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Abstract

The completion of the third-order QCD corrections to the inclusive top-pair production cross section near 
threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we 
consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order 
QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We 
study the size of the different effects and investigate the sensitivity of the cross section to variations of the 
top-quark Yukawa coupling due to possible new physics effects.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Top anti-top quark production near threshold in e+e− collisions provides a unique opportu-
nity to measure the top-quark mass precisely, due to the well-defined center-of-mass energy and 
the enhancement of the cross section due to the strong-interaction Coulomb force. Whether the 
required theoretical precision on the cross section can be achieved has been an open question, 
since the second order (non-relativistic) QCD calculations revealed unexpectedly large correc-
tions and uncertainties [1,2]. After many years of work, the third-order QCD calculation has been 
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recently finished [3], resulting in a largely reduced theoretical uncertainty. With QCD effects un-
der control, the emphasis shifts to other effects which must be addressed for a realistic cross 
section prediction. The most important are Higgs effects associated with the top-quark Yukawa 
coupling, general electromagnetic and electroweak corrections, non-resonant production of the 
final state W+W−bb̄ in the center-of-mass region near twice the top-quark mass, 2mt , and pho-
ton initial-state radiation.

In this paper, we mainly focus on Higgs-boson effects and the sensitivity to the top-quark 
Yukawa coupling. The Yukawa potential generated by Higgs exchange [4], one-loop Higgs cor-
rections to t t̄ production [5], and both together [6] have been considered long ago, but these early 
calculations do not reach the precision that corresponds to the third-order QCD calculation in the 
non-relativistic power-counting scheme. Third-order Higgs corrections to the production vertex 
and the energy and wave-function at the origin of a hypothetical S-wave toponium resonance 
have been computed in [7], but the t t̄ cross section has not yet been considered. We supply this 
missing piece here. We also add for the first time the P-wave contributions [8] and the leading 
non-resonant contributions [9,10] to the third-order S-wave QCD calculation. We then allow the 
top-quark Yukawa coupling yt to deviate from the Standard Model relation1 mt = ytv/

√
2 and 

investigate the sensitivity to such deviations given the current theoretical uncertainties.

2. Higgs effects at NNNLO

The contribution of the Higgs boson to the top pair production cross section e+e− → t t̄ in-
troduces two new parameters, the Higgs mass mH , and top-quark Yukawa coupling yt . To set 
up the calculation we have to fix their relation to mt and the strong and electroweak couplings, 
αs and αEW, to establish the power counting. Recall that it is customary to count αs ∼ v and 
αEW ∼ α2

s , where v = [(√s − 2mt)/mt ]1/2 is the small top-quark velocity. A contribution of 
order αk

s (or, equivalently, vk) according to this counting is called “NkLO” or “kth order”. We 
opt for counting y2

t ∼ αEW ∼ α2
s and mH ∼ mt . Other options would be to count the top–Yukawa 

coupling like the strong coupling, y2
t ∼ αs , or the Higgs mass mH ∼ mtv, or both. Clearly, with 

mt ≈ 173 GeV, mH ≈ 125 GeV and v ∼ 1/10, the counting mH ∼ mt is more appropriate. In the 
terminology of non-relativistic effective theory and the threshold expansion, the Higgs mass is of 
order of the hard scale, and not the potential scale, which has significant impact on the structure 
of the contributions. On the other hand, the counting of the coupling simply determines at which 
orders in the expansion the Higgs contributions appear and we will justify our choice below.

The effective field theory setup is described in detail in [11]. We recall that the dominant 
S-wave production cross section is proportional to the imaginary part of the spectral function of 
the vector current

�(v)(q2) = 3

2m2
t

c2
vG(E) + . . . , (2.1)

where cv is the hard matching coefficient of the vector current, E = √
s − 2mt , and G(E) is 

the Green function in potential-nonrelativistic QCD (PNRQCD), i.e. the propagator of a non-
relativistic top anti-top pair. The Higgs contributions to cv are discussed in Section 2.1. To com-
pute the corrections to the Green function the Higgs contributions to the PNRQCD Lagrangian 

1 The symbol v is used for the Higgs vacuum expectation value and the top-quark velocity, see below. The meaning 
should be clear from the context.
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Fig. 1. One-loop Higgs correction to the color Coulomb potential.

have to be determined. Counting mH ∼ mt implies that the Yukawa-potential exp(−mH r)/r

generated by Higgs exchange between the top quarks is replaced by the local interaction 
δ(3)(r)/m2

H as is apparent from the Higgs propagator 1/(q2 + m2
H ) in momentum space, where 

q2 ∼ m2
t v

2 can be neglected (expanded) relative to m2
H . On the other hand, with mH ∼ mtv, both 

terms would have to be kept. The contribution to the momentum-space potential is therefore sim-
ply

δH V = − y2
t

2m2
H

. (2.2)

We note that this is suppressed by v3 with respect to the leading QCD Coulomb potential αs/q2, 
where one power of v arises from the counting of the Yukawa coupling, and two powers from the 
relative factor q2/m2

H . The Higgs-induced potential is thus a NNNLO effect. The corresponding 
correction to the Green function G(E) is computed in Section 2.2.

Furthermore we have to consider corrections to the color Coulomb potential as shown in 
Fig. 1. With mH ∼ mt counting, only the hard loop momentum region can yield a contribution. 
Since the external momenta are potential they have to be expanded, and we are left with an O(y2

t )

zero-momentum transfer correction to the ψ†ψA0 top-quark–gluon coupling of the NRQCD 
Lagrangian. However, since the top field is renormalized in the on-shell scheme this contribution 
cancels.

2.1. Short-distance effects

With yt ∼ αs the leading, one-loop Higgs contribution to the hard matching coefficient of 
the vector current is of second order. It has been computed in [5,12,13]. Due to an additional 
diagram involving a ZZH vertex, the matching coefficients for the γ t t̄ and the vector part of the 
Ztt̄ vertex differ. We neglect the contribution from this diagram and use the γ t t̄ coefficient, since 
the difference amounts to less than one percent of the already small NNLO Higgs contribution to 
the production vertex [5]. At NNNLO there are mixed Higgs and QCD corrections to the vector 
current. They have been computed as expansions for mH ≈ mt or mH � mt in [7], which is 
consistent with the adopted hard mH ∼ mt scaling. We use the result expanded in (1 −m2

t /m2
H ), 

which was denoted 1b in [7] and was shown to converge quickly for Higgs boson masses around 
the physical value of about 125 GeV. Based on the results of [7] we estimate the truncation 
error due to this expansion to be well below one percent of the NNNLO matching coefficient 
and neglect it in the following. The NNNLO correction to the hard matching contains an IR 
divergence, which can be absorbed into a renormalization constant for the vector current

Z̃v = 1 + [
pure QCD

] + αsCF

4π

y2
t m2

t

2

1

4ε
. (2.3)
2mH
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The renormalized hard matching coefficient for the vector current can be parametrized by

cv = 1 + [
pure QCD

] + y2
t

2

[
c
(2)
vH + αs

4π
c
(3)
vH

]
+ . . . , (2.4)

where c(i)
vH can be obtained from [7]. For convenience we reproduce the relevant expressions in 

Appendix A. The pure QCD correction is also known to NNNLO [14]. Starting at NNLO there 
is also a self-energy correction to the Z boson mediated cross section that contains the Higgs 
boson. Since it does not involve the top Yukawa coupling we do not consider it here. It will be 
added together with other NNLO electroweak and non-resonant effects in future work.

To justify the power counting yt ∼ αs we compare the size of the Higgs effects dis-
cussed above to their QCD counterparts. For the hard matching coefficient we obtain, with 
αs(μ = 80 GeV) = 0.1209,

cv = 1 − 0.103|αs − 0.022|α2
s
+ 0.031|y2

t
− 0.070|α3

s
− 0.019|y2

t αs
+ . . . , (2.5)

where the contributions from different orders of the couplings are shown explicitly. The power 
counting is clearly valid here. For the potentials it is natural to compare the Higgs potential (2.2)
to the spin-projected QCD NNLO Darwin potential δVD, which is also local. Adopting αs from 
above, we find δHV = −0.98/m2

t , which is only slightly smaller than δVD = 8παsCF /(3m2
t ) =

1.35/m2
t . However, since the Darwin potential yields only a small correction compared to other 

NNLO effects we conclude that the overall counting is appropriate.

2.2. Potential contributions

The potential correction to the Green function can be obtained by quantum mechanical 
(PNRQCD) perturbation theory due to the instantaneous, hence particle number conserving na-
ture of potentials. Since the Higgs potential (2.2) is a NNNLO effect, only the single insertion of 
δH V is required to compute the NNNLO correction to the Green function

δH G(E) = 〈0|Ĝ0(E) iδH V iĜ0(E)|0〉 = −δH V G0(E)2. (2.6)

The remarkably simple form arises because of the locality of the potential. The Green function 
G0(E) describes the propagation of a top quark pair, produced and destroyed at zero spatial 
separation, under the influence of the leading-order QCD Coulomb potential. The insertion of a 
local interaction thus factorizes into the product of a Green function to the left and the right of 
the insertion. Using the well-known result for the LO Green function

G0(E) = m2
t αsCF

4π

[
1

4ε
+ Lλ + 1

2
− 1

2λ
− ψ̂(1 − λ) +O(ε)

]
, (2.7)

in d = 4 − 2ε space–time dimensions, expressed through λ = αsCF /(2
√−E/mt), Lλ =

log(λμ/(mtαsCF )), and ψ̂(x) = γE + ψ(x), we observe that the imaginary part of (2.6) is UV 
divergent,

Im [δH G(E)]|div = y2
t

m2
H

m2
t αsCF

16πε
Im [G0(E)] , (2.8)

where G0(E) denotes the exact d-dimensional LO Green function. Note that this expression 
also contains a finite term from the 1/ε pole multiplying the unknown O(ε) part of the LO 
Green function. However, (2.8) exactly cancels in the combination Im[(cvZ̃

−1
v )2G(E)]. This is 
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analogous to the cancellation between the divergent part of the QCD Darwin potential single 
insertion and part of the divergence of the two-loop QCD contribution to cv. In the following, we 
therefore only have to consider the finite part

δH Gfin(E) = y2
t

2m2
H

(
m2

t αsCF

4π

[
Lλ + 1

2
− 1

2λ
− ψ̂(1 − λ)

])2

. (2.9)

Due to the non-perturbative treatment of the LO Coulomb potential in PNRQCD, the exact 
Green function contains single poles below threshold, which correspond to 3S1 toponium bound 
states:

G(E)
E→En−→ |ψn(0)|2

En − E − iε
. (2.10)

The energy levels En and squared wave functions at the origin, |ψn(0)|2, also receive corrections 
from the insertion of the Higgs potential. We use the parametrization

En = E(0)
n

(
1 + [pure QCD] + αs

4π

y2
t

2
eH

)
,

|ψn(0)|2 = |ψ(0)
n (0)|2

(
1 + [pure QCD] + αs

4π

y2
t

2
fH

)
, (2.11)

where

E(0)
n = −mt

(
αsCF

2n

)2

, |ψ(0)
n (0)|2 = 1

π

(
mtαsCF

2n

)3

. (2.12)

The corrections eH , fH can be obtained by expanding (2.9) and (2.10) around the bound-state en-
ergies and comparing coefficients. Alternatively both equations can be expanded around positive 
integer values of λ. For (2.9) we obtain

δH Gfin(E) = y2
t

2m2
H

m4
t α

2
s C

2
F

16π2

[
1

(n − λ)2
+ 2

n − λ

(
Ln + 1

2
− 1

2n
− ψ̂(n)

)
+ . . .

]
,

(2.13)

where Ln = log(nμ/(mtαsCF )) and the ellipsis denotes terms that are regular in the limit λ → n. 
We obtain

eH = m2
t CF

m2
H

2

n
, fH = m2

t CF

m2
H

(
2Ln + 1 + 4

n
− 2S1(n)

)
. (2.14)

Here S1(n) = ∑n
k=1 k−1 denotes the harmonic number of order one. The result for eH agrees 

with [7] and for fH we reproduce the value for n = 1 given in [7].

2.3. Combined

Combining hard and potential effects due to the Higgs boson, more precisely, the top–Yukawa 
interaction with the Higgs boson, we can express the NNLO correction to the vector correlation 
function (2.1) as

δ2H �(v) = 3
2
y2
t c

(2)
vH G0(E). (2.15)
2mt



M. Beneke et al. / Nuclear Physics B 899 (2015) 180–193 185
The NNNLO correction is

δ3H �(v) = 3

2m2
t

[ αs

4π
y2
t (c

(3)
vH + c

(2)
vH c1)G0(E) + y2

t c
(2)
vH δ1G(E) + δH Gfin(E)

]
. (2.16)

It includes cross terms of the NNLO Higgs correction with the known NLO QCD correc-
tions to the Green function, G(E) = G0(E) + δ1G(E) + . . . , and matching coefficient cv =
1 + αsc1/(4π) + . . . . Both terms are finite, as it is understood here that G0(E) from (2.7) is 
minimally subtracted. The physical cross section is related to the imaginary part of �(v)(q2).

3. Non-resonant and QED effects

In the computation of QCD and Higgs corrections to the t t̄ cross section the top decay width 
has been accounted for by the replacement E → E + i
t , where both quantities are of the same 
order. Since the top quark is unstable, one should rather consider the production cross section for 
the decay product W+W−bb̄ of the top pair.2 This final state can also be produced without an 
intermediate resonant top pair and only the sum of both processes constitutes a physical quantity. 
This is also apparent from an incomplete cancellation of UV divergences and scale dependence 
in the non-relativistic description of the resonant process starting at NNLO. The non-resonant 
correction is important for realistic cross section predictions, since it affects particularly the cross 
section below the position of the peak, where the sensitivity to the top-quark mass is largest [3].

The computation of the e+e− → W+W−bb̄ cross section in the top anti-top threshold region, 
such that it is consistent with the non-relativistic power counting, expansion and resummation 
of the resonant sub-process, can be performed in the framework of unstable-particle effective 
theory [15,16]. The master formula for the cross section is

iA =
∑
k,l

C(k)
p C(l)

p

∫
d4x 〈e−e+|T[iO(k)†

p (0) iO(l)
p (x)]|e−e+〉

+
∑

k

C
(k)
4e 〈e−e+|iO(k)

4e (0)|e−e+〉. (3.1)

The first line describes the resonant production of the t t̄ pair through an operator O(k)
p . Since the 

initial state is color-neutral, the matrix element further factorizes into a leptonic and a hadronic 
tensor as long as only QCD and no electroweak effects are considered, and the non-relativistic 
treatment in terms of the PNRQCD Green function G(E) is recovered. The second line describes 
non-resonant production of the W+W−bb̄ final state, which is why the hadronic contribution can 
be absorbed fully into a hard Wilson coefficient. The leading non-resonant effects appear already 
at NLO in the non-relativistic power counting, and have been determined in [9], including the 
possibility of imposing invariant-mass cuts on the top decay products. The result for the total 
cross section was confirmed in [10] with an independent method. In the following analysis we 
combine the results from [9] with the third-order QCD calculation [3]. We exclude the small 
contribution from e+e− → W+W−H followed by H → bb̄, since it can be considered as a 
reducible “background” and eliminated by an invariant-mass cut on the bb̄ jets as discussed 
in [9]. At NNLO only partial results for the non-resonant term in the second line of (3.1) are 
available [10,17,18]. We do not consider them here and hope to include the complete NNLO 
non-resonant correction together with other NNLO electroweak effects in future work. We note 

2 The W boson can be treated as stable here, since its kinematics is not sensitive to the W width.
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that the cancellation of divergences at NNLO has already been demonstrated [17] and that the 
contribution is likely to be numerically relevant below threshold.

There is, however, one further electroweak effect already at NLO. The counting α ∼ α2
s of the 

QED coupling implies that the QED Coulomb potential δVQED = −4παQ2
t /q2 represents a NLO 

correction relative to the leading order QCD Coulomb potential. While only a single insertion of 
this potential would be required for NLO accuracy, we include contributions involving the NLO 
QED Coulomb potential up to NNNLO, i.e. we also include multiple insertions of δVQED as well 
as mixed insertions together with other potentials and current matching coefficients. The required 
expressions can be inferred from the known results for multiple insertions of the QCD potentials 
[19,20], but one has to be careful when considering insertions which contain divergences in the 
imaginary part, since the QCD Coulomb potential contains O(ε) terms which are absent in the 
QED potential. The QED potential has already been included in previous calculations [9,21,22], 
but not yet in combination with the third-order QCD result [3]. Similarly, the numerical effect of 
the NLO non-resonant terms was studied in detail in [9], but was not implemented so far in the 
code that includes the higher-order QCD corrections.

4. Size of Higgs and other non-QCD effects

For the cross section predictions shown below we employ the values

mPS
t (20 GeV) = 171.5 GeV, 
t = 1.33 GeV (4.1)

for the top-quark PS mass [23] and top-quark width. We note that the QED Coulomb potential is 
not part of the definition of the PS mass, since, in contrast to QCD, higher-order QED corrections 
do not give rise to an IR renormalon ambiguity in the pole mass, and are rapidly decreasing. The 
strong and electromagnetic couplings are

αs(MZ) = 0.1185 ± 0.006, α(MZ) = 1/128.944, (4.2)

where the QCD coupling refers to the MS scheme and the running QED coupling, taken from 
[24], to the on-shell scheme. These parameters are taken to be consistent with [3]. We further use

MW = 80.385 GeV, MZ = 91.1876 GeV, mH = 125 GeV (4.3)

for the electroweak gauge and Higgs boson masses, from which we derive the Weinberg angle, 
Higgs expectation value v and top–Yukawa coupling yt = √

2mt/v through tree-level relations. 
Here mt is the top pole mass, computed from the PS mass with NNNLO accuracy.

The QCD NNNLO result includes the P-wave contribution at the same order, computed in 
[8], which arises from production of the t t̄ pair through the axial-vector coupling of a virtual 
Z-boson. This enhances the S-wave cross section presented in [3] by about 1%. The theoretical 
uncertainty of the cross section calculation itself is estimated by varying the renormalization scale 
between 50 and 350 GeV. The “default scale” is set to 80 GeV. The “finite-width” factorization 
scale μw related to the separation of resonant and non-resonant terms in (3.1) is fixed to μw =
350 GeV. The dependence on this scale is canceled exactly order-by-order in the sum of the 
two contributions. Since presently the non-resonant terms are included only to NLO, while the 
resonant terms are known to NNNLO, there is a small uncanceled dependence on μw at NNLO.

In Fig. 2 we show the total e+e− → W+W−bb̄ cross section in the range of e+e− center-of-
mass energy 

√
s a few GeV below and above the top anti-top threshold including the Higgs, 

QED and non-resonant corrections discussed above (red/dark-grey hatched band) and com-
pare it to the QCD-only result at NNNLO (light-grey hatched band). The cross section is 
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Fig. 2. The R ratio for QCD-only (light-grey hatched band) and including the Higgs, QED, and non-resonant contribu-
tions (red/dark-grey hatched band) as functions of the center-of-mass energy. The bands are due to the scale variation. 
The upper plot shows the absolute results and the lower plot the results normalized to the full one evaluated at the scale 
μ = 80 GeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

always normalized to the LO cross section for e+e− → μ+μ−, yielding the so-called R ratio 
R = σ(e+e− → W+W−bb̄)/σ0, with σ0 = 4πα2/(3s). The QED and Higgs potentials lead to 
an attractive force, which enhances the cross section. The leading Higgs contribution to the short-
distance coefficient (2.5) is also positive, resulting in an overall enhancement of about 10% near 
and 5% above the peak. Below the peak the negative non-resonant contribution becomes impor-
tant and wins over the QED and Higgs enhancement. The lower plot in Fig. 2 contains the same 
results as the upper one, but now all values have been normalized to the full R ratio evaluated 
for μ = 80 GeV. Comparing the two bands, we again observe the enhancement of the full cross 
section around and above the peak. The rise in the QCD-only result at energies below the peak 
is due to the non-resonant contribution, which decreases the full cross section in this region. We 
observe a small increase in the scale uncertainty of the full result relative to QCD-only, which can 
now reach ±5% about one GeV below the peak, but is mostly of the ±3% size. The additional 
scale dependence arises mainly from the Higgs potential insertion.

The size of the three non-QCD contributions considered here — the Higgs, QED and non-
resonant contributions — are shown separately in Fig. 3, normalized to the NNNLO QCD-only 
result for the total t t̄ cross section and plotted as function of the e+e− center-of-mass energy 

√
s
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Fig. 3. The sum of the QCD and individual non-QCD contributions to the R ratio, normalized to the QCD-only result, as 
functions of the center-of-mass energy.

(always μ = 80 GeV). The peak of the QCD-only cross section for the adopted parameters is 
at 

√
s = 343.95 GeV (see Fig. 4). The Higgs and QED contributions result in positive shifts of 

the cross section of about 4–8% for the former and 2–8% for the latter, depending on the value 
of 

√
s. Both shift the peak to lower energies, thus resulting in larger enhancements below the 

peak of the QCD-only result. The NLO non-resonant correction is a nearly energy-independent, 
negative contribution [9] in absolute size and is therefore increasingly important below thresh-
old, which explains the shape of the corresponding line in Fig. 3. Its absolute size is smaller than 
the sum of the QED and Higgs contributions in the peak region and above, which leads to the 
overall positive shift in these regions observed in Fig. 2. Below threshold the resonant contribu-
tion falls off quickly and the relative correction from the non-resonant part becomes very large, 
up to 20%. The same behavior is found for the dependence on the scale μw. For variations in 
physically reasonable ranges from the potential to the hard scale we find a relative uncertainty 
of less than ±1% above threshold, but up to ±3% a few GeV below threshold. The dominant 
part of this uncertainty comes from the NNLO corrections and cancels exactly once the NNLO 
non-resonant corrections are included, after which the remaining μw dependence is at most 1%. 
We note the uncertainty from μw variation is not included in Fig. 2 and subsequent figures that 
show scale variations.

For a determination of the top-quark mass from the threshold cross section, the sharp rise and 
the peak in the cross section are its most important features. On the other hand, determinations 
of the top-quark decay width and its Yukawa coupling require a precise knowledge of the overall 
normalization. In order to judge the influence of the Higgs, QED, and non-resonant contribution 
on these quantities, Fig. 4 shows the impact on the peak (upper plot) and maximal slope (lower 
plot) of the cross section, when these contributions are added successively to the QCD-only 
result. The theoretical uncertainty due to the variation of αs(MZ) within its uncertainty given 
in (4.2) is shown as the inner error bars. The outer error bars are the quadratic sum of the αs and 
scale uncertainty. They provide an indication of the significance of the changes.

The Higgs and QED contributions result in a negative shift of the peak position and an increase 
in the peak height. Correspondingly, the position of the maximal slope is also shifted to a lower 
energy and its value is increased when these contributions are added to the QCD result. The 
Higgs contribution shifts the peak position by −35 MeV and the QED contributions adds another 
−71 MeV. Since the peak position is related to twice the top-quark mass, this translates into a 
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Fig. 4. The upper plot shows the peak height versus the peak position of the R ratio for QCD-only (red), QCD+Higgs 
(green), QCD+Higgs+QED (blue) and including all contributions (black). The inner error bar denotes the uncertainty 
due to αs(MZ), while the outer one denotes the quadratic sum of the scale and αs uncertainties. The lower plot is the same 
but for the maximal slope. In this case there is no visible change due to the non-resonant contribution. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

−53 MeV difference in the top-quark masses obtained from the full and QCD-only results for 
the cross section. Since the non-resonant contribution is an almost energy-independent negative 
shift, it has almost no influence on the position of the peak and only decreases its height. It also 
leaves the slope unchanged. Therefore, it is mostly important for the overall normalization of the 
cross section.

5. Sensitivity to the top Yukawa coupling

The mechanism of fermion mass generation in the Standard Model (SM) is intimately related 
to the question whether the Yukawa coupling of the Higgs boson to fermion f is proportional to 
the fermion’s mass, yf = √

2mf /v. In the SM effective theory including dimension-six operators 
[25,26] this relation can be violated, for example, by the operator

�L = −cNP
(φ†φ)(Q̄3φ̃tR) + h.c., (5.1)
2
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where cNP is a new, independent coupling,  the scale of new physics and φ̃ = iσ 2φ∗. For 
simplicity we have neglected flavor indices and assume the new physics to only affect the third 
generation. After spontaneous symmetry breaking, the operator generates corrections to the top 
mass term and Higgs coupling,

�L ⊃ − cNPv2

2
√

22

(
vt̄LtR + 3ht̄LtR

) + h.c., (5.2)

where h denotes the physical Higgs field. We observe that the coefficients of the mass and 
Yukawa term differ, and obtain the relation

κt ≡ yt√
2mt/v

= 1 + cNP

2

v3

√
2mt

, (5.3)

where

mt = v√
2

(
ySM
t + cNPv2

22

)
and yt = ySM

t + 3cNPv2

22
. (5.4)

Below we will use κt defined in (5.3) to parametrize corrections to the standard relation between 
yt and mt . To investigate the sensitivity of the top anti-top cross section to κt , we do not use the 
SM relation between mt and yt in the calculation of the Higgs contribution, and rescale yt by κt

in the Higgs potential (2.2) and the short-distance contributions. That is, we simply assume that 
some new physics effect makes the top mass and Yukawa coupling independent parameters. Ev-
idently, the complete set of dimension-six operators may induce further anomalous couplings of 
the top quark, such as an anomalous top–gluon coupling, which can give additional short-distance 
and potential contributions to the cross section. A full treatment of these effects is beyond the 
scope of this work.

The sensitivity of the R ratio to variations of the Yukawa coupling is shown in the upper plot 
of Fig. 5. The plot shows curves for different values of κt normalized to the result at κt = 1 and 
μ = 80 GeV. The main effect of an increase (decrease) in the Yukawa coupling is a strength-
ening (weakening) of the attractive potential between the top and anti-top quarks. This results 
in an increase of the cross section of 5–10% for κt = 1.5 or a decrease of 3–5% for κt = 0.5, 
with some dependence on the center-of-mass energy. In order to provide a first estimate of the 
possible precision of a Yukawa coupling measurement from top anti-top threshold production, 
the plot also shows the theoretical uncertainty due to the variation of the renormalization scale μ. 
Naively one would expect to be only sensitive to values of the Yukawa coupling that lie outside 
this uncertainty band. From the figure we see that this requires rather large deviations from the 
SM value of roughly +20% or −50%. However, a more detailed analysis should also take into 
account the shape of the curve, which may lead to an improved sensitivity.

Another important point is that a variation of the strong coupling leads to similar changes in 
the cross section as a variation of the Yukawa coupling. This can be seen by comparing the upper 
and lower plot in Fig. 5, where the lower one shows curves for αs(MZ) = 0.1205 and αs(MZ) =
0.1165. Just as for the Yukawa coupling, an increase (decrease) of the strong coupling leads 
to an increased (decreased) cross section, though the energy dependence of the shift is slightly 
different. To make this point clearer, Fig. 6 shows the change in height and position of the peak of 
the R ratio due to changes in the strong and Yukawa coupling. The similar slope of the resulting 
lines indicates the degeneracy in the variations of the two parameters. Thus, the precision of a 
Yukawa coupling measurement depends on the uncertainty of αs(MZ). Alternatively, one could 



M. Beneke et al. / Nuclear Physics B 899 (2015) 180–193 191
Fig. 5. The sensitivity of the R ratio to the variation of the Yukawa coupling (upper plot) and the strong coupling (lower 
plot). The bands denote the uncertainty due to scale variation of the R ratio for yt = ySM

t (κt = 1) and αs(MZ) = 0.1185. 
All values have been normalized to the R ratio evaluated at μ = 80 GeV.

Fig. 6. Changes in peak height and position due to variation of the Yukawa coupling (red line) and the strong coupling 
(green line). The black error bars denote the αs and combined scale and αs uncertainty for yt = ySM

t (κt = 1) and 
αs(MZ) = 0.1185 (cf. upper plot in Fig. 4). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

perform a simultaneous fit of both couplings, though this would again lead to a loss in precision 
for the Yukawa coupling.

Ref. [27] finds that for a Higgs boson with a mass of about 125 GeV the top quark Yukawa 
coupling can be obtained with a statistical uncertainty of only 4.2%. This result is based on the 
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increase of the cross section from yt = 0 to yt = ySM
t , which is assumed to be 9% and energy 

independent. Neither the theoretical uncertainty of the cross section, nor the correlation with the 
strong coupling constant is considered. Our results show that once theoretical uncertainties are 
taken into account, it is unlikely that such a high precision can be achieved.

6. Conclusion

The completion of the NNNLO QCD correction to the top anti-top production cross section 
near threshold has increased the precision of the theoretical prediction to a level where non-QCD 
effects gain importance. In this paper we added NNNLO Higgs, and the leading (NLO) QED 
and non-resonant contributions to the third-order QCD result for the top anti-top production 
cross section. All three effects are larger than the current QCD uncertainty of about ±3% [3] and 
cause a distinct modification of the cross section below, near and above the peak. We quantified 
the theoretical uncertainty in the presence of these effects, the dependence on the strong cou-
pling, and the sensitivity to a modification of the top–Yukawa coupling. Further studies should 
be performed in the framework of realistic simulations accounting for beam and initial-state ra-
diation effects. On the theoretical side, the inclusion of NNLO electroweak and non-resonant 
corrections would further sharpen the prediction, especially below the resonance peak.
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Appendix A. Higgs contribution to the hard matching coefficient

For convenience we give the expressions used for the Higgs contribution to the hard matching 
coefficient of the vector current (2.4). The results are taken from [7], only the prefactors have 
been adjusted to match our convention.

c
(2)
vH = 1

π2

[
3z − 1

12z
− 2 − 9z + 12z2

48z2
ln z + 2 − 5z + 6z2

24z
�(z)

]
, (A.1)

where z = m2
t /m2

H and

�(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
4z − 1

z
arctan

√
4z − 1, z ≥ 1/4,

√
1 − 4z

2z
ln

1 − √
1 − 4z

1 + √
1 − 4z

, z < 1/4.

(A.2)

c
(3)
vH = 4CF

π2

[π2

8
(1 − y) ln

m2
t

μ2
− 5.760 + 5.533y − 0.171y2 + 0.0124y3 + 0.0304y4

+ 0.0296y5 + . . .
]
, (A.3)

where y = 1 − z.
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