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Asymptotically Stable Almost-Periodic Oscillations
in

Systems with Hysteresis Nonlinearities

M. Brokate, I. Collings, A. V. Pokrovskĭı and F. Stagnitti

Abstract. We present some sufficient conditions for the asymptotic stability of forced almost-
periodic oscillations in nonlinear systems subject to small hysteresis perturbations. The main
technical restriction on hysteresis nonlinearity comes to a contraction-type property, which
holds for some classical models of hysteresis. Also we require a special stability property of the
unperturbed system in the sense of Lyapunov and the bounded input - bounded output.

Keywords: Nonlinear dynamical systems, almost periodic oscillations, hysteresis nonlineari-
ties, asymptotic stability

AMS subject classification: Primary 47 H30, secondary 58 F 10

1. Introduction

The mathematical analysis of dynamical systems arising from applications often consists
of two stages. In the first stage, the underlying system is formalized and analyzed within
the context of some mathematical setting such as a differential equation. In the simplest
case these are ordinary differential equations of the form

x′ = f(t, x) . (1.1)

Usually we are especially interested in solutions which are both stable in a reasonable
sense and behave rather regularly in time. The simplest example of such a behaviour
is, probably, the periodic one. The existence of periodic solutions, however, usually
requires the periodicity of the function f in t. It is well known that often the function
f is not a periodic function, but some sort of superposition of functions with different,
independent, periods. In such situations, almost-periodic solutions are more natural
(we refer to [1, 2, 8] and the constructions below).
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The second stage of investigation is often connected with analysis of the influence
of possibly complicated, and sometimes not really well known, perturbations on the
solution x0(·). These perturbations can be of deterministic or of stochastic nature.
Here, we are interested mainly in hysteresis perturbations which are important in many
fields, such as physics, control theory, ecology (e.g., water transport in porous media)
and many others (see, for example, [4, 9]).

The theory of functional-differential equations with hysteresis nonlinearities consti-
tutes a new chapter of applied nonlinear functional analysis. In our case a differential-
operator perturbation of equation (1.1) can be written, for t ≥ t0, in the form

x′ = f(t, x) + εg(x, z(t)), (1.2)

z(t) = (Γ[t0, z(t0)]Lx) (t). (1.3)

Here z takes values z(t) in some subset Z of some Banach space, L : IRd → IRm

is a linear mapping, and Γ[t0, z0] is an operator with initial memory, z0 ∈ Z, which
transforms functions u : [t0,∞) → IRm to functions z : [t0,∞) → Z. As usual, the
notation (Γ[t0, z0]u)(t) refers to the value of the function z = Γ[t0, z0]u at the time t.
We suppose that the operators Γ[t0, z0] can be understood as describing an autonomous
control dynamical system Γ. That is, the family of operators Γ[t0, z0] satisfies the
Volterra property

u(s) ≡ v(s) (s ∈ [t0, t]) =⇒ (Γ[t0, z0]u)(t) = (Γ[t0, z0]v)(t) , (1.4)

the semi-group property

(
Γ[t1, (Γ[t0, z0]u) (t1)]v

)
(t2) = (Γ[t0, z0]u) (t2) (v = u|[t1,∞)), (1.5)

and is autonomous, that is,

(Γ[t0, z0]u) (t) = (Γ[t1, z0]v) (t− t0 + t1) (t ≥ t0) , (1.6)

where v(t) = u(t− t1 + t0) (t ≥ t1). Moreover, we assume certain continuity conditions
to hold, to be formulated in detail below, which ensure among other things that system
(1.2), (1.3) is well-posed (see Corollary 3.2 below). These conditions do hold for the
hysteresis nonlinearities which we have in mind; because on the other hand they do not
contain explicitly special features of hysteresis like rate independence, they appear to
be more general. However, we here do not pursue the question whether there are other
interesting nonlinearities besides hysteresis ones to which our results apply.

We ask whether almost-periodic solutions of system (1.2), (1.3) exist for small ε
and whether they are asymptotically stable, provided that such solutions exist for the
unperturbed equation (1.1). The main result, Theorem 2.1 at the end of the next
section, asserts that the answer to this question is ‘yes’, provided that some natural
technical conditions hold. In a general sense, these conditions are summarized in the
following two main points:
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(i) A specific contraction property of the hysteresis nonlinearity (Definition 2.2
below), which hold for many classical hysteresis systems.

(ii) A certain stability property of the solution of the unperturbed equation (Defi-
nition 2.4), which combines essential features of the exponential stability in the
sense of Lyapunov and the so-called bounded input, bounded output property
from control theory.

In order to prove the results of existence and asymptotic stability, we extend the
techniques of [3], where we have already considered the case when f is periodic in t.

2. The main result

At the end of this section, in Subsection 2.5, we formulate the main theorem of this
paper. For this purpose, we collect the necessary definitions and introduce the functional
setting. These are similar to those presented in [3] but nevertheless will be stated in
full. We partition the flow of definitions into four blocks labelled as Subsections 2.1 -
2.4.

2.1 Almost-periodic functions. In this first block we recall some facts from the
theory of almost-periodic functions in a form which is convenient for our use. We
consider functions

x : IR → IRd

z : IR → Z

}
(2.1)

where Z is a bounded and closed subset of some Banach space Z0 equipped with a norm
‖ · ‖Z . We set

Y = IRd × Z

Y0 = IRd × Z0

}
(2.2)

and furnish Y0 with the product norm

‖y‖Y = |x|+ ‖z‖Z (y = (x, z) ∈ IRd × Z0) .

Let y : IR → Y be continuous. The number h ∈ IR is called an ε-almost period of y,
ε > 0, if

sup
t∈IR

‖y(t + h)− y(t)‖Y ≤ ε .

A set H ⊂ IR is called relatively dense, if there exists an l > 0, called an inclusion
length for H, such that every interval of length l includes at least one element of H.
The function y is called almost-periodic, if for all ε > 0, the set H(ε) of all ε-almost
periods of y is relatively dense. An elementary lemma asserts that

l(ε) = inf
{
l : l is an inclusion length for H(ε)

}

is an inclusion length (and thus, the smallest) for H(ε). We introduce the translation
or shift operator τh, which acts on functions u defined on IR, by

(τhu)(t) = u(t− h) .
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The celebrated Bochner criterion states (see [1: p. 8f] or [2: p. 10]) that a continuous
function y : IR → Y0 is almost-periodic if and only if the set {τhy}h∈IR of all translates of
y is a relatively compact subset of the space of continuous bounded Y0-valued functions
with respect to the maximum norm; or, equivalently, if and only if every sequence
hn ∈ IR possesses a subsequence νi = hni

such that τνiy is uniformly convergent.
Another fundamental theorem – which we will not use – states that y is almost-periodic
if and only if it can be represented as the uniform limit of trigonometric polynomials
(see [1: p. 14ff] or [2: p. 29]).

2.2 Solution of the perturbed system. Given an almost-periodic solution x0 : IR →
IRd of the unperturbed system

x′ = f(t, x) , (2.3)

we seek an almost-periodic solution yε = (xε, zε) of the perturbed system, L : IRd → IRm

being a linear operator,

x′ = f(t, x) + εg(x, z(t)) (2.4)
z(t) = (Γ[t0, z(t0)]Lx) (t) (2.5)

in the function spaces

xε ∈ WIR,d =
{

x : IR → IRd
∣∣∣ x absolutely continuous on every compact interval

}
,

zε ∈ CIR,Z =
{
z : IR → Z

∣∣ z continuous
}

.

We also require restrictions

Wt,d = {x|[t,∞) : x ∈ WIR,d}
Ct,Z = {z|[t,∞) : z ∈ CIR,Z}

}
.

We consider a family of operators

Γ[t0, z0] : Wt0,m → Ct0,Z (t0 ∈ IR, z0 ∈ Z).

Definition 2.1 (Notion of Solution). We say that y = (x, z) ∈ WIR,d × CIR,Z is a
solution of (2.4) - (2.5), if (2.4) holds for almost all t ∈ IR and if, for every t0 ∈ IR, (2.5)
holds for all t ≥ t0, where the restriction to Wt0,m of Lx ∈ WIR,m is again denoted by
Lx.

2.3 Normal hysteresis nonlinearities. Besides the Volterra property (1.4), we re-
quire the semigroup property which can be written as

(
Γ
[
t0 + h, (Γ[t0, z0]u)(t0 + h)

]
v
)
(t) = (Γ[t0, z0]u)(t) (t ≥ t0 + h) (2.6)
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for every h ≥ 0 and u ∈ Wt0,m, where v = u|[t0+h,∞). Property (1.6) of being au-
tonomous becomes, in terms of the shift operator τh which maps Wt0,m to Wt0+h,m and
Ct0,Z to Ct0+h,Z ,

τh ◦ Γ[t0, z0] = Γ[t0 + h, z0] ◦ τh (h ∈ IR). (2.7)

Moreover, we assume that Γ satisfies the following two conditions which we state without
further explanation and we refer to [3] for a discussion.

(N1) There exists a constant γu > 0 such that for every t0 ∈ IR, z0 ∈ Z, every
t ≥ s ≥ t0 and every u, v ∈ Wt0,m the inequality

∥∥(Γ[t0, z0]u) (s)− (Γ[t0, z0]v) (s)
∥∥

Z
≤ γu‖u− v‖t0,t

holds, where

‖u‖t0,t = |u(t0)|+
∫ t

t0

|u′(s)| ds .

(N2) There exists a threshold β > 0 and a continuous and bounded function q :
IR+ → IR+ with q(α) < 1 for α > β such that

∥∥(Γ[t0, z0]u) (t)− (Γ[t0, z1]u) (t)
∥∥

Z
≤ q(osct0,tu) ‖z0 − z1‖Z (2.8)

holds for all t ≥ t0, all z0, z1 ∈ Z and all u ∈ Wt0,m. Here,

osct0,tu = sup
t0≤τ,σ≤t

|u(τ)− u(σ)| = sup
t0≤τ≤t

u(τ)− inf
t0≤τ≤t

u(τ) .

The following definition summarizes the requirements concerning Γ.

Definition 2.2 (Normal Family). The family Γ[t0, z0] is called normal with thresh-
old β > 0 if it is autonomous (2.7), satisfies the Volterra property (1.4), the semigroup
property (2.6) as well as properties (N1) and (N2), the latter with this value of β.

Informally speaking, property (N1) describes rather weak correctness of Γ with
respect to perturbations of the input u, whereas property (N2) describes rather strong
correctness with respect to perturbation of the initial internal state z0. In particular,
there should be exponential convergence of the internal states z for any input u = u(t)
of oscillation greater than h. In [3] we have proved that some important hysteresis
nonlinearities such as the von Mises yield criterion generate normal families.

2.4 Stability properties. We now discuss again the unperturbed system (2.3). Let
f : IR× IRd → IRd be uniformly continuous in (t, x) and Lipschitz continuous in x. Then
the initial value problem

x′ = f(t, x)

x(t0) = x0

}
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has a unique solution x = x(t; t0, x0) for any given t0 ∈ IR and x0 ∈ IRd, which moreover
depends continuously on (t0, x0). Let x0 : IR → IRd be any solution of (2.3), let σ > 0.
We say that the solution x0 is σ-uniformly stable (cf. [7: p. 103/Definition 1.1]) if

lim
τ→∞

sup
t−t0>τ

sup
t0∈IR

|x0−x0(t0)|<σ

|x(t; t0, x0)− x0(t)| = 0 .

We introduce a similar concept concerning the perturbed system

x′ = f(t, x) + εg(x, z(t)) (2.9)
z(t) = (Γ[t0, z(t0)]Lx) (t). (2.10)

Recall that (2.9) - (2.10) is said to be well posed , if the corresponding initial value
problems with initial conditions

x(t0) = x0

z(t0) = z0

}
(2.11)

have a unique solution

y(t) = (x(t), z(t)) =
(
xε(t; t0, x0, z0), zε(t; t0, x0, z0)

)
(t ≥ t0)

for every t0 ∈ IR, x0 ∈ IRd and z0 ∈ Z, which moreover depends continuously on
(t0, x0, z0).

Let y = (x, z) : IR+ → IRd ×Z be a solution of the well posed system (2.9) - (2.10),
and let σ > 0.

Definition 2.3 (Uniform Stability of a Hysteresis System). We say that y is σ-
uniformly stable if

lim
τ→∞

sup
t−t0>τ

sup
t0∈IR,z0∈Z

|x0−x(t0)|<σ

|xε(t; t0, x0, z0)− x(t)| = 0

lim
τ→∞

sup
t−t0>τ

sup
t0∈IR,z0∈Z

|x0−x(t0)|<σ

‖zε(t; t0, x0, z0)− z(t)‖Z = 0.





Note that this stability is global with respect to the unknown initial state z0 ∈ Z of
the perturbation. Moreover, we say that y = (x, z) is globally asymptotically stable, if it
is σ-uniformly stable for each σ > 0.

2.5 The main theorem. Let x0 : IR → IRd be a solution of the unperturbed system
(2.3). We define a notion of stability of x0 related to the perturbed system

x′ = f(t, x) + ξ(t)

x(t0) = x0

}

whose unique solution we denote by x(t; t0, x0, ξ(·)), and where ξ : IR → IRd represents
some general continuous perturbation.
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Definition 2.4 (Convergence Property). The function f is called convergent near
x0, if there exist positive numbers εc, δc, γc, qc, Tc and a bounded function ρc : IR+ →
IR+ with ρc(T ) ≤ qc < 1 for all T ≥ Tc such that, for all t0 ∈ IR, the conditions

|x0 − x0(t0)|, |y0 − x0(t0)| < δc and |ξ(t)|, |η(t)| ≤ εc (t ≥ t0)
imply that for all t ≥ t0∣∣x(t; t0, x0, ξ(·))− x(t; t0, y0, η(·))∣∣ ≤ ρc(t− t0)|x0 − y0|+ γc max

t0≤s≤t
|ξ(s)− η(s)| .

This property combines essential features of the exponential stability in the sense
of Lyapunov and the BIBO (bounded input - bounded output) stability in control
theory (see, for instance, [11: p. 583]). It can be extracted from various other stability
properties (see Section 4 below).

Note that if f is convergent near x0, then∣∣x(t0 + nTc; t0, x0)− x0(t0 + nTc)
∣∣ ≤ qn

c |x0 − x0(t0)| ≤ qn
c δc

if |x0 − x0(t0)| < δc, therefore x0 is σ-uniformly stable for σ ≤ δc.
We also need to impose some growth condition on the perturbation. If f is globally

Lipschitz continuous, by virtue of Gronwall’s inequality the estimate

|x(t; t0, x0)| ≤ c0e
c1(t−t0)(1 + |x0|)

holds for the solution of the unperturbed problem with some constants c0, c1. In order
to obtain a corresponding estimate for the perturbed problem uniformly with respect
to z0, we want the growth condition

(G)

{ ∣∣g(
x(t), (Γ[t0, z0]Lx) (t)

)∣∣ ≤ ag|x(t)|+ bg

for all x ∈ Wt0,m , (t0, z0) ∈ IR× Z , t ≥ t0

to be satisfied for some constants ag, bg > 0. Again we refer to [3] for an explicit
statement of some sufficient conditions for this growth condition to hold.

We now formulate the main theorem.

Theorem 1. Suppose that x0 is an almost-periodic solution of system (1.1) where
f is uniformly continuous in (t, x), satisfies a global Lipschitz condition in x and is
convergent near x0. Let g satisfy a global Lipschitz condition in x and z. Let Γ be a
normal family with the threshold β > 0, assume that

osc−∞,∞(Lx0) > β , (2.12)
and let, finally, the growth condition (G) be satisfied. Then there exists ε0 > 0 and
σ > 0 such that, for every 0 < ε < ε0, the perturbed system (1.2) - (1.3) has a unique
almost-periodic solution yε = (xε, zε) satisfying |xε(t) − x0(t)| < σ for all t ∈ IR; this
solution is σ-uniformly stable and enjoys the property

lim
ε→0

sup
t∈IR

|x0(t)− xε(t)| = 0. (2.13)

The proof of Theorem 1 is given in Section 3.
Indeed, a slightly stronger statement concerning uniqueness holds, as it is proved in

Lemma 3.7 below: Every almost-periodic solution ỹε = (x̃ε, z̃ε) of the perturbed system
which is not identically equal to yε must satisfy

inf
t∈IR

|x0(t)− x̃ε(t)| ≥ σ . (2.14)
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3. Proof of the main theorem

Throughout this section, we suppose that the assumptions of Theorem 1 hold, and we
freely use the definitions and notations from the previous section.

3.1 Preliminary results. We begin with some preliminary results. We omit their
proofs, since those are completely analogous to the ones given in the development from
Lemma 2.1 to Corollary 2.3 in [3].

Lemma 3.1. For every ε ≥ 0, system (1.2) - (1.3) together with the initial condi-
tions (2.11) has a unique solution

yε = (xε, zε) =
(
xε(t; t0, x0, z0), zε(t; t0, x0, z0)

)
(t ≥ t0).

Note that the Volterra property of Γ is needed in the proof of Lemma 3.1.

Lemma 3.2. There exists a continuous function γ : IR+ → IR+ such that the
estimates∣∣∣∣

d

dt
(xε(t; t0, x0, z0)− xε(t; t0, x1, z1))

∣∣∣∣ ≤ γ(t− t0)
(|x0 − x1|+ ε‖z0 − z1‖Z

)

∣∣∣∣
d

dt
(xε(t; t0, x0, z0)− x(t; t0, x1))

∣∣∣∣ ≤ γ(t− t0)
(|x0 − x1|+ ε(1 + |x1|)

)





hold for all ε ≥ 0, t ≥ t0, x0, x1 ∈ IRd and z0, z1 ∈ Z.

Corollary 3.2. There exist continuous functions γx, γz, γw : IR+ → IR+ with∣∣xε(t; t0, x0, z0)− xε(t; t0, x1, z1)
∣∣ ≤ γx(t− t0)

(|x0 − x1|+ ε‖z0 − z1‖Z

)
∥∥zε(t; t0, x0, z0)− zε(t; t0, x1, z1)

∥∥
Z
≤ γz(t− t0)

(|x0 − x1|+ ‖z0 − z1‖Z

)
∥∥xε(·; t0, x0, z0)− xε(·; t0, x1, z1)

∥∥
t0,t

≤ γw(t− t0)
(|x0 − x1|+ ε‖z0 − z1‖Z

)
∥∥xε(·; t0, x0, z0)− x(·; t0, x1)

∥∥
t0,t

≤ γw(t− t0)
(|x0 − x1|+ ε(1 + |x1|)

)
.

Note that there is no ε in the rightmost term of the second inequality in the corollary
above.

Corollary 3.2. System (1.2) - (1.3) is well posed.

3.2 The contraction property of the transition mapping. For a given function
ϕ : IR× IRd → IRd, we consider the initial value problems

x′ = ϕ(t, x) + εg(x, z(t))

x(t0) = x0

}
and

z(t) = (Γ[t0, z(t0)]Lx)(t)

z(t0) = z0

}
.

From its solution yε = (xε, zε) we define the transition mapping Sϕ,ε
t0,t : Y → Y by

Sϕ,ε
t0,t(x0, z0) = yε(t; t0, x0, z0) =

(
xε(t; t0, x0, z0), zε(t; t0, x0, z0)

)
.

We consider the δ-neighbourhood of the given almost-periodic solution x0 of the unper-
turbed system,

B(δ, t) =
{
ξ ∈ IRd : |ξ − x0(t)| < δ

}
(δ > 0, t ∈ IR).

We will prove that Sf,ε
t0,t0+T is a contraction for sufficiently large T .
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Lemma 3.3. There exists a Tβ > 0 such that for all T ≥ Tβ we have

β0 := inf
t∈IR

osct,t+T (Lx0) > β .

Proof. Fix t1, t2 ∈ IR with |Lx0(t1)− Lx0(t2)| = β + 4η for some η > 0. Set

Tβ = 2 max{l(η), |t1 − t2|} .

Then for every t ∈ IR and T ≥ Tβ , we find an η-almost period τ ∈ I1 ∩ I2 where
Ij = [t − tj , t + T − tj ] (j = 1, 2). Thus, tj + τ ∈ [t, t + T ] and β0 ≥ |Lx0(t1 + τ) −
Lx0(t2 + τ)| ≥ β + 2η

From the properties of the function q appearing in (2.8) it now follows that

qβ := sup
t0∈IR
T≥Tβ

q
(
osct0,t0+T (Lx0)

)
< 1 . (3.1)

Proposition 3.1. There exists T∗ > 0 such that for every T ≥ T∗ and every q∗ > 0
with

max{qc, qβ} < q∗ < 1 (3.2)

there exist δ∗ > 0, ε∗ > 0 and a metric d∗ on IRd × Z such that for every 0 < ε < ε∗
and every t0 ∈ IR the transition mapping acts as

Sf,ε
t0,t0+T : B(δ∗, t0)× Z → B(δ∗, t0 + T )× Z

and is a q∗-contraction with respect to d∗. Moreover,
∣∣xε(t0 + T ; t0, x0, z0)− x0(t0 + T )

∣∣ ≤ q∗|x0 − x0(t0)|+ C∗ε (3.3)

holds with some constant C∗ independent from ε, t0, x0, z0.

Proof. Let δc be the constant appearing in Definition 2.4. We consider the per-
turbed solution yε(t) = (xε(t), zε(t)) = Sf,ε

t0,t(x0, z0) and define

Mε(T ) = sup
{
|xε(t)| : t0 ∈ IR, z0 ∈ Z, t ∈ [t0, t0 + T ], x0 ∈ B(δc, t0)

}

Gε(T ) = agMε(T ) + bg .

The assumptions on f and g imply that Mε and Gε are continuous. The last estimate
in Corollary 3.1 gives (note that x0, being almost-periodic, is bounded)

Mε(T ) ≤ ‖x0‖∞ + γw(T )
(
δc + ε(1 + ‖x0‖∞)

)
.

We now apply Definition 2.4 with ξ(t) = εg(yε(t)) and η ≡ 0. We obtain that the
inequality ∣∣xε(t0 + T ; t0, x0, z0)− x0(t0 + T )

∣∣
≤ ρc(T )|x0 − x0(t0)|+ γcε sup

t∈[t0,t0+T ]

|g(yε(t))| (3.4)
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holds for (x0, z0) ∈ B(δ, t0) × Z if δ < δc and εGε(T ) < εc. If, moreover, γcεag ≤ 1
2 ,

then, because we can estimate the rightmost term in (3.4) by Gε(T ), we can rearrange
(3.4) to obtain the a priori estimate

Mε(T ) ≤ 2
(
‖x0‖∞ + ‖ρc‖∞δc +

bg

2ag

)
=: M∞ , (3.5)

provided (3.4) is valid. Now fix any T1 > 0, choose ε1 such that

sup
T∈[0,T1]

ε≤ε1

εGε(T ) ≤ ε1ag

(
‖x0‖∞ + γw(T )

(
δc + ε1(1 + ‖x0‖∞)

))
+ bg ≤ εc

2
. (3.6)

Set now

ε0 = min
{

ε1,
1

2γcag
,

εc

2(agM∞ + bg)

}
. (3.7)

Then for every ε < ε0, we have supT≥T1
εGε(T ) ≤ εc

2 ; indeed it cannot occur that
εc

2 < εGε(T ) ≤ εc due to (3.5) and (3.7), and εGε(T1) ≤ εc

2 by (3.6). Thus, estimate
(3.4) holds for all δ < δc, ε < ε0, x0 ∈ B(δ, t0), z0 ∈ Z and t0 ∈ IR. If we now choose T0

large enough and make ε0 smaller if necessary, we see that

Sf,ε
t0,t0+T (B(δ, t0)) ⊂ B(δ, t0 + T )

for all δ < δc, ε < ε0, t0 ∈ IR and T ≥ T0. To derive the contraction property, define

T∗ = max{T0, Tβ , Tc} .

Let t0 ∈ IR, ε < ε1, δ < δ1, T ≥ T∗ and (x0, z0), (x1, z1) ∈ B(δ, t0) × Z be given.
(Estimate (3.3) is then a consequence of (3.4).) We introduce the abbreviations

x0(t) = xε(t; t0, x0, z0)

x1(t) = xε(t; t0, x1, z1)

}
and

z0(t) = zε(t; t0, x0, z0)

z1(t) = zε(t; t0, x1, z1)

}
.

Then
x′0(t) = f(t, x0(t)) + ξ(t)

x′1(t) = f(t, x1(t)) + η(t)

}
with

ξ(t) = ε g(x0(t), z0(t))

η(t) = ε g(x1(t), z1(t))

}

holds for all t ≥ t0. Corollary 3.1 implies

|ξ(t)− η(t)| ≤ εγ∗(T )
(|x0 − x1|+ ‖z0 − z1‖Z

)
(t ∈ [t0, t0 + T ])

for some function γ∗ : IR+ → IR+. Since f is convergent near x0,
∣∣x0(t0 + T )− x1(t0 + T )

∣∣
< ρc(T )|x0 − x1|+ γcγ∗(T )ε

(|x0 − x1|+ ‖z0 − z1‖Z

) (3.8)

holds if ε ≤ ε3, where ε3 is chosen such that

ε3γ∗(T )
(|x0 − x1|+ ‖z0 − z1‖Z

) ≤ εc .
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To derive a corresponding estimate for ‖z0(t0 + T )− z1(t0 + T )‖Z , we use Property
(N2) as follows. We first claim that

q
(
osct0,t0+T (Lxε( · ; t0, x0, z0))

) ≤ qβ + γ(ε, δ) ,

where γ is a certain function with limε,δ→0 γ(ε, δ) = 0. Indeed, this follows from the
last estimate in Corollary 3.1 with x1 = x0(t0) (thus x(·; t0, x1) = x0), and from the
continuity of q. Next, the use of the triangle inequality as well as of properties (N1)
and (N2) yields

∥∥z0(t0 + T )− z1(t0 + T )
∥∥

Z

≤ γu|L| ‖x0(·)− x1(·)‖t0,t0+T + (qβ + γ(ε, δ))‖z0 − z1‖Z

. (3.9)

We now conclude from (3.8) and (3.9), using again the estimates of Corollary 3.1, that
there exist constants γ1(T ), γ2(T ), γ3(T ) depending only upon T with

∣∣x0(t0 + T )− x1(t0 + T )
∣∣ ≤ (qc + εγ1(T ))|x0 − x1|+ εγ1(T )‖z0 − z1‖Z 3.10)∥∥z0(t0 + T )− z1(t0 + T )

∥∥
Z
≤ γ2(T )|x0 − x1|+ (qβ + γ(ε, δ) + εγ3(T ))‖z0 − z1‖Z .

An explicit inspection of the characteristic equation of the matrix

Aε,δ =
(

qc + εγ1(T ) εγ1(T )
γ2(T ) qβ + γ(ε, δ) + εγ3(T )

)
(3.11)

shows that its spectral radius r(Aε,δ) satisfies

r(Aε,δ) = max{qc, qβ}+ α(ε, δ), lim
ε,δ→0

α(ε, δ) = 0 .

Now we choose δ∗ ≤ δc and ε∗ ≤ ε0 small enough and a norm ‖ · ‖∗ on IR2 such that
‖Aε,δ‖∗ ≤ q∗ holds for the associated operator norm if δ ≤ δ∗ and ε ≤ ε∗. Note that
this choice may depend upon the specific value of T . We define the metric ρ∗ on IRd×Z
by

ρ∗
(
(x0, z0), (x1, z1)

)
=

∥∥(|x0 − x1|, ‖z0 − z1‖Z

)∥∥
∗ .

Then estimates (3.10) and (3.11) show that

ρ∗
((

x0(t0 + T ), z0(t0 + T )
)
,
(
x1(t0 + T ), z1(t0 + T )

)) ≤ q∗ρ∗
(
(x0, z0), (x1, z1)

)
.

As the choice of the initial values (x0, z0) and (x1, z1) was arbitrary within B(δ∗, t0)×Z,
Proposition 3.1 is proved

3.3 Completion of the proof. Before we continue with the proof of our main theorem,
let us remark that the transition mapping has the semigroup property

Sf,ε
t0,t2 = Sf,ε

t1,t2 ◦ Sf,ε
t0,t1 (t0 ≤ t1 ≤ t2) . (3.12)

Since the family Γ[t0, z0] is autonomous, we have, setting fh(t, x) = f(t− h, x),

Sfh,ε
t0+h,t+h = Sf,ε

t0,t (t0, h ∈ IR, t ≥ t0) . (3.13)

From now on we assume that T ≥ T∗ has a fixed value, and T∗, δ∗ and ε∗ are chosen
according to Proposition 3.1.
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Lemma 3.4. Let z∗ ∈ Z be given. Define the functions yε
n = (xε

n, zε
n) : IR → IRd×Z

by
yε

n(t) = Sf,ε
t−nT,t

(
x0(t− nT ), z∗

)
.

Then these functions are uniformly bounded, that is, {yε
n(t) : t ∈ IR, n ∈ IN, ε < ε∗} is

bounded, and
yε
∗(t) = lim

n→∞
yε

n(t) (3.14)

exists uniformly in t ∈ IR.

Proof. Because of Proposition 3.1 and the semigroup property (3.12), we have
xε

n(t) ∈ B(δ∗, t), thus yε
n is uniformly bounded by some constant C since x0 and Z are

bounded. We claim that (yε
n(t))n∈IN is a Cauchy sequence. Indeed, for any m ≥ n there

holds
yε

m(t) = Sf,ε
t−nT,t

(
Sf,ε

t−mT,t−nT (x0(t−mT ), z∗)
) ∈ B(δ∗, t)× Z ,

so by Proposition 3.1 and the semigroup property (3.12)

d∗(yε
n(t), yε

m(t)) ≤ qn
∗ d∗

(
(x0(t− nT ), z∗), S

f,ε
t−mT,t−nT (x0(t−mT ), z∗)

)
≤ Cqn

∗

for some constant C, and the assertion follows

Lemma 3.5. For every ε < ε∗, the function yε
∗ is a solution of (1.2) - (1.3) in the

sense of Definition 2.1.

Proof. Let t0 ∈ IR and t ≥ t0 be arbitrary. It suffices to prove that

yε
∗(t) = Sf,ε

t0,t(y
ε
∗(t0)) (3.15)

holds. Let n ∈ IN and choose m ≥ n such that t−mT ≤ t0 − nT . Set

w(s) = Sf,ε
t−mT,s(x

0(t−mT ), z∗) (s ≥ t−mT )

w0(s) = Sf,ε
t0−mT,s(x

0(t0 −mT ), z∗) (s ≥ t0 −mT )

}
.

Then
d∗

(
w(t0), w0(t0)

) ≤ qn
∗ d∗

(
w(t0 − nT ), w0(t0 − nT )

) ≤ Cqn
∗ . (3.16)

Since
yε

m(t) = w(t) = Sf,ε
t0,t(w(t0))

yε
m(t0) = w0(t0)

}
,

the uniform continuity of Sf,ε
t0,t and (3.16) yield

lim
m→∞

d∗
(
yε

m(t), Sf,ε
t0,t(y

ε
m(t0))

)
= 0 ,

from which (3.15) readily follows
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Lemma 3.6. For every ε < ε∗, the function yε
∗ is almost-periodic.

Proof. Let (hn) be a sequence of real numbers. By Bochner’s criterion it suffices to
exhibit a subsequence (hnk

) such that the sequence (τhnk yε
∗) of shifts of yε

∗ is uniformly
convergent as k →∞. We introduce the notation

fk(t, x) = f(t− hnk
, x) , τk = τhnk , x0

k = τkx0 .

Since x0 is almost-periodic and every such sequence (fk) is equicontinuous and bounded
on every subset IR×B, B bounded, of IR× IRd, we can choose a subsequence (hnk

) such
that x0

k → x̂ uniformly for some continuous bounded x̂ : IR → IRd and fk(t, x) → f̂(t, x)
uniformly (on IR×B for every bounded B) for some function f̂ which is again uniformly
continuous in (t, x) and Lipschitz in x. We define functions ŷn(t) : IR → IRd × Z by

ŷn(t) = Sf̂ ,ε
t−nT,t

(
x̂(t− nT ), z∗

)
.

By virtue of (3.13) and Proposition 3.1, the mappings

Sfk,ε
t0,t0+T : B(δ∗, t0)× Z → B(δ∗, t0 + T )× Z

are q∗-contractions for every t0 ∈ IR; as they converge uniformly to Sf̂ ,ε
t0,t0+T , the same

is true for the latter. Therefore, the proof of Lemma 3.4 also applies to prove that the
limit

ŷ(t) = lim
n→∞

ŷn(t)

exists uniformly in t. We will show that yk = τkyε
∗ converges uniformly to ŷ; this will

complete the proof. Due to (3.13),

(τkyε
n)(t) = Sfk,ε

t−nT,t

(
x0

k(t− nT ), z∗
)
.

We thus have

ŷ(t)− yk(t) =
(
ŷ(t)− ŷn(t)

)
+

(
τk ◦ (yε

n − yε
∗)

)
(t)

+
(
Sf̂ ,ε

t−nT,t

(
x̂(t− nT ), z∗

)− Sfk,ε
t−nT,t

(
x0

k(t− nT ), z∗
))

.

If we choose k and then n large enough, all three terms on the right-hand side of the
last equation become smaller than any given η > 0, uniformly in t. Thus, yk converges
uniformly to ŷ

Recall that we have fixed T∗, q∗, δ∗ and ε∗ according to Proposition 3.1. Let us
choose ε0 > 0 such that

2
C∗ε0

1− q∗
< δ∗ (ε0 < ε∗).

Define also
σ =

C∗ε0

1− q∗
.
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Lemma 3.7. For ε < ε0 the solution yε
∗ = (xε

∗, z
ε
∗) satisfies the estimate

|xε
∗(t)− x0(t)| < σ (t ∈ IR) , (3.17)

it is σ-uniformly stable and enjoys property (2.13). There is no other almost-periodic
solution y = (x, z) of (1.2) - (1.3) which satisfies the inequality |xε(τ)− x0(τ)| < σ for
some τ > 0.

Proof. Let us fix t ∈ IR and n ∈ IN, and define

dj = xε
(
t− djT ; t− nT, x0(t− nT ), z∗

)− x0(t− djT ) (0 ≤ j ≤ n).

Then dn = 0, and from (3.3) we conclude that dj ≤ q∗dj+1 + C∗ε, thus

|xε
n(t)− x0(t)| ≤ C∗ε

1− q∗
.

Passing to the limit n →∞, we see that

|xε
∗(t)− x0(t)| ≤ C∗ε

1− q∗

holds by (3.14). Thus (3.17), and therefore also (2.13), follow. Since σ < δ∗, the σ-
uniform stability of yε

∗ follows from the q∗-contraction property of the transition mapping
Sf,ε

t0,t0+T over the set B(δ∗, t0) (see Proposition 3.1).

It remains to prove the statement concerning uniqueness. Let y = (x, z) be an
almost-periodic solution of (1.2) - (1.3) satisfying |x(τ) − x0(τ)| < σ for some τ ∈
IR. Then, in particular, both x(τ) and xε

∗(τ) belong to B(δ∗, τ) which again implies
|x(t)− xε

∗(t)| → 0 as t →∞. That is, the difference r(t) = x(t)− xε
∗(t) tends to zero as

t →∞; being the difference of two a lmost-periodic functions, it is again almost-periodic
and thus identically zero. The lemma is completely proved

The theorem is proved by Lemmas 3.5 - 3.7.

4. Applications

4.1 Global stability. We first discuss an application concerning the existence of a
globally stable (that is, σ-uniformly stable for each σ > 0) almost-periodic solution. We
consider the special case

f(t, x) = Ax + bF (t, cT x)

of (1.1), where A ∈ IRd,d, b, c ∈ IRd, and the function F : IR×IR → IR is almost-periodic
in t. (Here and in the following, T denotes the transpose of a vector respectively a
matrix.) This equation arises for example in control theory when we use a nonlinear
feedback u = F (t, y) for the SISO (single input - single output) control system x′ =
Ax + bu, y = cT x (see, e.g., [10]).
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The perturbed system (1.2) - (1.3) now reads as

x′ = Ax + bF (t, cT x) + εg(x, z(t)) (4.1)
z(t) = (Γ[t0, z(t0)]Lx)(t). (4.2)

Suppose that A is a stable matrix which satisfies

λF ‖G‖ < 1 , (4.3)

where λF is a Lipschitz constant for F in y, and

‖G‖ = max
−∞<ω<∞

|G(iω)| = max
−∞<ω<∞

|cT (iωI −A)−1b| (4.4)

denotes the operator norm of the transfer function G of the linear system (A, b, cT ) in
the frequency domain. (In equation (4.4) above, i =

√−1, and I denotes the identity
matrix in IRd,d.) Under these conditions the unperturbed equation (1.1) has a unique
almost-periodic solution x0 : IR → IRd which is globally asymptotically stable [12].

The following proposition shows that the same is true for the perturbed system (4.1)
- (4.2).

Proposition 4.1. Suppose that F is uniformly continuous and satisfies a global
Lipschitz condition with respect to y such that (4.3) holds, suppose that g satisfies global
Lipschitz conditions in x and z as well as the growth condition (G). Let Γ be a normal
family with threshold β > 0, and let inequality (2.12) be valid for the unique almost-
periodic globally asymptotically stable solution x0 : IR → IRd of (1.1). Then there exists
ε0 > 0 such that system (4.1) - (4.2) has, for every 0 < ε < ε0, a unique almost-periodic
solution yε = (xε, zε). This solution is globally stable and enjoys the property (2.13).

The proof of the proposition will be given after Lemma 4.3.

Lemma 4.1. Let λ > 0 such that λ‖G‖ < 1. Then there exist positive numbers
p, µ and γ such that for all functions r, ζ : [t0,∞) → IRd and α : [t0,∞) → IR which
satisfy |α(t)| ≤ λ|cT r(t)| for all t ≥ t0, and

r′(t) = Ar(t) + bα(t) + ζ(t) ,

the estimate
|r(t)| ≤ µe−p(t−t0)|r(t0)|+ γ max

t0≤s≤t
|ζ(s)|

holds for all t ≥ t0.

Proof. By Yakubovich’s proof of the Bonjorno-Kalman-Yakubovich circle criterion
(see, for instance, [10: p. 124/Lemma 6]) there exists a positive definite matrix P such
that the differential inequality

d

dt
‖r(t)‖P ≤ −λ0‖r(t)‖P + γ0|ζ(t)|

holds for a.e. t ≥ t0; here ‖r‖P =
√

rT Pr and λ0, γ0 are some positive constants. The
assertion of the lemma now follows from Gronwall’s inequality
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Corollary 4.1. The function f(t, x) = Ax + bF (t, cT x) is convergent near x0.

Proof. By Definition 2.4 it suffices to show that there exists a bounded function
ρc : IR+ → IR+ with ρc(T ) ≤ qc < 1 for all T ≥ Tc such that, for all t > t0, t0 ∈ IR, the
inequality

∣∣x(t; t0, x0, ξ(·))− x(t; t0, y0, η(·))∣∣ ≤ ρc(t− t0)|x0 − y0|+ γc max
t0≤s≤t

|ξ(s)− η(s)|

holds. Indeed, let some bounded functions ξ = ξ(t) and η = η(t) be given. We apply
Lemma 4.1 with λ = λF and

r(t) = x
(
t; t0, x0, ξ(·))− x(t; t0, y0, η(·))

α(t) = F
(
t, cT x(t; t0, x0, ξ(·))

)− F
(
t, cT x(t; t0, y0, η(·)))

ζ(t) = ξ(s)− η(s)





and conclude that the estimate

∣∣x(t; t0, x0, ξ(·))− x(t; t0, y0, η(·))∣∣ ≤ µe−p(t−t0)|x0 − y0|+ γ sup
t0≤s≤t

|ξ(s)− η(s)|

holds for all t0 ∈ IR, t > t0 and x0, y0 ∈ IRd. Thus we can define ρc(s) = e−ps and the
corollary is proved

Corollary 4.1 enables us to apply our main theorem which however does not yield
immediately the global stability. To obtain the latter, we additionally need the following
modification of Lemma 4.1.

Lemma 4.2. Let λ > 0 such that λ‖G‖ < 1, and let β0 > 0. Then there exist
positive numbers p, µ, γ and ε such that for all functions r, ζ : [t0,∞) → IRd and α :
[t0,∞) → IR which satisfy

|α(t)| ≤ λ|cT r(t)|
r′(t) = Ar(t) + bα(t) + ζ(t)

|ζ(t)| ≤ ε|r(t)|+ β0





for all t ≥ t0 the estimate

|r(t)| ≤ µe−p(t−t0)|r(t0)|+ γβ0

holds for all t ≥ t0.

Proof. This assertion also follows immediately from [10: p. 124/Lemma 6]

Lemma 4.3. For each δ > 0 and R > 0 there exists τ > 0 and ε1 > 0 such that
the inequality ∣∣xε(t; t0, x0, z0)− x0(t)

∣∣ < δ

holds for all t0 ∈ IR, |x0| < R, z0 ∈ Z, ε < ε1 and t > t0 + τ .
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Proof. Let us define

r(t) = xε(t; t0, x0, z0)− x0(t) .

Then r solves
r′(t) = Ar(τ) + bα(t) + ζ(t) ,

where
α(t) = F

(
t, cT xε(t; t0, x0, z0)

)− F (t, cT x0(t))

ζ(t) = εg
(
xε(t; t0, x0, z0), zε(t; t0, x0, z0)

)
}

.

We have
|α(t)| ≤ λF |cT r(t)| ,

and, due to property (G),

|ζ(t)| ≤ ε
(
ag|xε(t)|+ bg

) ≤ ε
(
ag|r(t)|+ ag‖x0‖∞ + bg

)
.

The assertion now follows from Lemma 4.2

Proof of Proposition 4.1. By Corollary 4.1 and Theorem 1 we see that system
(4.1) - (4.2) has, if ε is sufficiently small, a unique almost-periodic solution yε = (xε, zε)
satisfying |xε(t) − x0(t)| < σ for all t ∈ IR which is moreover σ-uniformly stable for
small enough σ and enjoys property (2.11). Using Lemma 4.2 we now conclude that
yε actually is σ-uniformly stable for arbitrarily large σ. The global uniqueness follows
from the fact that every other almost-periodic solution must satisfy (2.14)

Other kinds of frequency criteria [10] can be used in a similar way.

4.2 Smooth systems. We now consider a second application of our main theorem.
Let us return to the general system (1.2) - (1.3). Suppose that the function f is smooth
and that the unperturbed equation (1.1) has an almost-periodic solution x0 = x0(t).
Then we can consider the linearization of the system (1.1) along the trajectory x0:

w′ = A(t)w , A(t) = ∂xf(t, x(t)) . (4.5)

Proposition 4.2. Suppose that x0 : IR → IRd is an almost-periodic solution of
equation (1.1). Suppose that the zero solution is the only solution of the linear equation
(4.5) which is bounded on (−∞, 0), and that for each almost-periodic function ξ : IR →
IRd the equation w′ = A(t)w + ξ(t) has at least one bounded solution. Let g satisfy a
local Lipschitz condition in x and z. Let the growth condition (G) be satisfied. Let Γ
be a normal family with threshold β > 0 and assume that inequality (2.12) holds. Then
there exist ε0, σ > 0 such that system (1.2) - (1.3) has, for 0 < ε < ε0, a unique almost-
periodic solution yε = (xε, zε) satisfying |xε(t)− x0(t)| < σ for all t ∈ IR; this solution
is σ-uniformly stable and enjoys property (2.13).

Proof. By Theorem 1 it suffices to show that the mapping f is convergent near
x0. Note, first, that equation (4.5) is asymptotically stable because the trivial solution
is the only solution of (4.5) bounded on (−∞, 0). Further, this stability is exponential,
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because for each almost-periodic ξ equation (4.5) has at least one bounded solution (see
[8: Theorems 2.3 and 3.2]). Considering [8: Theorem 11.1] we obtain the estimate

|r(t)| ≤ µce
−λc(t−t0)|r(t0)|+ γc max

t0≤s≤t
|ξ(s)− η(s)|

with
r(t) = x

(
t; t0, x0, ξ(·)

)− x
(
t; t0, y0, η(·))

for appropriate λc, µc and γc, if

|x0 − x0(t0)|, |y0 − x0(t0)| < δc

|ξ(t)|, |η(t)| ≤ εc

}

and δc, εc are sufficiently small. Therefore, f is convergent near x0

We refer to [8] and the bibliography therein for the discussion of powerful methods
to prove the solvability of the equation w′ = A(t)w + ξ(t) and the uniqueness on the
half-line (−∞, 0) of the trivial solution of (4.5).

4.3 Further extensions. We have proved in the paper that under some technical
conditions, hysteresis perturbations of the ordinary differential equation x′ = f(t, x)
have asymptotically stable almost-periodic solutions, provided that such solutions exist
for the unperturbed equation.

Instead of the class of all almost-periodic functions, it is possible to consider certain
important and interesting subclasses such as

• Limit periodic functions, that is, almost-periodic functions for which the ratio of
any pair of Fourier exponents is rational with a given set of exponents (see [2: p.
32]).

• Diagonal functions of periodic functions of several variables with a given set of
periods (see [2: p. 36]).

There are natural extensions to Theorem 1 which guarantee that the almost-periodic
solutions belong to a particular class, provided that the right-hand side f belongs to
the same class with respect to t.
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