
Early functional size estimation with IFPUG unit modified

Juan J. Cuadrado-Gallego, Pablo Rodríguez-Soria,
Alfonso González, Dácil Castelo

Computer Science Department
University of Alcalá

Madrid, Spain
jjcg@uah.es

Saahil Hakimuddin
Department of Computer Science and Engineering

Manipal Institute of Technology
Manipal, Karnataka, India

saahil.in@gmail.com

Abstract—Nowadays functional size measurement is a strategic
key to deal with the management of software systems
development. The origin of this importance is the fact that
functional size measurement is the main input variable in
software effort estimation systems. Nevertheless, to obtain
precise functional size measurements it is not only necessary to
have a lot of information of the system to be developed, but
also software project planning is one of the early stages in the
project. To solve this difficulty, one of the main software
management research technique is centered in the study of
methods to obtain precise functional size measurements early
in the development phase for early functional size estimation.
The functional size unit selected to do the study has been
IFPUG because is the most widely used method.

Keywords - Software Management; Software Process;
Software Measurement; Functional Size, IFPUG

I. INTRODUCTION
The first unit used to measure the size of software

products was given by the number of source lines of code
(SLOC). Although this unit is useful when it is used to
analyze different aspects such as error ratios or team
productivity ratios, from a software project management
point of view, SLOC suffers from the fact that it can only be
measured once the software has been built.

For that reason, the definition of a magnitude able to
measure software, for management issues, early in the
project lifecycle became essential. One of the most
significant figures for managing a software project is its
functional size. Derivable from the projects’ functional user
requirements (FUR), it is possible to estimate the amount of
human and material resources needed, time and costs
required. This is the main aspect for the project development
success.

Function points and the related measurement method was
given by IBM’s researcher Allan Albrecht, first by himself
[1] and then working with his collaborator John Gaffney [2].
This measurement unit can be applied when the
documentation is available during project’s early phases,
such as the software requirements specification and analysis
phases. The enacting need for a software measurement unit
such as the one proposed by Albrecht, able to solve software
projects management issues, together with the success
derived from its first applications, were the reasons for the

foundation, in 1986, of the International Function Point
Users Group (IFPUG), whose main goals are to promote the
usage of this measure and to control the evolution of the
measurement standard definition. The method was developed
to measure the amount of functionality to be delivered to end
users as perceived from their viewpoint.

Since its appearance in 1979, several variants have been
produced during the years. This changed the name from
Albrecht’s Function Points to IFPUG Function Points
Analysis (FPA). Since then, several versions of IFPUG FPA
have been published. Among those methods, four have been
recognized by the International Organization for
Standardization (ISO) de jure standards:

1. IFPUG v.4.1, 1998. Standard ISO/IEC 20926 [3]

This method will be described in detail in the next
section.

2. NESMA v.2.1, Standard ISO/IEC 24570 [4]

The first description of the NESMA FPA is presented on
a manual published by the Netherlands Software Metrics
Association (NESMA), where it explains how to apply the
IFPUG measurement unit, in particular to software
developed as a part of maintenance projects. This manual, of
which five versions has been published, has had a large
impact on the software industry; that is the reason why the
NESMA’s Function Points are considered both a
measurement unit and an international standard. NESMA
FPA represents a minor variation from the IFPUG method
and therefore it is possible to consider the two related
functional size units as equivalent.

3. MK II v.1.3.1, Standard ISO/IEC 20968

Inspired in the IFPUG FPA, but with some foundations
introducing noteworthy differences from them, MK II’s
Function Points were published by Charles Symons [5] as a
new unit proposed for software functional size measurement.
The MK II unit obtained widespread reach, mainly in the
nineties, not only in the United Kingdom where it originated
from, but also in many other countries. The reasons behind
its success lay in the belief that this unit improves upon
IFPUG FPA in a way so as to consider the internal
complexities on data handling, a key aspect of business. All
these reasons led to the promotion of this measurement unit

9th IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-4147-1/10 $26.00 © 2010 IEEE

DOI 10.1109/ICIS.2010.12

729

as an international standard. Nevertheless, the fact that
Charles Symons participated in the development of COSMIC
unit also, and is currently working in its development and
sponsorship, should introduce certain skepticism about the
future of the acceptance and usage of the MK II unit.

4. COSMIC v2.2. Standard ISO/IEC 19761[6]

To organize the execution of the tasks that led to the
definition of the new measure, some experts established in
1998 the Common Software Measurement International
Consortium, COSMIC, whose first outcome was the
definition of the measure in 1999. Since its first publication,
the interest in the new unit among both, the academic
community and the industry, was enormous, reaching vast
diffusion and utilization in very short time, with three new
versions published later, including the one which has been
standardized. COSMIC Function Points – that represent a
2nd generation FSM method - are the result of the pursuit of
the international group of experts in software functional size
measurement, to find a measurement unit capable of being
successfully applied to the greatest possible number of
software types and, specially, to real time software, where
the application of the IFPUG unit is really hard.

The growing interest in industrial organization created by
COSMIC can be verified by the growing number of projects
included in the ISBSG repositories (one of the most
important global repositories of data about software projects)
which has grown from less than 50 projects in the 8th edition
up to 110 ones in the latest one (the 10th edition, January
2007), with a growing rate more than 100% in five years;
another noteworthy statistical data is the growing number of
measurement experts certified in COSMIC, which, too, has
grown by more than 200% in the last 2 years; all these facts
reflects the relevance of research activities on it.

This situation is the result of the contribution of three
factors: firstly, its wide scope of applicability, since the unit
can be used to measure many different kinds of software;
secondly, the clarity of its concepts, making the unit easy to
use and to learn to use; and finally, the low cost resulting
from using this unit.

The paper is organized as follows: Section 2 presents the
IFPUG main features. Section 3 presents a review of
previous published studies. Section 4 shows the conclusions
for this work and outlines future research issues, and paper
ends with a list of references used.

II. IFPUG METHOD
Function Points is functional measurement method

based on Lineal equations. It was published for the first time
in 1979 by Alan Albrech. The Function Points method is
developed as an alternative to the estimation of the software
product size through SLOC. Function Points have a rather
major level of abstraction in comparison the SLOC,
attending to aspects such as the number of input transaction
types or the number of different reports generated by the
system.

When they were presented, function points constituted a
complete model for effort estimation and the equation that is
gathered here corresponds to this model. Currently this
estimation method of function points is used to determine the
size of the software that is going to be developed, which will
be used as an input variable for some other specific model of
effort estimation.

Function Points represents some advantages against the
SLOC; for example these can be estimated earlier in the life
cycle since it is only necessary to have the requisites
definition document, which is very interesting if function
points are used as input in an effort estimation model, along
with development time, since these two data could be known
with a good approach and also very quickly. Another
advantage is that they can be calculated by non technical
members of the development team. Also, function points
avoid the effects of the coding language and other
differences in the implementation.

The calculation of Function Points is performed in two
phases:

Classify the user´s functions under its category and
calculate the not fitted function points by attending to the
level of information processed by each function, which can
be simple, medium and complex. For each level and
function, pertaining to its category, there will be a natural
number corresponding to the assignable function points for
this function.

Currently there are 5 function categories (In the first
article only four were defined):

1. Internal Logical Files (ILF)

An internal logical file is a user recognizable group
of logically related data or control information
maintained within the boundary of the application
being measured.

2. External Interface Files (EIF)

An external interface file is a user recognizable
group of logically related data or control
information which is referenced by the application
being measured, but maintained within the
boundary of another application.

3. External Input (EI)

An elementary process that processes data or
control information sent from outside the boundary.

4. External Inquiry (EQ)

An elementary process that sends data or control
information only outside the boundary, using data
retrieval.

5. External Output (EO)

An elementary process that sends data or control
information outside the boundary and includes
additional processing beyond that of an external
inquiry.

730

To establish the complexity of ILF and EIF the following
rules must be followed:

1. Assign each identified ILF/EIF a functional
complexity based upon the number of Data
Element Types (DET) and Record Element Types
(RET) associated with the ILF or EIF.

2. Count a DET for each unique user recognizable,
which is a non-repeated field maintained in or
retrieved from the data function through the
execution of all elementary processes within the
counting scope.

3. Count one RET for each data function. Count an
additional RET for each of the following logical
subgroups of the data function that contains more
than one DET.

a. Associative entity with non key attributes.
b. Unique Sub-type.
c. Attribute entity, in a relationship other

than mandatory 1-1.

The complexity matrix for ILF and EIF is:

1 RET 1-19
DET(Low)

20-50
DET(Low)

+51
DET(Avg)

2-5 RET 1-19
DET(Low)

20-50
DET(Avg)

+51
DET(High)

+6 RET 1-19
DET(Avg)

20-50
DET(High)

+51
DET(High)

To establish the complexity of EI/EQ/EO the following

rules must be followed:

1. Assign each identified EI/EQ/EO a functional
complexity based upon the number of Data
Element Types (DET) and File Types Referenced
(FTR) associated with the the transactional
function.

2. Review every DET (field) that crosses
(enters/exits) the boundary. Count only one DET
for each user recognizable, which is a non repeated
attribute, that crossed the boundary during the
processing of the transactional function.

3. Count one FTR for each unique data function that
is accessed (read from and/or written to) by the
transactional function.

The complexity matrix for EI is:

0-1 FTR 1-4
DET(Low)

5-15
DET(Low) +16 DET(Avg)

2 FTR 1-4
DET(Low) 5-15 DET(Avg) +16

DET(High)
+3 FTR 1-4

DET(Avg)
5-15

DET(High)
+16

DET(High)

The complexity matrix for EQ and EO is:

0-1 FTR 1-5
DET(Low)

6-19
DET(Low)

+20
DET(Avg)

2-3 FTR 1-5
DET(Low)

6-19
DET(Avg)

+20
DET(High)

+4 FTR 1-5
DET(Avg)

6-19
DET(High)

+20
DET(High)

 After establishing the functions and their complexities,
the function points counting weights are:

ILF Low 7 Avg 10 High 15
EIF Low 5 Avg 7 High 10
EI Low 3 Avg 4 High 6
EO Low 4 Avg 5 High 7
EQ Low 3 Avg 4 High 6

The natural number reflects the number of function

points.
By fitting the function points attending to the application

complexity. 14 complexities features were analyzed:

1. Data communications (C1)

2. Distributed Data Processing (C2)

3. Performance (C3)

4. Heavily used configuration (C4)

5. Transaction rate (C5)

6. On-line data Input (C6)

7. End user efficiency (C7)

8. On-line data update (C8)

9. Complex processing (C9)

10. Reusability (C10)

11. Ease of Installation (C11)

12. Ease of Operation (C12)

13. Multiple localization (C13)

14. Change of facility (C14)

Each one with a variation range:

� Not present or without influence = 0

� Insignificant influence = 1

� Moderate influence = 2

� Medium influence = 3

� Significant influence = 4

� Decisive influence = 5

731

The adjusted Function Points calculation can oscillate in
± 35 % from the original Function Points calculation.

III. PRLIMINARY STUDIES
Some preliminary studies can be found in the literature,

some of the main ones being published by Meli and Santillo
of Italy and also some of others published by Asensio et al.
of Spain.

The ones from Italy are:

� “Early and Extended Function Points: a new
method for function points estimation” [7]

� “Early function points: some practical experiences
of use” [8]

� “Early and Quick function points analysis” [9]

� “E&Q: an Early & Quick Approach to Functional
Size Measurement Methods” [10]

All of these studies, more or less, reflect the same IFPUG
early measurement model. Its main characteristics are:

1. The model proposed 4 sub-models or aggregation
levels corresponding to the level of detail with which
the system is known.

2. The first aggregation level is applied when user
requirements are sufficient known to apply the
IFPUG standard unit described in immediately
previous section. The numbers used are exactly the
same as enumerated in that section.

3. The second aggregation level is applied when the
knowledge of the systems to be developed is enough
to identify most of the IFPUG functions, but not the
complexity of each one. For other functions, it is
only possible to identify them like data functions
(ILF o EIF) or transactional functions (EI, EQ or
EO). For that level the function points counting
weights are:

ILF Min 7,4 Most Likely
7,7 Máx 8,1

EIF Min 5,2 Most Likely
5,4 Máx 5,7

DataFunction Min 6,4 Most Likely
7,1 Máx 7,8

EI Min 4 Most Likely
4,2 Máx 4,4

EO Min 3,7 Most Likely
3,9 Máx 4,1

EQ Min 4,9 Most Likely
5,2 Máx 5,4

EOEQFunction Min 4,1 Most Likely
4,6 Máx 5

TransacFunction Min 4 Most Likely
4,4 Máx 4,8

4. For the third and the fourth aggregation level, new
and very different concepts from IFPUG concepts are
introduced and the description and results of those are
out of the scope of this paper.

The one from Spain is

� “MTPF Function Points Measure Early Method”
[11]

The main characteristics of this method are:

1. Establish two different numbers - CILFEIF as a sum
of ILF and EIF; and CEIEOEQ as a sum of EO, EI
and EQ.

2. Establish a high degree of correlation between the
number of IFPUG function points and these two
magnitudes.

3. Since, CILFEIF is related with the number of
entities, the model proposes not to count the number
of ILF and EIF but the number of entities and, for
the same reason, not to count the number of EI, EO,
and EQ but the number of processes.

4. Define the concepts of Entity and assign them
different weights in order of themselves and their
multiplicity. And define the variable CENT to
measure entities.

5. Define the concepts of Elemental Process, Micro
Function and Macro Function to measure processes.
And define the variable CPRO to measure processes.

IV. CONCLUSIONS AND FUTURE WORK
This paper presents the importance of functional size

measurement to obtain software projects effort estimations.
And from that point the importance that an early estimation
could possibly would have.

Starting from that point the performance of IFPUG
function points are presented and based on it a review of the
main proposals that could be found in the literature to
perform early software functional size measurements with
IFPUG, is stated.

Considering this paper as a beginning, the team is now
researching a new and more usable method to obtain
software functional size measurements early in the software
projects' life cycles.

REFERENCES
[1] Albrecht A. J., "Measuring application development

productivity," en Proc. Joint SHARE, GUIDE, and IBM
Application Development Symp., IBM, pp. 83-92.

[2] Albrecht A. J. & Gaffney J. E., "Software function, source
lines of code, and development effort prediction: A software
science validation," IEEE Trans. Software Eng., vol. 9, no. 6,
pp. 639-647.

732

[3] ISO/IEC 20926: 2003, Software engineering IFPUG 4.1
Unadjusted functional size measurement Method. Counting
practices manual International Standardization Organization,
ISO, Ginebra, 2003.

[4] NESMA, “Definitions and counting guidelines for the
application of function points analysis. A practical manual
2.2”, Nederlandse Software Metrieken Associatie

[5] Symons C., “Function Point Analysis: Difficulties and
Improvements,” IEEE Transactions on Software Engineering,
vol. 14, no. 1, pp 2-11.

[6] Common Software Measurement International Consortium,
“COSMIC-FFP Meaurement Manual 3.0

[7] Meli, R. “Early and Extended Function Points: a new method
for function points estimation ,” IFPUG Fall Conference,
Arizona, USA, September 1997

[8] Santillo, L. Meli, R. “Early function points: some practical
experiences of use ,” ESCOM, Roma, 1998

[9] Meli, “Early and Quick function points analysis,” Roma,
2002

[10] Santillo, L “E&Q: an Early & Quick Approach to Functional
Size Measurement Methods,” IWSM, Montreal, 2005

[11] Asensio, “MTPF Function Points Measure Early Method,”
IWSM, Montreal, 2005

733

