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Abstract

Introduction

TNF-α levels are increased during muscle wasting and chronic muscle degeneration and

regeneration processes, which are characteristic for primary muscle disorders. Patholog-

ically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency,

while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of

TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell

differentiation.

Methodology/Principal Findings

This study presents gene expression data of the murine skeletal muscle cells PMI28 during

myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24

h, and 72 h after induction. Our study detected significant coregulation of gene sets involved

in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a

time- and treatment-dependent regulation of signaling pathways, which are prominent in

myogenic differentiation. We identified enrichment of pathways, which have not been spe-

cifically linked to myoblast differentiation such as doublecortin-like kinase pathway associa-

tions as well as enrichment of specific semaphorin isoforms. Moreover to the best of our

knowledge, this is the first description of a specific inverse regulation of the following genes

in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl,

Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and

Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2),

which is robustly regulated by TNF-α across independent myogenic differentiation studies.
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Conclusions

This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expres-

sion kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs,

which have not yet been associated with skeletal muscle differentiation or response to TNF-

α. Results of this study may facilitate the understanding of transcriptomic networks underly-

ing inhibited muscle differentiation in inflammatory diseases.

Introduction
Myoblast differentiation is a multistep process, which involves proliferation, exit from the cell
cycle, migration, alignment, and fusion into multinucleated myotubes [1,2]. This process is
mediated by a cascade of changes in gene expression [3] and is essential for muscle repair.
Myoblast differentiation can be promoted by growth factors such as IGF1 [4], but it is impaired
by elevated concentrations of inflammatory cytokines such as TNF-α [5–7]. IGF1 increases
myoblast differentiation via both hyperplasia and hypertrophy [5]; however, the underlying
regulatory mechanisms at the transcriptomic level are poorly understood. The inhibitory effect
of inflammatory levels of TNF-α on myoblast differentiation and muscle repair is associated
with cachectic muscle wasting [8,9] and several chronic diseases or muscular disorders [10–
12]. Moreover, human aging is associated with muscle inflammation susceptibility [13]. The
molecular mechanisms leading to inhibition of mybolast differentiation because of elevated
TNF-α concentrations are highly complex, involving modulations at the mRNA level [7] as
well as epigenetic implications [3], among others. The molecular signaling pathways mediating
the inhibitory effect of TNF-α on myogenic differentiation are not yet completely elucidated.
To date, cachectic muscle wasting is an incurable complication [14]; however, several therapeu-
tic strategies are currently being investigated to promote skeletal muscle growth and regenera-
tion [15]. Therefore, the current study addressed the mRNA expression kinetics within the first
24 h up to 72 h of differentiation and concomitant response to IGF1 and TNF-α (Fig 1A).
Kinetic expression data obtained from the current study and pathway association analyses as
well as principal component analyses and the self-organizing tree algorithm-based clustering
provide valuable insights into the molecular signaling mechanisms, which mediated the effect
of TNF-α and IGF1 (Fig 1B).

Materials and Methods

Cell culture
Murine skeletal myoblasts PMI28 [16] were cultured in growth medium containing Ham’s F10
(PAA Laboratories GmbH, Pasching, Austria), supplemented with 20% FCS (Sigma-Aldrich,
St. Louis, MO, USA), 2 mM L-glutamine (PAA Laboratories), and 1% Penicillin/Streptomycin
(PAA Laboratories). PMI28 myoblasts were seeded on laminin-1 (Sigma-Aldrich)-coated
dishes at a density of 1.5 × 106 cells per 10-cm cell culture plate. Differentiation was induced by
switching to serum-reduced medium 24 h after seeding. The differentiation medium was com-
posed of Dulbecco’s Modified Eagle Medium with 2% horse serum (Gibco, Life Technologies
GmbH, Darmstadt, Germany), 2 mM L-glutamine (PAA Laboratories) and Penicillin (100 I.
U./mL)/Streptomycin (100 μg/mL) (PAA Laboratories) with 2 × 103 U/mL murine recombi-
nant TNF-α (Roche Diagnostics, Rotkreuz, Switzerland) or 5 ng/mL murine recombinant
IGF1 (Sigma-Aldrich) or carrier. The growth medium as well as the differentiation control and
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treatment media were replaced twice a day to ensure cytokine and growth factor activity.
Murine PMI28 cells were harvested 4 h, 12 h, 24 h, 48 h, or 72 h after the induction of fusion
by serum withdrawal for RNA analyses. For mRNA profiling, approximately 2 × 106 cells were
harvested in 1.5 mL Trizol (for details, see the section on RNA extraction and quality control).
PMI28 myoblasts were propagated and differentiated at 37°C, 80% relative humidity, and 5%
CO2.

Western blot analysis
Protein was extracted using the RIPA Lysis Buffer system (Santa Cruz Biotechnology, Dallas,
TX, USA) according to the manufacturer’s instructions. The protein concentration was

Fig 1. Experimental set up and analyses of expression profiling data. (A) Schematic overview of sampling. MB: myoblasts cultured in growth medium.
MT: myotubes cultured in differentiation medium. TNF: myotubes cultured in differentiation medium with TNF-α. IGF: myotubes cultured in differentiation
medium with IGF-1. (B) Gene expression data were analyzed by hierarchical clustering, principal component analysis (PCA), and dynamic PCA among
others. Moreover, the profiling data were clustered by applying the self-organized tree algorithm (SOTA) as well as pathway association enrichment
analyses. Furthermore, genes adversely regulated by differentiation and TNF-αwere identified. Finally, TNF-α-regulated genes were compared with results
of other studies. The study identified novel insights into the gene expression mechanisms and kinetics of early skeletal myocyte differentiation and how this is
modified by TNF-α.

doi:10.1371/journal.pone.0139520.g001
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determined by a bicinchoninic acid (BCA) assay. Gel electrophoresis was performed with
NuPAGE Bis-Tris 4–12% Gels (Invitrogen, Life Technologies GmbH) using prestained protein
plus ladder (Fermentas GmbH, St. Leon-Rot, Germany), 10 μg protein per sample and
1 × NuPAGE MES SDS Running Buffer (Life Technologies GmbH). Proteins were transferred
onto a nitrocellulose membrane using an XCell II Blot Module. Blocking was performed by 5%
nonfat dry milk in Tris-Buffered Saline with 0.05% Tween 20 (TBST). The primary antibodies
Chk1-antibody (G-4) sc-8408 (Santa Cruz Biotechnology), Emi1-antibody (E-19) sc-50928
(Santa Cruz Biotechnology), or Mybl2-antibody PAB18309 (Abnova, Taipei City, Taiwan)
were diluted 1:1,000 or 1:500 with 5% nonfat dry milk in TBST. The antibody used as a normal-
ization reference, H3-antibody Histone H3 (D1H2) XP rabbit mAb (#4499) (Cell Signaling
Technology, Danvers, MA, USA), was diluted 1:2,000. In addition, we performed a peptide
neutralization assay with the Emi1-antibody sc-50928 (Santa Cruz Biotechnology), which was
coincubated with a 5-fold molar excess and a 10-fold molar excess of the Emi (E-19) peptide
sc-50928 P (Santa Cruz Biotechnology) prior to application on the blot. The protein blots were
incubated with the antibody dilutions overnight at 4°C. Blots were washed with TBST and
incubated with horseradish peroxidase-conjugated secondary antibodies antimouse IgG-HRP
sc-2031 (Santa Cruz Biotechnology), antirabbit IgG-HRP sc2030 (Santa Cruz Biotechnology),
or antigoat IgG-HRP sc2020 (Santa Cruz Biotechnology) diluted in blocking solution for 1 h.
After washing with TBST, the blots were incubated with Thermo Scientific SuperSignal West
Dura Chemiluminescent Substrate (Thermo Scientific, Thermo Fisher Scientific, Waltham,
MA USA) according to the manufacturer’s instructions. Images were acquired using the Fusion
FX chemiluminescent scanner with auto exposure settings.

RNA extraction and quality control
The cells were washed with PBS and lysed in Trizol (Invitrogen, Life Technologies GmbH) to
harvest approximately 2 × 106 cells per 1.5 mL Trizol. The samples were homogenized by vig-
orous shaking. A total of 0.3 mL chloroform was added per 1 mL Trizol, and the samples were
mixed for 15 s by vigorous shaking. Phase separation was allowed by placing the samples on
the bench top for 10 min followed by centrifugation at 12,000 ×g for 25 min at 4°C. The upper
aqueous phase was transferred to a fresh tube. A total of 0.75 mL isopropanol per 1 mL Trizol
was added, thoroughly mixed, and incubated for 10 min and centrifuged at 12,000 ×g at 4°C to
precipitate the RNA. The RNA pellet was washed with 0.5 mL ethanol per 1 mL Trizol and cen-
trifugation at 12,000 ×g for 10 min at 4°C. The supernatant was aspirated and the sediment was
air dried for 15 min. Total RNA was dissolved in nuclease-free water and photometrically
quantified by NanoDrop 1000 ND-1000 (Peqlab, Erlangen, Germany) measurement. More-
over, approximately 250 ng RNA were analyzed on 1% Agarose gel with a 1-KB marker for
overall RNA quality control.

Gene expression profiling by hybridization microarrays
Analysis of gene expression was performed with GeneChip Mouse Gene 1.0 ST Arrays (Affy-
metrix, Santa Clara, CA, USA) following the manufacturer’s instructions. Triplicate samples
were analyzed for each time point and treatment. A total of 250 ng total RNA were reverse
transcribed using the AmbionWT Expression Kit (Ambion, Life Technologies GmbH, Darm-
stadt, Germany) including the GeneChip Poly-A RNA Control Kit (Affymetrix) according to
the manufacturer’s instructions. The cDNA yield and size distribution were determined and
the cDNA was then purified, fragmented, labeled and hybridized applying the GeneChip WT
Terminal Labeling and Controls Kits (Affymetrix) following the manufacturer’s instructions.
For washing and staining steps the GeneChip Hybridization, Wash, and Stain Kit (Affymetrix)
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was used according to the manufacturer’s instructions. Fluorescence signals were acquired
with the AGCC Scan Control Software. Affymetrix CEL files were read, normalized and sum-
marized using the RMAmethod [17] as implemented in the Affymetrix apt package. Probe sets
were retained if they had at least two “detected above background” present calls in at least one
experimental group. GeneChip Mouse Gene 1.0 ST Array data were MIAME [18] compliant
and was submitted to the ArrayExpress database (www.ebi.ac.uk/arrayexpress) [19], a publicly
available repository consistent with the MIAME guidelines. Data are available with the
ArrayExpress accession number E-MTAB-3474.

Reverse transcription of RNA to cDNA for individual expression analysis
Validation of mRNA expression results obtained by microarray profiling was performed by
individual reverse transcription, using gene-specific reverse primer and subsequent qPCR anal-
ysis. Reverse transcription was performed using 100 ng total RNA for each reaction and the
components of the miScript Reverse Transcription Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s instructions.

Individual quantitative PCR analysis
Individual qPCR reactions were performed with the miScript SYBR Green PCR Kit (Qiagen)
according to the manufacturer’s instructions in combination with the respective individually
designed primers using PrimerBlast [20]. Primers were ordered from Integrated DNA Tech-
nologies, Inc. (Coralville, Iowa, USA) with purification grade desalted. qPCR reactions were
performed on CFX384TM Real-Time System C1000TM (Bio-Rad Laboratories, Hercules,
CA, USA) to enhance throughput and reduce variation due to the 384-well format. qPCR reac-
tion volumes were equimolarly reduced to 10 μL. In addition, VisiBlue qPCR mix colorant
(TATAA Biocenter AB, Gothenburg, Sweden) diluted to a 1:150 dilution was added to facilitate
visibility during pipetting. The following thermal cycling conditions were applied: activation of
HotStarTaq DNA Polymerase at 95°C for 15 min and three-step cycling with denaturation at
94°C for 15 s, annealing at 55°C for 30 s, extension at 70°C for 30 s, and fluorescence data col-
lection run in 40 cycles. After incubation at 95°C for 5 s the melting analysis was performed
from 65°C to 95°C with 0.2°C increments of 5 s for each condition. Relative quantification was
performed within the CFX384TM Real-Time System Manager (Bio-Rad Laboratories). Normal-
ization of qPCR-based mRNA expression analyses was performed by taking the mean of Rpl21
and Rpl28, two reference genes, which were selected based on Normfinder [21] analyses results
of our mRNA profiling data. Primer sequences of self-designed oligonucleotides: Vegfa for-
ward-50-AACGATGAAGCCCTGGAGTG, reverse-50-GCAACGCGAGTCTGTGTTTT;
Unc5b forward-50-CATCCGCATTGCCTACTTGC, reverse-50-GTGTAGTTGGCCGTGT
CTGA; Serpine1 forward-50-CACAGGCACTGCAAAAGGTC, reverse-50-GGGCTGAGAT
GACAAAGGCT; Serpinb2 forward-50-TTCCGTGTGAACTCGCATGA, reverse-50-TGC
GTCCTCAATCTCATCGG; Rrm2 forward-50-AGCAAAGCTGCGAGGAGAAT, rever-
se-50-CAGAGCTTCCCAGTGCTGAA; Plaur forward-50-CACAAACCTCTGCAACAGGC,
reverse-50-GGACGCACACTCGAGGTAAC; Nr4a2 forward-50-GCCTAGCTGTTGGGAT
GGTT, reverse-50-GTCAGCAAAGCCAGGGATCT; Mybl2 forward-50-GGGACCATGGAC
CAAAGAGG, reverse-50-AACCTCCCGTGTCGACTTTC; Mcm10 forward-50-GTGAAGGA
GCGTGTGGAGAA, reverse-50-CCGGGTGGCTCTCATCTTTT; Id2 forward-50-AAAGCCT
TCAGTCCGGTGAG, reverse-50-TCAGATGCCTGCAAGGACAG; Hmga2 forward-50-GAA
AAACGGCCAAGAGGCAG, reverse-50-CAGTCTCCTGAGCAGGCTTC; Gja1 forward-50-
CTCACGTCCCACGGAGAAAA, reverse-50-AGTTGGAGATGGTGCTTCCG; Fgf7 for-
ward-50-CATGCTTCCACCTCGTCTGT, reverse-50-CACAATTCCAACTGCCACGG; Fbxo5
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forward-50-ACAATAAGGGGGCGTTCCAG, reverse-50-AACTCATTGTGCCGGCTGTA;
Cxcl12 forward-50-GCTCTGCATCAGTGACGGTA, reverse-50-TCAGATGCTTGACGTT
GGCT; Chek1 forward-50-ACTGCAATGTTGGCTGGAGA, reverse-5-GGCCTCTTTGCT
CCTCTGTT; Cdkn1a forward-50-GTACTTCCTCTGCCCTGCTG, reverse-50-AATCTGT
CAGGCTGGTCTGC; Ccnd1 forward-50-CCCTGGAGCCCTTGAAGA AG, reverse-50-TC
ATCCGCCTCTGGCATTTT; Bard1 forward-50-CTGGTATGCCAGCCAGGAAA, rever-
se-50-GAAGCACCGTGGGACAGTAA; Rpl21 forward-50-CCATAAGTGCTACCACGGCA,
reverse-50-GCCCTTCTCTTTGGCTTCCT; Rpl28 forward-50-CTTCCGCTACAACGGGCT
AA, reverse-50-GTGTCTGATGCTGCTGAGGG. Differential gene expression was calculated
using relative quantification [22].

Statistics
Significant differences between mRNA expressions measured by individual RT-qPCR analyses
were determined using a parametric unpaired two-tailed student’s t-test. Differential expres-
sion of genes measured by microarray analysis was determined with LIMMA (Linear Models
for Microarray Data) [23] using a factorial design with treatment and time-point as factors.
Pairwise comparisons were extracted for all combinations of consecutive time points for the
same treatment and between all treatments at the same time point. We clustered expression
profiles of all samples for all probesets that were significantly different (fdr< 0.01 and log2
fold change> 1) in at least one pairwise comparison with the self-organizing tree algorithm
(SOTA) method [24]. Dynamic PCA was performed within GenEx Software (MultiD Analyses
AB, Gothenburg, Sweden) comparing myoblasts to the other treatment groups. Genes were fil-
tered on the basis of p values to identify the most relevant genes explaining the observations
[25]. Hierarchical clustering and heatmap generation was performed using GenEx Software
(MultiD Analyses AB).

Bioinformatic analysis of data
The Genomatix Pathway System (GePS) within the Genomatix Software Suite (Genomatix
Software GmbH, Munich, Germany) uses pathway data from the Pathway Interaction Data-
base [26]. We applied GePS analysis for identifying significant pathway associations and gene
ontology terms of input genes derived from our gene expression profiling data.

Results

Immediate response to differentiation and TNF-α treatment
The effect of myoblast differentiation as well as the response to TNF-α or IGF1 exposure modi-
fied gene expression patterns, which resulted in separation of treatment groups by hierarchical
clustering (S1 Fig) or principal component analysis (PCA) (Fig 2A, 2D and 2G). Genes which
separated by principal component analyses (S1 Table) were analyzed for enrichment of path-
way associations (Table 1). As early as 4 h after the induction of differentiation and treatment,
the gene expression pattern of myoblasts, myotubes, and myotubes treated with TNF-α clearly
separate by PCA (Fig 2A, 2D and 2G), whereas the effect of IGF1 became clearly distinct after
24 h (Table 1). Principal component analysis showed that the differentiation effect had the
strongest impact on the proportion of variance followed by the effect of TNF-α treatment
whereas IGF1 treatment had a minor effect (Fig 2B, 2E and 2H). Dynamic PCA identified a
subset of 61 genes after 4 h of treatment (Fig 2C. and Table 2), a subset of 27 genes and two
microRNAs after 12-h treatment (Fig 2F, Table 2) as well as a subset of 19 genes and two
microRNAs after 24-h treatment (Fig 2I, Table 2); in each case, these were sufficient to separate
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Fig 2. Transcriptomic signatures of myoblast differentiation and TNF-α or IGF1 treatment. Principal component analyses (PCA) of mRNA expression
profiling data after (A) 4 h, (D) 12 h, or (G) 24 h of induction of differentiation with TNF-α, IGF1, or control treatment showing nonambiguous genes are
depicted. Axes show principal components (PC) 1, PC 2, and PC 3. PCA revealed separation of treatment groups. Light blue indicates myoblasts, green
marks myotubes, red distinguishes myotubes treated with TNF-α, whereas dark blue indicates myotubes treated with IGF1. The proportions of variance for
the first six components of principal component analysis are depicted for the effect of (B) 4 h, (E) 12 h, and (H) 24 h after induction of differentiation and the
respective treatments. Most of the variance is described by PC 1 followed by PC 2 and PC 3. PC 1 explaines most of the variance of myocyte differentiation
while PC 2 represented most of the variance induced by TNF-α whereas PC 3 characterized most of the variance caused by IGF1 treatment. Moreover,
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the treatment groups by principal components. Furthermore, differential gene expression
kinetics revealed dynamic time-specific changes of gene regulation (S2 Table). Moreover, cer-
tain genes, which were among the 20 most differentially expressed ones, were regulated imme-
diately after the induction (4 h) as well as during very early (12 h) and early (24 h) myoblast
differentiation, such as upregulated Adamts5, Ccdc141, Fibin, and downregulated Serpinb2,
Gm12824, Npr3, and Sp7 (S2A Table). TNF-α treatment upregulated several genes immedi-
ately after induction (4 h), which were still upregulated 12 h as well as 24 h after induction
(S2B Table); these included Ccl2, Ccl7, Nfkbie, Tnfaip3, Nfkbia, Bcl3, Vcam1, Slc2a6, Cxcl10,
and Mmp9. IGF1 treatment did not result in differentially expressed genes derived from micro-
array analysis when compared with nontreated myotubes. However, when IGF1-treated sam-
ples were compared with TNF-α, several genes were inversely regulated (S2C Table).

Coregulation of gene sets
Self-organizing tree algorithm (SOTA) analyses of gene expression over time (0 h, 4 h, 12 h, 24
h, and 72 h) revealed significant coregulation of gene sets in response to the induction of differ-
entiation and confirmed the immediate response to TNF-α or IGF1 treatment (Fig 3). Clus-
tered cohorts of the gene expression pattern showed a distinct shift in expression levels as early
as 4 h after induction of differentiation and TNF-α or IGF1 treatment (Fig 3). The majority of
differentially expressed genes fitted in one of the six clusters as shown in Fig 3. The other three
clusters (S2 Fig) and corresponding gene lists of all clusters (S3 Table) are shown in the sup-
porting information section. The data collected from the current study suggests that>80% of
the differentially expressed genes clustering in cohorts are assigned to three SOTA clusters:
cluster A, which includes genes upregulated during very early differentiation (Fig 3A); cluster
B, which represents genes upregulated during late differentiation (Fig 3B); and cluster C, which
visualized cohorts of genes downregulated as early as 4 h after induction of differentiation (Fig
3C). We examined whether gene expression transcripts with similar regulation also demon-
strate related biological implications. Analysis of signal transduction pathway associations and
gene ontology annotation class “biological processes” (S4 Table) demonstrate that pathways
such as cyclin G1 and semaphorin pathway were enriched in cluster A (early myotubes genes
up). Cluster B (late myotube genes up) was enriched for genes with a function in the ryanodine
receptor and calcineurin pathway for example, whereas cluster C (early myotube genes down)
showed enrichment of genes e.g. involved in dual-specific phosphatase and fibroblast growth
factor pathway as well as TGFbeta signaling. Genes with a function in, for example, the cyclin-
dependent kinase inhibitor 2 pathway were enriched in cluster D (TNF induced, suppressed in
late myotubes), while cluster E (specifically induced by TNF) overrepresented genes with a
function in pathways such as NFkappaB and tumor necrosis factor. Finally, cluster F (late myo-
tubes genes down) was enriched for pathways such as nuclear factor (erythroid derived 2) like
2, tumor protein p 53, and other cell cycle-related pathways.

Specific signaling pathway regulation during myoblast differentiation and
TNF-α response
Signal transduction pathway associations were enriched in a time-dependent manner (Table 3)
for the effect of myoblast differentiation. Immediately after the induction of differentiation

results from dynamic principal component analyses (dPCA) (group selection myoblasts) are shown for gene expressions (C) 4 h, (F) 12 h, and (I) 24 h after
induction of differentiation and treatment. DPCA identified a minimal subset of genes, which could describe the treatment effects (see Table 2) and separate
the effects by principal components.

doi:10.1371/journal.pone.0139520.g002
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Table 1. Pathway enrichment analysis of genes separated by principal components.

Principal component 1 –Effect of myoblast differentiation

Time
point

Pathway P-value # Genes
(observed)

List of observed genes

4h SPROUTY HOMOLOG (DROSOPHILA) 6.71E-04 3 Etv5, Fgf2, Etv4

4h MOTHERS AGAINST DPP HOMOLOG 8.66E-04 8 Dlx2, Ctgf, Sp7, Foxc2, Smad9, Id1, Smad7, Id2

4h SEMAPHORIN 1.11E-03 4 Sema6a, Nrp2, Sema3d, Sema5a

4h ACTIVIN RECEPTOR LIKE KINASE 1 1.21E-03 4 Ctgf, Smad9, Id1, Smad7

4h TGF BETA 1.37E-03 10 Dlx2, C3ar1, Ctgf, Sp7, Foxc2, Dlx1, Smad9, Id1, Smad7,
Id2

4h RETINOBLASTOMA 1 2.57E-03 4 Dlx2, Ccnd1, Dlx1, Id2

4h CYCLIN D1 3.68E-03 5 Dyrk1b, Ccnd1, Ereg, Id1, Id2

4h CYCLIN D2 4.02E-03 3 Ccnd1, Fgf2, Id2

12h NOTCH 8.80E-03 6 Sox8, Dll1, Bcl6b, Rbm24, Cdkn1c, Heyl

24h RYANODINE RECEPTOR 6.63E-06 6 Ryr1, Casq2, Srl, Dok7, Atp2a1, Trdn

Principal component 2 –Effect of TNF-α on myoblast differentiation

Time
point

Pathway P-value # Genes
(observed)

List of observed genes

4h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

2.01E-10 15 Mmp9, Ccl2, Fbxo32, Nfkbia, Cxcl10, Il1rn, Nfkbie, Relb,
Vcam1, Fas, Tnip1, Slc40a1, Tnfaip3, Serpinb2, Serpine1

4h NF KAPPA B 2.43E-08 15 Ddx58, Mmp9, Ccl7, Ccl2, Nfkbia, Nfkb2, Cxcl10, Casp4,
Nfkbie, Relb, Vcam1, Rrad, Bcl3, Tnip1, Tnfaip3

4h CHEMOKINE (C C MOTIF) LIGAND 2 1.78E-05 3 Ccl7, Ccl2, Cxcl10

4h TUMOR NECROSIS FACTOR RECEPTOR
SUPERFAMILY (FAS, RANK, ETC.)

4.94E-05 8 Ccl2, Nfkbia, Adamts5, Nfkbie, Relb, Epha7, Fas, Tnfaip3

4h TISSUE INHIBITOR OF METALLOPROTEINASE 9.27E-05 5 Mmp9, Adamts5, Stc1, Fas, Serpine1

4h IKAPPAB KINASE 1.88E-04 6 Ddx58, Nfkbia, Nfkb2, Nfkbie, Relb, Bcl3

4h TNF RECEPTOR ASSOCIATED FACTOR 2.14E-04 7 Rnd1, Ddx58, Nfkbia, Nfkb2, Fas, Tnip1, Tnfaip3

4h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

6.13E-04 4 Ccl2, Il1rn, Vcam1, Fas

4h PARATHYROID HORMONE 1.00E-03 4 Sp7, Nr4a2, Vdr, Jag1

4h INTERLEUKIN 6 (INTERFERON, BETA 2) 1.54E-03 6 Ccl2, Maf, Cxcl10, Il1rn, Vcam1, Cp

4h INTERLEUKIN 1 1.95E-03 6 Mmp9, Ccl2, Nfkbia, Cxcl10, Il1rn, Vcam1

4h INTERLEUKIN 10 3.00E-03 5 Ccl2, Maf, Cxcl10, Il1rn, Fas

4h MOTHERS AGAINST DPP HOMOLOG 5.76E-03 7 Fbxo32, Sp7, Meox2, Id3, Aspn, Smad6, Serpine1

4h TGF BETA 7.78E-03 9 Fbxo32, Adamts5, Sp7, Meox2, Id3, Aspn, Dlx1, Smad6,
Serpine1

4h TANK BINDING KINASE 1 8.42E-03 3 Ddx58, Serpinb2, Dtx4

4h VERY LOW DENSITY LIPOPROTEIN RECEPTOR 9.39E-03 2 Serpinb2, Serpine1

4h RHO ASSOCIATED, COILED COIL CONTAINING
PROTEIN KINASE

9.48E-03 4 Ccl2, Vcam1, D8Ertd82e, Serpine1

12h NF KAPPA B 4.00E-10 23 Mmp9, Cxcl1, Ccl5, Nfkbie, Vcam1, Cd74, Cxcl16, Saa3,
Bcl3, Tnfaip3, Id1, Ddx58, Ccl2, Ccl7, Cx3cl1, Nfkbia,
Nfkb2, Stap2, Cxcl10, Casp4, Relb, Tnip1, Ptgs2

12h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

9.00E-09 18 Mmp9, Cxcl1, Ccl5, Il1rn, Nfkbie, Vcam1, Saa3, Fas,
Slc40a1, Tnfaip3, Ccl2, Cx3cl1, Nfkbia, Cxcl10, Relb,
Tnip1, Ptgs2, Serpinb2

12h IKAPPAB KINASE 3.93E-06 10 Cxcl1, Ccl5, Nfkbie, Bcl3, Ddx58, Nfkbia, Nfkb2, Stap2,
Relb, Ptgs2

12h CHEMOKINE (C C MOTIF) LIGAND 2 1.18E-04 3 Ccl2, Ccl7, Cxcl10

12h INTERLEUKIN 1 1.78E-04 10 Mmp9, Cxcl1, Ccl5, Il1rn, Vcam1, Ccl2, Cx3cl1, Nfkbia,
Cxcl10, Ptgs2

12h TISSUE INHIBITOR OF METALLOPROTEINASE 2.23E-04 6 Mmp9, Sepp1, Cd82, Fas, Timp3, Fgf2

(Continued)
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Table 1. (Continued)

12h VASCULAR ENDOTHELIAL GROWTH FACTOR 2.46E-04 10 Mmp9, Cxcl1, Sepp1, Angptl4, Timp3, Vegfc, Lix1, Fgf2,
Gpr56, Ptgs2

12h MYELOID DIFFERENTIATION PRIMARY
RESPONSE GENE (88)

3.08E-04 8 Cxcl1, Ccl5, Saa3, Tnfaip3, Ddx58, Ccl2, Stap2, Cxcl10

12h TNF RECEPTOR ASSOCIATED FACTOR 5.16E-04 9 Rnd1, Fas, Tnfaip3, Ddx58, Nfkbia, Nfkb2, Stap2, Nrk,
Tnip1

12h INTERLEUKIN 10 5.28E-04 8 Il1rn, Cd82, Saa3, Fas, Ccl2, Maf, Cxcl10, Ptgs2

12h INTERLEUKIN 6 (INTERFERON, BETA 2) 5.85E-04 9 Cxcl1, Ccl5, Il1rn, Vcam1, Ccl2, Maf, Cxcl10, Ptgs2, Cp

12h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

8.20E-04 5 Il1rn, Vcam1, Fas, Ccl2, Cx3cl1

12h TOLL LIKE RECEPTOR 1.28E-03 9 Cxcl1, Ccl5, Saa3, Tnfaip3, Ddx58, Ccl2, Stap2, Cxcl10,
Pde4b

12h T CELL RECEPTOR CD3 COMPLEX 2.19E-03 6 Cd82, Fas, Hcn1, Nedd9, Tnip1, Pde4b

12h TUMOR NECROSIS FACTOR RECEPTOR
SUPERFAMILY (FAS, RANK, ETC.)

3.69E-03 8 Ccl5, Nfkbie, Cxcl16, Fas, Tnfaip3, Ccl2, Nfkbia, Relb

12h MOTHERS AGAINST DPP HOMOLOG 7.79E-03 10 Id3, Atoh8, Aspn, Smad9, Smad6, Id1, Dlx2, Parm1,
Nedd9, Timp3

12h TNFRSF1A ASSOCIATED VIA DEATH DOMAIN 8.35E-03 3 Fas, Tnfaip3, Stap2

12h MATRIX METALLOPROTEINASE 8.43E-03 8 Mmp9, Ccl5, Enpp2, Ccl2, Cxcl10, Timp3, Ptgs2, Fosl1

12h F BOX AND WD REPEAT DOMAIN CONTAINING
7

9.53E-03 3 Bcl3, Nfkb2, Myc

12h INHIBITOR OF GROWTH 9.98E-03 2 Fas, Ptgs2

24h NF KAPPA B 6.19E-09 32 Cd24a, Cxcl16, Tnfaip3, Nfkbia, Cxcl10, Relb, Abcb1b,
Mmp9, Cxcl1, Ccl5, Dysf, Cd74, Bcl3, Lbp, Id1, Ccl7,
Stap2, Casp4, Tnip1, Ccl2, Cx3cl1, Fmod, Egln3, Nfkbie,
Vcam1, Saa3, Olr1, Eda2r, Birc3, Nfkb2, Fabp5, Ptgs2

24h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

2.86E-06 22 Tnfaip3, Nfkbia, Cxcl10, Relb, Mmp9, Cxcl1, Ccl5, Lor,
Lbp, Tnip1, Slc40a1, Ccl2, Selp, Cx3cl1, Serpinb2, C3,
Nfkbie, Vcam1, Saa3, Olr1, Birc3, Ptgs2

24h IKAPPAB KINASE 4.48E-06 14 Rgs4, Nqo1, Nfkbia, Ccnd1, Relb, Irf5, Cxcl1, Ccl5, Bcl3,
Stap2, Egln3, Nfkbie, Nfkb2, Ptgs2

24h MATRIX METALLOPROTEINASE 2.94E-04 16 Sema4b, Ecm1, Cxcl10, Srebf2, Mmp9, Ccl5, Wnt5a,
Postn, Fosl1, Jam3, Ccl2, Cxcr4, Enpp2, Srpx2, Ptgs2,
Zeb1

24h HYPOXIA INDUCIBLE FACTOR 1, ALPHA
SUBUNIT (BASIC HELIX LOOP HELIX
TRANSCRIPTION FACTOR)

9.01E-04 12 Slc16a3, Ncoa1, Abcb1b, Cd74, Ndrg1, Cx3cl1, Cxcr4,
Egln3, Aqp1, Sp7, Vegfc, Ptgs2

24h PEROXISOME PROLIFERATOR ACTIVATED
RECEPTOR DELTA

9.59E-04 6 Rgs4, Angptl4, Ptgs1, Pla2g4a, Fabp5, Ptgs2

24h CHEMOKINE (C C MOTIF) LIGAND 2 9.71E-04 3 Cxcl10, Ccl7, Ccl2

24h ENDOTHELIN 1.47E-03 8 Rgs4, Ptgs1, Ret, Cx3cl1, Npr3, Capn6, Gja1, Ptgs2

24h VASCULAR ENDOTHELIAL GROWTH FACTOR 2.49E-03 13 Angptl4, Fgf2, Mmp9, Cxcl1, Postn, Lix1, Nrp2, Cxcr4,
Olr1, Aqp1, Vegfc, Gpr56, Ptgs2

24h TNF RECEPTOR ASSOCIATED FACTOR 2.98E-03 12 Tnfaip3, Nfkbia, Nrk, Irf5, Dysf, Stap2, Tnip1, Rnd1,
Casp12, Eda2r, Birc3, Nfkb2

24h INTERLEUKIN 1 4.97E-03 12 Rgs4, Nfkbia, Cxcl10, Mmp9, Cxcl1, Ccl5, Adcy8, Ccl2,
Cx3cl1, C3, Vcam1, Ptgs2

24h CADHERIN 1, TYPE 1, E CADHERIN
(EPITHELIAL)

7.45E-03 9 Vwa5a, Ccnd1, Mmp9, Ndrg1, Postn, Gsta4, Gja1, Ptgs2,
Zeb1

24h MYELOID DIFFERENTIATION PRIMARY
RESPONSE GENE (88)

8.66E-03 9 Tnfaip3, Cxcl10, Irf5, Cxcl1, Ccl5, Lbp, Stap2, Ccl2, Saa3

Principal component 3 –Effect of IGF1 on myoblast differentiation

Time
point

Pathway P-value # Genes
(observed)

List of observed genes

(Continued)
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(4-h differentiation), mothers against DPP homolog (Smad) and TGFbeta pathway associa-
tions were significantly enriched amongst others (Table 3). During very early differentiation
(12-h differentiation), signaling pathways such as mothers against DPP homolog, notch, and
semaphorin were enriched (Table 3). After 24-h differentiation (early differentiation) enrich-
ment analysis of pathway associations revealed involvement of cyclin A2, ryanodine receptor,
and E2F transcription factor 1 pathway among others (Table 3). For example, pathways related
to TGFbeta or SMAD signaling (Table 3) were additionally allocated to SOTA cluster C. How-
ever, part of the enriched signal transduction pathway association included genes which were
not similarly regulated during myoblast differentiation as the respective pathway associations
were not retrieved in SOTA clusters.

In contrast to the effect of myoblast differentiation, the effect of TNF-α treatment on gene
expression, and thus pathway enrichment, was approximately constant over time (Table 3).
However, slight time-specific enrichment of signal transduction pathway associations were evi-
dent as the number of signal transduction pathway associations peaks at 12 h after induction of

Table 1. (Continued)

4h non non non non

12h NUCLEAR FACTOR (ERYTHROID DERIVED 2)
LIKE 2

6.43E-04 5 Gsta1, Lor, Gclm, Gsta2, Mir206

12h VASCULAR ENDOTHELIAL GROWTH FACTOR 2.65E-03 6 Cxcl1, Timp3, Sema6a, Fgf2, Vegfa, Prox1

12h MATRIX METALLOPROTEINASE 4.69E-03 6 Adam12, Wnt5a, Timp3, Srpx2, Vegfa, Sema5a

12h V RAF 5.33E-03 4 Pde8a, Ret, Fam83b, Ngf

12h FIBROBLAST GROWTH FACTOR 1.00E-02 6 Gja1, Dlx1, Fgf2, Vegfa, Ngf, Mir206

24h CYCLIN A2 2.29E-05 10 Ccne2, Mybl2, Orc1, Mir27b, Cdt1, Cdkn1a, Cdk6, Chek1,
Uhrf1, Mcm3

24h E2F TRANSCRIPTION FACTOR 1 2.39E-04 9 Ccne2, Mybl2, Clspn, Dusp4, Exo1, Cdkn1a, Cdk6, Chek1,
Mcm3

24h CELL DIVISION CYCLE 2, G1 TO S AND G2 TO M 3.84E-04 13 Ccne2, Espl1, Kif18a, Cdt1, Mcm10, Cdkn1a, Cdk6,
Hist1h1b, Chek1, Cdca5, Fbxo5, Uhrf1, Mcm3

24h PEROXISOME PROLIFERATOR ACTIVATED
RECEPTOR DELTA

5.58E-04 6 Rgs4, Ptgs1, Nr4a2, Ckm, Fabp5, Ptgs2

24h RYANODINE RECEPTOR 8.15E-04 6 Tmem38a, Srl, Pvalb, Casq2, Scn5a, Trdn

24h CADHERIN 1, TYPE 1, E CADHERIN
(EPITHELIAL)

1.06E-03 10 Vwa5a, Ezr, Ndrg1, Gsta4, Rrm2, Gja1, Hgf, Fbxo5, Dcn,
Ptgs2

24h HYPOXIA INDUCIBLE FACTOR 1, ALPHA
SUBUNIT (BASIC HELIX LOOP HELIX
TRANSCRIPTION FACTOR)

1.29E-03 11 Slc16a3, Idh1, Ndrg1, Mir23b, Cx3cl1, Smpx, Vegfa,
Cxcr4, Egln3, Vegfc, Ptgs2

24h CHECKPOINT KINASE 2 2.20E-03 7 Brca1, Clspn, Exo1, Mcm10, Msh3, Cdkn1a, Chek1

24h ENDOTHELIN 3.45E-03 7 Rgs4, Plcb4, Mylpf, Ptgs1, Cx3cl1, Gja1, Ptgs2

24h FANCONI ANEMIA COMPLEMENTATION GROUP
COMPLEX

3.93E-03 6 Brca1, Clspn, Exo1, Bard1, Chek1, Uhrf1

24h ATAXIA TELANGIECTASIA AND RAD3 RELATED 4.95E-03 7 Brca1, Clspn, Exo1, Bard1, Cdt1, Chek1, Mcm3

24h MITOGEN ACTIVATED PROTEIN KINASE 8.06E-03 23 Tnik, Cmklr1, Slc4a4, Dusp4, Dusp9, Fdps, Fosl1, Car2,
Cx3cl1, Gsta4, Fam83b, Nid2, Gja1, Adora1, Klhl31, Mc4r,
Olr1, C1qtnf3, Nefm, Dusp5, 2810417H13Rik, Etv4, Ptgs2

Signal transduction pathway associations of genes which are separated by principal component analysis after 4-h, 12-h, or 24-h treatment are depicted.

Principal component one separates the effect of differentiation, whereas principal component two represents the effect of TNF-α treatment. Finally,

principal component three separates the effect of IGF1 treatment versus control myotubes. Pathway enrichment was based on cocitation with a p value

cutoff of <0.01. Genes within significantly enriched pathways are listed. Pathways highlighted in bold are retrieved in enrichment analyses of differentially

expressed genes which are shown in Table 3.

doi:10.1371/journal.pone.0139520.t001
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Table 2. Genes describing the treatment effects.

4 h myoblast differentiation: control, TNF-α or IGF1 treatment

Gene symbol Gene title

Tmeff2 transmembrane protein with EGF-like and two follistatin-like domains 2

Sdpr serum deprivation response

Nrp2 neuropilin 2

Fam78b family with sequence similarity 78, member B

Sh2d1b1 SH2 domain protein 1B1

Pkp1 plakophilin 1

Ctgf connective tissue growth factor

Etv5 ets variant gene 5

Chst11 carbohydrate sulfotransferase 11

Aldh3a1 aldehyde dehydrogenase family 3, subfamily A1

Etv4 ets variant gene 4 (E1A enhancer binding protein, E1AF)

Lpin1 lipin 1

Id2 inhibitor of DNA binding 2

Pgf placental growth factor

Itgb8 integrin beta 8

Idi1 isopentenyl-diphosphate delta isomerase

Serpinb6b serine (or cysteine) peptidase inhibitor, clade B, member 6b

Rbm24 RNA binding motif protein 24

Serpinb1a serine (or cysteine) peptidase inhibitor, clade B, member 1a

Slc22a23 solute carrier family 22, member 23

Tmem171 transmembrane protein 171

Hmgcs1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1

Sema5a sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane
domain (TM) and short cytoplasmic domain, (semaphorin) 5A

Vdr vitamin D receptor

Sp7 Sp7 transcription factor 7

Etv5 ets variant gene 5

Robo2 roundabout homolog 2 (Drosophila)

Smad7 MAD homolog 7 (Drosophila)

Hbegf heparin-binding EGF-like growth factor

Sema6a sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A

Dusp5 dual specificity phosphatase 5

Syt12 synaptotagmin XII

Dlx1 distal-less homeobox 1

Ak4 adenylate kinase 4

Id1 inhibitor of DNA binding 1

Qrfp pyroglutamylated RFamide peptide

Idi1 isopentenyl-diphosphate delta isomerase

Dlx2 distal-less homeobox 2

Ccdc141 coiled-coil domain containing 141

Jag1 jagged 1

Fgf2 fibroblast growth factor 2

Hspa4l heat shock protein 4 like

Smad9 MAD homolog 9 (Drosophila)

Prr9 proline rich 9

Lce1g late cornified envelope 1G

(Continued)
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Table 2. (Continued)

Lphn2 latrophilin 2

Gm12824 predicted gene 12824

Id3 inhibitor of DNA binding 3

Sema3d sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin)
3D

Lrrc17 leucine rich repeat containing 17

Ereg epiregulin

Hk2 hexokinase 2

C3ar1 complement component 3a receptor 1

Dyrk1b dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1b

Pdlim3 PDZ and LIM domain 3

Cx3cl1 chemokine (C-X3-C motif) ligand 1

Foxc2 forkhead box C2

Sc4mol sterol-C4-methyl oxidase-like

1600029D21Rik RIKEN cDNA 1600029D21 gene

Ubash3b ubiquitin associated and SH3 domain containing, B

Smad6 MAD homolog 6 (Drosophila)

12 h myoblast differentiation: control, TNF-α or IGF1 treatment

Gene symbol Gene title

miR-206 microRNA-206-3p

miR-133b microRNA-133b-3p

Myog myogenin

Selp selectin, platelet

Olfml2b olfactomedin-like 2B

Lgr6 leucine-rich repeat-containing G protein-coupled receptor 6

Fabp7 fatty acid binding protein 7, brain

Idi1 isopentenyl-diphosphate delta isomerase

Rbm24 RNA binding motif protein 24

Stc1 stanniocalcin 1

Sntb1 syntrophin, basic 1

Sp7 Sp7 transcription factor 7

Adamts5 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1
motif, 5 (aggrecanase-2)

Dll1 delta-like 1 (Drosophila)

Dtx4 deltex 4 homolog (Drosophila)

Slc24a3 solute carrier family 24 (sodium/potassium/calcium exchanger), member 3

Id1 inhibitor of DNA binding 1

Idi1 isopentenyl-diphosphate delta isomerase

Dlx2 distal-less homeobox 2

Ttn titin

Ccdc141 coiled-coil domain containing 141

Fibin fin bud initiation factor homolog (zebrafish)

Slc7a11 solute carrier family 7 (cationic amino acid transporter, y+ system), member 11

Gm12824 predicted gene 12824

Car8 carbonic anhydrase 8

Dync1i1 dynein cytoplasmic 1 intermediate chain 1

Cpa1 carboxypeptidase A1

Cdkn1c cyclin-dependent kinase inhibitor 1C (P57)

(Continued)
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differentiation. Signal transduction pathway association analysis of genes regulated by TNF-α
during myoblast differentiation revealed that the following pathways enriched at 4 h, 12 h as
well as at 24 h included tumor necrosis factor (TNF superfamily, member 2), NFkB, and che-
mokine (C C motif) ligand 2 (Table 3). Moreover, TNF-α treatment regulated matrix metallo-
proteinase signaling after 24 h of TNF-α and differentiation stimuli. Genes with a function in
TNF-α or cytokine signaling were retrieved in SOTA cluster E (specifically induced by TNF).
Genes upregulated by TNF-α after 24-h incubation had a function in the chemokine (CC
motif) ligand 2 or matrix metalloproteinase pathway, which are both enriched in SOTA cluster
C (early myotube genes down). Furthermore, the effect of IGF1 compared with TNF-α revealed
enrichment of similar pathways as observed for the effect of TNF-α compared with the
untreated control (Table 3). In summary, enrichment of several pathways was validated across
methods (compare Tables 1 and 3). Inter method validated pathways were highlighted in bold
(Tables 1 and 3). Pathways which did not match between results from principal component
analysis and results from differential gene expression analysis resemble the consequence of dif-
ferent analyses approaches.

Table 2. (Continued)

Sc4mol sterol-C4-methyl oxidase-like

24 h myoblast differentiation: control, TNF-α or IGF1 treatment

Gene symbol Gene title

Car8 carbonic anhydrase 8

Ccdc141 coiled-coil domain containing 141

Cdkn1c cyclin-dependent kinase inhibitor 1C (P57)

Cpa1 carboxypeptidase A1

Ctrb1 chymotrypsinogen B1

Dlx2 distal-less homeobox 2

Dtx4 deltex 4 homolog (Drosophila)

Dync1i1 dynein cytoplasmic 1 intermediate chain 1

Erbb3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)

Fabp7 fatty acid binding protein 7, brain

Hfe2 hemochromatosis type 2 (juvenile) (human homolog)

Lgr6 leucine-rich repeat-containing G protein-coupled receptor 6

miR-133b microRNA-133b-3p

miR-206 microRNA-206-3p

Myog myogenin

Olfml2b olfactomedin-like 2B

Slc24a3 solute carrier family 24 (sodium/potassium/calcium exchanger), member 3

Slc7a11 solute carrier family 7 (cationic amino acid transporter, y+ system), member 11

Sntb1 syntrophin, basic 1

Stc1 stanniocalcin 1

Ttn titin

Nonambigous genes identified by dynamic principal component analysis (group selection myoblasts) of

gene expression profiling data after 4 h, 12 h, or 24 h of differentiation or TNF-α or IGF1 treatment

identified genes that were sufficient for separation of treatment groups by principal components as shown

in Fig 2C, 2F and 2I.

doi:10.1371/journal.pone.0139520.t002
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TNF-α inversely regulated early differentiation-associated genes
TNF-α impaired myoblast differentiation; therefore, we aimed to identify differentiation-asso-
ciated genes inversely regulated by TNF-α. We identified genes counteracted by TNF-α
(Table 4) after 24-h treatment; this included several genes that were among the top 20 most
upregulated genes during differentiation, such as Cpa1, Aspn, Adamts5, and Fibin. Most of the
inversely regulated genes were upregulated during differentiation but downregulated because
of TNF-α treatment (Table 4).

Fig 3. Coregulation of gene sets duringmyogenic differentiation as well as TNF-α and IGF1 treatment. Self-organizing tree algorithm (SOTA) analysis
of gene expression data within the first 72 h of differentiation as well as TNF-α and IGF1 treatment revealed the following clusters of gene sets: (A) cluster A
contained 335 genes upregulated during very early differentiation and (B) cluster B comprised 351 genes upregulated during later differentiation. (C) Genes
totaling 172, which were downregulated during very early differentiation, were summarized by cluster C. (D) Genes induced by TNF-α but suppressed during
late myotubes were visualized by cluster C implying eight genes. (E) Cluster E included 40 genes specifically induced by TNF-α. (F) Forty genes
downregulated later during differentiation were represented by cluster F. Gene identities and signal transduction pathway associations of genes within the
individual SOTA clusters are depicted in S4 Table. Furthermore, clusters G, H, and I bear the minority of genes and are depicted in S2 Fig.

doi:10.1371/journal.pone.0139520.g003
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Table 3. Pathway enrichment analysis of differentially expressed genes.

Myoblast differentiation

Time
point

Pathway P-value # Genes
(observed)

List of observed genes SOTA
cluster

4 h MOTHERS AGAINST DPP HOMOLOG 1.16E-05 12 Id3, Foxc2, Aspn, Smad9, Smad6, Id1, Smad7,
Id2, Dlx2, Ctgf, Sp7, Serpine1

C

4 h TGF BETA 3.08E-05 15 Fbxo32, Foxc2, Aspn, Itgb8, Dlx1, Smad9,
Smad6, Id1, Smad7, Id2, Dlx2, Ctgf, Adamts5,
Sp7, Serpine1

C

4 h PARATHYROID HORMONE RELATED PROTEIN 7.05E-04 5 Igfbp5, Ctgf, Sp7, Nr4a2, Jag1

4 h HAIRY AND ENHANCER OF SPLIT 1 6.22E-03 3 Dll1, Ctgf, Jag1

4 h RETINOBLASTOMA 1 6.42E-03 4 Dlx1, Id2, Dlx2, Ccnd1

4 h VERY LOW DENSITY LIPOPROTEIN RECEPTOR 7.48E-03 2 Serpinb2, Serpine1 C

4 h LYMPHOID ENHANCER BINDING FACTOR 1
(TCF/LEF)

7.62E-03 3 Dll1, Vdr, Ccnd1

4 h SEMAPHORIN 9.75E-03 3 Nrp2, Sema6a, Sema5a A

12 h MOTHERS AGAINST DPP HOMOLOG 2.32E-05 289 Atoh8, Aspn, Smad9, Smad7, Id2, Dlx2,
Cdkn1c, Timp3, Nedd9, Scn5a, Id3, Foxc2,
Hfe2, Id1, Smad6, Ctgf, Sp7, Mir206

C

12 h NOTCH 1.96E-03 251 Sox8, Dll1, Bcl6b, Dlx2, Heyl, Myc, Fabp7,
Adam12, Id3, Dlx1, Id1, Mir206, Prox1

12 h SEMAPHORIN 2.71E-03 47 Sema6d, Sema6a, Vegfa, Sema5a, Sema3c B

12 h CADHERIN 2, TYPE 1, N CADHERIN
(NEURONAL)

4.54E-03 33 Fgfr4, Fgf2, Gja1, Itga6

12 h TGF BETA 5.42E-03 490 Fbxo32, Atoh8, Aspn, Smad9, Smad7, Id2,
Dlx2, Adamts5, Timp3, Nedd9, Scn5a,
Adam12, Foxc2, Hfe2, Dlx1, Id1, Smad6, Ctgf,
Sp7

C

12 h FIBROBLAST GROWTH FACTOR 6.13E-03 254 Bcl6b, Dlx2, Myog, Fgfr4, Fgf2, Vegfa, Ngf,
Gja1, Spry1, Dlx1, Mir206, Prox1

C

12 h NERVE GROWTH FACTOR 7.98E-03 111 Fgf2, Ngf, Alcam, Dlx1, Nefm, Id1, Ret

24 h CYCLIN A2 5.87E-04 49 Ncoa1, Ccnd1, Rb1, Mybl2, Cdt1, Cdkn1a,
Chek1, Uhrf1

24 h RYANODINE RECEPTOR 6.50E-04 28 Ryr1, Casq1, Srl, Ryr3, Casq2, Trdn B

24 h E2F TRANSCRIPTION FACTOR 1 8.84E-04 52 Cdkn1c, Ccnd1, Myc, Rb1, Mybl2, Dusp4,
Cdkn1a, Chek1

24 h CYCLIN E 1.52E-03 44 Cdkn1c, Ccnd1, Myc, Rb1, Cdkn1a, Chek1,
Mcm3

24 h PEROXISOME PROLIFERATOR ACTIVATED
RECEPTOR DELTA

3.09E-03 26 Rgs4, Bcl6, Nr4a2, Pla2g4a, Ptgs2 C

24 h CYCLIN DEPENDENT KINASE 3.73E-03 210 Efna5, Ncoa1, Msln, Id2, Cdkn1c, Ccnd1, Myc,
Parvb, Rb1, Mybl2, Cdt1, Myog, Cdkn1a,
Hist1h1b, Chek1, Nefm, Mcm3

24 h NOTCH 4.65E-03 251 Sox8, Bcl6b, Heyl, Myc, Fabp7, Asb2, Id3,
Adcy8, Dlx1, Id1, Mfap5, Mir206, Dll1, Dlx2,
Mir23b, Smpx, Neurl1a, Prox1, Zeb1

24 h HYPOXIA INDUCIBLE FACTOR 1, ALPHA
SUBUNIT (BASIC HELIX LOOP HELIX
TRANSCRIPTION FACTOR)

5.87E-03 100 Slc16a3, Ncoa1, Idh1, Ndrg1, Id1, Mir23b,
Abcc1, Vegfa, Egln3, Ptgs2

C

24 h CYCLIN D2 6.79E-03 31 Bcl6, Ccnd1, Myc, Fgf2, Rb1

24 h CYCLIN DEPENDENT KINASE INHIBITOR 2 7.01E-03 20 Cdkn1c, Ccnd1, Rb1, Cdkn1a D

24 h SEMAPHORIN 9.91E-03 47 Sema6d, Sema6a, Nrp2, Vegfa, Sema5a,
Sema3c

A

24 h MOTHERS AGAINST DPP HOMOLOG 9.93E-03 289 Smad9, Smad7, Id2, Cdkn1c, Id3, Foxc2,
Smad6, Id1, Mir206, Cilp, Atoh8, Aspn, Dlx2,
Hmga2, Mir23b, Scn5a, Hfe2, Sp7, Dcn, Zeb1

C

(Continued)
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Table 3. (Continued)

Myoblast differentiation with TNF-α treatment

Time
point

Pathway P-value # Genes
(observed)

List of observed genes SOTA
cluster

4 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

2.92E-10 12 Mmp9, Ccl2, Fas, Nfkbia, Tnip1, Slc40a1,
Tnfaip3, Cxcl10, Serpinb2, Nfkbie, Relb,
Vcam1

E

4 h NF KAPPA B 5.89E-07 11 Mmp9, Ccl2, Bcl3, Nfkbia, Nfkb2, Tnfaip3,
Cxcl10, Nfkbie, Relb, Vcam1, Mcc

E

4 h CHEMOKINE (C C MOTIF) LIGAND 2 1.54E-05 5 Ccl2, Ccl7, Nfkbia, Cxcl10, Vcam1 E

4 h INTERLEUKIN 1 7.36E-04 5 Mmp9, Ccl2, Nfkbia, Cxcl10, Vcam1 E

4 h RECEPTOR ACTIVATOR OF NUCLEAR FACTOR
KAPPA B LIGAND

9.58E-04 5 Fas, Nfkbia, Tnfaip3, Nfkbie, Relb

4 h CD40 LIGAND 1.06E-03 3 Fas, Nfkbia, Tnip1

4 h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

1.13E-03 3 Ccl2, Fas, Vcam1 E

4 h TNF RECEPTOR ASSOCIATED FACTOR 2.56E-03 4 Fas, Nfkbia, Nfkb2, Tnfaip3 E

12 h NF KAPPA B 1.28E-12 18 Ddx58, Mmp9, Ccl2, Cxcl1, Nfkbia, Nfkb2,
Stap2, Ccl5, Cxcl10, Nfkbie, Relb, Vcam1,
Cd74, Mcc, Saa3, Bcl3, Tnfaip3, Capn6

E

12 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

4.29E-12 15 Mmp9, Ccl2, Cxcl1, Nfkbia, Ccl5, Cxcl10,
Nfkbie, Relb, Vcam1, Saa3, Fas, Tnip1,
Slc40a1, Tnfaip3, Serpinb2

E

12 h CHEMOKINE (C C MOTIF) LIGAND 2 1.74E-07 7 Ccl7, Ccl2, Cxcl1, Nfkbia, Ccl5, Cxcl10, Vcam1 C; E

12 h TOLL LIKE RECEPTOR 2.08E-05 7 Ddx58, Cxcl1, Stap2, Ccl5, Cxcl10, Saa3,
Tnfaip3

12 h TNF RECEPTOR ASSOCIATED FACTOR 1.02E-04 6 Ddx58, Nfkbia, Nfkb2, Stap2, Fas, Tnfaip3 E

12 h INTERLEUKIN 1 3.70E-04 6 Mmp9, Ccl2, Cxcl1, Nfkbia, Cxcl10, Vcam1 E

12 h MYELOID DIFFERENTIATION PRIMARY
RESPONSE GENE (88)

3.80E-04 5 Ddx58, Cxcl1, Stap2, Ccl5, Cxcl10 E

12 h RECEPTOR ACTIVATOR OF NUCLEAR FACTOR
KAPPA B LIGAND

5.05E-04 6 Nfkbia, Ccl5, Nfkbie, Relb, Fas, Tnfaip3

12 h INTERLEUKIN 6 (INTERFERON, BETA 2) 1.16E-03 5 Ccl2, Cxcl1, Ccl5, Cxcl10, Cp E

12 h CD40 LIGAND 2.40E-03 3 Nfkbia, Fas, Tnip1

12 h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

2.55E-03 3 Ccl2, Vcam1, Fas E

12 h NUCLEOTIDE OLIGOMERIZATION DOMAIN/
CASPASE RECRUITMENT DOMAIN PROTEIN
FAMILY

7.86E-03 3 Ddx58, Ccl5, Tnfaip3

12 h TNFRSF1A ASSOCIATED VIA DEATH DOMAIN 7.93E-03 2 Stap2, Fas

24 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

3.25E-10 16 Mmp9, Cxcl1, Ccl5, Nfkbie, Vcam1, Saa3, Lbp,
Slc40a1, Tnfaip3, Ccl2, Birc3, Nfkbia, Cxcl10,
Relb, Tnip1, Serpinb2

E

24 h NF KAPPA B 5.79E-10 19 Mmp9, Cxcl1, Ccl5, Nfkbie, Vcam1, Cd74,
Saa3, Bcl3, Tnfaip3, Ccl2, Birc3, Nfkbia, Nfkb2,
Stap2, Cxcl10, Relb, Mcc, Abcb1b, Capn6

E

24 h CHEMOKINE (C C MOTIF) LIGAND 2 1.03E-08 9 Cxcr4, Cxcl1, Ccl5, Vcam1, Ccl7, Ccl2, Nfkbia,
Cxcl10, Abcb1b

C; E

24 h TOLL LIKE RECEPTOR 2.92E-04 7 Cxcl1, Ccl5, Saa3, Lbp, Tnfaip3, Stap2, Cxcl10 E

24 h INTERLEUKIN 1 3.15E-03 6 Mmp9, Cxcl1, Vcam1, Ccl2, Nfkbia, Cxcl10 E

24 h MATRIX METALLOPROTEINASE 4.08E-03 6 Mmp9, Cxcr4, Ccl5, Enpp2, Postn, Adamts5 C

24 h TNF RECEPTOR ASSOCIATED FACTOR 5.66E-03 5 Tnfaip3, Birc3, Nfkbia, Nfkb2, Stap2

24 h INTERLEUKIN 6 (INTERFERON, BETA 2) 6.82E-03 5 Cxcl1, Ccl5, Ccl2, Cxcl10, Cp E

(Continued)
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Table 3. (Continued)

Myoblast differentiation with IGF1 treatment

Time
point

Pathway P-value # Genes
(observed)

List of observed genes SOTA
cluster

4 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

1.58E-10 12 Mmp9, Ccl2, Fas, Nfkbia, Tnip1, Tnfaip3,
Cxcl10, Serpinb2, Il1rn, Nfkbie, Relb, Vcam1

E

4 h NF KAPPA B 2.96E-08 12 Ddx58, Mmp9, Ccl2, Bcl3, Nfkbia, Nfkb2,
Tnfaip3, Cxcl10, Nfkbie, Relb, Vcam1, Mcc

E

4 h CHEMOKINE (C C MOTIF) LIGAND 2 1.24E-05 5 Ccl2, Ccl7, Nfkbia, Cxcl10, Vcam1 C; E

4 h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

4.14E-05 4 Ccl2, Fas, Il1rn, Vcam1 E

4 h INTERLEUKIN 1 5.62E-05 6 Mmp9, Ccl2, Nfkbia, Cxcl10, Il1rn, Vcam1 E

4 h TNF RECEPTOR ASSOCIATED FACTOR 2.02E-04 5 Ddx58, Fas, Nfkbia, Nfkb2, Tnfaip3 E

4 h RECEPTOR ACTIVATOR OF NUCLEAR FACTOR
KAPPA B LIGAND

7.86E-04 5 Fas, Nfkbia, Tnfaip3, Nfkbie, Relb

4 h INTERLEUKIN 10 8.73E-04 4 Ddx58, Ccl2, Cxcl10, Il1rn

4 h CD40 LIGAND 9.38E-04 3 Fas, Nfkbia, Tnip1

12 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

8.98E-12 16 Mmp9, Ccl2, Cxcl1, Nfkbia, Ccl5, Cxcl10, Il1rn,
Nfkbie, Relb, Vcam1, Saa3, Fas, Tnip1,
Tnfaip3, Slc40a1, Serpinb2

E

12 h NF KAPPA B 8.55E-11 18 Ddx58, Mmp9, Ccl2, Cxcl1, Nfkbia, Nfkb2,
Stap2, Ccl5, Cxcl10, Nfkbie, Relb, Vcam1,
Cd74, Mcc, Saa3, Bcl3, Tnfaip3, Capn6

E

12 h CHEMOKINE (C C MOTIF) LIGAND 2 7.07E-07 7 Ccl2, Ccl7, Cxcl1, Nfkbia, Ccl5, Cxcl10, Vcam1 C; E

12 h TOLL LIKE RECEPTOR 7.76E-05 7 Ddx58, Cxcl1, Stap2, Ccl5, Cxcl10, Saa3,
Tnfaip3

12 h INTERLEUKIN 1 1.53E-04 7 Mmp9, Ccl2, Cxcl1, Nfkbia, Cxcl10, Il1rn,
Vcam1

E

12 h TNF RECEPTOR ASSOCIATED FACTOR 3.08E-04 6 Ddx58, Nfkbia, Nfkb2, Stap2, Fas, Tnfaip3 E

12 h INTERLEUKIN 18 (INTERFERON GAMMA
INDUCING FACTOR)

3.22E-04 4 Ccl2, Il1rn, Vcam1, Fas E

12 h MYELOID DIFFERENTIATION PRIMARY
RESPONSE GENE (88)

9.46E-04 5 Ddx58, Cxcl1, Stap2, Ccl5, Cxcl10 E

12 h RECEPTOR ACTIVATOR OF NUCLEAR FACTOR
KAPPA B LIGAND

1.46E-03 6 Nfkbia, Ccl5, Nfkbie, Relb, Fas, Tnfaip3

12 h INTERLEUKIN 6 (INTERFERON, BETA 2) 2.81E-03 5 Ccl2, Cxcl1, Ccl5, Cxcl10, Cp E

12 h CD40 LIGAND 4.18E-03 3 Nfkbia, Fas, Tnip1

12 h INTERLEUKIN 10 5.99E-03 4 Ddx58, Ccl2, Cxcl10, Il1rn

24 h TUMOR NECROSIS FACTOR (TNF
SUPERFAMILY, MEMBER 2)

3.25E-10 16 Mmp9, Cxcl1, Ccl5, Nfkbie, Vcam1, Saa3, Lbp,
Slc40a1, Tnfaip3, Ccl2, Birc3, Nfkbia, Cxcl10,
Relb, Tnip1, Serpinb2

E

24 h NF KAPPA B 5.79E-10 19 Mmp9, Cxcl1, Ccl5, Nfkbie, Vcam1, Cd74,
Saa3, Bcl3, Tnfaip3, Ccl2, Birc3, Nfkbia, Nfkb2,
Stap2, Cxcl10, Relb, Mcc, Abcb1b, Capn6

E

24 h CHEMOKINE (C C MOTIF) LIGAND 2 1.03E-08 9 Cxcr4, Cxcl1, Ccl5, Vcam1, Ccl7, Ccl2, Nfkbia,
Cxcl10, Abcb1b

C; E

24 h TOLL LIKE RECEPTOR 2.92E-04 7 Cxcl1, Ccl5, Saa3, Lbp, Tnfaip3, Stap2, Cxcl10

24 h INTERLEUKIN 1 3.15E-03 6 Mmp9, Cxcl1, Vcam1, Ccl2, Nfkbia, Cxcl10 E

24 h MATRIX METALLOPROTEINASE 4.08E-03 6 Mmp9, Cxcr4, Ccl5, Enpp2, Postn, Adamts5 C

24 h TNF RECEPTOR ASSOCIATED FACTOR 5.66E-03 5 Tnfaip3, Birc3, Nfkbia, Nfkb2, Stap2 E

24 h INTERLEUKIN 6 (INTERFERON, BETA 2) 6.82E-03 5 Cxcl1, Ccl5, Ccl2, Cxcl10, Cp E

Signal transduction pathway associations, which were enriched after 4 h (“induction of differentiation”/immediate response), and 12 h (very early

differentiation) of treatment, and 24 h (early differentiation) treatment, are depicted. The effects of differentiation without or with TNF-α or with IGF1

compared with TNF-α treatment are shown. Pathway enrichment was based on cocitation with a p value cutoff of <0.01. Genes within significantly

enriched pathways are listed. In addition, it is indicated in which SOTA cluster a pathway is enriched. Pathways highlighted in bold are retrieved in

enrichment analyses of genes identified by principal component analysis which are shown in Table 1.

doi:10.1371/journal.pone.0139520.t003
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Only one gene, Serpinb2, was downregulated during myoblast differentiation but upregu-
lated upon TNF-α stimulus (Table 4). Inversely, regulated genes were indicative of which path-
ways may be counteracted by TNF-α that lead to the observed phenotypic impairment of
differentiation [27]. These genes included Aspn, Adamts5, Trdn, Slc40a1, Capn6, and Ser-
pinb2, which are involved in the following enriched pathways: mothers against DPP homolog,
TGF beta, matrix metalloproteinase, ryanodine receptor, tumor necrosis factor (TNF super-
family, member 2), NFkB, or TNF (compare Tables 3 and 4).

Table 4. TNF-α inversely regulated differentiation genes.

Gene
Symbol

Gene Title log2 ratio
differentiation

log2
ratio
TNF-α

Pathway
association
(differentiation)

Pathway
association (TNF-
α)

Literature
background

Cpa1 carboxypeptidase A1 3.56 -1.57 M

Aspn asporin 2.74 -1.80 Mothers against Dpp
homolog, TGFβ

SkM

Adamts5 a disintegrin-like and metallopeptidase
(reprolysin type) with thrombospondin type 1
motif, 5 (aggrecanase-2)

2.66 -1.28 TGFβ Matrix metallo
proteinase

SkMDiff

Fibin fin bud initiation factor homolog (zebrafish) 2.65 -1.10 SkM

Trdn triadin 2.45 -1.05 Ryanodine receptor SkMDiff

Slc40a1 solute carrier family 40 (iron-regulated
transporter), member 1

2.34 -1.85 Tumor necrosis
factor (TNF
superfamily member
2)

SkM

Capn6 calpain 6 2.20 -2.21 NF kappa B SkMDiff

Nrk Nik related kinase 2.06 -1.25 SkM

Cmbl carboxymethylenebutenolidase-like
(Pseudomonas)

2.04 -1.36 new

Aknad1 AKNA domain containing 1 2.03 -1.32 new

Parm1 prostate androgen-regulated mucin-like protein
1

2.00 -1.69 M

Itm2a integral membrane protein 2A 1.99 -1.68 SkMDiff

Sepp1 selenoprotein P, plasma, 1 1.87 -1.06 new

Ndst4 N-deacetylase/N-sulfotransferase (heparin
glucosaminyl) 4

1.73 -1.29 new

Tecrl trans-2,3-enoyl-CoA reductase-like 1.66 -1.40 new

Cnr1 cannabinoid receptor 1 (brain) 1.64 -1.03 SkMDiff

Unc13c unc-13 homolog C (C. elegans) 1.62 -1.71 new

Spats2l spermatogenesis associated, serine-rich 2-like 1.51 -1.07 new

Mybpc1 myosin binding protein C, slow-type 1.34 -1.03 SkM

Lix1 limb expression 1 homolog (chicken) 1.16 -1.42 new

Csdc2 cold shock domain containing C2, RNA
binding

1.15 -1.19 new

Fzd4 frizzled homolog 4 (Drosophila) 1.04 -1.26 SkMDiff

Serpinb2 serine (or cysteine) peptidase inhibitor, clade
B, member 2

-2.28 1.74 Tumor necrosis
factor (TNF
superfamily member
2)

M

List of genes upregulated by differentiation but downregulated because of TNF-α treatment or vice versa. Log2 ratios indicate the order of magnitude of

differential expression. Enriched signal transduction pathway associations in which the respective gene is involved during differentiation or TNF-α

treatment are shown. The literature background indicates whether the gene has been published in skeletal muscle differentiation (SkMDiff), skeletal

muscle (SkM), heart muscle, smooth muscle, or muscle progenitor cells (M), or whether it has not been described in muscle (new).

doi:10.1371/journal.pone.0139520.t004
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Gene expression profiling results were validated at the mRNA and the
protein level
Gene expression profiling results were validated by RT-qPCR analysis (S3A–S3D Fig) as indi-
cated by Pearson correlation coefficient values between 0.94 and 0.89 during differentiation
and TNF-α treatment. When the same genes were measured for the effect of IGF1 compared
with the untreated control, the correlation coefficient value was 0.53 because of small fold-
changes below 1.5 with in part inverse algebraic sign. Multiple regression analysis for relative
expression values of microarray and individual RT-qPCR analysis (S3E Fig) showed higher
dynamics of RT-qPCR results compared with microarray data. Gene expression profiling
results were validated at the protein level as depicted for the Serine/threonine-protein kinase
Chk1 (Fig 4A) and F-box protein 5 (Fbxo5/Emi1) (Fig 4B). Despite the downregulation of
Mybl2 mRNA during differentiation, there was no significant regulation of Mybl2 protein as
confirmed by western blot analysis (Fig 4C). Selection criteria for genes which were analyzed
by RT-qPCR or western blot were based on the integrative analysis of microRNA and mRNA
expression data as described by Meyer et al. [28,29].

Discussion
Gene expression kinetics of in vitromyoblast differentiation in the presence of IGF1 or inflam-
matory levels of TNF-α have not yet been described in detail. Based on microarray data of
PMI28 myoblasts, the current study elucidated gene expression kinetics and its networks
immediately after induction of differentiation (4 h), during very early (12 h), and early (24 h)
differentiation as well as late (72 h) differentiation. Results from the current study indicated
significant effects of TNF-α and subtle changes in gene regulation because of IGF1 treatment.
Thus, the discussion section focuses on the effects observed for TNF-α treatment on gene
expression of differentiating myoblasts.

Fig 4. Western Blot analysis of differentially expressed genes. (A) Chk1, (B) Emi1/Fbxo5, (C) Mybl2 protein were detected by western blot analysis.
Histone H3 served as the normalization control. Murine mouse muscle cells were cultured for 48 h in growth medium (lane 1), differentiation medium (lane 2),
or differentiation medium supplemented with TNF-α (lane 3) or IGF1 (lane 4), respectively. (B) The specificity of the double band between 40 and 50 kDa was
confirmed by peptide competition of the Emi/Fbxo5 antibody epitope (S4 Fig).

doi:10.1371/journal.pone.0139520.g004
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Immediate response to differentiation as well as TNF-α and coregulation
of gene sets
The current study detected significant co-regulation of gene sets as well as an immediate and
specific response to TNF-α, which interfered with gene expression regulation during normal
differentiation. In summary, the vast majority of genes differentially regulated in myoblast dif-
ferentiation and response to TNF-α or IGF1 were upregulated during early or late differentia-
tion. Our findings relate to Henningsen et al. [2] who reported that a higher proportion of
muscle-released proteins exhibited an increased level of secretion compared with the proteins
with a decreased secretion profile during the course of C2C12 differentiation. Moreover, we
found that genes with similar relative expression profiles were enriched for genes with similar
biological implications indicating significant co-regulation of functionally related gene sets.

Genes upregulated during very early and or late myoblast differentiation were associated
with muscle cell differentiation, muscle structure development, or muscle contraction, which is
in agreement with the observed phenotypic differentiation [27] including withdrawal from the
cell cycle, myoblast fusion, and formation of multinucleated myotubes. In harmony with this,
we identified accumulation of coexpressed genes belonging to pathways which are upregulated
during differentiation or which are positive regulators of differentiation such as cyclin G1 [30],
semaphorin [31–34,2], ryanodine receptor [35,36], calcineurin (protein level: [37], activity
level: [38]), and doublecortin like kinase.

We propose that one of the inhibitory effects of TNF-α on myoblast fusion could be associ-
ated with NF-kappaB activation and ryanodine receptor regulation. This assumption is based
on a study by Valdes et al. [39], which suggested that NF-kappaB activation in skeletal muscle
cells is linked to membrane depolarization and depends on sequential activation of calcium
release mediated by the ryanodine and by IP(3) receptors [39]. Moreover, RyR1 alters the
expression pattern of several proteins involved in calcium homeostasis [40], which regulates
calcineurin amongst others. Calcineurin may have therapeutic potential, as Stupka et al. [41]
demonstrated that calcineurin is essential for skeletal muscle regeneration in wild type mice or
in young mdx mice in which calcineurin stimulation can ameliorate the dystrophic pathology
[41]. Moreover, after 24 h of differentiation, pathways including the doublecortin like kinase
pathway were enriched. Doublecortin like kinase encodes a microtubule-binding protein. To
date, the doublecortin like kinase pathway has not been discussed in the context of myoblast
differentiation or response of differentiating myoblasts to TNF-α. We speculate that double-
cortin like kinase may play a role in myoblast migration or guidance as it has been known that
doublecortin like kinase is associated with interneuron migration [42] and axon guidance [43].

Genes downregulated during early myotube formation. Clustered coexpression of
genes, which were down-regulated during early differentiation, were enriched for genes
involved in distinct signaling associations. The following signaling pathways have been
described in muscle cell differentiation: mothers against DPP homolog [44], matrix metallo-
proteinase [45–48], peroxisome proliferator activated receptor delta [49], very low density lipo-
protein receptor [50], dual specificity phosphatase [51], fibroblast growth factor [52–55], TGF
beta [56–60], and hypoxia inducible factor 1 alpha subunit [61]. Moreover, LDL receptor-
related protein (LRP-1) and decorin were modulators of the TGF-β-dependent signaling path-
way [62]. It was reported that the TGF-beta intracellular effector Smad3 mediates the inhibi-
tion of myogenic differentiation by repressing the activity of the myogenic transcription factors
[63,64]. For the dual specificity phosphatase pathway, it has been shown that estrogen-related
receptor alpha regulated the transient induction of MAP kinase phosphatase-1/dual specificity
phosphatase at the onset of myogenesis, which mediated ERK dephosphorylation and pro-
moted myotube formation [51]. In contrast, our data revealed downregulation of Dusp4,
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Dusp5, and Dusp9 during myoblast differentiation, which has not yet been discussed in the
context of myocytes.

Genes downregulated during late myotube formation. Moreover, signal transduction
pathway associations of coregulated clustering genes, which decreased in expression during
later differentiation, included nuclear factor (erythroid derived 2)-like two (Nrf2), tumor pro-
tein p53, breast cancer 1 early onset (Brca1) as well as the cell division cycle. Consistent with a
role of the Nrf2 pathway in myogenic differentiation, it has been reported that Nrf2 protein
expression increased during myogenesis and regulated muscle differentiation [65]. Nrf2 pro-
moted muscle regeneration and protected against TWEAK-mediated muscle wasting [66].
However, our data shows down-regulation of Nrf2 signal pathway associations. Furthermore,
p53 signal transduction pathway associations were in agreement with the finding that p53 acti-
vation was measurable during myoblast differentiation and that p53 had a specific role in this
process [67–69]. Moreover, Brca1 was involved in cell differentiation, and it has been shown to
be upregulated during C2C12 myoblast differentiation [70]. However, our data is contradictory
to the findings of Kubista et al. [70] as we detected downregulation of Brca1. In addition, the
gene ontology term, cell cycle, was significantly enriched in genes downregulated during later
differentiation, which is represented by serin/threonine-protein kinase (Chk1) gene expression
for example. Chk1 was associated with several enriched signal transduction pathways, includ-
ing breast cancer 1 early onset and tumor protein 53. Chk1 activity was associated with regula-
tion of cell cycle and differentiation [71] in other cell types. The known functions of Chk1 are
discussed in paragraph “Gene expression profiling results were validated at the mRNA and
protein level”.

TNF-induced and suppressed genes during late myotube formation. TNFα-induced
genes downregulated during late myoblast differentiation were of special interest as they were
modulated by TNF-α, and at the same time essential for skeletal muscle cell differentiation.
These genes may point to possible therapeutic strategies to ameliorate the inhibitory effect of
TNF-α. In harmony with this assumption, we found gene ontology biological process terms
enriched, which are associated with regulation of cell proliferation, differentiation, migration,
and motility. Interleukin 1 receptor antagonist amongst others was upregulated by TNF-α but
downregulated during differentiation, which was in harmony with a known positive effect of
IL-1 on myogenic differentiation [72]. Moreover, Cdk6 expression regulation was significantly
associated with signal transduction pathway cyclin dependent kinase inhibitor 2. In agreement
with this, it has been known that myoblast cell cycle exit and differentiation are mediated in
part by down-regulation of cyclin D1 and associated cyclin-dependent kinase (Cdk) activity
[73]. Consistent with a role for Cdk4/Cdk6 activity as a regulator of myogenic differentiation,
Saab et al. [73] observed that Cdk4/Cdk6 inhibition promoted morphologic changes in myo-
blasts and enhanced the expression of muscle-specific proteins [73].

TNF-specific induced genes. Genes specifically induced by TNF-α were involved in the
immune response and were associated with signal transduction pathway associations such as
NF kappa B, TNF-α signaling, chemokine (C C motive) ligand 2, toll like receptor, IL-1, IL-6,
and IL-18. More importantly, these pathways have been associated with cell proliferation and
differentiation. Inflammatory cytokines such as TNF-α have been known to inhibit myogenic
differentiation, in part through sustained NF-kappaB activity [9]. Activated NF-kappaB inter-
fered with the expression of muscle proteins in differentiating myoblasts [9] by inducing loss of
MyoDmRNA [74] or interference with the function of MyoD [75]. Moreover, NF-kappaB acti-
vates cyclin D1 expression at the transcriptional level, which inhibits myogenesis [76] and reg-
ulated cyclin D1 protein D1 stability [77]. In addition, our data revealed that TNF-α exposure
increased gene expressions associated with the IL-1 pathway in differentiating myotubes. Gra-
biec et al. [72] reported that interleukin-1beta stimulated early myogenesis of mouse C2C12
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myoblasts, and concluded that IL-1beta was associated with the impact on myogenic regulatory
factors [72]. On the other hand, IL-1beta induced Id2 gene expression in vascular smooth mus-
cle cells [78], which could point to an inhibitory effect of IL-1beta in skeletal muscle cells. Fur-
thermore, TNF-α specifically induced expressions were enriched for genes associated with the
IL-6 and IL-18 pathways. It has been reported that TNF-α exposure increased IL-6 in skeletal
myoblasts [79,80]. IL-6 increased myogenic differentiation [81] and the mRNA expression of
myocyte enhancer factor 2D [82], while IL-6 has been known to stimulate myoblast prolifera-
tion [83,84]. It has been shown that IL-18 stimulated airway smooth muscle cell proliferation
[85] and activated NF-kappaB amongst others [86]. Our data suggested that IL-1, IL-6, and IL-
18 pathway associations could be mediators of the inhibitory effect of TNF-α on skeletal mus-
cle differentiation, or may have implications in compensating for anti-myogenic effect of the
pathological concentrations of TNF-α levels.

In summary, we confirmed known gene regulations and identified new genes, which have
not yet been described, to play a role in mediating the response to TNF-α in skeletal myoblast
differentiation. Moreover, we provided kinetic gene expression data of the very early and early
differentiation response, which facilitated the understanding of the regulatory networks, lead-
ing to impaired myoblast fusion upon pathological concentrations of TNF-α. Coregulated gene
sets were enriched for pathways, which have been described in the context of myoblast differ-
entiation. However, our data showed new avenues in the complexity of gene expression kinetics
and networks, and pointed to findings contradicting the current literature on first sight. More-
over, we have identified TNF-α-regulated genes in skeletal muscle cell differentiation, which
have not been implicated in this process before. An increased understanding of gene expression
regulation during skeletal muscle cell differentiation may provide new approaches for the
development of strategies to counteract impaired muscle regeneration or muscle wasting.

Specific signaling pathway regulation during myoblast differentiation and
TNF-α response
Differential gene expression kinetics revealed dynamic, time-specific change of gene regulation
as well as genes constantly downregulated immediately subsequent induction and during the
course of differentiation, including mothers against dpp homolog signaling or semaphorin sig-
naling associated genes. Our data confirmed the importance of regulating mothers against dpp
homolog or Smad protein signaling in myoblast differentiation. Moreover, semaphorins have
been linked to muscle regeneration [34]. However, the upregulated isoforms of semaphorins
identified within the current study, namely Sema6a, Sema6d, Sema5a, and Sema3c, have not
yet been described in myoblast differentiation. The majority of differentially regulated genes
were enriched during signal transduction pathway associations in a time-dependent manner.
Induction of myoblast differentiation can be characterized as being regulated by genes involved
in mothers against DPP homolog and TGFbeta signaling. With Smad proteins being down-
stream mediators of TGFbeta signaling, our data emphasize the role of TGFbeta and down-
stream Smad signaling in modulating myoblast differentiation and myotube formation
(compare [56]). After 12 h, differentiation genes involved in signaling pathways such as moth-
ers against DPP homolog, notch, semaphorin, cadherin, TGF beta, and fibroblast growth factor
were enriched. Thus, we can conclude that TGFbeta signaling was a major regulatory pathways
during the first hours (4 h–12 h) of differentiation. After 24 h of differentiation we identified
enrichment of pathway associations including notch signaling, cyclin, cyclin dependent kinase,
and cycline dependent kinase inhibitor amongst others. Thus, notch signaling can be attributed
to the differentiation phase from 12 h to 24 h of differentiation, whereas cell cycle regulation is
the predominant theme after 24 h differentiation.
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TNF-α treatment specifically upregulates several genes immediately after induction (4 h),
which remain upregulated after 12 h as well as 24 h incubation in differentiation medium, and
which are related to TNF, NFkB, chemokine ligand, and interleukin pathways in agreement
with immune responsive reactions of muscle cells. Moreover, after 24 h, TNF-α treatment reg-
ulated genes associated with matrix metalloproteinase which may indicate that TNF-α excerts
part of its pro-proliferative functions through modulating the MMP pathway and thus myo-
blast migration.

TNF-α inversely regulated early differentiation-associated genes
It is of particular interest to identify genes inversely regulated in myogenic differentiation com-
pared with TNF-α treated differentiating myoblasts. We identified eleven TNFα-regulated
genes which have been previously described in the context of skeletal muscle, including Aspn
[87], Adamts5 [88], Fibin [89], Triadin [90], Slc40a1 [91], Capn6 [92], Nrk [93], Itm2a [94],
Cnr1 [95], Mybpc1 [96], and Fzd4 [97]. Of these eleven genes, only six have previously been
described in skeletal muscle differentiation or regeneration: Adamts 5 [88,98], Triadin [90,99],
Cnr1 [95], Itm2a [94], Fzd4 [97], and Capn6 [100].

However, it has not yet been reported that Adamts5 was one of the 20 most up-regulated
genes during differentiation and that its expression was negatively regulated by TNF-α during
myogenic differentiation. Furthermore, the described expression regulation or known func-
tions of triadin, Adamts5, Cnr1, Itm2a, and Fzd4 in skeletal muscle differentiation underline
the significance of our findings that TNF-α deregulated these genes during myogenic differen-
tiation and reduced fusion capacity of myoblasts. However, our findings regarding Capn6
expression regulation were contradictory to a study by Tonami et al. [100] reporting that
Capn6 was a suppressor of skeletal muscle differentiation, and a study by Liu et al. [101] indi-
cating that Capn6 promoted cancer cell proliferation and was positively regulated by the
PI3K-Akt signaling pathway. On the other hand, it has been shown that Capn6 expression was
suppressed by serum in fibroblast cell culture [100], which would be in harmony with the upre-
gulation of Capn6 upon serum deprivation observed in the current study. Remarkably, this
effect was reversed by TNF-α treatment. Other members of the calpain family have been dis-
cussed in myocyte differentiation, namely Capn1, which has been reported to play an impor-
tant role for satellite cell myogenesis [102], and Capn2 / m-calpain, which had been shown to
play a role in the control of muscle precursor cell differentiation [103]. Therefore, we hypothe-
size that Capn6 could be a myofusion marker which may participate in promoting in vitro dif-
ferentiation of skeletal myoblasts through an unknown physiological mechanism. We
identified inversely regulated genes described in the context of skeletal muscle but not in the
context of myoblast differentiation or TNF-α response such as Aspn, Fibin, Slc40a1, Nrk, and
Mybpc1 (Fig 5). To date, Aspn had been described in the context of congenital muscular corti-
collis [87], cardiac remodeling [104], or the transition from a hyperplasic myotube-producing
phenotype to a hypertrophic growth phenotype in fish [105]. The current study is the first
identifying Aspn expression regulation in the context of skeletal myogenic differentiation and
its response to TNF-α as well as enrichment in TGFbeta signaling pathway associations in skel-
etal muscle. Similarly to Aspn, we detected fibin among the top 20 most upregulated genes dur-
ing myoblast differentiation. It is reported that fibin is expressed in skeletal muscle [89]
amongst other tissues. We provided indications for a role of fibin in the regulation of myogenic
differentiation and its response to TNF-α. Slc40a1, which encoded ferroportin [106], was
hypothesized to influence skeletal muscle iron content [91]. We found that Slca40a1 was asso-
ciated with the tumor necrosis factor pathway (Table 3), but the current study is the first
describing a role of Slca40a1 in myogenic differentiation.
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We observed upregulation of Nrk/Nik related kinase during differentiation and downregu-
lation by TNF-α treatment. Nrk has been known to be expressed in skeletal muscle during
mouse embryogenesis [107,93] and may be involved in the regulation of actin cytoskeletal
organization in skeletal muscle cells through cofilin phosphorylation and actin polymerization
[93]. However, the current study is the first describing Nrk/Nik regulation during in vitro skel-
etal myoblast differentiation and TNF-α response. Myosin binding protein C (MyBP-C) is
expressed in striated muscles where it modulates actomyosin cross-bridges [96] and acts as an
adaptor to connect myosin and muscle-type creatine kinase for efficient energy metabolism
and homoeostasis [108]. Mutations of sMyBP-C have been causally linked to the development
of distal arthrogryposis-1, a severe skeletal muscle disorder [96,109], and lethal congenital con-
tracture syndrome type 4 [109]. We describe Mybpc1 upregulation in the context of in vitro
myoblast differentiation, which is counteracted by TNF-α.

Importantly, we identified genes inversely regulated during skeletal myocyte differentiation
compared with differentiation under TNF-α stimulus, but have not yet been described in the

Fig 5. Novel genes and pathways in skeletal myocyte differentiation and TNF-α response.We identified genes and pathway associations, which have
not been described before in skeletal myocyte differentiation or have been reported to have a different regulation than the one observed in the current study.
A plus indicates upregulation during differentiation and a minus indicates downregulation. Moreover, we show genes which are inversely regulated by TNF-α,
but have not been defined before, to be regulated in skeletal myocyte differentiation and response to TNF-α.

doi:10.1371/journal.pone.0139520.g005

TNF-Alpha and IGF1 Modify Gene Expressions of Myocytes

PLOS ONE | DOI:10.1371/journal.pone.0139520 October 8, 2015 25 / 36



context of skeletal muscle or TNF-α effect on muscle cells. Some differentiation and TNF-α-
regulated genes have been described in smooth or heart muscle, or muscle progenitor cells, but
not in skeletal muscle, including Cpa1 [110], Parm1 [111], and Serpinb2 [112] (Fig 5). Parm1
expression was detected in the muscle progenitor cells of the somites [111]. Thus, the role of
Parm1 in muscle differentiation and TNF-α response still needs to be unraveled. Serpinb2 was
>4-fold downregulated during differentiation, but upregulated during TNF-α treatment. There
has not yet been evidence for the observed effect in skeletal myoblast differentiation. However, in
smooth muscle, Jang et al. [112] have reported that plasminogen activator inhibitor-2 protein lev-
els were upregulated by TNF-α. It has been reported that PAI-2 (Serpinb2) is upregulated during
cell cycle progression in myoepithelial cells [113]. Moreover PAI reduced the capacity of endo-
thelial cells to lyse fibrin [114] and rPAI-2-expressing sarcoma cells showed inhibited invasion
characteristics [115]. We speculate that downregulation of Serbinb2 in myoblast differentiation
may facilitate cell migration during the early phase of differentiation.

The current study reveals nine genes regulated by differentiation and TNF-α, which have
not yet been described in muscle cells. We describe for the first time a significant specific regu-
lation of the following genes in myoblast differentiation: Aknad1, Sepp1, Ndst4, Tecrl, Cmbl,
Unc13c, Spats2l, Lix1, and Csdc2 (Fig 5). On the basis of our expression data, we postulate a
biological implication of these genes in myoblast differentiation and responsiveness to TNF-α.
Comparatively little is known regarding the function of Aknad1 and Tecrl. Sepp1 is known to
be involved in selenium distribution to tissues throughout the body [116]. Ndst4 is involved in
N-sulfation of heparin sulfate [117] chains and is downregulated in carcinoma [118], indicat-
ing an anti-proliferative or pro-differentiative role. Moreover, a role of Cmbl has not yet been
explicitly described in the muscular context. The physiological implications during skeletal
muscle cell differentiation and its response to TNF-α remain elusive, but are likely to be of bio-
logical significance as Cmbl is one of the top 20 most regulated genes during myoblast differen-
tiation within the current study. We identified significant expression regulation for Unc13c/
Munc13-3 in myoblast differentiation. However, Munc13 has been described to be almost
exclusively expressed in the cerebellum, which is a presynaptic protein [119] critical in regulat-
ing neurotransmitter release and synaptic plasticity [120]. In Munc13-deficient mice, the distri-
bution, number, size, and shape of synapses, as well as the number of motor neurons they
originate from and the maturation state of muscle cells, are profoundly altered [121]. The func-
tion of Spats2l in skeletal muscle differentiation and response to TNF-α has not been described
earlier. Himes et al. [122] suggest that SPATS2L may be an important regulator of β(2)-adren-
ergic receptor downregulation. The function of Lix1 expression regulation in skeletal muscle
cell differentiation remains elusive. It has been suggested that Lix1 plays a role in radial growth
of motor axons observed in feline spinal muscular atrophy [123]. We identified inverse regula-
tion of Csdc2 expression during differentiation and TNF-α treatment relative to control cells.
However, Csdc2 has previously been described in the context of decidualization [124], but not
skeletal muscle.

TNF-α dysregulated genes belong to signaling pathways enriched during myoblast differen-
tiation, such as Smad, TGFβ, and ryanodine receptor, or TNF-α treatment such as TGFβ,
matrix metalloproteinase, NFκB, and TNF. Dysregulations of these pathways have been known
to be associated with muscular diseases [125–128,3].

Gene expression profiling results were validated on the mRNA and the
protein level
The expression of selected genes such as the Serine/threonine-protein kinase Chk1 [checkpoint
kinase 1 homolog (Schizosaccharomyces pombe)] and F-box protein 5 (Fbxo5/Emi1) were
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validated on the protein level by western blot analysis. Both, Chk1, and Fbxo5 were downregu-
lated during differentiation and in the IGF1 treatment group. However, when differentiation
was induced in the presence of inflammatory levels of TNF-α Chk1 and Fbxo5/Emi1 were
upregulated. The observed regulation of Chk1 on the protein level was in harmony with its
known function as being part of a “G2 restriction point” that prevented premature cell cycle
exit in cells programmed for terminal differentiation [71]. Chk1 functioned as a mitogen-
dependent protein kinase that prevented premature differentiation of trophobast stem cells by
suppressing expression of p21 and p57, but not p27, the CDK inhibitor that regulated mitotic
cell cycles [71]. In the current study, we described for the first time Chk1 regulation during
myoblast differentiation and its deregulation because of TNF-α treatment on the mRNA and
protein level. Chk1 had been described in the context of estivating frogs, and it has been postu-
lated that Chk1, amongst others, may contribute to preserving muscle function during meta-
bolic depression and immobility [129]. In addition, we describe for the first time a specific
regulation of Fbxo5/Emi1, both at the mRNA and the protein level, during myoblast differenti-
ation and TNF-α treatment. Emi1 has been reported to play a role in somitogenesis [130].
Moreover, Emi1 functioned to promote cyclin A accumulation [131], and is known as a key
cell-cycle regulator [132,131,133]. The described functions of Fbxo5/Emi1 were in harmony
with the exit of the cell cycle of proliferating myoblasts to differentiate into myotubes. The
inhibitory effect of TNF-α on myotube formation was resembled by diminished downregula-
tion of Emi1/Fbxo5. Furthermore, we analyzed the protein level of transcription factor. In con-
trary to the upregulation of Mybl2 mRNA during proliferation and TNF-α treatment
compared with differentiation control, there was no significant regulation of the Mybl2 protein.
The latter may be because of protein stability and thus extended half-life of Mybl2 protein,
which may mask the downregulation. Moreover, it was shown that Mybl2 was regulated post-
transcriptionally [134] and phosphorylation was necessary to activate Mybl2 [135]. Further
experiments need to analyze Mybl2 activity to possibly identify correlation with mRNA expres-
sion levels. Henningsen et al. [2] found little correlation between mRNA and protein levels for
proteins secreted during myoblast differentiation. The latter indicates pronounced regulation
by posttranscriptional mechanisms, such as functionality of miRNAs.

New genes in TNF-α response during myoblast differentiation
Several of the differentially expressed genes identified in the current study were new in the con-
text of impaired myoblast differentiation because of TNF-α exposure (compare S2B Table with
S5 Table). However, a subset of genes has been confirmed in studies by Bhatnagar et al. [136]
(S5A Table) or a study investigating TNF-like weak inducer of apoptosis (TWEAK) treatment
by Panguluri et al. [137] (S5B Table). TWEAKmediated skeletal muscle wasting [66]. The
common subset of genes between the different studies confirmed the validity of identified
genes. In addition, the cross-study validated gene subset pointed to the most prominent genes,
which were stably regulated across different murine skeletal myoblast cell lines and different
treatment conditions. Bhatnagar et al. [136] analyzed C2C12 myoblasts treated with 10 ng/mL
TNF-α, whereas the current study applied 5 ng/mL TNF-α. Genes differentially expressed in
the current study as well as by Bhatnagar et al. [136] or Panguluri et al. [137] were enriched in
the expression cluster (cluster B) containing genes slightly upregulated during early myotubes
and highly upregulated during late myotubes (72 h) but downregulated by TNF-α or in expres-
sion cluster E which bore genes specifically induced by TNF-α. Thus, a gene subset can be con-
firmed across independent studies including genes which were i) involved in myotube
differentiation but counteracted by TNF-α treatment or ii) TNFα-induced genes. Of note is
that there was a common subset of genes regulated by TWEAK after 96 h of differentiation in
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C2C12 myotubes according to Panguluri et al. [137] and TNF-α treated PMI28 myotubes in
the current study (S5B Table). Thus, TNF-α and TWEAK regulated in part common gene sets
(S5C Table). Genes identified across different murine skeletal myoblast cell lines and different
TNF-α treatment conditions as well as TWEAK treatment included Nfkbia, Nfkb2, Mmp9,
Mef2c, Gpx, and Pgam2. Thus, several genes have not yet been described to play a role in the
response to TNF-α in myoblast differentiation (S2B Table), while a small subset of genes had
been confirmed by others (S5 Table).

Conclusions
The understanding of the gene expression regulation during skeletal myoblast differentiation
and how this is impacted by TNF-α and IGF1 is of significant clinical and therapeutic impor-
tance. Results of the current study facilitate the understanding of the regulatory networks lead-
ing to impaired myoblast fusion upon pathological concentrations of TNF-α. We confirmed
genes and pathways prominent in myogenic differentiation or TNF-α signaling, and identified
novel genes and pathways (Fig 5). Several differentiation-relevant genes were inversely regu-
lated by TNF-α treatment. Moreover, our data revealed novel kinetic expression dynamics of
genes and pathways during differentiation and TNF-α treatment. Moreover, TNF-α and IGF1
treatment could be characterized by a subset of indicative expression markers, of which some
are robust inter-study retrieved markers. Results of the current study may point to possible
candidates for new strategies to counteract impaired muscle regeneration in inflammatory
myopathies, muscular dystrophies, or cancer cachexia. However, further research at the protein
level is required.

Supporting Information
S1 Fig. Hierarchical clustering and heatmaps of gene expressions. After 24 h of treatment,
the largest distance between groups appeared between myoblasts and myotubes, as well as
myotubes exposed to TNF-α or IGF1.
(TIF)

S2 Fig. Gene clusters which bear the minority of genes. The self-organizing tree algorithm
clusters were given for genes that separated in (A) cluster G, containing five genes, (B) cluster
H, including ten genes, and (C) cluster I, comprising 41 genes.
(TIF)

S3 Fig. Expression analysis by qPCR validated gene profiling results. Relative fold-changes
of Affymetrix gene expression profiling results and individual qPCR analysis results after 12 h
of treatment are depicted for the effect of (A) differentiation, (B) TNF-α treatment, (C) IGF1
treatment, and (D) IGF1 treatment relative to TNF-α treatment. In each graph, the Pearson
correlation coefficient R and the corresponding p values of microarray and qPCR results are
shown. (E) Multiple regression analysis for relative expression values of microarray and qPCR
analysis.
(TIF)

S4 Fig. Peptide neutralization assay for Emi1.Western blot of Emi1/Fbxo5. (A) Emi 1 pro-
tein was detected at 46 kDa. However, we detected two unexpected bands at approximately 80
kDa and 110 kDa. (B) The Emi1-antibody was incubated with a 5-fold molar excess of Emi1
epitope rather than antibody. Specificity of the band at 46 kDa was confirmed as the band dis-
appeared in contrary to the nonspecific bands at 80 kDa and 110 kDa.
(TIF)
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S1 Table. Gene lists of principal components. Gene lists of principal components of gene
expression profiling data after 0 h,4 h, 12 h, and 24 h of differentiation and treatment with
TNF-α, IGF1, or control.
(XLSX)

S2 Table. Differential gene expression in myoblast differentiation and response to TNF-α
or IGF1 treatment. Differential gene expression of nonambiguous genes derived from micro-
array analysis were listed for samples with 4 h (“induction of differentiation”/immediate
response), 12 h (very early differentiation), and 24 h (early differentiation) of treatment. Corre-
sponding log2 ratios are shown. (A) Differentiation, (B) TNF-α treatment, and (C) IGF1 com-
pared with TNF-α treatment.
(XLSX)

S3 Table. Genes which cluster by self-organizing tree algorithm analysis. Lists of genes are
shown for (A) cluster A: upregulated during very early differentiation, (B) cluster B: genes
upregulated during later differentiation, (C) cluster C: genes downregulated during very early
differentiation, (D) cluster D: TNFα-induced and suppressed in late myotubes, (E) cluster E:
genes specifically induced by TNF-α, (F) cluster F: late myotubes genes downregulated, (G)
cluster G: upregulated by TNF-α and downregulated in late myotubes, (H) cluster H: upregu-
lated in early myotubes, but downregulated in late myotubes, (I) cluster I.
(XLSX)

S4 Table. Gene ontology and pathway enrichment of genes clustering by self-organizing
tree algorithm analysis. Gene ontology biological process and signal transduction pathway
associations are given for genes separated in clusters (A) cluster A: upregulated during very
early differentiation, (B) cluster B, genes upregulated during later differentiation, (C) cluster C:
genes downregulated during very early differentiation, (D) cluster D: TNFα-induced and sup-
pressed in late myotubes, (E) cluster E: genes specifically induced by TNF-α, (F) cluster F: late
myotubes genes downregulated, (G) cluster G: upregulated by TNF-α and downregulated in
late myotubes, (H) cluster H: upregulated in early myotubes, but downregulated in late myo-
tubes, (I) cluster I.
(XLSX)

S5 Table. Comparison of the effect of TNF-α with previous studies. Genes differentially
expressed in skeletal muscle cells in the current study and previous profiling studies are listed.
(A) Genes differentially expressed in a study by Bhatnagar et al. [136] (C2C12, 18 h, 10 ng/mL
TNF-α) as well as in the current study (PMI28, 4 h, 12 h, 24 h, 72 h, 5 ng/mL TNF-α) and the
SOTA cluster in which the respective gene was retrieved (B) Regulated genes identified in a
study by Panguluri et al. [137] (C2C12, 96 h, 10 ng/mL TWEAK) and in the current study
(PMI28, 4 h, 12 h, 24 h, 72 h, and 5 ng/mL TNF-α) as well as the SOTA cluster in which the
respective gene was retrieved. (C) Genes published by Bhatnagar et al. [136] and Panguluri
et al. [137]. Bold genes were detected by Bhatnagar et al. (2010) [136], Panguluri et al. (2009)
[137] as well as in the current study.
(XLSX)
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