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       β -Barrel scaffolds for the grafting of extracellular 
loops from G-protein-coupled receptors  
   Abstract :  Owing to the difficulties in production and puri-

fication of G-protein-coupled receptors (GPCRs), relatively 

little structural information is available about this class of 

receptors. Here we aim at developing small chimeric pro-

teins, displaying the extracellular ligand-binding motifs 

of a human GPCR, the Y receptor. This allows the study 

of ligand-receptor interactions in simplified systems. We 

present comprehensive information on the use of trans-

membrane (OmpA) and soluble (Blc)  β -barrel scaffolds. 

Whereas Blc appeared to be not fully compatible with our 

approach, owing to problems with refolding of the hybrid 

constructs, loop-grafted versions of OmpA delivered 

encouraging results. Previously, we described a chimeric 

construct based on OmpA displaying all three extracellu-

lar Y1 receptor loops in different topologies and showing 

moderate affinity to one of the natural ligands. Now, we 

present detailed data on the interaction of these con-

structs with several Y receptor ligands along with data on 

new constructs. Our findings suggest a common binding 

mode for all ligands, which is mediated through the 

C-terminal residues of the peptide ligand, supporting the 

functional validity of these hybrid receptors. The observed 

binding affinities, however, are well below those observed 

for the natural receptors, clearly indicating limitations in 

mimicking the natural systems.  
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    Introduction 
 G-protein-coupled receptors (GPCRs) represent one of 

the most important classes of cell-surface receptors and 

constitute prevalent targets for pharmaceutical drugs 

(Tyndall and Sandilya , 2005 ; Congreve and Marshall , 

2010 ). The crystal structures of several GPCRs (Katritch 

et al. , 2012 ) have deepened our understanding of this 

biologically important class of proteins. 

 The structure of GPCRs can be described as an extra-

cellular N-terminal domain, attached to a heptahelical 

segment embedded in the plasma membrane, which is 

followed by a cytosolic domain. The seven transmem-

brane (TM) helices are on either side connected by three 

intra- (i1 to i3) or extracellular (e1 to e3) loops, respec-

tively. Although the overall topology of the heptahelical 

bundle is generally conserved in GPCRs with known struc-

ture, the extracellular loops are largely unstructured (for 

a comparison, see reviews by Hanson and Stevens , 2009  

and Peeters et al. , 2011 ). Furthermore, increased crystal-

lographic B-factors in the extracellular loops are often 

observed. Conformational flexibility has been interpreted 

to play a role for ligand binding (Koshland , 1958 ). 

 Ligands of those GPCRs whose X-ray structures have 

been determined recently are usually small molecules that 

bind to a pocket among the helix bundle within the trans-

membrane region. Only one high-resolution structure of 

a GPCR bound to a small peptidic antagonist is available 

so far (Wu et al. , 2010 ). In general, peptide ligand-binding 

sites are believed to be part of the extracellular loops and 

the extracellular N-terminal domains (Lagerstrom and 

Schioth , 2008 ). 

 Despite recent progress in X-ray structure elucidation, 

the expression, purification and refolding generally still 

present major hurdles in the structural study of GPCRs. Suc-

cessful NMR studies of GPCRs are yet missing. This is only 

in part due to the inherent problems of NMR for the inves-

tigation of large molecules, such as line broadening and 

signal overlap. In addition, slow conformational dynamics 

often severely deteriorate the quality of the spectra. 

 In light of the fundamental problems for study-

ing entire GPCRs by solution NMR, we aim at establish-

ing a model system in which the extracellular loops of a 

peptide-binding GPCR are grafted onto a robust protein 

scaffold that is better amenable to NMR spectroscopy 

than the heptahelical TM bundle. Such a scaffold should 

(i) display all loops in a favorable topology, (ii) be expres-

sible in high yields in a microbial host, and (iii) be easy 
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to purify, solubilize and/or refold. Such a chimeric recep-

tor may be useful for pharmacological studies with regard 

to the strength and specificity of ligand binding or to the 

competitive binding behavior between various agonists 

and antagonists. 

 Recently, we described the development of a model 

that mimics the extracellular domains of the human Y 

receptors based on a  β -barrel scaffold from the  Escheri-
chia coli  outer membrane protein A (OmpA) (Walser et al. , 

2011 ). The model takes advantage of the membrane-inte-

gral  β -barrel fold of OmpA and displays grafted loops in a 

favorable topology. The Y receptors are targeted by neuro-

hormones from the neuropeptide Y family: neuropeptide 

Y (NPY), peptide YY (PYY) and pancreatic polypeptide 

(PP) (Larhammar , 1996a ). To date, four different subtypes 

of receptors have been characterized (Y1, Y2, Y4 and Y5; 

Larhammar , 1996b ; Larhammar and Salaneck , 2004 ), 

which are associated with different pharmacological 

effects. In these, the three extracellular loops, and pos-

sibly also the N-terminal domain, are proposed to be 

involved in ligand binding (Zou et al. , 2008 ). 

 We now describe the development of this receptor 

model in much more detail. As scaffolds we have initially 

employed two different, yet structurally related  β -barrel 

proteins, the soluble bacterial lipocalin (Blc) (Bishop , 

2000 ; Schiefner et al. , 2010 ) and OmpA (Tamm et al. , 

2003 ) from  E. coli . We demonstrate that all three extracel-

lular Y1 receptor loops and its N-terminus can be success-

fully transferred to the OmpA scaffold.  

  Results 
  Design aspects 

 To date, structural details at atomic resolution are avail-

able for nine major different GPCRs (for a summary see the 

supplementary material online). We selected the N-ter-

mini and extracellular loops of the Y receptors based on 

the predicted topology as annotated in the GPCRDB (e.g., 

http://www.gpcr.org/7tm/proteins/npy1r_human for the 

human Y1 receptor). In the case of the human Y1 receptor, 

the extracellular loops comprise 13 and 14 residues for e1 

(Y99 to M111) and e3 (F284 to N297), respectively, and 34 

residues for e2 (Q176 to S209). The predicted N-terminal 

domains of the Y1, Y2 and Y4 receptors are the first 40, 50 

and 41 residues, respectively. 

 The rationale for the design of the loop-grafted recep-

tor models was as follows. First, we defined anchor points 

as the positions of the terminal C 
 
α

 
  atoms of the  α -helix 

or the  β -strand that is connected to a loop. The mutual 

distances between these anchor points define the overall 

topology of the set of extracellular loops. Figure  1   depicts a 

comparison of the distances between the anchor points on 

the extracellular side for a set of 10 different GPCR crystal 

structures with known structure at the onset of our study 

(for a list see the materials and methods section). The 

spacing between the anchor points for the three extracel-

lular loops is on average 13  Å  for e1 and e2 and 14  Å  for e3, 

with a narrow distribution of   ±  3  Å . The distances between 

anchor points that are not part of the same loop are much 

less conserved, indicating that the relative positions of 

two helices anchoring the same extracellular loop is more 

conserved than the relative positions between helices not 

directly connected. 

 A similar analysis was conducted for the available 

high-resolution structures of Blc (Campanacci et al. , 2004 ; 

Schiefner et al. , 2010 ) and OmpA (Pautsch and Schulz , 

1998, 2000 ). Because both published OmpA X-ray struc-

tures lack defined electron density for a substantial number 

of residues located in the extracellular loops, we mostly 

relied on the NMR structures for this protein (Arora et al. , 

2001 ; Cierpicki et al. , 2006 ). Figure 1 depicts a statistical 

analysis of the distances observed in the crystal structure 

of Blc (Campanacci et al. , 2004 ) and the 10 lowest energy 

conformers of two NMR structures of OmpA (Arora et al. , 

2001 ; Cierpicki et al. , 2006 ), as well as a shortened loop 

construct of the OmpA scaffold (Johansson et al. , 2007 ). 

 A comparison of the pairwise distances between 

anchor points in GPCRs and these scaffold proteins 

revealed that the distance distribution observed in the 

GPCRs falls within the distribution observed for the OmpA 

structures and is also close to the distances observed for 

Blc, suggesting that the  β -barrels of Blc and OmpA might 

indeed provide suitable frameworks for grafting the extra-

cellular loops of GPCRs. Whereas the distances between 

directly connected anchor points are between 10 and 17  Å  

in OmpA, in Blc those distances are significantly shorter: 

approximately 5  Å  for three anchor point pairs and 10  Å  

for the fourth pair. GPCRs possess three, whereas OmpA 

carries four extracellular loops, leaving at least one  ‘ accep-

tor ’  site in the scaffold unoccupied. To rule out interfer-

ence with the remaining native loop, it was replaced by a 

minimal turn-inducing motif of one to two residues com-

patible with the OmpA  β -barrel structure (Koebnik , 1999a ).  

  Blc construct design 

 We have previously demonstrated that the extracellular 

N-terminal domain of the Y4 receptor (NY4) interacts with 
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PP (Zou et al. , 2008, 2009 ). Because of its well-behaved 

nature in terms of expression and stability, we have ini-

tially chosen the Y2 receptor N-terminus (NY2) for our 

studies aiming at determining suitable attachment points 

to the Blc scaffold. Accordingly, we fused the NY2 domain 

to different positions in the N-terminal region of Blc. In 

these constructs, varying portions of the Blc N-terminus 

were replaced with NY2 to test how close a grafted N-

terminal sequence can be brought to the first strand of 

the Blc  β -barrel, without impairing its fold. The tolerance 

of the scaffold towards the fused sequence was deter-

mined by [ 15 N, 1 H]-HSQCs (see Figure  2  ). Moving the fusion 

point between NY2 and Blc too close to the characteristic 

3 
10

 -helix (  <  10 residues) that in many lipocalins precedes 

the  β -barrel (Flower et al. , 2000 ) resulted in insoluble 

constructs, whereas fusion at more N-terminal positions 

was well tolerated. However, no interaction of the chimera 

with NPY family neurohormones could be detected. We 

also attempted to investigate whether the interaction 

detected between NY4 and PP (Zou et al. , 2008 ) could 

be reproduced in the context of the Blc scaffold, but no 

stably folded fusion protein with NY4 could be obtained 

(data not shown). We also set out to incorporate the extra-

cellular loops of the Y1 receptor (e1Y1 to e3Y1), but the Blc 

scaffold did not tolerate the necessary modifications in its 

loops.  

A B

C D

E

Distance (Å) Distance (Å) Distance (Å) Distance (Å)

Distance (Å) Distance (Å) Distance (Å)

 Figure 1    Geometries of GPCRs and  β -barrel proteins. 

 (A) Ribbon representation of bovine rhodopsin with the first, second and third extracellular loops (e1 – 3) colored yellow, red and blue, 

respectively. On the right the arrangement of the extracellular loop anchor points is presented as viewed from the extracellular side (same 

color coding used as in the ribbon representation). Each anchor point is labeled by its terminal/initial residue and the TM-helix to which it 

belongs. (B) Ribbon representation of Blc with its four variable loops colored green and the anchor points yellow. On the right the arrange-

ment of the loop anchor points is presented as viewed from the top (same color coding as in ribbon representation). Directly connected 

anchor points are indicated by black arrows. For clarity the N-terminal 3 
10

 -helix and the C-terminal  α -helix of Blc is omitted in the ribbon rep-

resentation. (C) Same representation as in (B) for OmpA. (D) Histograms of the distances between the anchor points for extracellular loops 

1, 2 and 3 as found in a set of 10 GPCR crystal structures (see the supplementary material and methods online for a full list) (top panel) and 

(E) for the extracellular loops in the NMR structures of two OmpA structures and one loop-shortened OmpA construct (10 conformers each) 

(bottom panel). Average distances between the anchor points for the e1-, e2- and e3-loop in the GPCR structures are indicated by yellow, 

red and blue bars, respectively.    
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  OmpA construct design 

 Our initial studies concentrated on probing the com-

patibility of the Y receptor extracellular loops with the 

OmpA scaffold. Considering that most of the data from 

mutagenesis studies are available for the Y1 recep-

tor, we exchanged each of the four extracellular loops 

of OmpA with each of the three eY1 loops individually 

to generate 12 constructs altogether, dubbed  ‘ one-loop 

exchange constructs ’ . Further, we constructed a series 

of OmpA mutants in which a single eY1 loop was grafted 

into one OmpA acceptor site while the other three sites 

were filled with a minimal turn-inducing motif (Koebnik , 

1999b ). These were called  ‘ one-loop graft constructs ’ . 

All constructs could be expressed in  E. coli , solubilized 

in urea and refolded (see Figure S1 in the supplementary 

material online), indicating that OmpA is suitable as a 

generic scaffold for grafting individual eY1 loops, both in 

the presence and absence of the other three of its natural 

loops. 

 In principle, the set of three eY1 loops can be arranged 

in 24 different ways (4  ×  3  ×  2) on the OmpA scaffold accord-

ing to this approach. To avoid unsuitable constructs when 

combining the individually grafted loops, we calculated a 

 ‘ mismatch score ’  accounting for the distance mismatches 

of all relevant anchor points between the model scaffold 

and the GPCRs (see Figure  3  ). Among the candidates with 

low mismatch scores, only those with a correct topological 

T23

A

B
P25

S20

T14

L11 N32
F34

L40

 Figure 2    Summary of Y2 receptor N-terminus grafting attempts using Blc. 

 (A) Blc sequence with colored arrows indicating the  β -strand secondary structural elements in the crystal structure. Red: additional 

two-stranded  β -sheet which has arisen as a cloning artifact (Schiefner et al. , 2010 ); yellow: N-terminal 3 
10

 - and C-terminal  α -helix, both 

characteristic for the lipocalin fold; green: eight-stranded  β -barrel, the central motif of the lipocalin fold. The sequence 23 – 177 

corresponds to the natural Blc protein, to which a His 
6
  tag was appended at the N-terminus and a  Strep -tag II at the C-terminus. Residues 

to which the NY2 sequence has been N-terminally fused are shaded in green or red, indicating constructs resulting in soluble or insoluble 

protein, respectively. (B) Ribbon representation of Blc with the residues to which the NY2 sequence was N-terminally fused colored in green 

or red, as in panel (A). The [ 15 N, 1 H]-HSQC spectra of Blc and the respective NY2-grafted/fused constructs are depicted next to the structure. 

Properly folded constructs are characterized by good signal dispersion in the spectra.    
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loop arrangement (i.e., the C-terminus of e1 to be followed 

by the N-terminus of e2 in a clockwise manner and so 

on) were considered. Four of those arrangements were 

selected and will be referred to in the following as  ‘ recep-

tor constructs ’ , abbreviated as Y1L1, Y1L2, Y1L3 and Y1L4 

(see Figure 3). 

 The initial topological analysis of the anchor 

point distances revealed that although the pairwise 

distances for each loop in the known GPCR structures 

fall within the range of those observed in OmpA, the 

overall match is not perfect. To account for these struc-

tural differences, additional flexible linker residues at 

the termini of the loops were introduced by inserting 

glycine-serine spacers of different lengths. Based on 

the Y1L3 topology six constructs were designed: two in 

which each Y1 receptor loop was flanked on both sides 

by a Ser-Gly dipeptide or a Ser-Gly-Ser-Gly tetrapeptide 

(Y1L3-GS and Y1L3-GSGS), respectively, two where only 

the short e1- and e3-loops were flanked by these spacers 

(Y1L3-gs and Y1L3-gsgs), and two where only the longer 

e2-loop was equipped with the spacers (Y1L3-e2gs and 

Y1L3-e2gsgs). 

 Notably, all these constructs lack the N-terminal 

receptor domain, which may also be involved in ligand 

binding (Robin -Jagerschmidt et al., 1998 ; Wieland et al. , 

1998 ; Zou et al. , 2008 ). Unfortunately, in OmpA the N-ter-

minus of the  β -barrel is located opposite to the (extracel-

lular) face used for grafting. We inserted the sequence of 

the N-terminal Y1 receptor domain (NY1) into the third, 

so far  ‘ empty ’  acceptor position of Y1L3, flanked by an 

N-terminal (Gly-Ser) 
3
  and a 3C protease cleavage site, 

allowing the  in situ  generation of a free N-terminus via 

proteolytic cleavage after refolding (construct Y1L3-NY1 

in Figure 3).  
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 Figure 3    Design of receptor constructs. 

 (A) Calculation of the mismatch score (in  Å ) for all 24 possible  ‘ receptor constructs ’  (for a description of the calculation procedure see 

materials and methods section). Constructs displaying the Y receptor extracellular loops in an appropriate topological orientation for graft-

ing are colored. The four chimeric GPCR-OmpA constructs selected for expression (Y1L1, Y1L2, Y1L3 and Y1L4) are marked in green. (B) 

Topography for the selected constructs of the three e1 – 3 loops of Y1 on the eight-stranded OmpA  β -barrel. The remaining unused fourth 

loop of the OmpA scaffold was replaced by a short linker sequence. Amino acid sequences for the three Y1 loops as well as the short linker 

are depicted at the bottom. Serine residues highlighted in red correspond to cysteine side chains in the natural Y1 sequences, which were 

substituted to avoid formation of undesired disulfide crosslinks.    
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  Biosynthetic aspects of hybrid GPCR-OmpA 
constructs 

 All these constructs were purified, solubilized and 

refolded in unlabeled and  15 N-labeled form from inclu-

sion bodies produced in  E. coli  with yields of  ∼ 200 and 

 ∼ 100 mg/l of LB rich medium or  15 N-labeled M9 minimal 

medium, respectively. The folding state of OmpA was 

monitored by SDS-PAGE in which the sample was mixed 

with SDS sample buffer but not heated prior to loading 

on the gel, leaving the OmpA fold intact and referred 

to here as  ‘ non-denaturing SDS-PAGE ’  (Reithmeier 

and Bragg , 1974 ; Schweizer et al. , 1978 ). During refold-

ing screens, solutions of the urea-denatured chimeric 

OmpA were diluted into different buffers containing 

various detergents at concentrations above their criti-

cal micellar concentrations (cmc) and at detergent/

protein ratios   >  500 (for a list of the relevant biophysical 

parameters, see Table S1 in the supplementary material 

online). 

 All of the 12  ‘ one-loop exchange constructs ’  and 6 of 

the  ‘ one-loop graft constructs ’ , as well as the 4 selected 

 ‘ receptor constructs ’  were expressed, purified and their 

refolding capability was assessed by non-denaturing 

SDS-PAGE (see Figure  4  ). Whereas the expression level 

of all 22 constructs was similar to that of wild type (wt)-

OmpA, the refolding efficiency was clearly lower for 

some of these constructs. Nevertheless, each of the 22 

constructs could be refolded at least to 50 %  (data not 

shown). Generally, refolding efficiency increased with 

increasing pH (Kleinschmidt et al. , 1999 ). Whereas for 

some constructs rapid dilution of the urea-denatured 

protein solution into detergent buffer at high pH 10.0 

resulted in nearly complete refolding, some constructs 

required more gentle conditions of slow dilution at a 

lower temperature of 4 ° C. 

 In the Y1L3-NY1 construct complete refolding under 

similar conditions of pH and detergent was possible 

(see Figure  5  B). After refolding in DHPC micelles, Y1L3-

NY1 was incubated with 3C protease and the efficiency 

of cleavage and integrity of the  β -barrel were assessed 

by denaturing and non-denaturing SDS-PAGE, respec-

tively. As can be seen in Figure 5B, bands corresponded 

closely to the expected sizes. Y1L3-NY1 refolded in DHPC 

micelles showed the same electrophoretic mobility before 

and after treatment with 3C protease, indicating integrity 

of its tertiary fold even after cleavage. The appearance 

of two bands around 14 kDa and the concomitant com-

plete disappearance of the band at 27 kDa under dena-

turing SDS-PAGE conditions proved that the proteolytic 

cleavage was highly efficient (for results with alternative 

detergents see Figure S2 in the supplementary material 

online). 

 Whenever folded forms of the chimeric OmpA con-

structs were detected by SDS-PAGE, the presence of ter-

tiary structure and formation of the  β -barrel was also 

apparent from the large signal dispersion in the [ 15 N, 1 H]-

HSQC spectra of these preparations (for [ 15 N, 1 H]-HSQC 

spectra of the four receptor constructs Y1L1-4, see Figure 

S3 in the supplementary material online).  

A

B

C

Unfold Unfold Unfold Unfold

UnfoldUnfold

UnfoldUnfoldUnfoldUnfold

UnfoldUnfold

Unfold Unfold Unfold Unfold

 Figure 4    Folding properties of grafted receptor constructs using non-denaturing SDS-PAGE. 

 (A) pH dependence of the refolding efficiency of Y1L1 in a variety of different detergents (DDM:  α -dodecyldimaltoside,  β -OG: 

 β -octylglucoside, C8E4: tetraethyleneglycol monooctylether, LDAO: N-lauryldimethyl amineoxide, DPC: dodecylphosphocholine, DHPC: 

dihexanoylphosphatidylcholine). Although refolding is not efficient in all detergents, a clear trend to increased efficiency apparent from the 

presence of a lower band different from the heat-denatured (unfolded) species at higher pH is observed. (B) Whereas Y1L1 and Y1L2 can be 

refolded with fairly high efficiency at pH 10 in most detergents tested, corresponding efficiencies for Y1L3 and Y1L4 are much lower. 

(C) Optimization of the refolding procedure towards more gentle conditions (lower temperature, slow dilution of the denatured stock 

solution) results in increased refolding efficiency especially for Y1L3 and Y1L4.    
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  Interaction studies of neurohormones 
of the NPY family with chimeric Y1-OmpA 
receptor constructs 
 Binding of NPY, PYY and PP to the receptor constructs 

was tested using chemical shift mapping or saturation 

transfer difference (STD) (Mayer and Meyer , 1999, 2001 ) 

techniques.  15 N-labeled neurohormones (for assignments, 

see Table S2 in the supplementary material online) were 

titrated with unlabeled receptor constructs. The resulting 

changes for the NPY spectra upon addition of 20 Eq. of 

the chimeric receptor constructs are depicted in Figure  6  . 

No interactions could be detected with Y1L1 or Y1L2, 

whereas Y1L3 and Y1L4 induced significant changes in 

the [ 15 N, 1 H]-HSQC spectra of NPY when present in excess. 

Interestingly, no shift in peak positions, but a decrease 

in peak intensities was observed. This finding is consist-

ent only with an exchange process slow on the NMR time 

scale, which usually results in two sets of peaks, one cor-

responding to the bound and the other to the non-bound 

form. We suspect that excessive broadening of the reso-

nances due to small conformational fluctuations in the 

receptor-bound state or a large number of different states 

that do not interconvert fast on the NMR time scale has led 

to the disappearance of the bound-state signals. 

 Figure 6 depicts the volume changes of the peaks from 

the neurohormones upon titration with an excess of Y1L3 

(for similar results obtained with the SG linker versions, see 

Figure S4 in the supplementary material online). The data 

clearly indicate that the C-terminal residues of the peptide 

were much more affected by interaction with the chimeric 

receptor than those of the N-terminus. In agreement with 

previous studies (Beck -Sickinger et al., 1994 ), this indicated 

that the C-terminal  α -helix of the neurohormone is involved 

in receptor binding. Despite the qualitative similarities of 

the peak volume changes between all three neurohormones 

tested, the attenuations were less pronounced for PYY and, 

in particular, for PP than for NPY. Considering that the 

binding profile of PP to the Y receptor subtypes has been 

shown to be different from the binding profiles of NPY and 

PYY (Larhammar and Salaneck , 2004 ), this may indicate 

differences in the binding mode in our model system, too. 

 Specificity of the interaction was corroborated by a 

competition experiment with unlabeled NPY (Figure 6C) 
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 Figure 5    Interaction studies with the  ‘ split ’  receptor model that additionally displays the N-terminal domain of Y1, Y1L3-NY1. 

 (A) Schematic representation of the construct. The OmpA  β -barrel is shown in cyan, the grafted eY1 loops in dark red, the (Gly-Ser) 
3
 -linker 

and 3C protease cleavage site in yellow and NY1 in red. (B) SDS-PAGE of Y1L3-NY1 under different conditions: a different migration behavior 

under non-denaturing (lane 2) and denaturing (lane 3) conditions indicates successful refolding of the construct. After treatment with 3C 

protease the construct shows the same migration behavior (lane 4) as before (lane 2) under non-denaturing conditions. Under denatur-

ing conditions two bands with sizes of approximately 14 kDa can be seen after cleavage with 3C protease (lane 5). (C) The chemical shift 

changes observed in the [ 15 N, 1 H]-HSQC spectrum of NPY upon addition of 20 Eq. of cleaved Y1L3-NY1 protein plotted for each residue and 

color-coded onto the  α -helical structure of NPY where gray indicates no change and the intensity of red is proportional to the chemical shift 

change. Changes are most prominent on one side of the helix. A helical wheel representation of the C-terminal  α -helix (L17-Q34) of NPY 

shows that this side exclusively comprises hydrophobic and aromatic residues.    
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 Figure 6    Interaction studies between peptide hormones and receptor constructs using NMR. 

 [ 15 N, 1 H]-HSQC spectra of the  15 N-NPY in 3 %  DHPC, 20 m m  phosphate pH 6.5, 100 m m  NaCl at 310 K (A) in the absence, (B) in the presence of 

20 Eq. of unlabeled Y1L3 protein and (C) in presence of 20 Eq. of unlabeled Y1L3 protein and 50 Eq. of unlabeled NPY. [ 15 N, 1 H]-HSQC spectra 

of mutant peptide  15 N-NPY-R35L (D) in the absence, (E) in the presence of 20 Eq. of unlabeled Y1L3 protein. [ 15 N, 1 H]-HSQC spectra of mutant 

peptide  15 N-NPY-R33L (F) in the absence, (G) in the presence of 20 Eq. of unlabeled Y1L3. The relative residue-specific volume change of 

(H) NPY, (I) PYY and (J) PP resonances upon addition of Y1L3 protein plotted for each residue. The relative volume change is color-coded 

onto the structure of the (micelle-bound) species of each neurohormone, with gray stretches indicating no change and the intensity of the 

red color being proportional to the relative volume change.    
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(Walser et al. , 2011 ). Furthermore, binding assays with 

NPY-R33L and NPY-R35L, two mutants of NPY that exhibit 

much reduced affinity to the Y1 receptor  in vivo  (Beck -

Sickinger et al., 1994 ), were conducted. These mutant NPY 

peptides displayed a markedly decreased affinity for Y1L3 

as visible from the reduced attenuation of peaks for the 

C-terminal residues (see Figure 6D – G). In summary, these 

findings confirmed a specific interaction of the neurohor-

mones of the NPY family with the chimeric GPCR-OmpA 

receptor construct Y1L3. 

 Interestingly, the chemical shift mapping data from 

titration of  15 N-NPY with cleaved or uncleaved Y1L3-NY1 

showed a behavior very different from Y1L3, revealing 

shifts in the positions of certain peaks (see Figure 5C and 

Figure S5 in the supplementary material online). Large 

chemical shift changes were exclusively observed in the 

C-terminal helix of NPY, showing a pronounced i + 3 or i + 4 

periodicity, thus indicating an interaction involving resi-

dues located on the same side of the helix. 

 STD experiments conducted with NPY in the presence 

of Y1L3 or cleaved Y1L3-NY1 showed the most pronounced 

saturation transfer effects for the aromatic resonances of 

peptide residues, which  –  with the exception of the N-

terminal Tyr  –  are all located in the C-terminal half of NPY 

(Walser et al. , 2011 ). 

 To obtain further information on the ligand-recep-

tor interactions, all four  15 N-labeled receptor constructs 

Y1L1-4 were mixed with unlabeled NPY (see Figure S6 

in the supplementary material online). Surprisingly, the 

[ 15 N, 1 H]-HSQC spectra of the all chimeric receptor con-

structs did not display major changes upon addition of 

the neurohormone. We speculate that most peaks from 

the short e1- and e3-loops, which have been proposed to 

mediate interaction with the peptide hormones (Walker 

et al. , 1994 ; Merten et al. , 2007 ), are exchange-broadened 

beyond detection. This view is supported by the observa-

tion that the actual number of observed sharp peaks in 

the receptor constructs, which most likely originate from 

the flexible loops, is only  ∼ 40 out of an expected 60. To 

verify that resonances from the e1 and e3 loops are absent 

in the spectra of the receptor-peptide complexes, we 

attempted to assign the backbone of Y1L3 using perdeu-

terated protein (see Figure S7 in the supplementary mate-

rial online).  

  Characterization of the chimeric receptor 
species responsible for binding 

 Because the refolding efficiency of the two apparently 

functional receptor constructs Y1L3 and Y1L4 was   <  100 % , 

it is  a priori  not clear whether it was the folded or the 

unfolded component of the mixture that showed inter-

action with the neurohormones in the NMR titration 

experiments. Given the lack of a method to fully separate 

the folded from the unfolded protein species, we chose 

to produce Y1L3 under conditions that resulted in the 

completely unfolded chimeric receptor and repeated the 

chemical shift mapping experiments on NPY. To this end, 

 ‘ refolding ’  was performed at the favorable pH 10, however, 

in the presence of the detergent DPC which is incapable 

of inducing refolding. Addition of 30 Eq. of this unfolded 

Y1L3 preparation in DPC to the NPY neurohormone had 

a much smaller effect than the addition of 20 Eq. of the 

(partially) folded Y1L3 in the previous experiments using 

DHPC as detergent (see Figure S8 in the supplementary 

material online).   

  Discussion 
 Peptide hormone binding to GPCRs is largely mediated 

through association of the ligand with the extracellular 

receptor loops (Bockaert and Pin , 1999 ). Considerable bio-

chemical information on the interactions of the Y recep-

tors with their ligands exists. For example, a complete 

alanine scan for NPY revealed a drop in affinity towards 

the human Y1 receptor by approximately four orders of 

magnitude for point mutations at either Arg33 or Arg35 

(Beck -Sickinger et al., 1994 ). On the receptor side, acidic 

residues have been proposed to be involved in ionic inter-

actions with these Arg residues of the peptide ligand, most 

prominently the highly conserved Asp6.59 at the interface 

of TM6 and e3 (Merten et al. , 2007 ). In addition, it was 

recently proposed that transient contacts are formed by 

the peptide with the N-terminal receptor domain, facili-

tating transfer of the ligand from a membrane-associated 

state to the binding site of the receptor (Bader and Zerbe , 

2005 ; Zou et al. , 2008 ). 

 To circumvent the biochemical and spectroscopic 

problems when studying entire GPCRs, we tested whether 

the extracellular domains can be transferred onto a suit-

able more robust protein scaffold. Individual GPCR loop 

sequences have been investigated previously as free pep-

tides or attached to some support. For example, Yeagle 

and coworkers structurally characterized peptides corre-

sponding to the extracellular loops of rhodopsin (Yeagle 

et al. , 1997a,b ). Similarly, Mierke et al. synthesized peptides 

comprising the cytosolic loops of the PTH receptor (Mierke 

et al. , 1996 ). Pham et al. described peptides that contained 

the sequence of the e1 loop of the sphingosine-1-phosphate 
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receptor 4 (S1P 
4
 ) flanked by soluble self-assembling seg-

ments that mimicked the helical N-terminus of TM 2 and 

the C-terminus of TM 3 (Pham et al. , 2007 ). A conceptual 

disadvantage of these approaches is that the loop-con-

straining entities are themselves rather flexible. Hence, it 

was the purpose of the present study to provide a more 

rigid, three-dimensional scaffold that enforces orienta-

tion of the entire set of GPCR loops into a defined overall 

geometry. 

 For the success of such an approach the proper choice 

of the protein scaffold is crucial (Skerra , 2000a ). Examples 

of widely employed protein scaffolds include antibod-

ies (i.e., the immunoglobulin fold represented by single 

Ig and Ig-like domains; Hudson and Souriau , 2003 ), pro-

tease inhibitors such as Kunitz-type domains (Dennis and 

Lazarus , 1994 ), lipocalins (Skerra , 2000b ), natural (Brunet 

et al. , 1993 ) and artificial helix bundles (Houston et al. , 

1996 ), as well as smaller peptides rich in disulfide bonds, 

so-called knottins (Smith et al. , 1998 ). Eight-stranded 

 β -barrel proteins, both soluble and membrane-embed-

ded, display four extracellular loops and usually provide 

high-folding stability (Skerra , 2000a ; Schulz , 2002 ). Pre-

vious work has demonstrated that binding specificity for 

small and large molecules can be engineered into lipoca-

lins by directed evolution (Skerra , 2000a ; Kim et al. , 2009 ; 

Schonfeld et al. , 2009 ). However, our initial attempts to 

employ the bacterial lipocalin, Blc (Campanacci et al. , 

2004 ; Schiefner et al. , 2010 ), as a scaffold for grafting 

the extracellular loops of the Y receptor, unfortunately 

resulted in mutants that could not be efficiently refolded. 

A likely explanation is that Blc itself has a particularly low 

thermal stability around 45 ° C. An interesting alternative 

candidate in this regard might be the newly discovered 

thermostable  ‘ slim lipocalin ’  from a Gram-positive bac-

terium (Wu et al. , 2012 ). The absence of detergents and 

the concomitant decrease in molecular weight and lower 

complexity of the system offers attractive advantages for 

development of a soluble protein scaffold. 

 Considering that binding of the neurohormones of the 

NPY family to the Y receptors has been postulated to occur 

from a membrane-bound state (Bader and Zerbe , 2005 ), a 

membrane-embedded  β -barrel scaffold seems to be more 

suitable despite the above-mentioned technical problems 

with such systems. OmpA is structurally (Pautsch and 

Schulz , 2000 ; Arora et al. , 2001 ) and biochemically (Ried 

et al. , 1994 ; Kleinschmidt et al. , 2011 ) well characterized, 

can be easily solubilized with detergents and is of a size 

still amenable to routine NMR studies. 

 It is likely that no single heterologous scaffold will 

perfectly match all the loop geometries encountered in 

GPCRs. Nevertheless, a statistical comparison of distances 

between loop anchor points in the solution structures 

of OmpA and in the available X-ray structures of GPCRs 

revealed that these distances fall into similar ranges. 

Taking into account the presumed plasticity of anchoring 

points in OmpA and the known flexibility of loop residues 

in the GPCRs, we believe that the  β -barrel of OmpA should 

provide a viable scaffold to present the extracellular loops 

of many GPCRs. Remaining mismatches of distances in 

the model may be partially compensated by structural 

adaptation or by choosing appropriate linkers. 

 The protein engineering studies described herein 

demonstrate that OmpA represents a biosynthetically 

suitable scaffold as most of its mutants could be success-

fully refolded. For all constructs studied the refolding 

efficiency generally increased at elevated pH, as previ-

ously observed for wt-OmpA (Surrey and Jähnig , 1992 ; 

Kleinschmidt et al. , 1999 ). However, the chimeric recep-

tors could not be refolded quantitatively. For all the four 

designed receptor constructs Y1L1 – 4, [ 15 N, 1 H]-HSQC data 

indicate that the  β -barrel has remained intact. This obser-

vation corroborates the notion by others (Johansson et al. , 

2007 ) and from our previous work (Walser et al. , 2011 ) that 

OmpA can serve as a generic scaffold for loop-grafting 

purposes. 

 NMR chemical shift mapping techniques revealed 

that some of our chimeric receptor constructs indeed 

bind the cognate peptides with reasonable affinity. The 

fact that  15 N-labeled NPY can be displaced from the chi-

meric OmpA receptor constructs with unlabeled NPY in 

a competition assay strongly argues in favor of a specific 

interaction with the ligand and against a general mode 

of lipid association or other non-specific binding events 

(Walser et al. , 2011 ). This fact is further corroborated by 

the observation that peptides with reduced affinities for 

the wild type Y receptors also bound with lower affinity 

to our recombinant receptor model. Also, the addition of 

wt-OmpA or of a minimal length OmpA with all four extra-

cellular loops replaced by short, turn-inducing motifs 

(Koebnik , 1999a ) failed to reveal an interaction. Finally, 

only some of the receptor constructs (Y1L3/Y1L4) bound 

the peptide ligands whereas others (Y1L1/Y1L2) did not, 

indicating that the precise arrangements of the loops is 

indeed important. 

 Owing to the fact that the neurohormones bind to the 

micelles with micromolar dissociation constants (Lerch 

et al. , 2005 ), a precise determination of the  K  
d
  for binding 

the receptor construct is difficult to obtain. The obser-

vation of slow exchange on the NMR time scale in the 

chemical shift mapping experiments however allows 

to estimate that the affinities of the peptide ligands to 

the model receptor are lower by approximately three 
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orders of magnitude when compared to the wild type 

GPCRs (low micromolar vs. low nanomolar  K  
d
  values). 

This reduced affinity is probably due to conformational 

imperfections of the OmpA scaffold, although we cannot 

exclude that residues not from the loops are addition-

ally involved in binding. This argues for the fact that the 

exact loop arrangement is of utmost importance, and that 

already seemingly small deviations from an ideal geom-

etry result in much reduced binding affinities. Therefore, 

even though OmpA might serve as a convenient platform 

for displaying the extracellular loops of GPCRs, it may 

not be possible to modify the system to reproduce  in vivo  

binding affinities. 

 It was previously demonstrated that the N-terminal 

domain of class A GPCRs are involved in ligand binding, 

too (Robin -Jagerschmidt et al., 1998 ; Wieland et al. , 1998 ; 

Zou et al. , 2008 ). Unfortunately, the topology of OmpA 

is such that its N-terminus is located on the periplasmic 

side and hence opposite to the grafted loops. We therefore 

inserted the sequence of NY1 into the third extracellular 

loop position of the OmpA scaffold. Because the N-termi-

nus of this receptor domain was still covalently linked to 

an anchor point, we re-established the free N-terminus of 

NY1 by proteolytic cleavage with a site-specific protease 

after refolding/insertion of the chimeric Y1-OmpA protein 

into the DHPC micelle. Interestingly, in certain detergent 

micelles the cleaved construct was sufficiently stable even 

at elevated temperatures (47 ° C) to allow for extended 

NMR experiments. 

 The chemical shift mapping experiments using  15 N-

NPY with the cleaved Y1L3-NY1 chimeric receptor revealed 

a different binding mode of both versions of this protein 

when compared to Y1L3. Again, chemical shift changes 

were exclusively observed in the C-terminal  α -helix of 

NPY, but appeared clustered on the hydrophobic side of 

the helix. This indicates that the primary binding region 

is the same for all constructs, whereas the exact binding 

mode is changed by the presence of NY1.  

  Materials and methods 
  Materials 
  15 N-H 

4
 Cl was from Spectra Stable Isotopes (Andover, MA, USA). DHPC 

was from Avanti Polar Lipids (Alabaster, AL, USA). All other chemi-

cals were from Sigma-Aldrich (Buchs, Switzerland). 

 All primers were purchased from Microsynth (Balgach, Switzer-

land). Primers for deletions were purchased as desalted oligos and 

used without further purifi cation. Primers for the insertion constructs 

were self-made by PCR using two short, desalted oligos. PCR products 

were purifi ed with a Sigma PCR clean-up kit (NA1020-1KT) and used 

in subsequent QuikChange mutagenesis reactions. The sequences of 

all constructs were confi rmed by dideoxy sequencing (Sanger et al. , 

1977 ) by Synergene Biotech GmbH (Zurich, Switzerland).  

  Cloning and purification of the Blc-derived 
constructs 
 The cDNA sequence of the human Y1, Y2 and Y4 receptors as obtained 

from the Missouri S&T cDNA Resource Center ( www.cdna.org ) were 

used as templates for the receptor N-terminal domains without 

further optimization. 

 The plasmids coding for the constructs with the NY2 N-terminal 

domain inserted at positions preceding L11, T14, S20, N32, F34 and 

L40 were generated from pBlc3 (Schiefner et al. , 2010 ) by an overlap-

ping PCR strategy. The NY2 segment had to be inserted between the 

OmpA periplasmic signal sequence and the mature Blc sequence. 

This was achieved by generating via PCR three overlapping con-

structs comprising (i) the  Xba I restriction site at the 5 ′ -end of the 

expression cassette and the OmpA signal sequence (Skerra , 1994 ); 

(ii) the Y receptor N-terminal domain; and (iii) the Blc core plus a 

 Hin dIII restriction site at the 3 ′ -end of the expression cassette. The 

fragments were generated by standard PCR procedures using  Vent  
DNA polymerase (Fermentas, Thermo Scientifi c, Wohlen, Switzer-

land). PCR products were analyzed and purifi ed by 1.5 %  agarose gel 

electrophoresis containing ethidium bromide for DNA staining. A 

QiaGen gel purifi cation kit was used for all PCR purifi cations. Then, 

500 ng of the resulting DNA fragments were digested with  Xba I 

(5 U) and  Hin dIII (10 U) in Tango buff er (Fermentas, Thermo Sci-

entifi c, Wohlen, Switzerland) at 37 ° C for 2 h, purifi ed on a 1.5 %  

agarose gel and ligated with the pBlc3 vector backbone, obtained 

by digestion with  Xba I and  Hin dIII. The variants Blc-NY2(T23) and 

-NY2(P25) were constructed using QuikChange mutagenesis. pBlc3-

NY2S20 was used as the starting construct from which three and 

fi ve residues between the NY2R sequence and the Blc sequence 

were deleted to generate pBlc3-NY2T23 and pBlc3-NY2P25, respec-

tively. Table S3 in the supplementary material lists all PCR primers 

that were used.  

  Calculation of loop mismatch scores 
between GPCRs and the OmpA scaffold 
 The overall topology of the loops is defi ned by 15 unique distances 

between the anchor points. Likewise, the topology of the 8 anchor 

points of the 4 extracellular loops of OmpA is defi ned by 28 unique 

distances. A total of 24 diff erent modes are possible for arranging 3 

foreign loops on the 4 acceptor sites of the scaff old. To rank them 

according to the similarity with a GPCR structure, a mismatch score 

was computed based on average distances between the anchor 

points of the extracellular loops in published GPCR crystal structures 

(i.e., the C 
 α 
  atoms of those residues located at the beginning and end 

of the fl anking transmembrane helices) (for a list of the used GPCR 

coordinates see the supplementary material online). 

 The C 
 α 
  atoms of the residues at the beginning and end of the 

fl anking  β -strands in the NMR structure of a loop-shortened OmpA 

variant (2JMM) (Johansson et al. , 2007 ) were considered as the 
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anchor points of the extracellular loops. Then, the distances between 

the 6 involved anchor points of the 3 graft ed GPCR loops for each of 

the possible 24 arrangements on the 4 acceptor sites of the OmpA 

scaff old were calculated and compared to the distances calculated 

for an average GPCR. Mismatch scores were calculated according 

to 
  

6 6

,

i 1 1

i j
j i

d
= = +
∑ ∑  with  d   i,j   being the diff erence in separation distance

 

between the anchor points  i  and  j  corresponding to one loop in an 

average GPCR and the corresponding distance in OmpA (see also 

Figure 2).  

  Synthesis and purification of the 
neurohormones 
 The sequences of porcine NPY (pNPY) (Bader et al. , 2001 ) and PYY 

(pPYY) (Lerch et al. , 2004 ) and of bovine PP (bPP) (Lerch et al. , 2002 ) 

were used throughout this study. 

 The synthesis of unlabeled neurohormones was carried out 

using standard Fmoc-based solid-phase peptide synthesis using 

an automated system (ABI433A, Applied Biosystems, Carlsbad, CA, 

USA).  15 N-labeled neurohormones were produced as described in 

detail elsewhere (Bader et al. , 2001 ; Lerch et al. , 2002 ). 

 All peptide masses were confi rmed by ESI-MS.  

  Biosynthesis and purification of 
OmpA-based receptor constructs 
 All genetic deletions/insertions/mutations were performed using 

the QuikChange mutagenesis method. Table S4 in the supplemen-

tary material lists all the primers used. The coding region for the 

transmembrane domain (TMD) of OmpA from  E. coli  (UniProt entry 

P0A910 positions 22 – 346 with a D77E mutation) (Ramakrishnan 

et al. , 2005 ) served as starting point. 

 OmpA loop sequences to be replaced with the Y receptor loop 

sequences were selected based on a previously described loop-short-

ening study (Koebnik and Kramer , 1995 ). Residues H19-H31, P62-Y72, 

K107-G118 and I147-P157 correspond to the extracellular loops 1, 2, 3 

and 4, respectively. According to hydrophobicity plots the N-terminal 

domain and the extracellular loops of the human Y1 receptor (see 

http://www.gpcr.org/7tm/proteins/npy1r_human) were assumed to 

comprise the stretches M1-I40, Y100-M112, Q177-S210 and F286-N299. 

Any cysteines in these sequences were replaced by serines. The 

cDNA sequences of these loops were optimized by gene synthesis 

(Microsynth AG, Balgach, Switzerland) to account for optimal  E. coli  
codon usage (Kane , 1995 ; Makrides , 1996 ). Y receptor N-terminal 

sequences were as described above. 

 The chimeric constructs were generated by fi rst deleting all 

four original OmpA loop sequences, followed by insertion of the 

foreign Y1 receptor loop sequences via QuikChange mutagenesis. 

The desired topological arrangement of the Y receptor loops on the 

OmpA scaff old was achieved in four rounds of mutagenesis, fi lling 

three positions with Y1 receptor loops and the fourth one with a 

minimal turn-inducing sequence (Koebnik , 1999a ). The construct 

carrying the Y1 receptor N-terminus at the position of the third 

extracellular loop of OmpA (Y1L3-NY1) had the fi rst 40 residues of 

the human Y1 receptor N-terminally fl anked by a (Gly-Ser) 
3
  spacer 

as well as the 3C protease (Pallai et al. , 1989 ) cleavage sequence 

(LEVLFQGP). 

 OmpA and its derivatives were expressed in  E. coli  BL21(DE3) 

using the vector pET22b (Novagen, Madison, WI, USA). Unlabeled 

and  15 N-labeled proteins, respectively, were expressed in LB rich 

medium and M9 minimal medium containing  15 NH 
4
 Cl as the sole 

nitrogen source. Cultures were grown at 37 ° C and induced with 1 m m  

isopropyl- β - d -thiogalactopyranoside (IPTG) at an OD 
600

  of 0.8. Cells 

were harvested by centrifugation at 4 ° C and cell pellets were frozen 

at -20 ° C until processing. 

 All chimeric receptor constructs were obtained as inclusion 

bodies and purifi ed as described previously (Johansson et al. , 2007 ). 

Inclusion bodies were solubilized in 8  m  urea, 10 m m  Tris pH 8, 1 m m  

EDTA to a fi nal protein concentration of 20 mg/ml.  

  Refolding of chimeric GPCR-OmpA 
receptors 
 Buff ers for the refolding screens were 10 m m  Na-acetate pH 4, 10 m m  

HEPES/NaOH pH 7, 10 m m  Tris/HCl pH 8.8, and 10 m m  Na-borate pH 

10, always containing 1 m m  EDTA. The detergent concentration was 

chosen to achieve at least a 500-fold excess of detergent over protein 

or twice the critical micellar concentration (cmc) of the detergent. 

Protein was added, mixed by vortexing and incubated at 30 ° C for 

5 h. Refolding effi  ciency was assessed by  ‘ non-denaturing ’  18 %  SDS-

PAGE (Schweizer et al. , 1978 ). 

 The solution was then buff er-exchanged in an Amicon Ultra-4 

centrifugal concentrator (10 kDa MWCO; Millipore, Billerica MA, 

USA; cat. no. UFC801024) to NMR buff er (3 %  w/v DHPC, 20 m m  NaP 
i
  

pH 6.5, 100 m m  NaCl, 10 %  v/v D 
2
 O).  

  3C protease cleavage of Y1L3-NY1 
 In total, 0.7 mg of 3C protease (for expression and purifi cation of 3C 

protease see supplementary material online) per mg of Y1L3-NY1 

protein was added and the solution was incubated at 4 ° C for 15 h. 

3C protease was removed by incubation with Ni-NTA resin (Sigma, 

Buchs, Switzerland) at 4 ° C.  

  NMR spectroscopy 
 All spectra were recorded on Bruker AV-600 or AV-700 spectrometers 

equipped with cryoprobes. Proton chemical shift s were calibrated 

to the water signal and nitrogen shift s were referenced indirectly to 

liquid NH 
3
  (Live et al. , 1984 ). 

 Proton-nitrogen correlation maps of the receptor constructs 

were measured as [ 15 N, 1 H]-TROSY experiments. Raw data were pro-

cessed using the Bruker Topspin soft ware version 2.0 or 2.1 and 

transferred to XEASY (Bartels et al. , 1995 ) or CARA (Keller , 2004 ) for 

further analysis. 

 The reported assignments for pNPY (Bader et al. , 2001 ), pPYY 

(Lerch et al. , 2004 ) and bPP (Lerch et al. , 2002 ) in DPC micelles at 

pH 4.5 served as the starting points for the assignments of the amide 

resonances of pNPY, pNPY-R33L and pNPY-R35L, pPYY and bPP in 

DHPC micelles at pH 6.5 using a strategy reported by our group previ-

ously (Bader et al. , 2001 ). 
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 To detect interactions of the hormones with the receptor con-

struct via chemical shift  mapping,  15 N-labeled neurohormones were 

dissolved in 0.25 ml NMR buff er and increasing amounts of the 

refolded receptor constructs (0.5 – 100 Eq.) were added. In an analo-

gous manner, uniformly  15 N-labeled Y1L3 at concentrations between 

0.25 and 1 m m  was dissolved in NMR buff er and TROSY spectra were 

recorded at 320 K in the presence of increasing amounts of unlabeled 

peptide. 

 On- and off -resonance irradiations in the STD NMR experiment 

(Mayer and Meyer , 1999, 2001 ) were applied at -0.5 ppm and 40 ppm, 

respectively.    
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