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Abstract — This paper develops a combinagbosteriorianalysis for the discretization and iteration
errors in the computation of finite element approximatiansltiptic boundary value problems. The
emphasis is on the multigrid method, but for comparison aisple iterative schemes such as the
Gaul3—Seidel and the conjugate gradient method are coedidére underlying theoretical framework
is that of the Dual Weighted Residual (DWR) method for ga@ted error estimation. On the basis
of thesea posteriorierror estimates the algebraic iteration can be adjustédetdiscretization within a
successive mesh adaptation process. The efficiency ofdpeged method is demonstrated for several
model situations including the simple Poisson equatioa Stokes equations in fluid mechanics and
the KKT system of linear-quadratic elliptic optimal coritppoblems.

Keywords: goal-oriented adaptivitya posteriorierror estimation, finite elements, iterative methods,
multigrid

1. Introduction

Multigrid methods are extensively used for efficiently sotythe discrete equations
resulting from the discretization of partial differente&juations (see, e.g., [12,18]).
In this paper, we consider a general linear elliptic probtéseretized by a finite el-
ement method as proposed, e.g., in [17]. We develop an adanptiltigrid method
for efficient solution of the algebraic equations resultfrmm the proposed finite
element discretization. The idea of the algorithm is afed: The exact finite el-
ement solution approximates the continuous solution oplyoudiscretization ac-
curacy. It seems natural to stop the iteration of the line&res when the error due
to the approximate solution of the discrete equations ispazable to the error due
to the finite element discretization itself. To this purpose derive ara posteriori
error estimator which assesses the influences of the dimaieh and the inexact
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144 D. Meidner, R. Rannacher, and J. Vihharev

solution of the arising algebraic equations. This allowsaubalance both sources
of errors.

The use of adaptive techniques basedaquosteriori estimation of the dis-
cretization error is well accepted in the context of finitereént discretization of
partial differential equations (see, e.g., [9,20]). Althb the convergence proper-
ties of multigrid methods are discussed in many publicatitei. [1,13,14]), there
are only few results oa posteriorierror estimation of the iteration error. In the case
of solving the Poisson equation, work has been done in [7awlextended to the
Stokes equations in [3]. There, the automatic control offiseretization and multi-
grid errors has been developed with respett’tcand energy norms. The reliability
of the proposed adaptive algorithm has been verified on imiforefined meshes.

However, in many application, the error measured in globains does not pro-
vide useful bounds for the error in terms of a given functipaaso calledquantity
of interest In this work, we propose the control of both discretizatemd itera-
tion errors with respect to a general output functional.sTdgproach is based on
a posteriorierror estimation by dual weighted residuals as presentéd].ilVe in-
corporate the adaptive iteration method in the solutiorcgss of a given problem.
The estimator derived for the discretization error is usethe one hand as stopping
criterion for the algebraic iteration and on the other haraViges the necessary in-
formation for the construction of locally refined meshes idev to improve the
accuracy of the discretization.

A further issue of this paper is the numerical realizatiothefadaptive method.
We explain implementational details and verify the relipiand the efficiency of
the proposed algorithm on locally refined meshes.

As starting point, we consider the elliptic problem

Au=f inQ, u=0 onl (1.1

with a linear elliptic operato’A and a right-hand siddé € L?(Q) where Q is as-
sumed to be a bounded domain Rf!, d € {2,3}, with polygonal boundary .
For simplicity, we impose homogeneous Dirichlet boundamyditions. The case of
nonhomogeneous Dirichlet conditions is considered in remadlowever, the tech-
nigues provided in this paper can also be applied to problsitsother types of
boundary conditions.

For the variational formulation of problem (1.1), we intumé the Hilbert space
V :=H(Q) and the inner product df?(Q) defined by

(VW) == (W) 2(q) ::/vwdx.
Q

With the bilinear forma(-,-): V xV — R associated to the linear operatdr the
weak formulation of the considered problem (1.1) reads lé@ie: Findu €V such

that
a(u,¢)=(f,¢) VpeV. (1.2)

For the numerical treatment, we discretize this problerditeato a linear system
of algebraic equations. Usually, for instance in the ad8,9], thea posteriori
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Goal-oriented error control 145

error estimators for the discretization error are derivedian the assumption that the
exact solution of this linear systems is available. Thisieesthe crucial property of
Galerkin orthogonality. In contrast, here, we assume tieatliscrete equations are
solved only approximately and denote the obtained apprabaraolution byuy in
contrast to the notation;, for the ‘exact’ discrete solution. Our goal is the derivatio
of anaposteriorierror estimate with respect to the quantity of interésv — R
of the form
J(u) — I(Gn) = N+ Nem. 1.3)

Here, nn, and Ny, denote error estimators which can be evaluated from the com-
puted discrete solutiomy,; where nn, assesses the error due to the finite element
discretization andjn, the error due to the inexact solution of the discrete egnsatio

The outline of the paper is as follows: In Section 2, we déscthe finite el-
ement discretization of problem (1.2) and develop goa+ddda posteriorierror
estimates for the discretization as well as the iteratioorsr Section 3 discusses the
practical evaluation of these error estimates and the imgifeation of the resulting
adaptation strategies. The numerical results present8ddtion 4 demonstrate the
efficiency and reliability of the proposed method for twotptgpical scalar model
problems. The last two sections are devoted to the extensfionr theory to differ-
ent types of saddle point problems. Section 5 presentstsdsulthe approximation
of the Stokes equations in fluid mechanics and Section 6 forstiution of the
so-called KKT system (first-order optimality condition) afinear-quadratic opti-
mization problem.

2. Aposteriori error analysis for a linear model problem

In this section, we discuss the discretization of problem?)(by the Galerkin fi-
nite element method. Based on this discretization, we ddhig discrete equations
which will be solved by iterative schemes, particularly bg multigrid method.

We consider the discretization of problem (1.2) with usualtilinear H?*-
conforming finite elements as explained in the standardalilee; see for exam-
ple [17]. To this end, we consider two- or three dimensiomalpe-regular meshes
Ty = {K} consisting of (convex) quadrilateral or hexahedral cKllsvhich consti-
tute a nonoverlapping covering of the computational don§irThe discretization
parameterh is defined as a cellwise constant function by settig := hg with
the diametery of the cell K. On the mesHI},, we construct a conforming finite
element spac¥, C V in a standard way:

Vh == {Vh €V, Wk € QY(K) for K € Th}.

Here, Q'(K) consists of shape functions obtained via iso-parametaicsforma-
tions of bi/trilinear polynomials irQ(K) defined on the reference cédi= (0,1)°.

With these preliminaries, we formulate the following appneation for (1.2):
Find u, € V, such that

a‘(uha ¢h) = (fad)h) \v/d)h € Wh. (21)
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146 D. Meidner, R. Rannacher, and J. Vihharev
Problem (2.1) is equivalent to the linear system of equation
A& =P

where u, = ZiN:1 & ¢ with the usual nodal basiégi, i = 1,...,N} of W, and the
coefficient vectoré = (&)N ;. Further, = (aj; )iNj:]_ is theN x N stiffness matrix
with entries a; = a(¢i,¢;) and B = (bj)'L;, with b; = (f,¢;), represents the
right-hand side.

We introduce thé 2 projectionP,: V — W, defined by

(Phu, ¢n) = (U, ¢n)  Vén €V (2.2)
and the Ritz projectiorQy: V — V, given by
a(Qnu,¢n) =a(u,Pn) Vén € Vh. (2.3)
Further, we define the discrete operafor. Vi, — W, by
(AnVh, $n) = &(Vh, @) Vvh, Pn € Vh. (2.4)
With these notations, we can rewrite equation (2.1) egeint/ in the form
Anln = By f. (2.5)

Below, we will consider hierarchies of mesh&s := Ty, j =0,...,L, with mesh
size parameterh;. Accordingly, the notatiorV :=Vh,, Uj := Un;, Pj := Ry, Qj =
Qn;, and Aj := Ap; will be used.

In the next section, we first establish aposteriorierror representation with
respect to a linear functional for the error arising due &fthite element discretiza-
tion alone. After that, we derive the error representatitiictvassesses the influence
of the discretization error and the error occurring due toittexact solution of the
discrete equations.

2.1. Estimation of the discretization error

We consider the control of the error with respect to some tifyaof interestJ(u),
which is assumed to be given in terms of a linear functiaha¥ — R. To this end,
we introduce the following continuous dual problem: FandV such that

a($.2)=J(¢) VoeV. (2.6)
Using Galerkin orthogonality and the definition of the duallgem (2.6), we obtain
the error identity fole, ;= u—uy
J(en) = a(en,2) = a(en,z— 2)

i . 2.7)
= (f,z2=2%)—a(un,z2—2) =: p(un)(z— 2))
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Goal-oriented error control 147

wherez, is an arbitrary element &f,. As usual the residual terp(un)(z— 2,) can
be rewritten in terms of local cell and edge residuals of traputed approximation
u, multiplied by local weights involving the dual solutian (see [9] or [2]). The
practical evaluation of this residual term will be descdlixelow.

Remark 2.1. In the case of nonhomogeneous Dirichlet boundary condition
ulr = g, we have the following error representation:

J(€n) = p(Un)(z—=2) — (9= 0h,On)r, 2 € Vh.

Here, g, is an approximation o used as boundary condition fop, up|r = gh.

2.2. Estimation of the iteration error

The following analysis concerns the approximative sohutid the discrete prob-
lems by the usual iterative schemes, such as the Gaul3—%sédledbd, the conju-
gate gradient (CG) method, or the multigrid method. The go#te derivation of
an a posterioriestimate of the resulting ‘iteration error’ in terms of thetence
J(up) — I(Tn) .

First, we recall the definition of the multigrid algorithm.e/¢uppose that we
are given a sequence of refined grils= Th,, j =0,1,...,L, with corresponding
finite element spaceg; = i,,. We assume the meshé&y to become finer with in-
creasingj and the spacey; to be nestedy; C V1. We denote by5;: V; —V; the

smoothing operator on the levgl The grid transfer operations ap.%“: Vj — Vi1

(prolongation) andfﬁl: Vj — Vj_1 (restriction). We aim at finding an approxima-
tion G. € V_ on the finest mesH to the solutionu, € V. of the equation

Au = f|_ = H_f (28)

using a multigrid algorithm based on the hierarchy of meshgsj =0,1,...,L.

Starting with an initial guessj(l_o), the multigrid process produces a sequence of

approximationsu” = u{" ™ via the procedurel ™Y = MG(L,y,u", f,) described

in Algorithm 2.1.

Algorithm 2.1. Multigrid cycle MG(j,y, ugt) fi):
1. if j=0then
2. Solve Aoug”) = fo exactly.
3: else
4: Pre—smoothingug& = S‘j’(ugt)).
5. Compute the residuatt]” := f; —A;a.
6
7

Restrict the residuati"; :=r/*d{".

forr=1to ydo
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148 D. Meidner, R. Rannacher, and J. Vihharev
8: Starting Withvgo) —Olteratevﬁr) =MG(j—1,y,v f ! ,d~(t 1)
9: endfor

10:  Apply the correctionu :(t) = *t pJ 1v§y)l

11:  Post- smoothlngpjt+l S‘J“(:ét ).
12: end if

The parameters and u indicate respectively the number of the pre- and post-
smoothing steps. The structure of the multigrid algoritlsndétermined by the pa-
rametery. The casey = 1 corresponds to the so-call®dcycle andy = 2 to the
W-cycle.

For comparison, we also consider the Gaul3—Seidel methdatidarodal-value
vector & € RN corresponding to the finite element solutione V ,

GA+2)EV =g -z &Y, t=12.., §9=&, (29

with the usual splittingeq = .4 + 21 + 4%, , or the conjugate gradient (CG) method
(without preconditioning),

EVerN 1B — A &Y= min B — Ay (2.10)
YLEH

with the Krylov spaces’; :=spaf{ ., .« ... ,;z%l_t‘l} , on the different mesh levels.
All three iterative methods yield approximative discreptutions on the fines mesh
T, which are denoted by, €V, .

To derive an error estimator which includes the error dudeédriexact solution
of the discrete problems, we replace the ‘exact’ discrelatisa u_ on the current
finest mestl'. = Ty, in (2.7) by the computed discrete solutian. When doing so,
an additional term appears in the error estimate which deduhe discrete residuals
R;(GL) € V; defined by

RJ (GL) = PJ ( f|_ — ALUL).

Proposition 2.1. Let u€ V be the solution of problertl.1) and G, € V| the
approximative finite element solution of the discrete pFoi(2.8) on the finest mesh
T, . Then, we have the following general representation foreter e:=u— Gy :

3(e) = p(A)(z—2) + p(d)(2). (2.11)

If the multigrid method has been used the following refingadasentation holds for
the iteration residual:

L
P(tL)(Z) = Y (Ri(0L),2 — 2j-1) + (Ro(TL), 20)- (2.12)

=1

Here,z; €V, j=0,1,...,L, can be chosen arbitrarily and the residya{fi_)(-) =
(f,-)—a(l,-) is as defined irf2.7).
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Goal-oriented error control 149
Proof. We again consider the continuous dual problem (2.6). Theldsh

Jle)=alez) =alez—2 )+alez)
=(f,z—2)—a(l,z—2 )+ (f,2.) —a(l,2) (2.13)
=p()(z=2) +p(0) ().

This is the asserted error representation (2.11). The dinst bn the right-hand side
corresponds to the discretization error. If the multigridthod has been used, the
second term corresponding to the iteration error can bettewiin the form

L
Z (f.2j—2j-1) —a(li,2 - 2j-1) } +{(f,20) —a(liL, 20) }. (2.14)

SinceVj Cc W for j <L, we observe by the definitions &@;, Pj, and A; that for
¢; €V there holds

(f.¢;) —a(l, ¢;) = (P, ¢;) — (A Qj L, ¢;)
Further, by means of the identi#y;Q; = P;A_ for j <L, we have
(Pif,¢;) — (AiQjtiL, ¢;) = (P(f —ALTL), ¢;) = (Rj (L), ;)-

Using these identities fop; = 2, —2;_1 and ¢o=7y in (2.14) completes the proof
of the proposition. O

The error representation (2.11) can be used for approximatlutionsu_ ob-
tained by any solution process. Below, we will describe hbig tan be used for
designing automatic stopping criteria for the iterationtloa finest mesh level de-
pending on the actual discretization error. We emphasgktite choice of the dual
weights in the iteration error representation depends @wttights in the discretiza-
tion error.

Remark 2.2. The result of Proposition 2.1 does not depend on the spexial f
of the multigrid cycle, i.e.\V-, W- or F-cycles are allowed. Moreover, there is no
restriction concerning the application of pre/post-srhow and the choice of the
smoother used in the multigrid method.

The error representation (2.12) for the multigrid methogleixs the structure of
this ‘optimal’ iteration method. This allows us also to tuhe smoothing iteration
on the several mesh levels in order to get an easier balangihghe discretization
error. The effectivity of this process is demonstrated leydhamples presented be-
low. In [7] it has been shown that in the case of the canonjicdibsen grid transfer

operations,

pI™t =id,
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150 D. Meidner, R. Rannacher, and J. Vihharev

and only pre-smoothing is used, the discrete residBal&_) can be identified with
the multigrid residual®R; (V;) obtained in the course of the correction process from
the equatiomAjvj = Pjdj 1,
R] ([]L) == PJ ( f|_ - ALGL)

=Pf—PAS (G%) - PARE 19 1

=Pj(dL — A1V 1)

=Pd. —PAL_1§ 4 V|_ 1) —PA_1pr 302

(2.15)
=P (dj2 —AjVj11)
"

= Pidj 2~ PAj 1154 (V ,+1) PiA;j11p Y

= Pj(dj1—AY) = Ry(%)).
This shows that the discrete residuals can be evaluateceaespective grid levels
T; without explicitly referring to the fine-grid solutioo, ~

Corollary 2.1. Assume the grid transfer operations in the multigrid akiponi
are chosen canonically and the multigrid residBg{vo) on the coarsest level van-
ishes. Then, under the conditions of Proposition 2.1, theviiing error representa-
tion holds:

J(e) =p()(z-2)+ ) (Rj(Y)),Zj —7-1). (2.16)

Proof. The assertion follows by Proposition 2.1 and identity (2.15 0

Remark 2.3. With a similar argumentation as in Proposition 2.1 and Gorol
lary 2.1, one can easily verify the following result in theseaf nonhomogeneous
Dirichlet data,u|r = g. There holds

L
whereg, € V| are the Dirichlet boundary conditions of , u_|r =g..

3. Practical realization

In this section, we describe the numerical evaluation otpesterioriestimator for
the discretization error. We particularly consider thecditization with piecewise
bilinear finite elements on quadrilateral meshes in two splmensions.
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Goal-oriented error control 151

Figure 1. Patched mesh with hanging nodes.

3.1. Evaluation of the estimator for the discretization erior

The representation of the discretization error in (2.7pines interpolation errors,
since we set, := Ipz. For their approximation, we discretize the continuousl dua
problem (2.6) with finite elements accordingly to the primpabblem (2.1). Thus,
the discretized dual problem reads: Fmd: W, such that

a(fn,zn) =J(¢n) Von €W

We solve this problem by a multigrid method on the same grithasused for the
primal problem. To be more precise, we carry out one muttigdration for solv-
ing the primal problem and then we execute one multigrichtten for solving the
dual problem. With these computed solutions, we evalu&erttor estimators. This
alternating solving will be continued till the stoppingterion for the multigrid iter-
ation is achieved. For solving the discrete dual probleerglis no need to assemble
a new stiffness matrix. The matrix corresponding to the ptiproblem can simply
be transposed.

We approximate the interpolation errors using the compafgatoximation of
the dual problemz,” and patchwise interpolations into higher-order finite edam
spaces. To this end, we introduce the linear opefdtpmwhich maps the computed
solution to the approximations of the interpolation erras- 11z ~ MyZ,. In the
present case of discretization by bilinear finite elemdntsis chosen as

Mh=132 —id, 12 v = v,

The piecewise biquadratic interpolatitéﬁ can easily be computed if the underly-
ing mesh provides a patch structure. That is, one can alwaybioe four adjacent
cells to a macro cell on which the biquadratic interpolatiam be defined. An ex-
ample of such a patched mesh is shown in Fig. 1.

We obtain the following computable estimator for the diszegion error:

Nh := P(0h) (MhZh) = (f,MNnZy) —a(ln, MhZ,).

This error estimator is used for controlling the discrdtaa error and for steering
mesh refinement. For the latter purpose, the error estintatanust be localized
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152 D. Meidner, R. Rannacher, and J. Vihharev

to cellwise contributions in order to obtain error indiaatdo be used within an
adaptive algorithm. To this end, we consider the nodal bggisi = 1,2,...,N} of
W, . Letting Z denote the coefficient vector af,"we have the representation

N ~
zh:i;‘pizi-

We can rewrite the error estimator as
nh=(¥,2)
where(-,-) denotes the Euclidian inner product BN andW¥ is given by

Wi == p(0n) (Mno).

However, a direct localization of this term leads to an oseneation of the error due
to the oscillatory behavior of the residuals, cf. [16]. Toiavthis, we employ the
approach described in [11]. We introduce a filtering operato—= id—IQh, where

|gh is an interpolation operator in the space of bilinear finimments defined on
patches and denote the coefficient vector of the filtered shiation 7z, by Z7:

N ~
Tz = i; ¢zl

Then, the properties ofr and Iéﬁ) and the linearity of the residua with respect
to the weight imply .
nh= <W,Zn>.

A further localization leads to nodewise error indicatgrs given as
nhi=WzZ" i=12....N.

For the mesh refinement these nodewise contributions dtedto the correspond-
ing cellwise contributions. Then, these error indicataes @sed to select the cells
which have to be refined within the adaptive algorithm. Faggilde mesh refine-
ment strategies we refer to [9].

3.2. Evaluation of the estimator for the iteration error

Now, we describe the evaluation of tlagosteriori error estimator for the itera-
tion error, particularly the multigrid error. Furthermowmee concretize the choice of
multigrid components for the technical implementationdusethe following nu-
merical examples.

For an arbitrary iteration method, we use the general egtinfiar the iteration
error on the finest mesli, given in Proposition 2.1.:

Ny = (f,2) —a(l.,2) (3.1)
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whereZ is the approximative solution of the dual problem on the finesshT), .

In order to evaluate the representation of the multigridregiven in Proposi-
tion 2.1 or its refined version (2.16) in Corollary 2.1, we &ddu approximate the
termsZ; andZ_; which are defined on the different grid levely and T;_;. One
possibility is to store the calculated dual solutions orhdaeel. Let us assume that
we want to calculate;— z;_, for one fixed j. Then, we prolongate the approxi-
mated dual solutiorg;”; from a coarser level on the finer levgl Since we have
nested finite element spacésc Vi, 1, we use the canonical embeddip@l =id

as the prolongation operator in the multigrid method. By thieans, we approxi-
mate

5 _5 .~5% _p 3
Zj =41~ 4= Pj_14j-1,

and obtain the following approximative estimator for theltigud error:
L .
&s:z ).Zj= P|_1Zj-1) (3.2)

wherevj is the approximative solution of the defect equation on niEgh

There is still an alternative way of estimating the multigerror using the iden-
tity (2.16). The computed dual solutiap 6n the finest mesh IeveI is restricted to the
lower mesh levels. Defining the function&z, := rJ 1r}ié zL for0<j<lL,
the dual weights are approximated likg-7;_; ~ rLzL pJ 1r |_ 15, . On the finest

level we compute the differencg = pt_,rt 1% .. Thus, we obtain the following
a posteriorierror estimator for the multigrid error:

- i&wlﬁpmﬂﬁwmmo Spht). (33)

The approximationsﬂzL are defined using the restriction operatof§1, which in

the considered situation are chosen &projections on the grid level§ ji-
In numerical experiments it has turned out that all thremften error estimators

r;,(TP, i =1,2,3, are equally efficient. Therefore, in all the numericatdesvolving

the multigrid algorithm, we have employed the iteratioroeﬂstimatorn,%z) , which
also allows us to adapt the smoothing iterations on therdifftemesh levels.

3.3. Adaptive algorithm

We propose an adaptive algorithm where the discretizatiohnaultigrid errors are
balanced. That is, we carry out the multigrid iteration utite following relation
holds:

[0} 2 -
Moreover, we use the additional information provided by tidtigrid error esti-
matornr(nz) and allow the number of smoothing steps to vary over therdiffemesh
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154 D. Meidner, R. Rannacher, and J. Vihharev

levels in order to reduce the amount of work. In the following denote bw, and
W the number of pre- and post-smoothing steps, respectmelyesh level in the
multigrid method. On the levels with biggest error conttiba, we perform four
pre- and post-smoothing steps, while only one pre- and $rasibthing step is used
otherwise.

Assuming that we want to compute the value of the quantitytafrest up to a
given accuracy TOL, we follow the adaptive process given lgoAthm 3.1.

Algorithm 3.1. Adaptive algorithm:
1: Choose an initial discretizatiofi,, and setl = 0.

2: loop

3. Sett=1.

4:  repeat

5 if t=1then

6: for j=0tol do

7: Setvj=1,u;=1.
8 end for

9 end if

10.: Apply one multigrid cycle to the problemu; = fi.
11: Sett=t+1.

12: Evaluate the estimatons;,ﬁf) and ny,.
13; According to the error indicators on the different levels,

(Ri(7)),2 — p)_1%-1)

determine the subset of levdls= {ij,...,in} with the biggest contribution
to the error estimator and increase the number of smoothéps by

14: if t> 1then

15: for j=1tondo

16: Setvij =4, Hi; =4,

17: end for

18: end if

19: until [Nm|<c|nn|

20: if |Nn +Nm| < TOL then

21: stop

22:  endif

23:  Refine the mesf, — Ty, accordingly to the size of the error
indicatorsny, ;.

24:  Interpolate the previous solutiam 6n the current mesfy, ;.

25:  Incrementl .

26: end loop

To start the multigrid algorithm, we use the values from tbmputation on the
previous mesh level as starting data. This allows us to awoitbcessary iterations
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on current mesh.

Furthermore, we use an equilibration face (0,1) for comparing the two
estimatorsnm and nn: |Nm| < c|np|. This ensures also that the local mesh refine-
ment results from the value of the discretization erromeator. For the numerical
tests following below, we have chosen the faatas 01. Selecting a smaller value
does not improve the accuracy of the computed value very rhutincreases the
number of the multigrid iterations. A greater value, howewean affect the local
mesh refinement.

As described in Algorithm 3.1, we have to evaluate the erstnmetorsn, and
Nm in every multigrid step. In order to reduce the computatiovark, we propose
the following strategy for the adaptive algorithm: Aftethdng the discrete equa-
tions via multigrid on the mesfiy, , we save the valugp, by settingnoiq := N, -
On the next finer mesfy, ., , we do not evaluate the discretization error estimator
Nh,, until

M| < €[Noial- (34)

Then, we save the new valup, ,, in neq. In the next multigrid iteration condition
(3.4) will be verified again. Thus, we reduce the number ofuataons of the dis-
cretization error estimator on each mesh. In the numersts presented below the
error estimatomy, has been evaluated at most twice on every mesh.

4. Numerical examples: scalar model problems

In this section, we demonstrate the efficiency and relighdf the proposed adap-
tive algorithm. We compare the adaptive multigrid methodotibed above with a
multigrid method employing a residual based stopping oitesuch as commonly
used for iterative methods. To this end, we replace the adsipipping criterion in
the multigrid solver by requiring that the initial multigrresidual is to be reduced
by a factor of 101, The discretization error estimator will still be used foet
construction of locally refined meshes and the error conth denote this algo-
rithm by MG | and the adaptive multigrid algorithm by MG II. Eher, we show the
results obtained by using the Gaul3—Seidel and the CG metiambmputing the
discrete solutions on the different mesh levels.

In the tables below, the following notation is used for thecdétization error
€ =U—Un:

J(en) ‘exact’ functional discretization error
nn estimator of discretization error

h Nh

leff = ‘m effectivity index of discretization error estimafor
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156 D. Meidner, R. Rannacher, and J. Vihharev
for the iteration erroey, := un — On:

J(em) ‘exact’ functional iteration error

estimator of general iteration ertor

S

) first special estimator of multigrid iteration error

) second special estimator of multigrid iteration error

[ P |
~ 3% 3% 3.

(i
|0 = ‘ m
eff J(a"n)

‘ effectivity index of iteration error estimatars

and for the total erroe:= u— Oy:

| — ‘%‘ effectivity index of total error estimator

In order to access the ‘exact’ iteration errdfen), we solve the discrete equa-
tions on each mesh additionally by the algorithm MG | using lhU-iteration as
smoother and requiring that the multigrid residual to baioced down to round-off
error level 101°. The ‘exact’ value of)(e,) is obtained by using an approximation
to u on a very fine mesh.

4.1. Example 1

The first numerical test examines the sharpness and practiewance of the
a posteriorierror estimators derived above on locally refined meshescalsider
the singularly perturbed elliptic problem

—eAu+u=1 inQ, u=0 ondQ (4.1)

on the two-dimensional unit squa® := (0,1)? with & = 10~4. As quantity of
interest, we take the mean value

J(u) == \Q]‘l/gu(x)dx.

In this case, boundary layers occur and the meshes reséitingthe adaptive al-
gorithm are strongly refined near the boundary (see Fig. Qg © the particular
choice of the right hand sidé = 1 and the functionall(-) the dual solutionz
coincides with the primal solutiom. We calculate the corresponding discrete so-
lutions U and Z using theV-cycle, in the first set of tests, with four Jacobi-steps
for pre- and post-smoothing, i.e., in the multigrid Algarit 3.1, we sety =1 and

v = U = 4. These tests are performed on the isotropic meshes showig.i@.
The anisotropic meshes are used for the test of the multidgorithm with adap-
tively chosen smoothing separately on the different mestdeOn such meshes the

- 10.1515/JNUM.2009.009
Downloaded from De Gruyter Online at 09/27/2016 10:00:39PM
via Technische Universitat Miinchen



Goal-oriented error control 157

Figure 2. Example 1: Isotropic and anisotropic coarse initial mestmeslocally refined meshes.

proper choice of smoothing is particularly critical for teiiciency of the multigrid
method. _

Table 1 demonstrates the effectivity of the different eestimators ;' defined
above for the multigrid iteration on a coarse and on a veryrfieeh. All three esti-
mators turn out to be surprisingly efficient even on coarseshes. This observation
has also been made for the other test problems described balbwill therefore
not be repeated there.

Next, Table 2 shows the development of the discretizatimhraultigrid errors
and thea posteriori error estimators from a solution process on a very fine mesh
with 341721 knots. This table also demonstrates the sufficjeality of the error
estimators. We note that we would have stopped the multitgridtion in the adap-
tive algorithm already after one respectively two stepgryag out the multigrid
iteration beyond this point does not significantly imprdwe obtained solution. This
shows that the stopping criterion in the multigrid methoeéfficient. Tables 3 and
4 show the corresponding results for the Gaul3—Seidel an@@déeration. Also
in these cases the stopping criterion turns out to be efficidrese two primitive
iterative methods have been tested only on rather coarskesiegcause of there
extremely slow convergence on finer meshes.

Next, we demonstrate the interaction of the two error estnsafor the dis-
cretization and iteration errors by showing the full higtof the adaptive algorithm
(Algorithm 4.1) for MG | and MG Il in Tables 5 and 6, respectiveWe see that
only a few multigrid iterations are sufficient to reduce ttegation error below the
discretization error level.

Finally, we test the effectivity of the multigrid error asiator nr(nz) with respect
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Table 1.

Example 1: Effectivity of the different error estimators fihe
multigrid iteration on a coarse mesh with 913 knots and on a
very fine mesh with 341721 knots.

mesh with 913 cells mesh with 341721 cells

[ L L I 10 103
1 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00
Table 2.
Example 1: Effectivity of error estimators on a mesh with 321 knots.
2 ,
it J(en) o N dem) oW 1%?
1 5.89e-06 5.11e-06 0.87 4.65e-06 4.65e-06 1.00
2 5.89e-06 5.12e-06 0.87 4.41e-07 4.41e-07 1.00
3 5.89e-06 5.12e-06 0.87 7.06e-08 7.06e-08 1.00

Table 3.

Example 1: Gaul3—Seidel iteration on a locally refined megh w489 knots (starting
value taken from the preceding mesh).

(1)

it J(en) Mh 10 J(em) I u®—ufe
1 9.90e-04 8.42e-04 0.85 1.40e-03 1.26e-03 0.90 2.50e-01
5 9.90e-04 8.54e-04 0.86 7.53e-05 7.52e-05 1.00 4.29e-02
10 9.90e-04 8.53e-04 0.86 5.08e-06 5.08e-06 1.00 9.35e-03
15 9.90e-04 8.53e-04 0.86 3.42e-07 3.42e-07 1.00 2.49e-03
20 9.90e-04 8.53e-04 0.86 2.28e-08 2.28e-08 1.00 6.54e-04
Table 4.

CG iteration on a locally refined mesh with 5489 knots (startialue taken from the preced-
ing mesh).

(1)

it Jen) Mh 10 J(em) M ot IbL—ALEW |5

1  900e-04 840e-04 085 1.19e03 1.02e03 0.86 1.326-02

5 000e-04 8566-04 086 217604 2.13¢-04 0.98 1.85¢-03
10 9.90e-04 854e-04 086 254605 2.54e-05 1.00 2.626-04
15 0090e-04 85304 086 1.19e-05 1.19e-05 1.00 5.426-05
20 0.90e-04 853¢-04 086 4.21e07 4.21e-07 1.00 6.11-06
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Example 1: Iteration with MG | (iteration towards round-effror level).

N #it o nn+n? m n?
25 6 2.28e-01 4.03e-02 4.03e-02 4.31e-14 0.18
81 7 1.05e-01 1.82e-02 1.82e-02 6.21e-16 0.17
289 6 4.13e-02 9.46e-03 9.46e-03 3.58e-15 0.23
913 9 1.36e-02 5.07e-03 5.07e-03 9.61e-14 0.37
2369 9 3.82e-03 2.42e-03 2.42e-03 7.46e-13 0.63
5489 10 9.90e-04 8.53e-04 8.53e-04 3.38e-14 0.86
11985 8 2.51e-04 2.41e-04 2.41e-04 6.52e-13 0.96
31129 9 6.51e-05 6.46e-05 6.46e-05 3.92e-13 0.99
100697 9 1.73e-05 1.80e-05 1.80e-05 1.80e-12 1.04
341721 10 5.89e-06 5.12e-06 5.12e-06 8.03e-14 0.87

Table 6.

Example 1: Iteration with MG Il (adaptive stopping critetjo

Nt e mtnw e g
25 1 2.28e-01 4.49e-02 4.13e-02 2.02e-03 0.20
81 1 1.05e-01 1.86e-02 1.82e-02 3.11e-04 0.18
289 1 4.13e-02 9.52e-03 9.47e-03 4.87e-05 0.23
913 1 1.36e-02 5.07e-03 5.07e-03 4.34e-06 0.37
2369 1 3.82e-03 2.42e-03 2.42e-03 1.47e-08 0.63
5489 1 9.90e-04 8.57e-04 8.53e-04 3.39e-06 0.87
11985 1 2.51e-04 2.47e-04 241e-04 6.12e-06 0.98
31129 1 6.51e-05 7.10e-05 6.44e-05 6.50e-06 1.09
100697 2 1.73e-05 1.96e-05 1.79e-06 1.66e-06 1.13
341721 2 5.89e-06 5.76e-06 5.12e-06 4.41e-07 0.98
107 J L ‘
fixed smoothing —e—
adaptive smoothing —>—
10 F 1
ORTRES ;
10° | ;
10'7 Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000
CPU time

Figure 3. Example 1: Gain in efficiency of the multigrid algorithm byethdaptive choice of smooth-
ing steps on the different mesh levels.
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(-1,1) (1,1)

(0,0)

0,-1) (1,-1)

Figure 4. Example 2: Configuration and locally refined meshes.

to the fine tuning of the smoothing process on the differershrevels according
to Algorithm 3.1. To this end, we allow the reduction to onlyeopre- and post-
smoothing step and the use of a damped Jacobi iteration dvasiig of the size of
the component$R; (V;), Z; —p}flij_l) of the error estimator related to the different
mesh levels. Figure 3 shows that a significant gain in comguaificiency can be
achieved by this fine tuning of the smoothing process. Thessalnservation has
been made for the next test example.

4.2. Example 2

The second test demonstrates the efficiency of the adaptivegnd algorithm.
We compare the CPU time needed by the methods MG | and MG llheee a
prescribed error TOL. We consider the Poisson problem

—Au=1 inQ, u=0 ondQ (4.2)

on an L-shaped domaif c R? (see Fig. 4). As target functional we choose the
pointvalueJ(u) := u(a) with a= (0.2,0.2). Since this functional is not il ~1(Q)
it has to be regularized,

I(u) = |B£(a)|*1/ 100 X = u(@) + 0(?)
B:(a

whereBg(a) :={z€ Q, |z—a| < €} is a ball around the poind with radius € =

TOL. In this case, the resulting meshes are locally refinedepgcted in Fig. 4.

We solve the discrete equations by the multigrid algorithsimgi aV -cycle and
four ILU-steps for pre- and post-smoothing, i.e., as in Egkarl, we sety =1
and v = u = 4 in the multigrid algorithm. In order to test the performaraf the
adaptive multigrid algorithm, we consider the CPU time resktbr achieving the
error tolerance TOE=5x 10~7. Figure 5 depicts the CPU times for both algorithms
MG | and MG II. These results show that the adaptive algori@ Il is twice as
fast as the algorithm MG |I.
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Figure 5. Example 2: Comparison of the CPU time.

Table 7.

MGI —e—

MGII —<—

500 1000 1500 2000 2500 3000
CPU time

Example 2: Iteration with MG | (iteration towards round-effror level).

N

#lt

(2)

(2)

Je  nhtnm Nh M o
65 3 8.85e-03 1.14e-02 1.14e-02 5.04e-15 1.29
225 5 4.06e-03 1.57e-03 1.15e-03 6.0le-14 0.39
721 6 1.16e-03 9.57e-04 9.57e-04 3.95e-14 0.83
1625 7 4.35e-04 2.26e-04 2.26e-04 4.70e-14 0.52
4573 8 1.43e-04 9.95e-05 9.95e-05 7.71e-13 0.70
11565 8 5.50e-05 2.98e-05 2.98e-05 1.67e-12 0.54
31077 10 1.85e-05 1.28e-05 1.28e-05 6.33e-13 0.70
67669 9 5.94e-06 4.89e-06 4.89e-06 2.67e-12 0.82
174585 10 8.47e-07 2.00e-06 2.00e-06 1.79e-12 2.35
427 185 10 4.94e-07 7.63e-07 7.63e-07 1.37e-12 1.54
Table 8.
Example 2: Iteration wittMG Il (adaptive stopping criterion).
N #t e mtnh nw o
65 1 8.85e-03 1.14e-02 1.14e-02 9.36e-06 1.29
225 1 4.06e-03 1.67e-03 1.58e-03 9.42e-05 041
721 2 1.16e-03 9.58e-04 9.57e-04 1.35e-06 0.83
1625 1 4.35e-04 2.44e-04 2.26e-04 1.89e-05 0.56
4573 2 1.43e-04 1.01e-04 9.95e-05 1.28e-06 0.70
11565 2 5.50e-05 3.04e-05 2.98e-05 6.43e-07 0.55
31077 2 1.85e-05 1.40e-05 1.28e-05 1.23e-06 0.76
67669 2 5.94e-06 5.36e-06 4.89e-06 4.71e-07 0.90
174585 3 8.47e-07 2.05e-06 2.00e-06 5.04e-08 2.41
427185 3 4.94e-07 8.04e-07 7.63e-07 4.07e-08 1.62
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Table 9.

Example 2: Gaul3—Seidel iteration on locally refined meskh w21 knots (starting value
taken from the preceding mesh).

It J(en) Mh 10 J(em) w1 —u e

1 1.16e-03 9.71e-04 0.84 2.72e-03 2.47e-03 0.91 6.91e-02
10 1.16e-03 9.42e-04 0.81 1.68e-03 1.65e-03 0.98 4.21e-02
20 1.16e-03 9.48e-04 0.82 1.21e-03 1.20e-03 0.99 3.66e-02
40 1.16e-03 9.53e-04 0.82 6.86e-04 6.81e-04 0.99 2.78e-02
60 1.16e-03 9.55e-04 0.82 3.90e-04 3.88e-04 1.00 2.10e-02
80 1.16e-03 9.56e-04 0.82 2.21e-04 2.21e-04 1.00 1.59e-02

100 1.16e-03 9.56e-04 0.82 1.25e-04 1.25e-04 1.00 1.19e-02

Table 10.

Example 2: CG iteration on a locally refined mesh with 721 &r(starting value taken from
the preceding mesh).

It J(en) nh 1 J(em) n& o [bL—ALED)|p s

1 1.16e-03 8.06e-04 0.69 1.54e-03 7.33e-04 0.47 6.50e-02

5 1.16e-03 9.50e-04 0.81 1.85e-03 1.80e-03 0.97 7.57e-03
10 1.16e-03 9.54e-04 0.82 4.60e-04 4.50e-04 0.97 6.34e-03
15 1.16e-03 9.50e-04 0.81 3.10e-05 2.99e-05 0.96 1.17e-03
20 1.16e-03 9.55e-04 0.82 2.17e-05 2.17e-05 0.99 3.08e-04
25 1.16e-03 9.57e-04 0.82 4.12e-06 4.12e-06 0.99 1.01e-04
30 1.16e-03 9.57e-04 0.82 1.09e-06 1.09e-06 1.00 1.32e-05
35 1.16e-03 9.57e-04 0.82 2.72e-07 2.72e-07 0.99 2.02e-06
40 1.16e-03 9.57e-04 0.82 8.22e-09 8.22e-09 1.00 2.31e-07
45 1.16e-03 9.57e-04 0.82 2.05e-09 2.05e-09 1.00 2.46e-08
50 1.16e-03 9.57e-04 0.82 1.93e-10 1.93e-10 1.00 1.94e-09
55 1.16e-03 9.57e-04 0.82 3.40e-12 3.40e-12 1.00 6.85e-11

In Tables 7 and 8, we show the convergence history of the tgarihms MG
I and MG Il. The results in Table 8 show that in most of the addpheshes, we
only need two or three multigrid iterations to reduce theattien error well below
the discretization error.

Next, we consider the computation of the approximate smiuti, on a fixed
locally refined, but still rather coarse, mesh by the Gaultleéband the conjugate
gradient (CG) method.

5. Application to saddle point problems: the Stokes equatios

Next, we turn to elliptic problems of saddle point form. Asratptypical example,
we consider the Stokes equations of fluid mechanics desgribie behavior of a
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Figure 6. Configuration of the flow example.

creeping incompressible fluid under the action of an extesmlame force f,

—vAv+Op=1f, O-v=0 inQ

v=0 onTgg, V=V" onTin, Vdv—pn=0 on Moy ®-1)
on a two-dimensional domaif as depicted in Fig. 6 with boundagQ = Iigig U
In Ul out- The unknowns are the velocity vecterand the scalar pressune of
the fluid. The viscosity parameterc R, is given and the density is normalized to
p = 1. A parabolic velocity profile is prescribed at the inlgf,.
The quantity of interest is the drag coefficient of the squédastacle in the flow,

I(u) = UE—D/SnT(z\/r(v)—pl)elds

whereu= {v, p}, 1(v) := Ov+0Ov' the strain tensom the outer normal unit vector
along S, D the diameter of the obstacle) the maximum inflow velocity, and;
the unit vector in the main flow direction.

The discretization of the Stokes problem (5.1) is based ©stdandard varia-
tional formulation: Find{v, p} € (V+H) x L satisfying

(x,0-v)=0 V¥xelL '
where H := H}(Q)?, L :=L%(Q), and V'is a suitable (solenoidal) extension of
the boundary data t@. The discretization of the saddle point problem (5.2) uses
equal-order (bilinear; elements for velocity and pressure with additional presssur
stabilization for circumventing the usual ‘inf-sup’ sthtlyi condition. The resulting
discrete equations read

v(Ovh, O¢n) — (pn, 0 ¢n) = (f,¢n)  Vén € Hy

5.3
(Xh, O-Vh) +Sh(Xh, Pn) =0 VxneLln (-3)

whereV, CV and L, C L are the finite element subspaces aadxn, pn) is a
stabilizing form. The details of this Galerkin discretipat are described, e.g., in
[19] or [5]. The discrete saddle point problem (5.3) is sdiay a multigrid method
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Figure 7. Refined mesh with 4898 knots in the flow example.

using the standard mesh transfer operations and a ‘blockitetadtion as smoother
(with four pre- and post-smoothing steps), where at everghnpmint the velocity
and pressure unknowns are grouped together. By argumemigaetely analogous
to the ones used above for the Poisson model situation thewfo combined
a posteriori error estimator for the discretization and iteration emwarthe finest
meshT, can be derived

IV, p) = I, BL) ~ N+ N

L .
=1

where Rj(Xj) = Pj((f — AnS/, 1(Tj+1)) — AnXj) for 1< j <L is the residual of
the approximated defect correctioR, (%) := B.(f —AnlL) andZj represents the
approximated dual solution on levgl For the practical evaluation of the error es-
timator (5.4), we use the same strategy as described abdveciion 3. Figure 7
shows an adapted mesh for computing the drag coefficient.

Tables 11, 12, and 13 show the results obtained by the MGaltiter (with al-
gebraic stopping criterion) on a coarse and on a very fine raedlon a sequence
of adaptively refined meshes. The corresponding resultsradat by the MG I it-
eration (with adaptive stopping criterion) are shown inl@€akl4, 15, and 16. We
clearly see the efficiency and reliability of the adaptivepging criterion. Finally
the superiority of the adaptive stopping criterion over‘tiigebraic’ stopping crite-
rion with respect to CPU time is demonstrated in Fig. 8.

6. Application to PDE-constrained optimization problems

The final application is in linear-quadratic optimal cohtrbhrough the first-order
necessary optimality condition (the KKT system), we arel leathe discretization
of linear elliptic saddle point problems. We consider thetpiypical model problem

J(u,q) = 3llu—ul*+ 3aq? — min

. (6.1)
—Au=q+f inQ, u=0 onodQ.
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Table 11.
Iteration with MG | (algebraic stopping criterion) on a Idigarefined
mesh with 708 knots (starting value taken from the precediegh).

=

J(en) Mh 10 J(em) e ome

5.69e-05 7.69%e-05 1.35 3.49e-04 3.54e-04 1.01
5.69e-05 9.17e-05 1.61 5.62e-06 5.56e-06 0.99
5.69e-05 9.19e-05 1.61 8.34e-07 8.34e-07 1.00
5.69e-05 9.19e-05 1.61 6.04e-08 6.04e-08 1.00
5.69e-05 9.19e-05 1.61 8.49e-10 8.49e-10 1.00
5.69e-05 9.19e-05 1.61 2.16e-10 2.16e-10 1.00
5.69e-05 9.19e-05 1.61 4.78e-12 4.78e-12 1.00
5.69e-05 9.19e-05 1.61 6.76e-13 6.76e-13 1.00
5.69e-05 9.19e-05 1.61 3.83e-14 3.83e-14 1.00
10 5.69e-05 9.19e-05 1.61 8.33e-16  8.33e-16 1.00
11 5.69e-05 9.19e-05 1.61 1.77e-16 1.76e-16 1.01
12 5.69e-05 9.19e-05 1.61 2.03e-18 1.37e-18 1.48

OCO~NOOOTAWNE

Table 12.
Iteration with MG | (algebraic stopping criterion) on a Itlgaefined mesh
with 306308 knots (starting value taken from the precediegtm.

=

J(en) Mh 10 J(em) n@ me

1.85e-07 2.97e-07 1.60 1.18e-06 1.18e-06 1.00
1.85e-07 2.97e-07 1.60 1.22e-08 1.22e-08 1.00
1.85e-07 2.97e-07 1.60 1.17e-09 1.17e-09 1.00
1.85e-07 2.98e-07 1.60 4.04e-11 4.04e-11 1.00
1.85e-07 2.98e-07 1.60 5.98e-12 5.98e-12 1.00
1.85e-07 2.98e-07 1.60 7.64e-13 7.64e-13  1.00
1.85e-07 2.98e-07 1.60 7.99e-14 7.99%e-14 1.00
1.85e-07 2.98e-07 1.60 6.77e-15 6.75e-15  1.00
1.85e-07 2.98e-07 1.60 6.92e-16 6.79%e-16  1.02
10 1.85e-07 2.98e-07 1.60 5.80e-17 4.43e-17 131
11 1.85e-07 2.98e-07 1.60 2.02e-17 9.35e-19 21.65
12 1.85e-07 2.98e-07 1.60 8.74e-19 1.13e-17 0.08

O©CO~NOOOTAWNE

Table 13.
Iteration with MG | (algebraic stopping criterion).
N #t e mtn m ne o

708 12 5.69e-05 9.19e-05 9.19e-05 2.03e-18 1.61
1754 9 3.12e-05 2.81e-05 2.81e-05 1.05e-16 0.90
4898 9 1.83e-05 1.21e-05 1.21e-05 2.20e-15 0.66

11156 9 1.05e-05 7.01e-06 7.01e-06 9.49e-15 0.67
22526 10 5.34e-06 3.77e-06 3.77e-06 8.36e-17 0.71
44874 10 2.75e-06 2.12e-06 2.12e-06 3.39e-16 0.77
82162 10 1.26e-06 1.09e-06 1.09e-06 4.29e-17 0.86
159268 11 5.76e-07 6.11e-07 6.11e-07 1.26e-17 1.06
306 308 12 1.85e-07 2.98e-07 2.98e-07 8.74e-19 1.60
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Table 14.

Iteration with MG 1l (adaptive stopping criterion) on logatefined mesh
with 708 knots (starting value taken from the preceding mesh

It J(en) Mh 10 J(em) n@ me

1 5.69e-05 7.69e-05 1.35 3.49e-04 3.54e-04 1.01
2 5.69e-05 9.17e-05 1.61 5.62e-06 5.56e-06 0.99

Table 15.

Iteration with MG 1l (adaptive stopping criterion) on logatefined mesh
with 306308 knots (starting value taken from the precediegm).

It J(en) Mh 10 J(em) n@ me

1 1.86e-07 2.98e-07 1.60 1.24e-06 1.24e-06 1.00
2 1.86e-07 2.98e-07 1.60 1.31e-08 1.31e-08 1.00

Table 16.
Iteration with MG Il (adaptive stopping criterion).

N #it J®  Nh+nm Mh e e
708 2  5696-05 9.74e-05 9.17e-05 5620-06 1.71
1754 2 312e-05 2.82e-05 2.8le-05 6.81e-08 0.90
4808 2 183605 121e-05 1.21e-05 1.60e-08 0.66
11156 2  1.05e-05 7.056-06 7.01e-06 3.426-08 0.67
22526 2  534e-06 3.826-06 3776-06 5486-08 0.72
44874 2 27506 2.166-06 2.126-06 4.04e-08 0.78
82162 2 127606 1.11e-06 1.096-06 2.63¢-08 0.88
150268 2  576e-07 6.41e-07 6.10e-07 3.07e-08 1.11
306308 2  1.86e-07 3.10e-07 2.97e-07 1.31e-08 1.67
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Figure 8. Comparison of the CPU time.

on the two-dimensional unit squak® := (0,1)? with prescribed volume forcd

and target distributioru. The regularization parameter is chosen in the ramge
103 —-107%. The variational formulation of the state equation is atofo$: For
geQ:=L%(Q) find ueV := H}(Q) satisfying

For solving this optimization problem, we use the Euler-faage approach. Intro-
ducing the Lagrangian

L(U,0,A) == I(u,q) + (F+0,A) — (Ou,0A)

with the adjoint variable (Lagrangian multiplied) € V. Then, the Lagrange prin-
ciple states that for any optimal solutidii,q} € V x Q there exists an adjoint so-
lution A €V such that the triplef{u,q,A } is a stationary point of the Lagrangian,
i.e., it satisfies the following saddle point system:

(O¢,04)—(u,¢) =—(u,¢) VeV
(X;A)+a(x,q)=0 vxeQ (6.3)
(Ou,0y) —(q.¢) = (f,¢) VeV
In strong form this reads like
M —u=—u inQ, Alje=0
A+ag=0 inQ (6.4)
—Au—q="f in Q, ulzo=0.
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168 D. Meidner, R. Rannacher, and J. Vihharev

Using conforming bilinea®; elements for discretizing all three variablés, g, A }
in associated finite element subspasgsC V and Qn C Q leads to the discrete
saddle point problems

(O¢n,0An) — (Un, ¢n) = —(U,¢n)  Vén € Vi
(Xh,An) + 0 (Xh,0h) =0 Vxh € Qn (6.5)
(Oun, Ogn) — (an, Yh) = (F,¢h)  Yh € V.

These linear saddle point problems are solved by the midltigethod using a block
ILU iteration as smoother, which couples the nodal valuethefthree unknowns
{un,0n,An} at every mesh point. For measuring the error in this appration, we
choose the cost functiondl itself, which seems to be the most natural option.

Proposition 6.1. Let {u,g,A} €V x QxV be the solution of the KKT system
(6.3) and {0, Gh, An} € Vi x Qn x Vi, the approximative finite element solution of
the discrete KKT systel6.5) on the finest mesfi},. Then, we have the following
error representation, in which the first three terms coresg to the discretization
error and the last four to the iteration error:

J(u,q) — (T, Gn) = 3P On) -+ 3P9(d— Xn) + 3P(A — )
h)

“(u—
%ﬁ (@ — Tn) + 289X — Gn) + 3P(Uh—An)  (6.6)
+P(An)
for arbitrary elementspy, Yy € Vi, and x, € Qn, with the error residuals
p*() == (Th— G;-) — (0-, 0An)
pI() == a(-,Gh) + (-, An)
P() == (f+Gn,) — (00, 0-).

Proof. We introduce the tensor product spacés=V x Q xV and X, :=
Vh x Qn x Vi with elementsx := {u,q,A} andx, := {un,gn, An}, respectively. We
denote byxy := {0nh,Gn,An} the approximative solution of the discretized KKT
system obtained by any iterative method. FurtherXonwe define the functional
L(x) :==-Z(u,q,A). Hence solving the KKT systems (6.3) and (6.5) is equivaient
determining stationary pointse X andx, € X;, of L:

L')(y) =0 vyeX,  L'(x)(¥h) =0 yn€Xn. (6.7)

We will use elementary calculus for the ermr=x— X,

1
L~ L% = | L'(%+se(e) ds
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and the general error representation for the trapezoidial ru

1
/ f(s ()+f(1))+%/0 £(3)s(s—1) ds

Observing that/(x)(y) =0,y € X, andL"”(-) = 0 for the quadratic functional(-),
we conclude

||
Sl

L(X) —L(%) = 3L (%) (x— %).
Hence, recalling the particular structure of the functlob@) and observing that
satisfies the state equations,
J(u,q) = I(0n, Gh) = L(x) — (f +0,A) + (Du,04)
—L(%h) + (f + 6, An) — (Oth, OAn)
L(X) = L(%n) + (f + Gn, An) — (00, OAn)
3L/ (%) (X—%n) + B(An).

Since, for arbitrary, € Xn,

L' (%) (X—=%n) = L' (%) (X— Yn) + L' (%) (Y — %n)

and
L'(%) (1) = p"(-) +P() + ()
the proof is complete. O

Remark 6.1. The choice of the cost functiondl for error control may not be
considered as appropriate in the present case of a trackitgem where the par-
ticular least-squares form of the functional is somewhbiti@ry. Instead one may
want to measure the solution accuracy rather in terms of soore relevant quan-
tity depending on control and state, such as for exampleriwen ||q — Gn||q of
the error in the control. This can be accomplished by utiizan additional dual
problem such as described in [10] and [6].

For the practical evaluation of the error estimator in Peijian 6.1, we again
use the strategy described in Section 3. The discretizatimr is estimated by the
estimator

fin := 3p" (Mhbin) + 389(MnGn) + 3A(MaAn)
wherellp := Iéﬁ) —id, with the patchwise biquadratic interpolatid)ﬁ) :Vh —>V2(hz) :

Due to the choice of the dual weights in the discretizatiawregstimator the
iteration error estimator reduces to

Fim := Pm(An)-
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Table 17.
MG Il with block ILU smoothing,a = 1073,
N E #lt Ep fin e Em fim 1

25 9.35e-04

81 1.64e-04

289 3.75e-05
1089 1.05e-05
3985 2.67e-06
13321 6.65e-07
47201 1.76e-07
163361 4.89e-08
627 697 1.23e-08

9.35e-04 1.83e-03 1.96 1.14e-07 1.97e-07 1.73
1.78e-04 2.19e-04 1.22 1.42e-05 1.68e-05 1.18
4.16e-05 4.3%-05 1.05 4.13e-06 4.33e-064 1.0
1.02e-05 1.03e-05 1.01 3.48e-07 3.52e-001 1.
2.54e-06 2.55e-06 1.00 1.28e-07 1.28e-000 1.
6.48e-07 6.49e-07 1.00 1.63e-08 1.63e-080 1
1.70e-07 1.69e-07 0.99 6.76e-09 6.77e-090 1
4.69e-08 4.68e-08 0.99 1.97e-09 1.97e190
1.21e-08 1.21e-08 0.99 2.13e-10 2.13e4100

NNV NNDNDNDN

6.1. Numerical example

We consider the optimization problem with=(27)~%(2r — 1) sin( 1) sin( 11y)
and the exact solution

U= 55 sin(mgsin(my), q= ﬁsin(nx) sin(ny), A = Z_—Ilesin(nx)sin(ny).

The forcing termf is accordingly adjusted. For simplicity the discrete state
control spaces are chosen the saMe= Qy, using isoparametric bilinear shape
functions. In order to access the ‘exact’ multigrid erroe solve the discrete equa-
tions on each mesh additionally by the multigrid method wititk ILU smoothing
until the initial residual is reduced by a factor 6. For this test, we use the multi-
grid algorithm MG Il with the stopping criterion that the liggion error estimator
Nm is ten times smaller than the discretization error estimgtp Using a similar

notation as in Proposition 6.X,= {u,q,A },Xn = {Un,0h, An}, % = {Th, Gn, An}, we
denote the errors by

E=J()—J(%), En=J(X)—J(), Emi=J(xn)—I(%)
and the effectivity indices by
|h [ ‘% m .__ @‘
ef = |E. I’ ef = |E |

First, we solve the discretized KKT system (6.5) by the nguilti method using
the V-cycle and again four steps of block-ILU pre- and post-siiogt on each
level. The corresponding results for different values efibgularization parameter
a are presented in Tables 17-19. The stopping criterion usdoei computation
turns out to be efficient and reliable.

Finally, in Table 20 we present the results for the same probbith a = 103
solved by the multigrid method using only one undamped bld&akobi step as
smoothing. Obviously for the present problem the simpléstibJacobi smooth-
ing works almost as well as the much more expensive block indather. Further,
the stopping criterion used in the computation is efficiamt eeliable.
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Table 18.

MG |1 with block ILU smoothing,a = 104,
N E #it En fin e Em fim |
25 1.46e-03

1.40e-03 8.22e-03 5.85 5.92e-05 1.18e-04 1.99
1.89e-04 4.69e-04 2.47 7.91e-06 9.85e-06 1.24
4.20e-05 5.73e-05 1.36 4.49e-07 4.77e-076 1.0
1.02e-05 1.11e-05 1.09 6.29e-07  6.39e-001
2.53e-06 2.60e-06 1.03 1.74e-07 1.75e-000
6.19e-07 6.56e-07 1.06 4.40e-08 4.41e-080
1.65e-07 1.70e-07 1.02 1.33e-08 1.33e-080
4.69e-08 4.69%-08 1.00 3.48e-09 3.48e-090

81 1.97e-04

289 4.25e-05
1089 1.08e-05
3985 2.70e-06
13321 6.63e-07
47201 1.78e-07
163409 5.03e-08

WWWWWWwN R
[l

Table 19.
MG Il with block ILU smoothing,a = 1075,

N E #It = fin e Em fim |
25  5.12e-03 5.12e-03 6.89e-02 13.45  6.94e-07 1.40e-063 2.0
81  2.35e-04 2.45e-04 2.84e-03 1157  1.00e-05 1.25e-055 1.2
289  6.01e-05 4.29e-05 1.81e-04 4.22 1.71e-05 1.80e-055 1.0
1089  9.48e-06 1.02e-05 1.87e-05 1.82 7.87e-07  7.99e-001
3985  2.62e-06 2.34e-06 3.12e-06 1.33  2.75e-07 2.77e-000
13561  5.19e-07 5.22e-07 6.95e-07 1.33  2.51e-09 2.52e-000
47913  1.52e-07 1.59e-07 1.73e-07 1.08  7.41e-09 7.43e-090
164217  4.90e-08 459e-08 4.71e-08 1.02  3.08e-09 3.08eN90

WwWhWWNNE
PRPet

Table 20.
MG 11 with block Jacobi smoothingy = 10-3.

N E #It Ep fin e Em fim |
25  9.44e-04 1.83e-03 9.35e-04 1.96 1.55e-05 8.99e-06 1.73
81  1.84e-04 2.20e-04 1.78e-04 123  7.59e-06 6.44e-06 1.18
289  4.36e-05 4.40e-05 4.16e-05 1.05 2.04e-06 1.96e-064 1.0
1089  1.10e-05 1.03e-05 1.02e-05 1.01  8.53e-07 8.44e-001
3985  2.69e-06 2.55e-06 2.56e-06 0.99  1.31e-07 1.30e-000
13321  6.94e-07 6.47e-07 6.69e-07 0.96 2.51e-08 2.51e-080
47201  1.95e-07

1.69e-07 1.90e-07 0.88 4.39e-09 4.40e-090
171969 7.24e-08 4.42e-08 6.93e-08 0.63 3.07e-09 3.10e@99

whMADOOD
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