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Abstract — This paper develops a combineda posteriorianalysis for the discretization and iteration
errors in the computation of finite element approximations to elliptic boundary value problems. The
emphasis is on the multigrid method, but for comparison alsosimple iterative schemes such as the
Gauß–Seidel and the conjugate gradient method are considered. The underlying theoretical framework
is that of the Dual Weighted Residual (DWR) method for goal-oriented error estimation. On the basis
of thesea posteriorierror estimates the algebraic iteration can be adjusted to the discretization within a
successive mesh adaptation process. The efficiency of the proposed method is demonstrated for several
model situations including the simple Poisson equation, the Stokes equations in fluid mechanics and
the KKT system of linear-quadratic elliptic optimal control problems.

Keywords: goal-oriented adaptivity,a posteriorierror estimation, finite elements, iterative methods,
multigrid

1. Introduction

Multigrid methods are extensively used for efficiently solving the discrete equations
resulting from the discretization of partial differentialequations (see, e.g., [12,18]).
In this paper, we consider a general linear elliptic problemdiscretized by a finite el-
ement method as proposed, e.g., in [17]. We develop an adaptive multigrid method
for efficient solution of the algebraic equations resultingfrom the proposed finite
element discretization. The idea of the algorithm is as follows: The exact finite el-
ement solution approximates the continuous solution only up to discretization ac-
curacy. It seems natural to stop the iteration of the linear solver when the error due
to the approximate solution of the discrete equations is comparable to the error due
to the finite element discretization itself. To this purpose, we derive ana posteriori
error estimator which assesses the influences of the discretization and the inexact
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144 D. Meidner, R. Rannacher, and J. Vihharev

solution of the arising algebraic equations. This allows usto balance both sources
of errors.

The use of adaptive techniques based ona posteriori estimation of the dis-
cretization error is well accepted in the context of finite element discretization of
partial differential equations (see, e.g., [9,20]). Although the convergence proper-
ties of multigrid methods are discussed in many publications (cf. [1,13,14]), there
are only few results ona posteriorierror estimation of the iteration error. In the case
of solving the Poisson equation, work has been done in [7] andwas extended to the
Stokes equations in [3]. There, the automatic control of thediscretization and multi-
grid errors has been developed with respect toL2- and energy norms. The reliability
of the proposed adaptive algorithm has been verified on uniformly refined meshes.

However, in many application, the error measured in global norms does not pro-
vide useful bounds for the error in terms of a given functional, a so calledquantity
of interest. In this work, we propose the control of both discretizationand itera-
tion errors with respect to a general output functional. This approach is based on
a posteriorierror estimation by dual weighted residuals as presented in[9]. We in-
corporate the adaptive iteration method in the solution process of a given problem.
The estimator derived for the discretization error is used on the one hand as stopping
criterion for the algebraic iteration and on the other hand provides the necessary in-
formation for the construction of locally refined meshes in order to improve the
accuracy of the discretization.

A further issue of this paper is the numerical realization ofthe adaptive method.
We explain implementational details and verify the reliability and the efficiency of
the proposed algorithm on locally refined meshes.

As starting point, we consider the elliptic problem

Au= f in Ω, u = 0 onΓ (1.1)

with a linear elliptic operatorA and a right-hand sidef ∈ L2(Ω) where Ω is as-
sumed to be a bounded domain inRd, d ∈ {2,3}, with polygonal boundaryΓ.
For simplicity, we impose homogeneous Dirichlet boundary conditions. The case of
nonhomogeneous Dirichlet conditions is considered in remarks. However, the tech-
niques provided in this paper can also be applied to problemswith other types of
boundary conditions.

For the variational formulation of problem (1.1), we introduce the Hilbert space
V := H1

0(Ω) and the inner product ofL2(Ω) defined by

(v,w) := (v,w)L2(Ω) :=
∫

Ω
vwdx.

With the bilinear forma(·, ·) : V ×V → R associated to the linear operatorA, the
weak formulation of the considered problem (1.1) reads as follows: Find u∈V such
that

a(u,ϕ) = ( f ,ϕ) ∀ϕ ∈V. (1.2)

For the numerical treatment, we discretize this problem leading to a linear system
of algebraic equations. Usually, for instance in the articles [8,9], thea posteriori
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Goal-oriented error control 145

error estimators for the discretization error are derived under the assumption that the
exact solution of this linear systems is available. This ensures the crucial property of
Galerkin orthogonality. In contrast, here, we assume that the discrete equations are
solved only approximately and denote the obtained approximate solution by ˜uh in
contrast to the notationuh for the ‘exact’ discrete solution. Our goal is the derivation
of ana posteriorierror estimate with respect to the quantity of interestJ : V → R

of the form
J(u)−J(ũh) = ηh+ ηm. (1.3)

Here, ηh and ηm denote error estimators which can be evaluated from the com-
puted discrete solution ˜uh , where ηh assesses the error due to the finite element
discretization andηm the error due to the inexact solution of the discrete equations.

The outline of the paper is as follows: In Section 2, we describe the finite el-
ement discretization of problem (1.2) and develop goal-orienteda posteriorierror
estimates for the discretization as well as the iteration errors. Section 3 discusses the
practical evaluation of these error estimates and the implementation of the resulting
adaptation strategies. The numerical results presented inSection 4 demonstrate the
efficiency and reliability of the proposed method for two prototypical scalar model
problems. The last two sections are devoted to the extensionof our theory to differ-
ent types of saddle point problems. Section 5 presents results for the approximation
of the Stokes equations in fluid mechanics and Section 6 for the solution of the
so-called KKT system (first-order optimality condition) ofa linear-quadratic opti-
mization problem.

2. A posteriori error analysis for a linear model problem

In this section, we discuss the discretization of problem (1.2) by the Galerkin fi-
nite element method. Based on this discretization, we derive the discrete equations
which will be solved by iterative schemes, particularly by the multigrid method.

We consider the discretization of problem (1.2) with usual bi-/trilinear H1-
conforming finite elements as explained in the standard literature; see for exam-
ple [17]. To this end, we consider two- or three dimensional shape-regular meshes
Th = {K} consisting of (convex) quadrilateral or hexahedral cellsK , which consti-
tute a nonoverlapping covering of the computational domainΩ . The discretization
parameterh is defined as a cellwise constant function by settingh|K := hK with
the diameterhK of the cell K . On the meshTh , we construct a conforming finite
element spaceVh ⊂V in a standard way:

Vh :=
{

vh ∈V, vh|K ∈ Q1(K) for K ∈ Th
}
.

Here, Q1(K) consists of shape functions obtained via iso-parametric transforma-
tions of bi/trilinear polynomials in̂Q1(K̂) defined on the reference cell̂K = (0,1)d.

With these preliminaries, we formulate the following approximation for (1.2):
Finduh ∈Vh such that

a(uh,ϕh) = ( f ,ϕh) ∀ϕh ∈Vh. (2.1)
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Problem (2.1) is equivalent to the linear system of equations

A ξ = β

where uh = ∑N
i=1ξiϕi with the usual nodal basis{ϕi , i = 1, . . . ,N} of Vh and the

coefficient vectorξ = (ξi)
N
i=1. Further,A = (ai j )

N
i, j=1 is theN×N stiffness matrix

with entries a ji = a(ϕi ,ϕ j) and β = (b j)
N
j=1 , with b j = ( f ,ϕ j) , represents the

right-hand side.
We introduce theL2 projectionPh : V →Vh defined by

(Phu,ϕh) = (u,ϕh) ∀ϕh ∈Vh (2.2)

and the Ritz projectionQh : V →Vh given by

a(Qhu,ϕh) = a(u,ϕh) ∀ϕh ∈Vh. (2.3)

Further, we define the discrete operatorAh : Vh →Vh by

(Ahvh,ϕh) = a(vh,ϕh) ∀vh,ϕh ∈Vh. (2.4)

With these notations, we can rewrite equation (2.1) equivalently in the form

Ahuh = Ph f . (2.5)

Below, we will consider hierarchies of meshesT j := Thj , j = 0, . . . ,L, with mesh
size parametersh j . Accordingly, the notationVj := Vhj , u j := uhj , Pj := Phj , Q j :=
Qhj , andA j := Ahj will be used.

In the next section, we first establish ana posteriori error representation with
respect to a linear functional for the error arising due to the finite element discretiza-
tion alone. After that, we derive the error representation which assesses the influence
of the discretization error and the error occurring due to the inexact solution of the
discrete equations.

2.1. Estimation of the discretization error

We consider the control of the error with respect to some quantity of interestJ(u) ,
which is assumed to be given in terms of a linear functionalJ : V → R . To this end,
we introduce the following continuous dual problem: Findz∈V such that

a(ϕ ,z) = J(ϕ) ∀ϕ ∈V. (2.6)

Using Galerkin orthogonality and the definition of the dual problem (2.6), we obtain
the error identity foreh := u−uh

J(eh) = a(eh,z) = a(eh,z− ẑh)

= ( f ,z− ẑh)−a(uh,z− ẑh) =: ρ(uh)(z− ẑh)
(2.7)
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Goal-oriented error control 147

whereẑh is an arbitrary element ofVh. As usual the residual termρ(uh)(z− ẑh) can
be rewritten in terms of local cell and edge residuals of the computed approximation
uh multiplied by local weights involving the dual solutionz (see [9] or [2]). The
practical evaluation of this residual term will be described below.

Remark 2.1. In the case of nonhomogeneous Dirichlet boundary conditions,
u|Γ = g, we have the following error representation:

J(eh) = ρ(uh)(z− ẑh)− (g−gh,∂nz)Γ, ẑh ∈Vh.

Here,gh is an approximation ofg used as boundary condition foruh , uh|Γ = gh.

2.2. Estimation of the iteration error

The following analysis concerns the approximative solution of the discrete prob-
lems by the usual iterative schemes, such as the Gauß–Seidelmethod, the conju-
gate gradient (CG) method, or the multigrid method. The goalis the derivation of
an a posterioriestimate of the resulting ‘iteration error’ in terms of the difference
J(uh)−J(ũh) .

First, we recall the definition of the multigrid algorithm. We suppose that we
are given a sequence of refined gridsT j = Thj , j = 0,1, . . . ,L, with corresponding
finite element spacesVj = Vhj . We assume the meshesT j to become finer with in-
creasingj and the spacesVj to be nested,Vj ⊂Vj+1. We denote bySj : Vj →Vj the
smoothing operator on the levelj. The grid transfer operations arep j+1

j : Vj →Vj+1

(prolongation) andr j−1
j : Vj →Vj−1 (restriction). We aim at finding an approxima-

tion ũL ∈VL on the finest meshTL to the solutionuL ∈VL of the equation

ALuL = fL := PL f (2.8)

using a multigrid algorithm based on the hierarchy of meshesT j , j = 0,1, . . . ,L .

Starting with an initial guessu(0)
L , the multigrid process produces a sequence of

approximations ˜uL = u(t+1)
L via the procedureu(t+1)

L = MG(L,γ ,u(t)
L , fL) described

in Algorithm 2.1.

Algorithm 2.1. Multigrid cycle MG( j,γ ,u(t)
j , f j):

1: if j = 0 then
2: Solve A0u(t+1)

0 = f0 exactly.
3: else
4: Pre-smoothing ¯u(t)

j := Sν
j (u

(t)
j ).

5: Compute the residual:d(t)
j := f j −A j ū

(t)
j .

6: Restrict the residual:̃d(t)
j−1 := r j−1

j d(t)
j .

7: for r = 1 to γ do
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148 D. Meidner, R. Rannacher, and J. Vihharev

8: Starting withv(0)
j−1 := 0 iteratev(r)

j−1 := MG( j −1,γ ,v(r−1)
j−1 , d̃(t)

j−1).
9: end for

10: Apply the correction:̄̄u(t)
j := ū(t)

j + p j
j−1ṽ

(γ)
j−1.

11: Post-smoothingu(t+1)
j := Sµ

j ( ¯̄u(t)
j ).

12: end if

The parametersν and µ indicate respectively the number of the pre- and post-
smoothing steps. The structure of the multigrid algorithm is determined by the pa-
rameterγ . The caseγ = 1 corresponds to the so-calledV-cycle andγ = 2 to the
W-cycle.

For comparison, we also consider the Gauß–Seidel method forthe nodal-value
vector ξL ∈ R

NL corresponding to the finite element solutionuL ∈VL ,

(LL +DL)ξ
(t)
L = βL −RLξ (t−1)

L , t = 1,2, . . . , ξ (0)
L = ξ̃L−1 (2.9)

with the usual splittingAL = LL +DL+RL , or the conjugate gradient (CG) method
(without preconditioning),

ξ (t)
L ∈ R

NL : ‖βL −ALξ (t)
L ‖A −1 = min

yL∈Kt

‖βL −ALyL‖A −1 (2.10)

with the Krylov spacesKt := span{I ,A , . . . ,A
t−1

L } , on the different mesh levels.
All three iterative methods yield approximative discrete solutions on the fines mesh
TL which are denoted by ˜uL ∈VL .

To derive an error estimator which includes the error due to the inexact solution
of the discrete problems, we replace the ‘exact’ discrete solution uL on the current
finest meshTL = ThL in (2.7) by the computed discrete solution ˜uL. When doing so,
an additional term appears in the error estimate which includes the discrete residuals
Rj(ũL) ∈Vj defined by

Rj(ũL) := Pj( fL −ALũL).

Proposition 2.1. Let u∈ V be the solution of problem(1.1) and ũL ∈ VL the
approximative finite element solution of the discrete problem(2.8)on the finest mesh
TL . Then, we have the following general representation for theerror e := u− ũL :

J(e) = ρ(ũL)(z− ẑL)+ ρ(ũL)(ẑL). (2.11)

If the multigrid method has been used the following refined representation holds for
the iteration residual:

ρ(ũL)(ẑL) =
L

∑
j=1

(Rj(ũL), ẑj − ẑj−1)+ (R0(ũL), ẑ0). (2.12)

Here,ẑj ∈Vj , j = 0,1, . . . ,L, can be chosen arbitrarily and the residualρ(ũL)(·) =
( f , ·)−a(ũL, ·) is as defined in(2.7).
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Goal-oriented error control 149

Proof. We again consider the continuous dual problem (2.6). There holds

J(e) = a(e,z) = a(e,z− ẑL)+a(e, ẑL)

= ( f ,z− ẑL)−a(ũL,z− ẑL)+ ( f , ẑL)−a(ũL, ẑL)

= ρ(ũL)(z− ẑL)+ ρ(ũL)(ẑL).

(2.13)

This is the asserted error representation (2.11). The first term on the right-hand side
corresponds to the discretization error. If the multigrid method has been used, the
second term corresponding to the iteration error can be rewritten in the form

ρ(ũL)(ẑL) =
L

∑
j=1

{
( f , ẑj − ẑj−1)−a(ũL, ẑj − ẑj−1)

}
+

{
( f , ẑ0)−a(ũL, ẑ0)

}
. (2.14)

SinceVj ⊂ VL for j 6 L, we observe by the definitions ofQ j , Pj , and A j that for
ϕ j ∈Vj there holds

( f ,ϕ j)−a(ũL,ϕ j) = (Pj f ,ϕ j)− (A jQ j ũL,ϕ j)

Further, by means of the identityA jQ j = PjAL for j 6 L, we have

(Pj f ,ϕ j)− (A jQ j ũL,ϕ j) = (Pj( f −ALũL),ϕ j) = (Rj(ũL),ϕ j).

Using these identities forϕ j = ẑj−ẑj−1 and ϕ0= ẑ0 in (2.14) completes the proof
of the proposition. �

The error representation (2.11) can be used for approximative solutions ˜uL ob-
tained by any solution process. Below, we will describe how this can be used for
designing automatic stopping criteria for the iteration onthe finest mesh level de-
pending on the actual discretization error. We emphasize that the choice of the dual
weights in the iteration error representation depends on the weights in the discretiza-
tion error.

Remark 2.2. The result of Proposition 2.1 does not depend on the special form
of the multigrid cycle, i.e.,V-, W- or F-cycles are allowed. Moreover, there is no
restriction concerning the application of pre/post-smoothing and the choice of the
smoother used in the multigrid method.

The error representation (2.12) for the multigrid method exploits the structure of
this ‘optimal’ iteration method. This allows us also to tunethe smoothing iteration
on the several mesh levels in order to get an easier balancingwith the discretization
error. The effectivity of this process is demonstrated by the examples presented be-
low. In [7] it has been shown that in the case of the canonically chosen grid transfer
operations,

p j+1
j = id, r j−1

j = Pj−1
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and only pre-smoothing is used, the discrete residualsRj(ũL) can be identified with
the multigrid residualsRj(ṽ j) obtained in the course of the correction process from
the equationA jv j = Pjd j+1 ,

Rj(ũL) = Pj( fL −ALũL)

= Pj fL −PjALSν
L(ũ(0)

L )−PjAL pL
L−1ṽL−1

= Pj(dL −AL−1ṽL−1)

= PjdL −PjAL−1Sν
L−1(ṽ

(0)
L−1)−PjAL−1pL−1

L−2ṽL−2

...

= Pj(d j+2−A j ṽ j+1)

= Pjd j+2−PjA j+1S
ν
j+1(ṽ

(0)
j+1)−PjA j+1p j+1

j ṽ j

= Pj(d j+1−A j ṽ j) = Rj(ṽ j).

(2.15)

This shows that the discrete residuals can be evaluated on the respective grid levels
T j without explicitly referring to the fine-grid solution ˜uL .

Corollary 2.1. Assume the grid transfer operations in the multigrid algorithm
are chosen canonically and the multigrid residualR0(v0) on the coarsest level van-
ishes. Then, under the conditions of Proposition 2.1, the following error representa-
tion holds:

J(e) = ρ(ũL)(z− ẑL)+
L

∑
j=1

(Rj(ṽ j), ẑj − ẑj−1). (2.16)

Proof. The assertion follows by Proposition 2.1 and identity (2.15). �

Remark 2.3. With a similar argumentation as in Proposition 2.1 and Corol-
lary 2.1, one can easily verify the following result in the case of nonhomogeneous
Dirichlet data,u|Γ = g. There holds

J(e) = ρ(ũL)(z− ẑL)− (g−gL,∂nz)Γ +
L

∑
j=1

(Rj(ṽ j), ẑj − ẑj−1) (2.17)

wheregL ∈VL are the Dirichlet boundary conditions ofuL , uL|Γ = gL .

3. Practical realization

In this section, we describe the numerical evaluation of thea posterioriestimator for
the discretization error. We particularly consider the discretization with piecewise
bilinear finite elements on quadrilateral meshes in two space dimensions.
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Figure 1. Patched mesh with hanging nodes.

3.1. Evaluation of the estimator for the discretization error

The representation of the discretization error in (2.7) involves interpolation errors,
since we set ˆzh := Ihz. For their approximation, we discretize the continuous dual
problem (2.6) with finite elements accordingly to the primalproblem (2.1). Thus,
the discretized dual problem reads: Findzh ∈Vh such that

a(ϕh,zh) = J(ϕh) ∀ϕh ∈Vh.

We solve this problem by a multigrid method on the same grid asthat used for the
primal problem. To be more precise, we carry out one multigrid iteration for solv-
ing the primal problem and then we execute one multigrid iteration for solving the
dual problem. With these computed solutions, we evaluate the error estimators. This
alternating solving will be continued till the stopping criterion for the multigrid iter-
ation is achieved. For solving the discrete dual problem, there is no need to assemble
a new stiffness matrix. The matrix corresponding to the primal problem can simply
be transposed.

We approximate the interpolation errors using the computedapproximation of
the dual problem ˜zh and patchwise interpolations into higher-order finite element
spaces. To this end, we introduce the linear operatorΠh, which maps the computed
solution to the approximations of the interpolation errors: z− Ihz≈ Πhz̃h . In the
present case of discretization by bilinear finite elements,Πh is chosen as

Πh := I (2)
2h − id, I (2)

2h : Vh →V(2)
2h .

The piecewise biquadratic interpolationI (2)
2h can easily be computed if the underly-

ing mesh provides a patch structure. That is, one can always combine four adjacent
cells to a macro cell on which the biquadratic interpolationcan be defined. An ex-
ample of such a patched mesh is shown in Fig. 1.

We obtain the following computable estimator for the discretization error:

ηh := ρ(ũh)(Πhz̃h) = ( f ,Πhz̃h)−a(ũh,Πhz̃h).

This error estimator is used for controlling the discretization error and for steering
mesh refinement. For the latter purpose, the error estimatorηh must be localized
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to cellwise contributions in order to obtain error indicators to be used within an
adaptive algorithm. To this end, we consider the nodal basis{ϕi , i = 1,2, . . . ,N} of
Vh . Letting Z̃ denote the coefficient vector of ˜zh, we have the representation

z̃h =
N

∑
i=1

ϕiZ̃i.

We can rewrite the error estimator as

ηh = 〈Ψ, Z̃〉

where〈·, ·〉 denotes the Euclidian inner product onR
N andΨ is given by

Ψi := ρ(ũh)(Πhϕi).

However, a direct localization of this term leads to an overestimation of the error due
to the oscillatory behavior of the residuals, cf. [16]. To avoid this, we employ the
approach described in [11]. We introduce a filtering operator π := id−Ih

2h , where
Ih
2h is an interpolation operator in the space of bilinear finite elements defined on

patches and denote the coefficient vector of the filtered dualsolution π z̃h by Z̃π :

π z̃h =
N

∑
i=1

ϕiZ̃
π
i .

Then, the properties ofπ and I (2)
2h and the linearity of the residualρ with respect

to the weight imply
ηh = 〈Ψ, Z̃π〉.

A further localization leads to nodewise error indicatorsηh,i given as

ηh,i = ΨiZ̃
π
i , i = 1,2, . . . ,N.

For the mesh refinement these nodewise contributions are shifted to the correspond-
ing cellwise contributions. Then, these error indicators are used to select the cells
which have to be refined within the adaptive algorithm. For possible mesh refine-
ment strategies we refer to [9].

3.2. Evaluation of the estimator for the iteration error

Now, we describe the evaluation of thea posteriori error estimator for the itera-
tion error, particularly the multigrid error. Furthermore, we concretize the choice of
multigrid components for the technical implementation used in the following nu-
merical examples.

For an arbitrary iteration method, we use the general estimator for the iteration
error on the finest meshTL given in Proposition 2.1:

η (1)
m := ( f , z̃L)−a(ũL, z̃L) (3.1)
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where z̃L is the approximative solution of the dual problem on the finest meshTL .
In order to evaluate the representation of the multigrid error given in Proposi-

tion 2.1 or its refined version (2.16) in Corollary 2.1, we have to approximate the
terms ẑj and ẑj−1 which are defined on the different grid levelsT j and T j−1 . One
possibility is to store the calculated dual solutions on each level. Let us assume that
we want to calculate ˆzj − ẑj−1 for one fixed j . Then, we prolongate the approxi-
mated dual solution ˜zj−1 from a coarser level on the finer levelj. Since we have
nested finite element spacesVj ⊂Vj+1, we use the canonical embeddingp j

j−1 = id
as the prolongation operator in the multigrid method. By this means, we approxi-
mate

ẑj − ẑj−1 ≈ z̃j − p j
j−1z̃j−1,

and obtain the following approximative estimator for the multigrid error:

η (2)
m :=

L

∑
j=1

(Rj(ṽ j), z̃j− p j
j−1z̃j−1) (3.2)

where ṽ j is the approximative solution of the defect equation on meshT j .
There is still an alternative way of estimating the multigrid error using the iden-

tity (2.16). The computed dual solution ˜zL on the finest mesh level is restricted to the
lower mesh levels. Defining the functionsr j

Lz̃L := r j
j+1r j+1

j+2 · · · r
L−1
L z̃L for 06 j < L ,

the dual weights are approximated like ˆzj−ẑj−1 ≈ r j
Lz̃L−p j

j−1r j−1
L z̃L . On the finest

level we compute the difference ˜zL − pL
L−1rL−1

L z̃L. Thus, we obtain the following
a posteriorierror estimator for the multigrid error:

η (3)
m :=

L−1

∑
j=1

(Rj(ṽ j), r
j
Lz̃L−p j

j−1r j−1
L z̃L)+ (RL(ṽL), z̃L − pL

L−1rL−1
L z̃L). (3.3)

The approximationsr j
Lz̃L are defined using the restriction operatorsr j

j+1 , which in

the considered situation are chosen asL2-projections on the grid levelsT j .
In numerical experiments it has turned out that all three iteration error estimators

η (i)
m , i = 1,2,3, are equally efficient. Therefore, in all the numerical tests involving

the multigrid algorithm, we have employed the iteration error estimatorη (2)
m , which

also allows us to adapt the smoothing iterations on the different mesh levels.

3.3. Adaptive algorithm

We propose an adaptive algorithm where the discretization and multigrid errors are
balanced. That is, we carry out the multigrid iteration until the following relation
holds:

|ηh| ≈ |ηm|.

Moreover, we use the additional information provided by themultigrid error esti-
matorη (2)

m and allow the number of smoothing steps to vary over the different mesh

 - 10.1515/JNUM.2009.009
Downloaded from De Gruyter Online at 09/27/2016 10:00:39PM

via Technische Universität München



154 D. Meidner, R. Rannacher, and J. Vihharev

levels in order to reduce the amount of work. In the following, we denote byνl and
µl the number of pre- and post-smoothing steps, respectively,on mesh levell in the
multigrid method. On the levels with biggest error contribution, we perform four
pre- and post-smoothing steps, while only one pre- and post-smoothing step is used
otherwise.

Assuming that we want to compute the value of the quantity of interest up to a
given accuracy TOL, we follow the adaptive process given by Algorithm 3.1.

Algorithm 3.1. Adaptive algorithm:
1: Choose an initial discretizationTh0 and setl = 0.
2: loop
3: Set t = 1.
4: repeat
5: if t = 1 then
6: for j = 0 to l do
7: Set ν j = 1, µ j = 1.
8: end for
9: end if

10: Apply one multigrid cycle to the problemAlul = fl .
11: Set t = t +1.
12: Evaluate the estimatorsη (2)

ml and ηhl .
13: According to the error indicators on the different levels,

(Rj(ṽ j), z̃j − p j
j−1z̃j−1)

determine the subset of levelsI = {i1, . . . , in} with the biggest contribution
to the error estimator and increase the number of smoothing steps by

14: if t > 1 then
15: for j = 1 to n do
16: Set νi j = 4, µi j = 4.
17: end for
18: end if
19: until |ηml | 6 c|ηhl |
20: if |ηhl + ηml | 6 TOL then
21: stop
22: end if
23: Refine the meshThl → Thl+1 accordingly to the size of the error

indicatorsηhl ,i .
24: Interpolate the previous solution ˜ul on the current meshThl+1.
25: Incrementl .
26: end loop

To start the multigrid algorithm, we use the values from the computation on the
previous mesh level as starting data. This allows us to avoidunnecessary iterations
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on current mesh.
Furthermore, we use an equilibration factorc ∈ (0,1) for comparing the two

estimatorsηm and ηh : |ηm| 6 c|ηh| . This ensures also that the local mesh refine-
ment results from the value of the discretization error estimator. For the numerical
tests following below, we have chosen the factorc as 0.1. Selecting a smaller value
does not improve the accuracy of the computed value very muchbut increases the
number of the multigrid iterations. A greater value, however, can affect the local
mesh refinement.

As described in Algorithm 3.1, we have to evaluate the error estimatorsηhl and
ηml in every multigrid step. In order to reduce the computational work, we propose
the following strategy for the adaptive algorithm: After solving the discrete equa-
tions via multigrid on the meshThl , we save the valueηhl by settingηold := ηhl .
On the next finer meshThl+1 , we do not evaluate the discretization error estimator
ηhl+1 until

|ηml+1| 6 c|ηold|. (3.4)

Then, we save the new valueηhl+1 in ηold . In the next multigrid iteration condition
(3.4) will be verified again. Thus, we reduce the number of evaluations of the dis-
cretization error estimator on each mesh. In the numerical tests presented below the
error estimatorηh has been evaluated at most twice on every mesh.

4. Numerical examples: scalar model problems

In this section, we demonstrate the efficiency and reliability of the proposed adap-
tive algorithm. We compare the adaptive multigrid method described above with a
multigrid method employing a residual based stopping criterion such as commonly
used for iterative methods. To this end, we replace the adaptiv stopping criterion in
the multigrid solver by requiring that the initial multigrid residual is to be reduced
by a factor of 10−11. The discretization error estimator will still be used for the
construction of locally refined meshes and the error control. We denote this algo-
rithm by MG I and the adaptive multigrid algorithm by MG II. Further, we show the
results obtained by using the Gauß–Seidel and the CG method for computing the
discrete solutions on the different mesh levels.

In the tables below, the following notation is used for the discretization error
eh := u−uh :

J(eh) ‘exact’ functional discretization error,

ηh estimator of discretization error,

Ih
eff =

∣∣∣∣
ηh

J(eh)

∣∣∣∣ effectivity index of discretization error estimator,
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for the iteration errorem := uh− ũh :

J(em) ‘exact’ functional iteration error,

η (1)
m estimator of general iteration error,

η (2)
m first special estimator of multigrid iteration error,

η (3)
m second special estimator of multigrid iteration error,

Im, j
eff :=

∣∣∣
η ( j)

m

J(em)

∣∣∣ effectivity index of iteration error estimators,

and for the total errore := u− ũh :

I tot
eff :=

∣∣∣
ηh + ηm

J(e)

∣∣∣ effectivity index of total error estimator.

In order to access the ‘exact’ iteration errorJ(em) , we solve the discrete equa-
tions on each mesh additionally by the algorithm MG I using the ILU-iteration as
smoother and requiring that the multigrid residual to be reduced down to round-off
error level 10−15. The ‘exact’ value ofJ(eh) is obtained by using an approximation
to u on a very fine mesh.

4.1. Example 1

The first numerical test examines the sharpness and practical relevance of the
a posteriorierror estimators derived above on locally refined meshes. Weconsider
the singularly perturbed elliptic problem

−ε∆u+u= 1 in Ω, u = 0 on∂Ω (4.1)

on the two-dimensional unit squareΩ := (0,1)2 with ε = 10−4. As quantity of
interest, we take the mean value

J(u) := |Ω|−1
∫

Ω
u(x)dx.

In this case, boundary layers occur and the meshes resultingfrom the adaptive al-
gorithm are strongly refined near the boundary (see Fig. 2). Due to the particular
choice of the right hand sidef ≡ 1 and the functionalJ(·) the dual solutionz
coincides with the primal solutionu. We calculate the corresponding discrete so-
lutions ũL and z̃L using theV-cycle, in the first set of tests, with four Jacobi-steps
for pre- and post-smoothing, i.e., in the multigrid Algorithm 3.1, we setγ = 1 and
ν = µ = 4. These tests are performed on the isotropic meshes shown inFig. 2.
The anisotropic meshes are used for the test of the multigridalgorithm with adap-
tively chosen smoothing separately on the different mesh levels. On such meshes the
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Figure 2. Example 1: Isotropic and anisotropic coarse initial meshesand locally refined meshes.

proper choice of smoothing is particularly critical for theefficiency of the multigrid
method.

Table 1 demonstrates the effectivity of the different errorestimatorsIm, j
eff defined

above for the multigrid iteration on a coarse and on a very finemesh. All three esti-
mators turn out to be surprisingly efficient even on coarser meshes. This observation
has also been made for the other test problems described below and will therefore
not be repeated there.

Next, Table 2 shows the development of the discretization and multigrid errors
and thea posteriori error estimators from a solution process on a very fine mesh
with 341721 knots. This table also demonstrates the sufficient quality of the error
estimators. We note that we would have stopped the multigriditeration in the adap-
tive algorithm already after one respectively two steps. Carrying out the multigrid
iteration beyond this point does not significantly improve the obtained solution. This
shows that the stopping criterion in the multigrid method isefficient. Tables 3 and
4 show the corresponding results for the Gauß–Seidel and theCG iteration. Also
in these cases the stopping criterion turns out to be efficient. These two primitive
iterative methods have been tested only on rather coarse meshes because of there
extremely slow convergence on finer meshes.

Next, we demonstrate the interaction of the two error estimators for the dis-
cretization and iteration errors by showing the full history of the adaptive algorithm
(Algorithm 4.1) for MG I and MG II in Tables 5 and 6, respectively. We see that
only a few multigrid iterations are sufficient to reduce the iteration error below the
discretization error level.

Finally, we test the effectivity of the multigrid error estimator η (2)
m with respect
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Table 1.
Example 1: Effectivity of the different error estimators for the
multigrid iteration on a coarse mesh with 913 knots and on a
very fine mesh with 341721 knots.

mesh with 913 cells mesh with 341721 cells
It Im,1

eff Im,2
eff Im,3

eff Im,1
eff Im,2

eff Im,3
eff

1 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00

Table 2.
Example 1: Effectivity of error estimators on a mesh with 341721 knots.

It J(eh) ηh Ih
eff J(em) η(2)

m Im,2
eff

1 5.89e-06 5.11e-06 0.87 4.65e-06 4.65e-06 1.00
2 5.89e-06 5.12e-06 0.87 4.41e-07 4.41e-07 1.00
3 5.89e-06 5.12e-06 0.87 7.06e-08 7.06e-08 1.00

Table 3.
Example 1: Gauß–Seidel iteration on a locally refined mesh with 5489 knots (starting
value taken from the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(1)

m Im,1
eff ‖u(t)−u‖∞

1 9.90e-04 8.42e-04 0.85 1.40e-03 1.26e-03 0.90 2.50e-01
5 9.90e-04 8.54e-04 0.86 7.53e-05 7.52e-05 1.00 4.29e-02

10 9.90e-04 8.53e-04 0.86 5.08e-06 5.08e-06 1.00 9.35e-03
15 9.90e-04 8.53e-04 0.86 3.42e-07 3.42e-07 1.00 2.49e-03
20 9.90e-04 8.53e-04 0.86 2.28e-08 2.28e-08 1.00 6.54e-04

Table 4.
CG iteration on a locally refined mesh with 5489 knots (starting value taken from the preced-
ing mesh).

It J(eh) ηh Ih
eff J(em) η(1)

m Im,1
eff |bL−ALξ (t)|A−1

1 9.90e-04 8.40e-04 0.85 1.19e-03 1.02e-03 0.86 1.32e-02
5 9.90e-04 8.56e-04 0.86 2.17e-04 2.13e-04 0.98 1.85e-03

10 9.90e-04 8.54e-04 0.86 2.54e-05 2.54e-05 1.00 2.62e-04
15 9.90e-04 8.53e-04 0.86 1.19e-05 1.19e-05 1.00 5.42e-05
20 9.90e-04 8.53e-04 0.86 4.21e-07 4.21e-07 1.00 6.11e-06
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Table 5.
Example 1: Iteration with MG I (iteration towards round-offerror level).

N #It J(e) ηh+η(2)
m ηh η(2)

m I tot
eff

25 6 2.28e-01 4.03e-02 4.03e-02 4.31e-14 0.18
81 7 1.05e-01 1.82e-02 1.82e-02 6.21e-16 0.17

289 6 4.13e-02 9.46e-03 9.46e-03 3.58e-15 0.23
913 9 1.36e-02 5.07e-03 5.07e-03 9.61e-14 0.37

2 369 9 3.82e-03 2.42e-03 2.42e-03 7.46e-13 0.63
5 489 10 9.90e-04 8.53e-04 8.53e-04 3.38e-14 0.86

11 985 8 2.51e-04 2.41e-04 2.41e-04 6.52e-13 0.96
31 129 9 6.51e-05 6.46e-05 6.46e-05 3.92e-13 0.99

100 697 9 1.73e-05 1.80e-05 1.80e-05 1.80e-12 1.04
341 721 10 5.89e-06 5.12e-06 5.12e-06 8.03e-14 0.87

Table 6.
Example 1: Iteration with MG II (adaptive stopping criterion).

N #It J(e) ηh+η(2)
m ηh η(2)

m I tot
eff

25 1 2.28e-01 4.49e-02 4.13e-02 2.02e-03 0.20
81 1 1.05e-01 1.86e-02 1.82e-02 3.11e-04 0.18

289 1 4.13e-02 9.52e-03 9.47e-03 4.87e-05 0.23
913 1 1.36e-02 5.07e-03 5.07e-03 4.34e-06 0.37

2 369 1 3.82e-03 2.42e-03 2.42e-03 1.47e-08 0.63
5 489 1 9.90e-04 8.57e-04 8.53e-04 3.39e-06 0.87

11 985 1 2.51e-04 2.47e-04 2.41e-04 6.12e-06 0.98
31 129 1 6.51e-05 7.10e-05 6.44e-05 6.50e-06 1.09

100 697 2 1.73e-05 1.96e-05 1.79e-06 1.66e-06 1.13
341 721 2 5.89e-06 5.76e-06 5.12e-06 4.41e-07 0.98

Figure 3. Example 1: Gain in efficiency of the multigrid algorithm by the adaptive choice of smooth-
ing steps on the different mesh levels.
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Figure 4. Example 2: Configuration and locally refined meshes.

to the fine tuning of the smoothing process on the different mesh levels according
to Algorithm 3.1. To this end, we allow the reduction to only one pre- and post-
smoothing step and the use of a damped Jacobi iteration on thebasis of the size of
the components(Rj(ṽ j), z̃j−p j

j−1z̃j−1) of the error estimator related to the different
mesh levels. Figure 3 shows that a significant gain in computing efficiency can be
achieved by this fine tuning of the smoothing process. The same observation has
been made for the next test example.

4.2. Example 2

The second test demonstrates the efficiency of the adaptive multigrid algorithm.
We compare the CPU time needed by the methods MG I and MG II to achieve a
prescribed error TOL. We consider the Poisson problem

−∆u = 1 in Ω, u = 0 on∂Ω (4.2)

on an L-shaped domainΩ ⊂ R
2 (see Fig. 4). As target functional we choose the

pointvalueJ(u) := u(a) with a= (0.2,0.2). Since this functional is not inH−1(Ω)
it has to be regularized,

J(u) := |Bε(a)|−1
∫

Bε (a)
u(x) dx = u(a)+O(ε2)

whereBε(a) := {z∈ Ω, |z−a| 6 ε} is a ball around the pointa with radius ε =
TOL. In this case, the resulting meshes are locally refined asdepicted in Fig. 4.

We solve the discrete equations by the multigrid algorithm using aV-cycle and
four ILU-steps for pre- and post-smoothing, i.e., as in Example 1, we setγ = 1
and ν = µ = 4 in the multigrid algorithm. In order to test the performance of the
adaptive multigrid algorithm, we consider the CPU time needed for achieving the
error tolerance TOL= 5×10−7. Figure 5 depicts the CPU times for both algorithms
MG I and MG II. These results show that the adaptive algorithmMG II is twice as
fast as the algorithm MG I.
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Figure 5. Example 2: Comparison of the CPU time.

Table 7.
Example 2: Iteration with MG I (iteration towards round-offerror level).

N #It J(e) ηh+η(2)
m ηh η(2)

m I tot
eff

65 3 8.85e-03 1.14e-02 1.14e-02 5.04e-15 1.29
225 5 4.06e-03 1.57e-03 1.15e-03 6.01e-14 0.39
721 6 1.16e-03 9.57e-04 9.57e-04 3.95e-14 0.83

1 625 7 4.35e-04 2.26e-04 2.26e-04 4.70e-14 0.52
4 573 8 1.43e-04 9.95e-05 9.95e-05 7.71e-13 0.70

11 565 8 5.50e-05 2.98e-05 2.98e-05 1.67e-12 0.54
31 077 10 1.85e-05 1.28e-05 1.28e-05 6.33e-13 0.70
67 669 9 5.94e-06 4.89e-06 4.89e-06 2.67e-12 0.82

174 585 10 8.47e-07 2.00e-06 2.00e-06 1.79e-12 2.35
427 185 10 4.94e-07 7.63e-07 7.63e-07 1.37e-12 1.54

Table 8.
Example 2: Iteration withMG II (adaptive stopping criterion).

N #It J(e) ηh+η(2)
m ηh η(2)

m I tot
eff

65 1 8.85e-03 1.14e-02 1.14e-02 9.36e-06 1.29
225 1 4.06e-03 1.67e-03 1.58e-03 9.42e-05 0.41
721 2 1.16e-03 9.58e-04 9.57e-04 1.35e-06 0.83

1 625 1 4.35e-04 2.44e-04 2.26e-04 1.89e-05 0.56
4 573 2 1.43e-04 1.01e-04 9.95e-05 1.28e-06 0.70

11 565 2 5.50e-05 3.04e-05 2.98e-05 6.43e-07 0.55
31 077 2 1.85e-05 1.40e-05 1.28e-05 1.23e-06 0.76
67 669 2 5.94e-06 5.36e-06 4.89e-06 4.71e-07 0.90

174 585 3 8.47e-07 2.05e-06 2.00e-06 5.04e-08 2.41
427 185 3 4.94e-07 8.04e-07 7.63e-07 4.07e-08 1.62
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Table 9.
Example 2: Gauß–Seidel iteration on locally refined mesh with 721 knots (starting value
taken from the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(1)

m Im,1
eff ‖u(t)

L −uL‖∞

1 1.16e-03 9.71e-04 0.84 2.72e-03 2.47e-03 0.91 6.91e-02
10 1.16e-03 9.42e-04 0.81 1.68e-03 1.65e-03 0.98 4.21e-02
20 1.16e-03 9.48e-04 0.82 1.21e-03 1.20e-03 0.99 3.66e-02
40 1.16e-03 9.53e-04 0.82 6.86e-04 6.81e-04 0.99 2.78e-02
60 1.16e-03 9.55e-04 0.82 3.90e-04 3.88e-04 1.00 2.10e-02
80 1.16e-03 9.56e-04 0.82 2.21e-04 2.21e-04 1.00 1.59e-02
100 1.16e-03 9.56e-04 0.82 1.25e-04 1.25e-04 1.00 1.19e-02

Table 10.
Example 2: CG iteration on a locally refined mesh with 721 knots (starting value taken from
the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(1)

m Im,1
eff |bL−ALξ (t))|A−1

1 1.16e-03 8.06e-04 0.69 1.54e-03 7.33e-04 0.47 6.50e-02
5 1.16e-03 9.50e-04 0.81 1.85e-03 1.80e-03 0.97 7.57e-03

10 1.16e-03 9.54e-04 0.82 4.60e-04 4.50e-04 0.97 6.34e-03
15 1.16e-03 9.50e-04 0.81 3.10e-05 2.99e-05 0.96 1.17e-03
20 1.16e-03 9.55e-04 0.82 2.17e-05 2.17e-05 0.99 3.08e-04
25 1.16e-03 9.57e-04 0.82 4.12e-06 4.12e-06 0.99 1.01e-04
30 1.16e-03 9.57e-04 0.82 1.09e-06 1.09e-06 1.00 1.32e-05
35 1.16e-03 9.57e-04 0.82 2.72e-07 2.72e-07 0.99 2.02e-06
40 1.16e-03 9.57e-04 0.82 8.22e-09 8.22e-09 1.00 2.31e-07
45 1.16e-03 9.57e-04 0.82 2.05e-09 2.05e-09 1.00 2.46e-08
50 1.16e-03 9.57e-04 0.82 1.93e-10 1.93e-10 1.00 1.94e-09
55 1.16e-03 9.57e-04 0.82 3.40e-12 3.40e-12 1.00 6.85e-11

In Tables 7 and 8, we show the convergence history of the two algorithms MG
I and MG II. The results in Table 8 show that in most of the adapted meshes, we
only need two or three multigrid iterations to reduce the iteration error well below
the discretization error.

Next, we consider the computation of the approximate solution uh on a fixed
locally refined, but still rather coarse, mesh by the Gauß–Seidel and the conjugate
gradient (CG) method.

5. Application to saddle point problems: the Stokes equations

Next, we turn to elliptic problems of saddle point form. As a prototypical example,
we consider the Stokes equations of fluid mechanics describing the behavior of a
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Figure 6. Configuration of the flow example.

creeping incompressible fluid under the action of an external volume force f ,

−ν∆v+ ∇p= f , ∇ ·v= 0 in Ω
v = 0 on Γrigid, v = vin on Γin, ν∂nv− pn= 0 on Γout

(5.1)

on a two-dimensional domainΩ as depicted in Fig. 6 with boundary∂Ω = Γrigid ∪
Γin ∪Γout. The unknowns are the velocity vectorv and the scalar pressurep of
the fluid. The viscosity parameterν ∈ R+ is given and the density is normalized to
ρ ≡ 1. A parabolic velocity profile is prescribed at the inletΓin .

The quantity of interest is the drag coefficient of the squareobstacle in the flow,

J(u) =
2

Ū2D

∫

S
nT(2ντ(v)−pI)e1 ds

whereu= {v, p} , τ(v) := ∇v+∇vT the strain tensor,n the outer normal unit vector
along S, D the diameter of the obstacle,̄U the maximum inflow velocity, ande1
the unit vector in the main flow direction.

The discretization of the Stokes problem (5.1) is based on its standard varia-
tional formulation: Find{v, p} ∈ (v̂+H)×L satisfying

ν(∇v,∇ϕ)− (p,∇ ·ϕ) = ( f ,ϕ) ∀ϕ ∈ H

(χ ,∇ ·v) = 0 ∀χ ∈ L
(5.2)

where H := H1
0(Ω)2 , L := L2(Ω) , and v̂ is a suitable (solenoidal) extension of

the boundary data toΩ . The discretization of the saddle point problem (5.2) uses
equal-order (bilinear)Q1 elements for velocity and pressure with additional pressure
stabilization for circumventing the usual ‘inf-sup’ stability condition. The resulting
discrete equations read

ν(∇vh,∇ϕh)− (ph,∇ ·ϕh) = ( f ,ϕh) ∀ϕh ∈ Hh

(χh,∇ ·vh)+sh(χh, ph) = 0 ∀χh ∈ Lh
(5.3)

where Vh ⊂ V and Lh ⊂ L are the finite element subspaces andsh(χh, ph) is a
stabilizing form. The details of this Galerkin discretization are described, e.g., in
[19] or [5]. The discrete saddle point problem (5.3) is solved by a multigrid method
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Figure 7. Refined mesh with 4898 knots in the flow example.

using the standard mesh transfer operations and a ‘block ILU’ iteration as smoother
(with four pre- and post-smoothing steps), where at every mesh point the velocity
and pressure unknowns are grouped together. By arguments completely analogous
to the ones used above for the Poisson model situation the following combined
a posteriori error estimator for the discretization and iteration erroron the finest
meshTL can be derived

J(v, p)−J(ṽL, p̃L) ≈ ηh+ η (2)
m

:= ρ(ṽL, p̃L)(Πz̃L)+
L

∑
j=1

(Rj(x̃ j), z̃j − p j
j−1z̃j−1) (5.4)

where Rj(x̃ j) = Pj(( f −AhSν
j+1(ũ j+1))−Ahx̃ j) for 1 6 j < L is the residual of

the approximated defect correction,RL(x̃L) := PL( f −AhũL) and z̃j represents the
approximated dual solution on levelj . For the practical evaluation of the error es-
timator (5.4), we use the same strategy as described above inSection 3. Figure 7
shows an adapted mesh for computing the drag coefficient.

Tables 11, 12, and 13 show the results obtained by the MG I iteration (with al-
gebraic stopping criterion) on a coarse and on a very fine meshand on a sequence
of adaptively refined meshes. The corresponding results obtained by the MG II it-
eration (with adaptive stopping criterion) are shown in Tables 14, 15, and 16. We
clearly see the efficiency and reliability of the adaptive stopping criterion. Finally
the superiority of the adaptive stopping criterion over the‘algebraic’ stopping crite-
rion with respect to CPU time is demonstrated in Fig. 8.

6. Application to PDE-constrained optimization problems

The final application is in linear-quadratic optimal control. Through the first-order
necessary optimality condition (the KKT system), we are lead to the discretization
of linear elliptic saddle point problems. We consider the prototypical model problem

J(u,q) := 1
2‖u− ū‖2 + 1

2α‖q‖2 → min

−∆u = q+ f in Ω, u = 0 on ∂Ω.
(6.1)
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Table 11.
Iteration with MG I (algebraic stopping criterion) on a locally refined
mesh with 708 knots (starting value taken from the precedingmesh).

It J(eh) ηh Ih
eff J(em) η(2)

m Im,2
eff

1 5.69e-05 7.69e-05 1.35 3.49e-04 3.54e-04 1.01
2 5.69e-05 9.17e-05 1.61 5.62e-06 5.56e-06 0.99
3 5.69e-05 9.19e-05 1.61 8.34e-07 8.34e-07 1.00
4 5.69e-05 9.19e-05 1.61 6.04e-08 6.04e-08 1.00
5 5.69e-05 9.19e-05 1.61 8.49e-10 8.49e-10 1.00
6 5.69e-05 9.19e-05 1.61 2.16e-10 2.16e-10 1.00
7 5.69e-05 9.19e-05 1.61 4.78e-12 4.78e-12 1.00
8 5.69e-05 9.19e-05 1.61 6.76e-13 6.76e-13 1.00
9 5.69e-05 9.19e-05 1.61 3.83e-14 3.83e-14 1.00

10 5.69e-05 9.19e-05 1.61 8.33e-16 8.33e-16 1.00
11 5.69e-05 9.19e-05 1.61 1.77e-16 1.76e-16 1.01
12 5.69e-05 9.19e-05 1.61 2.03e-18 1.37e-18 1.48

Table 12.
Iteration with MG I (algebraic stopping criterion) on a locally refined mesh
with 306308 knots (starting value taken from the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(2)

m Im,2
eff

1 1.85e-07 2.97e-07 1.60 1.18e-06 1.18e-06 1.00
2 1.85e-07 2.97e-07 1.60 1.22e-08 1.22e-08 1.00
3 1.85e-07 2.97e-07 1.60 1.17e-09 1.17e-09 1.00
4 1.85e-07 2.98e-07 1.60 4.04e-11 4.04e-11 1.00
5 1.85e-07 2.98e-07 1.60 5.98e-12 5.98e-12 1.00
6 1.85e-07 2.98e-07 1.60 7.64e-13 7.64e-13 1.00
7 1.85e-07 2.98e-07 1.60 7.99e-14 7.99e-14 1.00
8 1.85e-07 2.98e-07 1.60 6.77e-15 6.75e-15 1.00
9 1.85e-07 2.98e-07 1.60 6.92e-16 6.79e-16 1.02

10 1.85e-07 2.98e-07 1.60 5.80e-17 4.43e-17 1.31
11 1.85e-07 2.98e-07 1.60 2.02e-17 9.35e-19 21.65
12 1.85e-07 2.98e-07 1.60 8.74e-19 1.13e-17 0.08

Table 13.
Iteration with MG I (algebraic stopping criterion).

N #It J(e) ηh+η(2)
m ηh η(2)

m I tot
eff

708 12 5.69e-05 9.19e-05 9.19e-05 2.03e-18 1.61
1 754 9 3.12e-05 2.81e-05 2.81e-05 1.05e-16 0.90
4 898 9 1.83e-05 1.21e-05 1.21e-05 2.20e-15 0.66

11 156 9 1.05e-05 7.01e-06 7.01e-06 9.49e-15 0.67
22 526 10 5.34e-06 3.77e-06 3.77e-06 8.36e-17 0.71
44 874 10 2.75e-06 2.12e-06 2.12e-06 3.39e-16 0.77
82 162 10 1.26e-06 1.09e-06 1.09e-06 4.29e-17 0.86

159 268 11 5.76e-07 6.11e-07 6.11e-07 1.26e-17 1.06
306 308 12 1.85e-07 2.98e-07 2.98e-07 8.74e-19 1.60
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Table 14.
Iteration with MG II (adaptive stopping criterion) on locally refined mesh
with 708 knots (starting value taken from the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(2)

m Im,2
eff

1 5.69e-05 7.69e-05 1.35 3.49e-04 3.54e-04 1.01
2 5.69e-05 9.17e-05 1.61 5.62e-06 5.56e-06 0.99

Table 15.
Iteration with MG II (adaptive stopping criterion) on locally refined mesh
with 306308 knots (starting value taken from the preceding mesh).

It J(eh) ηh Ih
eff J(em) η(2)

m Im,2
eff

1 1.86e-07 2.98e-07 1.60 1.24e-06 1.24e-06 1.00
2 1.86e-07 2.98e-07 1.60 1.31e-08 1.31e-08 1.00

Table 16.
Iteration with MG II (adaptive stopping criterion).

N #It J(e) ηh+ηm ηh η(2)
m I tot

eff

708 2 5.69e-05 9.74e-05 9.17e-05 5.62e-06 1.71
1 754 2 3.12e-05 2.82e-05 2.81e-05 6.81e-08 0.90
4 898 2 1.83e-05 1.21e-05 1.21e-05 1.60e-08 0.66

11 156 2 1.05e-05 7.05e-06 7.01e-06 3.42e-08 0.67
22 526 2 5.34e-06 3.82e-06 3.77e-06 5.48e-08 0.72
44 874 2 2.75e-06 2.16e-06 2.12e-06 4.04e-08 0.78
82 162 2 1.27e-06 1.11e-06 1.09e-06 2.63e-08 0.88

159 268 2 5.76e-07 6.41e-07 6.10e-07 3.07e-08 1.11
306 308 2 1.86e-07 3.10e-07 2.97e-07 1.31e-08 1.67
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Figure 8. Comparison of the CPU time.

on the two-dimensional unit squareΩ := (0,1)2 with prescribed volume forcef
and target distribution ¯u. The regularization parameter is chosen in the rangeα =
10−3 − 10−6 . The variational formulation of the state equation is as follows: For
q∈ Q := L2(Ω) find u∈V := H1

0(Ω) satisfying

(∇u,∇ϕ)− (q,ϕ) = ( f ,ϕ) ∀ϕ ∈V. (6.2)

For solving this optimization problem, we use the Euler–Lagrange approach. Intro-
ducing the Lagrangian

L (u,q,λ ) := J(u,q)+ ( f +q,λ )− (∇u,∇λ )

with the adjoint variable (Lagrangian multiplier)λ ∈V . Then, the Lagrange prin-
ciple states that for any optimal solution{u,q} ∈V ×Q there exists an adjoint so-
lution λ ∈V such that the triplet{u,q,λ} is a stationary point of the Lagrangian,
i.e., it satisfies the following saddle point system:

(∇ϕ ,∇λ )− (u,ϕ) = −(ū,ϕ) ∀ϕ ∈V

(χ ,λ )+ α(χ ,q) = 0 ∀χ ∈ Q

(∇u,∇ψ)− (q,ψ) = ( f ,ψ) ∀ψ ∈V.

(6.3)

In strong form this reads like

−∆λ −u = −ud in Ω, λ |∂Ω = 0

λ + αq = 0 in Ω
−∆u−q= f in Ω, u|∂Ω = 0.

(6.4)
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Using conforming bilinearQ1 elements for discretizing all three variables{u,q,λ}
in associated finite element subspacesVh ⊂ V and Qh ⊂ Q leads to the discrete
saddle point problems

(∇ϕh,∇λh)− (uh,ϕh) = −(ū,ϕh) ∀ϕh ∈Vh

(χh,λh)+ α(χh,qh) = 0 ∀χh ∈ Qh

(∇uh,∇ψh)− (qh,ψh) = ( f ,ψh) ∀ψh ∈Vh.

(6.5)

These linear saddle point problems are solved by the multigrid method using a block
ILU iteration as smoother, which couples the nodal values ofthe three unknowns
{uh,qh,λh} at every mesh point. For measuring the error in this approximation, we
choose the cost functionalJ itself, which seems to be the most natural option.

Proposition 6.1. Let {u,q,λ} ∈V ×Q×V be the solution of the KKT system
(6.3) and {ũh, q̃h, λ̃h} ∈ Vh ×Qh×Vh the approximative finite element solution of
the discrete KKT system(6.5) on the finest meshTh . Then, we have the following
error representation, in which the first three terms correspond to the discretization
error and the last four to the iteration error:

J(u,q)−J(ũh, q̃h) = 1
2ρ̃∗(u−ϕh)+ 1

2ρ̃q(q− χh)+ 1
2ρ̃(λ −ψh)

+ 1
2ρ̃∗(ϕh− ũh)+ 1

2ρ̃q(χh− q̃h)+ 1
2ρ̃(ψh− λ̃h)

+ ρ̃(λ̃h)

(6.6)

for arbitrary elementsϕh,ψh ∈Vh and χh ∈ Qh , with the error residuals

ρ̃∗(·) := (ũh− ū, ·)− (∇·,∇λ̃h)

ρ̃q(·) := α(·, q̃h)+ (·, λ̃h)

ρ̃(·) := ( f + q̃h, ·)− (∇ũh,∇·).

Proof. We introduce the tensor product spacesX := V ×Q×V and Xh :=
Vh×Qh×Vh with elementsx := {u,q,λ} and xh := {uh,qh,λh} , respectively. We
denote by ˜xh := {ũh, q̃h, λ̃h} the approximative solution of the discretized KKT
system obtained by any iterative method. Further, onX , we define the functional
L(x) := L (u,q,λ ) . Hence solving the KKT systems (6.3) and (6.5) is equivalentto
determining stationary pointsx∈ X and xh ∈ Xh of L :

L′(x)(y) = 0 ∀y∈ X, L′(xh)(yh) = 0 ∀yh ∈ Xh. (6.7)

We will use elementary calculus for the errore := x− x̃h ,

L(x)−L(x̃h) =

∫ 1

0
L′(x̃h +se)(e) ds
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and the general error representation for the trapezoidal rule.

∫ 1

0
f (s) ds= 1

2

(
f (0)+ f (1)

)
+ 1

2

∫ 1

0
f ′′(s)s(s−1) ds.

Observing thatL′(x)(y) = 0, y∈X, andL′′′(·)≡ 0 for the quadratic functionalL(·) ,
we conclude

L(x)−L(x̃h) = 1
2L′(x̃h)(x− x̃h).

Hence, recalling the particular structure of the functional L(·) and observing thatu
satisfies the state equations,

J(u,q)−J(ũh, q̃h) = L(x)− ( f +q,λ )+ (∇u,∇λ )

−L(x̃h)+ ( f + q̃h, λ̃h)− (∇ũh,∇λ̃h)

= L(x)−L(x̃h)+ ( f + q̃h, λ̃h)− (∇ũh,∇λ̃h)

= 1
2L′(x̃h)(x− x̃h)+ ρ̃(λ̃h).

Since, for arbitraryyh ∈ Xh ,

L′(x̃h)(x− x̃h) = L′(x̃h)(x−yh)+L′(x̃h)(yh− x̃h)

and
L′(x̃h)(·) = ρ̃∗(·)+ ρ̃q(·)+ ρ̃(·)

the proof is complete. �

Remark 6.1. The choice of the cost functionalJ for error control may not be
considered as appropriate in the present case of a tracking problem where the par-
ticular least-squares form of the functional is somewhat arbitrary. Instead one may
want to measure the solution accuracy rather in terms of somemore relevant quan-
tity depending on control and state, such as for example the.norm ‖q− q̃h‖Q of
the error in the control. This can be accomplished by utilizing an additional dual
problem such as described in [10] and [6].

For the practical evaluation of the error estimator in Proposition 6.1, we again
use the strategy described in Section 3. The discretizationerror is estimated by the
estimator

η̃h := 1
2ρ̃∗(Πhũh)+ 1

2ρ̃q(Πhq̃h)+ 1
2ρ̃(Πhλ̃h)

whereΠh := I (2)
2h − id , with the patchwise biquadratic interpolationI (2)

2h : Vh →V(2)
2h .

Due to the choice of the dual weights in the discretization error estimator the
iteration error estimator reduces to

η̃m := ρ̃m(λ̃h).
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Table 17.
MG II with block ILU smoothing,α = 10−3.

N E #It Eh η̃h Ih
eff Em η̃m Im

eff

25 9.35e-04 2 9.35e-04 1.83e-03 1.96 1.14e-07 1.97e-07 1.73
81 1.64e-04 2 1.78e-04 2.19e-04 1.22 1.42e-05 1.68e-05 1.18

289 3.75e-05 2 4.16e-05 4.39e-05 1.05 4.13e-06 4.33e-06 1.04
1 089 1.05e-05 2 1.02e-05 1.03e-05 1.01 3.48e-07 3.52e-07 1.01
3 985 2.67e-06 2 2.54e-06 2.55e-06 1.00 1.28e-07 1.28e-07 1.00

13 321 6.65e-07 2 6.48e-07 6.49e-07 1.00 1.63e-08 1.63e-08 1.00
47 201 1.76e-07 2 1.70e-07 1.69e-07 0.99 6.76e-09 6.77e-09 1.00

163 361 4.89e-08 2 4.69e-08 4.68e-08 0.99 1.97e-09 1.97e-091.00
627 697 1.23e-08 2 1.21e-08 1.21e-08 0.99 2.13e-10 2.13e-101.00

6.1. Numerical example

We consider the optimization problem with ¯u = (2π2)−1(2π2−1)sin(πx)sin(πy)
and the exact solution

u =
−1
2π2 sin(πx)sin(πy), q =

1
2απ2 sin(πx)sin(πy), λ =

−1
2π2 sin(πx)sin(πy).

The forcing term f is accordingly adjusted. For simplicity the discrete stateand
control spaces are chosen the same,Vh = Qh , using isoparametric bilinear shape
functions. In order to access the ‘exact’ multigrid error, we solve the discrete equa-
tions on each mesh additionally by the multigrid method withblock ILU smoothing
until the initial residual is reduced by a factor 10−15. For this test, we use the multi-
grid algorithm MG II with the stopping criterion that the iteration error estimator
ηm is ten times smaller than the discretization error estimator ηh . Using a similar
notation as in Proposition 6.1,x = {u,q,λ},xh = {uh,qh,λh}, x̃h = {ũh, q̃h, λ̃h} , we
denote the errors by

E := J(x)−J(x̃h), Eh := J(x)−J(xh), Em := J(xh)−J(x̃h)

and the effectivity indices by

Ih
eff :=

∣∣∣
η̃h

Eh

∣∣∣, Im
eff :=

∣∣∣
η̃m

Em

∣∣∣.

First, we solve the discretized KKT system (6.5) by the multigrid method using
the V-cycle and again four steps of block-ILU pre- and post-smoothing on each
level. The corresponding results for different values of the regularization parameter
α are presented in Tables 17–19. The stopping criterion used in the computation
turns out to be efficient and reliable.

Finally, in Table 20 we present the results for the same problem with α = 10−3

solved by the multigrid method using only one undamped blockJacobi step as
smoothing. Obviously for the present problem the simplest block Jacobi smooth-
ing works almost as well as the much more expensive block ILU smoother. Further,
the stopping criterion used in the computation is efficient and reliable.
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Table 18.
MG II with block ILU smoothing,α = 10−4.

N E #It Eh η̃h Ih
eff Em η̃m Im

eff

25 1.46e-03 1 1.40e-03 8.22e-03 5.85 5.92e-05 1.18e-04 1.99
81 1.97e-04 2 1.89e-04 4.69e-04 2.47 7.91e-06 9.85e-06 1.24

289 4.25e-05 3 4.20e-05 5.73e-05 1.36 4.49e-07 4.77e-07 1.06
1 089 1.08e-05 3 1.02e-05 1.11e-05 1.09 6.29e-07 6.39e-07 1.01
3 985 2.70e-06 3 2.53e-06 2.60e-06 1.03 1.74e-07 1.75e-07 1.00

13 321 6.63e-07 3 6.19e-07 6.56e-07 1.06 4.40e-08 4.41e-08 1.00
47 201 1.78e-07 3 1.65e-07 1.70e-07 1.02 1.33e-08 1.33e-08 1.00

163 409 5.03e-08 3 4.69e-08 4.69e-08 1.00 3.48e-09 3.48e-091.00

Table 19.
MG II with block ILU smoothing,α = 10−5.

N E #It Eh η̃h Ih
eff Em η̃m Im

eff

25 5.12e-03 1 5.12e-03 6.89e-02 13.45 6.94e-07 1.40e-06 2.03
81 2.35e-04 2 2.45e-04 2.84e-03 11.57 1.00e-05 1.25e-05 1.25

289 6.01e-05 2 4.29e-05 1.81e-04 4.22 1.71e-05 1.80e-05 1.05
1 089 9.48e-06 3 1.02e-05 1.87e-05 1.82 7.87e-07 7.99e-07 1.01
3 985 2.62e-06 3 2.34e-06 3.12e-06 1.33 2.75e-07 2.77e-07 1.00

13 561 5.19e-07 4 5.22e-07 6.95e-07 1.33 2.51e-09 2.52e-09 1.00
47 913 1.52e-07 3 1.59e-07 1.73e-07 1.08 7.41e-09 7.43e-09 1.00

164 217 4.90e-08 3 4.59e-08 4.71e-08 1.02 3.08e-09 3.08e-091.00

Table 20.
MG II with block Jacobi smoothing,α = 10−3.

N E #It Eh η̃h Ih
eff Em η̃m Im

eff

25 9.44e-04 4 1.83e-03 9.35e-04 1.96 1.55e-05 8.99e-06 1.73
81 1.84e-04 5 2.20e-04 1.78e-04 1.23 7.59e-06 6.44e-06 1.18

289 4.36e-05 5 4.40e-05 4.16e-05 1.05 2.04e-06 1.96e-06 1.04
1 089 1.10e-05 4 1.03e-05 1.02e-05 1.01 8.53e-07 8.44e-07 1.01
3 985 2.69e-06 4 2.55e-06 2.56e-06 0.99 1.31e-07 1.30e-07 1.00

13 321 6.94e-07 4 6.47e-07 6.69e-07 0.96 2.51e-08 2.51e-08 1.00
47 201 1.95e-07 4 1.69e-07 1.90e-07 0.88 4.39e-09 4.40e-09 1.00

171 969 7.24e-08 3 4.42e-08 6.93e-08 0.63 3.07e-09 3.10e-090.99
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