




Abstract

Ensuring the reliability of anthropogenic systems is an important responsibility of engineers.
Engineers therefore have to deal with uncertainties associated with the loads and capacities,
and uncertainties on human factors. To deal with these uncertainties, engineers can build
probabilistic models. A probabilistic modeling framework with large potential for reliability
engineering and engineering risk analysis is the Bayesian network (BN). While BNs have
been successfully applied to reliability engineering, there are remaining issues, some of which
are addressed in this thesis. Reliability analysis with BNs can be considered a three step
procedure: elicitation of the qualitative model structure, quantification of the model and
inference in the model. The focus in this thesis is on the first and the last step. Elicitation
of the BN structure, which is in practice done often in a rather ad-hoc manner, is addressed
by proposing a classification of structure elicitation approaches. Inference is addressed by
proposing two methods that are applicable in the context of rare events, as encountered in
reliability analysis.

The directed acyclic graph (DAG) of a BN represents the qualitative part of the model i.e.
the (causal) dependence structure between the random variables in the model. The DAG
thus is a pivotal part of a model’s traceability, which is important to ensure the validity of a
probabilistic model. Elicitation of the DAG is therefore an essential part of the whole mod-
eling process. A classification of model elicitation approaches that are used in reliability and
engineering risk analysis is proposed. Along with this, a review of the respective literature
with focus on structure elicitation is provided. This classification distinguishes between four
approaches, namely structure elicitation based on (1) other probabilistic models, (2) general
models, (3) structure learning from data and (4) structure elicitation based on domain expert
knowledge. The typical challenges associated with these approaches are discussed. On this
basis a framework for deriving traceable BN structures for human reliability analysis (HRA)
directly from the findings from psychological literature is proposed. The framework is ap-
plied to a crew failure mode (CFM) from the integrated decision-tree human event analysis
system (IDHEAS) HRA method, which is being developed by the U.S. Nuclear Regulatory
Commission (NRC). An approach for quantification of the structures based on both experts
and data is presented.

Inference algorithms are applied to infer the conditional probability distribution of a random
variable of interest, possibly conditional on having information on other random variables
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in the BN. Exact inference is however only possible for discrete BNs and a number of hy-
brid/continuous special cases. A straightforward approach for inference in continuous or
hybrid BNs is to discretize the continuous random variables. In reliability analysis, one is
typically interested in probabilities of rare (failure) events. In BNs representing such prob-
lems, discretization is therefore critical. An efficient discretization procedure for reliability
problems, where the performance of the system is described through a physical model, is
developed. This procedure is based on finding the optimal discretization for an approximate
reliability problem, which is linear in standard normal space, through optimization. Based
on this a heuristic is derived. The proposed discretization procedure is applied to an example
from the field of civil aviation. In particular a prototype of a warning system that can be
used to prevent runway overrun accidents of landing aircrafts is developed.
Sampling based approximate inference is an alternative to discretization of continuous nodes
in BNs. Estimating probabilities of rare events through standard Monte Carlo sampling is
however computationally costly. Thus advanced sampling techniques, such as subset sim-
ulation (SuS) have been developed in the field of structural reliability. In this thesis the
applicability of SuS to (Gibbs-) sampling based inference in BNs is briefly investigated. The
first results obtained are promising.



Zusammenfassung

Zu den wichtigsten Aufgaben von Ingenieuren gehört es, die Zuverlässigkeit menschengemachter
Systeme zu gewährleisten. Dabei gilt es, Unsicherheiten über die auf das System einwirkenden
Lasten, über die Widerstandsfähigkeit des Systems sowie über die relevanten menschlichen
Einflussfaktoren zu berücksichtigen. Probabilistische Modelle stellen eine Möglichkeit dar,
um mit diesen Unsicherheiten besser umgehen zu können. Bayes’sche Netze bilden ein Model-
lierungswerkzeug mit großem Potential für die Zuverlässigkeits- und Risikoanalyse. Obschon
Bayes’sche Netze bereits erfolgreich im Rahmen von Zuverlässigkeitsanalysen im Ingenieurwe-
sen eingesetzt wurden, bestehen nach wie vor offene Fragestellungen und Probleme im Bezug
auf deren generelle Anwendbarkeit. Viele dieser Fragen werden im Rahmen dieser Arbeit
behandelt.

Generell kann die Zuverlässigkeitsanalyse mit Bayes’schen Netzen in drei Schritte aufgeteilt
werden. Diese sind: Erstellung des qualitativen Modells, Quantifizierung des Modells und
zuletzt Inferenz im Modell. Der Fokus in dieser Arbeit liegt auf dem ersten sowie dem letzten
dieser Schritte. Zunächst wird eine allgemein Klassifizierung von Ansätzen zur qualitativen
Modellierung von Bayes’schen Netzen vorgeschlagen. Da dies in der Ingenieurpraxis oftmals
nur für den Einzelfall betrachtet wird. Zum Thema Inferenz in Baye’schen Netzen werden zwei
Methoden vorgeschlagen, die zur Berechnung von Wahrscheinlichkeiten seltener Ereignisse im
Rahmen von Bayes’schen Netzen dienen.

Im Bayes’schen Netz repräsentieren gerichtete a-zyklische Graphen die (kausalen) qualitativen
Abhängigkeiten zwischen den Zufallsvariablen des Modells. Solch eine graphische Darstellung
der Abhängigkeiten spielt eine wichtige Rolle dabei ein Modell nachvollziehbar zu machen,
und somit auch seine Gültigkeit sicherzustellen. Aus diesem Grund ist die Herleitung des qual-
itativen Modells ein wichtiger Bestandteil des gesamten Modellierungsprozesses. Im Rahmen
der Arbeit werden verschiedene Ansätze, die im Bereich der Risiko- und Zuverlässigkeits-
analyse zur Herleitung des qualitativen Modells Anwendung finden, kategorisiert. Für die
Kategorisierung werden relevante Publikationen aus dem Gebiet der ingenieurmäßigen Risiko
und Zuverlässigkeitsanalyse berücksichtigt. Vier Ansätze werden hier unterschieden, näm-
lich: (1) Ableitung der Struktur ausgehend von anderen probabilistischen Modellen. (2)
Herleitung ausgehend von allgemeinen Modellen. (3) Automatisches Lernen der Struktur
basierend auf Daten. (4) Ableitung der Struktur aus Fachexpertenwissen. Es werden die
Schwierigkeiten, die im Zusammenhang mit den Ansätzen üblicherweise auftreten, disku-

III



IV

tiert. Darauf aufbauend wird ein Ansatz zur Herleitung von Modellen für die menschliche
Zuverlässigkeitsanalyse vorgeschlagen. Dieser Ansatz basiert darauf, Bayes’sche Netzwerk-
strukturen direkt aus der relevanten Literatur aus dem Gebiet der Psychologie abzuleiten.
Beispielhaft wird der Ansatz auf einen Crew Fehlertypen aus der IDHEAS Methode zur men-
schlichen Zuverlässigkeitsanalyse angewandt. Die IDHEAS Methode wird derzeit von der
U.S. Nuclear Regulatory Commission (NRC) entwickelt. Darüber hinaus wird ein Ansatz zur
Quantifizierung des Bayes’schen Netzes, basierend sowohl auf Daten als auch auf Experten-
schätzungen, vorgestellt.
Inferenz-Algorithmen werden dazu verwendet, die marginale/bedingte Wahrscheinlichkeits-
verteilung einer Zufallsvariable, möglicherweise bedingt auf Beobachtungen anderer Zufallsvari-
ablen im Bayes’schen Netz, zu ermitteln. Die exakte Verteilung kann dabei nur für Bayes’sche
Netze, deren Variablen diskret sind, sowie für einige kontinuierliche/hybride Spezialfälle,
berechnet werden. Ein naheliegender Ansatz zur approximativen Inferenz in kontinuier-
lichen/hybriden Bayes’schen Netzen ist daher, die kontinuierlichen Variablen zu diskretisieren.
Da man im Bereich der Zuverlässigkeitsanalyse üblicherweise an der Bestimmung kleiner
(Versagens-)wahrscheinlichkeiten interessiert ist, ist Diskretisierung von Bayes’schen Netzen in
diesem Kontext kritisch. Im Rahmen dieser Arbeit wird ein effizienter Diskretisierungsansatz
für Zuverlässigkeitsprobleme bei denen das Systemverhalten durch ein physikalisches Mod-
ell beschrieben ist, entwickelt. Dieser beruht darauf, dass für angenäherte Probleme, die im
Standardnormalraum linear (und damit analytisch lösbar) sind, optimale Diskretisierungs-
schemata ermittelt werden. Aus den Optimierungsergebnissen, wird eine Heuristik abgeleitet.
Der vorgeschlagene Diskretisierungsansatz wird auf ein Beispiel aus dem Bereich der Luftfahrt
angewandt. Es wird der Prototyp eines Warnsystems entwickelt, das dazu dient, Unfälle zu
vermeiden, die vom Überschießen der Landebahn bei der Landung herrühren.
Approximative Inferenz mithilfe von Samplingmethoden stellt eine Alternative zur Diskreti-
sierung von kontinuierlichen Variablen im Bayes’schen Netz dar. Die Bestimmung kleiner
Wahrscheinlichkeiten mit Hilfe einer standardmäßigen Monte-Carlo simulation ist jedoch (oft-
mals zu) rechenintensiv. Aus diesem Grund wurden im Bereich der Strukturzuverlässigkeit
neue Samplingmethoden entwickelt. Ein Beispiel dafür ist die sogenannte Subset Simulation.
In dieser Arbeit wird die Integrierbarkeit von Subset Simulation in die Sampling basierte
Inferenz in Bayes’schen Netzen untersucht. Die ersten Resultate sind dabei vielversprechend.
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Chapter 1

Introduction

1.1 Reliability analysis

1.1.1 Purpose

As early as the 18th century BC an ancient Babylonian law (the codex Hammurabi) stated:
"If a builder build[s] a house for someone, and does not construct it properly, and the house,
which he built fall[s] in and kill[s] its owner, then that builder shall be put to death." (King,
2008). Already at that time, the reliability was an important requirement for anthropogenic
structures. And it was the responsibility of the builder (respectively the engineer) to ensure
reliability.
At that time, approaches to ensure reliability of engineering systems were rather empirical and
it was not until the 20th century that reliability was described in a formal and mathematical
way. In the 20th century, more formal approaches to reliability were promoted by large-scale
production of engineering systems, increasingly complex systems and higher requirements to
safety. These approaches were not least motivated by limited resources, which had to be
allocated efficiently. Important milestones in this respect include: The use of probability
theory for reliability analysis of the Bell telephone system in the 1920s (Zachmann, 2014),
efforts to increase the reliability of military equipment in the 1940s and 50s (Cruse, 1997),
and Rasmussen’s (nuclear) reactor safety study WASH–1400 in 1975 that extensively applied
probabilities (NRC, 1975).
While it would be desirable to have engineering systems that do not fail with absolute cer-
tainty, this is not possible in practice, since systems are always subjected to (possibly large)
uncertainties. In general neither loads acting on the system (e.g. future wind load, earth-
quakes or users acting on the system) nor its exact properties are known with certainty (e.g.
material properties of a engineering structure, behavior of operators). Probability theory pro-
vides the means for describing these uncertainties in a quantitative manner. As a result, the
reliability of a system has to be expressed probabilistically as well. The reliability of an engi-
neering system is defined as the probability of it not failing i.e. RZ = 1−Pr (F ). Failure (F )
is the event of a system being unable to fulfill some "acceptable level of performance" (Stewart
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2 CHAPTER 1. INTRODUCTION

and Melchers, 1998). Reliability analysis is thus concerned with computing the probability of
failure of a system. Motivations for performing a reliability analysis include:

• Assessing whether the reliability of a system is acceptable (e.g. does the probability
of a total loss comply with the goals set by the regulatory body?). In such cases the
quantity of interest is the reliability (or probability of failure) itself.

• Reliability analysis is part of a risk analysis, whose objective is to calculate the expected
adverse consequences (e.g. to calculate the risk of a nuclear power plant, its failure
probability needs to be estimated).

• Reliability analysis is part of a decision analysis, where the objective is to determine the
optimal decision alternative according to the basic principle of utility theory (Raiffa and
Schlaifer, 1961) (e.g. failure probabilities need to be calculated to determine the optimal
design among a number of design alternatives or to determine the optimal inspection
policy for a system).

Assumptions are inevitable when it comes to reliability engineering. In particular the engineer-
ing model, based on which the reliability analysis is performed, can only be an approximation
of the real system. Also the stochastic models used to model the uncertain factors associated
to the system are always based on assumptions. For a reliability analysis, it is important that
these assumptions are made with care.
Independent of the context in which a reliability analysis is performed, a sensitivity analysis
(Saltelli et al., 2000) should accompany a reliability analysis. The objective of a sensitivity
analysis is to determine the sensitivity of the outcome of the reliability analysis with respect
to changes in the assumptions.

1.1.2 Engineering systems and the need for probabilistic modeling

The reliability requirements for critical engineering systems are very high. Due to the small
failure probabilities of modern engineering systems, the task of assessing their reliability is
difficult. Examples of typical failure probabilities for engineering systems are in the range
(Bedford and Cooke, 2001):

• < 10−9 per flight hour: Probability of a catastrophic failure according to safety goals in
the aviation industry

• 10−3 to 10−6: Failure probabilities of marine structures for different accident types

• < 10−4 per year: Probability of a large scale core melt in a nuclear power plant

If the compliance of the aviation industry with the above safety goal was to be verified purely
on observed frequencies a large number of flights would need to be observed. For instance
to observe one catastrophic failure one needs to wait on average 109 flight hours. To get an
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estimate of the probability of failure, which allows for a certain level of confidence, a large
number of such catastrophic failures needed to be encountered. Due to the large number
of flights that are operated on a daily basis, it may be actually possible to estimate the
reliability level for the complete aviation industry purely based on observed failure frequencies.
In practice, one may however be interested not only in the safety standards of the aviation
industry but in the safety standards of a specific airline or in the probability of failure for
a specific route. Based on such information, an airline could decide whether to introduce
new safety measures or whether to abandon flying to certain destinations. Estimating such
probabilities through observed frequencies is typically hindered by data scarcity.

It is easy to find similar examples from different engineering disciplines. For instance data
scarcity typically hinders estimating the probability of failure of a specific bridge (with specific
design, and specific loads acting on it), while estimating the probability of failure of a bridge
in general may be possible through observed frequencies. To nevertheless be able to estimate
e.g. the probability of a total loss for a specific route or the probability of failure of a specific
bridge, a different approach is required. To this end engineers can develop probabilistic
models.

1.1.3 Probabilistic modeling of complex engineering systems

Probabilistic models of engineering systems require a definition of the performance of the sys-
tem combined with a description of the joint probability distribution of the random variables
that describe the uncertainties associated to the engineering system. The means by which this
is achieved are quite diverse and depend largely on the considered field. A probabilistic model
is always an abstraction of the real engineering system. The necessary degree of abstraction
of a model depends on the purpose of the model but also on the complexity of the real system.
For complex systems a large number of assumptions may be necessary to make probabilistic
modeling feasible. Many modern engineering systems are highly complex, meaning that they
consist of a large number of components, which are highly interdependent. The components
that need to be accounted for may be hardware or structural components but also software
and human (Zio, 2009).

In particular, human elements can add a large degree of complexity to engineering systems.
Considering human error events in a reliability analysis is essential for many systems, since
around 80% of all industrial accidents are due to human error (e.g. McCafferty, 1995; Roth-
blum, 2000; Shappell and Wiegmann, 2012). The field of human reliability analysis (HRA)
is concerned with estimating human error probabilities. Large uncertainties are associated to
human error, since the respective cognitive processes are complex and not well understood. In
consequence the models that are used in HRA are oversimplifications of reality (Bedford and
Cooke, 2001) and the quantitative estimates obtained from them should be handled with care
(French et al., 2011). So far HRA methods are mainly developed and applied in the context
of nuclear power plants (Kirwan, 1994) and a few other industries, such as aviation (Shappell
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and Wiegmann, 2012) and chemical (Schneider, 2010).

Modeling complex systems requires appropriate tools. Fault trees (FTs) represent an example
of a popular, traditional probabilistic modeling tool for reliability engineering. Using FTs, an
engineering system needs to be decomposed into its components by means of boolean logic.
Capturing the interdependencies in complex engineering systems in this way sufficiently well
is often difficult. Other traditional probabilistic modeling tools have similar shortcomings and
limitations e.g. one event tree (ET) can represent only one initiating event and dependencies
between different ETs or initiating events are difficult to model (Bedford and Cooke, 2001).
More flexible modeling tools are thus needed to adequately represent complex engineering
systems. BNs represent such a modeling tool, which has a number of advantages over the
traditional tools.

1.2 Bayesian networks

BNs have become increasingly popular in the last decades and have been successfully applied
as a tool for reasoning under uncertainty in various fields including machine learning (Bishop,
2006), medicine (Lucas, 2001), law (Fenton and Neil, 2000) and environmental modeling and
management (Aguilera et al., 2011; Barton et al., 2012). BNs have also been applied as a
modeling tool for reliability engineering (e.g. Torres-Toledano and Sucar, 1998; Friis-Hansen,
2000; Langseth and Portinale, 2007; Straub and Der Kiureghian, 2010b).

BN enable an efficient representation of the joint probability distribution of a number of ran-
dom variables. In a BN, the overall dependence structure between the variables is represented
through a directed acyclic graph (DAG). The conditional and the marginal distributions of
the random variables in the BN are quantified by means of local conditional probability distri-
butions. As an example, consider the BN in Fig. 1.1. The DAG shows that a storm event can
cause both high wind speeds and rain. Depending on the windspeed and the roof condition,
the roof may be damaged by the wind. Damage to the roof and rain both contribute to the
damage to a house.

To quantify the BN, a local probability distribution is assigned to each node. These local
probability distributions are marginal distributions for nodes that do not have parents (Storm
event and Roof condition) and probability distributions that are conditional on the parents
for nodes that do have parents.

The DAG of a BN represents (conditional) independence properties. For example, in Fig.
1.1, the roof condition is independent of wind speed as long as no evidence on the vari-
ables roof damage or damage to house is available. These independence properties enable
an efficient representation of the joint distribution of all variables in the BN. Without mak-
ing use of any independence properties the joint probability distribution of the variables,
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Figure 1.1: Example of a BN modeling the damage of a house due to a storm event.

Z = [Z1, Z2, . . . , Z6], from the BN in Fig. 1.1 can be written by means of the chain rule as:

p (Z) = p (Z1) · p (Z2|Z1) · p (Z3|Z1, Z2) · p (Z4|Z1, Z2, Z3) · p (Z5|Z1, Z2, Z3, Z4) ·

p (Z6|Z1, Z2, Z3, Z4, Z5)
(1.1)

By making use of independence properties from the DAG, the joint probability distribution
can be represented more efficiently as:

p (Z) = p (Z1) · p (Z2|Z1) · p (Z3|Z1) · p (Z4) · p (Z5|Z2, Z4) · (Z6|Z3, Z5) (1.2)

This has positive effects both on the ease of model elicitation as well as the computational
cost for inference. The features that make BNs a powerful tool in the context of a reliability
analysis are:

Graphical representation

As stated above, probabilistic modeling typically requires a large number of assumptions.
In addition to the assumptions about the stochastic models used to quantify the model,
assumptions must be made on the general model structure. It is pivotal to present these
assumptions to stakeholders and other domain experts, so that they can challenge them and
understand the limitations of the models. As already stated, in a BN the general model
structure is represented through a DAG. Although not required by BN theory, it is typically
desirable for DAGs to represent causality. Since causal DAGs are well in line with human
reasoning, the overall dependence structure is traceable even for people who are not experts
in the area of probabilistic modeling (Pearl, 1988).

Modular quantification

The local probability distributions represent the quantitative part of the BN. Since quan-
titative data about engineering systems is typically scarce, it is desirable for a probabilistic
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modeling tool to only require a limited amount of data. In the context of BNs, the number of
parameters that need to be elicited and thus also the amount of quantitative information is
reduced by making use of independence properties. For example, assuming that all nodes are
binary, for the BN in Fig. 1.1, elicitation of 14 parameters is required (cf. Eq. 1.2) whereas
quantification of the same model without independence assumptions (Eq. 1.1) requires 63
parameters.

A consequence of the scarcity of quantitative information is that all sources of information
need to be combined to arrive at sound probability estimates. Because in a BN each node is
quantified separately through a local (conditional) probability distribution, the BN lends itself
to such a combination of information sources. Moreover Bayesian updating can be applied to
combine different sources of information, when quantifying a single node.

Bayesian updating

Often observations on some of the variables in the model become available. These observations
potentially change one’s belief about other variables in the model. Bayesian updating can be
used to compute probability distributions of a variable conditional on observing a set of other
variables. Inference algorithms that enable efficient Bayesian updating exist for BNs. While
for BNs with only discrete random variables and for a couple of continuous/hybrid special
cases inference can be performed exactly, for general BNs inference can only be performed
approximately e.g. through sampling.

1.3 Scope of the thesis

The features stated above motivate the use of BNs for probabilistic modeling in the scope of
reliability engineering. Nevertheless there are challenges with respect to the application of
BNs to reliability engineering. The objective of this thesis is to address some of these. The
first part of this thesis is dedicated to the elicitation of the BN model. Typically the process
of eliciting the qualitative BN structure (the DAG) is done in a rather ad-hoc manner. To
overcome this, a classification of structure elicitation approaches is proposed in chapter 3. It
is shown that in many instances, the BN elicitation can be standardized to the same extend
as modeling with traditional tools. For more complex models, for which the flexibility of BNs
is key, model elicitation requires a larger degree of modeling expertise.

As stated in the previous section, BNs enable straightforward Bayesian updating with new
information. While this is true for discrete BNs that are not excessively large, inference can
be challenging for general BNs. Thus, the second part of this thesis deals with inference in
BNs. Many models encountered in reliability engineering are continuous or hybrid rather than
purely discrete. For these models, exact inference is typically not possible. An approach to
approximate inference in such cases is to discretize the continuous/hybrid model and perform
exact inference for the discretized BN. Since exact inference is also limited by computational
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power, discretization should be performed efficiently i.e. the discretization error should be
minimized with only a minimum number of intervals. An efficient discretization procedure for
reliability problems, where the performance of the system is described through an engineering
model, is proposed in this thesis.
As an alternative to discretization, sampling methods can be used to approximate inference
in general BNs. A short presentation of the most important sampling based BN inference
algorithms is provided in this thesis. Rare events are challenging for all presented sampling
based inference algorithms. The reason being that the number of samples required to estimate
small probabilities is large, and the computational effort for generating these samples can
quickly become unfeasible. In order to overcome this issues, efficient sampling techniques, that
require a smaller number of samples to estimate small probabilities, have been developed in the
field of structural reliability. One representative of these methods is subset simulation (SuS).
The possibilities of combining SuS with Gibbs sampling, a popular sampling based inference
algorithm, are briefly discussed in this thesis. While first convergence studies are presented,
convergence should be further investigated in the future.
The methods presented in this thesis are demonstrated for a number of small examples and
two larger applications.

1.4 Outline of the Thesis

Chapter 2 provides a short introduction to the principles from BN theory and reliability
engineering that are required as a background for the topics treated in this thesis. The
remainder of the thesis consists of four parts. Part I deals with BN elicitation, part II with
inference in BNs and in part III two applications are presented. In the last part, overall
concluding remarks on the topics covered in this thesis are provided together with a short
outlook.
Part I:
In chapter 3, a classification of BN structure elicitation approaches is proposed. This classifi-
cation is based on a review of existing literature from the field of engineering risk analysis and
reliability. Four different approaches are distinguished, these are structure elicitation based on
existing probabilistic models, structure elicitation based on general models, data-based struc-
ture learning and structure elicitation based on domain expert knowledge. Relations between
these structure elicitation approaches are pointed out and typically challenges associated to
the different approaches are discussed.
Quantification of the BNs is discussed in chapter 4. Addressed are quantification based on
data and based on expert elicitation as well as a combination of them. For nodes, for which
engineering models are available, quantification based on these models is discussed.
Part II:
In chapter 5, exact inference for discrete BNs is discussed. Two of the most important rep-
resentatives of exact inference algorithms for discrete BNs are introduced in this context,
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namely the variable elimination and the junction tree algorithm. While these algorithms can
be applied for exact inference in discrete BNs, by discretizing the continuous random variables
they can also be applied for approximate inference in hybrid/continuous BNs. The discretiza-
tion scheme used determines the approximation error. Therefore discretization is critical. To
this end, an efficient discretization procedure for reliability problems, where the performance
is described through an engineering model, is proposed in chapter 6. Sampling based algo-
rithms represent an alternative to discretization for approximate inference. In chapter 7, the
most important sampling based inference algorithms are introduced. Estimating probabili-
ties of rare events by means of these algorithms is computationally costly. An approach for
overcoming this issue by combining sampling based inference with SuS is presented.
Part III:
In chapter 8, a BN based prototype of a runway overrun early warning system is proposed.
The BN is developed from an existing physical model. The continuous basic random variables
of the structural reliability problem are discretized using the the discretization procedure from
chapter 6. Chapter 9 presents a framework for structure elicitation and quantification of BNs
for HRA. This framework is based on the theory discussed in chapters 3 and 4. An example
from the IDHEAS HRA method is used to demonstrate the approach.
Part IV:
In chapter 10 an overall discussion of the topics that are covered in this thesis is provided
together with an outlook.



Chapter 2

Theoretical background

This chapter provides a brief introduction to the most important theories that form the basis
of the remainder of this thesis.

2.1 Bayesian networks

The description of BN theory here is limited to the parts that are necessary as a background
for the remainder of this thesis. For a deeper introduction the interested reader is referred to
the relevant textbooks. These include (Jensen and Nielsen, 2007; Koller and Friedman, 2009;
Kjærulff and Madsen, 2013).

2.1.1 The DAG

The qualitative dependence structure of a BN is encoded in a directed acyclic graph (DAG) G
that consists of a set of vertices (nodes) V and a set of edges (links) E, i.e. G = (V,E)1. The
vertices represent variables and the edges dependencies among these variables. An example
of a DAG with vertices V = {X1, X2, . . . , X5} and edges
E = {[X1, X3] , [X1, X4] , [X2, X5] , [X3, X5] , [X4, X5]} is shown in Fig. 2.1. A directed graph
fulfills the requirement for acyclicity, if for non of the vertices Xi ∈ V there exists a directed
path, such that Xi → . . .→ Xi.
In the context of BNs family terms are used to describe relationships among nodes. For
example, in the DAG of Fig. 2.1, X5 is a child of X2, X3 and X4, which in turn are its
parents, pa (X5) = {X2, X3, X4}; X1 to X4 are ancestors of X5, ac (X5) = {X1, X2, X3, X4}
and X3, X4, X5 are descendants of the node X1, dc (X1) = {X3, X4, X5}.

2.1.2 d-separation criteria

The efficiency of BNs is determined by its independence structure. Independence statements
are incorporated in the DAG through d-separation properties. In particular, if according

1Note: The terms vertices and nodes are used interchangeably in this thesis. So are the terms edges and
links.

9
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Figure 2.1: Example BN.

to their joint probability distribution, two random variables Xi and Xj are independent
conditional on knowing the states of some variables Xe = xe, then they are d-separated in the
corresponding BN. There are three basic connection types in BNs, namely serial connections
(e.g. X1 → X3 → X5 in Fig. 2.1), diverging connections (X3 ← X1 → X4 in Fig. 2.1) and
converging connections (e.g. X2 → X5 ← X3 in Fig. 2.1).
While nodes that are connected through a serial connection or a diverging connection are
d-separate if the state of the intermediate node is known with certainty, nodes that are
connected in converging connections are d-separated if neither the intermediate node nor any
of its descendants have received any evidence.
From the d-separation properties, the concept of Markov blankets can be derived. In a BN
over the nodes X, the Markov blanket of a node Xi consists of its parents, its children and
the other parents of its children. It is the minimal set of nodes MB (Xi) ∈ X, such that if
the states of all nodes in MB (Xi) are known, Xi is d-separated from the rest of the network.
For a BN, whose purpose it is to predict the state of Xi, the consequence of this is that if
all random variables in Xi’s Markov blanket are observable at all times, then it is enough to
include {Xi,MB (Xi)} in the model.

2.1.3 Local conditional probability distributions and the chain rule

A local conditional probability distribution (CPD) is assigned to each node in the network
that represents a random variable. For a node representing a random variable Xi, with
parents pa (Xi), we denote this CPD as p (xi|pa (xi)). In a discrete BN, the CPD is typically
represented in the form of a conditional probability table (CPT). In analogy to Eqs. 1.1 and
1.2, the well-known chain rule to represent the joint distribution p (x) = p (x1, . . . , xn) in Eq.
2.1 can be represented more efficiently by exploiting the independence properties of the BN
(Eq. 2.2).

p (x) = p (xn|x1, . . . , xn−1) · p (xn−1|x1, . . . , xn−2) · . . . · p (x2|x1) · p (x1) (2.1)
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p (x) =
n∏
i=1

p (xi|pa (xi)) (2.2)

For example, the chain rule for the BN structure in Fig. 2.1 is:

p (x) = p (x1) · p (x2) · p (x3|x1) · p (x4|x1) · p (x5|x2, x3, x4) (2.3)

2.2 Reliability engineering

While reliability is an inherent requirement for engineering systems, structured approaches
for reliability assessment of engineering systems have emerged only in the 20th century.
Reliability of an engineering system is defined as the probability of it not failing (or not failing
in its service life), i.e. it can be written as one minus the probability of failure. Reliability
engineering can be differentiated into hardware reliability (Rausand and Høyland, 2004),
software reliability (Lyu et al., 1996) and human reliability (HRA) (Swain and Guttmann,
1983; Kirwan, 1994).
For quantitative reliability analysis, engineering components or systems are often described
through engineering models. This is often the case for engineering structures. Therefore the
methods for estimating the reliability (respectively failure probability) based on such physical
models have been mainly developed in the field of structural reliability (Melchers, 1999). An
introduction to the field of structural reliability is provided in the following. It should however
be noted that the methods from this field are not limited to structures as it will also become
evident from the application in chapter 8. After that an introduction to the field of HRA is
provided.

2.2.1 Structural reliability

2Since the 1970s, structural reliability methods have been developed and applied in the engi-
neering community to estimate failure probabilities Pr (F ) of components or systems, based
on physical or empirical models. The performance of engineering components is described
by a limit state function (LSF) g (x), where X = [X1; . . . ;Xn] is a vector of basic random
variables influencing the performance of the component. By definition, failure corresponds to
g (x) taking non-positive values, i.e. the failure event is F = {g (x) ≤ 0}. g(x) includes the
physical or engineering model, which is often computationally demanding. The probability of
failure is calculated by integrating the probability density function (PDF) of X, fX(x), over
the failure domain:

Pr (F ) =

∫
g(x)≤0

fX (x) dx (2.4)

2The description of structural reliability and FORM analysis in this section is adapted from (Zwirglmaier
and Straub, 2016a).
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Figure 2.2: Design point and linear approximation of the limit state surface. Left side: original
random variable space; right side: standard normal space (from (Straub, 2014b)).

In general the integral in Eq. 2.4 cannot be solved analytically. To this end a number of
methods have been developed to approximately calculate it, these include first order reliability
method (FORM) and second order reliability method (SORM) as well as a number of sampling
techniques. FORM and the sampling technique SuS are introduced in the following.

The first order reliability method (FORM)

To obtain an approximation of the probability of failure through FORM, the LSF g(X) is
transformed to an equivalent LSF G (U) in the space of uncorrelated standard normal random
variables U = [U1; . . . ;Un] (Fig. 2.2). The transformation is probability conserving, so that
Pr [g (X) ≤ 0] = Pr [G (U) ≤ 0] = Pr (F ). A suitable transformation for this purpose, which
is consistent with the BN, is the Rosenblatt transformation (Hohenbichler and Rackwitz,
1981). In case all basic random variables are independent, this transformation reduces to
the marginal transformations: Ui = Φ−1 [FXi (xi)], with Φ−1 being the inverse standard
normal cumulative distribution function (CDF) and FXi being the CDF of Xi. In cases where
conditional distributions are not readily available the Nataf transformation can be applied as
an alternative.
The FORM approximation of Pr (F ) is obtained by substituting the LSF in U-space G (U)

by a linear function GL (U), i.e. a first-order Taylor expansion of G (U). The key idea of
FORM is to choose as the expansion point the so-called design point u∗, which is the point
that minimizes ‖u∗‖ subject to GL (U) ≤ 0. It is also known as the most likely failure point,
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as it is the point in the failure domain with the highest probability density. Since all marginal
distributions of the standard uncorrelated multinormal distribution are standard normal, it
can be shown that the FORM probability of failure Pr [GL (U) ≤ 0] is:

Pr [GL (U) ≤ 0] = Φ (−βFORM ) (2.5)

where Φ is the standard normal CDF and βFORM is the distance from the origin to the
design point, i.e. βFORM = ‖u∗‖. The problem thus reduces to finding the design point u∗.
If G (U) is linear, the FORM solution of the probability of failure is exact, otherwise it is
an approximation, which however is sufficiently accurate in most practical applications with
limited numbers of random variables (Rackwitz, 2001). The linearized LSF GL (U) can be
written as:

GL (U) = βFORM −αTU (2.6)

where α = [α1, . . . , αn] is the vector of FORM importance measures. These importance
measures are defined as:

αi =
u∗i

βFORM
(2.7)

where u∗i is the i-th component of the design point coordinates. The αi’s take values between -1
and 1, and it is ‖α‖ = 1. αi is 0, if the uncertainty on Ui has no influence on Pr (GL (U) ≤ 0),
and it is 1 or -1, if Ui is the only random variable affecting Pr (GL (U) ≤ 0). When the
original random variables Xi are mutually independent, the αi’s are readily applicable also
in the original space, otherwise the αi’s can be transformed as described in (Der Kiureghian,
2005).

Subset Simulation

3The classical Monte Carlo simulation (MCS) approach provides an unbiased estimate P̂r (F )

of Eq. 2.4 by generating nS samples from the joint distribution f (x) and evaluating g (x) for
each of the samples xi. The estimated probability of failure is then:

P̂r (F ) =
1

nS

nS∑
i=1

Ig(x)≤0
(
xi
)

(2.8)

where Ig(x)≤0
(
xi
)
is an indicator function, which is 1 for g

(
xi
)
≤ 0 and 0 otherwise. This

MCS approach becomes computationally unfeasible for small probabilities of failure. For a
desired coefficient of variation of the estimate ρP̂r(F ) the required number of samples is:

nS =
1− Pr (F )

ρ2
P̂F

Pr(F )
(2.9)

For a small probability of failure of Pr (F ) = 10−8 and a desired coefficient of variation of

3The description of Subset Simulation is adapted from (Zwirglmaier et al., 2014).
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ρP̂F = 0.1 approximately 1010 LSF evaluations would be necessary. SuS proposed by (Au and
Beck, 2001) overcomes this problem by expressing the failure event F as a sequence of nested
events Fi.

F1 ⊂ F2 ⊂ . . . ⊂ Fn = F (2.10)

With these nested events the probability of failure can be rewritten as:

Pr (F ) = Pr (F1)
n∏
i=2

Pr (Fi|Fi−1) (2.11)

The probability of the first intermediate event, Pr (F1), is not conditional on a previous inter-
mediate event and can therefore be estimated with a standard MCS. All other probabilities
Pr (Fi|Fi−1) in Eq. 2.11 are conditional on a previous intermediate event, these conditional
probabilities are estimated using MCMC simulation procedures. In Fig. 2.3 the MCMC
approach is schematically shown for drawing samples conditional on the first failure domain
F1 to approximately compute Pr (F2|F1). The grey points represent the samples generated
from the bivariate standard normal distribution f (u) in the initial MCS step. Those samples
ui, which are in Fig. 2.3 above the intermediate limit state surface (shown here as a black
line) are said to be in the failure domain F1, i.e. for them ui ∈ F1. From each of those m
intermediate failure samples, a Markov Chain of length nS/m is generated (black samples).
In these chains a new candidate state is generated conditional on the previous state of the
chain. Furthermore if the newly generated candidate state u′ fulfills the condition u′ ∈ F1 it
becomes the new state of the chain otherwise the previous state is repeated.

SuS is performed in the uncorrelated standard normal space (U-Space). The component wise
Metropolis Hastings algorithm, which was proposed by (Au and Beck, 2001) as a MCMC
algorithm for SuS, makes use of this by generating the candidate states independently for each
dimension. The performance of SuS thus becomes independent of the number of dimensions
of the problem. An alternative MCMC algorithm for use in SuS is proposed by (Papaioannou
et al., 2015). Like the algorithm of (Au and Beck, 2001) this algorithm works in a component-
wise fashion and its performance is therefore also independent of the dimensionality of the
problem. However, the generation of the pre-candidate states is done, such that every pre-
candidate state is accepted. Typically the intermediate failure events Fi are chosen adaptively,
such that Pr (F1) = Pr (F2|F1) = . . . = Pr (Fn−1|Fn−2) = p0. Often a value of 0.1 is chosen
for p0. The final failure event Fn = F is fixed and therefore its conditional probability cannot
be chosen a priori. Eq. 2.11 is then:

Pr (F ) = pn−10 Pr (F |Fn−1) (2.12)

Like FORM, SuS is usually applied in U-space, therefore the random variables X have to be
transformed to U-space.
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Figure 2.3: MCMC algorithm for SuS.

2.2.2 Human reliability analysis (HRA)

4A comprehensive probabilistic risk assessment (PRA) is an essential element of safety and
reliability assurance for many complex engineering systems. The aim of the PRA is to under-
stand the possible failure scenarios, the corresponding adverse consequences, and the failure
scenarios’ probabilities. Most engineering systems can be characterized as human-machine
systems, in which the human operator and the technical system are interacting. For that
reason it is essential for a PRA to consider not only failures of technical components but also
the effect of human actions and human inaction. HRA models human elements as part of
PRAs; in general through identification and quantification of human failure events (HFEs) in
PRA models. A variety of methods have been developed and applied in this field to deter-
mine human error probabilitys (HEPs) corresponding to HFEs. Among the most important
representatives are THERP (Swain and Guttmann, 1983), SPAR-H (Gertman et al., 2005)
and ATHEANA (Cooper et al., 1996). The limitations of existing HRA methods have been
widely discussed in the literature (Woods, 1990; Hollnagel, 2000; Mosleh and Chang, 2004;
Sträter, 2004; Boring et al., 2007; French et al., 2011; Groth and Swiler, 2013). Two interre-
lated shortcomings in existing HRA methods are the limited scientific basis used to develop
those methods and the use of simplified modeling techniques, which lack causal structure and
quantitative traceability.

Ongoing research into human performance is addressing the first shortcoming. The scientific
foundations for human reliability have been explored and documented in the work by (Whaley
et al., 2012) on the psychological basis of HRA. In particular, they introduce a set of psy-
chological failure mechanisms and proximate causes, which can lead to human failure events.
Furthermore, they provide detailed insight into the factors that affect human performance

4The description of HRA is adapted from (Zwirglmaier et al., 2017).
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(PIFs), the dependency between those factors, and the causal pathways from those factors to
human errors. International data collection activities offer insight into human performance in
complex engineered systems (Park and Jung, 2007; CSNI, 2012; Chang et al., 2014), which
provide new opportunities to improve the quantitative basis of HRA.
The second shortcoming, the lack of causal structure and quantitative traceability, is being
addressed through advanced modeling efforts. BN models have become increasingly popular
within HRA as a means for addressing these shortcomings because of their ability to explicitly
model cause and effect combined with the ability to incorporate information from different
sources (Baraldi et al., 2015; Mkrtchyan et al., 2015). Ongoing international research has
demonstrated the ability of BNs both to capture the causal relationships among PIFs and
to facilitate quantification of those relationships (Groth and Mosleh, 2012; Sundaramurthi
and Smidts, 2013; Musharraf et al., 2014; Podofillini and Dang, 2014). The psychological
foundation has been leveraged in the development of two new HRA Methods, the IDHEAS
(Integrated Decision-Tree Human Event Analysis System) method (Xing et al., 2013) and
the PHOENIX method (Ekanem and Mosleh, 2014; Ekanem et al., 2016). Both IDHEAS
and PHOENIX introduce the concept of CFMs, a characterization of ways that a human
failure event can occur during a crew interaction with the system. Both methods include a
quantitative model relating PIFs to CFMs. However, the quantitative models in IDHEAS
fall short of both causal and quantitative traceability; e.g. the motivation for the exclusion
of cognitive mechanisms and PIFs from the method remains unclear (Stetkar, 2014). The
PHOENIX method uses a BN model for quantification, but there are no directed links from
one PIF to another, and thus the causal paths from the cognitive literature are not fully
captured.

Crew failure modes

CFMs are used as modules, for representing HFEs. In this thesis we propose a framework
for modeling CFMs probabilistically by means of BNs. Two new HRA methods incorporate
the concept of crew failure modes: the IDHEAS method developed by the U.S. NRC, and
the PHOENIX method developed at the University of Maryland (Ekanem and Mosleh, 2014;
Ekanem et al., 2016). PHOENIX and IDHEAS follow a similar modeling approach combining
both qualitative and quantitative steps:

• Performing a qualitative task analysis and documenting crew failure paths in a crew
response tree (CRT).

• Selecting applicable CFMs for each event in a CRT.

• Quantifying the individual CFMs (via Decision Trees for IDHEAS, and via BN for
PHOENIX) and combining probabilities of the relevant CFMs to calculate the HEPs
for each event.

• Analyzing HFE dependencies and possible recovery actions.
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In both methods, the CFMs are a crucial element, which translates the concept of human
errors from a psychological perspective (which may or may not have an impact on a system)
into crew errors, which could lead to an HFE. IDHEAS and PHOENIX each derive their
CFMs from the psychological failure mechanisms (Whaley et al., 2012). In both methods,
PIFs are used to characterize the context of the task. The two methods differ in the number of
CFMs used, as well as the quantification approach. IDHEAS considers 14 CFMs representing
failures that are typical for human performance in nuclear power plant control rooms. The
CFMs in IDHEAS are summarized in Tab. 2.1. The PHOENIX method considers 19 different
CFMs. These are summarized in Tab. 2.2. In IDHEAS each CFM is quantified using a DT5

(c.f. chapter 9). Each PIF is represented as a branch point in the DT. For simplicity, the
IDHEAS developers chose to limit the number of PIFs in each DT to four.
.
Table 2.1: Crew Failure Modes used in the IDHEAS method (Xing et al., 2013)

Phase of
Plant status
assessment

Response
planning Execution

Crew Failure
Mode CFM

Key alarm not
attended to †

Delay
implementation†

Fail to initiate
execution

Data misleading or
not available

Misinterpret
procedure†

Fail to execute
response correctly

Premature termi-
nation of critical
data collection

Choose inappro-
priate strategy

Critical data
misperceived

Wrong data source
attended to†

Critical data not
checked with appro-
priate frequency
Critical data

dismissed/discounted†

Misread or skip step in procedure*†

Critical data miscommunicated**†

† CFM, for which data was collected.
* May occur in either ‘Response Planning’ or ‘Execution’ phases.
** May occur in any of the three phases.
In PHOENIX, the CFMs are quantified using one BN that maps relationships between PIFs
and all nineteen CFMs. PHOENIX considers nine “primary” PIFs , which all directly influence
each of the CFMs. PHOENIX also includes an expanded qualitative BN model, which includes

5Note: The applied models are referred to as decision trees in the IDHEAS report (Xing et al., 2013).
However, since there are no decisions involved, the tool should be more appropriately termed event tree in
a PRA sense. To be in line with the original IDHEAS report, the thesis adopts its terminology in the parts
addressing IDHEAS.
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approximately 20 additional PIFs that have been collapsed into the nine primary PIFs . The
BN model used in PHOENIX does not directly model interdependency between the PIFs.

Table 2.2: CFMs used in the PHOENIX method.

Phase of
Information
Processing

Diagnosis/Decision
Making Action Taking

Crew Failure
Mode CFM

Key alarm not res-
ponded to (intentional

& unintentional)

Plant/system
state

misdiagnosed
Incorrect timing

of action

Data not obtained
(intentional)

Procedure
misinterpreted

Incorrect oper-
ation of comp-
onent/ object

Data discounted

Failure to adapt
procedure to
the situation

Action on wrong
component/

object

Decision to stop
gathering data

Procedure step
omitted

(intentional)
Data incorrectly

processed
Deviation from

procedure

Reading error
Decision to
delay action

Information
miscommunicated

Inappropriate
strategy
chosen

Wrong data source
attended to

Data not Checked
with appropriate

frequency



Part I

MODEL ELICITATION

19





Chapter 3

Structure elicitation

6In engineering risk and reliability analysis, domain experts from a variety of disciplines and
experts in probability and risk assessment have to work closely together. They have to jointly
develop probabilistic models, which are often multi-disciplinary. Ensuring consistency among
and within the models is crucial. A common model framework is key in this process.
The BN is an increasingly popular choice for such a framework (cf. chapter 1). Its graphical
structure supports the model building process among different experts and facilitates the com-
munication of the model to stakeholders. It helps ensuring that the model is traceable, which
is a basic requirement to a solid risk assessment (Bedford and Cooke, 2001). Its modular
nature allows for large models to be built and evaluated, thereby incorporating existing mod-
els. The derivation of the general dependence structure requires a profound understanding of
the problem as well as an understanding of the BN semantics. Once the graphical structure
is developed, one can deduce from the DAG, which CPDs need to be quantified from data,
expert estimates, alternative models or combinations thereof.
In the field of engineering risk analysis and reliability, the structure elicitation process, i.e.
the construction of the DAG, has received little attention and is seldom presented in a sys-
tematic and formal manner. Exceptions include (Langseth and Portinale, 2007), who explain
the quantitative and qualitative BN model building and inference process for reliability ap-
plications. They provide suggestions on BN elicitation based on domain experts and describe
the derivation of BNs from fault trees (FTs). Furthermore (Hanea et al., 2006) discuss the
elicitation of BN model from expert knowledge. In a more general context (Fenton and Neil,
2012) propose the use of generic BN substructures (or idioms) that represent common situa-
tions in BN elicitation. These can be used to elicit BN structures in a modular way. (Kjærulff
and Madsen, 2013) define classes of variables in a BN and discuss how these classes typically
interdepend. The resulting high-level dependence structures can support BN structure elic-
itation. (Conrady and Jouffe, 2015) discuss BN elicitation and distinguish data and theory
as possible basis for BN model elicitation. Additionally, (Chen and Pollino, 2012) propose
guidelines for BN modeling of environmental systems.

6This chapter is adapted from (Zwirglmaier and Straub, 2016b)
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This chapter attempts to structure the qualitative model elicitation process. Based on an
extensive literature review, four approaches for BN structure elicitation are distinguished,
namely: (1) transformation from existing probabilistic models such as fault trees, event trees;
(2) derivation from existing generic (physical or empirical) models; (3) structure elicitation
based on data; (4) structure elicitation based on domain expert knowledge. These four ap-
proaches are reviewed in the following sections together with small applications from the field
of engineering risk analysis and reliability. Analogies and common challenges among these
approaches are highlighted. Combinations of these approaches are discussed as well as typical
challenges associated with the different structure elicitation approaches.

3.1 BN structures derived from other probabilistic models

FTs and ETs are examples of probabilistic modeling tools that are popular in industry due to
their simplicity and the possibility for standardized elicitation. Because BNs are more flexible,
they are increasingly replacing or enhancing these models. As described in this section, it is
often straightforward to replace an existing probabilistic model with a BN, but the BN may
be inefficient in some cases.

3.1.1 Fault trees and general system reliability models

In system reliability, the failure (survival) of a system is generally described by a structure
function φ (Rausand and Høyland, 2004). φ can be represented by FTs, reliability block
diagrams, minimal cut sets, minimal link sets or other models. The structure function can be
transformed into a BN, as first outlined in (Torres-Toledano and Sucar, 1998). In industrial
applications, the structure function is often constructed and represented by means of fault
trees (Stewart and Melchers, 1998; Rausand and Høyland, 2004). The transformation of a
FT into a BN was first proposed in (Bobbio et al., 2001; Mahadevan et al., 2001) and has
been described in multiple publications (e.g. Langseth and Portinale, 2007; Marquez et al.,
2010; Kusz et al., 2011; Khakzad et al., 2011). To transform a FT to a BN, events from the
former need to be represented through binary nodes in the latter. The states of the nodes
correspond to the failure and the survival event. Component nodes are connected to the
system node through a series of converging connections, which mirror the gates of the FT (cf.
Figs. 3.1 and 3.3). The CPTs of the system node differ according to the gate type used in
the FT representation. Fig. 3.1 shows the transformation of an AND/OR gate from a FT
(respectively a parallel/series subsystem from a reliability block diagram (RBD)) in a BN.

Figs. 3.2 and 3.3 illustrate the transformation of a simple example FT into its corresponding
BN. Tab. 3.1 shows the CPT representing the 2-out-of-3 gate. CPTs representing FT gates
are deterministic, i.e. conditional probabilities take only value 0 or 1. Whereas a basic event
may appear multiple times in the FT (Tsunami in Fig. 3.3), it is represented by a single node in
the BN. In this way, dependences in the system are more evident in the BN and computation
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Figure 3.1: Representation of AND/OR gate from a FT respectively a series/parallel subsys-
tem from a RBD in a BN. The events Xi and Y are represented through binary nodes X∗i
and Y ∗ in the BN.

is straightforward. The flexibility of the BN also allows to include additional features that
are difficult to consider in the FT, such as noisy (non-deterministic) gates, sequential failures
and multi-state variables (Marquez et al., 2010). An approach for representing dynamic
FTs (Dugan et al., 1992) in BNs is proposed by (Boudali and Dugan, 2005). (Montani et al.,
2008) represent dynamic FTs through dynamic BNs and provide a software tool (RYDYBAN)
to automate this transformation. Applications of transformations of FTs into BNs include
accident modeling in railways (Marsh and Bearfield, 2007) and aviation (Ale et al., 2009;
Morales, 2010); a hydro-power fault diagnosis system (Jong and Leu, 2013); a model of a
regasification system of liquefied natural gas on board of a floating, storage and regasification
unit (Martins et al., 2014). A general representation of system reliability problems in BNs
is obtained by linking all component nodes directly to the system node, which represent
the structure function φ. This is the so-called naïve representation (cf. section 3.2), which is
severely limited by the size of CPT of the system node. A more efficient alternative is provided
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by transforming the minimal cut sets/ minimal link sets representation of the system into a
BN, following the systematic procedure of (Bensi et al., 2013). The approach does however
require optimization to identify efficient BN structures, which is also limited by system size.

Failure

power supply

Failure power 
generation

2

Failure
power plant 1

Failure 
power plant 2

Failure 
power plant 3

Failure
power transmission

No mobile
flood wall PP 1

Tsunami

No mobile
flood wall PP 2

Tsunami

No mobile
flood wall PP 3

Tsunami

Figure 3.2: Example FT modeling power supply. Power can be supplied, if enough power is
generated and the power can be transmitted. Enough power is generated if at least two power
plants are working. A power plant fails, if a tsunami occurs and no mobile flood walls are
erected.
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Figure 3.3: BN corresponding to the FT from Fig. 3.2.

3.1.2 Event trees

The event tree ET is a basic probabilistic modeling tool to evaluate the probability of different
scenarios arising from an initial (top) event. It also enables the computation of the expected
consequences associated with these scenarios. The transformation of ETs to BNs is described
in (Bearfield and Marsh, 2005; Friis-Hansen, 2000).
A general ET is shown in Fig. 3.4a. The ordering of random variables X1, . . . Xn, Y from
left to right typically follows the causal direction, which is here implied in the correspond-
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Table 3.1: CPT of the node Power generation from the BN in Fig. 3.3, which represents the
2-out-of-3 gate from the FT in 3.2.

Power plant 1 Failure Survival
Power plant 2 Failure Survival Failure Survival
Power plant 3 Failure Surv. Failure Surv. Failure Surv. Failure Surv.

Sufficient 0 0 0 1 0 1 1 1
Insufficient 1 1 1 0 1 0 0 0

ing BN shown in Fig. 3.4b. Whether a link between any two nodes in the BN is actually
present can be inferred from the ET. A link from Xi to Xj is required if, and only if,
p (Xj |ac (Xj)) 6= p (Xj |ac (Xj) \Xi), for at least one combination of Xi and Xj . I.e., the link
is required if the two corresponding random variables are dependent conditional on knowing
their (potential) joint ancestors and their (potential) intermediate nodes and not having re-
ceived any evidence on their (potential) descendants. However, if not all branches of the ET
are explicitly quantified (because some branches have no effect on Y ), this test cannot be
carried out. In the absence of other information, the link from Xi to Xj is omitted. This is
further discussed in the application example of subsection 3.1.5. The expected consequences
associated with a top event are determined from the consequence node Y , by evaluating its
marginal probability distribution p (y) and then computing the expected value E [Y ]. Alter-
natively, utility nodes can be added to the BN. Such utility nodes are available in influence
diagrams (IDs), which are an extension of the BN to enable the analysis of decisions based
on the expected utility theory (Raiffa and Schlaifer, 1961).
Often FTs and ETs are combined into so-called bow tie models, where the top event from the
FT represents the initiating event of the ET (Andersen et al., 2004). While FTs model the
occurrence of a top (failure) event starting from several initiating events, ETs model the paths
from the top event (failure) to the possible final states (different consequences associated with
the failure event). Transformation of bow ties to BNs is described by (Duijm, 2009; Khakzad
et al., 2013).

3.1.3 Random processes, random fields and joint probability distributions

Among others natural phenomena are often described through random processes, X (t), where
tmay be either continuous or discrete. Let the probability distribution fX(t1) (x (t1)) represent
the probability distribution of the random variables X at point in time/space t = t1. A
discrete random process respectively a continuous random process, which was discretized
in the time/space domain t, can be represented in a BN. An appropriate framework for
representing such random processes is the dynamic BN (Fig. 3.5).
A discrete/discretized random process is said to have the Markov property if X (ti) at time
slice ti does only depend on X (ti−1) at time slice ti−1, i.e.
fX(ti)|X(ti−1),...,X(t0) (x (ti) |x (ti−1) , . . . , x (t0)) = fX(ti)|X(ti−1) (x (ti) |x (ti−1)).
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Figure 3.4: Representation of an ET in a BN. It should be checked carefully that the sequence
in the ET follows the causal direction. From the conditional probabilities in the ET it can be
assessed, whether a link is required or not.

Such a process is shown in (Fig. 3.5) together with its BN representation. An example of a
BN modeling a stochastic process is given in (Straub, 2009).

While stochastic processes vary in a one-dimensional time or space domain, a random field
X (z) varies in a multidimensional domain z (Vanmarcke, 2010). Analogues to a stochastic
processes, a random field can be discretized in the domain z. A random field can be represented
in a BN through a number of selected points z = zi. Since X (z) is auto-correlated for all
pairs of points zi and zj the naïve approach for modeling X (z) in a BN would be to add links
between all pairs of points. Even for a medium number of points zi, this becomes computa-
tionally unfeasible. To overcome this issue, (Bensi et al., 2011) propose a BN representation of
the random field by exploiting decomposition methods such as the Karhunen-Loéve expansion
(Spanos and Ghanem, 1989). Applying decomposition methods, a vector X corresponding
to the random field X (z) evaluated at n selected points zi, . . . , zn can be approximated as a
function of m independent standard normal random variables U = [U1, . . . , Um]T :

X ≈ TU (3.1)

The transformation matrix T can be obtained by a decomposition method. The approxima-
tion of Eq. 3.1 is exact if m = n independent standard normal random variables are used.
Elicitation of BNs, when an analytical model, like the one in Eq. 3.1 is given, will also be
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discussed in the following section. For the transformation to a BN the same approach as dis-
cussed there can be applied. The framework is applied in (Bensi et al., 2014) in the context
of post-earthquake risk assessment.
Since a BN essentially represents the joint distribution between its random variables, it is
possible, if a joint distribution is given (e.g. through a random process or a random field
model), to derive all local, conditional probability distributions required for quantifying a BN
representation of it. A structure can be derived from the joint probability distribution in a
similar way to structure learning from data. The difference between this approach and data
based structure learning (section 3.3) is that in this case one has perfect information (i.e. this
would correspond to an infinitely large dataset). However just as it is the case for data based
structure learning, there is no guarantee for the derived structure to represent causality.

3.1.4 Other models

Further probabilistic models that are well suited for transformation to BNs include safety
barrier models, which are often used instead of FTs or ETs. Transformation of such a safety
barrier model to a BN is described in (Léger et al., 2008). Probabilistic HRA models, which are
used for the prediction of human errors in varying operational contexts, have been transformed
into BNs (e.g. Kim et al., 2006; Groth and Swiler, 2013). (Hanea et al., 2012) investigate the
dynamic BN as an alternative to the ensemble Kalman filter for reservoir engineering.
In principle, any probabilistic model can be transformed into a BN, because they all represent
a joint probability distribution over a set or random variables (subsection 3.1.3). However,
the BN is not necessarily an optimal representation in all cases. To understand, whether or
not a BN is an effective representation of an existing probabilistic model, one should look
into whether or not the probabilistic model is faithful to a DAG (Spirtes et al., 2001). A
joint probability distribution is faithful to a DAG, if a DAG exists, which exactly represents
the conditional independences and dependences found in the joint probability distribution
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through the d-separation properties encoded in the graph structure. The Markov network,
shown in Fig. 3.6a is an example of a probabilistic model that is not faithful to a DAG. In a
Markov network, two nodes are d-separated if all undirected paths between them are blocked
(Koller et al., 2007). Example conditional independence properties described by Fig. 3.6a
are X1 ⊥ X4|X2, X3 (i.e. X1 is independent of X4 given X2 and X3) and X2 ⊥ X3|X1, X4.
Example conditional dependences are X2 6⊥ X4|X1 (i.e. X2 is dependent on X4 given X1)
and X3 6⊥ X4|X1. It is impossible to represent all these four conditions simultaneously in a
DAG. For example, in the BN from Fig. 3.6b the first independence condition is fulfilled but
not the second while in the BN from Fig. 3.6c the second is fulfilled but not the first.
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Figure 3.6: In a) a Markov network is shown, for which it is impossible to represent all its
(conditional) (in-)dependence properties simultaneously in a BN. Both BN I and BN II fail
at doing so.

3.1.5 Application example

An ET modeling the consequences of a ship collision accident, conditional on the event ship
being on a collision course, is shown in Fig. 3.7a (Nývlt and Ferkl, 2013). The end state
is dependent on whether the ship fails to detect the collision course (event A = 0), whether
the platform fails to detect the collision course (event B = 0) and whether the ship fails
to change the course in time (event C = 0). The occurrences of the events A = 0 and
B = 0 due to lower-level events is modeled using FTs (Fig. 3.7b). Fig. 3.7c represents
a BN model of both the ET and the FTs. The ET in Fig. 3.7a does not contain the
conditional probabilities needed to quantify the corresponding, complete joint distribution
e.g. it does not contain p (B = 0|A = 1, coll. course) and p (C = 0|A = 0, B = 0, coll. course).
(Bearfield and Marsh, 2005) refer to these as "don’t care" conditions, since these probabili-
ties are irrelevant for the prediction of the end state. This may be either because one might
know with certainty that e.g. B = 0 does (not) occur if A = 1 or because the state of
B may be irrelevant for C or the End state if A = 1. Following (Bearfield and Marsh,
2005), if the objective of the BN is to only predict the probability of the End state, the
parameters can be chosen freely, and optimally in a way that they represent causal indepen-
dence. E.g. one can choose p (B = 0|A = 1, coll. course) = 1−p (B = 1|A = 1, coll. course) =

p (B = 0|A = 0, coll. course), thus there is no link between A and B. One can furthermore
choose p (C = 0|A = 0, B = 0, coll. course) = 1− p (C = 1|A = 0, B = 0, coll. course)
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= p (C = 0|A = 0, B = 1, coll. course) thus there is no link between B and C. Since
p (C = 0|A = 0, B = 0, coll. course) 6= p (C = 0|A = 1, B = 0, coll. course) there is however a
link from A to C. Freely choosing the parameters for "don’t care" conditions is however only
possible, if the BN is only used to determine the probability distribution of the End state
(potentially given evidence for the other random variables).
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Figure 3.7: An ET modeling the consequences of a ship collision starting from the initiating
event ship being on a collision course (a). The events A and B from the ET are modeled
through FTs (b). The corresponding BN representing both the ET and the two FTs is shown
in (c).

3.2 Structure elicitation based on general models

The behavior of anthropogenic or environmental systems can be described through physical or
empirical models. In combination with a stochastic model of its input parameters, such mod-
els can be used in a probabilistic risk or reliability analysis. To extend such models or include
them in a larger model, it can be beneficial to transform the model in a BN (Straub and Der Ki-
ureghian, 2010a). The transformation has also been proposed for the purpose of Bayesian
analysis in near-real-time decision support systems, because of the potentially fast inference
algorithms available for BNs. Examples include the transformation of empirically-based mod-
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els for earthquake risk assessment into BNs (Bayraktarli and Faber, 2011; Bensi et al., 2014;
Franchin et al., 2016); physical models of upheaval buckling of pipelines (Friis-Hansen, 2000);
physically and empirically based models for levee reliability (Roscoe and Hanea, 2015) and
costal storm impact (Jäger et al., 2015); models of deterioration processes through dynamic
BNs (Straub, 2009; Nielsen and Sørensen, 2010; Luque and Straub, 2015; Zhu and Collette,
2015).

3.2.1 Representation of a general model in a BN

Consider a general model g with scalar output Y and inputX; it is Y = g (X). When the input
X = [X1, . . . , Xn] consists of independent random variables, the model can be generically
represented by the BN shown in Fig. 3.8. Dependence between the random variables in
X can be represented by including directed links among them or through common parents,
following section 3.1, but this does not affect the representation of g. The model in Fig.
3.8 is the naïve BN representation of a general model (cf. section 3.1). The issue with this
approach is the computational limitations associated with the converging connections to Y .
For discrete BNs, the size of Y ’s CPT increases exponentially with the number of inputs, n.
Computational efficiency is often a bottleneck in BN modeling. In particular this may be
the case in system reliability problems with many components; physical models with many
basic random variables or also expert elicited structures, where the experts assume a node to
have many parents. Various approaches for making BN structures more efficient have been
proposed. Some of the most important ones are presented in the following.
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Figure 3.8: Naïve BN representation of a general model Y = g (X). To model additional
dependencies among the variables X, links between the variables Xi or common parents can
be added.

3.2.2 Simplification of a BN through node removal

7Removing random variables from a BN is one possibility to reduce the computational effort
associated with a model. A formal approach for removing nodes from a BN is described in
(Straub and Der Kiureghian, 2010b). In order to decide, which nodes to remove from the BN,
the following questions should be considered (cf. section 3.4):

• Which random variables are relevant for prediction?

• Which random variables can potentially be observed?
7This subsection is adapted from (Zwirglmaier and Straub, 2016a).
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• Which random variables simplify the modeling of dependencies?

• For which random variables is it desirable to explicitly show their influence on Y ?

If a random variable does not belong to any of these categories, the corresponding node in
the BN can be removed. Since the computational efficiency of the model is governed by the
size of the CPT of the node representing Y , the primary interest is in removing parents of
Y (basic random variables) from the network. As a measure for the relevance of a basic
random variable Xi, importance measures αi from a FORM analysis may be used. To better
understand the relation between αi and Xi’s relevance for prediction consider a linearized
LSF GL (U). Following (Der Kiureghian, 2005) the variance of GL (U) can be decomposed
as:

σ2GL = ‖∇G‖2(α2
1 + α2

2 + . . .+ α2
n) (3.2)

where ∇G denotes the gradient vector of the non-linearized LSF G (U). From Eq. 3.2 it is
seen that a random variable Xi with corresponding αi accounts for α2

i · 100% of the variance
σ2GL . Therefore, observing a random variable Xi with αi = 0.1 will reduce the variance σ2GL
by 1%, whereas the fixing of Xj with αj = 0.5 will reduce σ2GL by 25%.

3.2.3 Parent divorcing

The number of parameters in the CPT of a variable Y is a function of the number of states of
Y , |Y | and the number of sates of the parents, pa (Y ). If it is possible to combine the effect
of a number of parent nodes {X1, . . . , Xk} ∈ pa(Y ) on the node Y , in one mediating node I,
where |I| <

∏k
i=1 |Xi| , the size of the CPT of Y can be reduced. This is shown in Fig. 3.9

where the effect of X1 and X2 is combined in the node I.
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Figure 3.9: Parent divorcing.

3.2.4 Causal independence representation

The causal independence representation (Fig. 3.10) can make elicitation of Y ’s CPD easier
and inference more efficient. This representation was introduced for temporal conditional
independence statements in (Heckerman, 1993). In (Heckerman and Breese, 1994) an a-
temporal definition of causal independence is introduced and empirical results showing its
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superiority with respect to inference are presented. For the causal independence representation
to be applicable, it is required that the order in which the causes (the Xi’s) are introduced is
irrelevant and that the effect of a variable Xi on the variable Y is independent of the effect
of all other variables {X1, . . . , Xi−1, Xi+1, . . . , Xn} on Y .
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Figure 3.10: Causal independence representation.

(Spačková and Straub, 2013) apply the causal independence representation for modeling tun-
nel excavation processes. In (Bensi et al., 2013) the modeling technique is used for system
reliability. (Gehl and D’Ayala, 2016) apply the causal independence representation to model
bridge systems.

3.2.5 Application example

In this subsection a short example for the derivation of a BN structure from a generic problem
is presented. The considered problem is a part of the problem discussed in chapter 8 . A
numerical model g for the landing distance required by an aircraft as a function of parameters
such as approach speed deviation, head wind, landing weight and multiple others has been
proposed by (Drees and Holzapfel, 2012). In flight, these parameters are not known with
certainty and are thus modeled by random variables X. The model is transformed to a BN
following (Zwirglmaier and Straub, 2015). The resulting BN is shown in Fig. 3.11. Only
approach speed deviation, head wind, landing weight are modeled explicitly and all other
random variables are treated as implicit uncertainties, since they are either not important
or not observable at the required point of time. The model structure can be extended e.g.
based on domain expert knowledge. This is indicated through the grey nodes airport and
aircraft-type in Fig. 3.11. These nodes causally influence the basic random variables of the
physical model.

3.3 Data based structure learning

The BN structure can be learned from data, which is a common approach in the field of ma-
chine learning and artificial intelligence (Friedman et al., 1997; Neapolitan, 2004; Koller et al.,
2007). One can distinguish supervised and unsupervised learning. Unsupervised methods aim
at finding a DAG that best represents the joint distribution of the data, either by ensuring
that the d-separation properties of the DAG and the data match as closely as possible, or by
maximizing the ability of the BN to predict the data with as few links as possible. Supervised
methods on the other hand aim at finding a model that is best suited for predicting one
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Figure 3.11: BN derived from a physical model (Zwirglmaier and Straub, 2015).

or more pre-selected target variables (problem variables). If additionally only the posterior
mode of the target variable is of interest, the models are referred to as classifiers (Friedman
et al., 1997). For classification tasks, often structures are not learned (or only partly learned),
since predefined structures such as naïve Bayesian classifiers (NBCs) or tree augmented naïve
Bayes (TAN) models have shown to be efficient (Zhang, 2004). A NBC for runway over-
run, taking into account approach speed deviation, headwind and landing-weight as feature
variables is shown in Fig. 3.12. However, classification is of limited interest in reliability
engineering and risk analysis, where typically the posterior distribution itself is of relevance.
Supervised learning can be considered an alternative to a regression analysis. A comparison
between the two approaches is provided in (Kuehn, 2010).
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wind

Approach
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Figure 3.12: NBC for runway overrun taking into account the three parents of runway overrun
from Fig. 3.11 as indicators.

In reliability engineering and engineering risk analysis, structure learning approaches are
seldom used, since learning BN structures from data requires large datasets. Datasets should
be especially large if rare events are of interest, if weak dependencies are to be learned or
if the discrete random variables in the model have a large number of states (Kuehn et al.,
2011). Reported applications of structure learning in a risk analysis context often focus on
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the behavior of a system conditional on the hazard event occurring. Examples include the
prediction of ground motions conditional on an earthquake event (Kuehn et al., 2011) or
damage conditional on a flood event (Vogel, 2014). Whereas (Blaser et al., 2009) directly
consider the hazard event tsunami. They overcome the issue of data scarcity by combining
structure learning from data with expert knowledge and engineering models. (Doguc and
Ramirez-Marquez, 2009) propose learning BNs for system reliability problems. However the
examples investigated are limited to relatively simple systems with high probabilities of failure
(i.e. > 0.1).

In general it cannot be guaranteed that DAGs that are learnt from data represent causality.
A model therefore needs to be validated by checking d-separation properties rather than
checking causal dependencies. Following the discussion at the beginning of this chapter this
is typically more challenging. Non-causal models are furthermore difficult to handle, if they
are to be combined with other models (cf. section 3.5).

3.3.1 Implementation

One distinguishes two fundamentally different approaches to structure learning based on data.
The constraint-based approach attempts to find a DAG that best describes the independence
properties of the joint distribution that is represented through the data. To derive the inde-
pendence properties from the data, statistical independence tests are applied. Based on that
a DAG is generated that represents the identified independence properties as closely as possi-
ble through d-separation properties. If the distribution, from which the data is generated, is
faithful to a DAG (cf. subsection 3.1.4) , all its (in-)dependence properties can be represented.
Whether all (in-)dependence properties of the underlying distribution are identified correctly
depends on the size of the dataset. Examples of constrained-based algorithms are the SGS
(Spirtes et al., 1989), the PC (Spirtes et al., 2001) and the NPC algorithm (Steck, 2001).

Score-based approaches attempt to find, among a set of candidate BN structures, the candi-
date that describes the data best (or that predicts the state of the target variable best). To
decide which candidate BN describes the data best, scoring functions are used. Maximum-
likelihood-based scoring functions combine the likelihood of the model given the data with a
penalty term for complex BNs. Besides that, Bayesian scoring functions are possible. Op-
timally, one would evaluate the scoring function for each possible DAG. However, since
the number of possible BN structures grows faster than exponentially with the number of
nodes (Robinson, 1977), such an exhaustive search is typically unfeasible. Thus efficient
search heuristics are applied to generate the candidates. Examples of scoring functions are
the Akaike information criterion (AIC) by (Akaike, 1974), the closely related Bayesian infor-
mation criterion (BIC) by (Schwarz, 1978), the Bayesian Dirichlet (BD) scores (Heckerman
et al., 1995) or the maximum a posteriori (MAP BN) criterion (Riggelsen, 2008). Examples
of search approaches are greedy search algorithms such as the repeated covered arc reversal
algorithm (Castelo and Kocka, 2003), the search over equivalent BN classes (Chickering, 2002)
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Table 3.2: Summary of the local (conditional) probabilities for the BN in Fig. 3.13a.

Random variable states probabilities

season [spring, summer, fall, winter] [0.25, 0.25, 0.25, 0.25]
vegetation [dense trees, no dense trees] see Annex A
slope [< 30◦, 30◦ − 45◦, > 45◦] [1/3, 1/3, 1/3]
avalanche [yes, no] see Annex A

or a search over node orderings (Teyssier and Koller, 2012).

3.3.2 Application example

To illustrate the difficulty in learning even a simple BN, a small hypothetical example is
presented, in which data is first generated from a reference BN, and a new BN is then learned
from this data. The reference BN is presented in Fig. 3.13a. It consists of four discrete
random variables with no more than four states each. The variables, their states and their
CPTs are summarized in Tab. 3.2.

From the reference BN of Fig. 3.13a, 500 samples are generated. These are used in a score
based structure learning approach, with a greedy search strategy and the BIC scoring function.
The resulting learnt BN structure is shown in Fig. 3.13b. From these samples, the influence
of season and slope on avalanche probability is identified correctly, but not the influence of
vegetation. The dependence between slope and vegetation is also identified from the data,
but in the non-causal direction. However the (in-)dependence criteria implied by this link
direction are correct. It is not possible to identify the direction of this link based on data
alone.

Season Vegetation

Avalanche

Slope Season Vegetation

Avalanche

Slope

a) Correct BN. b) BN learnt from 500 samples.

Figure 3.13: a) Original BN for predicting avalanche probability. b) BN learnt with 500
samples using a score based structure learning approach.

It is evident that the automated structure learning in this case failed to find the correct BN
structure from the 500 samples. Adding more samples or combining the automated structure
learning with expert knowledge can help to do so.
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3.4 BN structures based on domain expert knowledge

A BN structure can be elicited directly from domain expert knowledge. This route is often
followed when neither data, probabilistic nor general models exist, or existing models do not
meet the modeler’s requirements. Causality as a guiding principle for the construction of a
DAG is not least supporting the process of eliciting the model structure from experts. In
many instances, the development of the BN DAG is a rather intuitive process. However,
formal approaches to the model building process are nevertheless advantageous, to ensure
efficient models that can also be quantified and to avoid inconsistencies that may arise from
experts thinking in a diagnostic instead of a causal mode.

3.4.1 Modeling approach

The procedure for eliciting BNs from domain expert knowledge can be structured into the
following three steps:

1. Problem clarification and identification of relevant parameters

2. Modeling of relevant dependencies

3. Handling unquantifiable variables

Problem clarification and identification of relevant variables

Before building the model, the relevant variables have to be determined. Following (Kjærulff
and Madsen, 2013), relevant variables can be classified into problem variables (the variables
of interest), information variables (the observable variables, either background or symptom
variables) and mediating variables, which are not observable but help in representing the de-
pendencies between information variables and the problem variables. This classification gives
a general idea on what type of variables are relevant for a model. To identify the variables that
are relevant for a specific problem, it is necessary to get an understanding of the system. To
this end it is possible to consult domain experts either directly, e.g. in the scope of organized
interviews (Hanea and Ale, 2009; Cárdenas et al., 2013), or indirectly, e.g. through literature
reviews (e.g. Zwirglmaier et al., 2017). In many cases it is possible to directly represent the
knowledge provided by the domain experts in a BN structure. In other cases direct repre-
sentation of the problem in a BN structure may not be readily possible for the modeler. In
such cases, structured techniques for analyzing systems can be used as an intermediate step.
A large number of structured techniques to analyze systems exist. Examples of techniques
that have been used to help in BN structure elicitation include failure mode and effects anal-
ysis (FMEA) (Weber and Jouffe, 2006; Suddle, 2009; De Carlo et al., 2013) and structured
analysis and design technique (SADT) (Weber and Jouffe, 2006; Trucco et al., 2008). An
approach for deriving BN structures from causal maps is furthermore proposed in (Nadkarni
and Shenoy, 2004).
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Since nodes in a BN have to represent random variables, it is pivotal to capture the concepts
used by domain experts or in other techniques through random variables that are unambiguous
and clearly defined (incl. support, temporal/spatial reference).

Modeling of relevant dependencies

Directed links between the identified relevant variables define their dependencies. In general
the elicitation of the dependence structure cannot be treated independently of the identifi-
cation of relevant random variables. I.e. since on the one hand insight into the dependence
structure may be necessary to decide, which variables are relevant, and on the other hand
the methods used for identifying the relevant variables (such as interviews, literature reviews,
or structured system analysis methods) will always give also some insight into the dependen-
cies between the variables. For example in a FMEA causes and effects of a failure mode are
identified. A causal link between the two would thus be directed from the former to the latter.
As discussed earlier in this thesis, causality of the links is not a requirement of the BN method-
ology but causal links typically lead to more efficient models that are also more traceable. In
general causality is a good guiding principle for BN structure elicitation, as it is in line with
the human reasoning process (Pearl, 1988). However, human reasoning can also be mislead-
ing. To illustrate this, consider a result from a structural monitoring that indicates a poor
condition of the structure. There are two possible ways for orienting the link between the two
variables.

(I) From monitoring result to condition of the structure: This is referred to as the diagnostic
direction i.e. by looking at the monitoring result one concludes that the condition of
the structure is poor.

(II) From condition of the structure to monitoring result: This is referred to as the causal
direction i.e. the condition of the structure determines the monitoring result.

Option I is often chosen intuitively, but option II is preferable for modeling and computation
purposes. To avoid such fallacies, a number of principles that support the elicitation of the
causal dependence structures exist. To get an idea about the overall dependence structure,
(Kjærulff and Madsen, 2013) propose overall causal dependence structures for their categories
of variables. According to (Kjærulff and Madsen, 2013), typically background variables po-
tentially influence problem variables and/or mediating variables and/or symptom variables;
problem variables potentially influence mediating and/or symptom variables and mediating
variables potentially influence symptom variables. Furthermore the causal direction of a link
can often be assessed from the temporal order of events, i.e. following (Pearl, 2009), “a later
event can never be the cause of an earlier event”. In addition, following (Neil et al., 2000)
the causal dependence structure can be inferred by projecting specific situations onto generic
BN structures (idioms). (Neil et al., 2000) propose 5 idioms: the definitional/synthesis, the
cause-consequence, the measurement, the induction and the reconciliation idiom. For each
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of these idioms, a BN structure is provided. A modeler can make use of these idioms by
identifying these situations in her problem and adapting the given generic BN substructure
for that situation.

Unquantifiable variables

The resulting qualitative BN model can contain unquantifiable variables. These should be
dealt with separately. Unquantifiable variables are those, for which no reasonable probability
estimates can be obtained from experts or data. Note that having no data on a particular node
does not necessarily imply that it cannot be quantified. The expectation maximization (EM)
algorithm may under certain circumstances allow estimating the CPDs of nodes with no data
(Lauritzen, 1995; Dempster et al., 1977). (Hanea et al., 2006; Hanea and Ale, 2009) propose
to replace unquantifiable variables by proxy variables that are quantifiable. In cases where
it is expected that data or expert knowledge for quantifying the unquantifiable variable will
become available in the near future, it may be sufficient to use dummy parameters for the
preliminary quantification. However, if this information is not expected to be available, these
variables should be eliminated from the network to make the BN applicable in practice. In
(Zwirglmaier et al., 2017) node removal algorithms, as proposed by (Shachter, 1988), are used
for this purpose. (Straub and Der Kiureghian, 2010a) applied these algorithms to remove
continuous variables in their enhanced BN framework.
Node reduction algorithm (Shachter, 1988):

• Barren nodes, i.e. the ones, which have no children and which have not received evidence
can be removed from the network.

• To make nodes barren, arcs can be reversed. In order to revers an arc between two
nodes Xi and Xj , both nodes must inherit each others parents, without making the
directed graph cyclic.

The presented node reduction algorithm ensures that the (in-)dependence properties between
the remaining random variables are not altered. It should be noted that the reduced structure
depends on the order of node removals. Furthermore, node reduction algorithms may lead to
nodes having more parents than in the original (qualitative) network.

3.4.2 Relation to other structure elicitation approaches

In the literature typically, only BN structure elicitation based on domain expert knowledge
and data based structure learning are distinguished (Jensen and Nielsen, 2007; Kjærulff and
Madsen, 2013). In this chapter additionally structure elicitation based on probabilistic models
and structure elicitation based on generic models, were distinguished. In fact these two
approaches are closely related to structure elicitation based on domain expert knowledge. The
reason being that other probabilistic models or generic models can be used as an intermediate
step in the latter approach to analyze the domain expert knowledge in a structured way. For
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example, probabilistic modeling tools like FTs or ET can be used as a structured system
analysis method to get an understanding of the system. Besides that also generic models can
represent domain expert knowledge. These generic models could also be represented e.g. in
technical drawings or physical flow graphs (Perelman and Ostfeld, 2012). Thus both other
probabilistic models as well as generic models can be considered domain expert knowledge,
but this domain expert knowledge is presented in a way, which greatly simplifies the BN
elicitation.

3.4.3 Application example

A short example for the derivation of a BN structure from domain expert knowledge is pre-
sented. The considered problem is a part of the problem discussed in chapter 9: The misper-
ception of critical data in the control room of a nuclear power plant, which can have severe
consequences. Attention degradation is a concept that has been studied extensively in the
field of cognitive psychology (Whaley et al., 2012). The literature from this field can be used
by the BN model builder to gain an understanding of the cognitive processes. I.e. it can
be deduced that attention degradation is a possible cause of misperception of critical data
(Whaley et al., 2012; Xing et al., 2013). Besides that, attention degradation may come from
crew-members having biased expectations or prioritizing falsely. Both issues can be influenced
through missing or faulty training. Prioritization is furthermore influenced by the perception
of urgency of the crew. Finally, attention degradation can be fostered by high workloads.

From these statements the relevant concepts and their interdependencies can be deduced.
In a BN these concept need to be replaced by nodes that represent random variables. A
representation of these random variables and their dependencies is shown in the BN of Fig.
3.14 (adapted from (Zwirglmaier et al., 2017)). Some of the parameters are not quantifiable
with feasible effort. These nodes are marked in white in Fig. 3.14. Shachter’s node reduction
algorithm is applied to remove them from the BN. The resulting BN structure is shown in
Fig. 3.14.

3.5 Combination of the approaches

The structure of a medium or large BN is typically not developed solely through one structure
elicitation approach. Instead, the core of a BN structure may be elicited based on a proba-
bilistic or a general model and the model is extended based on domain expert knowledge. Or
different substructures derived using different structure elicitation approaches are combined in
one larger network. As an example, (Grêt-Regamey and Straub, 2006) develop an avalanche
risk model based on a (numerical) physical avalanche model, which is combined with vulner-
ability and consequence BN models based on domain expert knowledge. The causal model
for air transport safety (CATS) (Ale et al., 2008) combines BN structures that are developed
based on a transformation of FTs and event sequence diagrams with BN structure of human
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Figure 3.14: BN structure for critical data misperceived (Zwirglmaier et al., 2017). Follow-
ing the node removal algorithm from (Shachter, 1988), the unquantifiable (white) nodes are
removed from the network.

factors that were elicited using the domain expert knowledge. (Papakosta and Straub, 2013)
include a BN that is derived from an empirical fuel moisture model in a domain expert elicited
model for fire occurrence prediction.
In principle, such an extension of BN structures or combining different substructures is readily
achievable using the discussed approaches, if all the links in the combined network follow the
causal directions. If, however some, of the sub-networks do not follow the causal direction
combination of sub-networks becomes critical. This is illustrated in Fig. 3.15. There a simple
BN with the two nodes cause and consequence (black) is extended by an additional cause
(grey). In Fig. 3.15a the original model is causal (the cause points to the consequence) while
it is diagnostic in Fig. 3.15b and c (from the consequence one concludes about the cause). If
a new possible cause is added to the BN both the new and the old cause should be dependent,
if the state of consequence is known. This is neither represented by Fig. 3.15b, where the
additional link is added according to its causal direction nor by Fig. 3.15c, where both links
are modeled according to their diagnostic direction. Only in the model in Fig. 3.15a the
(in-)dependence assumptions are modeled correctly. To model this conditional dependence
an additional arc between the two causes could be added, which results in a complete network
that is requires more parameters than the correct BN. It is evident that causal models are
typically both simpler and easier to handle, when extending the model with additional links
or combination with other BN models, since (causal) extensions of a causal model have only
local effects on the BN. While typically one tries to elicit causal structures, BN structures
learnt from data are in general not causal. Therefore extensions, combinations of such BN
structures are critical.
Capturing the causal direction of links is often straightforward, sometimes it is challenging
and sometimes it is impossible. An example of the latter situation is the simple representation
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Figure 3.15: Extension of a simple causal respectively a diagnostic BN model by an additional
cause.

of a random field in a complete DAG. In a random field, any two points (up to a certain
distance) are correlated. Since the dependence between two points in a random field is not
directed, the directions of links in the complete DAG can be chosen arbitrarily. In that case
this is not critical with respect to the implied d-separations, since in a complete graph any
two nodes are dependent unconditionally and conditional on any subset of other nodes in the
BN. However, this can become problematic in similar situations e.g. modeling bidirectional
physical flow graphs in a BN.

3.6 Discussion

Four structure elicitation approaches for BNs were distinguished. Firstly, structure elicitation
based on transformation of other probabilistic models. Secondly, structure elicitation based
on general models. Thirdly, structure learning from data, and finally structure elicitation
based on domain expert knowledge.
In reality, the boundaries between different structure elicitation approaches are often blurred.
For example a system reliability problem can be described through its system function. In
this chapter system functions were discussed in the section on other probabilistic models,
structure functions could however also be described in the context of general models.
Likewise, the representation of a random field in a BN can be approached directly from the
probabilistic model i.e. the random field, or based on its decomposition (e.g. Karhunen-Loéve
expansion). The latter one would then be approached like elicitation based on a general model.
Moreover, other probabilistic models or general models may exist that are not directly suitable
for transformation. In spite of this, such models can still serve as a source of domain expert
knowledge for model elicitation.
While BNs represent a modeling framework that is suitable to a large variety of problems,
there are a number of challenges associated to modeling with BNs. Computational issues are
common to large BNs, where nodes have many parents or parents with many states. Such
BN structures are often encountered in system reliability problems with many components, in
reliability problems with many basic random variables or in problems with many dependencies,
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e.g. random fields that are modeled through complete BNs. However such problems are also
common to BN structures that are elicited by domain experts, since often domain experts
tend to include too many dependencies in the BN (Langseth and Portinale, 2007). In discrete
BNs, the CPT of a node increases exponentially with the number of parents. For large CPTs
the computers memory space can thus easily become a bottleneck. Besides that, also eliciting
the parameters of such a large CPT through domain experts or a limited datasets can easily
become unfeasible.
As discussed in section 3.2, in some cases more efficient BN structures can mitigate this
problem. Also compressing the CPTs as proposed in (Tien and Der Kiureghian, 2016) can
help to reduce the required memory space to some extent. Besides that, inference-time can
become critical for BNs with large cliques. For large system reliability problems with many
components it can be the case that inference is not possible with standard BN inference
algorithms, although the probability of system failure can be calculated with FT analysis
methods. Again the efficient structures discussed in section 3.2 can mitigate the inference
time bottleneck to some extent. Furthermore using sampling based approximate inference
algorithm can help to mitigate both the memory space issues as well as the inference time
issues.
Although in theory not required for BNs, modeling the links according to their causal direc-
tion is usually advisable. Especially for BN structures that are derived from domain expert
knowledge, finding the causal direction of links can be challenging. But also if the BN is
derived from other probabilistic models, the BN model builder should not rely on the as-
sumption that typically these ETs etc. follow the causal direction. As discussed, approaches
like modeling idioms (Neil et al., 2000) and overall dependencies between groups of random
variables (Kjærulff and Madsen, 2013) can support the modeler in this.
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Quantification

To each node Xi in a BN, a local probability distribution, which is conditional on the (possibly
empty) set of parents pa (Xi), is assigned. For example, to quantify the BN structure in
Fig. 2.1, the marginal/conditional distributions p (X1), p (X2), p (X3|X1), p (X4|X1) and
p (X5|X2, X3.X4) are required. In discrete BNs, these probability distributions are represented
through CPTs (e.g. Tab. 4.1).

In general, efficient BN structures are key in making quantification feasible. However, even
for efficient BN structures quantification is often difficult, due to scarcity of quantitative
information. Because of that, all available sources of information should be used in order to
come up with good quantitative models.

Typical sources of information are observed data, expert estimates or physical/empirical mod-
els. As a CPD is assigned separately to each node in the BN, it is readily possible to use a
different source of information for each node.

Quantification through data is discussed in section 4.1. Quantification solely based on expert
estimates is briefly touched upon in section 4.2. This presentation is followed by a discussion
on how expert estimates and data can be combined (section 4.3). Finally it is discussed
how sampling in combination with physical/empirical models can be used to quantify a node
(section 4.4).

4.1 Quantification based on data

From a dataset containing observed data or data collected in the scope of simulator exper-
iments, estimates for the required (conditional) probability distributions can be obtained.
For continuous nodes, distribution models can be fitted to the data using the well-known
approaches (Kottegoda and Rosso, 2008). These include the maximum likelihood estimator,
the method of moments as well as the Bayesian estimator. For a discrete BN, the entries of
the CPTs can be estimated through the frequencies in the dataset. E.g. p (X4 = x4|X1 = x1)
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for the BN in Fig. 2.1 can be approximated as:

p (X4 = x4|X1 = x1) ≈
n (X4 = x4, X1 = x1)

n (X1 = x1)
(4.1)

where n (X4 = x4, X1 = x1) is the number of cases in the dataset for which random variable
X4 is in state x4 and X1 in state x1, and n (X1 = x1) is the number of cases for which X1 is
in state x1. In principle, this approach is readily applicable to nodes with multiple parents.
However, the size of the dataset required to get good estimates increases with the number of
parents.
Data is often missing for some of the nodes in the BN. In such cases, it is possible to estimate
the most likely parameters of these nodes through the EM algorithm (Dempster et al., 1977;
Lauritzen and Spiegelhalter, 1988). The EM algorithm iteratively runs through two steps,
these steps are the expectation (E) step and the maximization (M) step. Starting from an
initial set of parameters θ in the E step, the algorithm computes the expected observed
frequencies for the missing variables, conditional on the current parameters θ. Based on
these expected observed frequencies, the parameters are recomputed. The algorithm iterates
through these two steps until a convergence criterion is fulfilled. The EM algorithm can be
used in situations, where a number of variables in the BN are not observed at all but also
in situations, where some variables are not observed in some instances of the dataset. In the
latter case it is required that the data is missing at random.

4.2 Quantification based on experts

If data is not available the local probability distributions can be elicited through experts
(Bedford and Cooke, 2001). An in depth treatment of this topic is outside the scope of
this thesis. The interested reader is referred to the respective literature (e.g. Cooke, 1991;
O’Hagan et al., 2006). In general, when eliciting probabilities from experts, the choice of
the right experts is a critical point. Also, if estimates by multiple experts are elicited, the
question on how to weight differing estimates needs to be addressed. Experts are often biased.
Therefore, it is important to avoid such biases in the process of expert elicitation.

4.3 Combination of expert estimates and data

If neither a sufficiently good dataset is available nor unambiguous expert estimates are read-
ily assessable, the best available estimate can be obtained by combining experts and data.
Bayesian updating is applied in such cases to enhance the experts’ estimates of a parameter θ
with new data. The most important aspects of Bayesian updating are revisited in this chap-
ter; for a more in depth treatment the interested reader is referred to the relevant literature
(e.g. Benjamin and Cornell, 1970; Straub and Papaioannou, 2014; Groth et al., 2014).
In the scope of this thesis Bayesian, updating of BN parameters is applied in the HRA example
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from chapter 9, for the parameters of a node representing a crew failure event. In this example
the node of interest is binary, thus a beta distribution is used as a prior. A simple approach
for elicitation of beta priors is presented in this section, after a brief description of Bayesian
updating of binary nodes. The description of Bayesian updating is extended to multistate
nodes afterwards, continuous nodes are only briefly touched upon.8

4.3.1 Bayesian updating of parameters

Binary nodes

An example of a CPT of a binary node Xi with three binary parents pa (Xi) = {X1, X2, X3}
is shown in Tab. 4.1.

Table 4.1: CPT of a binary node Xi with binary parents {X1, X2, X3}

X1 x11 x21
X2 x12 x22 x12 x22
X3 x13 x23 x13 x23 x13 x23 x13 x23

Xi = 0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
Xi = 1 1− θ1 1− θ2 1− θ3 1− θ4 1− θ5 1− θ6 1− θ7 1− θ8

As evident from this CPT, for a binary node Xi with binary parents {X1, X2, X3}, nθ = 8

parameters θi need to be elicited. In the following the parameter θi that is to be updated is
simply denoted as θ.
The prior PDF f0 (θ) represents the belief in the state of θ before considering the new data,
e.g., the probabilities based solely on expert elicitation. The data can be the result of one or
more simulator experiments or operating events. Applying Bayes’ rule (Eq. 4.2) allows one
to combine the prior distribution with the data x to get the posterior distribution f1 (θ|x),
representing the belief in the state of θ after having observed x:

f1 (θ|x) ∝ f (x|θ) f0 (θ) (4.2)

where f (x|θ) is the likelihood of the parameters θ given the data x. A typical database used in
such circumstances contains the number of positive/negative outcomes in a number of trials.
If the outcome of each event is binary (e.g. success or failure), and if it can be assumed that
the trials are independent of each other, the data can be described by a Bernoulli process.
The parameter to estimate is the probability of failure θ and the observation is ne, the number
of failures in a total of n observed/simulated scenarios. In this case, the likelihood function
f (ne|θ) is the binomial probability mass function (PMF) with parameter θ:

f (ne|θ) =

(
n

ne

)
· θne · (1− θ)n−ne (4.3)

8The description of Bayesian updating for binary nodes and elicitation of beta priors is partly adapted
from (Zwirglmaier et al., 2017).
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The beta distribution is a conjugate prior for the binomial likelihood function (Raiffa and
Schlaifer, 1961). As it greatly simplifies the mathematics of Bayesian updating, the use of
conjugate priors is in general recommendable. The beta prior PDF with parameters a0 and
b0 is:

f0 (θ) =
1

B (a0, b0)
θa0−1 (1− θ)b0−1 (4.4)

If the beta distribution is used to model f0 (θ) and the likelihood function is the binomial
PMF of Eq. 4.3, the posterior f1 (θ|ne) is beta distributed as well. In this case, the parameters
of the posterior beta distribution can be calculated analytically as:

a1 = a0 + ne (4.5)

b1 = b0 + (n− ne) (4.6)

An example of a beta prior PDF, f0 that is updated with two different datasets is shown in Fig.
4.1. In both cases the uncertainty is reduced through the Bayesian updating. Furthermore in
the first case the posterior distribution of θ is shifted to the right compared to the prior.
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Figure 4.1: Updating the beta prior distribution using two different data sets. The parameters
of the prior , f0 (θ), are a0 = 5 and b0 = 45. Posterior I is obtained by updating with a dataset
of length n = 25 in which ne = 4 failures are observed. Posterior II is obtained by updating
with a dataset of length n = 50 with ne = 5 failure occurrences.

Multistate nodes

The CPT of a multistate node Xi with m states requires elicitation of m − 1 parameters
θj =

[
θ1, θ2, . . . , θm−1

]
for each state of Xi‘s parents. An example of such a CPT of a

multistate node Xi with binary parents pa (Xi) = {X1, X2, X3} is shown in Tab. 4.2.
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Table 4.2: CPT of a multistate node Xi with discrete parents [X1, X2, X3, ..., Xn]

X1 x11 x21
X2 x12 x22 x12 x22
X3 x13 x23 x13 x23 x13 x23 x13 x23

Xi = 1 θ11 θ12 θ13 θ14 θ15 θ16 θ17 θ18
Xi = 2 θ21 θ22 θ23 θ24 θ25 θ26 θ27 θ28
Xi = 3 θ31 θ32 θ33 θ34 θ35 θ36 θ37 θ38
. . .

Xi = m 1−
∑m−1

l=1 θl1 1−
∑m−1

l=1 θl2 1−
∑m−1

l=1 θl3 . . . . . . . . . . . . . . .

The natural choice to express ones prior belief about θ (the index j is suppressed for simplicity)
is the Dirichlet distribution. The Dirichlet distribution can be seen as an extension of the
beta distribution to multistate nodes. Furthermore, it is a conjugate prior to the multinomial
distribution, a generalization of the binomial distribution. I.e. analogous to the binary case,
if the prior follows a Dirichlet distribution and the likelihood is multinomial, the posterior
will also follow a Dirichlet distribution. The PDF of the Dirichlet distribution reads:

f (θ) =
1

B (α)

m∏
i=1

θα
i−1

i (4.7)

where α =
[
α1, α2, ..., αm

]
are its parameters and B (α) is a normalizing constant:

B (α) =

∏m
i=1 Γ

(
αi
)

Γ
(∑m

i1
αi
) (4.8)

Let α0 denote the parameters of a Dirichlet prior. A dataset x, containing observations of Xi

conditional on the respective combined state of its parents can be used to update the prior
beliefs about θ (c.f. Eq. 4.2). In particular, if nXi=l is the number of cases in x for which Xi

is in state l and the parents are in their respective states, the posterior parameter αl1 reads:

αl1 = αl0 + nXi=l (4.9)

Continuous nodes

Other distribution types may be used for continuous nodes. In that case the principle from
Eq. 4.2 is still valid. The computation of the posterior distribution will however differ. For
further details the reader is referred to the standard textbooks (e.g. Raiffa and Schlaifer, 1961;
Kottegoda and Rosso, 1997; Gelman et al., 2013).

4.3.2 Elicitation of prior beliefs for binary nodes

So far in this chapter the parameters of the beta prior a0 and b0 were assumed to be given. In
practice these parameters typically need to be elicited from experts. Many techniques to elicit
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beta parameters from experts have been proposed (e.g. Bedford and Cooke, 2001; O’Hagan
et al., 2006). A review of these approaches is out of the scope of this thesis.
A straightforward approach to estimate the parameters of f0 (θ) is to first estimate the ex-
pected value E [θ]. The first constraint on the distribution parameters is given through the
definition of the expected value of a beta distribution:

E [θ] =
a0

a0 + b0
(4.10)

A second constraint is given through the shape of the PDF. To this end the parameters and
thus also the shape of the distribution are altered, in a way that the expected value E [θ] still
corresponds to the elicited one, until the shape of the PDF represents the expert’s uncertainty
about θ. In Fig. 4.2 this is exemplarily shown for an expected value E [θ] = 0.1 and varying
uncertainty.
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Figure 4.2: PDFs of beta distributions with mean 0.1 and varying standard deviations. The
standard deviations of the distributions are a) 0.03, b) 0.07 and c) 0.01.

The elicitation of Dirichlet priors is due to its multivariate character slightly more challenging.
For a detailed description of approches for the elicitation of Dirichlet priors the interested
reader is referred to the relevant literature (e.g. van Dorp and Mazzuchi, 2004; Zapata-Vázquez
et al., 2014).

4.4 Nodes representing engineering models

In reliability, failure events are often defined in terms of engineering models. These models
can be physical or empirical. Also they may be defined in an analytical or numerical manner.
If such models are to be included in discrete BNs, they need to be represented through a CPT.
For example, in the application of chapter 8, the node representing runway overrun (RWO)
is defined through a physically based numerical model.
Representation of engineering models in a CPT requires the estimation of probabilities of the
engineering model being in a certain discrete state conditional on its basic random variables
(parents in the BN) being in certain states. In the following, the engineering model is denoted
as g (x). This model is dependent on the basic random variables X = [X1, . . . , Xn] with joint
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PDF fX (x). Typically these basic random variables are continuous, and are discretized
only for the purpose of representing them in discrete BNs. We thus distinguish between the
continuous basic random variable Xi and its corresponding discretized version Yi, whose j-th
state is denoted as yij . The discretized random variable is obtained by the introduction of
interval boundaries

[
di0, d

i
1, . . . , d

i
m

]
, where di0 and dim correspond to the domain boundaries

of Xi. The j-th interval is bounded by dij−1 and dij .
The probability of g (x) being in state E conditional on its discretized parents {Y1, . . . Yn}
being in states

[
y1j , . . . , y

n
k

]
, can then be written as:

Pr
(
g (x) ∈ E|y1j , . . . , ynk

)
=

∫
g(x)∈E

f
(
x|d1j−1 < x1 ≤ d1j , . . . , dnk−1 < xn ≤ dnk

)
dx (4.11)

where f
(
x|d1j−1 < x1 ≤ d1j , . . . , dnk−1 < xn ≤ dnk

)
represents the PDF fX (x), truncated at

the interval boundaries corresponding to the states
[
y1j , . . . , y

n
k

]
. This problem is essen-

tially the same as the structural reliability problem in Eq. 2.4. Like in the case of the
structural reliability problem, in general also the integral in Eq. 4.11 cannot be solved an-
alytically. Approximate results can however be obtained through standard structural relia-
bility methods (Straub and Der Kiureghian, 2010a). For example one can apply standard
MCS for this purpose, by generating nS samples xi from the joint truncated distribution
fX

(
x|d1j−1 < x1 ≤ d1j , . . . , dnk−1 < xn ≤ dnk

)
. In this case the probability of interest can be

calculated approximately as:

Pr
(
g (x) ∈ E|y1j , . . . , ynk

)
≈ 1

nS

nS∑
i=1

Ig(x)∈E
(
xi
)

(4.12)

where Ig(x)∈E
(
xi
)
is an indicator function, which is 1 if g

(
xi
)
∈ E and 0 otherwise. In cases

where samples cannot readily be generated from the joint truncated PDF of the basic random
variables X, samples can alternatively be generated from another density hX (x) and weighted
accordingly. In this case the probability of interest reads:

Pr
(
g (x) ∈ E|y1j , . . . , ynj

)
≈ 1

nS

nS∑
i=1

Ig(xi)∈E

fX

(
xi|d1j−1 < x1 ≤ d1j , . . . , dnk−1 < xn ≤ dnk

)
hX (xi)

(4.13)
A possible choice for the sampling density hXi (xi) corresponding to component Xi, is the
exponential distribution, if the interval corresponds to a boundary interval, and the uniform
distribution otherwise (Straub, 2009).



50 CHAPTER 4. QUANTIFICATION



Part II

INFERENCE

51





Chapter 5

Introduction to inference

A BN is an efficient way of representing the joint probability distribution of a number of
random variables X = [X1, . . . , Xn]. Based on this representation, BN inference algorithms
can be used to answer queries about this joint probability distribution. Typically these are
queries for the distribution of a variable Xi conditional on having observed the outcome of a
set of other variables i.e. Xe = xe, with Xe ⊆ X\Xi. For the case where all random variables
X are discrete, the conditional PMF of Xi can be computed as:

p (xi|xe) =

∑
x−(i,e) p (x)∑
x−e p (x)

(5.1)

where x−e = x \ xe and x−(i,e) = x \ {xi,xe}. For continuous distributed random variables
the sums in Eq. 5.1 are replaced by integrals and one can write:

f (xi|xe) =

∫
x−(i,e)f (x) dx−(i,e)∫

x−e f (x) dx−e
(5.2)

In the case of a hybrid BN, the respective equation contains both, sums and integrals.
For a discrete random variables, calculating the marginal probabilities in the numerator and in
the denominator of Eq. 5.1 is theoretically possible. For BNs containing continuous random
variables, the required integrals can typically not be calculated analytically (cf. Eq. 5.2).
Continuous/hybrid exceptions, for which exact inference is possible, are:

• Conditional linear Gaussian (CLG) BNs, where the marginal distributions of the contin-
uous nodes are Gaussian and their means depend linearly on the states of their parents.
A severe restriction for such CLGs is that discrete nodes must not have continuous
parents (Shachter and Kenley, 1989; Lauritzen, 1992).

• BNs whose continuous distributions can be represented by Mixtures of truncated basis
functionss (MoTBFs), for which exact inference is possible (Langseth et al., 2009, 2012).

These two special cases will not be further considered in the scope of this thesis. Instead two
exact inference algorithms for discrete BNs are introduced in the following. By discretizing
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continuous random variables these algorithms can also be applied for approximate inference
in hybrid or continuous BNs (c.f. chapter 6). Sampling-based inference algorithms represent
another type of approximate inference algorithms for general BNs. The most important
sampling based inference algorithms are briefly introduced in chapter 7.

5.1 Exact inference algorithms for discrete BNs

While there exist analytical solutions for the sums in Eq. 5.1, the exponential increase of the
CPT hinders inference directly through Eq. 5.1 for BNs with a medium to large number of
random variables. Exact inference algorithms aim at exploiting the independence properties
in a BN to make the required calculations feasible. For this purpose, the chain rule for BNs
(Eq. 2.2) is introduced into Eq. 5.1:

p (xi|xe) =

∑
x−(i,e)

∏
xj∈x p (xi|pa (xi))∑

x−e

∏
xj∈x p (xi|pa (xi))

(5.3)

Two of the most prominent representatives of exact BN inference algorithms are the variable
elimination algorithm (Zhang and Poole, 1994) and the junction tree algorithm (Lauritzen
and Spiegelhalter, 1988; Jensen et al., 1990), which is typically implemented in standard BN
software tools. Both of them are discussed briefly in the following for a detailed description
the reader is referred to the standard textbooks (e.g. Jensen and Nielsen, 2007; Koller and
Friedman, 2009; Kjærulff and Madsen, 2013).

5.1.1 Variable elimination algorithm

Consider the BN in Fig. 2.1 and assume one is interested in the state of X3 conditional on
X4 = xe4 . The posterior probability distribution p (x3|xe4) can be calculated through Eq. 5.3
as:

p (x3|xe4) =

∑
x1,x2,x5

p (x1) p (x2) p (x3|x1) p (xe4|x1) p (x5|x2, x3, xe4)∑
x1,x2,x3,x5

p (x1) p (x2) p (x3|x1) p (xe4|x1) p (x5|x2, x3, xe4)
(5.4)

Assuming each variable Xi has m states, one needs to perform summations in a table of size
m5. More efficiently Eq. 5.4 can be rewritten as:

p (x3|xe4) =

∑
x1
p (x1) p (x3|x1) p (xe4|x1)

∑
x2
p (x2)

∑
x5
p (x5|x2, x3, xe4)∑

x1
p (x1) p (xe4|x1)

∑
x3
p (x3|x1)

∑
x2
p (x2)

∑
x5
p (x5|x2, x3, xe4)

(5.5)

Taking into account that the sum of a (conditional) PMF over its outcome space is 1 – here∑
x5
p (x5|x2, x3, xe4) =

∑
x2
p (x2) =

∑
x3
p (x3|x1) = 1 – one can write:

p (x3|xe4) =

∑
x1
p (x1) p (x3|x1) p (xe4|x1)∑
x1
p (x1) p (xe4|x1)

(5.6)
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Eq. 5.5 is computationally more efficient, since the largest table one needs to perform sum-
mations on, is of size m3. In general, it can be stated that the computational complexity of
variable elimination is determined by the size of the tables generated. (Note: This is closely
related to the so called clique size, which will be introduced in the next subsection.)

The size of the tables generated depends on the order, according to which the variables are
eliminated respectively according to which the summations are executed. For the purpose
of computational efficiency it is thus desirable to find an optimal elimination order. This is
however computationally expensive (in fact NP-hard) (Arnborg et al., 1987). Fortunately for
most practical problems it is possible to find an efficient variable elimination order through
heuristic approaches (Kjærulff, 1990).

In a nutshell the variable elimination algorithm makes inference feasible by executing the
required operations in an efficient order. This order depends on the variable of interest.
Therefore, if the marginal distributions of n nodes in the network are to be computed the
variable elimination algorithm needs to be run n times. In such situations it is easy to imagine
that the efficiency of inference can be enhanced by restructuring the problem, such that parts
of the computations that have already been performed can be reused. This is the basic idea
behind the junction tree algorithm.

5.1.2 Junction tree algorithm

In the junction tree algorithm, a BN is transformed into a junction tree. In the junction tree,
nodes represent cliques Ci. These cliques represent subsets of nodes in the BN that form a
complete subgraph in a corresponding chordal graph. A chordal graph is a undirected graph,
where there is no cycle of length larger than 3 that does not have chords i.e. links between
two nodes in the cycle that are not part of the cycle (Koller and Friedman, 2009).

A chordal graph for a BN can be obtained based on its DAG. To this end, first the so-
called moralized graph is generated by neglecting the directions of the links in the DAG
and additionally introducing undirected links between nodes that have common children. To
obtain a chordal graph from this moralized graph, additional chords are introduced until the
graph does not contain undirected cycles of length larger than 3.

The cliques are connected through undirected links in a tree structure, such that if X belongs
to two cliques Ci and Cl it also has to belong to all cliques that lie on the path between these
cliques (running intersection property). To each link connecting two cliques Ci and Cj , a
separator set is assigned. This separator set Si,j consists of the Xi’s that both cliques have
in common, i.e. Sij = Ci ∩Cj . A potential, ψC , is assigned to each clique. The potential of a
clique Ci is determined as the product of the potentials (CPTs) of the Xi’s ∈ Ci. Furthermore
two messages are associated to each link, connecting two cliques Ci and Cj , i.e one for each
direction. The message sent from Ci to Cj is determined by summing the potential of the
clique Ci over all Xi’s /∈ Sij . The message sent from Cj to Ci is computed analogously. Based
on this the marginal distribution of a node Xk can be calculated by:
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• selecting a clique Ci, which contains Xk

• multiplying Ci’s potential with the messages, directed towards it

• summing over all Xi’s ∈ Ci except Xk

In the following, the junction tree algorithm is applied to the simple BN example from Fig.
2.1. The corresponding moral graph is shown in Fig. 5.1. In this case the moral graph is
chordal. The cliques can be derived by eliminating nodes from the moral graph. From the
moral graph in Fig. 5.1 one can start by eliminating X1. The associated clique consists of the
node X1 itself and all of its neighbors i.e. X3 and X4. After eliminating X1 all other nodes
X2, X3, X4 and X5 form a clique. Therefore the constructed junction tree (Fig. 5.2) consists
of only two cliques.

X
3

X
1

X
2

X
4

X
5

Figure 5.1: Moral graph for the BN in Fig. 2.1.

The potentials of the cliques can be calculated from the potentials of the nodes in the BN.
These are:

• φ1 = p (X1) where the domain of φ1, dom (φ1) is {X1}

• φ2 = p (X2) where dom (φ2) is {X2}

• φ3 = p (X3|X1) where dom (φ3) is {X1, X3}

• φ4 = p (X4|X1) where dom (φ4) is {X1, X4}

• φ5 = p (X5|X2, X3, X4) where dom (φ5) is {X2, X3, X4, X5}

Thus the potential of clique C1 reads:

ψC1 = φ1 · φ3 · φ4 (5.7)

And the potential of clique C2 reads:

ψC2 = φ2 · φ5 (5.8)
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Figure 5.2: Junction tree for the BN in Fig. 2.1.

There are two messages attached to the link between C1 and C2. The message ψ↓ is sent from
C1 to C2 and ψ↑ the reverse direction. ψ↑ is calculated from the BN nodes’ potentials as:

ψ↑ =
∑

xj∈C2\S

φ2 · φ5 =
∑
x2,x5

φ2 · φ5 (5.9)

And ψ↓ analogously as:

ψ↓ =
∑

xj∈C1\S

φ1 · φ3 · φ4 =
∑
x1

φ1 · φ3 · φ4 (5.10)

From this the marginal distribution of e.g. X2 can be calculated as:

p (X2) =
∑

x3,x4,x5

ψ↓ · φ2 · φ5 (5.11)

Within one evidence scenario the messages can be used for calculating the marginal distribu-
tion of any node Xi ∈ X.



58 CHAPTER 5. INTRODUCTION TO INFERENCE

5.2 Computational limitations of exact inference

Exact inference is limited to discrete BNs and a couple of hybrid special cases, for which there
exists an exact solution for the required integrals. Besides that, computer hardware and in
particular computation time and memory space, can be a limiting factor.
Already in the phase of model elicitation memory can become an issue. This is especially the
case, when CPTs become too large, e.g. because a node has many parents. In the context
of inference, memory issues may furthermore arise if the size of the tables that need to be
handled during variable elimination respectively the size of the cliques’ factors that need to
be handled within the junction tree algorithm become too large. These are dependent on the
sizes of the CPTs of the nodes and also on the BN structure and its corresponding elimination
order\junction tree. Further discussions on the computational complexity of exact inference
algorithms are provided in (e.g. Jensen et al., 1990; Koller and Friedman, 2009).
In some situations, in which computational costs hinder the application of exact inference
algorithms to discrete BNs, approximate inference (e.g. through sampling based methods)
can represent a worthwhile alternative.



Chapter 6

Efficient discretization for rare events

In the previous chapter, algorithms for exact inference in discrete BNs were presented. The
same algorithms can be used for approximate inference in hybrid or continuous BNs if the
continuous random variables are discretized. Static discretization (i.e. prior to inference) in
combination with exact inference algorithms is of special interest for applications that require
the near real-time performance of exact inference algorithms. Standard static discretization
methods like equal-width discretization or equal-frequency discretization are not tailored for
reliability problems with small failure probabilities. In this chapter, the development of an
efficient discretization procedure for reliability problems, where the performance of a system is
defined through a LSF and where the failure probabilities are potentially small is described.9

6.1 Methodology

6.1.1 Treatment of a reliability problem in a BN

Discrete BNs and structural reliability concepts are combined to facilitate updating of rare
event (failure) probabilities under new observations. The general problem setting is illustrated
in the BN of Fig. 6.1. The presentation here is limited to component reliability problems;
system problems are considered later. The binary random variable Component performance
is described by the LSF g (X).
The basic random variables X of the model are included in the BN as parents of Component
performance. The nodes Mi represent measurements of individual random variables Xi, and
nodes Ij represent factors influencing the basic random variables. Dependence between the
variables in X is modeled either directly by links among them (here X2 → X1 and X4 → X5)
or through common influencing factors (here I2 → X3 and I2 → X4) the component per-
formance node can have (multiple) child nodes. However that does not have an impact on
the discretization of the reliability problem. Ultimately, the goal is to predict the compo-
nent performance, i.e. Pr (F ), conditional on observations of other variables, typically of the

9This chapter is adapted from (Zwirglmaier and Straub, 2016a).
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Figure 6.1: General structure of a BN model of a component reliability problem.

measurement variables Mi, but possibly of any other random variable in the BN, such as the
influencing variables Ij . Whenever new evidence on these variables is available, the BN should
be evaluated (in near real-time) utilizing exact BN inference algorithms. To enable exact in-
ference algorithms, all continuous random variables are discretized. These include the X, and
possibly the Mi and Ij . In the general case, the computational effort for solving the BN is a
direct function of the CPT size of Component performance. The size of this CPT is 2

∏n
i=1 ni

where n is the number of random variables in X, and ni is the number of states used for
discretizing Xi. Discretization of random variables Mi and Ij is not described here, since it is
typically straightforward and does not contribute significantly to computational performance.
The key parameter for computational efficiency and accuracy is the discretization scheme for
X, which will be described in this section. Since in many cases it is computationally not
feasible to represent all basic random variables X as nodes in a discrete BN, prior to the
discretization procedure an approach for simplifying a BN through removal of some of the
Xi’s is presented in chapter 3.

6.1.2 Discretization of basic random variables

For ease of presentation, first discretization of statistically independent basic random variables
X is considered. This is shown in Fig. 6.2, which represents a special case of the BN from
Fig. 6.1, in which the Xi’s have no parents. In general in a BN the basic random variables
X are independent if they are not connected through links, they have no common (unknown)
ancestors and no evidence is available on any of their descendants. The proposed procedure
is extended to the general case of dependent basic random variables thereafter.

Independent basic random variables

The situation is illustrated in Fig. 6.2. The performance of the component depends on n

statistically independent random variables and is described by a LSF g (X) = g (X1, . . . , Xn).
For all basic random variables Xi, corresponding measurements Mi can be performed. To
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Figure 6.2: Representation of a basic reliability problem with n independent basic random
variables in a BN. Left: original problem with continuous basic random variables Xi, right:
discrete BN, in which Xi are substituted with discrete nodes Yi.

obtain an equivalent discrete BN, the continuous Xi are replaced by the discrete random
variables Yi, and the LSF is replaced by the CPT of component performance conditional on
Y = [Y1; . . . ;Yn]. For each discrete random variable Yi with ni states 1, 2, . . . , ni, we define a
discretization scheme Di =

[
d0, d1, . . . , dni−1 , dni

]
consisting of ni+1 interval boundaries. The

first and the last interval boundaries are given by the boundaries of Xi’s outcome space.

Since here the Xi, and thus the Yi, have no parents, the PMF of Yi is defined as:

pYi (j) = FXi (dj)− FXi (dj−1) ;with j ∈ [1, . . . , ni] (6.1)

where FXi denotes the CDF of Xi. The probability of failure corresponding to the discrete
BN in Fig. 6.2 can be calculated as:

Pr (F ) =

n1∑
y1=1

. . .

nn∑
yn=1

pY1 (y1) · . . . · pYn (yn) · Pr (F |Y1 = y1 ∩ . . . ∩ Yn = yn) (6.2)

Note that the discretization does not introduce any approximation error here, as long as the
conditional probability Pr (F |Y1 = y1 ∩ . . . ∩ Yn = yn) is computed exactly.

Once measurements from the nodes M = [M1; . . . ;Mn] are available, the conditional failure
probability can be calculated as:

Pr (F |M = m) ≈ 1

pM (m)

n1∑
y1=1

. . .

nn∑
yn=1

pY1 (y1) · pM1|Y1 (m1|y1) · . . . · pYn (yn) ·

pMn|Yn (mn|yn) · Pr (F |Y1 = y1 ∩ . . . ∩ Yn = yn)

(6.3)

where Pr (F |Y1 = y1, . . . , Yn = yn) is the conditional probability of component failure given
y1, . . . , yn. If no measurements are available for some of the basic random variables, the
corresponding likelihood terms pMj |Yj (mj |yj) are simply omitted in Eq. 6.3. While the com-
putation of the unconditional failure probability following Eq. 6.2 is exact, the computation
of the conditional failure probability through Eq. 6.3 is only an approximation. The reason is
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that the dependence between the measurement variable Mi and the Component performance
variable is not fully captured in the discrete BN (see also Straub and Der Kiureghian, 2010a).
In Fig. 6.3, this is illustrated for a reliability problem with one basic random variable Xi.
Both the continuous distribution (Fig. 6.3a) and the corresponding discretized distribution
(Fig. 6.3b) are updated correctly after observing M1. However, for Eq. 6.3 to be exact, also
the conditional failure probabilities Pr (F |Y1 = y1) would need to be updated.

This can be observed in Fig. 6.3a: in interval Y1 = 3, which is the one cut by the limit state
surface, the ratio of the probability mass in the failure domain to that in the safe domain
changes from the prior to the posterior case, i.e. Pr (F |Y1 = 3) 6= Pr (F |Y1 = 3,M1 = m1).
Since the computation of the conditional failure probability following Eq. 6.3 is based on the
prior probability Pr (F |Y1 = 3), the discretization introduces an approximation in this case.
The error occurs only in the intervals that are cut by the limit state surface. In the simple
one-dimensional case of Fig. 6.3, an optimal discretization approach would be to discretize
the whole outcome space in two intervals, one capturing the survival and one the failure
domain. This discretization would have zero approximation error. However, already in a
two-dimensional case, such a solution is not possible. This is illustrated in Fig. 6.4, where the
cells cut by the limit state surface are indicated in grey. The failure probability conditional
on measurements calculated according to Eq. 6.3 will necessarily be an approximation. The
approximation error will be small, if the contribution of the cells cut by the limit state surface
(the grey cells in Fig. 6.4) to the total failure probability is small. An efficient discretization
will thus limit this contribution with as few intervals as possible.
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Figure 6.3: Discretization error in 1D.



6.1. METHODOLOGY 63

g(x
1
, x

2
) = 0

x
2

x
1

Pr(F|dark grey cell) = 1

Pr(F|white cell) = 0

0 < Pr(F|light grey cell) < 1 

f (x
1
, x

2
)

Figure 6.4: General structure of a BN model of a component reliability problem.

Dependent basic random variables

Eqs. (6.1-6.3) must be adjusted when dependence among the Xi’s is present, in accordance
with the case-specific BN structure. However, the principles outlined above for independent
X1, . . . , Xn hold equally for dependent basic random variables: The discretization error is
a function of the cells cut by the LSF. When determining an optimal discretization, it is
proposed in the following to find the FORM approximation of the reliability problem, which
can readily account for the dependence among the random variables. Hence, there is no need
to distinguish between the cases with independent or dependent random variables.

6.1.3 Efficient discretization

Optimal discretization of linear problems in standard normal space

To find an efficient discretization of X, the FORM solution to the reliability problem is con-
sidered. Evaluating the linearized FORM LSF GL(U) is computationally inexpensive once
the design point u∗ is known. Therefore, it is feasible to find a discretization of U that is
optimal for the event {GL (U) ≤ 0} through optimization. If G (U) is not strongly non-linear,
this solution will be an efficient discretization for {G (U) ≤ 0} and, after a transformation to
the original space, also for {g (X) ≤ 0}. As discussed in subsection 6.1.2, the approximation
error of the discretization is associated with the change from the prior to the posterior dis-
tribution of the basic random variables. A measure of optimality must thus consider possible
measurements of X or U. Considered are hypothetical measurements M̃i (this notation is
used to distinguish hypothetical measurements from actual measurements Mi = mi) of all
standard normal random variables Ui with additive measurement error εi ∼ N (0, σεi). Since
both the prior distribution and the measurement error are normal distributed, the likelihood
is also normal distributed:

M̃i| {Ui = ui} ∼ N (ui, σεi) (6.4)



64 CHAPTER 6. EFFICIENT DISCRETIZATION FOR RARE EVENTS

The posterior, i.e. the conditional distribution of Ui given a measurement outcome M̃i = m̃i,

is the normal distribution with mean 1
1+σ2

εi

m̃i and standard deviation
√(

1− 1
1+σ2

εi

)
. An

error measure is defined that is based on comparing the true posterior probability of failure
PF |M̃ (m̃) with the posterior probability of failure calculated from the discretized U, denoted
by P̂F |M̃ (d; m̃). Here, d are the parameters defining the discretization. The proposed error
measure is:

e (d, m̃) =

∣∣∣∣∣ log10 P̂F |M (d; m̃)− log10 PF |M̃ (m̃)

log10 PF |M̃ (m̃)

∣∣∣∣∣ (6.5)

The error measure of Eq. 6.5 represents a tradeoff between the absolute and the relative error.
It weights the (logarithmic) relative error by the magnitude of the posterior failure probability.
This ensures that the same relative error is considered worse at a higher probability level
compared to an error at a lower probability level. A-priori, the measurement outcomes are
not known. Hence we define the optimal discretization as the one that minimizes the expected
preposterior error EM̃

[
e
(
d, M̃

)]
:

dopt = arg min
d

∫
M̃
e (d, m̃) fM̃ (m̃) dm̃ (6.6)

The optimization is thus based on the computation of an expected value with respect to the
possible measurements outcomes M̃ = m̃ before having taken any measurements. This is
analogous to a preposterior analysis (Raiffa and Schlaifer, 1961; Straub, 2014a). However,
unlike in traditional preposterior analysis, the objective is not to identify an optimal action
under future available information, but to find the optimal discretization parameters dopt.
The integral in Eq. 6.6 is evaluated through a simple Monte Carlo approach. All M̃i have the
normal distribution with zero mean and variance 1 + σ2ε . The parameters in d describing the
discretization scheme are:

• ni: number of intervals used to discretize each random variable Ui,

• wi: width of the discretization frame in the dimension of Ui, and

• vi: position of the midpoint of the discretization frame relative to the design point

These parameters are illustrated in Fig. 6.5. For a problem with n basic random variables, the
full set of optimization parameters is d = [w1, . . . , wn, n1, . . . , nn−1, v1, . . . , vn]. Clearly, the
discretization error reduces with increasing ni. Because the computational efficiency of the
final BN is a direct function of the size of the CPT associated with component performance,
which is

∏n
i=1 ni, its size is constrained. To this end, cup is defined as the maximum allowed

number of parameters of the CPT of the component performance node. This puts a constraint
on the optimization of Eq. 6.6:

n∏
i=1

ni ≤ cup (6.7)
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Figure 6.5: Schematic representation of a discretization of a linear 2D reliability problem.
wi is the distance between interval boundaries di1 and dini−1. All intervals between these
boundaries are equi-spaced. vi is the position of the midpoint of the discretization frame
relative to the design point u∗ in dimension i.

The optimization is implemented through a two-level approach. The optimization of the
continuous parameters width wi and position of the discretization frame vi for all i = 1, . . . , n is
carried out using unconstrained nonlinear optimization for fixed values of ni. The optimization
of the discrete ni is performed through a local search algorithm. Note that the optimization
is performed offline, i.e. prior to running the BN, hence it does not affect the goal of near
real-time performance of the BN. Furthermore, in section 6.2 a heuristic is derived that can
replace the time-consuming solution of the optimization problem.

Efficient discretization of the original random variables X

Since the nodes in the BN represent random variables X in their original outcome space, the
discretization schemes, which are derived for the corresponding standard normal random vari-
ables U, need to be transformed to the X-space. In the case of mutually independent random
variables Xi, any point on the i-th interval boundary in U-space – if transformed – will result
in the same corresponding i-th interval boundary in X-space. This is not the case for depen-
dent random variables Xi, where a mapping of the interval boundaries in U-space to X-space
will not lead to an orthogonal discretization scheme in X-space. To preserve orthogonality
throughout the transformation, we propose to represent each interval boundary through a
characteristic point and determine the boundary in X-space through a transformation of this
point. For transforming the interval boundary of Xi, the characteristic point is selected as
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the design point u∗, where the i-th element is substituted by the coordinate of the interval
boundary. In Fig. 6.6 this is shown for an example with n = 2 random variables.
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a) Discretization in U-space b) Transformed discretization 

Figure 6.6: Transformation of a discretization scheme from U-space to X-space. To preserve
orthogonality each interval boundary in U-space is represented by a characteristic point. The
random variables X1 and X2 are Weibull distributed with scale and shape parameter 1 and
their correlation is 0.5.

6.2 Development of an efficient discretization procedure

6.2.1 Optimization of the FORM approximation

We present the optimal discretization for the FORM approximation GL (U) for n = 2 and
n = 3 dimensions. Extension to higher numbers of random variables is discussed. Because
the linear LSF employed in FORM is described only by the reliability index βFORM and the
vector α of FORM sensitives (Eq. 2.7), it facilitates parametric studies. Initially, we consider
a reliability index βFORM = 4.26, corresponding to a probability of failure of 10−5. The
standard deviation of the additive measurement error is set to either σε = 0.5 or σε = 1.0.
Different combinations of FORM sensitivity values αi are selected, to investigate their effect on
the optimal discretization. In all investigated cases, we find that the position of the midpoint
of the optimal discretization frame coincides with the design point, i.e. vopti = 0. The optimal
discretization widths wopti vary significantly with the importance measures αi, as shown in
section 6.2.1. However, the optimal number of intervals nopti is approximately the same for
all random variables in all investigated cases, independent of the αi values, i.e. n

opt
i = c

1/n
up .
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On why the optimal number of intervals nopti is independent of αi

To better understand why the number of intervals does not depend on |αi| (for |αi| that are
significantly larger than 0), recall that an efficient discretization scheme should focus on the
area around the limit state surface. More precisely, the discretization error in the posterior
case is induced by the cells that are cut by the limit state surface. Exemplarily, Fig. 6.7
shows a linear problem in standard normal space with two basic random variables U1 and
U2, where α1 = 0.45 and α2 = 0.89. While Fig. 6.7a shows an optimal discretization with 5
intervals per dimension, Fig. 6.7b shows a discretization scheme, where the more important
random variable U2 is discretized with 6 intervals and U1 with 4 intervals. In both cases, the
discretization frame is centered at the design point. It is observed that the probability mass
of the (grey) cells, associated with the discretization error in the posterior case, is higher in
Fig. 6.7b than for the optimal discretion scheme in 6.7a. In the example shown here it is
1.4 · 10−3 compared to 2.5 · 10−4.
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Figure 6.7: Linear problem in standard normal space, with two random variables U1 and U2,
where α1 = 0.45 and α1 = 0.89. The intervals cut by the limit state surface, i.e. those which
potentially lead to a posterior discretization error are marked in grey.

For input random variables Xi with a value of |αi| close to zero, the above observations do
not hold. Following section 3.2.2, these variables should be removed from the BN prior to
discretization.

Dependence of the optimal discretization width on αi

In the optimization, it is found that the optimal discretization width wopti varies strongly with
the random variable’s importance, expressed through αi. It is reminded that the width wi

describes the domain in which a fine discretization mesh is applied (Fig. 6.5). In general,
wopti decreases with increasing αi. This effect can be observed in Fig. 6.7a, where U2 is the
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more important input random variable and it is wopt2 < wopt1 . A clear relation between wopti

and αi can be observed by plotting the (logarithm of the) probability mass enclosed by wopti

against αi, as shown in Fig. 6.8. The results of Fig. 6.8 indicate that the probability mass
contained within this interval should be a direct function of αi. The more important the
variable, the finer the discretization around the design point should become. The observed
relationship between this probability mass and αi follows a clear trend, and a function can
be fitted (Fig. 6.8). Neither the dimensionality of the problem nor the standard deviation of
the measurement error appear to have an influence on this relation. However, as shown in the
following section, it is found that the relation does depend on the prior failure probability of
the problem (i.e. on βFORM ) and on the number of intervals ni used to discretize the domain.
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Figure 6.8: Logarithm of the probability mass enclosed by the discretization frame plotted
against |αi|. Φ denotes the standard normal CDF and ubi respectively lbi the last (upper)
and the first (lower) interval bound in dimension i.

To facilitate the application in practice and extending the results to larger numbers of random
variables, in section 6.2.2 parametric functions are fitted to the optimization results to capture
the dependency between the optimal discretization width wopti and the FORM importance
measures αi.

Dependence of the optimal discretization on the reliability index β and the number
of discretization cells cup

The influence of the prior failure probability and the maximum size of the CPT, cup, on
the optimal discretization is investigated through 10 problems with n = 2 random variables
in standard normal space. The FORM importance measures of the random variables are
selected between 0.1 to 0.995 and the standard deviation of the measurement error is fixed to
σepsilon = 1.0. We find that the optimal discretization frame is generally centered at the design
point, i.e. vopti = 0, and that the intervals are distributed uniformly among the dimensions.
Firstly, the maximum CPT size cup, i.e. the total number of discretization cells, is varied.
The reliability index is βFORM = 5.2. Fig. 6.9 shows the influence of cup on the resulting
width of the discretization frame wi. Three cases are considered: cup = 25, cup = 100 and
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Table 6.1: Parameters a and b of Eq. 6.8 for β = 3.1, β = 4.3 and β = 5.2 as well as 5, 10
and 20 intervals per dimension.

(a, b) ni = 5 ni = 10 ni = 20

β = 3.1 (−0.28, 2.9)
(
−1.6 · 10−2, 5.8

) (
−9.8 · 10−4, 8.7

)
β = 4.3 (−0.15, 4.3)

(
−2.4 · 10−2, 6.1

) (
−2.1 · 10−2, 6.2

)
β = 5.2 (−0.36, 3.7) (−0.11, 5.0)

(
−3.7 · 10−2, 6.0

)
cup = 400. These choices correspond to 5, 10 and 20 intervals for each random variable. The
left side of Fig. 6.9 shows the relation between the optimal wi and α2

i . The right side of Fig.
6.9 shows the same relation, where the wi’s are scaled as in Fig. 6.8, i.e. the logarithm of the
probability mass enclosed by the outer interval boundaries is depicted. As in Fig. 6.8, there
is a clear dependence between the scaled wi values and the α2

i ’s. The interval frames increase
with increasing number of random variables. Secondly, the prior failure probability is varied
from 10−3 (β = 3.1) to 10−7 (β = 5.2). The results are shown in Fig. 6.10. Again, a distinct
dependence between the scaled wi values and the α2

i ’s is found. The interval frames decrease
with increasing reliability index (with decreasing failure probability).

6.2.2 Parametric function of optimal discretion frame

As evident from Fig. 6.9 and Fig. 6.10, there is a clear dependence of the probability mass
enclosed by the optimal discretization frame (with width wi) on the FORM sensitivity values
α2
i . The following parametric function captures this dependence:

log (Φ (ubi)− Φ (lbi)) = a · exp (b · |αi|) (6.8)

ubi is the upper and lbi the lower interval boundary in dimension i, such that wi = ubi − lbi.
a and b are the parameters of the exponential function. This function is depicted in Figs. 6.9
and 6.10. Tab. 6.1 shows the parameter values a and b for the different combinations of the
prior reliability index β and number of intervals per dimension

From the left sides of Fig. 6.9 and Fig. 6.10, it can be observed that the relation between α2
i

and the optimal wi is fairly diffuse for random variables with |αi| < 0.6. Here, the parametric
relationship of Eq. 6.8 is less accurate. However, these random variables by definition have
lower importance on the reliability estimate. Hence, the inaccuracy of Eq. 6.8 for random
variables with |αi| < 0.6 is not critical, as is confirmed by the numerical investigations per-
formed in the remainder of the paper. The parameter values of Tab. 6.1 are derived from
two-dimensional problems. In Fig. 6.8 it is shown that there are no notable differences be-
tween two and three dimensions. On this basis, it is hypothesized that the heuristics are
applicable also to problems with higher dimensions. This assumption is furthermore sup-
ported by the verification examples presented in section 6.3, where the heuristics are applied
also to four-dimensional problems without any notable deterioration in the results.
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6.2.3 Summary of the proposed procedure

The steps of the proposed procedure are:

1. Formulate the reliability problem

2. Set up the corresponding BN

3. Perform a FORM analysis for the reliability problem

4. Simplify the BN by removing nodes based on:

(a) their importance for prediction

(b) their observability

(c) whether or not a node simplifies modeling of dependencies

(d) whether or not it is desired to explicitly show a node in the BN for communication
purposes

5. Find the discretization scheme in U-space based on the proposed heuristics i.e.:

(a) the discretization scheme is centered at the design point from the FORM analysis

(b) the same number of intervals is used for each random variable

(c) the width of the discretization frame follows Eq. 6.8

6. Transform the discretization scheme to X-space

7. Compute the CPTs of the component performance node and the basic random variables
using Monte Carlo simulation or Latin hypercube sampling

A MATLAB-based software tool performing these steps is available for download under
www.era.bgu.tum.de/software.

6.3 Verification examples

6.3.1 Verification example I

For verification purposes, the proposed methodology is applied to the discretization of a
general limit state with non-normal dependent random variables. The approximation error
made by this discretization is investigated for different measurement outcomes. Failure is
defined through the LSF g (x):

g (x) = a−
n∏
i=0

Xi (6.9)

i.e., failure corresponds to the event {
∏n
i=1Xi ≥ a}. The basic random variables are dis-

tributed as X1 ∼ LN (0, 0.5) and X2, . . . , Xn ∼ LN(1, 0.3) (values in parenthesis are the
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parameters of the lognormal distribution). The statistical dependence among the Xi is de-
scribed through a Gaussian copula model, with pairwise correlation coefficients ρij . The
parameters a and ρij determine the prior failure probability PF . Measurements Mi = mi are
available for all basic random variables; they are associated with multiplicative measurement
errors εi ∼ LN (0, 0.71). In Tabs. 6.2 and 6.3, different cases with 3 and 4 random variables
are shown. These cases differ with respect to the prior failure probability PF , the correla-
tion between the random variables ρij and the observed measurements m. For each case, a
reference solution PF |M is calculated analytically.

Table 6.2: Evaluation of the discretization error for different measurement outcomes m, for
problems with n = 3 random variables. a is the constant in the LSF, Eq. 6.9; ρij is the
correlation coefficient between Xi and Xj for all i 6= j; PF and PF |M denote the analytically
calculated prior and posterior failure probabilities; P̂F |M is the conditional failure probability
calculated with the discrete BN.

a cup ρij PF m PF |M P̂F |M
Abs.
error

Rel.
error [%]

100 103 0 3.6e-5 [3.0, 2.9, 2, 9] 4.3e-5 4.5e-5 3e-6 6
100 103 0 3.6e-5 [2.3, 1.1, 2, 1] 4.6e-6 5.3e-6 7e-7 14
100 103 0 3.6e-5 [0.9, 2.4, 0.9] 2.8e-7 3.5e-7 7e-8 25
200 153 0.5 1.6e-4 [1.6, 2.0, 1.2] 1.4e-6 1.4e-6 1e-7 4
400 83 0.5 6.4e-6 [2.6, 3.0, 3.2] 8.2e-7 8.9e-7 7e-8 9
400 123 0.5 6.4e-6 [3.6, 3.3, 4, 3] 4.9e-6 5.0e-6 1e-9 3

The results in Tabs. 6.2 and 6.3 show that the proposed methodology for discretization leads
to errors in the posterior probability estimate that are acceptably small for most engineering
applications. (It is reminded that discretization does not lead to a discretization error in the
prior case.) As expected, the relative error is larger when the posterior probability is low, and
the absolute error is larger when the posterior probability is high. This follows from the error
measure defined in Eq. 6.5, which balances the relative with the absolute error. In addition,

Table 6.3: Evaluation of the discretization error for different measurement outcomes m. The
number of random variables n = 4; a is the constant in the LSF, Eq. 6.9; ρij is the correlation
coefficient between Xi and Xj for all i 6= j; PF and PF |M denote the analytically calculated
prior and posterior failure probabilities; P̂F |M is the conditional failure probability calculated
with the discrete BN.

a cup ρij PF m PF |M P̂F |M
Abs.
error

Rel.
error [%]

400 104 0 1.7e-5 [2.2, 3.2, 2.4, 3.4] 9.5e-6 1.0e-5 9e-7 9
400 104 0 1.7e-5 [1.6, 1.6, 1.6, 2.0] 6.5e-7 7.9e-7 1e-7 21
400 104 0 1.7e-5 [1.1, 2.3, 1.9, 1.2] 2.4e-7 3.0e-7 6e-8 26
600 104 0.5 1.3e-3 [3.3, 1.7, 2.8, 2.6] 4.2e-4 4.3e-4 2e-5 4
800 84 0.5 5.3e-4 [1.9, 2.0, 1.9, 2.4] 1.8e-5 1.9e-5 1e-6 8
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the results do not display any apparent effect of correlation on the accuracy.
To assess the effect of the choice of the number of discretization intervals, the failure proba-
bility P̂F |M was calculated for a discretization scheme with up to 20 intervals per RV for the
fourth measurement case in Tab. 6.2. The estimated failure probabilities P̂F |M are plotted
together with the exact solution in Fig. 6.11.

6.3.2 Verification example II

The failure criterion applied in verification example I (Eq. 6.9) leads to a linear LSF in U-
space. To verify the accuracy of the proposed method for problems with non-linear LSFs in
U-space, we additionally investigate the following LSF:

g (x) = a−
n∑
i=1

Xi (6.10)

Again the basic random variablesX1 toXn are distributed asX1 ∼ LN (0, 0.5) andX2, . . . , Xn

∼ LN (1, 0.3). Different cases with n = 2, 3 and 4 random variables are investigated. Measure-
ments Mi = mi are available for all basic random variables; associated to these measurement
are multiplicative measurement errors εi ∼ LN (0, 0.71). For independent random variables
Xi it is possible to determine posterior distributions fXi|Mi

(xi|mi) analytically. The poste-
rior failure probabilities PF |M , which are used as reference solutions, are calculated through
importance sampling with 107 samples. The results are presented in Tab. 6.4.
The results in Tab. 6.4 do not differ substantially from Tabs. 6.2 and 6.3. This indicates that
the (weak) non-linearity of the LSF function describing failure does not affect the accuracy
significantly.
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Table 6.4: Evaluation of the discretization error for different measurement outcomes m. The
problems have n = 2,3 or 4 random variables; a is the constant in the LSF, Eq. 6.10; ρij is
the correlation coefficient between Xi and Xj for all i 6= j; PF and PF |M denote the prior
respectively posterior failure probabilities, which are calculated through importance sampling
with 107 samples; P̂F |M is the conditional failure probability calculated with the discrete
BN. Since there is no analytical solution, the updating of the basic random variables was
performed through rejection sampling with more than 5e7 accepted samples.

a cup ρij PF m PF |M P̂F |M
Abs.
error

Rel.
error [%]

n = 2:
12 102 0 1.3e-5 [2.8, 4.5] 1.4e-5 1.2e-5 2e-6 15
12 102 0 1.3e-5 [2.3, 2.4] 3.3e-6 3.5e-6 2e-7 6
10 122 0 1.7e-4 [4.0, 3.2] 4.0e-4 3.7e-4 3e-5 7
12 102 0.5 1.7e-4 [2.3, 2.4] 4.8e-5 5.0e-5 2e-6 4

n = 3:
15 103 0 3.7e-5 [2.1, 5.6, 5.0] 4.8e-5 4.5e-5 4e-6 7
15 103 0 3.7e-5 [1.1, 3.7, 3.4] 1.5e-5 1.8e-5 3e-6 20
13 123 0 5.0e-4 [3.0, 3.0, 3.0] 5.4e-4 5.4e-5 3e-6 1
16 103 0.5 9.1e-4 [3.0, 6.0, 5.0] 1.8e-3 1.9e-3 3e-5 2

n = 4:
20 84 0 7.4e-6 [2.0, 4.0, 3.4, 3.0] 4.9e-6 5.6e-6 6e-7 13
17 84 0 3.1e-4 [1.0, 1.4, 1.2, 2.0] 4.5e-5 5.2e-5 7e-6 15
17 124 0 3.1e-4 [3.1, 2.0, 3.3, 2.4] 2.5e-4 2.5e-4 7e-6 3
24 84 0.5 3.7e-4 [1.0, 1.4, 1.2, 2.0] 1.1e-5 1.1e-5 9e-7 8
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6.4 Discussion

When modeling with BNs, it is often necessary or beneficial to discretize continuous random
variables. When the BN includes rare events that are a function of such random variables,
the choice of the discretization scheme is non-trivial. In this chapter, discretization based on
FORM concepts is investigated, and a heuristic procedure for an efficient discretization in
these cases is proposed. This is based on importance measures αi obtained through a FORM
analysis, which represent the influence of the uncertainty associated with a random variable
Xi. The most important finding is that discretization should focus on the area around the
most likely failure point (design point), identified by a FORM analysis. Furthermore, is is
found that optimally all random variables should be discretized with approximately equal
numbers of intervals, independent of their importance, as long as |αi| is not close to zero. The
widths of the intervals should be selected based on the FORM importance αi of the random
variables. With increasing importance, the interval width should be reduced, leading to finer
discretization for larger |αi|. This relation is particularly evident for |αi| ≥ 0.8.

It is shown that it is possible to fit a parametric function to approximate the relation between
|αi| and the optimal width of the region on which the discretization should focus. This para-
metric function is used to derive a heuristic procedure for finding an efficient discretization.
This allows the extrapolation of the optimization results to problems with more random vari-
ables. As demonstrated by the verification examples, the heuristic procedure leads to accurate
results.

This paper is restricted to static discretization. Application of the proposed procedure within
dynamic discretization (e.g. Neil et al., 2008) should be investigated. The results of the
procedure can serve as an initial discretization scheme, which is iteratively adjusted within
dynamic discretization. This might strongly enhance the convergence performance of these
algorithms. The gain in computational efficiency resulting from the proposed procedure over
alternative static discretization approaches is problem specific. Some insights can be gained
from Fig. 6.7. A discretization with intervals of equal width centered at the origin would
require between approximately 2 to 5 times more intervals per random variable to achieve
the same accuracy. Because of the exponential increase of computational effort with number
of random variables, this leads to a considerable increase in efficiency. The gain compared
to discretization with equal-frequency intervals is expected to be even higher, since equal
frequency intervals focuses the fine intervals on the region of high probability density rather
than on the tails of the distribution.

The number of basic random variables in a single LSF that can be modeled explicitly in a BN
is limited to around 5 to 8. This is due to the exponential growth of the target nodes CPT with
increasing number of parents and is independent of the discretization method. Despite this
limitation, BNs are applicable to many practical problems – particularly if one considers that
usually not all basic random variables need to be modeled explicitly as nodes, as demonstrated
in the presented example. While in this chapter the focus was on the discretization of the basic
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random variables, it is straightforward to incorporate the BNs discussed into larger models.
Exemplarily in chapter 8 the procedure proposed here will be applied to the development of
a prototype of a warning system for RWO.
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Figure 6.9: Optimization results for 10 two-dimensional, linear problems in standard normal
space, which are discretized with 5, 10 and 20 intervals per dimension. In all cases the prior
failure probability is 10−7 (β = 5.2). The crosses represent the optimization results. The solid
lines are the fitted parametric functions (Eq. 6.8). The left-hand side shows the relation
between the width of a discretization frame wi and α2

i and the right-hand side shows the
relation between the probability mass enclosed by the discretization frame with width wi and
α2
i .
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Figure 6.10: Optimization results for 10 two-dimensional, linear problems in standard normal
space, which are discretized with 10 intervals per dimension. The prior failure probabilities
are 10−3 (β = 3.1), 10−5 (β = 4.3) and 10−7 (β = 5.1). The crosses represent the optimization
results. The solid lines are the fitted parametric functions (Eq. 6.8). The left-hand side shows
the relation between the width of a discretization wi and α2

i and the right-hand side shows
the relation between the probability mass enclosed by the discretization frame with width wi
and α2
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variable together with the exact (analytical) solution PF |M for the fourth measurement case
[1.6, 2.0, 1.2] in Tab. 6.2.



Chapter 7

Sampling based inference

As discussed in chapter 5, exact inference is not possible for general hybrid BNs. But also
for large discrete BNs, the computations required for exact inference can become unfeasible.
In these cases, approximate inference through sampling is a worthwhile alternative. However,
depending on the problem sampling based inference may be much slower than exact infer-
ence. Several approaches to BN sampling exist. In the following, forward sampling, likelihood
weighting and inference through MCMC sampling are briefly discussed. For a in-depth de-
scription the interested reader is referred to the standard textbooks (e.g. Jensen and Nielsen,
2007; Koller and Friedman, 2009).

We assume a joint distribution fX (x) with random variables X = [X1, . . . , Xn] that is repre-
sented through a BN. For the prior case – where no observations on any of the nodes Xi in
the network is available, generating samples from fX (x) is straightforward. More challenging
is the task of sampling from the posterior distribution fX−e|Xe (x−e|xe) i.e. the distribution
of X if information on variables Xe ⊆ X is available. X−e denotes the variables that have
not received evidence i.e. X−e = X\Xe . For the posterior PDF one can write:

fX−e|Xe

(
x−e|xe

)
∝ fX−e

(
x−e

)
· fXe|X−e

(
xe|x−e

)
(7.1)

7.1 Forward sampling, rejection sampling and likelihood weight-
ing

From a prior distribution fX (x) that is represented through a BN, samples can readily be
generated through forward sampling (Henrion, 1988). The generated samples are i.i.d. (in-
dependent and identically distributed). If the BN is used to estimate the probability of an
event E, Pr (E), one can determine the number of i.i.d. samples required to get an estimate
P̂r (E) with a coefficient of variation smaller than ρ as:

ns ≥
1− Pr (E)

ρ2 · Pr (E)
(7.2)

79
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Forward sampling in a BN is performed one random variable at a time. The random variables
X = [X1, . . . , Xn] in the BN should follow a topological ordering, meaning that for any two
nodes Xi and Xj , where Xi is a parent of Xj , Xi should occur in the ordering before Xj .
Following the topological ordering, for each node Xi a sample xi is generated from
fXi|pa(Xi) (xi|pa (xi)), its distribution conditional on its parents. The procedure for generating
nS samples from fX (x) is summarized in algorithm 1.

Algorithm 1 Forward sampling
X = [X1, . . . , Xn] follows a topological ordering
for j = 1 to nS do
for i = 1 to n do
generate a sample xji from fXi|pa(Xi)

(
xi|xjpa(Xi)

)
, where xjpa(Xi) is the j-th sample of

pa (Xi)
end for

end for

Algorithm 1 is applicable as long as non of the variables have received any evidence. A
straightforward extension to this algorithm, in order to be able to sample from posterior
distributions, is to add a rejection step. Again, samples are generated from fX (x). However,
a sample is only accepted if the sample that has been generated for the random variables Xe

complies with xe. The approach is summarized in algorithm 2 .

Algorithm 2 Rejection sampling
X = [X1, . . . , Xn] follows a topological ordering;
set j = 1;
while j ≤ nS do
for i = 1 to n do
generate a candidate sample xci from fXi|pa(Xi)

(
xi|xcpa(Xi)

)
, where xcpa(Xi) is the current

candidate sample of pa (Xi)
end for
if xj complies with xe then
xj = xcand (accept the sample)
j = j + 1

end if
end while

The efficiency of this procedure depends on the probability of observing xe in a sample,
drawn from fX (x). In fact, if at least one of the continuous nodes in the BN has received
hard evidence, this probability is 0 and therefore this approach will not be directly applicable.
In that case approximate results can be obtained by introducing virtual intervals around the
hard evidence on continuous nodes. Instead of accepting a generated sample if it complies
exactly with the given evidence one can then accept a sample if it falls within the predefined
virtual interval around the evidence. This approach is referred to as approximate Bayesian
computation (ABC) (Robert, 2016).
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In general, rejection sampling is inefficient since (possibly most of the) samples are discarded.
An approach that overcomes this issue is likelihood weighting (Shachter and Peot, 1990; Fung
and Chang, 1989). Again samples can be generated from the BN in a similar way except that
each element of a sample that corresponds to a random variable in Xe is set to it’s respective
observed state xe. To compensate for the fact that these samples do not follow the target
distribution fX−e|Xe (x−e|xe) a weight w

(
xe,xj

)
is given to each sample xj . The weight is

calculated as:

w
(
xe,xj

)
=

∏
Xi∈Xe

p
(
xei |pa (Xi) = xjpa(Xi))

)
(7.3)

While likelihood weighting is an improvement compared to rejection sampling, it is known
to perform poorly when there are large fluctuations in the likelihood weights w

(
e,xi

)
(Fung

and Chang, 1989), which is often the case when the evidence is unlikely (Shachter and Peot,
1990).

7.2 MCMC sampling

In likelihood weighting, samples are not generated directly from the distribution of inter-
est. This is accounted for by weighting the samples. Differently, Markov chain Monte
Carlo (MCMC) methods aim at generating samples directly from the target distribution.
MCMC sampling represents a popular approach for sampling from the posterior distribution
fX−e|Xe (x−e|xe) also in the context of BNs (Gilks et al., 1996). MCMC has already been
briefly described in this thesis in the context of SuS (section 2.2.1). In this section MCMC is
introduced in greater detail with a focus on inference in BNs.
A Markov Chain is generated from a random process that is discrete in the time domain,[
X1,X2, . . . ,Xt, . . . ,Xn

]
. This random process has the Markov property i.e. each new state,

Xt = xt, of the chain can be generated from a transition distribution that is conditional only
on the previous state, Xt−1 = xt−1:

p
(
xt|xt−1, . . . ,x1

)
= p

(
xt|xt−1

)
(7.4)

The transition distribution is stationary if the transition probability p
(
xt+k|xt+k−1

)
does not

depend on k.
A MCMCmethod is required to have the distribution of interest (i.e. the posterior fX−e|Xe (x−e|xe))
as its stationary distributions. In order to converge to a stationary distribution, a homoge-
neous chain needs to fulfill two properties. These are (Gilks et al., 1996):

• Irreducibility, i.e. any region of the outcome space, for which fX−e|Xe (x−e|xe) > 0 can
be reached by a chain, with probability larger than zero.

• All states of the Markov chain are positiv-recurrence, i.e. the probability of a chain
returning to a state in a finite number of steps is 1.
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7.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm generates a candidate, xc, for the next state of the Markov
chain, xt, from a proposal distribution q

(
xc|xt−1

)
. The candidate state is accepted as the

new state with probability:

α
(
xc,xt−1

)
= min

(
1,

fX−e|Xe (xc|xe) · q
(
xt−1|xc

)
fX−e|Xe (xt−1|xe) · q (xc|xt−1)

)
(7.5)

If xc is not accepted as the next state, the next state xt is equal to the current state xt−1.
This algorithm was proposed by (Metropolis et al., 1953) for symmetric proposal distribu-
tions. In that case q

(
xc|xt−1

)
= q

(
xt−1|xc

)
and thus the proposal distribution cancels out

in Eq. 7.5. The algorithm was later generalized for non-symmetric proposal distributions by
(Hastings, 1970). Markov chains generated through the Metropolis-Hastings algorithm fulfill
the reversibility condition from Eq. 7.6 (e.g. Green and Hastie, 2009; Brooks et al., 2011; Pa-
paioannou et al., 2015) and thus they have fX−e|Xe (x−e|xe) as their stationary distributions.
The reversibility condition reads:

p
(
xt|xt−1

)
fX−e|Xe

(
xt−1|xe

)
= p

(
xt−1|xt

)
fX−e

(
xt|xe

)
(7.6)

where p
(
xt|xt−1

)
is the transition PDF that describes the transition from xt−1 to xt. This

reversibility condition ensures that fX−e|Xe (x−e|xe) is the stationary distribution for an ir-
reducible Markov chain.

7.2.2 Gibbs sampling

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) is a MCMCmethod that
is particularly suited to sampling from a posterior fX−e|Xe (x−e|xe) if the joint distribution of
X is defined through a BN. In the context of Gibbs sampling, a new state of a component Xi

is generated directly from the distribution of Xi conditional on the current state of all other
random variables. The Gibbs sampler can be considered a special case of the Metropolis-
Hastings algorithm, where each new sample is accepted with probability 1 (Gilks et al., 1994).
Gibbs sampling for BNs is readily available through the well-known open source software
OpenBUGS (Bayesian inference Using Gibbs Sampling) as well as a number of other software
tools (Lunn et al., 2009). In algorithm 3 an approach for generating a Markov chain of length
nC by Gibbs sampling is described.
Where xei denotes the hard evidence corresponding to the random variable Xi. A way to
initiate x1 =

[
x11, . . . , x

1
n

]
is by forward sampling. If the initial sample does not follow the

posterior distribution burn-in needs to be considered. The Gibbs sampler, as it is described
here does not fullfil the reversibility condition from Eq. 7.6.
The independence assumptions of the BN simplify Gibbs sampling due to the fact that a
random variable Xi is d-separated from the rest of the network, given it’s Markov blanket i.e.
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Algorithm 3 Gibbs sampling.

initiate x1 =
[
x11, . . . , x

1
n

]
for j = 2 to nc do
for i = 1 to n do
if Xi ∈ Xe then
xji = xei

else
sample xji from fXi|X1,...,Xi−1,Xi+1,...,Xn

(
xji |x

j
1, . . . , x

j
i−1, x

j−1
i+1 , . . . , x

j−1
n

)
end if

end for
end for

fXi|X1,...,Xi−1,Xi+1,...,Xm

(
xji |x

j
1, . . . , x

j
i−1, x

j−1
i+1 , . . . , x

j−1
m

)
= fXi|MB(Xi)

(
xji |MB (xi)

)
. Thus

one can sample a new state of Xi from fXi|MB(Xi)

(
xji |MB (xi)

)
. For discrete BNs, deriving

an analytical expression for this distribution and sampling from it is straightforward. For
continuous nodes, the distribution can in general not be derived analytically, however, efficient
methods for sampling from this univariate conditional distribution exist (e.g. Gilks and Wild,
1992; Gilks et al., 1995; Martino et al., 2015).

7.2.3 Challenges of MCMC

Some aspects regarding convergence

The main challenge in the context of MCMC is to ensure convergence. This includes two
aspects: (1) Does a Markov chain (theoretically) converge to the desired stationary distribu-
tion (2) How long does convergence take, i.e. at what point in time can one assume that a
sample is generated from a distribution, which is sufficiently close to the desired stationary
distribution?
Properties that need to be fulfilled in order for Markov chains to converge to the desired
posterior are given in section 7.2. As an example of a BN for which Gibbs sampling does
not converge consider the network structure in Fig. 7.1 with the CPTs from Tabs. 7.1 – 7.3.
The BN could represent a series system with components X1, X2 and the random variable
X3 representing the system state. Starting from an initial state

[
x11, x

1
2, x

1
3

]
the states of the

random variable X3 chain will not change within the Markov chain. The chain would fulfill
the convergence properties, if all entries in the CPTs were larger than 0. In fact it can be
shown that the Gibbs sampler fulfills the properties required for convergence for any discrete
BN, if all entries of its CPTs are larger than 0 (Koller and Friedman, 2009).
However, if all zeros were replaced by small probabilities, the Gibbs sampler would still take
a large number of steps to converge. In general it is not possible to determine if a chain
has converged. Nevertheless, a number of diagnostic heuristics to check whether a chain has
converged have been proposed to this end (Cowles and Carlin, 1996).
Typically the starting point of a Markov chain is chosen arbitrarily and is thus not distributed
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Figure 7.1: A simple BN structure.

Table 7.1: CPT of the node X1 in Fig. 7.1.

Pr (X1)

X1 = 0 0.1
X1 = 1 0.9

according to the desired distribution. To reduce the influence of an arbitrary starting point, it
is common to discard the first samples of a chain. This part of a Markov chain is known as its
burn-in phase. After the burn-in phase, the samples of the Markov chain should correspond
to a distribution, which is sufficiently close to the desired distribution. Unfortunately, it is in
general not possible to determine the length of the burn-in phase.

Computational cost

Unlike samples from traditional MCS, samples generated through MCMC are dependent.
Therefore, the number of MCMC samples required to get an estimate of some statistics of
the desired distribution is higher than for an equally good estimate through standard MCS.
In fact, the higher the correlation between samples, the more samples are required.
Furthermore, the computational cost for generating one sample should be taken into account,
when evaluating the efficiency of a MCMC method. This is especially the case if a node
is defined through a computationally costly numerical model, g (x). For example, the M-H
algorithm as described in subsection 7.2.1 requires one evaluation of g (x) per sample. In
contrast the Gibbs sampler from algorithm 3, where each component is sampled individually,
requires at least one evaluation of g (x) for each component that has the g (x)-node in its
Markov blanket. However, depending on the method used for sampling from the univariate
conditional distributions, the number of evaluations of g (x) per component sampled might
be significantly higher.
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Table 7.2: CPT of the node X2 in Fig. 7.1.

Pr (X2)

X2 = 0 0.2
X2 = 1 0.8

Table 7.3: CPT of the node X3 in Fig. 7.1.

Pr (X3) X1 = 0 X1 = 1
X2 = 0 X2 = 1 X2 = 0 X2 = 1

X3 = 0 1 1 1 0
X3 = 1 0 0 0 1

7.3 BN sampling for rare events

Motivated by the need for estimating probabilities of rare (failure) events based on numerically
costly models, efforts have been made to reduce the number of samples (respectively model
evaluations) required for getting a good estimate of the probabilities of these rare events. This
resulted in a number of structural reliability methods, some of which are described in chapter
2 .

One representative of these methods is SuS (Au and Beck, 2001), described in subsection
2.2.1. The idea behind SuS is to decompose the probability of a rare event Pr (F ) into a
product of m larger (conditional) probabilities, Pr (Fi|Fi−1), as (c.f. Eq. 2.11):

Pr (F ) = Pr (F1)
m∏
i=2

Pr (Fi|Fi−1) (7.7)

where the intermediate events Fi are defined as Fi = {g (x) ≤ ai}, with ai being a positive
constant. Furthermore Fn = F = {g (x) ≤ 0}. Typically in SuS these probabilities are
estimated through standard MCS (in the case of Pr (F1)) or through MCMC (in the case of
Pr (Fi|Fi−1)). Furthermore the intermediate failure events can be chosen, such that Pr (F1) =

Pr (Fi|Fi−1) = . . . = Pr (Fn−1|Fn−2) = p0. In that case the probability of failure can be
rewritten as in Eq. 2.12.

7.3.1 SuS in the context of BNs

We consider BNs for reliability problems, as shown e.g. in Fig. 6.1 from chapter 6. Such a
BN might also be included in larger networks. In this BN, the performance of an engineering
system is described through a physical model g (x) that is represented through the binary node
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Component performance, with states failure (F : {g (x) ≤ 0}) or no failure (F :{g (x) > 0}).
Fig. 7.2 shows an extended version of the BN in Fig. 6.1, which directly includes g (x) as a
node.

g(x)

X
1 X
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X
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2
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Figure 7.2: The general reliability BN, extended by explicitly including the model g (x) as a
node.

The probability of the node Component performance being in state failure (F ), conditional
on having evidence, [Xe = xe, Ie = ie,Me = me] on some of the nodes, can be computed
efficiently by applying SuS to the BN. The procedure is described in algorithm 4.
The algorithm will not only output Pr (F ) but also a number of samples from the nodes
[X,M, I, g (x)] that are conditional on both [Xe = xe, Ie = ie,Me = me] and g (x) ≤ 0. From
these samples, samples within the failure domain (F ) can be generated by Gibbs sampling.

7.3.2 A simple verification example in OpenBUGS

For verification, the approach is applied to a simple example defined through the LSF:

g (X) = a−
n∑
i=1

Xi (7.8)

where the n random variables Xi are assumed to be independent (thus in the corresponding
BN there are no links or common parents between the Xi’s) and standard normal distributed
and the constant a is chosen corresponding to different probabilities of failure, Pr (F ), from
1.5 · 10−1 to 1.5 · 10−5 as:

a = −F−1 (Pr (F )) (7.9)

where F−1 is the inverse normal CDF with mean µ = 0 and standard deviation σ =
√
n.

For this verification example, algorithm 4 has been implemented in MATLAB, the MCMC
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Algorithm 4 SuS in the context of BNs
p0; nS ; nseeds = 1/p0; iLevel = 1;

• Gnereate nS samples, [x, i,m, g (x)], from the BN (consider burn-in if necessary)

• Select a1 as the (p0 · 100%)-th percentile of samples the node g (x)

• Select the nseeds samples of [x, i,m, g (x)], for which g (x) ≤ a1 as seeds

while aiLevel > 0 do
• iLevel = iLevel + 1

• set {g (x) ≤ aiLevel−1} as (inequality) evidence in the BN

• draw nS new samples, [x, i,m, g (x)], from the BN – to this end generate nseeds
Markov chains of length nS/nseeds, each starting from a different seed

• Select aiLevel as the (p0 · 100%)-th percentile of samples of the node g (x)

• Select the nseeds samples of [x, i,m, g (x)], for which g (x) ≤ aiLevel as seeds
end while
• P̂r (F ) ≈ piLevel−10 · 1

nS
·
∑

xi∈xiLevel Ig(xi)≤0 (xi)

sampling within the algorithm is performed through Gibbs sampling in OpenBUGS. The
MATLAB based software Matbugs (Murphy and Mahdaviani, 2005) is used as an interface
between MATLAB and OpenBUGS. For each SuS-level, nS = 7000 samples are used and the
intermediate thresholds ai are chosen, such that p0 = 0.1. In Fig. 7.3 the relative error for the
example (averaged over 14 simulation runs) is shown for n = 2 and n = 30 random variables
Xi. The corresponding estimate of the coefficient of variation is shown in Fig. 7.4.

7.3.3 Discussion of the sampling approach for rare events

The results in Figs. 7.3 and 7.4 show a relative error and a coefficient of variation, which is
reasonable for most practical applications. Ultimately, the approach should be incorporated
into inference for larger BNs that include a reliability problem similar to the one discussed. In
this context, convergence of the applied MCMCmethod should be carefully investigated. Even
in the simple example presented here, the coefficient of variation is relatively high for small
failure probabilities. This may be an indication for slow convergence. Both the coefficient of
variation and also the relative error are (at least for small Pr (F )) higher for the case with
only two random variables. A possible explanation for that, is that in the two-dimensional
case the random variables are more correlated than in the n = 30 case. And it is known that
convergence of the Gibbs sampler is typically slower for models, whose random variables are
highly correlated (Koller and Friedman, 2009).
An estimate of Pr (F ) = 1.5 · 10−5 was here obtained based on 35000 samples. Estimating
Pr (F ) through MCS requires 2 · 106 (respectively 107) to get results that are comparable (in
terms of the coefficient of variation) to the n = 2-case (respectively the n = 30-case). When
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Figure 7.3: Relative error for the LSF in Eq. 7.8 averaged over 14 simulation runs (Note:
The number of simulation runs is limited because of the applied software tools). The results
are shown for n = 2 and n = 30 random variables Xi.
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Figure 7.4: Coefficient of variation for the LSF in Eq. 7.8 estimated from 14 simulation runs
. The results are shown for n = 2 and n = 30 random variables Xi.

estimating the probabilities by means of standard MCMC significantly more samples would
be required, since the samples within a Markov chain are not independent.
However, if an evaluation of the LSF, g (x), is computationally costly, more important than
the number of samples is the number of LSF-evaluations. In standard MCS, the number
of LSF-evaluations is equal to the number of samples. The same is true for the Metropolis-
Hastings algorithm as described in subsection 7.2.1. In the case of Gibbs sampling (subsection
7.2.2) at least one LSF-evaluation is required for resampling each node that has g (x) in its
Markov blanket. Future research should thus on the one hand look deeper into convergence
of the method and on the other hand into its computational efficiency.
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Chapter 8

Reliability analysis for runway overrun

10The airlines that are organized in the international air transport association (IATA) carried
around 3.6 billion passengers in 2012. Among these 414 were killed in an aviation accident
(IATA, 2013). Conserving such high safety standards necessitates quantitative risk analysis.
The small accident probabilities hinder an estimation of the accident-probabilities purely
based on statistical methods.
The most common accident type in the field of civil aviation is runway excursion. Several
subtypes of runway excursion exist, among them RWO of a landing aircraft (Fig. 8.1) is the
most critical one (in the following simply referred to as RWO). This chapter describes the
development of a BN that is capable of providing RWO probabilities, conditional on the state
of the aircraft and the environment, in near real-time. Continuously providing the pilots with
these RWO probability estimates the BN is supposed to help pilots in their decision, wether
it is save to land or wether they should attempt a second approach, either at the same airport
or at an alternate airport.

Threshold Touchdown

point

Runway length

Aircraft

stops

Runway

end

Operational landing distance Stop margin

Figure 8.1: Runway overrun definitions

10The description of this appliction is based on (Zwirglmaier et al., 2014; Zwirglmaier and Straub, 2015,
2016a).
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8.1 Physical model of RWO

The operational landing distance of an aircraft can be calculated from the approach speed and
the forces acting on the aircraft. A physical model for that purpose was proposed by (Drees
and Holzapfel, 2012). This model is briefly described in the following. For a more detailed
description, the reader is referred to the original paper by (Drees and Holzapfel, 2012). From
there the RWO event can be defined as the operational landing distance exceeding the runway
length (c.f. Fig. 8.1). The LSF can therefore be written as:

g (x) = Stop margin (x) (8.1)

where the stop margin is the deterministic runway length minus the operational landing dis-
tance, which depends on a number of parameters x. Since these parameters are a priori
uncertain, they are modeled through random variables. The model to determine the opera-
tional landing distance is derived from the equations of motion. Using these the acceleration
of the aircraft in x-direction can be written as:

V̇ =
1

m
[T −D −mg · sin γ − µF (mg · cos γ − L)] (8.2)

where m is the mass of the aircraft, T is the propulsion force from the aircraft engines and D
is the aerodynamic drag. The term mg · sin γ – with g being the constant of gravitation and
γ the flight path angle – represents the contribution of the runway slope to the acceleration.
Finally, the last term describes the influence of the friction and brake forces. L denotes the
aerodynamic lift and µF the friction coefficient, which depends on the runway condition, on
the brake force and on the velocity of the aircraft.

The drag force, D can be written as:

D =
ρ

2
(VK − VW )2 S · CD (8.3)

and the lift force, L as:
L =

ρ

2
(VK − VW )2 S · CL (8.4)

where ρ is the air density, VK is the speed of the aircraft and VW the speed of the surrounding
air, such that VK −VW is the speed of the aircraft relative to the wind speed. Furthermore, S
is the reference area of the wings and CD respectively CL are the drag and the lift coefficients.
Integrating Eq. 8.2 twice with respect to time will yield the operational landing distance.
For practical reasons the operational landing distance is split in three parts. First the touch-
down distance, which is directly modeled as a random variable; second the distance from the
touchdown point to the point where the pilot deactivates the auto-brake system, which, in
addition to the environmental and technical factors, depends on a number of human factors,
e.g. the point in time until the pilot starts braking and the point in time when the spoiler
is deployed. The third part is the distance the aircraft travels from the point of auto-brake
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deactivation to the final stopping position. During a normal landing, the aircraft will not stop
completely on the runway but exit the runway with slow velocity to the taxiways. However,
it is assumed that in the case of a critical landing, which is likely to result in a RWO, this
distance is traveled with maximum deceleration efforts i.e. maximal braking forces.
The quantities in the differential Eq. 8.2 are influenced by environmental factors on the
one hand, and technical as well as human factors on the other hand. The technical aspects
are captured in the RWO model by allowing certain technical components like the spoiler,
the auto-brake system or the engines to be either operative or inoperative with a certain
probability. The brake system can be operative, inoperative or degraded. In this thesis
technical failures are neglected, thus all components are considered to be fully operative.
Furthermore, it is assumed that the flaps and slats are in configuration full, which is used
in 96 % of all approaches (Drees and Holzapfel, 2012). The friction coefficient between the
tire and the runway µF is a major factor influencing the deceleration of the aircraft. This
friction coefficient is mainly determined by the runway condition; a wet runway in considered
here. The auto-brake system automatically applies a brake pressure when the landing gear
touches ground. The magnitude of the applied pressure depends on the setting of the auto-
brake system. In the scope of this chapter, we compute RWO probabilities for the auto-brake
settings set to medium. In operational aviation, the times after touchdown, at which the
spoiler and thrust reversers are deployed and the times at which the braking starts and ends
can be obtained from operational data. On the basis of this measured data, distribution
models are selected. These models are summarized in Tab. 8.1. In this application we
distinguish between two airports (I and II) and two aircrafts (A and B). While the airport
influences the distribution of the head wind and the approach speed deviation, the aircraft
influences the distribution of the landing weight.
The touchdown point in this model, is a factor, whose variability is influenced mainly by
human actions. A normal distribution, with fixed standard deviation and a mean value
(µTDP ) that is a function of the environmental conditions is used for this. It was found from
flight operation data that pilots change their touchdown behavior according to the required
landing distance estimate, which they calculate during the approach. The required landing
distance is thereby calculated from aircraft and runway specific characteristics as well as from
the flap setting, the head wind, the temperature and the landing weight.
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Table 8.1: Basic random variables of the problem. Note: The mean value of the random vari-
able Touchdown point is a deterministic function of other basic random variables (Zwirglmaier
et al., 2014).

Random variable Comment Distribution Mean (µ) Std. dev. (σ)

Landing weight [t] Aircraft A Weibull 59.3 1.69
Landing weight [t] Aircraft B Weibull 64.3 1.69
Head wind [kts] Airport I Normal 5.4 5.8
Head wind [kts] Airport II Normal 6.5 5.8
Approach speed deviation [kts] Airport I Gumbel 4.7 4.2
Approach speed deviation [kts] Airport II Gumbel 5.6 4.2
Temperature [◦C] GEV 9.4 8.0
Air pressure [hPa] Normal 1016 8.1
Touchdown point [m] Normal µTDP 121.9
Time of spoiler deployment [s] Gamma 5.0 1.7
Time of breaking initiation [s] GEV 13.1 6.4
Time of reverser deployment [s] GEV 4.3 1.3
Time of breaking end [s] Normal 25 5

8.2 BN model

Modeling all basic random variables of the problem as parents of the node representing the
LSF is computationally unfeasible in the discrete BN. For example if each of these variables
were discretized with 10 intervals, the resulting CPT would consist of 2 ·1010 entries, of which
1010 need to be computed e.g. through sampling. The BN is thus simplified by removing
nodes that are not important for predicting RWO. Criteria, based on which one can decide,
which nodes to remove are provided in chapter 6. The FORM importance measures αi that
express the importance of the uncertainty associated to the random variables Xi represent an
important criterion for the decision whether to remove a node. In this application removed
are random variables, whose |αi| < 0.1. Furthermore removed are random variables, for which
no observation can be obtained up to the point in time, when the decision whether to land
has to be made. The FORM importance measures and reasons for removing specific random
variables are given in Tab. 8.2. Despite the fact that landing weight has an αi around 0.1 it is
not removed from the network. The reason for that is that while for a particular aircraft type
the associated uncertainty is not important, the landing weight changes significantly from one
of the considered aircraft types to the other.

The resulting BN of the RWO warning system, after node removal, is shown in Fig. 8.2.
During the aircraft approach, measurements can be obtained for the three basic random
variables included in the BN. The random variables are discretized separately for each aircraft–
airport combination (joint states of discrete parents) with 8 intervals each, following the
discretization procedure proposed in chapter 6. In a second step, the discretization schemes are
merged, i.e. the regions of the outcome space, which are discretized with fine intervals for at
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Table 8.2: FORM importance measures αi for each airport (AP) – aircraft (AC) combination
and every basic random variable in the RWO application.

αi

Random variable AP I/AC A AP I/AC B AP II/AC A AP A/AC II Annotation

Landing weight [t] 0.09 0.10 0.11 0.09 Modeled
Headwind [kts] -0.65 -0.61 -0.67 -0.60 Modeled
Approach speed
deviation [kts] 0.20 0.21 0.20 0.24 Not observable

Temperature [◦C] 0.03 0.00 -0.03 -0.03 Not important
Air pressure [hPa] 0.01 -0.01 -0.01 0.00 Not important
Touchdown point [m] 0.20 0.16 0.18 0.20 Modeled
Time of spoiler
deployment [s] 0.00 0.00 0.01 0.01 Not important
Time of breaking

initiation [s] 0.70 0.74 0.68 0.73 Not observable
Time of reverser
deployment [s] 0.03 0.04 0.06 0.05 Not important

Time of breaking
end [s] -0.02 -0.01 0.01 0.02 Not important

Runway

 overrun
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Figure 8.2: BN structure of the developed RWO warning system.

least one of the aircraft–airport combinations, are discretized with the respective fine intervals
also in the merged discretization scheme. In the end 15 (landing-weight), 10 (headwind) and
9 (approach speed deviation) intervals are used to discretize the three basic random variables.
For all observable quantities, the measurements mi are modeled with an additive observation
error

mi = xi + εi (8.5)
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εi is modeled by a normal distribution with zero mean and standard deviation σεi . For the
random variable landing weight (at landing time), the standard deviation of the measurement
error is σεLW = 0.34t. Due to turbulences governing wind speeds, the measurement of the
head wind speed at the time of the measurement is only an uncertain indicator for the head
wind speed at landing time; we model the measurement error with a standard deviation
σεHW = 2.88kts. The measurement uncertainty associated with the approach speed deviation
at landing has standard deviation σεASD = 4.21kts. 49 (Measurement LW), 57 (Measurement
HW) and 57 (Measurement ASD) intervals are used to discretize the measurement nodes.
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8.3 Results

In Tab. 8.3, prior RWO probabilities for the different airports and aircrafts obtained with
the discrete BN are compared to solutions, which were calculated by importance sampling
around the design point. In Tab. 8.4, results obtained with the BN for different hypothetical
cases of aircrafts approaching an airport are presented. In each of these cases, measurements
associated with landing weight, headwind and the approach speed deviation are made. A
threshold on the probability of RWO is used to decide, whether or not the pilot should continue
landing or cancel the landing attempt. Here we assume that up to a RWO probability of 10−6

the pilot should continue landing.

Table 8.3: RWO probabilities, Pr(RWO), for the different airports and aircrafts calculated
with the discrete BN, together with solutions calculated by importance sampling around the
design point. The latter have a sampling error with coefficient of variation in the order of
10%.

Airport Aircraft Pr(RWO) by discrete BN Pr(RWO) by importance sampling

I A 2.0 · 10−7 1.9 · 10−7

I B 1.0 · 10−6 9.2 · 10−7

II A 1.3 · 10−7 1.3 · 10−7

II B 6.9 · 10−7 6.5 · 10−7

Table 8.4: Probabilities of RWO and corresponding decision on landing, computed with the
BN for different sets of observations.

Case Airport Aircraft Measured LW [t] M. HW [kts] M. ASD [kts] Pr(RWO) Land?

a) I B 63 0 10.5 2.5 · 10−8 Yes
b) I A 61 -10 5 4.8 · 10−6 No
c) II B 67 3 0 6.5 · 10−10 Yes
d) II A 57.5 -12 3 1.3 · 10−6 No
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8.4 Discussion

This application shows how a reliability problem with a physically-based performance model
can be modeled through a discrete BN. The advantage of this lies in the capability of discrete
BNs to rapidly update probabilities, once new information becomes available. Such a feature is
especially of interest in near real-time applications. Treating continuous reliability problems
in a discrete BN framework requires the discretization of the continuous outcome space of
the reliability problem. This leads inevitably to a discretization error. In order to keep
this error small, the heuristic developed in chapter 6 is applied. In this application the
discretization procedure was done for each combination of airport and aircraft with 8 intervals
per basic random variable, that is modeled explicitly as a node in the BN. In a second
step these discretization schemes were merged, such that the number of free parameters of
the target variable’s CPT is 15 · 9 · 10 · (2− 1) = 1350. Computing the parameters for
this setting is feasible for the LSF considered in the scope of this paper. However if the
number of cells, used for discretization is increased by some orders of magnitude this may
lead to considerable computation cost. It is therefore necessary to decide carefully, which
random variables should be modeled explicitly as nodes. For computationally more demanding
LSFs it may be necessary to reduce the number of intervals per dimension and accept a
larger discretization error. By applying an importance sampling approach to sample from
the distributions of the implicitly modeled random variables, one can reduce the number of
samples required to populate the CPT of the target variable to some extend. Furthermore
while a computational demanding LSF may cause a large computational effort in the process
of establishing the model, it does not have any effect on the computational effort in the
application of the model. Finally it should be noted that while the final BN developed in this
chapter is quite simple, such BNs can be incorporated into more complex BN models, fully
exploiting the advantages of the modeling framework.



Chapter 9

Elicitation of BNs for HRA

11This chapter considers elicitation of BNs for HRA. A framework is proposed that derives the
BN structure directly based on the relevant literature from the field of cognitive psychology.
The local conditional dependencies are derived based on a combination of expert estimates
and data from simulator tests. Exemplarily the CFM critical data misperceived from the
IDHEAS HRA method is considered to demonstrate the proposed framework. This CFM is
presented to some detail in the following. Critical data misperceived captures situations such
as the one in which a parameter has to be read from a control panel or the status of some piece
of equipment is to be determined from an indication on the control panel and this piece of
information is critical in the sense that its misinterpretation will lead to an incorrect response
(Xing et al., 2013). Three PIFs are used to describe the context: HSI/environment, workload,
and training12 , where HSI refers to Human-system interface. All the PIFs are binary with
states labeled as poor and good, high and low or no and yes. In Fig. 9.1 the DT for the CFM
critical data misperceived is shown. Each path through the DT represents one possible crew
failure scenario. The analysts are provided with a set of two to five questions13 for each PIF
guiding them in determining the states of the PIFs. Expert elicitation was used to assign
probabilities to the different crew failure scenarios.

9.1 Development of a BN structure for the CFM

As explained in chapter 3 the DAG of a BN ideally represents the causal relationships between
the random variables in the model. Furthermore, the structure also defines the information
(i.e., the marginal and conditional probabilities) needed to quantify the BN. In this section,
the development of two BN structures for each CFM is illustrated: a first BN that contains

11This chapter is adapted from (Zwirglmaier et al., 2017).
12This DT also contains a branch for recovery potential, which is used in most IDHEAS CFM. The meaning

of “recovery potential” has been defined in a generic manner as “opportunities for correction given failure”.
However these opportunities have not been clearly specified for the considered CFM, and thus this concept is
neglected in the remaining sections of the chapter.

13These questions are not explicitly included in the DT. In section 9.1 a way to directly include these
questions in the model is proposed.
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Figure 9.1: Decision tree for the crew failure mode critical data misperceived (Xing et al.,
2013). The paths through the decision tree are numbered and for each path a probability was
elicited from experts. E.g. the HEP for poor HSI/environment, high workload, poor training
and no recovery potential is 0.56. (Note: The expert elicitation task has not been completed
as of the writing of this report; some probabilities are listed as “unknown” and some may
change in the final IDHEAS report.)

an expanded causal structure based on cognitive literature (Whaley et al., 2012) and PIF
specification nodes corresponding to the questions in appendix B; and a second BN obtained
through reduction of the first structure. Since the availability of data is the main bottleneck
in HRA, the aim is to develop a BN structure, whose quantification requires roughly the
same amount of information as the original DT. In section 9.1.3 the causal details in the
original method are enhanced by explicitly including the PIF specifications and by adding
PIFs that are essential to the interpretation of the CFM. This model can be quantified or
used unquantified to help document the causal paths, on which the model is based. Section
9.1.4 demonstrates that node reduction algorithms can be used to reduce the BN with full
causal details down to a structure, for which quantification is feasible with respect to data
availability. In the presented example the final model is equivalent to the DT with explicit
inclusion of the PIF specification nodes. In the following subsections, the general idea behind
the structure development approach is discussed and the structure for the crew failure mode
critical data misperceived is developed step by step. Quantification of the models is discussed
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in section 9.2.

9.1.1 Summary of approach and models

An approach for developing causal (BN) models for HRA starting from the psychological basis
of the models is proposed. The following steps summarize the approach:

• Review of the cognitive foundation for each CFM to identify the main causal failure
paths, the PIFs and possibly other relationships.

• Development of an exhaustive causal model including all identified causal failure paths,
PIFs and relationships.

• Application of node reduction algorithms, to remove nodes from the model that are not
quantifiable with feasible effort.

• Elicitation of experts and initial quantification of model.

• Updating the quantification with results from human performance databases.

9.1.2 BN model of original IDHEAS DT

Each DT used to quantify the IDHEAS CFMs includes a number of PIFs. As explained in
chapter 3 it is straightforward to develop a BN structure out of these PIFs and the target
node, which is the node representing the CFM event. Since the PIFs influence the state of
the CFM node, generally the PIFs are modeled as parents of the latter. From the structure
it is clear that quantification requires conditional probability distributions for the CFM node
and marginal distributions for the PIF nodes. The simple BN structure is shown in Fig. 9.2
for the CFM critical data misperceived. In this BN, the PIFs are assumed to be independent
if the target node is not observed. The question if the PIFs are actually independent is not
addressed within the original IDHEAS framework, since the IDHEAS decision trees provide
HEPs only conditional on the states of all PIFs.

Critical data
misperceived

Workload
HSI /

Environment
Training

Figure 9.2: BN for the CFM critical data misperceived that corresponds to the original DT
model.
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9.1.3 BN model with full causal details

The BN model in Fig. 9.2, derived from the DT, reveals little about the cognitive paths
leading to crew failure. This missing information is, however, essential to understanding
the model with its features and limitations. The model is therefore expanded at two levels
to the one BN shown in Fig. 9.3. Firstly, an additional layer of nodes is added (white in
Fig. 9.3). These nodes are intended to specify the causal paths leading to error based on
cognitive psychology. These nodes are often too generic or abstract for analysts to directly
determine the states, but critical for correctly modeling human performance. Secondly, an
additional layer of PIF specification nodes is introduced (light grey in Fig. 9.3). These are
based on questions and rules for the analysts that are provided in IDHEAS to support the
determination of the states of the PIFs (Appendix B).
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Figure 9.3: Fully expanded BN for the CFM critical data misperceived. The black node
represents the target variable; dark grey nodes the PIF variables; light grey nodes the PIF
specification variables and white nodes additional variables illustrating the causal paths. The
causal paths I to III are indicated through roman numerals.

The literature serving as a foundation for IDHEAS (Whaley et al., 2012) summarizes the
causal paths that can lead to a crew failure event, based on a comprehensive study of cognitive
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psychology. These paths can be implemented directly through nodes in the model to add
additional causal details extracted from scientific literature. For the example CFM (Fig. 9.3)
there are three main causal paths leading to data misperceived, following cognitive literature
(Köhler, 1970; Broadbent, 1958; Tversky and Kahneman, 1974; Biederman, 1987; Endsley,
1995; Klein, 1998; Warner and Letsky, 2008):

• The first causal path (path I in Fig. 9.3) corresponds to the misperception of data due
to extreme HSI/environment conditions. In this case, the quality of the HSI is so poor,
or certain factors in the environment are so severe, that the information is degraded in
such a way that it is misperceived. For example, the operators may be inundated with
many alarms so that they experience sensory overload (Broadbent, 1958) and therefore
misperceive the critical data. Technically this could be seen as an instrumentation
failure rather than a HFE, but this instrumentation failure would manifest as a human
failure event (Endsley, 1995; Klein, 1998).

• The second causal path (path II in Fig. 9.3) is attention degradation that leads to
misperception. Attention can be degraded due to a combination of factors, including
characteristics of the situation and the information (e.g., the HSI and environment), high
workload, multiple priorities, and through the biases introduced by training, knowledge,
and experience. Training, workload and perception of urgency cause the crew to priori-
tize certain tasks and direct attention to these. A misdirection of attention can lead to
misperception of critical data. The prioritization and the crew members’ expectation
biases determines the amount of attention paid to the various pieces of information,
which again may lead to misperceiving the critical data (Eriksen and St. James, 1986;
Endsley, 1995).

• The third causal path (path III in Fig. 9.3) stems from expectation biases related to
experience and knowledge, which can cause misperception of critical data. This can
occur in a direct manner, e.g., situations where a person “sees what they want to see”,
or indirectly through changing the person’s attention to focus on other data (Einhorn
and Hogarth, 1981; Endsley, 1995).

As shown in the model (Fig. 9.3), the PIFs identified in the IDHEAS model influence the
occurrence of the CFM through multiple causal paths. HSI/environment influences the tar-
get CFM through one direct causal path and additionally through two indirect causal paths.
Training also influences the CFM (indirectly) through two different causal paths. The third
causal path, expectation bias, is only indirectly captured in the original IDHEAS model. The
IDHEAS PIF specification nodes (light grey nodes) are intended to capture various aspects of
the three PIFs, and are used in this model to demonstrate how observable questions can be
explicitly included in the model. The node prioritization has a dual role. Firstly, it represents
a PIF question specifying training, which is “Is the significance of the decision that is based
on obtaining this information correctly given a high priority compared to other concurrent



104 CHAPTER 9. ELICITATION OF BNs FOR HRA

tasks?”. Secondly, prioritization is part of the second causal path. According to this path
training influences prioritization. The link is thus directed from training to prioritization, and
not like other PIF specifications the other way around. To capture the influence of priori-
tization according to its role as a PIF specification node correctly an additional dependence
between prioritization and the node crew trained to understand the scenario needs to be in-
troduced. Further discussions on the role of the node prioritization may be necessary, but are
left for future research.

9.1.4 BN model reduction to facilitate IDHEAS-like quantification

The full model in Fig. 9.3 can be quantified using a variety of approaches. However, a
secondary objective of this work is to develop a HRA model based on IDHEAS, and thus to
limit the amount of additional information that must be elicited. To achieve this goal, the
model in Fig. 9.3 is reduced to a form that more closely resembles the original IDHEAS DT,
but is augmented with the PIF specifications from Appendix B. As shown in chapter 3 the
node removal algorithm by (Shachter, 1986) is applied to the BN of Fig. 9.3. This algorithm
allows removing nodes, which have not received evidence, in a way that the independence
assumptions incorporated in a BN are not altered (Straub and Der Kiureghian, 2010a). The
two principles of node removal are: Firstly, a node, which has not received evidence and which
does not have children can be removed from the network. Secondly, the direction of a link
between two nodes Zi and Zj can be reversed if Zi inherits Zj ’s parents and vice versa and if
this does not cause the BN structure to become cyclic. Nodes are eliminated by first reversing
all links so that the nodes to be removed have no children, and then removing them. In this
way, the joint probability of all remaining nodes in the BN is unaltered. Removing the white
nodes from the BN in Fig. 9.3 results in the BN of Fig. 9.4.

9.1.5 Discussion/ implications of the models

Of special interest is the causal role of the node prioritization in this structure. According
to causal path II discussed in section 9.1.3 high workload increases the probability of misper-
ceiving critical data, if the crew does not set correct priorities. In Fig. 9.3, prioritization is
modeled as a child of perception of urgency and training. The causal interpretation is that
both training and perception of urgency influence the probability of correct prioritization.
Both prioritization and workload are parents of the node attention in Fig. 9.3. The combina-
tion of ineffective prioritization together with high workload will influence the attention paid
to critical data. Our derivation of the BN model from the cognitive paths proposed a direct
dependency of critical data misperceived on the node prioritization, which is not considered
directly as a PIF in IDHEAS. A detailed discussion on whether the inclusion of this is nec-
essary or whether there are reasons to exclude this PIF is not within the scope of this thesis.
Since multiple cognitive literature sources indicate this dependency (Eriksen and St. James,
1986; Endsley, 1995), it is considered a critical PIF for accurately representing the cognitive
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Figure 9.4: Reduced BN for the CFM critical data misperceived.

factors. The BN structure in Fig. 9.4 has advantages over the simple BN structure of Fig.
9.2. Firstly, in this model the analyst would directly answer the questions corresponding to
the PIF specification nodes rather than assigning a PIF state based on implicit consideration
of the questions, which is a much more abstract process . The explicit inclusion of PIF spec-
ifications in the model expands the level of documentation provided by the model, enhances
the traceability from analysis input to probability estimate, and reduces variability among
analysts. Secondly, if marginal probabilities are elicited for the PIF specification nodes, as
was done in (Hallbert and Kolaczkowski, 2007), the BN in Fig. 9.4 can deal with missing
information or uncertainty about one of the PIF specification nodes’ states. For example,
the HRA analyst may lack information about specific indicator design, which may make it
difficult to assess the state of easiness of data to read. In situations where the analyst does not
have information about one or more PIFs, the analyst can use the prior probabilities in the
BN rather than guessing or making unwarranted assumptions about the system. Thirdly, the
fully quantified BN can be used to reason about additional problems and gather additional
insight. With identical analyst inputs, the BN structure in Fig. 9.4 will produce the same
HEP assignments as the IDHEAS DT. However, the BN structure also offers the opportunity
to reason about the PIFs, given knowledge of the CFM (and/or other PIFs). This provides
an added benefit: the ability to identify, which PIFs (or PIF details) are likely to be present
when one knows there is an HFE. This gives insight into the probabilities of the causes or
HFEs, which is a critical piece of information that can be used to prevent errors (Groth and
Swiler, 2013).
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Table 9.1: CPT of the node critical data misperceived. The HEPs corresponding to the grey
cells are marked as unknown in Fig. 9.1. For that reason, the estimates for the scenario [HSI
= poor, workload = low and training = poor] were used. This corresponds to a conservative
approximation, since changing the state of training from good to poor will certainly increase
the HEP.

HSI/Env. Poor Good
Workload High Low High Low
Training Poor Good Poor Good Poor Good Poor Good
Recovery No No No No No No No No

Error 0.56 0.011 6.5e-3 6.5e-3 5.7e-3 1.6e-4 1.3e-4 1.3e-5
No error 0.44 0.989 0.9935 0.9935 0.9943 0.99984 0.99987 0.999987

9.2 CFM BN quantification

This section describes the quantification of the BN structures developed in the previous sec-
tion. First the straightforward quantification of the BN model in Fig. 9.2 based on the
IDHEAS DT is presented. It is furthermore shown how this simple model can be augmented
with expert elicited data about the PIFs. Thereafter it is shown show how the BN of Fig.
9.4 can be quantified using expert estimates, and finally how information from the scenario
authoring, characterization, and debriefing application (SACADA) (Chang et al., 2014) or
similar databases can be used in this quantification. The BN of Fig. 9.3 can be quantified
using a similar approach, but this is omitted for brevity.

9.2.1 Quantifying the BN model based on the original DT

As discussed in section 2, there is a CPT attached to each of the nodes in a BN. The CPT of
the node critical data misperceived in the BN of Fig. 9.2 is identical to the conditional HEPs
from the corresponding decision tree with one exception: the contribution of the recovery=yes
branches is omitted because recovery is not clearly defined for this CFM. This CPT is shown
in Tab. 9.1.
Quantification of the BN also requires probability distributions for each of the PIF nodes.
Unlike the conditional HEPs these probability distributions are not provided by the original
IDHEAS method. The marginal distributions of the PIF nodes can be quantified using dummy
distributions (e.g. assigning the same probability to each state of a PIF). In that case
quantifying the BNs does not require any additional probability elicitations compared to
quantifying the DT models. However, if dummy distributions are used for the PIF nodes,
the BN, like the DT model, is only capable of giving ‘correct’ HEPs if the states of all PIFs
are known (i.e., the BN model will predict HEPs identical to the DT, but additional benefits
of the BN cannot be realized). If the marginal distributions are actually elicited, the simple
BN structure is capable of dealing with uncertainty about PIF states. In (Groth and Swiler,
2013) expert elicitations were used to quantify the CPTs of the PIFs, based on information
elicited in (Hallbert and Kolaczkowski, 2007). Probability distributions for the PIFs of the
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CFM critical data misperceived, which are based on (Groth and Swiler, 2013) are given in
Tab. 9.2.

Table 9.2: Illustrative probabilities quantifying the CPTs of the PIFs. The probabilities are
based on (Groth and Swiler, 2013).

PIF PIF state Pr (PIF)

HSI/Env. good 0.16
poor 0.84

Training good 0.67
poor 0.33

Workload low 0.84
high 0.16

9.2.2 Quantification of BN model of DT with PIF specification nodes

Quantification of the final BN model of Fig. 9.4 is illustrated. In this and similar BNs,
there are three types of nodes to quantify: the CFM node (conditional on the PIFs), the PIF
nodes (conditional on the PIF specification nodes), and the PIF specification nodes (marginal
probabilities since these have no parents).

CFM node given PIFs

The parameters used in section 5.1 to quantify the CFM node were point estimates. Besides
that (Xing et al., 2013) provides HEPs with corresponding uncertainty estimates (i.e. quantile
estimates). In the following beta distributions are fitted to these quantile estimates (c.f.
chapter 4). For proof-of-concept artificially generated data is used to update these fitted beta
priors; the expected values of the posterior distributions are then used to quantify the final
BN. Due to the updating as well as the fitting process, the parameters of the final BN do not
exactly correspond to the parameters from Tab. 9.1. For quantification of the BN in Fig. 9.2
following section 9.2.1, the target node needs to be defined conditional on three parents i.e.
the three PIFs. For the BN in Fig. 9.4, an additional direct dependency of the target node on
the node prioritization was found. It is thus necessary to define the CPT of the target node
on HSI/environment, training, workload and prioritization. Since IDHEAS does not provide
probabilities for critical data misperceived conditional on the state of prioritization, simple
assumptions are used here. For the purpose of illustration it is assumed that workload and
prioritization interact in a way that the conditional probabilities of critical data misperceived
are equal to:

• the conditional probabilities derived for low workload, if the crew is able to prioritize;

• the conditional probabilities derived for low workload, if workload is low and the crew
is not able to prioritize;
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• the conditional probabilities derived for high workload, if workload is high and the crew
is not able to prioritize;

PIF nodes

In section 9.2.1 marginal probability distributions need to be assigned to quantify the PIF
nodes of the simple BN in Fig. 9.2. For the quantification of the extended BN in Fig. 9.4,
the PIF nodes are defined conditional on PIF specification nodes. The IDHEAS report (Xing
et al., 2013) provides rules on defining the states of the PIFs given the states of the PIF
specification nodes. To be in line with the original method these rules are used to quantify
the CPTs of the PIF nodes. Presently, these rules are deterministic, which means they
can be modeled as AND or OR relationships (deterministic nodes in the BN). These rules
are provided for the CFM critical data misperceived as pseudo-code in Appendix C. Future
research could focus on redefining these rules if it is found that these deterministic rules do not
match reality, or if the relationship between the PIFs and PIF specifications is more nuanced
than originally thought. It is, however, important that there is a common understanding on
how the PIF specification nodes are linked to the PIF nodes, on how these nodes are included
in the BN, and on how to quantitatively represent the dependence. These rules can directly
be transformed to CPTs quantifying the respective nodes in the BN. For example the CPT
for training given the two corresponding PIF specifications is provided in Tab. 9.3. The
IDHEAS report defines training conditional on prioritization and crew trained to understand
the scenario. However to represent causality, the node prioritization is considered as a child
of training rather than its parent in the BNs of Fig. 9.3 and 9.4. The CPT derived from the
rules provided in the IDHEAS report needs thus to be reformulated using Bayes’ rule .

Table 9.3: Deterministic CPT of training given the two corresponding PIF specification nodes.

Crew trained to understand the scenario Yes No
Prioritization Yes No Yes No

Good training 1 1 1 0
Poor training 0 0 0 1

PIF specification nodes

The PIF specification nodes require marginal probabilities. These probabilities are elicited
from experts. Since a CFM like critical data misperceived typically does not apply in a
nuclear power plant’s normal state, for the elicitation process it is important that the experts
understand that they are to give probabilities, which are implicitly conditional on scenarios,
in which the CFM may apply. For example if the CFM critical data misperceived and the PIF
specification node nominal environment are considered, the experts need to give a probability
of the event environment being nominal in situations where critical data is received. As
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Table 9.4: Results from the survey, carried out to elicit prior probabilities for the PIF specifi-
cation nodes. Experts I and II are HRA specialists with a background in cognitive psychology
and expert III is a former operator of a nuclear power plant on a submarine. The elicited
numbers are probability estimates for the PIF specification nodes being in state “yes”.

Expert
PIF specification node Mean

I II III

Indications clear and unambiguous 0.9 0.8 0.9 0.87
Easiness of information to read 0.8 0.75 0.9 0.82
Clear display of range for comparison 0.8 0.8 0.95 0.85
Environment nominal 0.2 0.25 0.25 0.23
Indicators/source of data easy to read and locate 0.8 0.8 0.5 0.7
Still determining plant status 0.7 0.65 0.98 0.78
Several alarms 0.8 0.9 0.98 0.89
More tasks than usual 0.15 0.3 1.0 0.48
Crew trained to understand the scenario 0.8 0.8 0.98 0.86
Prioritization 0.95 0.9 0.9 0.92

proof-of-concept, the PIF specification nodes of the CFM critical data misperceived were
quantified. The question, whether it is actually reasonable to elicit probabilities for such
nodes, conditional on being in an off-normal state, from experts should be further discussed.
Such a discussion is without the scope of this work.
A small survey was carried out to illustrate the process to elicit the prior probabilities of the
PIF specification nodes. The survey participants were two HRA experts with a background in
cognitive psychology (experts I and II) and one former operator of a nuclear power plant on
a submarine (expert III). Since the final probabilities should be elicited from actual nuclear
power plant operators, the numbers given in this report are intended only for illustrative
purposes of the framework. The survey is shown in Appendix C and the numbers given by
the experts are summarized in Tab. 9.4. There is a large spread in the experts estimates
in questions 5, 6 and 8. Besides that the experts agree well on most questions. The mean
values from Tab. 9.4 are directly used to quantify the marginal probabilities of the BN in Fig.
9.4, i.e. for the quantification of the PIF specification nodes parameter uncertainties are not
considered.
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9.3 Updating the parameters of the BN with data

In this section it is illustrated how the SACADA database (Chang et al., 2014) could be used
to update the probabilities of the CFM node in the IDHEAS-BN. These HEPs in IDHEAS are
conditional on the relevant PIFs. Since SACADA and IDHEAS are not completely consistent,
it is not always possible to deterministically decide in which states the IDHEAS PIFs are for a
given SACADA case. Nevertheless, SACADA still provides information, which can and should
be used to improve the quantitative side of IDHEAS. To this end rules to probabilistically map
SACADA onto IDHEAS are defined. These rules allow estimating a probability of observing a
specific context Pr (PIF1 = s1, . . . , P IFm = sm), which is defined through the states si of the
PIFs, given a SACADA case. This concept is well known in HRA, e.g., from the quantification
of SPAR-H (Gertman et al., 2005). Consider a crew failure scenario in a CFM, for which the
corresponding probability pCFM |PIF1=s1,...,P IFm=sm is to be updated. The prior distribution
of pCFM |PIF1=s1,...,P IFm=sm is beta with parameters a0 and b0. A database with n cases is
used to update the distribution of pCFM |PIF1=s1,...,P IFm=sm . In the case where the database
is not completely consistent with the PIFs, we can rewrite Eqs. 4.5 and 4.6 to:

a1 = a0 +

n∑
i=1

Pr (PIF1 = s1, . . . ,PIFm = sm|SACADA case i) · IF (SACADA case i) (9.1)

b1 = b0 +
n∑
i=1

Pr (PIF1 = s1, . . . ,PIFm = sm|SACADA case i) (1− IF (SACADA case i))

(9.2)
where IF is an indicator function, which is 1 if a failure was recorded in the SACADA database
case i and 0 otherwise. Applying Eqs. 9.1 and 9.2 requires the conditional probabilities
Pr (PIF1 = s1, . . . ,PIFm = sm|SACADA case i). Expert estimates are used to determine the
distributions of the relevant IDHEAS specification nodes for a given SACADA case i, and BN
inference algorithms are used to calculate Pr (PIF1 = s1, . . . ,PIFm = sm|SACADA case i).
Ideally the elicited experts should know both IDHEAS and SACADA well. Nevertheless
if many SACADA indicators SIi need to be mapped on PIF specification nodes PSj from
IDHEAS the expert elicitation becomes a tedious task. To simplify this process one can
assign a factor aPSj ,SIi to each SACADA indicator, which represents its effect on the PIF
specification node. Qualitatively the effect of a SACADA indicator SIi on a PIF specification
node PSj can be summarized as:

• aPSj ,SIi = 0, if SIi being in state true causes PSj to be in state false with certainty;

• 0 < aPSj ,SIi < 1, if SIi being in state true decreases the probability of PSj being in state
true;

• aPSj ,SIi = 1, if SIi does not have an influence on PSj ;
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• aPSj ,SIi > 1, if SIi being in state true increases the probability of PSj being in state
true;

• aPSj ,SIi =∞, if SIi being in state true causes PSj to be in state true with certainty.

Assuming that the joint effect of m SACADA indicators {SI1, . . . , SIm} on PSj can be ex-
pressed as the product of the factors aPSj ,SIi corresponding to SIi one can write:

Pr (PSj = true|SI1, . . . , SIm) = min

(
1,Pr (PSj = true) ·

m∏
i=1

aPSj ,SIi

)
(9.3)

For proof-of-concept these factors are estimated in Tab. 9.5 for the CFM critical data mis-
perceived. It is important to note that the numbers in this table only serve the purpose
of illustration. No factors are assigned to the SACADA indicators marked in grey in this
table, since these indicators are redundant. From Pr (PSj = true|SI1, . . . , SIm) the proba-
bility Pr (PIF1 = s1, . . . ,PIFm = sm|SACADA case i) can be obtained through BN inference
algorithms, which are implemented in any BN software.
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Table 9.5: SACADA indicators, which can be related to PIF specification nodes in IDHEAS.
Factors used to relate the two are given in the last column.

PIF specification
node (IDHEAS)

(PSj) SACADA indicator (SIi)
Factor(
aPSj ,SIi

)
HSI/environment

Noisy background (Table A1, Miscellaneous) 0
Environment

nominal Overloaded (Table A2, Status of alarm board) 0.7
Multiple alarms (Table B3) 0.7

Slight change (Table A3, Degree of change) 0.8
Distinct change (Table A3, Degree of change) 1.5

No mimics (Table A3, Degree of change) 0
Indicators easy

to read
and locate Small indications (Table A3, Degree of change) 0.7

Similar displays (Table A3, Degree of change) 0.8
Slight changes (Table B4)

Labeling/mimic display issues (Table B4)

Training

Standard (Table A4, Familiarity) ∞
Novel (Table A4, Familiarity) 0.2

Crew trained to
understand
the scenario Anomaly (Table A4, Familiarity) 0.2

Unfamiliar (Table B6) 0
Procedure-scenario mismatch (Table B6) → Novel 0.2

Prior Experience (Table B6) → Anomaly 0.2

Competing priorities (Table A5, Uncertainty) 0.5
Prioritization Conflicting guidance (Table A5, Uncertainty) 0.5

Competing priorities (Table B6) redundant
Conflicting guidance (Table B6) redundant

Normal (Table A1, Workload) 0
Concurrent demand (Table A1, Workload)

More tasks than
usual Multiple concurrent demands (Table A1, Workload) 2

Multiple demands (Table A1, Miscellaneous)
Coordination (Table A1, Miscellaneous) 1.1

Workload

Dark (Table A2, Status of alarm board) 0
Busy (Table A2, Status of alarm board) ∞

Several alarms Overloaded (Table A2, Status of alarm board) ∞
Multiple alarms (Table B3, Background)

Not applicable (Table B3, Background) redundant
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Table 9.6: HEPs for different observations.

Case I Case II Case III Case IV Case V
Clear display of range for

comparison - Yes No - -
Easiness of data to read - Yes No - -
Unambiguity - Yes No Yes -
Environment nominal - Yes No Yes -
Indicators easy to read and

locate - Yes No Yes -
Crew trained to understand

the scenario - Yes No Yes -
Prioritization - Yes No - No
Still determining plant status - No Yes Yes No
More tasks than usual - No Yes - No
Several alarms - No Yes Yes No
HSI/environment - - - Good
Training - - - -
Workload - - - -

HEP 0.01 0.00005 0.5 0.002 0.0003

9.4 Example results with the “critical data misperceived” BN

With the established BN for critical data misperceived, HEPs conditional on different ob-
servations are investigated (Tab. 9.6). Case I gives the prior HEP before having knowledge
about the states of the PIFs or the PIF specification nodes. The states of the PIF specifica-
tion nodes occur in that case according to the probabilities elicited from the experts. The BN
gives reasonable prior HEPs if the CPTs of the PIF specification nodes are elicited (either
based on data, experts or similar sources) and not populated with dummy parameters. The
capability of giving such probabilities sets the BN apart from the decision trees originally
used to quantify IDHEAS. Cases II and III represent the extreme cases of the CFM critical
data misperceived. In Case II the states of all PIF specification nodes are observed and all
of them are in a favorable state. The HEP is therefore minimal for that case. In Case III all
PIF specification nodes are in an unfavorable state, hence the corresponding HEP is maxi-
mal. Both cases can also be derived from the original IDHEAS decision trees. Since evidence
is here given to all PIF specification nodes, it is irrelevant if the CPTs of these nodes are
elicited or populated with dummy parameters. Cases IV and V represent cases with missing
information. In Case IV some of the questions corresponding to the PIF specification nodes
have not been answered. The same is true for Case V, which additionally demonstrates that
evidence can also be given directly at the PIF level.

Besides providing evidence at the level of PIFs or PIF specification nodes, it is possible
to directly give evidence on the target node. It is for example possible to determine the
distribution of the PIF nodes given a HFE as:
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• Pr (HSI\Environment = poor|HFE = yes) = 0.998

• Pr (Workload = high|HFE = yes) = 0.996,

• Pr (Training = poor|HFE = yes) = 0.532

• Pr (Prioritization = no|HFE = yes) = 0.675.

9.5 Discussion

This chapter presents a comprehensive framework for the application of BNs to address short-
comings of HRA with respect to scientific basis and traceability (both causal and quantita-
tive). A main advantage of BNs is that it allows for models that are causally traceable. As
shown, to this end unobservable PIFs and concepts from psychology can be included in the
BN structure and removed in a later step. Furthermore the quantification of BNs can rely on
different information sources, like data and expert elicitations. Causal traceability is a major
need in the field of HRA. In this chapter it was demonstrated how an expanded BN structure
can qualitatively document the theoretical background of the method. Furthermore it was
demonstrated how to reduce that structure to maintain causal traceability and to enable a
more straightforward quantification than the full expanded structure. While both structures
are quantifiable from a mathematical point of view, quantification of the expanded structure
is difficult from HRA-perspective, since data or experts that are capable of estimating the
specific probabilities are not available.
If the BN is implemented in a software tool, the additional nodes of the expanded structure
can be marked in a separate color, to highlight that these nodes are necessary for the under-
standing of the causal relationships but are not quantified. While many recently developed
HRA methods have a strong background in psychological research, this background becomes
usually hidden for more applied users, who are presented only a reduced number of PIFs. By
developing expanded BN structures and presenting them to users the theoretical background
becomes more traceable even if it may not be possible to provide it in full detail in this man-
ner. It has been found by many researchers that the results of a HRA vary strongly with
the analyst (e.g. Lois et al., 2009). This is currently a major point of criticism against HRA
methods. An example of how the proposed framework can help to increase causal traceability
was presented in this work by the application of the framework to the CFM critical data
misperceived. An additional dependency between the node prioritization and the target node
was revealed through the process of building an exhaustive BN structure and reducing it. For
the purpose of traceability of the HRA method it is important that the model developer is
aware of additional causal details like these and communicates them to the analysts. It is
then up to the model developer to decide whether quantification of these causal details is
necessary or not.
Another major need in HRA, which is addressed here, is an exhaustive and rigorous quantifi-
cation framework. It is generally known that HRA models are not capable or even intended
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to fully capture all aspects of human behavior. In spite of this, it is necessary to model
human error, using all information and knowledge available. Many HRA researchers rely on
quantifying their models either through experts or through data. Our proposed quantification
framework combines these two, which is in line with the Bayesian understanding of probabil-
ity used throughout PRA (Kelly and Smith, 2009) and is the only method to come up with
sound probability estimates in an industry with scarce data. Using Bayesian updating allows
using continuously more data to update the parameters of the BN, in order to improve the
quality of the model. A last point implicitly addressed in this work is the applicability of BN-
based HRA methods for every-day HRA practice. While HRA researchers may be tempted to
embrace BNs simply for their powerful modeling features, HRA practitioners call for models,
which are applicable in their everyday practice. Not many of the BN HRA models developed
up to this point satisfy this need. By developing a BN which is scalable to different sizes,
we offer the potential to have the same HRA method meet the needs both practitioners and
researchers.
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Chapter 10

Concluding remarks and outlook

10.1 Concluding remarks

Reliability is an important requirement for engineering systems and it is the responsibility
of engineers to guarantee high reliability standards for increasingly complex systems. These
high reliability standards hinder an estimation of the probability of failure of a system solely
based on observed data. Instead, probabilistic modeling that is not solely based on data is
required to estimate failure probabilities of such systems.

Flexible modeling tools are required in order to be able to represent complex systems. BNs
represent a flexible and powerful modeling tool with large potential for engineering reliability
analyses. The main reasons for that are: The ability of BNs to traceably represent the
overall dependence structure of a model, the possibility for combining different sources of
information for the quantification of BNs, and the existing inference algorithms allowing for
straightforward Bayesian updating in BNs. A reliability analysis with BNs can be considered
a three step procedure, whose steps are (I) elicitation of the qualitative model structure (the
directed acyclic graph (DAG)), (II) quantification of the model and (III) inference in the
model.

The DAG represents the overall dependence structure of a model. The elicitation of the
DAG is crucial for two reasons. Firstly, the DAG is the part of the model that represents
the overall dependence structure between the random variables in a way that is traceable
even for people being non-experts in probabilistic modeling. This allows domain experts and
stakeholders to challenge the assumptions made. In order to ensure the validity of models, this
feature is essential. Secondly, the DAG determines the types of local conditional probability
distributions that are required to quantify the model. In consequence the DAG determines
also the (computational) effort required, to quantify the model and to perform inference in
the model.

In practice, BN structures are often elicited in a rather ad-hoc manner. To give modelers
some guidelines on how to develop a BN structure, a classification of structure elicitation
approaches is proposed in this thesis. Distinguished are: (1) structure elicitation based on
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other probabilistic models; (2) structure elicitation based on general models; (3) data based
structure learning and (4) structure elicitation based on domain expert knowledge.

These approaches require different levels of expertise both in the problem domain as well
as in BN theory. For example, it is typically straightforward to elicit a BN based on other
probabilistic models like fault trees (FTs) or event trees (ETs), which are commonly used in
various industries. In contrast, eliciting a BN based on domain expert knowledge typically
requires a deeper understanding of BN theory and also the problem domain. In such cases,
causality can be used as a guiding principle for developing valid BN models. To demonstrate
how BN structures can be derived from domain expert knowledge, a framework for deriving
BNs for human reliability analysis (HRA) is proposed in this work. A major shortcoming
of HRA is the fact that the probabilistic models used are typically oversimplifying reality.
This is mainly due to the limitations in the understanding of the cognitive processes that
lead to human failure but also due to the limited flexibility of the probabilistic modeling
tools that are used. It is shown in this application example, that BNs represent a well-suited
modeling framework for HRA, which has advantages over many of the modeling tools that are
traditionally used in this field. Future research in the area of HRA should focus on developing
more realistic HRA models that use BNs as a probabilistic modeling framework.

Despite the fact that BNs represent a powerful tool for many reliability engineering appli-
cations, there are situations in which BNs are not a suitable tool. These include problems,
in which the dependence between two random variables does not have a causal direction
or where the dependence is bidirectional. Examples include two points in a random field
(modeled without a "hidden" common parent) or infrastructure (e.g. water) networks with
bidirectional flows. In such situations other graphical probabilistic models can represent a
worthwhile alternative (Koller and Friedman, 2009).

Quantitative information is typically scarce for applications in the field of reliability engi-
neering. Because of this, all available information sources should be combined to come up
with sound reliability estimates. The BN framework lends itself to such a combination of
information sources, since every node is quantified independently through a local conditional
probability distribution.

BN inference algorithms enable computing distributions of variables of interest (possibly) con-
ditional on observations, obtained for other variables. Exact inference algorithms are available
only for discrete BNs and a number of continuous/hybrid special cases. By discretizing contin-
uous nodes, the same inference algorithms can also be applied to continuous/hybrid problems.
This comes, however, at the cost of a discretization error. Discretization of continuous ran-
dom variables in reliability applications is especially critical, since in these applications one
is typically interested in rare events and thus in the tails of the distributions. An efficient
discretization procedure for reliability applications that has also been implemented in a MAT-
LAB based software tool is proposed in this thesis. This procedure aims at minimizing the
discretization error, while using only a minimal number of intervals. The performance of the
proposed method is investigated for a number of verification examples. For these examples
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the discretization error is found to be small.
The applicability of the approach to practical problems is demonstrated through an exam-
ple from the field of civil aviation. In particular a prototype of a runway overrun (RWO)
warning system is developed. This warning system allows using measurements that can be
obtained during the approach of a landing aircraft, to update ones believes about the aircraft’s
RWO probability. This probability can support the decision, whether to continue with the
approach. The main reason for using exact inference algorithms in this case is their capability
for performing robust and fast Bayesian updating.
While the capability for robust and fast updating makes the approach attractive for near
real-time applications in general, the exponential increase of the CPT limits the number of
basic random variables that can be included as nodes in the BN. In many cases it is however
not necessary to directly model all basic random variables as explicitly as nodes.
Sampling based inference is applicable to both discrete and continuous\hybrid BNs, which
makes discretization of continuous random variables redundant in this context. As a con-
sequence, sampling based inference algorithms also mitigate the problem of exponentially
increasing CPTs. However sampling based inference is often slower than exact inference,
which is especially an issue for near real-time applications. Possible future enhancements
could however make sampling based inference applicable to a larger number of near-real-time
problems.
Memory issues are critical especially for large systems. In this cases the size of the CPTs or
the clique sizes can hinder the application of exact (discrete) inference algorithms. Sampling
based inference techniques are not sensitive to clique sizes. Furthermore, since sampling based
inference algorithms do not require all nodes to be defined through CPTs, nodes having
many parents can often be defined as functions of their parents or as distribution models,
whose parameters depend on the parents of that nodes. Thus the memory issues typically
encountered when dealing with large systems can be alleviated by applying sampling based
inference. However the time required to sample from an increasingly large BN limits the
size of a system, also if sampling-based inference techniques are applied. This limitation is
however often less restrictive, than the limitation coming from computer memory for discrete
BNs. A drawback of sampling based approaches is that they are typically not tailored towards
reliability applications. I.e. they are not suited for computing small (failure-)probabilities,
since the number of samples required to estimate small probabilities and thus also computation
time is too high.
In order to overcome this issue, in this work the applicability of subset simulation (SuS), a
sampling based method that is intended for computing small failure probabilities, to sampling
based inference in BNs is investigated. A main factor, influencing the performance of SuS is the
Markov chain Monte Carlo (MCMC) algorithm that is used to generate samples. Unlike in the
original SuS method Gibbs sampling is applied here. The reason being that Gibbs sampling
is especially efficient for BNs, since it can exploit the encoded independence properties. Just
like the implementation of the original SuS algorithm, the implementation of SuS for BNs is
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straightforward. In this work, OpenBUGS in combination with MATLAB were used to do
so. A simple verification example has been implemented to investigate the performance of
the approach. Although the results obtained are promising, convergence properties as well as
computational efficiency of the method should be further investigated.
In conclusion, this thesis shows that BNs represent a powerful modeling tool for reliability
engineering. Nevertheless to fully exploit their potential for this type of applications, efforts
should be made to develop methods that address the needs in this field. Some points that
could be addressed by future research are briefly discussed in the outlook at the end of this
chapter (cf. section 10.3).

10.2 Main contributions of this thesis

The main contributions of this thesis are:

1. A classification of BN structure elicitation approaches that are commonly applied in the
field of reliability engineering and engineering risk analysis.

2. A novel, efficient discretization approach that enables the use of exact BN inference
algorithms for approximate inference in hybrid BNs. The procedure is applicable for
reliability analyses for engineering systems, whose performance is described through an
engineering model.

3. Combination of subset simulation (SuS) with sampling based inference to estimate small
(failure-)probabilities from hybrid BNs that model reliability problems.

4. A framework for eliciting BN structures for HRA based on domain expert knowledge.

5. An approach for quantification of the HRA BNs that is based on expert estimates and
simulator data.

6. The development of a prototype of a runway overrun warning system that is based on
the proposed discretization procedure.
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10.3 Outlook

Challenges for the application of BNs to reliability engineering have been addressed in this
work. However there are open issues. A few points that could be approached by future
research are touched upon in the following.

10.3.1 Promoting applications of BNs in industry

While there are many applications of BNs in the academic context, they are less often applied
in industry. In fact, industries that perform quantitative reliability analyses are typically
not familiar with BNs and thus often apply traditional modeling tools like FTs or ETs.
These traditional modeling tools are typically intuitive to apply, however in many cases BNs
represent a more powerful modeling tool. While modeling with BNs can be more challenging,
in many cases BN elicitation can be standardized. Thus future research should focus on
developing BN frameworks for specific industrial application areas.
As an example, one can consider accident modeling in the civil aviation industry. Bow ties
(a combination of a FT and an ET) are typically applied in this industry. A bow tie is
readily representable in a BN (cf. chapter 3). In addition BNs are capable of modeling
dependencies that are not straightforward to model through bow ties. Developing a modeling
framework based on BNs could promote more sophisticated probabilistic models and thus
enhance reliability analyses.
Such frameworks could be accompanied by software tools that are tailored towards specific
fields i.e. they could enable simple bow tie like modeling, while at the same time providing
more sophisticated modeling capabilities.

10.3.2 Exact inference algorithms for large system reliability problems

System reliability problems usually define the performance of a system as a function of the
performance of its components. Such problems are readily representable by means of discrete
BNs (cf. chapter 3). The naïve approach for modeling such systems represents the component
nodes as parents of the the system node. The size of systems that can be represented in
this way is very limited. More efficient structure representations (parent divorcing, causal
independence representation etc.) have been developed and applied to system reliability
problems in the past (e.g. Heckerman and Breese, 1994; Bensi et al., 2013). While future
research could focus on developing novel efficient structure representation techniques, this
seems to be rather unpromising. It may be more promising to exploit the dependence structure
of specific systems and develop efficient BNs for these systems by using the generic, efficient
modeling techniques that already exist.
In order to apply exact inference algorithms to BNs representing larger systems, additionally
techniques like compression of the CPTs, as described by (Tien and Der Kiureghian, 2016),
can be applied.
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10.3.3 Sampling based inference

Sampling based inference algorithms can be considered as an alternative to exact inference
algorithms for large systems. Additionally sampling based inference algorithms are not only
applicable to discrete but also to hybrid/continuous BNs. Existing sampling based BN in-
ference algorithms are however not tailored towards reliability applications. Firstly, they are
typically not suitable for estimating small (failure-)probabilities. Secondly, traditional sam-
pling based inference algorithms perform poorly for inverse analysis i.e. problems, where
the performance of a system is described through a deterministic model and the state of the
system is observed.
Independent of BNs, methods have been proposed that address these issues. For instance
existing structural reliability methods enable estimating small failure probabilities efficiently
(Rackwitz, 2001; Au and Beck, 2001). Furthermore methods that enable efficient inverse
analyses have been developed (e.g. Beck and Au, 2002; Straub, 2011; Straub and Papaioannou,
2014). A first step towards combining structural reliability methods (i.e. SuS) with inference
in reliability BNs has been made in this thesis. The first results that were obtained are
promising. The BUS (Bayesian updating with structural reliability methods) approach, as
proposed in (Straub, 2014a) is based on SuS. Applying BUS in a BN context may be a
promising approach for efficiently performing inverse analysis in BNs.
Due to that, future research should focus on applying both SuS and also BUS to BNs. More-
over the applicability of other structural reliability methods and methods for inverse analysis,
to BNs should be considered by future research.

10.3.4 Combination of exact and approximate inference algorithms

In some situations that are relevant to reliability engineering, parts of a model are readily
represented through a discrete BN (e.g. an infrastructure system), while other parts of the
same model are more naturally described through a hybrid/continuous BN (e.g. natural
hazards acting on the infrastructure system). Since exact inference algorithms exist for the
former but not for the latter, combining exact and approximate inference algorithms could be
a worthwhile consideration. Efforts to develop the theoretical foundation for doing so have
already been made (cf. Koller and Friedman, 2009). However to the best of my knowledge this
has not been applied in the context of reliability engineering. Future research could therefore
focus on investigating whether these approaches are applicable and whether they perform well
for reliability engineering problems.
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Appendix A

CPTs of the BN in Fig. 3.12a

Table A.1: CPT of the vegetation node in Fig. 3.13a

slope < 30◦ 30◦ − 45◦ > 45◦

dense trees 0.3 0.5 0
no dense trees 0.7 0.5 1

Probabilities for the node avalanche:

• Pr (avalanche | summer) = 0

• Pr (avalanche | slope < 30◦) = 0

• Pr (avalanche | slope > 45◦) = 0

• CPT of avalanche conditional on season, dense trees and slope between 30◦ and 45◦:

season spring summer fall winter

avalanche 0.01 0 0.02 0.05
no avalanche 0.99 1 0.98 0.95

• CPT of avalanche conditional on season, no dense trees and slope between 30◦ and 45◦:

season spring summer fall winter

avalanche 0.03 0 0.06 0.15
no avalanche 0.97 1 0.94 0.85
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Appendix B

Questions defining the PIFs

Questions provided in IDHEAS (Xing et al., 2013) for the CFM critical data misperceived,
to specify the meaning of the PIFs: The PIF human system interface (HSI)/environment is
considered to be in state poor only if any of the following questions are answered with “no”
(Xing et al., 2013, 93):

• “Are the indications clear and unambiguous”?

• “Is the information easy to read“?

• “Is the range (or band) with which the information is to be compared clearly identified
on the display“?

• “Is the environment in the location of the indicator/source of information nominal (i.e.,
not challenging due to noise, heat, humidity, etc.)“?

• “Are the indicators/sources of data easy to locate and read“?

The PIF workload is considered to be in state high only if any of the following questions are
answered with yes (Xing et al., 2013, p. 93f):

• “Does the need to obtain information occur at a time when the operators are still in the
process of determining the plant status?”

• “Does this occur at a time when there are several alarms or indications or tasks that
need attention? “

• “Is the scenario one for which the number of tasks the crew has to perform in the time
available higher than would be typically addressed in training?”

The PIF training is considered to be in state poor only if both of the following questions are
answered with yes (Xing et al., 2013, p. 94f):

• “Has the crew been properly trained to understand and deal with scenarios in which the
information source may provide difficulties?”
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• “Is the significance of the decision that is based on obtaining this information correctly
given a high priority compared to other concurrent tasks?”



Appendix C

Quantification of PIF nodes

C.1 Deterministic rule quantifying the node HSI/environment:

IF

• Indications are clear and unambiguous

• AND indications are easy to read

• AND the Range (or band) with which the information is to be compared is clearly
identified on the display

• AND the environment in the location of the indicator/source of information is nominal

• AND the indicators/sources of data are easy to locate and read

THEN

• HSI/environment is good

ELSE

• HSI/environment is poor

C.2 Deterministic rule quantifying the node training:

IF

• The crew has been properly trained to understand and deal with scenarios in which the
information source may provide difficulties

• OR the significance of the decision that is based on obtaining this information correctly
is given a high priority compared to other concurrent tasks (referred to as prioritization
in the model from Figs. 9.3 and 9.4).
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THEN

• Training is good

ELSE

• Training is poor

C.3 Deterministic rule quantifying the node workload:

IF

• The need to obtain information occurs at a time when the operators are still in the
process of determining the plant status

• OR this occurs at a time when there are several alarms or indications or tasks that need
attention

• OR the scenario is one for which the number of tasks the crew has to perform in the
time available is higher than would be typically addressed in training

THEN

• Workload is high

ELSE

• Workload is low



Appendix D

Survey for eliciting probabilities of
PIF specification nodes

Purpose of this survey:
The purpose of this survey is to obtain probabilities, which can be used to illustrate a frame-
work for quantifying IDHEAS. (Note that data will be used for proof-of-concept of the
mathematics, to define how IDHEAS models could be modified to include information about
the probability of PIFs. IDHEAS models will not be modified based on the results of this
survey. Background: IDHEAS provides models that assign the probability of a human failure
event, given the state of several performance influencing factors (PIFs). IDHEAS contains
14 models and approximately 20 PIFs. Description of survey task: Consider the crew failure
mode critical Data Misperceived, which is defined as: “A critical piece of information that is
required to develop a plant status assessment is misperceived. A critical piece of data is one
that, when misperceived in a certain way will lead to an incorrect response in that it leads
to taking an incorrect or inappropriate path through the procedures or executing a response
incorrectly.” (From SRM Vol. 3 – Draft IDHEAS method for internal procedural events) We
consider a post-initiator event i.e. the nuclear power plant (NPP) is already in an off-normal
state, where the NPP-crew is confronted with critical data. For critical data misperceived,
the IDHEAS model identifies three main factors PIFs, which influence human performance:
Human System Interface (HSI)/environment, training, and workload. Furthermore, IDHEAS
provides several questions that analysts use to assign the state of those three PIFs. In this
survey, you are asked to provide a probability for each of these questions.
Note:

• A (Bayesian) probability is a degree of belief rather than an actual physically measurable
quantity

• You can give your answer in one of the two forms:

The probability of event X occurring is .

Event X is -times more/less (more/less) likely than not X.

133



134APPENDIX D. SURVEY FOR ELICITING PROBABILITIES OF PIF SPECIFICATION NODES

Name:
Company:
Position:

Brief description of your experience/background:
Basis for estimates in this document (e.g., "12 years of experience operating commercial NPP",
"HRA database", "22 years of experience in HRA"):
Reminder: The purpose of the survey is to obtain the probability of these conditions, NOT
to obtain the human error probability for these conditions.

Human System Interface (HSI)/environment:

1. Unambiguity and clearness of indications.

The probability that the indications to this data are clear and unambiguous is
.

Indications are -times more/less likely to be clear and unambiguous than to
be unclear and ambiguous.

2. Easiness of information to read.

The probability that the information is easy to read is .

Information is -times more/less likely to be easy to read than to be not easy
to read.

3. Range (band) for comparison.

The probability that the range (or band), with which the information is to be
compared, is clearly identified on the display is .

A display is -times more/less likely to have a clearly identified range (band)
than to have a not clearly identified range (band).

4. Nominal environment.

The probability of having a nominal environment (i.e. one that is not challenging
due to noise, heat, humidity, etc.) is .

During the event it is -times more/less likely that environment is nominal
rather than non-nominal environment (challenging due to noise, heat, humidity, etc.).

5. Location and easiness to read of the indicators/sources.

The probability that indicators/sources are easy to locate and read is .

Indicators/sources are -times more/less likely to be easy to read and locate
than to be not easy to read and locate.
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Workload:

6. Crew still determining the plant status.

The probability that the need to obtain information occurs at a time when the
operators are still in the process of determining the plant status .

Crew still determining the plant status is -times more/less likely than crew
not in the process of determining the plant status.

7. Several alarms.

The probability that the need to receive critical data occurs at a time when there
are several alarms, indications or tasks that need attention is .

A situation with Several alarms, indications or tasks that need attention at the same
time is -times more/less likely than a situation without several alarms, indications
or tasks.

8. More tasks in the available time than typically addressed in training.

The probability that the number of tasks the crew has to perform in the available
time is higher than it would be typically addressed in training is .

A situation with a higher number of tasks than addressed in training is -times
more/ less likely than a situation with same or a lower number of tasks than typically
addressed in training.

Training:

9. Crew trained to understand the scenario.

The probability that the crew has been properly trained to understand and deal
with the scenarios, in which the information source may provide difficulties is .

Crew properly trained to understand and deal with the scenario is -times
more/less likely than crew not properly trained to understand and deal with the scenario.

10. Significance of the decision that is based on this information.

The probability that the decision based on obtaining this information correctly is
given a high priority compared to other concurrent tasks is .

Giving the decision, which is based on the information, a high priority is -
times more/less likely than not giving the decision a high priority.
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