
l rl+1

)
+O

(
rl+2

)
. (A.41)

Again, the solutions to the two coupled differential equations with these initial conditions
diverge for general E at large r. For particular values of E = EN there exists one linear
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combination (
ψ

(N)
Σ (r)

ψ
(N)
−Π (r)

)
=

(
ψ

(N1)
Σ (r)

ψ
(N1)
−Π (r)

)
+ ν

(
ψ

(N2)
Σ (r)

ψ
(N2)
−Π (r)

)
, (A.42)

which approaches zero for large r, while any other combination with a different ν will still
diverge. This gives the desired wave functions.

So now one has to tune two independent parameters in order to find the solutions, E and
ν. Fortunately, the two can be determined separately. Instead of counting zeros of the wave
function in order to find the eigenvalues EN like in the uncoupled case, one now has to look at
the determinant of the two independent solutions [161]

U(r) = det

(
ψ

(N1)
Σ (r) ψ

(N2)
Σ (r)

ψ
(N1)
−Π (r) ψ

(N2)
−Π (r)

)
. (A.43)

This function diverges in the large r limit for general E but converges for E = EN and then
has exactly N zeros. In this way EN can be determined without knowledge of ν.

Then in order to obtain the wave functions ψ
(N)
Σ (r) and ψ

(N)
−Π (r) one can determine ν through

ν = − lim
r→∞

ψ
(N1)
Σ (r)

ψ
(N2)
Σ (r)

= − lim
r→∞

ψ
(N1)
−Π (r)

ψ
(N2)
−Π (r)

, (A.44)

after E has been fixed to the eigenvalue EN from the previous step. Alternatively, (1, ν)T is
the eigenvector of the wave function matrix (i.e. the matrix of which U(r) is the determinant)
at r →∞ with eigenvalue zero.

These properties of the solutions of the radial Schrödinger equations can be exploited in
an algorithm to numerically find the eigenvalues and wave functions. The details of this will
be described elsewhere [101].
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Appendix B

Finite Temperature

B.1 Gluon Propagators

B.1.1 Feynman Gauge

Feynman gauge is obtained by adding the gauge fixing term
(
∂µA

a
µ

)2
/2 to the Lagrangian, as

well as the ghost Lagrangian (∂µc̄
a)Dab

µ c
b. Then the free propagators for gluons D0 and ghosts

G0 are given by

D0 =
δµν

k2
0 + k2

and G0 =
1

k2
0 + k2

. (B.1)

We will not explicitly display color indices, because they only appear in Kronecker deltas.
For the resummed gluon propagators we need to sum over all one-particle reducible dia-

grams, i.e., over all bubble insertions in a propagator, where the bubbles define the self-energy
tensor −Πµν . We can parametrize the self-energy tensor in the following way

Π =

(
Π00 ΠAk0kj

ΠAkik0 ΠBδij + ΠCkikj

)
, (B.2)

which comprises all tensor structures allowed by rotational symmetry. Even though Feynman
gauge is designed to be fully covariant under Lorentz transformations, the existence of the
medium explicitly breaks the full Lorentz symmetry down to the rotational symmetry in the
rest frame of the medium, so that the temporal and mixed components of the self-energy tensor
Π00 and Πi0 = Π0i may have different coefficients than the corresponding tensor structures in
the spatial components Πij. In other words, Π00 6= ΠB + ΠCk

2
0 and ΠA 6= ΠC .

The sum over one-particle reducible diagrams constitutes a geometric series. So the re-
summed propagators are given by

D = D0

∞∑

n=0

(−ΠD0)n = D0(1 + ΠD0)−1 =
(
D−1

0 + Π
)−1

, (B.3)

and similarly for the ghosts. By inverting this matrix we get

D00 =
k2

0 + k2 + ΠB + ΠCk
2

(k2
0 + k2 + Π00) (k2

0 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2
, (B.4)

Di0 =
−ΠAkik0

(k2
0 + k2 + Π00) (k2

0 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2
, (B.5)
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Dij =
1

k2
0 + k2 + ΠB

(
δij −

kikj
k2

)
+

k2
0 + k2 + Π00

(k2
0 + k2 + Π00) (k2

0 + k2 + ΠB + ΠCk2)− Π2
Ak

2
0k

2

kikj
k2

.

(B.6)

We can rewrite these expressions in terms of the self-energy tensor as

D00 =
1

k2
0 + k2 + Π

and Dij =
1

k2
0 + k2 + Σ1

(
δij −

kikj
k2

)
+

1

k2
0 + k2 + Σ2

kikj
k2

, (B.7)

where

Π = Π00 −
Π2
Ak

2
0k

2

k2
0 + k2 + ΠB + ΠCk2

= Π00 −
Π0iΠi0

k2
0 + k2 + Πijkikj/k2

, (B.8)

Σ1 = ΠB =
1

d− 1

(
Πii −

Πijkikj
k2

)
, (B.9)

Σ2 = ΠB + ΠCk
2 − Π2

Ak
2
0k

2

k2
0 + k2 + Π00

=
Πijkikj
k2

− Π0iΠi0

k2
0 + k2 + Π00

, (B.10)

and

D0l =
−Π0l

(k2
0 + k2 + Π00) (k2

0 + k2 + Πijkikj/k2)− Π0iΠi0

. (B.11)

We see that, although the free Feynman propagator is diagonal, the resummed propagator is
not.

The free ghost propagator G0 as well as the ghost self-energy Γ are scalar functions, so the
resummation of the geometric series for the full ghost propagator G is trivial:

G =
(
G−1

0 + Γ
)−1

=
1

k2
0 + k2 + Γ

. (B.12)

B.1.2 Static Gauge

Static gauge [41] satisfies the gauge condition ∂0A0 = 0, but this condition alone does not
give an invertible propagator, so we need to modify it in order to fix the gauge also for the

spatial gluons. This can be done by adding the gauge fixing term
(
∂0A0 +

√
α/ξ∇ ·Aa

)2
/2α

and taking the limit α → 0, which gives back the original gauge condition. This limit would
diverge in the Lagrangian, but leads to a finite propagator. The freedom in how to fix the
gauge for the spatial gluons is reflected in the residual gauge fixing parameter ξ. The gauge
condition on the spatial gluons is lifted for ξ →∞ and accordingly the propagator diverges in
this limit.

The inverse of the free propagator can be read from the Lagrangian:

D−1
0 =




k2
0

α
+ k2 −

(
1− 1√

αξ

)
k0kj

−
(

1− 1√
αξ

)
kik0 (k2

0 + k2) δij −
(

1− 1

ξ

)
kikj


 , (B.13)

which can be inverted to

D0 =




α (ξk2
0 + k2)

(√
ξk2

0 +
√
αk2
)2

(
αξ −√αξ

)
k0kj(√

ξk2
0 +
√
αk2
)2

(
αξ −√αξ

)
kik0(√

ξk2
0 +
√
αk2
)2

1

k2
0 + k2

(
δij −

kikj
k2

)
+

ξ (k2
0 + αk2)

(√
ξk2

0 +
√
αk2
)2

kikj
k2
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α→0
=




δk0
k2

0

0
1− δk0
k2

0 + k2

(
δij −

kikj
k2

0

)
+
δk0
k2

(
δij − (1− ξ)kikj

k2

)


 , (B.14)

where by δk0 we mean for k0 = 2πTn with n ∈ Z that δk0 = δ0n, i.e., selecting only the zero
mode in the Matsubara sum. We see that the free propagator explicitly distinguishes between
zero and non-zero modes. In particular, the 00 component of the propagator contains only
the zero mode, which means that in position space it does not depend on the imaginary time
coordinate, as required by the gauge condition.

The ghost Lagrangian is given by

Lgh =
1√
α

(∂0c̄
a)Dab

0 c
b +

1√
ξ

(∇c̄a) ·Dabcb , (B.15)

from which it follows that the free ghost propagator is

G0 =

√
αξ√

ξk2
0 +
√
αk2

α→0
=

√
ξδk0
k2

. (B.16)

There is a ghost vertex with a temporal gluon that is proportional to 1/
√
α, so the α→ 0

limit may potentially be problematic in this interaction. However, this vertex is also propor-
tional to the Matsubara frequency k0 of the outgoing ghost propagator, which means that
only non-zero modes can participate in this interaction. The number of ghost propagators and
ghost-gluon vertices is always the same in any loop diagram, so in the most singular diagrams,
where all vertices are with a temporal gluon, the powers of

√
α cancel exactly between the

vertices and the numerators of the propagators. Then the α → 0 limit can be taken without
problems and all propagators are given by 1/k2

0, which is not singular because the zero-modes
do not contribute. This makes all loop integrations scaleless and therefore vanish. If there are
some vertices with spatial gluons, then there are more powers of

√
α in the numerator than in

the denominator and the diagram vanishes trivially in the α→ 0 limit.
So we see that the ghosts completely decouple from the temporal gluons. For the interac-

tions with the spatial gluons the α → 0 limit is unproblematic. There is a factor of 1/
√
ξ at

each vertex, which exactly cancels the
√
ξ factor in the ghost propagators. So we can in fact

simplify the ghost sector considerably, because as we have just shown the non-zero Matsubara
frequencies, the parameter ξ, or interactions with temporal gluons are irrelevant. Therefore
the modified ghost Lagrangian and free propagator

Lgh = (∇c̄a) ·Dabcb and G0 =
δk0
k2

(B.17)

with static (i.e., independent of the imaginary time coordinate) ghost fields give exactly the
same contributions as the more complicated Lagrangian given above.

For the resummed propagator we can use the same parametrization of the self-energy tensor
as in Feynman gauge. Then we get

D00 =
k2

0 + k2/ξ + ΠB + ΠCk
2

(k2
0/α + k2 + Π00)

(
k2

0 + k2/ξ + ΠB + ΠCk2
)
−
(
1− 1/

√
αξ − ΠA

)2
k2

0k
2

α→0
=

δk0
k2 + Π00

,

(B.18)
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Di0 =

(
1− 1/

√
αξ − ΠA

)
kik0

(k2
0/α + k2 + Π00)

(
k2

0 + k2/ξ + ΠB + ΠCk2
)
−
(
1− 1/

√
αξ − ΠA

)2
k2

0k
2

α→0
= 0 ,

(B.19)

Dij =
1

k2
0 + k2 + ΠB

(
δij −

kikj
k2

)

+
k2

0/α + k2 + Π00

(k2
0/α + k2 + Π00)

(
k2

0 + k2/ξ + ΠB + ΠCk2
)
−
(
1− 1/

√
αξ − ΠA

)2
k2

0k
2

kikj
k2

α→0
=

1− δk0
k2

0 + k2 + ΠB

(
δij +

(1− ΠC) kikj
k2

0 + ΠB + ΠCk2

)
+

δk0
k2 + ΠB

(
δij −

(1− ξ + ξΠC) kikj
k2 + ξ (ΠB + ΠCk2)

)
.

(B.20)

Or in analogy to the functions Π, Σ1, and Σ2 that we defined in Feynman gauge we can also
write

D00 =
δk0

k2 + Π
, (B.21)

Di0 = D0j = 0 , (B.22)

Dij =
1− δk0

k2
0 + k2 + Σ1

(
δij −

kikj
k2

)
+

1− δk0
k2

0 + Σ2

kikj
k2

+
δk0

k2 + Σ1

(
δij −

kikj
k2

)
+

ξδk0
k2 + ξΣ2

kikj
k2

,

(B.23)

where now

Π = Π00 , Σ1 = ΠB =
1

(d− 1)k2

(
k2Πii − Πijkikj

)
, and Σ2 = ΠB + ΠCk

2 =
Πijkikj
k2

.

(B.24)
The resummed ghost propagator follows trivially from the modified ghost Lagrangian.

G =
δk0

k2 + Γ
. (B.25)

For ξ = 1 the static part of the gluon propagator (i.e., k0 = 0) has the same form as in
Feynman gauge, which is why this choice is also called Feynman static gauge. The self-energy
functions still differ between the two gauges. For ξ = 0 the static part of the propagator has
the same form as in Coulomb gauge, so this choice could be called Coulomb static gauge.

B.1.3 Coulomb Gauge

Coulomb gauge is defined by the gauge condition ∇ · Aa = 0. It can be implemented by
adding the gauge fixing term (∇ ·Aa)2 /2ξ to the Lagrangian as well as the ghost Lagrangian
(∇c̄a) ·Dabcb with the limit ξ → 0. If we compare this to the gauge fixing term in static gauge,
we see that Coulomb gauge can also be obtained from there by first taking the limit α → ∞
and then ξ → 0, so we can reuse all results from the previous section.

The free propagator is then given by

D0
ξ→0
=




1

k2
0

0
1

k2
0 + k2

(
δij −

kikj
k2

)


 , (B.26)
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and the resummed propagator by

D
ξ→0
=




1

k2 + Π
0

0
1

k2
0 + k2 + Σ1

(
δij −

kikj
k2

)


 , (B.27)

where the self-energy functions Π and Σ1 are defined as in static gauge.
The temporal component of the propagator is the same as in static gauge, except that in

Coulomb gauge also the non-zero Matsubara frequencies are allowed (although they do not
appear explicitly in the free propagator). The spatial part of the propagator is transversely
polarized with respect to k and the mixed temporal and spatial components vanish, such that
the gauge condition is explicitly satisfied as kiDiν = 0. This relation holds for both the free
and the resummed propagator, and only the coefficient Σ1 of the transversely polarized part
of the self-energy tensor remains in the propagator after the resummation.

After a redefinition of the ghost fields (c̄, c)→ ξ1/4(c̄, c), the limit ξ → 0 eliminates the first
term in (B.15) and the free and resummed propagators are given by

G0 =
1

k2
and G =

1

k2 + Γ
. (B.28)

The ghosts only couple to spatial gluons like in static gauge.
Quantization in Coulomb gauge generates the so-called Schwinger-Christ-Lee term [162,

163]. This term is an α2
s suppressed term that involves a nonlocal interaction with transverse

gluons. It is beyond the accuracy of the present work.

B.1.4 Phase-Space Coulomb Gauge

There exists an alternative formulation of Coulomb gauge QCD that is defined in the so-called
phase-space formalism [164], which we will adapt here to the Euclidean space of the imaginary
time formalism. An auxiliary field E is introduced in the action S:

e−S = exp

[
−
∫ 1/T

0

dτ

∫
d3x

(
1

4
F a
ijF

a
ij +

1

2
F a

0iF
a
0i

)]

= N−1

∫
DEi exp

[
−
∫ 1/T

0

dτ

∫
d3x

(
1

4
F a
ijF

a
ij + iEa

i F
a
0i +

1

2
Ea
i E

a
i

)]
. (B.29)

This step can be interpreted such that now the chromoelectric field is treated as a dynamical
variable. This interpretation originates from the equations of motion for the E-field, which are
Ea
i = −iF a

0i (the factor i is an effect of the imaginary time formalism, in Minkowski space it is
absent). So we will call E the electric field for the rest of this section. One can easily return
to the original action, up to some irrelevant constant N , by explicitly carrying out the path
integral over the electric field, which is possible because it only appears in quadratic terms in
the exponential.

With this new action we can calculate as if there was a seven-component gluon field Aα,
where α = 0 corresponds to A0, α = 1, 2, 3 to A, and α = 4, 5, 6 to E. The free propagator
(D0)αβ will be the 7 × 7 matrix given through the quadratic terms of this gluon field as
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Aα
(
D−1

0

)
αβ
Aβ. In order to distinguish between the spatial gluon and electric field components

in this unified description, we will use the propagator indices i, j and m, n exclusively for
α, β = 1, 2, 3 and α, β = 4, 5, 6 respectively.

In order to fix the gauge we again introduce the terms (∇ ·Aa)2 /2ξ and (∇c̄a) ·Dabcb into
the Lagrangian. The ghost sector remains unchanged compared to standard Coulomb gauge,
so we will only discuss the gluonic sector. Going from position to momentum space in the free
action,

S0 =

∫ 1/T

0

dτ

∫
d3x

[
1

2

(
∂iA

a
j

) (
∂iA

a
j

)
− 1

2

(
∂iA

a
j

) (
∂jA

a
i

)
+

1

2ξ

(
∂iA

a
i

) (
∂jA

a
j

)

+ iEa
i ∂0A

a
i − iEa

i ∂iA
a
0 +

1

2
Ea
i E

a
i

]

=
∑

K

∫
1

2

[
Aai (−K)

(
k2δij −

ξ − 1

ξ
kikj

)
Aaj (K)− Ea

i (−K)k0A
a
i (K) + Aai (−K)k0E

a
i (K)

+ Ea
i (−K)kiA

a
0(K)− Aa0(−K)kiE

a
i (K) +

1

2
Ei(−K)aEa

i (K)

]

=
∑

K

∫ [
1

2
Aaα(−K)

(
D−1

0

)
αβ
Aaβ(K)

]
, (B.30)

we get the inverse of the propagator as

D−1
0 =




0 0 −kn
0 k2 δij − (1− 1/ξ) kikj k0 δin

km −k0 δmj δmn


 , (B.31)

where we have written the 7 × 7 matrix in terms of (1, 3, 3) × (1, 3, 3) blocks. Inverting this
and taking the ξ → 0 limit, we get the free propagator:

D0 =




1

k2
0

kn
k2

0
1

k2
0 + k2

(
δij −

kikj
k2

)
− k0

k2
0 + k2

(
δin −

kikn
k2

)

−km
k2

k0

k2
0 + k2

(
δmj −

kmkj
k2

)
k2

k2
0 + k2

(
δmn −

kmkn
k2

)



. (B.32)

We see that the temporal and spatial components still have the same propagators as in the
standard formalism, in particular they do not mix with each other for ξ = 0, but both do
mix with the electric field. Also note that DT

0 (K) = D0(−K). This is of relevance for the
off-diagonal terms, which have odd powers of the momentum in the numerator (the reason is
that A0 and A are of mass dimension 1, while E is of dimension 2).

The interaction part of the action is given by

Sint =

∫ 1/T

0

dτ

∫
d3x

[
gfabc

(
∂iA

a
j

)
AbiA

c
j +

g2

4
fabef cdeAaiA

b
jA

c
iA

d
j − igfabcAa0Eb

iA
c
i

]
. (B.33)

This gives the same three- and four-gluon vertices as in standard Coulomb gauge if only spatial
gluons are involved, but the temporal gluons now interact with the spatial gluons only through
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pk

q

k

a

c

k

c

=
δab

k20 + k2


δij −

kikj
k2




=
δabk0
k20 + k2


δin −

kikn
k2




= igfabc
[

δij(k − p)l + δjl(p− q)i + δli(q − k)j
]

= −g2

fabef cde

(

δikδjl − δilδjk
)

+ facef bde
(

δijδkl − δilδjk
)

+ fadef bce
(

δijδkl − δikδjl
)


= igfabcki

= igfabcδmj
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Figure B.1: All free propagators and interaction vertices in phase-space Coulomb gauge. When-
ever there is an arrow specifying the direction of a momentum over a mixed propagator, op-
posite momenta will give the negative propagator.

a three-field vertex with an additional electric field and the simple coefficient igfabcδim. All
Feynman rules of phase-space Coulomb gauge are shown in Fig. B.1.

For the resummed propagator we need to introduce a new parametrization of the self-energy
tensor in the form a 7× 7-matrix:

Π =




Πtt k0kj Πts −kn Πte

kik0 Πts Πss1 δij + Πss2
kikj
k2

k0

(
Πse1 δin + Πse2

kikn
k2

)

km Πte −k0

(
Πse1 δmj + Πse2

kmkj
k2

)
Πee1 δmn + Πee2

kmkn
k2



, (B.34)

where the labels t, s, and e stand for temporal, spatial, and electric respectively. Then the
resummed propagators are

D00 =
1 + Πee1 + Πee2

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (B.35)

D0j = Di0 = 0 , (B.36)

D0n =
(1 + Πte) kn

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (B.37)

Dm0 =
− (1 + Πte) km

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

, (B.38)

Dij =
1 + Πee1

k2
0 (1 + Πse1)2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δij −

kikj
k2

)
, (B.39)

Din =
− (1 + Πse1) k0

k2
0 (1 + Πse1)2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δin −

kikn
k2

)
, (B.40)
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Dmj =
(1 + Πse1) k0

k2
0 (1 + Πse1)2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δmj −

kmkj
k2

)
, (B.41)

Dmn =
k2 + Πss1

k2
0 (1 + Πse1)2 + k2 (1 + Πee1) + (1 + Πee1) Πss1

(
δmn −

kmkn
k2

)

+
Πtt

k2 (1 + Πte)
2 + (1 + Πee1 + Πee2) Πtt

kmkn
k2

. (B.42)

We see that the self-energy components that are proportional to ki or kj (i.e., Πts, Πss2,
and Πse2) do not appear at all, while the ones that are proportional only to km or kn (i.e.,
Πte and Πee2), appear only in D00, Dm0, D0n, and Dmn. The reason for this is that every
free propagator with a spatial gluon index i or j is proportional to the transverse projector
δij−kikj/k2, so the self-energy components Πts, Πss2, and Πse2 drop out of the geometric series.
Since only the δij self-energy terms remain in the geometric series for Dij, Din, and Dmj, also
the resummed propagators are proportional to the transverse projector. A mixing of temporal
and spatial gluons is still not possible, because (D0)i0 and (D0)0j are zero from the outset
and intermediate electric field contributions like, e.g., (D0)in Πnm (D0)m0 or (D0)in Πn0 (D0)00

always involve a contraction of the transverse projector with the momentum km, either from
the self-energy or the (D0)m0 propagator. In the case of the propagators D00, Dm0, D0n, and
Dmn, there appear terms in the geometric series without any transverse projectors, so those
propagators also depend on the self-energy terms Πte and Πee2. Also note that, in contrast
to the free propagator, the resummed Dmn contains a part that is not proportional to the
transverse projector, which comes, e.g., from terms like (D0)m0 Π00 (D0)0n.

B.1.5 Expansions of the Propagators

In the small coupling case the two energy scales πT and mD ∼ gT are well separated, so we
expand the propagators accordingly. The Matsubara frequencies are always of order πT and
the momentum k can be either of order πT or mD. The self-energy functions are at least of
order g2T 2, so if k is of order πT then the propagators have to be expanded in the self-energy,
which is equivalent to using free propagators instead of resummed propagators.

If k is of order mD but k0 is not zero, then the propagators also have to be expanded in
k2/k2

0, which leads to scaleless integrals in most cases (and in all integrals appearing in this
chapter). An exception to this are the temporal propagators in static and Coulomb gauge,
which do not have a k2

0 term in the denominator.
If k is of order mD and k0 is zero, then the leading term of the self-energy may be of the same

order as k2 and the propagator has to be expanded in the next-to-leading terms. It is known
that only the self-energy in the temporal propagator has a term of order g2T 2, which is gauge
invariant and given by the square of the Debye mass m2

D, see Eq. (4.2). In Coulomb gauge, the
free propagator is independent of the Matsubara frequencies. The self-energy, however, is such
that it is of order g2T 2 for the zero mode, while it is of higher order for the other frequencies.
The self-energies in the spatial propagator start at order g4T 2, therefore the spatial propagator
has to be expanded and we can use the free one.

It is a straightforward calculation to show that also in the phase-space Coulomb gauge
(PSCG) only Πtt has a term of order g2T 2 and this is again given by m2

D. All other self-energies
need to be expanded; see Eqs. (B.35)-(B.42). Therefore, the spatial and mixed spatial-electric
propagators remain massless, but the electric and mixed temporal-electric propagators also get
massive denominators.
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We summarize here the propagators in different gauges in the leading order expansion for
k0 = 0 and k ∼ mD.

DFG =




1

k2 +m2
D

0

0
δij
k2


 , DSG =




1

k2 +m2
D

0

0
1

k2

(
δij − (1− ξ)kikj

k2

)


 , (B.43)

DCG = DSG
∣∣
ξ=0

, DPSCG =




1

k2 +m2
D

0
kn

k2 +m2
D

0
1

k2

(
δij −

kikj
k2

)
0

− km
k2 +m2

D

0 δmn −
kmkn

k2 +m2
D




.

(B.44)

B.2 Electric Scale Two-Loop Integrals

In this appendix, we will explicitly write down the integrals and their results for all the two-
loop self-energy diagrams at the scale mD. In order to calculate the integrals we make use of
an algorithm that systematically reduces the integrals to a handful of master integrals by the
method of integration by parts and then replaces these master integrals by their known values.
More details on this algorithm can be found in appendix B.4.

All relevant diagrams for Π
(2)
mD(0, k ∼ mD) are shown in Fig. 4.1, where also the diagrams

labels are explained. As explained in appendix B.1.5, only temporal gluons carry the Debye
mass in the propagator, so it makes sense to visually distinguish between temporal and spatial
gluons in the diagrams. All Matsubara frequencies are assumed to be zero, which means that
a vertex with one temporal gluon and two spatial gluons or ghosts (if they are required by the
chosen gauge) cannot appear, because it would be proportional to the Matsubara frequencies.
This is why there are no three-gluon vertices with just one temporal gluon in all the diagrams
of Fig. 4.1. Tadpole diagrams with only spatial gluons or ghosts are scaleless and therefore
have been omitted in Fig. 4.1. Fermion propagators do not have zero-modes, so also light
quark loops cannot contribute to Π

(2)
mD(0, k ∼ mD).

We will do the calculation explicitly in Feynman, Coulomb, and phase-space Coulomb
gauge. In the case of the static gauge we will not perform the calculation for a generic gauge
fixing parameter ξ. For ξ = 1 and ξ = 0 the calculation is identical to the one in Feynman
and Coulomb gauge, respectively.

The color factors of the two-loop self-energy can be calculated using the quadratic Casimir
of the adjoint representation and the Jacobi identity:

Tr
[
T aAT

b
A

]
= (−ifacd)(−if bdc) = facdf bcd = N δab , (B.45)

fabef ecd + f bcef ead + f caef ebd = 0 . (B.46)

With these we get
facdfdcef eghfhgb = (−N δae)(−N δeb) = N2 δab , (B.47)

facdfdghfhgef ecb = −Nfacdfdcb = N2 δab , (B.48)
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facdf cgefdehfhgb = −1

2
facd

(
f cgef edh + f chef egd

)
fhgb =

1

2
facdfdcef eghfhgb =

1

2
N2 δab . (B.49)

All color factors are given by these expressions or combinations thereof. Symmetry factors
appear only when gluons of the same type (temporal or spatial) can be exchanged, which is
the case for L3, L8, L9, L10, and L12, although in the case of L3, L8, and L12 one symmetry
factor 1/2 is compensated by a factor 2 from the four-gluon vertices. From the vertices we
either get (ig)4, (ig)2(−g2) or (−g2)2, which is equal to g4 in each case. So no additional signs
arise from the vertices, but the ghost loop gets a minus due to its Grassmann nature. Then
we have

C(L1) = C(L2) = −C(L8) = C(L9) = C(L10) =
1

2
N2 , (B.50)

C(L7) = −C(L11) = −C(L12) = N2 , (B.51)

C(L3) = −C(L4) = −C(L5) = −C(L6) =
3

2
N2 . (B.52)

B.2.1 Feynman Gauge

We will call the momenta in the diagrams of Fig. 4.1 in such a way that k appears in each
temporal gluon propagator (even in the temporal gluon loops in L8, L10 and L12 through a
shift of the loop momentum by k), while the additional loop momenta will be called p and
q. In the denominator only the combinations k + p, k + q, and either k + p + q or p − q
can appear. The reason for this choice is that with this momentum configuration the integrals
are already in the form required by the algorithm described in appendix B.4. We will use the
abbreviation P (k) = k2 +m2

D. L5 and L6 are the same up to a relabeling of the momenta, so
we will calculate them together. Then we have

L1 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
2T (2ki + pi)(p

2δij − pipj + q2δij − qiqj − (p · q)δij + piqj)(2kj + qj)

p2 (p− q)2 q2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
− 1

32ε
− 7

32
+

3

32
γE −

π2

24
− 3

32
ln
πµ2

m2
D

+O(ε)

]
, (B.53)

L2 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
T
[
(2k + p) · (2k + p+ 2q)

] [
(2k + q) · (2k + 2p+ q)

]

p2 q2 P (k + p)P (k + q)P (k + p+ q)P (k)2

=
CRN

2α3
sT

mD

[
− 1

32ε
− 1

4
+

3

32
γE −

π2

12
− 3

32
ln

πµ2

256m2
D

+O(ε)

]
, (B.54)

L3 = −3CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
T d

p2 (p− q)2 P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
− 9

32ε
− 3

8
+

27

32
γE −

27

32
ln
πµ2

m2
D

+O(ε)

]
, (B.55)

L4 =
3CRN

2g6

4

∫ ∫

k, p, q∼mD

∫
T (2k + p) · (2k + q)

p2 q2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
39

32
+O(ε)

]
, (B.56)
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L5 + L6 =
3CRN

2g6

4

∫ ∫

k, p, q∼mD

∫
2T (2k + p) · (2k + p+ q)

p2 (p− q)2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
9

32ε
− 3

16
− 27

32
γE +

π2

8
+

27

32
ln
πµ2

m2
D

+O(ε)

]
, (B.57)

L7 = −CRN
2g6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2 (2k + p+ q)2

p2 (p− q)2 P (k + p)2 P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
− 1

8ε
− 9

8
+

3

8
γE −

3

8
ln
πµ2

m2
D

+O(ε)

]
, (B.58)

L8 =
CRN

2g6

4

∫ ∫

k, p, q∼mD

∫
T (2k + p+ q)2

((p− q)2)2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
− 1

32ε
+

3

32
γE −

3

32
ln
πµ2

m2
D

+O(ε)

]
, (B.59)

L9 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
T (2ki + pi) (2kj + pj)

P (k + p)P (k)2

× (5p2δij − (6− d)pipj + 2q2δij − (6− 4d)qiqj − 2(p · q)δij + (6− 4d)piqj)

(p2)2 (p− q)2 q2

=
CRN

2α3
sT

mD

[
13

64ε
− 19

32
− 39

64
γE +

39

64
ln
πµ2

m2
D

+O(ε)

]
, (B.60)

L10 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
T [(2k + p) · (2k + p+ 2q)]2

(p2)2 P (k + p)P (k + q)P (k + p+ q)P (k)2

=
CRN

2α3
sT

mD

[
− 5

48
+

1

6
ln 2 +O(ε)

]
, (B.61)

L11 =
CRN

2g6

2

∫ ∫

k, p, q∼mD

∫
T [(2k + p) · (−q)] [(2k + p) · (p− q)]

(p2)2 (p− q)2 q2 P (k + p)P (k)2

=
CRN

2α3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B.62)

L12 =
CRN

2g6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2

(p2)2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
1

8
+O(ε)

]
. (B.63)

We also have to include the contribution from the square of the one-loop self-energy in
order to get a gauge invariant result. This contribution can also be put into the form required
by the algorithm:

−CRg
2

2T

∫

k∼mD

(
Π

(1)
mD(0, k)

)2

(k2 +m2
D)

3 = −CRN
2g6

2

∫ ∫

k, p, q∼mD

∫
T (2k + p)2 (2k + q)2

p2 q2 P (k + p)P (k + q)P (k)3

=
CRN

2α3
sT

mD

[
− 5

16
− π2

12
+O(ε)

]
. (B.64)
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The sum of all these terms then gives the O (g5) contribution from the scale mD:

D1

∣∣∣
g5,mD

= −CRN
2α3

sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (B.65)

B.2.2 Coulomb Gauge

In Coulomb gauge we have

L1 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫ −16T

p2 (p− q)2 q2 P (k + p)P (k + q)P (k)2

×
[(
k · q − (k · p)(p · q)

p2

)(
k · p− (k · q)(p · q)

q2

)(
1 +

k · (p+ q)

(p− q)2

)

+

(
k2 − (k · p)2

p2

)(
k · p− (k · q)(p · q)

q2

)(
1− q2

(p− q)2

)

+

(
k · q − (k · p)(p · q)

p2

)(
k2 − (k · q)2

q2

)(
1− p2

(p− q)2

)

− p
2q2 − (p · q)2

(p− q)2

(
k2 − (k · p)2

p2
− (k · q)2

q2
+

(k · p)(k · q)(p · q)

p2 q2

)]

=
CRN

2α3
sT

mD

[
1

8
− π2

24
+O(ε)

]
, (B.66)

L2 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
16T

p2 q2 P (k + p)P (k + q)P (k + p+ q)P (k)2

×
[
k · (k + q)− (k · p)(k · p+ p · q)

p2

] [
k · (k + p)− (k · q)(k · q + p · q)

q2

]

=
CRN

2α3
sT

mD

[
1

8
+

3

4
ln 2− π2

12
+O(ε)

]
, (B.67)

L3 = −3CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
T

p2 q2 P (k + p+ q)P (k)2

[
d− 2 +

(p · q)2

p2 q2

]

=
CRN

2α3
sT

mD

[
− 9

64ε
− 3

64
+

27

64
γE −

27

64
ln
πµ2

m2
D

+O(ε)

]
, (B.68)

L4 =
3CRN

2g6

4

∫ ∫

k, p, q∼mD

∫
4T [k2p2q2 − (k · p)2q2 − (k · q)2p2 + (k · p)(k · q)(p · q)]

(p2)2 (q2)2 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
15

8
− π2

8
+O(ε)

]
, (B.69)

L5 + L6 =
3CRN

2g6

2

∫ ∫

k, p, q∼mD

∫
4T

p2 q2 P (k + p)P (k + p+ q)P (k)2

×
[
k2 − (k · p)2

p2
− (k · q)(k · q + p · q)

q2
+

(k · p)(k · q + p · q)(p · q)

p2q2

]

=
CRN

2α3
sT

mD

[
−3

2
+
π2

4
+O(ε)

]
, (B.70)
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L7 = −CRN
2g6

2

∫ ∫

k, p, q∼mD

∫
16T [k2p2 − (k · p)2] [(k + p)2q2 − (k · q + p · q)2]

(p2)2 (q2)2 P (k + p)2 P (k + p+ q)P (k)2

=
CRN

2α3
sT

mD

[
−9

8
+O(ε)

]
, (B.71)

L8 =
CRN

2g6

4

∫ ∫

k, p, q∼mD

∫
4T [(k + q)2p2 − (k · p+ p · q)2]

(p2)3 P (k + q)P (k + p+ q)P (k)2

=
CRN

2α3
sT

mD

[
− 1

32ε
+

3

32
γE −

3

32
ln
πµ2

m2
D

+O(ε)

]
, (B.72)

L9 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
16T

(p2)2 (p− q)2 q2 P (k + p)P (k)2

×
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k2 − (k · p)2

p2

)(
p2q2 − (p · q)2

)( 1
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+

1

q2

)

+

(
k · q − (k · p)(p · q)

p2

)2(
d− 1− p

2q2 − (p · q)2
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=
CRN

2α3
sT

mD

[
5

32ε
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64
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32
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15

32
ln
πµ2

m2
D

+O(ε)

]
, (B.73)

L10 = −CRN
2g6

4

∫ ∫

k, p, q∼mD

∫
16T [(k2 + k · q)p2 − (k · p)(k · p+ p · q)]

2

(p2)4 P (k + p)P (k + q)P (k + p+ q)P (k)2

=
CRN

2α3
sT

mD

[
− 5

48
+

1

6
ln 2 +O(ε)

]
, (B.74)

L11 =
CRN

2g6

2

∫ ∫

k, p, q∼mD

∫
4T [(k · q)p2 − (k · p)(p · q)]

2

(p2)4 (p− q)2 q2 P (k + p)P (k)2

=
CRN

2α3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B.75)

L12 =
CRN

2g6

2

∫ ∫

k, p, q∼mD

∫
4T [k2p2 − (k · p)2]

(p2)3 P (k + p)P (k + q)P (k)2

=
CRN

2α3
sT

mD

[
1

8
+O(ε)

]
. (B.76)

The square of the one-loop self-energy from the scale mD gives the contribution

−CRg
2

2T

∫

k∼mD

(
Π

(1)
mD(0, k)

)2

(k2 +m2
D)

3 = − CRN
2g6

2

∫ ∫

k, p, q∼mD

∫
16T [k2p2 − (k · p)2] [k2q2 − (k · q)2]

(p2)2 (q2)2 P (k + p)P (k + q)P (k)3

=
N2α3

sT

mD

[
−5

8
− π2

12
+O(ε)

]
, (B.77)

and after summing up all these terms, we again obtain the same result as in Feynman gauge:

D1

∣∣∣
g5,mD

= −CRN
2α3

sT

mD

[
89

48
+
π2

12
− 11

12
ln 2

]
. (B.78)
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Figure B.2: All diagrams relevant for the cancellation of the non-zero modes in the one-loop
spatial gluon self-energy in Coulomb gauge.

There is a subtlety in Coulomb gauge regarding the non-zero modes. In Feynman gauge
all Matsubara frequencies have to be zero, because otherwise the necessary expansions of
the propagators only lead to scaleless or higher order contributions. But in Coulomb gauge
the frequencies do not appear explicitly in the temporal gluon or ghost propagators, the only
dependence on the frequencies is that the Debye mass appears in the temporal gluon propagator
only for the zero mode. So, in principle, the propagators do not have to be expanded and there
is nothing preventing also non-zero frequencies to appear in the Matsubara sums, as long as
they do not appear in spatial gluon propagators.

In most diagrams there is only the zero mode because of the contour integration, but in
diagrams L8, L10, L11, and L12 the momentum of the temporal gluon or ghost loop can have
a non-zero frequency without it entering a spatial gluon propagator. This poses a problem,
because those loops do not depend on the frequency, so the Matsubara sums contain an infinite
sum over a constant, which is divergent and not regulated by dimensional regularization.

However, these sums are canceled by a diagram that we could ignore so far, because it
vanishes for the zero mode. This is the last diagram in Fig. B.2 and the Matsubara frequencies
in the numerator from the vertices exactly cancel the denominator of the spatial gluon after
it has been expanded. Then the sum over all diagrams of Fig. B.2 gives from left to right

g2N
∑

Q

′
∫ [

1

2

4qiqj
(p− q)2q2

− qiqj
(p− q)2q2

− δij
(p− q)2

+
q2

0

(p− q)2

1

q2
0

(
δij −

qiqj
q2

)]
= 0 . (B.79)

We have used the momentum p−q instead of just q in the tadpole loop so that its cancellation
becomes more apparent, and we do not have to consider the higher order expansion terms of
the spatial gluon propagator in the last diagram, because they only contain scaleless integrals.

So even though each diagram contains a divergent series, the sum of all four of them is
finite, because for each particular value of the frequency the sum cancels. In static gauge with
ξ = 0 this problem does not arise, because the temporal gluon and ghost propagators vanish
for non-zero frequencies. Since the last diagram of Fig. B.2 gives no other contribution apart
from canceling the non-zero-frequency contributions of the other diagrams in Coulomb gauge,
the corresponding diagram has not been displayed in Fig. 4.1.

B.2.3 Phase-Space Coulomb Gauge

In phase-space Coulomb gauge there are less diagram types, because temporal gluons only
couple in a three-gluon vertex. These types are shown in Fig. B.3. But because the massive
propagators now can be temporal, electric, or mixed, there are more diagrams in total. How-
ever, it is possible for each diagram type to factorize the massive propagators from the spatial
gluon propagators, so that we can sum over all possibilities for the massive propagators before
multiplying them with the spatial gluons. This sum over all massive propagators is represented
by the double-line propagators in Fig. B.3.
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Figure B.3: All two-loop diagram configurations in phase-space Coulomb gauge. The double-
line propagators can represent either a temporal, an electric, or a mixed propagator. Also the
diagram with two one-loop bubbles is displayed in the bottom-right corner. We will label the
diagrams L̃1, . . . , L̃7 from top left to bottom right.

We have included the one-particle reducible diagram L̃7 in Fig. B.3, which corresponds to
the second order expansion of the resummed propagator. In this case the reexpanded temporal
propagator depends on several different self-energy functions, so it is easier to just calculate
this diagram explicitly.

We will denote the sum over massive propagators by Dm1m2...
αβ (k0,k1,k2, . . . ). The indices

mi correspond to the vector indices at each vertex i, which can then be contracted with the
spatial gluon propagator. The initial momentum of the series of propagators is k0 and the ki
are the incoming momenta at each vertex i. The final and initial indices of the propagator
series are α and β, respectively. We will need temporal indices for most diagrams, but also
mixed indices for the double line loop in diagram L̃5.

We will show the summation over massive propagators explicitly in one case for illustration
and just give the result for the other relevant cases. Figure B.4 shows the double line propagator
with two vertices in terms of temporal, electric, and mixed propagators. By the phase-space
Coulomb gauge Feynman rules this gives

Dm1m2
00 (k0,k1,k2) =−D00(k0 + k1 + k2)Dm2m1(k0 + k1)D00(k0)

+D00(k0 + k1 + k2)Dm20(k0 + k1)Dm10(k0)

+D0m2(k0 + k1 + k2)D0m1(k0 + k1)D00(k0)

−D0m2(k0 + k1 + k2)D00(k0 + k1)Dm10(k0)

=− 1

P (k0 + k1 + k2)

(
δm2m1 −

(k0 + k1)m2(k0 + k1)m1

P (k0 + k1)

)
1

P (k0)

+
1

P (k0 + k1 + k2)

−(k0 + k1)m2

P (k0 + k1)

−(k0)m1

P (k0)

+
(k0 + k1 + k2)m2

P (k0 + k1 + k2)

(k0 + k1)m1

P (k0 + k1)

1

P (k0)

− (k0 + k1 + k2)m2

P (k0 + k1 + k2)

1

P (k0 + k1)

−(k0)m1

P (k0)

=− 1

P (k0 + k1 + k2)

(
δm1m2 −

4(k0 + k1)m2(k0)m1

P (k0 + k1)

)
1

P (k0)
. (B.80)

Here we have used the fact that all vector indices are contracted with gluon propagators that
are proportional to the transverse propagator, which means that all terms (ki)mi cancel in the
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= − + + −

Figure B.4: Explicit expression for a double line propagator with two vertices in terms of
temporal, electric, and mixed propagators.

numerator and can be neglected. The different signs in front of the propagators come from
the two color structure functions in the vertices, which are even or odd depending on whether
the temporal, electric, and spatial fields are attached with the same ordering or the opposite
one compared to the three-field vertex shown in Fig. B.1.

In the same way one can calculate double line propagators with more vertices or different
initial and final indices:

Dm1m2m3
00 (k0,k1,k2,k3)

=
2(k0 + k1 + k2)m3δm2m1

P (k0 + k1 + k2 + k3)P (k0 + k1 + k2)P (k0)
+

2δm3m2(k0)m1

P (k0 + k1 + k2 + k3)P (k0 + k1)P (k0)

− 8(k0 + k1 + k2)m3(k0 + k1)m2(k0)m1

P (k0 + k1 + k2 + k3)P (k0 + k1 + k2)P (k0 + k1)P (k0)
, (B.81)

Dm1m2m3m4
00 (k0,k1,k2,k3,k4)

=
1

P (k0 + k1 + k2 + k3 + k4)

(
δm4m3 −

4(k0 + k1 + k2 + k3)m4(k0 + k1 + k2)m3

P (k0 + k1 + k2 + k3)

)

× 1

P (k0 + k1 + k2)

(
δm2m1 −

4(k0 + k1)m2(k0)m1

P (k0 + k1)

)
1

P (k0)

− 4(k0 + k1 + k2 + k3)m4δm3m2(k0)m1

P (k0 + k1 + k2 + k3 + k4)P (k0 + k1 + k2 + k3)P (k0 + k1)P (k0)
, (B.82)

Dm1
0n (k0,k1) = − 1

P (k0 + k1)

(
δm1n −

2(k0)m1(k0)n
P (k0)

)
. (B.83)

With these we can write the phase-space Coulomb gauge diagrams in a rather compact
form:

L̃1 = −CRN
2g6T

4

∫ ∫

k, p, q∼mD

∫
Dijl

00 (k,p, q − p,−q)Dii′(p)Djj′(q − p)Dll′(−q)

× [δi′j′(2p− q)l′ + δj′l′(2q − p)i′ − δl′i′(p+ q)j′ ]

=
CRN

2α3
sT

mD

[
1

8
− π2

24
+O(ε)

]
, (B.84)

L̃2 = −CRN
2g6T

4

∫ ∫

k, p, q∼mD

∫
Diji′j′

00 (k,p, q,−p,−q)Dii′(p)Djj′(q)

=
CRN

2α3
sT

mD

[
− 3

64ε
+

15

64
+

9

64
γE −

π2

24
+

3

4
ln 2− 9

64
ln
πµ2

m2
D

+O(ε)

]
, (B.85)
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L̃3 = −CRN
2g6T

2

∫ ∫

k, p, q∼mD

∫
Dijj′i′

00 (k,p, q,−q,−p)Dii′(p)Djj′(q)

=
CRN

2α3
sT

mD

[
− 3

32ε
− 69

32
+

9

32
γE +

π2

6
− 9

32
ln
πµ2

m2
D

+O(ε)

]
, (B.86)

L̃4 = −CRN
2g6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)
2

(p− q)2q2

×
[(
p2q2 − (p · q)2

)( 1

q2
+

1

(p− q)2

)
δi′j′ +

(
d− 1− p

2q2 − (p · q)2

(p− q)2q2

)
qi′qj′

]

=
CRN

2α3
sT

mD

[
5

32ε
− 43

64
− 15

32
γE +

15

32
ln
πµ2

m2
D

+O(ε)

]
, (B.87)

L̃5 = −CRN
2g6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)Dj′

0n(k + q,p)δi′n

=
CRN

2α3
sT

mD

[
− 1

32ε
+

1

48
+

3

32
γE +

1

6
ln 2− 3

32
ln
πµ2

m2
D

+O(ε)

]
, (B.88)

L̃6 = −CRN
2g6T

2

∫ ∫

k, p, q∼mD

∫
Dij

00(k,p,−p)Dii′(p)Djj′(−p)
qi′qj′

(p− q)2q2

=
CRN

2α3
sT

mD

[
1

64ε
− 1

32
− 3

64
γE +

3

64
ln
πµ2

m2
D

+O(ε)

]
, (B.89)

L̃7 = −CRN
2g6T

2

∫ ∫

k, p, q∼mD

∫
Dii′jj′

00 (k,p,−p, q,−q)Dii′(p)Djj′(q)

=
CRN

2α3
sT

mD

[
5

8
− π2

6
+O(ε)

]
. (B.90)

We have changed the momenta in the double line loop of diagram L̃5 from p + q and q to
k+ p+ q and k+ q by a shift of the integration momentum q, such that the integrals are all
of the form required by the algorithm of appendix B.4.

We see that the sum of these integrals gives the same result as in standard Coulomb
gauge and in Feynman gauge. But we can make the correspondence between phase-space and
standard Coulomb gauge even clearer. The propagator of the electric field [cf. Eq. (B.44)]
contains a part that is just a Kronecker delta, which gives exactly the same contribution as
if the electric propagator were contracted to a point and replaced by a four-gluon vertex in
standard Coulomb gauge. The second part of the electric propagator contains components of
the momentum in the numerator and a massive denominator. This term has the same form
as a corresponding three-gluon vertex in Coulomb gauge, where the momentum components
in the numerator come from the vertex and not the propagator. The same applies for mixed
temporal-electric propagators.

The correspondence is not one-to-one, for example diagrams L̃2 and L̃3 both give diagram
L3 in standard Coulomb gauge when we replace the second and fourth double-line propagator
by a Kronecker delta. But if we look at the color coefficients CRN

2/2 of L̃2 and CRN
2 of L̃3,

we see that they add up exactly to the color coefficient 3CRN
2/2 of L3. So ultimately it is

only a matter of combinatorics to see that phase-space and standard Coulomb gauge generate
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Figure B.5: Additional diagrams carrying the scale mM at O (g6).

exactly the same integrals.
A simpler check of this statement is to compare certain classes of diagrams between phase-

space and standard Coulomb gauge, which have unique configurations in both gauge formula-
tions. In our case, L1 and L̃1 are the only diagrams with a vertex of three spatial gluons, and
diagrams L8, . . . , L12, and L̃4, . . . , L̃6 are the only ones with a one-loop self-energy in a spatial
propagator. So accordingly, we find the equalities

L̃1 = L1 , (B.91)

L̃2 + L̃3 + L̃7 = L2 + L3 + L4 + L5 + L6 + L7 + L13 , (B.92)

L̃4 + L̃5 + L̃6 = L8 + L9 + L10 + L11 + L12 , (B.93)

where we used L13 to denote the contribution from the square of the one-loop self-energy at
the scale mD.

The cancellation of the non-zero frequency contributions is a bit simpler in this formulation
than in standard Coulomb gauge. The double-line loop in diagram L̃5 of Fig. B.3 gives rise to
two contributions, one where the loop contains a temporal and an electric propagator and one
where both propagators are mixed temporal-electric. The first contribution is unproblematic,
since the electric propagator for non-zero frequencies contains the denominator q2

0 + q2, for
which the Matsubara sum is finite. The second contribution exactly cancels the ghost loop
diagram.

B.3 Magnetic Scale Cancellation at O
(
g6
)

We will list here all contributions at O (g6) that involve the scale mM . At O (g5) those were
one-loop diagrams where the spatial gluon carries a momentum of order mM and the temporal
gluon carries a momentum of order mD (see Sec. 4.3.3). At O (g6) it is the same principle:
two-loop diagrams with all propagators carrying momenta of order mD except for one spatial
gluon with a momentum of order mM . In three-gluon vertices only the momenta of order mD

are to be kept in the numerator.
We refer again to Fig. 4.1, which essentially gives all relevant diagrams for this calculation.

In diagrams L1, . . . , L7 any of the spatial gluons can be the one that carries the scale mM , in
diagram L9 it is only the gluons in the subloop. So L1 contains three and L2, . . . , L7, L9 each
contain two different contributions. In addition, there are two new diagrams not displayed in
Fig. 4.1, which we give in Fig. B.5. They correspond to the diagrams L7 and L9 from Fig. 4.1
with the subloop replaced by a tadpole, so we will include the contributions of the left and
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right diagram in Fig. B.5 in the following expressions for L7 and L9, respectively. Diagrams
L8, L10, and L12 do not contribute, because if the spatial gluons were of the scale mM , then
these would correspond to the one-loop diagram with a resummed spatial propagator, which
we have already considered in the O (g5) calculation. Diagram L11 with one ghost propagator
of the scale mM does not contribute, because from the gluon-ghost vertices there is a factor of
the loop momentum squared in the numerator, so this diagram is of O (g8).

We will do this calculation in Feynman gauge, because the expressions are somewhat
shorter. We will label the momenta such that k, p ∼ mD and q ∼ mM . Since we have to
expand everything in q/mD, we can just ignore q in all other propagators at leading order.
This simplifies the q integration, which now contains only one propagator:

∫

q∼mM
Dij(0, q) =

δij
d

∫

q∼mM
Dkk(0, q) . (B.94)

The Kronecker delta can then be used to contract all indices in the k and p integrations, which
can be carried out by the same methods as in the O (g5) calculation.

The calculation of the different diagrams gives

L1 = −CRN2g6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4 (k2p2 − (k · p)2)

(p2)2 P (k + p)P (k)3
+

2 (k2p2 − (k · p)2)

(p2)2 P (k + p)2 P (k)2

)
Dii(0, q)

d

= −2π

3

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) , (B.95)

L2 = −CRN2g6T

∫ ∫

k, p∼mD, q∼qM

∫
2(2k + p)2 (k2 + k · p)

p2 P (k + p)2 P (k)3

Dii(0, q)

d

= −2π

3

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) , (B.96)

L3 = −3

2
CRN

2g6T

∫ ∫

k, p∼mD, q∼qM

∫
d

p2 P (k + p)P (k)2

Dii(0, q)

d

= −3π

2

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) , (B.97)

L4 = CRN
2g6T

∫ ∫

k, p∼mD, q∼qM

∫
3 (2k2 + k · p)

p2 P (k + p)P (k)3

Dii(0, q)

d

= π
CRN

2α3
sT

m2
D

∫

q∼mM

Dii(0, q) , (B.98)

L5 + L6 = CRN
2g6T

∫ ∫

k, p∼mD, q∼qM

∫ (
3(2k + p) · (k + p)

p2 P (k + p)2 P (k)2
+

3 (2k2 + k · p)

p2 P (k + p)P (k)3

)
Dii(0, q)

d

= 2π
CRN

2α3
sT

m2
D

∫

q∼mM

Dii(0, q) , (B.99)
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L7 = −1

2
CRN

2g6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4(2k + p)2(k + p)2

p2 P (k + p)3 P (k)2
+

4k2(2k + p)2

p2 P (k + p)P (k)4

− d(2k + p)2

p2 P (k + p)2 P (k)2

)
Dii(0, q)

d

= −5π

9

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) , (B.100)

L9 = −1

2
CRN

2g6T

∫ ∫

k, p∼mD, q∼qM

∫ (
20k2p2 − 4(6− d)(k · p)2 − 4(1− d)(k · p)2p2 − (1− d) (p2)

2

(p2)3 P (k + p)P (k)2

− (d− 1)(2k + p)2

(p2)2 P (k + p)P (k)2

)
Dii(0, q)

d

=
π

2

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) . (B.101)

From the square of the one-loop self-energy we have

− CRg
2

2T

∫

k∼mD

Π
(1)
mD(0, k)Π

(1)
mM (0, k)

(k2 +m2
D)

3

= −CRN2g6T

∫ ∫

k, p∼mD, q∼qM

∫ (
4k2(2k + p)2

p2 P (k + p)P (k)4
− d (2k + p)2

p2 P (k + p)P (k)3

)
Dii(0, q)

d

= −π
9

CRN
2α3

sT

m2
D

∫

q∼mM

Dii(0, q) . (B.102)

The sum of all these terms gives zero.

B.4 Automatic Reduction to Master Integrals

The method of how to solve the three-loop integrals appearing in this calculation has been
described in [165]. Minimal modifications are required in order to account for the Euclidean
metric. All integrals can be put in the two following forms:

BM(i1, i2, i3, i4, i5, i6) =

∫

k

∫

p

∫

q

1

(p2)i1((p− q)2)i2(q2)i3P (k + p)i4P (k + q)i5P (k)i6
,

(B.103)

BN(i1, i2, i3, i4, i5, i6) =

∫

k

∫

p

∫

q

1

(p2)i1(q2)i2P (k + p)i3P (k + q)i4P (k + p+ q)i5P (k)i6
,

(B.104)

with P (k) = k2 +m2
D. In this framework, the exponents i1, . . . , i6 are integers.
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By relabeling or shifting the integration variables k, p, and q several identities between
the different BM and BN can be established:

BM(i1, i2, i3, i4, i5, i6) = BM(i2, i1, i3, i4, i6, i5)

= BM(i3, i1, i2, i6, i4, i5) = BM(i3, i2, i1, i5, i4, i6)

= BM(i2, i3, i1, i5, i6, i4) = BM(i1, i3, i2, i6, i5, i4) , (B.105)

BN(i1, i2, i3, i4, i5, i6) = BN(i1, i2, i5, i6, i3, i4)

= BN(i1, i2, i4, i3, i6, i5) = BN(i1, i2, i6, i5, i4, i3)

= BN(i2, i1, i4, i3, i5, i6) = BN(i2, i1, i5, i6, i4, i3)

= BN(i2, i1, i3, i4, i6, i5) = BN(i2, i1, i6, i5, i3, i4) . (B.106)

In addition, any BN with an index i3, . . . , i6 zero or negative can be turned into a BM . The
obvious relation is

BN(i1, i2, i3, i4, 0, i6) = BM(i1, 0, i2, i3, i4, i6) . (B.107)

If i5 is negative, one can expand the numerator after substituting

(k+ p+ q)2 +m2
D = p2− (p− q)2 + q2 +

(
(k + p)2 +m2

D

)
+
(
(k + q)2 +m2

D

)
−
(
k2 +m2

D

)
.

(B.108)
All these terms appear to some power in the denominator, so they can be canceled to give
proper BM integrals. If any of the other indices i3, . . . , i6 is zero or negative, then one can use
the identities above to shift that to the fifth position and then use the relation for i5 ≤ 0.

Other identities can be found by acting with ∇i ·kj on the integrand, where ki and kj can
be any of the three loop momenta. The total expression has to be zero, since it is an integral
over a total derivative, but calculating the derivative explicitly gives a number of other BM

and BN integrals. These new identities include integrals with changed indices i1, . . . , i6, while
the identities above just shift them:

(d− 2i1 − i2 − i4)BM (i1, i2, i3, i4, i5, i6)

= i2BM (i1 − 1, i2 + 1, i3, i4, i5, i6)− i2BM (i1, i2 + 1, i3 − 1, i4, i5, i6)

+ i4BM (i1 − 1, i2, i3, i4 + 1, i5, i6)− i4BM (i1, i2, i3, i4 + 1, i5, i6 − 1) , (B.109)

(d− i1 − i3 − 2i6)BM (i1, i2, i3, i4, i5, i6) = −2i6m
2
DBM (i1, i2, i3, i4, i5, i6 + 1)

+ i1BM (i1 + 1, i2, i3, i4, i5, i6 − 1)− i1BM (i1 + 1, i2, i3, i4 − 1, i5, i6)

+ i3BM (i1, i2, i3 + 1, i4, i5, i6 − 1)− i3BM (i1, i2, i3 + 1, i4, i5 − 1, i6) , (B.110)

(d− i1 − 2i4 − i6)BN (i1, i2, i3, i4, i5, i6)

= i1BN (i1 + 1, i2, i3, i4 − 1, i5, i6)− i1BN (i1 + 1, i2, i3, i4, i5 − 1, i6)

+ i6BN (i1, i2, i3, i4 − 1, i5, i6 + 1)− i6BN (i1, i2 − 1, i3, i4, i5, i6 + 1)

− 2i4m
2
DBN (i1, i2, i3, i4 + 1, i5, i6)− 2i6m

2
DBN (i1, i2, i3, i4, i5, i6 + 1) , (B.111)(

i1 + i2 + i3 + i4 + i5 + i6 −
3d

2

)
BN (i1, i2, i3, i4, i5, i6)

= i3m
2
DBN (i1, i2, i3 + 1, i4, i5, i6) + i4m

2
DBN (i1, i2, i3, i4 + 1, i5, i6)

+ i5m
2
DBN (i1, i2, i3, i4, i5 + 1, i6) + i6m

2
DBN (i1, i2, i3, i4, i5, i6 + 1) . (B.112)

There are 16 further identities, which can be obtained from these four by combining them with
the index shifts given above.
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By repeated use of these identities every BN integral can be reduced to BN(0, 0, 1, 1, 1, 1)
plus a bunch of BM integrals. In the same way, every BM integral can be reduced down
to BM(0, 0, 0, 1, 1, 1) plus BM integrals where at least one of the indices i4, . . . , i6 is zero or
negative, for which there exists a general solution. So all integrals appearing in our calculation
can be put into the form of a few master integrals. The needed results for those can be found
in [37, 165, 166].1

B.5 Calculation of the Master Integrals

For the sake of completeness, we attach here how the master integrals, whose results are given
in [37, 165, 166], can be calculated. The simplest one is BM(0, 0, 0, 1, 1, 1), because in this case
all three loop integrations decouple by shifting p→ p− k and q → q − k:

BM(0, 0, 0, 1, 1, 1) =

(∫

k

1

k2 +m2
D

)3

=
Γ
(
1− d

2

)3

(4π)
3d
2

m3d−6
D . (B.113)

For the other BM integrals instead of a closed expression we will rather give another al-
gorithm for their solution. We will assume that the zero or negative index is i4, because if
it is i5 or i6 instead then one can exchange those with i4 by one of the identities. After also
performing the shift p → p − k and q → q − k we can integrate over p without problems,
because it no longer appears in a massive denominator:

∫

p

(p2 +m2
D)
−i4

((p− k)2)i1 ((p− q)2)i2

=
Γ(i1 + i2)

Γ(i1)Γ(i2)

∫ 1

0

dx

∫

p

(p2 +m2
D)−i4xi1−1(1− x)i2−1

(p2 − 2xp · k − 2(1− x)p · q + xk2 + (1− x)q2)i1+i2

=
Γ(i1 + i2)

Γ(i1)Γ(i2)

∫ 1

0

dx

∫

p

((p+ xk + (1− x)q)2 +m2
D)
−i4 xi1−1(1− x)i2−1

(p2 + x(1− x)(k − q)2)i1+i2
. (B.114)

Now we have to expand the numerator, which we can do because −i4 is a non-negative integer,
and then use the identity
∫

p

(p · q)nf
(
p2
)

=
2

(4π)
d−1
2 Γ

(
d−1

2

)
∫ ∞

−∞

dp‖
2π

∫ ∞

0

dp⊥ p
d−2
⊥ (p‖q)

nf
(
p2
‖ + p2

⊥
)

=
4

(4π)
d+1
2 Γ

(
d−1

2

)
∫ ∞

0

dp

∫ 1

−1

dx
p√

1− x2

(√
1− x2 p

)d−2

(xpq)nf
(
p2
)

=
4

(4π)
d+1
2 Γ

(
d−1

2

)
∫ ∞

0

dp

∫ 1

0

dx (1− x)
d−3
2 x

n−1
2 pd−1+nqnf

(
p2
)

=
Γ
(
n+1

2

)
Γ
(
d
2

)
√
π Γ
(
d+n

2

)
∫

p

pnqnf
(
p2
)

=
Γ(n)Γ

(
d
2

)

2n−1Γ
(
n
2

)
Γ
(
d+n

2

)
∫

p

pnqnf
(
p2
)
, (B.115)

if n is even, or 0 if it is odd. Then the expanded numerator consists only of a sum of powers
of p2, m2

D, and (xk + (1− x)q)2, the last of which can be reexpressed as

(xk + (1− x)q)2 = x(k2 +m2
D)− x(1− x)(k − q)2 + (1− x)(q2 +m2

D)−m2
D . (B.116)

1As a check that our programs are running correctly we have calculated all the integrals given in the
appendix of [37] and reproduced their results.
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The p and x integrations now all have the form

∫ 1

0

dx

∫

p

xα−1(1− x)β−1p2γ

(p2 + x(1− x)(k − q)2)δ

=
Γ
(
δ − γ − d

2

)
Γ
(
d
2

+ γ
)

(4π)
d
2 Γ(δ)Γ

(
d
2

)
∫ 1

0

dx
xα+γ+ d

2
−δ−1(1− x)β+γ+ d

2
−δ−1

((k − q)2)δ−γ−
d
2

=
Γ
(
δ − γ − d

2

)
Γ
(
d
2

+ γ
)

Γ
(
α + γ + d

2
− δ
)

Γ
(
β + γ + d

2
− δ
)
µ3−d

(4π)
d
2 Γ(δ)Γ

(
d
2

)
Γ(α + β + 2γ + d− 2δ) ((k − q)2)δ−γ−

d
2

. (B.117)

We see that the remaining loop momenta k and q appear only in the combination (k−q)2

in the denominator, which can be combined with the term ((k − q)2)
i3 from the original

BM integral. The numerator has already been expressed through terms appearing in the
denominator, which can also be combined so that we have a sum of integrals of the form

∫

k

∫

q

1

((k − q)2)α (k2 +mD)β(q2 +m2
D)γ

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx

∫

k

∫

q

(1− x)α−1xβ−1

(k2 + x(1− x)q2 + xm2
D)α+β(q2 +m2

D)γ

=
Γ
(
α + β − d

2

)

(4π)
d
2 Γ(α)Γ(β)

∫

q

(1− x)α−1x
d
2
−α−1µ3−d

((1− x)q2 +m2
D)α+β− d

2 (q2 +m2
D)γ

=
Γ
(
α + β + γ − d

2

)

(4π)
d
2 Γ(α)Γ(β)Γ(γ)

∫ 1

0

dx

∫ 1

0

dy

∫

q

(1− x)α−1x
d
2
−α−1(1− y)γ−1yα+β− d

2
−1µ3−d

((1− xy)q2 +m2
D)

α+β+γ− d
2

=
Γ(α + β + γ − d)

(4π)dΓ(α)Γ(β)Γ(γ)

∫ 1

0

dx

∫ 1

0

dy
(1− x)α−1x

d
2
−α−1(1− y)γ−1yα+β− d

2
−1µ6−2d

(1− xy)
d
2m2α+2β+2γ−2d

D

. (B.118)

If we now perform the substitution

z =
(1− y)x

1− xy , 1− z =
1− x
1− xy , dz =

1− y
(1− xy)2

dx , (B.119)

where for x from 0 to 1 also z ranges from 0 to 1 independently of y, then the two Feynman
parameter integrations decouple:

∫

k

∫

q

1

((k − q)2)α (k2 +mD)β(q2 +m2
D)γ

=
Γ(α + β + γ − d)

(4π)dΓ(α)Γ(β)Γ(γ)

∫ 1

0

dy

∫ 1

0

dz
(1− z)α−1z

d
2
−α−1(1− y)α+γ− d

2
−1yα+β− d

2
−1µ6−2d

m2α+2β+2γ−2d
D

=
Γ(α + β + γ − d)Γ

(
d
2
− α

)
Γ
(
α + β − d

2

)
Γ
(
α + γ − d

2

)
µ6−2d

(4π)dΓ(β)Γ(γ)Γ
(
d
2

)
Γ(2α + β + γ − d)m2α+2β+2γ−2d

D

. (B.120)

In this way all BM integrals with a zero or negative index i4, . . . , i6 can be expressed through
gamma functions.

The final missing integral BN(0, 0, 1, 1, 1, 1) is more complicated and we are not aware of
a solution for general d, so we will show how to calculate it to O(ε0). In fact, it is easier to
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calculate BN(0, 0, 2, 1, 1, 2), because unlike BN(0, 0, 1, 1, 1, 1) this integral is finite. Through
the algorithm described above we get the relation

BN(0, 0, 2, 1, 1, 2) =
(3d− 8)(3d− 10)(d− 3)

64(d− 4)m4
BN(0, 0, 1, 1, 1, 1) +

(d− 2)3Γ
(
1− d

2

)3
µ3d−9

32(d− 4)(4π)
3d
2 m3d−6

D

.

(B.121)
We see that, because of the coefficient (d − 3), in order to get BN(0, 0, 1, 1, 1, 1) to O(ε0) we
need to calculate BN(0, 0, 2, 1, 1, 2) to O(ε1). After performing the shift p→ p− k the p and
k integrations are identical:

BN(0, 0, 2, 1, 1, 2) =

∫

k

∫

p

∫

q

1

(p2 +m2
D)

2
((k + q)2 +m2

D) ((p+ q)2 +m2
D) (k2 +m2

D)
2

=

∫

q

(∫

k

1

((k + q)2 +m2
D) (k2 +m2

D)
2

)2

=

∫

q

(∫ 1

0

dx

∫

k

2x

(k2 + x(1− x)q2 +m2
D)

3

)2

=

∫

q

(
Γ
(
3− d

2

)

(4π)
d
2

∫ 1

0

dx
xµ3−d

(x(1− x)q2 +m2
D)

3− d
2

)2

=

∫ ∞

0

dq
2qd−1µ3−d

(4π)
d
2 Γ
(
d
2

)
(

1

8πmD (q2 + 4m2
D)

(
1− γE ε+ ln

µ2π

m2
D

ε

)
+

tan−1 q
2mD

2πq (q2 + 4m2
D)

ε

)2

=

∫ ∞

0

dq
q2

128π4m2
D (q2 +m2

D)
2

(
1 + 2ε− 3γE ε+ ln

µ6π3

m4
Dq

2
ε+

8mD

q
tan−1 q

2mD

ε

)

=
1

16(4π)3m3
D

(
1 + 2ε− 3γE ε− 2 ln 2 ε+ 3 ln

µ2π

m2
D

ε

)
+O

(
ε2
)
. (B.122)

From these two results we obtain

BN(0, 0, 1, 1, 1, 1) =
mD

(4π)3

(
−1

ε
− 8 + 3γE + 4 ln 2− 3 ln

µ2π

m2
D

)
+O(ε) . (B.123)

B.6 Color Coefficients of the Unconnected Three-Gluon

Diagrams

All unconnected three-gluon diagrams are given in Fig. B.6. The standard color coefficients
are labeled Cij according to the caption, while the coefficients that appear in the logarithm

are called C̃ij. These indices bear no relation to and should not be confused with the color
indices used for the coefficients of the uncontracted diagrams appearing in the calculation for
the Polyakov loop correlator.

The most straightforward prescription to calculate the coefficients in the logarithm comes
from the replica trick [144, 145]. First one attaches an index from 1 to n to each gluon, where
n is some integer, then rearranges each diagram such that gluons with a higher index are
moved along the Polyakov loop contour to the right of gluons with a lower index, while gluons
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Figure B.6: All unconnected three-gluon diagrams. The corresponding color coefficients are
labeled Cij, where i denotes the row and j the column in which the diagram is listed.

with the same index keep their current configuration. After summing over all combinations of
indices one expands in n and takes the coefficient of the linear term.

Here we have three different possibilities: either all three gluons have a different index,
two have the same but the third index is different, or all three indices are the same. It is
then only a matter of combinatorics to count the number of possible index combinations. For
three different indices there are n(n− 1)(n− 2) possibilities, while when all three are the same
there are n. When only two are the same there are n(n − 1) index combinations and 3 ways
to choose the one gluon that has a different index. Rearranging the gluons according to their
index number always gives C11 = C3

R for three different indices and the standard (i.e., QCD)
color coefficient when all indices are the same. When only two are the same, then in half of the
index combinations the single index will be smaller then the double index and larger for the
other half, but in both cases the color coefficient is the same, so we do not have to differentiate
between them. The 3 different ways to choose the single index gluon may or may not give
different color coefficients after rearranging the gluons according to their indices.

The standard color factors are

C11 = C3
R , C21 = C2

R

(
CR −

1

2
N

)
, C31 = C3

R ,

C12 = C2
R

(
CR −

1

2
N

)
, C22 = CR

(
CR −

1

2
N

)2

, C32 = C2
R

(
CR −

1

2
N

)
,

C13 = C3
R , C23 = CR

(
CR −

1

2
N

)
(CR −N) , C33 = CR

(
CR −

1

2
N

)2

,

C14 = C2
R

(
CR −

1

2
N

)
, C24 = CR

(
CR −

1

2
N

)2

, C34 = C2
R

(
CR −

1

2
N

)
,

C15 = C3
R , C25 = C2

R

(
CR −

1

2
N

)
, C35 = C3

R . (B.124)
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Then we can calculate the coefficients in the logarithm:

C̃11 = nC11 + 3n(n− 1)C11 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (B.125)

C̃12 = nC12 + 2n(n− 1)C11 + n(n− 1)C12 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (B.126)

C̃13 = nC13 + 2n(n− 1)C11 + n(n− 1)C13 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (B.127)

C̃14 = nC14 + n(n− 1)C11 + n(n− 1)C12 + n(n− 1)C13 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C11 − C12 − C13 + C14 = 0 , (B.128)

C̃15 = nC15 + n(n− 1)C11 + 2n(n− 1)C13 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C11 − 2C13 + C15 = 0 , (B.129)

C̃21 = nC21 + 2n(n− 1)C11 + n(n− 1)C21 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (B.130)

C̃22 = nC22 + 2n(n− 1)C21 + n(n− 1)C11 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C22 − 2C21 + C11 =
1

4
CRN

2 , (B.131)

C̃23 = nC23 + 3n(n− 1)C21 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C23 − 3C21 + 2C11 =
1

2
CRN

2 , (B.132)

C̃24 = nC24 + 2n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C24 − 2C21 − C31 + 2C11 =
1

4
CRN

2 , (B.133)

C̃25 = nC25 + n(n− 1)C21 + 2n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C25 − C21 − 2C31 + 2C11 = 0 , (B.134)

C̃31 = nC31 + 2n(n− 1)C11 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= 0 , (B.135)

C̃32 = nC32 + n(n− 1)C11 + n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C32 − C21 − C31 + C11 = 0 , (B.136)

C̃33 = nC33 + 2n(n− 1)C21 + n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C33 − 2C21 − C31 + 2C11 =
1

4
CRN

2 , (B.137)

C̃34 = nC34 + n(n− 1)C21 + 2n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C34 − C21 − 2C31 + 2C11 = 0 , (B.138)

C̃35 = nC35 + 3n(n− 1)C31 + n(n− 1)(n− 2)C11

∣∣∣
O(n)

= C35 − 3C31 + 2C11 = 0 . (B.139)

Here we see the general property confirmed that only two-particle irreducible diagrams
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appear in the logarithm. This means that the color coefficient in the logarithm vanishes for
any diagram where one can cut the (closed) Polyakov loop contour in two points such that
there are no gluons connecting from one segment of the contour to the other. These are the
so-called two-particle reducible diagrams, the diagrams where this is not possible are called
two-particle irreducible. Here the considerable reduction in the number of diagrams is even
more apparent than in the two-gluon diagrams: out of 15 unconnected three-gluon diagrams
only 4 survive in the logarithm.

We also see that all higher power terms of CR are canceled; only the linear term remains
and only the two-particle irreducible diagrams have a linear term. This is in accordance with
the theorem shown in [145] that the color coefficients in the logarithm all correspond to those
of fully connected diagrams. The coefficients of fully connected diagrams depend only linearly
on CR or the C

(n)
R . So the only terms that can break Casimir scaling come from the C

(n)
R , see

Eq. (4.45).

B.7 Unexpanded Result for DI

In Ref. [125], an unexpanded result for the contributions to diagram DI from the scales 1/r
and πT has been presented. This result is also valid when 1/r ∼ πT , and when it is expanded
for small r, then one obtains the expression given in the main section. We add the contribution
from the scale mD, for which we still assume πT � mD.

DI =
αs

rT

{
1 +

αs

4π

[
11N

3
+

2nf
3

(1− 4 ln 2) + 2β0

(
γE + log

µ

4πT

)]}

+Nα2
s

(
− 1

24r2T 2
+

1

rπT

∫ ∞

1

dx

(
−1 +

1

x2
− 1

2x4

)
log (1− exp [−4rπTx])

)

+ α2
snf

1

2rπT

∫ ∞

1

dx

(
1

x2
− 1

x4

)
log

1 + exp [−2rπTx]

1− exp [−2rπTx]
+

(
2N

3
+
nf
3

)
α2

srπT

− αsmD

T
+ 2Nα2

s [1− γE − ln 2− ln rmD] +
(N2 − 1)nf

4N

α3
sT

mD

− 3α2
smD

8πT

[
3N +

2

3
nf (1− 4 ln 2) + 2β0

(
γE + ln

µ

4πT

)]

+
N2α3

sT

mD

[
89

24
+
π2

6
− 11

6
ln 2

]
− αsr

2m3
D

6T
+O

(
α3

s

)
. (B.140)

We see that here the natural scale for αs seems to be 4πT also for the leading 1/rT term,
which makes sense considering that this result is appropriate for 1/r ∼ πT . For 1/r � πT
the expansion of the integrals yields some nonanalytic terms that cancel the temperature
dependence in the logarithms of the first line and change the natural scale for αs back to 1/r.

In that paper, also a result valid for r ∼ mD was given. However, this is only available at
O (g4), and it is not possible to infer the next order from the Polyakov loop at O (g5) like for
r � mD (because then it is not allowed to expand exp[ik · r] in the scale mD contribution to
DI), so we do not include this result here in order to consistently work at O (g5).
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B.8 The H-Shaped Diagrams

Using the same labels for the gluon momenta as in the main section, the O (α3
s ) contribution

from the H-shaped diagrams in Eq. (4.102) is given by:

DH =
(ig)6

2T

∫

k

∫

p

∫

q

−4 ((k · p)q2 − (k · q)(p · q)) eik·reip·r

k2(k − q)2 (q2)2 (p+ q)2p2
. (B.141)

We shift the momenta k → k − p and q → q − p. Then the integral contains only one
momentum in the exponential:

DH =
2g6

T

∫

k

∫

p

∫

q

(k − p)i (δij(q − p)2 − (q − p)i(q − p)j) pjeik·r
(k − p)2(k − q)2 ((q − p)2)2 q2p2

. (B.142)

The p and q integrations can be put into the form of general k-dependent integrals:

Ik(n1, n2, n3, n4, n5) ≡
∫

p

∫

q

1

((k − p)2)n1 ((k − q)2)n2 ((p− q)2)n3 (p2)n4 (q2)n5
. (B.143)

Through redefinitions of the integration momenta one can show the following identities:

Ik(n1, n2, n3, n4, n5) = Ik(n2, n1, n3, n5, n4) = Ik(n4, n5, n3, n1, n2) = Ik(n5, n4, n3, n2, n1) .
(B.144)

Reexpressing the numerator through terms that can be canceled against terms in the denom-
inator and using these identities, we get:

DH =
g6

T

∫

k

eik·r
[
Ik(1, 0, 2, 1, 0)− Ik(1, 0, 2, 0, 1) +

1

2
Ik(1, 1, 0, 1, 1)

− 2Ik(1, 0, 1, 1, 1) + k2Ik(1, 1, 1, 1, 1)

]
. (B.145)

In the first integral of this expression, the q integration is scaleless, so Ik(1, 0, 2, 1, 0) = 0.
The other integrals except for the last can all be calculated with standard methods. In order
to simplify the last integral, we can use integration-by-parts relations. In order to obtain these,
we insert ∇p · p or ∇p · q into the general expression for Ik(n1, n2, n3, n4, n5). Because it is
an integral over a total derivative, each of these expressions vanishes, but if one calculates the
derivatives explicitly, then one can also express it through other integrals of this type. Other
relations can also be obtained, but in this case those two are sufficient.

0 =

∫

p

∫

q

(∇p · p)
1

((k − p)2)n1 ((k − q)2)n2 ((p− q)2)n3 (p2)n4 (q2)n5

= − n1Ik(n1 + 1, n2, n3, n4 − 1, n5) + n1k
2Ik(n1 + 1, n2, n3, n4, n5)

− n3Ik(n1, n2, n3 + 1, n4 − 1, n5) + n3Ik(n1, n2, n3 + 1, n4, n5 − 1)

+ (d− n1 − n3 − 2n4)Ik(n1, n2, n3, n4, n5) , (B.146)

0 =

∫

p

∫

q

(∇p · q)
1

((k − p)2)n1 ((k − q)2)n2 ((p− q)2)n3 (p2)n4 (q2)n5

= − n1Ik(n1 + 1, n2 − 1, n3, n4, n5) + n1Ik(n1 + 1, n2, n3 − 1, n4, n5)

− n1Ik(n1 + 1, n2, n3, n4 − 1, n5) + n1k
2Ik(n1 + 1, n2, n3, n4, n5)

− n3Ik(n1, n2, n3 + 1, n4 − 1, n5) + n3Ik(n1, n2, n3 + 1, n4, n5 − 1)

+ n4Ik(n1, n2, n3 − 1, n4 + 1, n5)− n4Ik(n1, n2, n3, n4 + 1, n5 − 1)

+ (n3 − n4)Ik(n1, n2, n3, n4, n5) . (B.147)

180



In both expressions one can write Ik(n1, n2, n3, n4, n5) in terms of integrals where one index
is raised and one is lowered. The only exception to this are the two integrals with a k2

coefficient. But if we subtract the second relation from the first, then this term vanishes:

0 = (d− n1 − 2n3 − n4)Ik(n1, n2, n3, n4, n5)

+ n1Ik(n1 + 1, n2 − 1, n3, n4, n5)− n1Ik(n1 + 1, n2, n3 − 1, n4, n5)

− n4Ik(n1, n2, n3 − 1, n4 + 1, n5) + n4Ik(n1, n2, n3, n4 + 1, n5 − 1) . (B.148)

This relation can be used repeatedly to lower either the index n2, n3, or n5 to 0, at which
point the integral is straightforward to calculate. In the case of Ik(1, 1, 1, 1, 1) one iteration is
enough:

Ik(1, 1, 1, 1, 1) =
2

4− dIk(2, 0, 1, 1, 1)− 2

4− dIk(1, 2, 0, 1, 1) , (B.149)

where we have used the symmetry relations again.

We now give the results of the integrals when one index is 0. Because of the symmetry
relations we only need to consider two cases:

Ik(n1, 0, n3, n4, n5) =

∫

p

1

((k − p)2)n1 (p2)n4
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q
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=
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× Γ
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(B.150)

Ik(n1, n2, 0, n4, n5) =

∫

p

1
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(4π)d
Γ
(
d
2
− n1

)
Γ
(
d
2
− n2

)
Γ
(
d
2
− n4

)
Γ
(
d
2
− n5

)

Γ(n1)Γ(n2)Γ(n4)Γ(n5)

× Γ
(
n1 + n4 − d

2

)
Γ
(
n2 + n5 − d

2

)

Γ(d− n1 − n4)Γ(d− n2 − n5)
. (B.151)

Then we have:

DH =
g6

T

∫

k

eik·r
[
−Ik(1, 0, 2, 0, 1) +

1

2
Ik(1, 1, 0, 1, 1)− 2Ik(1, 0, 1, 1, 1)

+
2k2

4− dIk(2, 0, 1, 1, 1)− 2k2

4− dIk(2, 1, 0, 1, 1)

]
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=
g6

T
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)
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)
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For d = 3 this gives:

DH =
α3

s

rT

(
−3

2
+
π2

8

)
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B.9 Relation to Other Forms of Resummation

The results of section 4.7 relate to a calculation published in [167], which we will discuss here.
The authors performed a partial resummation of the perturbative series for the Polyakov loop
correlator and the singlet free energy correlator (which they call Wilson loop, but since they
neglect any contributions involving the spatial Wilson lines, both functions are identical), and
they find an unexpected behavior at short distances. While the calculation itself seems to be
correct, some of their conclusions may not be.

The resummation includes all diagrams where tree-level gluons of momentum ∼ 1/r are
exchanged between the two Polyakov lines, while any loop contributions are neglected. As
such it is well-defined, but gauge dependent starting from the two-gluon exchange. They
choose static gauge ∂0A0 = 0 and we believe this to be the source of their unexpected results.
Performing the same kind of resummation in Coulomb gauge leads to a different result.

We may use the exponentiated expression of (4.102). In the corresponding discussion, we
have already argued that all diagrams where gluons can be separated into a left and a right
part by a line connecting the two Polyakov loops such that no gluon crosses this line do not
contribute to the exponent. In other words, it is a necessary condition for tree level diagrams
of any order to appear in the exponent that the gluons cross. However, for such diagrams the
delta function in the tree level propagators renders all diagrams with more than one gluon
equal to zero. So the result of this resummation in Coulomb gauge is simply the exponential
of DI .

Comparing this result to the one in static gauge from [167] for SU(2), we have

WSG ≈ (1 + z) cosh(z) + (2 + z) sinh(z) = 1 + 3z +
3

2
z2 + . . . (B.154)

WCG ≈ exp(3z) = 1 + 3z +
9

2
z2 + . . . (B.155)
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where z = g2/16πrT and we have expanded for small z. We see that the first order term is the
same, but the second order is not. This confirms our previous statement that starting from
two-gluon exchange diagrams this resummation is gauge dependent.

But since the Wilson loop is gauge invariant (if the spatial Wilson lines are included),
the difference between both gauges must be contained in terms that were neglected in this
resummation. The intention of [167] seems to be to resum all terms where 1/rT appears
to the same power as g2, in other words terms of order zn. But in static gauge this is not
equivalent to resumming all tree level diagrams. We will show this at O (z2).

There are two sources for the discrepancy between both gauges, the first comes from the
singular part in the static gauge gluon self-energy. At one-loop order this is given by (see
e.g. [126])

Π00(0, k � πT )sing = −Ng
2|k|3

192T
. (B.156)

If we include this contribution in the one-gluon exchange, we get

3g2
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16πrT
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(16π)2r2T 2
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3
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)
. (B.157)

So instead of z one should insert z̃ = z + z2/3 + . . . into the resummed expression for WSG in
SU(2) in order not to neglect any contributions of order zn.

The second source of the discrepancy comes from the neglected contributions of the spatial
Wilson lines. There are three diagrams with one gluon between the two Polyakov lines and one
gluon connected to the spatial Wilson lines. In one of them the two gluons cross and in the two
others they do not. The former has a color factor −(N2−1)/4N2 and the latter (N2−1)2/4N2,
and it is straightforward to show that the sum of the three diagrams is equivalent to the crossed
diagram survives with a coefficient −(N2 − 1)/4.

The spatial gluon propagator for large momenta has a term of order 1/T 2:

Dij(k0 6= 0,k) =
kikj
k2

0 k
2

+O
(

1

k2

)
. (B.158)

With this the crossed diagram gives a contribution of order z2 (again with N = 2):
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= 2z2 . (B.159)

Coulomb gauge has neither a singular part in the one-loop self-energy nor a term of order
1/T 2 in the spatial gluon propagator, so the tree-level one-gluon exchange diagram already
contains all terms of order zn. If we put all contributions in static gauge together, we indeed
get now the same result as in Coulomb gauge for the SU(2) Wilson loop:

WSG = 1 + 3

(
z +

1

3
z2

)
+

3

2
z2 + 2z2 +O

(
zα, z3

)
= 1 + 3z +

9

2
z2 +O

(
zα, z3

)
. (B.160)

The other part of [167] deals with the large N limit. The result they obtain in this case
for the Wilson loop is given by a Bessel function:

WSG = I0

(
2
√
z
)

= 1 + z +
1

4
z2 + . . . , (B.161)
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where now z = g2N/8πrT . For Coulomb gauge nothing changes, so taking the planar limit we
have

WCG = exp z = 1 + z +
1

2
z2 + . . . . (B.162)

Taking the planar limit for the other two results we get z2/12 from the singular part of the
self-energy and z2/6. We see also here that if we add these two contributions to the tree-level
one-gluon exchange result in static gauge, then both gauges agree up to O (z2).

So far we only considered the small z expansions. There is also a discussion of the large z
limit in [167], which corresponds to rT � αs or rT � αsN , and this is where we disagree with
their conclusions. In order to take the limit z →∞ one really has to include all terms of order
zn in the resummation, and as we just saw, this has not been done in [167]. There will also be
higher powers of z from multiple gluon exchanges between the spatial Wilson lines and higher
powers in the expansion of the propagators in the singular self-energy. Since those terms were
not included in the resummations, the results for large z cannot be trusted. The authors have
commented on a strange behavior of the Wilson loop for large z and interpreted it as a side
effect of the planar limit, while in our view it is rather due to an incomplete resummation and
gauge dependence.

In Coulomb gauge there are no contributions of order zn from gluon exchanges between
the spatial Wilson lines and there are also no singular terms in the self-energy up to one-loop
order. We do not know if at a higher loop order a singular term can appear in the self energy,
but assuming that it does not, then the resummed result of the Wilson loop is also valid in
the large z limit and shows exactly the Coulombic behavior that is expected.

Apart from the Wilson loop, Ref. [167] also discusses the Polyakov loop correlator. There
the picture is similar, the leading term in the small z expansion of their resummed result
reproduces the known expression, but the next order term is missing the contribution from the
singular part of the self-energy (compare the cubic part in Eq. (4.120) or Ref. [126]). Then the
large z limit does not reproduce the right behavior, because the resummation is incomplete.

Assuming that Coulomb gauge does not have singular contributions from the self energy
at higher orders, we may take the z →∞ limit in Eq. (4.102) without problems. The contri-
bution from the adjoint self energy becomes exponentially suppressed, and the Polyakov loop
correlator is given by the exponential of the singlet free energy alone.

B.10 Alternative Exponentiation of the Polyakov Loop

Correlator

Instead of the expression given in Eq. (4.58), we now write the Polyakov loop as:

exp

[
−FQQ̄(r)

T

]
=
δijδkl
N2

〈
Lij(r)

(
L†
)
kl

(0)
〉
≡ δijδkl

N2
〈M〉ik,jl , (B.163)

where i, k are final and j, l are initial indices with respect to the direction of the Polyakov
loops (i.e. from 0 to 1/T for the quark loop and from 1/T to 0 for the antiquark loop).
Exponentiation is now understood with respect to the multiplication:

Mn
ik,jl =Mik,i′k′Mi′k′,i′′k′′ · · ·Mj′l′,jl . (B.164)

Note that now also the replica path ordering is different. In section 4.7 gluons with a higher
replica index are ordered such that they are closer to 1/T than gluons with a lower index, but
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here they are ordered such that they are closer to the endpoint of their respective Polyakov
loop, which can be 1/T or 0 for the quark or antiquark loop.

Because of the Fierz identity (1.7), there remain only two possibilities in which the initial
and final indices can be combined in fundamental tensors:

(t1)ik,jl = δijδkl , (t2)ik,jl = δilδkj . (B.165)

Then the color coefficients of the one- and two-gluon exchange diagrams are given by
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(B.166)
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= 0 , (B.168)

C̃ik,jl
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= 0 , (B.169)
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In the tensor space of t1 and t2, t1 is the unit element, and t2 has the property t22 = t1. The
exponential of a linear combination of t1 and t2 is therefore given by

exp
[
At1 +Bt2

]
= exp[A]

(
cosh[B] t1 + sinh[B] t2

)
. (B.171)

We can again factorize the unconnected diagrams, because they are always proportional to
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only t1. With δjiδlk(t1)ik,jl = N2 and δjiδlk(t2)ik,jl = N we get for the connected part:
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This looks very different than the result we obtained in the calculation of the main section,
in particular the appearance of the uncrossed two-gluon diagram and the absence of the crossed
diagram. However, we can see the equivalence between both expressions in the expansion of
the exponentials, also noting the identity:

K
( )

=
1

2
K2

( )
−K

( )
. (B.173)

With this the square of the one-gluon diagram as well as the product of one- and two-gluon
diagrams are the same in both results. The cubic power of the one-gluon diagram does not
come out right yet, because there is a similar identity for the three-gluon diagrams, and since
we did not include those here, we are missing a contribution.

The second expression for this way of exponentiation is also very interesting. The coeffi-
cients (N±1)/2N are exactly the dimensions of the irreducible representations of a quark-quark
combination divided by N2 (in the case of N = 3 those are an antitriplet and a sextet). The co-
efficients of the one-gluon diagram in the exponents are also exactly those of the corresponding
potentials, only the sign of the diagram itself is wrong.

This is no surprise. We can turn the QQ̄ Polyakov loop correlator into a QQ correlator sim-
ply by flipping the lower line in all diagrams. The exponentiation performed in this appendix
is not affected by this, but the multiplication we have defined here then corresponds exactly to
the one used in the main section. The different orientation of the lower contour gives a minus
sign for all diagrams with an odd number of gluons connecting the two loops and turns the
uncrossed two-gluon diagram into the crossed one. Then we get exactly the expected result,
the QQ Polyakov loop correlator decomposes into N(N±1)/2-plet free energies, each of which
is given by the corresponding static potential at leading order (now with the right sign).
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[159] P. Falkensteiner, H. Grosse, F. Schöberl, and P. Hertel, “Solving the Schrödinger equa-
tion for bound states,” Comput. Phys. Commun. 34, 287 (1985).
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