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Abstract: The possibility of using flexible and cost-efficient
commodity hardware instead of expensive custom hard-
ware has triggered wide interest in software routers. Per-
formance measurement and simulation are important ap-
proaches for identifying bottlenecks of such systems to
predict and improve the performance. We measure the
performance of software routers using current multi-core
hardware architectures. We introduce an innovative and
validated node model for intra-node resource contention
and realized a resource management extension for the
widely-used network simulator ns-3 which allows to evalu-
ate and predict the performance of current and future soft-
ware router architectures.
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I Introduction

The performance of commodity PC hardware has increased
rapidly. Therefore, it becomes feasible to use off-the-shelf
systems as servers or routers. For instance all Unix-based
systems are capable of basic routing functionality. Every
PC can be transformed into a software router with the aid
of special software or by selecting an appropriate operat-
ing system (OS). Thereby commodity hardware is more
cost-efficient than specialized hardware solutions and net-
work components. Leveraged by high flexibility and low
costs of software developments in comparison with hard-
ware developments, software solutions are preferred in
many scenarios. While this advantage may be counterba-
lanced by the higher performance and lower energy con-
sumption of specialized hardware, the arguments of high-
er flexibility and better cost-efficiency still remain.

Software routers allow rapid deployment of new fea-
tures that require a considerably more expensive and time-

consuming development cycle when implemented by
dedicated hardware. For instance, the IETF NETCONF WG
or the Open Networking Foundation implemented new
approaches for the configuration of network devices in
software, whereas hardware implementations were not
available in the early stage.

Nevertheless the benefits of software routers come
with the drawback of smaller number of ports and lower
performance. Approaches like RouteFlow [1] combine the
flexibility and routing functionality of software routers
with the forwarding performance of hardware OpenFlow
switches. Thereby the best of both worlds can be achieved
in one system: a comparatively cheap routing system with
the performance and scalability of dedicated networking
hardware that has the flexibility of software routers. Re-
searches have shown that the performance of specialized
routing hardware is within the reach of software routers
[2], [3]. For the use of computer systems in high-speed net-
works the traffic of 1 Gbps, 10 Gbps, and higher speed net-
works has to be managed. Systems have to be able to cope
and handle this traffic without loss of data. Bus systems
must guarantee the required data rates between the hard-
ware components. Depending on the type of routing tasks,
the OS has to do diverse complex treatments per packet. In
order to improve the performance it is necessary to under-
stand packet processing limitations in PC systems in detail.
Achieved performance gains can indeed be explained qua-
litatively on the basis of the hardware architecture and the
processes in the OS, but there is a lack of models that could
explain the results quantitatively or even predict them. A
good model provides a simple way to gain insight into
complex packet processing tasks. This model should be
scalable and applicable for manifold simulation scenarios
which cannot be provided in real testbeds.

In this paper, we measure and simulate the perfor-
mance of software routers based on current multi-core
systems. Hence, we apply our general concept for realistic
modeling of resource contention in resource-constrained
nodes. Our modeling approach is implemented as a re-
source management module for the network simulator
ns-3. After calibrating and validating our model based on
our testbed measurements, we evaluate and predict the
performanceofexistingand futuresoftware routerarchitec-
tures. This paper is an extended and revised version of [4].
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The remainder of the paper is organized as follows.
Section II outlines the state of the art in modeling, measur-
ing and implementation of software routers. Section III
shows the characteristics and the components which are
needed to setup a software router. In Section IV we intro-
duce our general model for simulation of intra-node re-
source contention. Section V describes our testbed which
was used for the calibration of our model. Section VI pre-
sents a case study to compare the real testbed measure-
ments with our simulation results to validate our modeling
approach. Finally, we summarize our contribution and
give an outlook in Section VII.

II RelatedWork

Scientists aiming for low level optimizations [5]–[7] need
detailed knowledge of the complex system of a software
router. The interactions between the kernel and drivers,
but also of application layer above and the underlying
layer of hardware must be analyzed. In this case, modeling
and simulation techniques [8]–[12] can help to understand
the related effects and performance factors.

Some projects consider surveying software router im-
plementations as a task with the goal of providing hints for
future optimizations [2], [3], [13]. In context of the Route-
Bricks project [2], the authors analyzed the performance
influences of multi-core PC systems. They parallelized
packet processing on multi-core CPUs and extended this
approach to a cluster of software routers. PacketShader [5]
utilizes theGPU to speeduppacket processing. PF_RING [6]
and netmap [7] focus on the utilization of DMA features in
order to avoid copy operations that are normally needed to
get packets to theuser space.

In modeling and simulation of such complex systems
several approaches were proposed. Chertov et al. [8] intro-
duced a device-independent router model which just con-
siders the queue size and number of service units inside a
router. Thus themodel canbeused fordifferent router types
by tuning specific parameters. Bobrek et al. [9] used a hy-
brid simulation/analytical approach for modeling shared
resource contention in Programmable Heterogeneous
Multiprocessor (PHM) systems. Besides, Sokolsky [10]
followed a formal approach to model resource constraints
in real-time embedded systems which is easily extensible
to include new kinds of resources and resource con-
straints. Begin et al. [11] proposed a high-level approach
for modeling an observed system behavior with little
knowledge of the system internal structure or operation.
This is done by adequately selecting the parameters of a
set of queueing systems and queueing networks. Bjork-

man and Gunningberg [12] investigated the effects of locks
and memory contention which are major performance bot-
tlenecks in multi-processor systems. They presented a
queueing network model for performance prediction of a
sharedmemory multi-processor with parallel protocol pro-
cessing.

Measuring of network devices in general was standar-
dized by the IETF in RFC 2544 [14]. Bolla and Bruschi [13]
applied RFC 2544 for software router performance. Beside
external measuring via dedicated hardware they refined
an internal view on packet processing in Linux 2.6 via
profiling and the knowledge about hardware architecture
at this time. Dobrescu et al. [3] published a study on the
predictability of software networking equipment.

Beside measuring of software routers in whole or fa-
cets, other projects aim for the implementation of software
routers. These routers are also referred to as open routers
(OR) to clarify the contrast to the relatively inflexible
closed source hardware routers. XORP [15], Quagga [16]
and BIRD [17] are the most well-known ORs. The Vyatta
Open-FirmwareRouter [18] is a Debian based Linux distri-
bution equipped with network applications for routing like
Quagga and OpenVPN. Vyatta’s business model demon-
strates the marketability of software routers as it is based
on deployment, support and training for their software
router distribution. Therefore it includes other stake-
holders besides the scientific community. In contrast the
Click Modular Router [19] was used mainly for scientific
research. Other examples for PC-based packet processing
are ServerSwitch [20], as proof of concept for flexible pack-
et switching in cloud data centers, and Open vSwitch [21]
which is a software switch also used as a reference imple-
mentation of OpenFlow. Open vSwitch has been ported to
multiple hardware platforms and made part of the Linux
kernel.

III Realization of a Software Router

The IP protocol was designed to provide a best-effort ser-
vice to the transport layer in a decentralized way. Due to
the decentralization each IP router decides on its own to
which neighbor it has to forward an incoming packet.
Therefore, an IP router must keep a state in a routing table
to track the networks reachable via its neighbors. In sum-
mary the duties of an IP router are twofold: first, it needs to
learn its routing table (either via manually installed rules
or a routing protocol) and second, a router needs to for-
ward the actual traffic according to its routing table. The
parts of a router concerned with learning and updating the
routing table form the control plane, while the parts of the
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router dedicated to per-packet forwarding are referred to
as the forwarding plane [22].

The control plane implements various distributed
routing protocols, such as RIP, OSPF, or BGP. Using these
protocols the router either gains a global or local view of
the network topology. From this topology information the
control plane derives the routing table. As the processing
of the routing protocol messages is rather complicated but
less time-critical, the control plane is usually implemented
in software, that is running on general-purpose proces-
sors, even in dedicated hardware routers [22].

On the other hand, the tasks of the forwarding plane
are rather simple but critical in terms of throughput and
latency. In addition to the actual forwarding other tasks
like routing table lookups, TTL decrements, fragmenta-
tion, and checksum recalculation also belong to the for-
warding plane. In hardware routers these tasks are im-
plemented using special-purpose chips (ASICs) [22]. This
section gives an overview of the routing software and
selected optimizations in software and hardware that are
relevant for software routers.

A Routing Software

When building a router using commodity hardware, we
need to implement both the control plane and the forward-
ing plane in software. As described above, the control
plane is generally implemented in software, mainly be-
cause it is not critical for the performance of the router.
Therefore, we focus on the forwarding plane, which di-
rectly affects routing performance.

As mentioned in Section II, there are several mature
implementations of software routers for UNIX-like plat-
forms, such as Linux, FreeBSD, NetBSD, and Solaris. These
platforms support the full functionality of the forwarding
plane. Therefore, static routing is supported without addi-
tional software.Whendistributed routing protocols have to
be used to generate the routing information, extra software
is required. The routing software packages Quagga [16],
BIRD [17], and the eXtensible Open Router Platform
(XORP) [15] support the most common routing protocols,
such as RIP, OSPF and BGP. While Quagga and BIRD only
provide control plane functionality, XORP also allows to
change the forwarding plane of the OS. XORP relies on the
Click implementation of the forwarding plane, which we
will discuss in thenext section.

B Software-Based Routing Performance
Optimizations

The functionality of the forwarding plane in UNIX-like
systems by default uses the general-purpose network
stack. Due to its general use it is not explicitly optimized
for high-performance packet forwarding. The Click Modu-
lar Router [19] provides a replacement for the OS network
stack with its own implementation of the forwarding
plane. In contrast to the software routers discussed in the
last section, which come as ready-to-use packages, Click
only provides a framework to build software routers. It
offers modules, which provide simple parts of the routing
and forwarding functionality, like filters, queues, TTL de-
crement, or checksum calculation. These modules are con-
nected by a directed graph. Paths in such a graph represent
a connection on which a packet can travel from one mod-
ule to another. Hence, Click is very flexible and allows to
build almost any kind of packet processing software –
such as an IP router.

Setting up an own Click processing graph is costly, but
can provide a better packet forwarding performance than
the pure OS network stack. Click was optimized for fast
and flexible packet processing, so that it outperforms the
Linux network stack [19]. Additionally, Click graphs can be
customized and tailored to a certain use case allowing it to
perform even better.

The Click community contributed modules and exten-
sions, like the support for netmap [7] or an OpenFlow
switch element [23]. Click elements such as a load genera-
tor and a load sink contributed by the author of [24] show
that it is possible to implement almost any kind of packet
processing using Click.

The standard Linux network stack has received var-
ious optimizations during the last years, too. These opti-
mizations led to the New API (NAPI). New software tech-
niques introduced with the NAPI, incorporated in kernel
2.6, combine or offload processing steps, avoid interrupts,
and avoid memory allocations and copy operations. In
experiments we spotted a performance increase of about
7% from Linux kernel 2.6.35.9 to kernel 3.2.39 and even
roughly 10% to 3.8.2. Given these performance increases
it is even more surprising that older kernel versions are
still broadly used. For example Debian “Squeeze”, which
was replaced by “Wheezy” in May 2013, is shipped with
Linux kernel 2.6.32 released in 2009. Debian “Wheezy” –
the latest stable release – comes with kernel 3.2, that was
released in January 2012.

Up to now, packet processing applications achieve
high performance by running in kernel mode and thus
being able to access kernel managed buffers without copy-
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ing data to user space. A big drawback of this approach is
that applications in kernel mode can easily crash the sys-
tem. While interfaces between driver, OS, and applications
have been untouched for years these borders have been
exceeded recently. Zerocopy packet processing aims to
avoid costly copy operations between DMA accessible buf-
fers, kernel-level buffers, and user space buffers. Promi-
nent examples are PF_RING [6] coming from Linux and
netmap [7] from FreeBSD, which was also ported to Linux
in 2012. PF_RING modifies drivers in order to let the net-
work interface directly access a ring buffer using DMA.
Packets in this ring buffer are mapped into the user space.
Conceptional drawbacks result from the fact that applica-
tions have to be adapted to this stack and from the intro-
duction of a delay from the moment of the finished DMA
copy until the mapping from the ring buffer to the user
space happens. Netmap uses a similar approach by map-
ping the DMA accessed space directly into the user space.
A kernel module controls access to the storage used by the
different actors which also enforces modifications in dri-
vers. So the performance increases came at the cost of
adjusting a stable well known interface and therefore los-
ing some independence from the underlying hardware.
Currently the described zero-copy techniques come with
modified driver versions of the e1000e, igb, and ixgbe
Linux driver for Intel network interfaces.

C Hardware-Based Routing Performance
Optimizations

A software router is based on commodity server hardware,
which made a steady development during the last years.
Within this development process new hardware features
lead to the development of new software and the other way
round. Optimizations caused by the need for higher inter-
component connection speed triggered the change from
bridge to hub architectures. The current hub architecture
is displayed schematically in Fig. 1 (cf. [25]). Components
were integrated with others for sake of communication
optimization and the increase of density. The memory con-
troller is placed onchip since Intel’s Core i7 (2008) and
AMD’s K8 (2003) architecture. Therefore, it is referred to as
integratedmemory controller (IMC). Another trend in hard-
ware architecture is a steady growing degree of paralleliza-
tion. Intel CPUs and the I/O Hub communicate to each
other via QuickPath Interconnect (QPI) [26].

On the other side, offload mechanisms try to shift
workload from the CPU to the specialized hardware com-
ponents and thus discharge the CPU from some of its load.
Modern NICs support mechanisms like the TCP Segmenta-

tion Offload (TSO). TSO outsources TCP segmentation of
large user data blocks from the CPU to the network inter-
face which reduces the CPU load on the sending side
caused by the network protocol stack. The same technique
also exists on the receiving side and for UDP. The NIC
automatically reassembles received TCP segments again.
Direct Memory Access (DMA) is in use for some years,
allowing the NIC to access the memory without producing
load for the CPU. New network cards already implement
the next step called Direct Cache Access (DCA). DCA allows
for direct writing into the CPUs cache and therefore avoids
several hundred CPU cycles per packet that would be spent
with waiting for data otherwise. Beside offload techniques,
interrupt moderation or interrupt coalescence are further
examples for optimizations. NICs wait for the arrival of
more packets, which are then passed to the operating
system in a bundle, before triggering an expensive inter-
rupt. The Receive Side Scaling (RSS) technique allows the
NIC to enqueue packets according to their flow affiliation
to a certain queue. Each queue is connected to another
core. So packets of a flow are processed always by the
same core. Packets of the same flow are likely to use the
same data for forwarding decisions and to access the same
state information (if a state is required). Therefore, RSS
cares for cache locality and allows for better parallelism.

Fig. 1: Intel Hardware Architecture.

IV Performance Evaluation with
Simulations

In this section, we give an overview of current network
simulators with respect to modeling of intra-node resource
contention. Based on that, we introduce our unified model
for intra-node resource management in resource-con-
strained network nodes. We show the most important im-
plementation aspects of our resource management exten-
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Fig. 2: Router Model with Packet Flow fromNIC0 to CPU (solid arrows) and from CPU to NIC1 (dashed arrows).

sion for ns-3. We published further details regarding our
modeling approach for resource management in resource-
constrained nodes [27].

A Overview

Simulators are widely used for research and education.
The reason is that deploying a testbed containing real
networking devices and links is often expensive and time
consuming. Researchers and designers can use simulators
as a cost-effective approach to design, validate, and ana-
lyze their proposed protocols and algorithms in a con-
trolled and reproducible manner [28].

Simulators can be classified into closed source and
open source. Closed source simulators are often cost-inten-
sive commercial products which need to be purchased.
Open source simulators have the advantage that the
source code is freely available and everyone can contribute
to enhance it. In addition, open source simulators often
reflect recent developments of new technologies in a faster
way than commercial network simulators. There exist a
variety of open source network simulators such as
OMNeT++, ns-2, and ns-3 as well as closed source network
simulators like OPNET [29].

Modern computers are multi-core or multi-processor
systems and therefore parallel processing of protocol soft-
ware becomes possible. Recent advances in computer ar-
chitecture such as multi-core processors interconnected
with high-speed links (e.g. Intel QPI) [26], integrated mem-
ory controllers, high bandwidth PCIe buses for the I/O
transfer, and multiqueue multi-port NICs, allow high-
speed parallel processing in network packet processors [3].
In multi-core systems, processes running simultaneously
on different cores (or even threads running on the same
core) may compete for shared resources (e.g., CPU, cache,

memory controller, and buses). This situation is called
resource contention which can significantly degrade the
performance in comparison to a contention-free environ-
ment. The effects of resource contention in multiprocessor
and multi-core systems have been widely studied in the
literature [30]–[32].

To the best of our knowledge, there is no support for
modeling resource contention in network simulators
though, evidently, resource contention must be modeled
when realistic node behavior is required. Current node
models of the existing network simulators typically assume
unlimited resources and sequential packet processing. This
limitation becomes problematic when resource-constrai-
ned nodes like software routers or sensor nodes are used
andparallel processing of protocol software is an issue.

For instance, the node model of the network simulator
ns-3 does not consider any node-internal resources (e.g.
multi-core CPU) for the packet processing. Thus, intra-
node latency and queueing behavior are not modeled. This
has motivated us to elaborate a general concept for a
detailed and thus realistic modeling of resource contention
in network nodes.

Ns-3 is an open source discrete event simulator which
is implemented in C++ for research and education in the
networking area. It is rebuilt from scratch and is not an
extension of ns-2. The main reasons for the popularity of
ns-3 are its modularity, multi-technology support, and the
simulation capabilities for large-scale scenarios. Ns-3 is
capable of running simulation scenarios with more than
20,000 nodes, while ns-2 (version 2.33) is not able to si-
mulate more than 8,000 nodes. Besides, ns-2 consumes
more memory compared to ns-3 in a same simulation
scenario [29]. Furthermore, in ns-3, packets can be saved
to PCAP files, in a real packet format, making it wellsuited
for real world integration. For the above reasons, we se-
lected ns-3 for our studies.
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B Theoretical Foundations

The packet processing of the system internal components
like NICs, buses (QPI, PCIe) or CPU cores of the router can
be modeled as a tandem queueing network as depicted in
Fig. 2. Each system internal component possesses an in-
coming queue and a service rate μ. Following [2], [3], [7],
[13] we assume that the CPU is the bottleneck. Therefore,
Eq. (1) is essential where μC denotes the service rate of
component C.

�CPU ¼ min �CPU ;
�Bus

2
; �NIC 0; �NIC 1; . . .

n o
(1)

The offered load is a specific sample of traffic which is
applied to a device under test (DUT). Here, the offered load
is characterized by the packet rate λwith a constant packet
size. The packet rate splits into the accepted packet rate λ+

and the dropped packet rate λ– and therefore λ = λ+ + λ–.
Due to our assumption that the CPU cores are the bottle-
neck, also λ+ =min{λ, μCPU} holds.

If the router is not overloaded (λ ≤ μCPU) no packets are
dropped (λ– = 0). Otherwise, if the router is overloaded
(λ > μCPU) then packets get dropped (λ– > 0). In this case,
the accepted packet rate corresponds to the service rate of
the CPU bottleneck (λ+ = μCPU). This means that we can
derive the packet service time x of the bottleneck, here
xCPU ¼ 1

�CPU
¼ 1

�þ, based on real maximum throughput mea-
surements in the testbed.

In this paper, we are interested in the maximum
throughput of a software router. If we assume that the CPU
cores are the bottleneck within the router, we can simplify
our router model as depicted in Fig. 3. It consists of an
incoming packet queue and multiple service units such as
the CPU cores C1, . . ., Cn. In our case, this simple model is
applied to predict the maximum throughput. However, for
instance, the packet latency in the router can also be
analyzed by extending this model. Therefore, the packet
delay of every node internal system like NIC and bus must
be added. The packet delays at most of these components
should be close to their service times because they are not
overloaded and we assume that the CPU is the bottleneck.
Evidently, the service time of the bottleneck is well ap-
proximated through the mean packet interdeparture time
at themaximum throughput of the router.

The sojourn time T of a packet in the router is the time
interval between the time tRX, when the router receives a
packet, and the time tTX, when the router transmits this
packet. Besides, the sojourn time consists of the waiting
timew and the service time x.

Fig. 3: Simplified Router Model with CPU Cores as Bottleneck.

T = tTX – tRX =w + x (2)

The waiting time depends on the number of packets in the
queue, their service times and the service strategy. More-
over, inmany cases the service time x to process a packet is
proportional to the frame size of the packet (e.g. packet
copy). The frame size S (in Byte) refers to the packet size
such that the frame size includes all headers (e.g. MAC, IP)
without preamble, start of frame delimiter (SFD), and inter-
frame gap (cf. Fig. 5). Therefore, we assume that x follows a
linear function which is dependent on a constant part Tc
and a frame size dependent part Td.

x = Tc + S · Td (3)

Furthermore, if we assume a stationary state and the of-
fered load is larger than the maximum throughput of the
router then the mean sojourn time T of a packet can be
calculated based on Little’s law [33]. The mean number of
packets N in the router can be approximated based on the
receive packet counter ZRX and transmit packet counter
ZTX at a periodic sequence of observation times ti = i ·Δt. If
the router is overloaded and dropped load λ– occurs then
the accepted load λ+ can be directly measured as the max-
imum throughput D̂p in packets per second (pps) which
brings us to the following equation.

T ¼ N
�þ � 1

j

Xj

i¼1

ZRXðtiÞ � ZTXðtiÞ
D̂p

; ð�� > 0Þ (4)

From our testbed measurements (cf. Fig. 8), we derive the
heuristic relation that themaximum throughput D̂b inGiga-
bits per second (Gbps) of our quad-core CPU router also
follows a linear behavior. It is dependent on the number of
usedCPUcores kand the framesize Saccording toEq. (5).
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D̂b ¼ ða � k þ a0Þ � Sþ ðb � k þ b0Þ ; ð1 � k � nÞ (5)

Weassume that this heuristic also holds on arbitrary n-core
CPUs if the offered load is uniformly split into k CBR flows
with constant frame size Swhich are served by k CPU cores.
The constant values for a, b, a0 and b0 are derived from our
measurements of the real system, as it is done through
the model calibration (cf. Section VI-B). The maximum
throughput may also depend on other attributes (e.g. DMA
transfer time, memory latency) which are omitted here to
keep themodel as simple as possible.

Based on this, the service time x per packet can be
predicted. In addition, the Ethernet preamble (7 B), start of
frame delimiter (1 B), and the interframe gap (12 B) must be
considered in Eq. (6) (cf. Section V-C).

x ¼ 1

D̂p
¼ ðSþ 7Bþ 1Bþ 12BÞ � 8 Bit

B

D̂b � 109
(6)

Furthermore, the actual service time xCore per CPU core can
be derived according to Eq. (7).

xCore ¼ k � x ¼ ðSþ 7Bþ 1Bþ 12BÞ � 8 Bit
B

ððaþ a0
k Þ � Sþ ðbþ b0

k ÞÞ � 109
(7)

This calculation of the per-packet service time is used in
the case study simulations in Section VI which are based
on our resourcemanagement model.

C Modeling of Intra-Node Resource
Management

Our proposed resource management modeling approach is
subdivided into three planes (Fig. 4).
– Processing Plane: At the lowest level there is the

processing plane. It is composed of several task units
TU which are connected with each other. Each task
unit possesses specific processing functionalities F
(e.g. decrease TTL) which require specific resources
(e.g. CPU,memory, bus) and service times.

– Resource Plane: The resource plane consists of sev-
eral resource pools (RP; e.g. Resource Pool CPU). Each
resource pool contains resources R of the same re-
source type (e.g. CPU, memory or bus). Each resource
pool is administered by exactly one local resource
manager.

– Resource Management Plane: Several local resource
managers (LRM; e.g. Local Resource Manager CPU)
are located in the resource management plane. Above

all, exactly one global resource manager (GRM) exists
to coordinate the local resourcemanagers if a task unit
requests several shared resources.

Fig. 4: ResourceModel Planes.

1) Task Unit: A Task Unit (TU) is an entity which encapsu-
lates functionality (e.g. IP processing) with uniform re-
source requirements. Incoming packets are waiting in the
incoming queue Qin of a task unit for being processed. At
least one resource is needed to execute the functionality
corresponding to the task unit for this packet. If currently
not all of the required resources are available, the packet
waits until the required resource(s) become(s) available.
The service time of the task unit may depend on the pack-
et-processing workload which can be characterized by the
packet size and the type of packet-processing (e.g. IP rout-
ing, IPsec encryption). After processing the packet, it is
enqueued in the task unit’s outgoing queue Qout to be
processed by the next task unit.

A task unit can be subdivided into several task units to
model specific effects in more detail (e.g. bus contention).
This makes our resource management model flexible and
extensible. We advise to use as few task units as possible
to obtain simplemodels for efficient simulations.

2) Resource Manager: A Resource Manager (RM) is an en-
tity which coordinates between multiple task units based
on their task unit priority. We distinguish between three
levels of detail in resourcemanagementmodeling:
– No Resource Manager: The task unit(s) possess(es)

dedicated resources (e.g. NIC uses its own processor).
In this case, neither the global resource manager nor
any local resourcemanager is required.

– Local Resource Manager (LRM): A local resource
manager is required if at least two task units share the
same resource.
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– Global Resource Manager (GRM): A task unit re-
quests the global resource manager if several shared
resources of different resource types are needed.

3) Interactions between ResourceManager and Task Unit:
The interactions between the resource manager and

the task unit(s) are based on different resource manage-
ment messages.
– ResourceRequest (REQ): The task unit sends this

message to its resource manager to apply for re-
sources.

– ResourceReply (REP): This message is sent from the
resource manager to the task unit in response to a REQ
toallocate a specific resource (e.g. CPU) to the taskunit.

– ResourceRelease (REL): The task unit sends this mes-
sage to the resource manager to give back an allocated
resource.

– ResourceRevoke (REV): This message is sent from
the resource manager to the task unit to withdraw a
resource which is currently occupied by this task unit.

Further details of our modeling approach of resource man-
agement are published in [27].

V Performance Evaluation with
Measurements

In this section we focus on the performance evaluation
with measurements on real systems. First, we set the re-
quirements for our measurement setup. Second, we pre-
sent our measurement tools used to generate and measure
network traffic.

A Measurement Setup

The methodology for measuring the performance of a net-
working device is described in RFC 2544 [14]. It gives guide-
lines for measuring standalone networking devices from a
black box point of view. The measured device is referred to
as device under test (DUT). The document covers various
performance indicators including throughput, latency,
packet bursts, and system recovery time. As described in
Section IV-B, the maximum throughput of a router is the
fastest packet processing rate at which there are still no
dropped packets and thus the number of packets entering
and leaving the DUT are equal. Therefore, we need to carry
out multiple measurements with different frame rates to
achieve the maximum throughput. RFC 2544 also specifies

that Ethernet measurements need to be performed at vary-
ing frame sizes of at least 64, 128, 256, 512, 1024, 1280, and
1518 B. For our test case, this means performing multiple
measurements at diverse packet rates and frame sizes and
counting of the packets entering and leaving the device
under test.

Networking devices are very complex, so there are
plenty of side effects that can influence ourmeasurements.
First, we have to make sure the router knows all informa-
tion needed for packet forwarding. Therefore, we populate
the router’s static routing table and ARP table before start-
ing a measurement. Second, we avoid cross-traffic, e.g. by
using statically configured interfaces thus avoiding DHCP
messages. Our network interface cards perform several
techniques that influence incoming and outgoing packets
(cf. Section III-C). Third, we disabled Ethernet flow control
on all devices, which influences the transmission of data,
especially in overload situations. Finally, we want to make
sure that the router, that is the DUT, behaves in a determi-
nistic way, so we disabled advanced CPU features on the
router machine. In particular, we disabled Turbo Boost,
which influences the CPU clock speed but would disrupt
the results. We even measured a negative influence on
μCPU for evenly distributed load. We also deactivated Hy-
per-Threading, which has no benefit in our case, as already
one thread is able to completely utilize the core.

B Traffic Generators

Having defined the requirements for our throughput mea-
surements, we need to find test tools that meet these re-
quirements. We need to generate 64 B to 1518 B frames at a
constant rate, that should scale up to the link speed. On our
10 Gbps hardware, this translates tomore than 14Mpps at a
size of 64 B. Traffic generators like UniLoG [34] focus on
building manifold traffic, i.e. in case of destination and
source IP addresses, payload, or temporal or size distribu-
tion. Other load generators focus on producing very high
numbers of packets. However, even commonly used traffic
generators like pktgen or Iperf produce a limited amount of
packets which did not saturate our links. Due to the over-
head produced by the OS network stack they are able to
produce about 1 Mpps. A load generator based on Click,
which does not rely upon the Linux network stack allows
traffic generation at a rate of about 4 Mpps. The pfsend
packet generator from the PF_RING DNA software reposi-
tory [6], uses a zero-copy technique and is capable of filling
our links using 64 B frames. This pfsend packet generator
was used for all measurement experiments presented in
this paper toproducepackets at a constant bit rate (CBR).
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C Measurement

In order to perform the throughput measurement, we need
to count packets entering and leaving the router. There-
fore, we need a measurement tool capable of counting
packets at a rate of more than 14 Mpps. Complex traffic
analysis tools that allow for a detailed traffic analysis and
offer manifold traffic statistics have problems dealing with
these rates. If the analysis tool cannot cope with the of-
fered load, packets get dropped on the measurement host,
which directly influences our results. None of the tested
traffic analysis tools – not even those using a zero copy
technique – could handle that many packets. Our network
interface cards keep traffic statistics, e.g. the number of
received and transmitted packets, in hardware. The inter-
face driver makes these statistics available via a Linux
pseudo file system. Packet counters can be obtained by
accessing these information1. The number of packets at the
sink is obtained by adding the value of packets dropped by
the NIC with the value of successfully received packets.
The packet rate can be calculated easily from periodical
updates of the hardware statistics.

The throughput Db can be calculated based on the
packet rate λ and the frame size S. Besides, the Ethernet
preamble (7 B), the start of frame delimiter (SFD; 1 B) and
the interframe gap (12 B) must be added to the frame size
for each packet.

Fig. 5: Ethernet Frame Structure.

Db ¼ ðSþ 7Bþ 1Bþ 12BÞ � 8Bit
B

� � (8)

Eq. (8) results in a maximum throughput of 14.88 Mpps
that can be theoretically achieved with a 10 Gbps link
and 64 B sized frames. We illustrated the Ethernet frame
structure in Fig. 5. Neglecting the size of the preamble
and the interframe gap is an error that can distort results.
For instance, RouteBricks [2] claimed a packet rate of
18.96 Mpps at 9.7 Gbps caused by this calculation error.

VI Case Study

In this section we evaluate the packet processing perfor-
mance of a modern quad-core software router. On the one
hand, we conduct real measurements in a testbed. On the
other hand, we use simulations based on our ns-3 resource
management extension [27]. The case study aims for the
calibration, validation, and verification of our ns-3 exten-
sion based on real testbedmeasurements.

Fig. 6: Case Study Scenario with a Resource-Constrained Software
Router.

A Scenario

The testbed and simulation scenario consists of two end
devices E1 and E2 acting both as a combination of a Load
Generator and a Sink and a software Router in between
serving as device under test. The end devices are con-
nected via dedicated 10 Gbps Ethernet links to the router
(Fig. 6).

We apply bidirectional CBR traffic of 1–4, and 100
flows with constant frame sizes of 64, 128, 256, 512, 1024,
and 1518 B. The frame size is denoted as the Ethernet frame
size without preamble (7 B), start of frame delimiter (1 B),
and interframe gap (12 B). The odd flows (e.g. first flow) are
sent from the load generator on E1 to the sink on E2
whereas the even flows (e.g. second flow) are transmitted
from the load generator on E2 to the sink on E1. Thus, we
are able to exploit the full-duplex capability of the 10 Gbps
links which enables us to apply a maximum offered load
of 20 Gbps. The offered load is greater than the maximal
throughput D̂Router of the software router under test and is
uniformly distributed among the number of flows. As a
result, the maximum throughput achieved is depicted in
dependence on the load offered to the software router.

1) Testbed Measurements: We implemented the software
router using commodity server hardware. The system
has been equipped with 16 GiB RAM and one Intel Xeon
E3-1230 V2 CPU operating at a clock speed of 3.3 GHz. The
schematic structure of the CPU can be seen in Fig. 1. The
Xeon E31230 V2 CPU is based on the Intel Ivy Bridge

1 i.e. rx_missed_errors, rx_packets, and tx_packets, found in /sys/
class/net/dev_name/statistics.
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architecture and comes with four cores. Via an 8-lane PCIe
2.0 interface we attached a dual-port Intel 10 Gbps X520-
SR2 network interface card (NIC). This high-end NIC comes
with many features and offloading techniques. In our mea-
surements we only make use of the Receive Side Scaling
(RSS) feature.

Based on this hardware setup, our software router is
implemented using Linux with IP forwarding enabled. We
use the GRML Linux distribution along with the 3.7 Linux
kernel. The measurement of the Linux IP forwarding per-
formance was selected due to its high relevance in prac-
tice. Aside from that we used version 3.14.5 of the ixgbe
driver (released in April 2013), since we discovered its
performance is significantly better than previous and later
versions.

We use the pfsend load generator to produce artifi-
cial CBR traffic at packet rates that scale up to the link
speed of 10 Gbps. As explained above, the produced
traffic consists of 1-4 and 100 flows with evenly distribu-
ted packet rates. These flows are crafted in a way that
they are distributed to distinct cores by the RSS algo-
rithm. In case of 1-4 flows, this effectively means that
each flow is processed in a dedicated core. For the 100
flow test scenario, the flows were not specifically crafted
to be distributed equally among the four cores of our test
system, instead we let the RSS algorithm distribute 100
randomly chosen flows. Packet counters are implemen-
ted on both end devices, depicted as the external measur-
ing points in Fig. 6. The results of the throughput tests
are displayed in Fig. 8.

2) Simulation Measurements: Our ns-3 resource manage-
ment extension is applied to the router under test. The
corresponding router model is derived from our modeling
approach (cf. IV-C). It is illustrated in Fig. 7. The limited
resources of the modeled router are represented in the
resource plane. The resource pool RPCore of the CPU cores
contains four CPU cores C1, . . ., C4 which are administered
by the resource manager RMCore in the resource manage-
ment plane. The packet processing in a software router
(e.g. IP table lookup, firewalling) is modeled in the proces-
sing plane which consists of the task units TUDistributor,
TUCore 1, . . ., TUCore 4 as well as the incoming queues Q1, . . .,
Q4 in between.

To process a packet, a task unit needs specific re-
sources. Therefore, the task unit has to apply to the re-
source manager for allocating it. For instance, TUCore 1

requires a CPU core from RPCore where (in this simplified
case) for each of TUCore i (1 ≤ i ≤ 4) a CPU core is available.
Thus, RMCore allocates a core resource, e.g. C1, to TUCore 1.
After that, TUCore 1 starts to process the incoming packets

from Q1. Resource contention for shared resources may
occur if we would take into account a smaller number of
CPU core resources or when an additional task unit also
requires a CPU core. However, resource contention among
the packets occurs with respect to the corresponding task
unit which limits the maximum throughput. The task unit
functionality Processing consumes simulation time corre-
sponding to the required service time of the current packet
(cf. Eq. (7) in Section IV-B).

Fig. 7: Resource-Constrained Router Model.

Besides, each packet belongs to a specific packet flow
which is characterized by a source IP address, a destina-
tion IP address, a source port, and a destination port.
Based on that, the TUDistributor maps each flow to a specific
incoming queue Qi of a task unit TUCore i (1 ≤ i ≤ 4). In
consequence, every packet of a specific flow is served by
the same task unit corresponding to a specific CPU core.

In this case study, we assume that the CPU cores are
the bottleneck as it was observed in a lot of earlier mea-
surements by us [4] and other researchers [2]. Hence, the
functionality Distribute of task unit TUDistributor (which is
usually done by the NIC controller and DMA) adds no
additional service time and needs no shared resources
(denoted by ∅ in Fig. 7). Therefore, only one resource type
(namely the CPU cores) was considered. However, other
resource types and intra-node effects (e.g. NIC Tx/Rx
queues, cache misses) can be modeled to set up more
complex case studies. Furthermore, the load generator
and sink have no resource constraints, but the DUT pos-
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sesses a limited number of CPU cores. The service time of a
packet in the router depends on its size and the number of
used CPU cores in the router (cf. Eq. (7) in Section IV-B).
The service time parametrization of the router to process a
packet is derived from real testbed measurements as de-
scribed in Section VI-B.

B Calibration of Software Router Simulation
Model

Model calibration is the process of setting the well-defined
parameters of the simulation model with respect to a spe-
cific real system. The determination of the model para-
meters is based on measurement results of the modeled
system.

However, there are measurement points which are not
applicable for model calibration. For instance, when ap-
plying data transmissions at a high level of offered load
between the load generator and the sink then the 10 Gbps
Ethernet link becomes bottleneck instead of the CPU cores.

In this case study, we only need four measurement
points for the calibration of the router simulation model.
These calibration points are depicted as encircled points in
Fig. 8(b) as well as listed in Table I(a). All other results
thereafter can be predicted with the help of simulations
based on the calibrated router model.

Table 1:Measuredmaximum throughput (D̂meas) for varying number
of flows (F) and frame sizes (S) used for calibration of themodel
parameters (a, a0, b, b0)

F S [B] D̂meas½Gbps�
1 64 1.1928

1 512 7.5099

4 64 4.0612

4 256 13.3304

(a) Measurement Points

a 0.011392

a0 0.002708

b 0.227037

b0 0.063321

(b) RouterModel Parameters

Based on these measurement values and according to our
service time calculation of the router model (cf. Eq. (7) in

Section IV-B) the calibration parameters a, b, a0, and b0
of the router model are derived which are depicted in
Table I(b).

C Validation of Software Router Simulation
Model

Asmentioned in Section VI-B, our introduced router model
has been calibrated by means of real testbed measure-
ments of a router based on a modern quad-core processor.
In this section we now want to investigate whether our
maximum throughput predictions do really represent suf-
ficiently valid predictions of the real system behavior. For
this purpose we want to compare our throughput predic-
tions (given in Gbps and Mpps) with the measured values
of throughput for different frame sizes.

Fig. 8(a) and 8(b) illustrate the maximum throughput
predicted by our simulation model for a quad-core proces-
sor system and, for comparison purpose, the throughput
values actually measured in our testbed. The x-axis shows
the frame size in Byte. The y-axis represents the measured
and simulated maximum throughput of the router in Mpps
and in Gbps respectively. The chart shows that the max-
imum throughput is not significantly dependent on the
frame size because the routing table lookup overhead is
similar for small and large packets. However, the max-
imum throughput of a multi-core software router strongly
depends on the number of used cores and their distribu-
tion to the multiple cores to benefit from parallel proces-
sing capabilities.

We can observe that the simulation results coincide
with the measured values. In Table II we show the mea-
sured maximum throughput D̂meas, the simulated maxi-
mum throughput D̂sim, and the relative error Err in percen-
tage where Err ¼ D̂sim�D̂meas

D̂meas
. The confidence bounds were

omitted because the simulation results are based on CBR
traffic (cf. Section VI-A) and do not show large variance.
The mean deviation is ca. 0.95% which indicates that our
ns-3 extension is precise enough to produce realistic simu-
lation results which is part of a successful model valida-
tion process. The bold values in Table II denote the used
calibration points, whereas values are omitted where the
10 Gbps link is the bottleneck.
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Table 2: Relative error (Err) of measured (D̂meas) and simulated
(D̂sim) maximum throughput for varying number of flows (F) and frame
sizes (S)

F S [B] D̂meas½Gbps� D̂sim½Gbps� Err [%]

1 64 1.1928 1.1943 0.12

1 128 2.0936 2.0968 0.15

1 256 3.9097 3.9033 –0.16

1 512 7.5099 7.5237 0.18

1 1024 9.9379 9.9276 –0.10

1 1518 9.9682 9.8951 –0.73

2 64 2.2265 2.1516 –3.36

2 128 3.9251 3.7849 –3.57

2 256 7.3182 7.0583 –3.55

2 512 14.0514 13.5834 –3.33

3 64 3.1858 3.1073 –2.47

3 128 5.6076 5.4744 –2.37

3 256 10.4578 10.1926 –2.54

3 512 16.7076 16.4304 –1.66

4 64 4.0612 4.0686 0.18

4 128 7.1429 7.1573 0.20

4 256 13.3304 13.3450 0.11

100 64 4.0191 4.0686 1.23

100 128 7.0684 7.1574 1.26

100 256 13.1533 13.3461 1.47

Although, we assumed a heuristic relation in the calibra-
tion of our resource management model for a quad-core
router, (cf. Section IV-B), the validation experiments de-
scribed here demonstrate that already simulation models
which have been elaborated without much expenditure
lead to realistic performance predictions if an adequate
modeling of resource contention is carried out. The realis-
tic calibration and parameterization of the resource man-
agement model however is highly important in the current
scenario of this case study in order to be able to achieve a
satisfying level of model validity.

D Prediction Based on Software Router
SimulationModel

By applying our calibrated and validated router model, it
is possible to forecast the maximum throughput perfor-
mance of software routers with faster CPUs. As the trend to
larger number of CPU cores can be expected to continue

instead of significantly higher CPU clock frequencies, we
assume that the CPU cores remain the bottleneck. This
implies that intra-node systems like buses and caches
challenge the growing number of cores.

We keep the simulation scenario as used in Sec-
tion VI-A but now the software router is based on a 8-core
processor architecture which has to process two 50 Gbps
links. A link speed of 50 Gbps may be supported by future
NICs, but can already be implemented today using multi-
ple 10 Gbps interfaces.

Fig. 9(a) and 9(b) illustrate the predicted maximum
throughput by our simulation model dependent on the
frame size for different number of flows. The x-axis shows
the frame size in Byte. The y-axis represents the simulated
maximum throughput of the router in Mpps, and in Gbps
respectively. Among others, this forecast shows that such
a software router may create a bottleneck if less than six
flows are processed. Besides, our results also show that
small frame sizes strongly limit the maximum throughput
of the software router, even in cases when all cores are
used. However, with a realistic mix of frame sizes and
number of flows the results indicate that the software
router achieves a reasonably high maximum throughput.

VII Summary and Future Work

In this paper, we measured and simulated the perfor-
mance of software routers based on current multi-core
architectures. For identifying bottlenecks or to predict
the performance of such systems, the node models for
resource-constrained nodes (e.g. software routers, sensor
nodes, smartphones) currently used in simulators such
as ns-3 are by far too simplistic. Therefore, we intro-
duced a new approach for modeling the resource conten-
tion in resource-constrained nodes at different levels of
detail. Based on that, we successfully extended ns-3 for
intra-node resource management. We calibrated and va-
lidated this model in a case study. We measured the
software router performance on off-the-shelf multi-core
hardware for comparison. We also described the chal-
lenges we had to address when performing measure-
ments at high packet rates and our solutions to these
problems. The case study showed that we are able to
predict performance behavior of the tested software rou-
ter in a realistic manner even in the case when parallel
processing with multi-core processors is applied. Our
comparisons with real system measurements substanti-
ate our claim of being able now to observe realistic
model behavior. We used the model to predict how a
growing number of CPU cores will affect the ability of
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(a) Maximum Throughput inMpps (b) MaximumThroughput in Gbps

Fig. 8: Simulation Results for theMaximum Throughput of theModeled Resource-Constrained Software Router in Comparison to Real Testbed
Measurements.

(a) Maximum Throughput inMpps (Legend: cf. 9(b)) (b) MaximumThroughput in Gbps

Fig. 9: Simulation Prediction of theMaximum Throughput of a Modeled Resource-Constrained Software Router with 8 Cores and 50Gbps
Network Links.

software routers to deal with higher loads – regardless if it
is due to the growing speed of single network links or a
growing number of NICs within a software router. Our
results also revealed that in certain scenarios software
routers have free resources, which could be used for more
advanced packet processing, such as encryption.

Ourplans for the future comprise to refineour resource-
constrained software router model in terms of the relevant
details. Therefore, we will need to carry out more fine-

grained measurements, modeling, and simulation. The
measurement and simulation of the packet sojourn time
will be one of the next steps to analyze the latency behavior
of a software router. In addition to our existing black-box
measurements, wewant to investigate the routing software
using code inspection and profiling. We intend to identify
the performance-limiting factors and bottlenecks of exist-
ing software routers as well as to predict effects caused by
changes andoptimizations in the router software.
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