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Abstract— Many robotic applications, especially if humans
are involved, require the robot to adhere to certain joint,
workspace, velocity or force limits while simultaneously exe-
cuting a task. In this paper, we introduce a control structure,
which merges an arbitrary desired robot behavior with given
constraints. Using a quadratic program (QP), control barrier
functions (CBFs) are combined with an arbitrary nominal
control law, which determines the desired behavior. The CBFs
enforce the constraints, overruling nominal control whenever
necessary. We show that the concept is applicable with arbitrary
numbers of constraints and any nominal control law. In
order to illustrate the capabilities of the approach, the control
scheme is applied to an anthropomorphic manipulator, which
is constrained by static as well as moving constraints.

I. INTRODUCTION

While nowadays robotic systems are commonly found

in industrial production lines where their workspaces are

separated from humans, they are also finding their way into

our homes, e.g. as small cleaning helpers. Research on the

other hand concentrates on larger, possibly humanoid robots,

which may serve as mobility or household assistants, carry

out exercises with patients in rehabilitation and act as pro-

duction assistants in industry. As these applications involve

the human and the robot sharing a workspace, the human has

to be kept unharmed at all costs. Additionally, damage of the

system and the environment should be avoided. This results

in constraints on the joints, workspace, velocities, forces or

torques of the system and requires a control scheme, which

guarantees the adherence to the limits during task execution.

Possible solutions are found in constrained control and

virtual wall rendering. The probably most widely used con-

trol schemes are the optimization-based model predictive

control [1] and reference governor approach [2], which

enforce input, output and state constraints. A large num-

ber of constraints or nonlinearities in the system dynam-

ics may however prevent finding a solution in real-time.

The invariance control approach [3] enforces output and

state constraints by keeping the system controlled invariant

within a constraint admissible subset of the state space, but

implementation on real systems leads to chattering at the

boundaries due to the digital implementation of the switching

control law. Approaches creating virtual repulsive forces such

as potential functions [4] and virtual fixtures [5], [6] may also

be designed to enforce output and state constraints. However,

both approaches neglect the inherent system dynamics in

All authors are with the Chair of Information-Oriented Control,
Department of Electrical Engineering and Information Technology,
Technical University of Munich, D-80290 München, Germany.
manuel.rauscher@mytum.de, {melanie.kimmel,
hirche}@tum.de

determining a repulsive control action. As for higher-order

dynamics, high accelerations or inertias, these dynamics are a

substantial influence on the approach of a constraint, neither

potential fields nor virtual fixtures are able to guarantee

constraint adherence.

Although control barrier functions (CBFs) [7] are rem-

iniscent of potential functions, CBF-based control design

guarantees adherence to constraints. Knowledge about the

system dynamics is combined with the CBFs in order to

render a constraint admissible subset of the state space con-

trolled invariant. In [8], this is achieved via model predictive

control with CBFs. For improved real-time capabilities and

to include performance specifications, Ames et al. [9] suggest

a combination of CBFs with control Lyapunov functions

(CLFs) via quadratic programming for cruise control. The

approach is also successfully applied to bipedal robotic

walking in [10] and for pendulum control [11]. The existing

control strategies require, however, a joint control design

for task execution and constraint enforcement. As there are

several well-established control schemes to achieve a goal

directed behavior for robotic systems, a combination of these

methods with CBFs is desirable. Additionally, scenarios in-

volving the interaction with humans require the enforcement

of multiple and time-varying constraints, which has not been

formally discussed for CBFs so far.

In this work, we introduce a novel CBF-based control

structure, which allows the design of a constraint enforcing

controller as an add-on to an already existing control loop.

We show that by combining the existing control signal with

CBFs via quadratic programming, the system adheres to an

arbitrary number of possibly time-varying constraints, while

following the original behavior whenever it is admissible.

The capabilities of the control scheme are illustrated by

experiments on a redundant anthropomorphic robotic ma-

nipulator, in which the CBF-based control law enforces

multiple static and moving Cartesian workspace constraints

in the presence of external forces, thus complementing the

compliant behavior generated by an impedance controller.

The remainder of this paper is organized as follows:

Section II introduces system requirements and the goals of

the control design. In Section III the theory of CBFs is

revised. Section IV introduces the novel control scheme as an

add-on to an existing control loop for multiple constraints. In

Section V the experimental results are discussed. Section VI

gives some concluding remarks.

Notation: Bold small and capital letters denote vectors

and matrices, respectively. Dots are used to abbreviate time

derivatives of low order ẋ = dx
dt

. The directional derivative

of a scalar function B(x) with respect to a vector field, i.e.



the Lie derivative, is denoted by

LfB(x) =
∂B(x)

∂x
f(x)

For a vector of vector fields G(x) = [g1(x) . . . gm(x)] the

Lie derivative is defined as the vector of Lie derivatives in

the directions gi(x): LGB(x) =
[
Lg

1
B(x) . . .Lg

m

B(x)
]
.

II. PROBLEM STATEMENT

We consider control affine, nonlinear systems of the form

ẋ = f(x) +G(x)u

yout = hout(x)

}

(1)

where x ∈ R
n is the state with x(0) = x0, the control

input is u ∈ U ⊂ R
m with the set of admissible control

values U and f : Rn → R
n and gi : R

n → R
n are

locally Lipschitz vector fields, where G = [g1, . . . gm].
The system output yout(x) is given by a vector of output

functions hout : R
n → R

q . Note that a robotic system with

the generalized coordinates q, the mass matrix M(q), the

input torque τ and the Coriolis, centripetal and gravitational

torques C(q, q̇)q̇ and g(q) has the generalized dynamics

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ , (2)

thus being control affine. The goal is to design a control

structure, which enforces the execution of a desired task

while guaranteeing the adherence to known constraints. Ar-

bitrary state and output constraints may only be enforced by

a controllable system. This motivates the following assump-

tion, which imposes only little restriction as robotic systems

are controllable as long as singularities are avoided.

Assumption 1. The system (1) is controllable within the

entire constrained space.

We aim for a control structure as depicted in Fig. 1.

The system (1) is controlled by a combination of nominal

w
uno u

x

youtConstraint
Enforcement

Nominal
Control

System
(1)

Fig. 1: Structure of the controlled system.

control and a constraint enforcing control. The advantage

of the design as an add-on to nominal control is that

constraints may be added to preexisting control loops and the

nominal control law may be designed to achieve a desired

performance and a Lyapunov stable tracking error

e = w − yout (3)

without accounting for possible constraints. Constraint en-

forcing control monitors the constraint, the state x and

the nominal control value uno. Ideally nominal control is

applied whenever possible. In case of the danger of constraint

violation the control input u is modified, such that the

constraints hold. For the calculation of the modified control

value so-called CBFs are used.

III. CONTROL BASED ON CONTROL BARRIER

FUNCTIONS

In applications, requiring task execution while adhering

to input, state or output constraints, control based on control

barrier functions (CBFs) is promising. This section intro-

duces CBFs for a single, static constraint [9], [10].

A. Control Barrier Functions

Essentially, a CBF B(x) is a non-negative function with a

small value for states far from a constraint and which grows

to infinity as the state x approaches the constraint.

In order to find a suitable CBF, the constraint on the sys-

tem state x is encoded in a smooth constraint function h(x).
A value h(x) > 0 indicates adherence, whereas h(x) ≤ 0
indicates a violation. This means that the constraint function

has to be designed depending on the shape of the obstacle

and measurement data such that h(x) = 0 acts as a hull

completely encasing the obstacle. The set of admissible

states C is defined by

C = {x ∈ R
n : h(x) > 0}

∂C = {x ∈ R
n : h(x) = 0}

}

(4)

where h : Rn → R is a smooth, i.e. continuously differen-

tiable, function and ∂C is the boundary of the set C.

Definition 1. The system is constraint admissible, if its states

stay within the admissible set of states for all times.

Naturally, the system may only be kept within the set of

admissible states if such states exist. As C solely contains

constraint admissible states x, the goal is to design a control

law which keeps the system within C for all future times,

thus rendering the set controlled positive invariant.

Definition 2. Let u ∈ U be a control value for the system (1).

Let x0 = x(0) be the initial state. A set C is called controlled

positively invariant for the control value u ∈ U , if x0 ∈ C
implies that x(t) ∈ C for all t ≥ 0.

CBFs allow the implementation of such a control law. For

a function B(x) to qualify as a CBF, it has to fulfill the

following CBF-properties (CBF-p).

(CBF-p1) A valid CBF is a non-negative function on C

inf
x∈C

B(x) ≥ 0.

(CBF-p2) The barrier grows as a solution x approaches the

constraint from inside the admissible set of states

lim
x→∂C+

B(x) = ∞.

(CBF-p3) The CBF B(x) grows with the growth rate

Ḃ(x) ≤
γ

B(x)
, where γ > 0.

Note that a CBF B(x) behaves essentially like the inverse

of a so-called class K function [12].

Definition 3. A continuous function α : [0,∞) → [0,∞)
belongs to class K if it is strictly increasing and α(0) = 0.



A class K function α has the following properties [9],

which are the desired properties for the CBF B(x):

inf
x∈C

1

α(h(x))
≥ 0, lim

x→∂C+

1

α(h(x))
= ∞.

Hence, Def. 3 and (CBF-p1) to (CBF-p3) define CBFs.

Definition 4 (Control barrier function (CBF)). [9, Def. 2]

Let a continuously differentiable h : Rn →R define C ⊂R
n

as in (4). A locally Lipschitz function B(x) : C → R is a

control barrier function (CBF), if its Lie derivatives LfB(x)
and LGB(x) are locally Lipschitz and if there exist class K
functions α1, α2 and γ > 0 such that for all x ∈ C

1

α1(h(x))
≤ B(x) ≤

1

α2(h(x))
(5)

inf
u∈U

[

LfB(x) + LGB(x)u−
γ

B(x)

]

≤ 0 . (6)

The property (CBF-p3) provides the basis for the deriva-

tion of a control law. By enforcing this condition, constraint

violation is prevented as it ensures that the growth of the

function stops when the state approaches the constraint. A

relationship between the CBFs and the control value u is

derived by inserting (1) into (CBF-p3), which directly yields

the set of admissible control values KB(x).

KB(x)=

{

u ∈ U :LfB(x)+LGB(x)u−
γ

B(x)
≤0

}

(7)

By applying u ∈ KB(x) to the system (1), the set C (4) is

rendered controlled positively invariant [9, Corollary 1]. As

the input only influences the system for LGB(x) 6= 0, B(x)
has to be designed such that Ḃ(x) depends directly on u.

For constraints of relative degree one, ḣ(x) depends on u

and LGB(x) 6= 0 holds for B(x) = B(h(x)). However,

often constraints on robotic systems, e.g. workspace or joint

constraints, are of relative degree two, i.e. LGB(h(x)) =
0. Therefore, in the following section a CBF candidate for

relative degree two constraint functions is introduced.

B. CBFs for relative degree two constraints

In torque-controlled robotic systems with the generalized

dynamics (2), position constraints have relative degree two,

i.e. ḧ(x) depends on the input. For such cases, the function

B(x) = − ln

(
h(x)

1 + h(x)

)

+ aE
bE ḣ(x)

2

1 + bE ḣ(x)2
(8)

is introduced, where h(x) and ḣ(x) are the constraint func-

tion and its first time derivative. This is an admissible CBF,

which is shown in [10, Theorem 2]. Note that choosing small

design parameters aE , bE > 0 causes the system to stop

further from the constraints, whereas large values increase

the risk of a violation in the presence of uncertainties, i.e.

a reasonable trade-off has to be found depending on the

application. The function includes ḣ(x) in the CBF and

therefore ensures LGB(x) 6= 0. Note that based on the

results from [10], the design of CBFs for constraints with

arbitrary relative degree is also possible.

Both [9, Corollary 1] and [10, Theorem 2] provide the

foundation for a control law which enforces a single, static

constraint of relative degree one or two. Note that on ap-

proaching a constraint the value of a CBF goes to infinity due

to (CBF-p2). This means, however, that CBFs only have a

defined function value within the set of admissible states and

therefore, they are not able to resolve constraint violations,

e.g. due to inadmissible initial state values, an inaccurate

system model or uncertainties in system and constraints. In

the following section, we develop a control structure, which

combines multiple constraints with an arbitrary desired nom-

inal behavior.

IV. MULTIPLE CBFS AND NOMINAL CONTROL

In this section, we develop a method, which enforces

multiple constraints while executing a desired task. This

requires the derivation of a condition on the control output,

which will ensure the adherence to all constraints. We

then show, that merging this condition with any stabilizing

nominal control law via a quadratic program (QP) achieves

the desired behavior.

A. Multivariate Control Barrier Functions

Let l be the number of constraints on the system (1),

which are expressed by continuously differentiable constraint

functions hi : R
n → R, and which fulfill

hi(x) > 0, 1 ≤ i ≤ l (9)

for constraint admissible states. The set of the states x which

fulfill the condition of each constraint 1 ≤ i ≤ l (9) is defined

as the set of admissible states for multivariate constraints H.

H = {x ∈ R
n : ∀ 1 ≤ i ≤ l : hi(x) > 0}

∂H = {x ∈ R
n : ∃ 1 ≤ j ≤ l : hj(x) = 0

∧ ∀ 1 ≤ i ≤ l : hi(x) ≥ 0}







(10)

With definition (10) H is the intersection of the sets Ci (4)

associated with the constraints hi(x). Therefore, admissible

states only exist, if the individual constraints do not conflict.

Assumption 2. The set of admissible states H is not empty.

As the control goal is to keep the system within an

admissible subset of the state space, which is only possible

if such a subset exists, the assumption is straightforward.

Note that in the case of a restricted workspace, the set

of admissible states has to overlap with the workspace.

Otherwise it is not possible to adhere to the constraints.

Let Bi(x) be a CBF candidate corresponding to hi(x).
Then KBi

(7) is the set of admissible control values associ-

ated with Ci and the set of admissible control values for H
is given by the intersection of all KBi

for 1 ≤ i ≤ l

KB(x) = {u ∈ U , ∀ 1 ≤ i ≤ l :

LfBi(x) + LGBi(x)u−
γi

Bi(x)
≤ 0}

(11)

where γi > 0 are design parameters corresponding to

each Bi(x). With the properties of H, the set of control

values KB and [9, Corollary 1], invariance of H is shown.



Corollary 1. Let H ⊂ R
n be defined by (10). Let the

functions Bi(x) with 1 ≤ i ≤ l be the CBFs associated

with the set H. Let Assumptions 1 and 2 hold. Then any

Lipschitz continuous controller u(x) ∈ KB(x) applied to

system (1) renders the set H positively invariant.

Proof. Each constraint hi with 1 ≤ i ≤ l is associated

with a CBF Bi, the set of admissible states Ci and the

set of admissible control values KBi
. By Assumption 2

the constraints do not conflict. By Assumption 1 all state

variables of the system 1 are controllable. Therefore KB(x)
is not empty and there exists a u ∈ KB(x).

The set KB(x) is the intersection of the individ-

ual KBi
(x) with 1 ≤ i ≤ l. Hence if u lies within KB(x), it

lies also within all KBi
(x). Therefore, by [9, Corollary 1], u

renders all Ci, 1 ≤ i ≤ l, invariant. As H is the intersection

of all Ci, H is rendered invariant by u ∈ KB(x). �

Intuitively, Corollary 1 shows that by choosing only con-

trol values from the set KB(x), the system is forced to

stay within the admissible set of states H for all times, thus

avoiding a violation of the constraints. Additionally, a Lips-

chitz continuous u(x) avoids large, instantaneous changes in

the control value, thus enabling a torque-controlled robotic

system to follow the desired torque and reducing the overall

stress of the system. Based on these results, nominal control

is unified with the CBF approach for multiple constraints.

B. Combining the Control Goal and the Constraints

In this section, we show that it is possible to combine

CBFs with arbitrary nominal control laws using a quadratic

program (QP). The aim of the combined control law is to

apply nominal control whenever possible, which is formu-

lated as an optimization problem, minimizing the error eu

eu = uno − u (12)

between the nominal control signal uno and the applied

control value u. The squared norm of the error

‖eu‖
2 = u⊺u− 2u⊺

nou+ u⊺

nouno (13)

is used as objective function. Neglecting the last term of (13),

as it is constant in a minimization with respect to u,

yields the optimization problem to obtain a desired control

action u∗ ∈ R
m

u∗(x) = argmin
u∈Rm

u⊺u− 2u⊺

nou (14)

s. t. A(x)u ≤ b(x)

where uno ∈ Uno ⊂ R
m is a locally Lipschitz continuous

nominal control signal and the constraints in terms of CBFs

with A(x) ∈ R
l×m and b(x) ∈ R

l

A(x) = [LGBi] =






Lg1
B1 · · · Lgm

B1

...
...

Lg1
Bl · · · Lgm

Bl




 ,

b(x) =

[
γi

Bi

− LfBi

]

=






γ1

B1
− LfB1

...
γl

Bl

− LfBl




 ,







(15)

are included as inequality constraints imposed upon u, such

that u∗ ∈ KB(x) (11) holds. Note that input constraints

may be included straightforwardly by appending the cor-

responding entries to A(x) and b(x). However, the input

and state constraints have to be designed carefully as the

control scheme does not provide solutions for contradicting

constraints or loss of manipulability, which renders the

optimization infeasible.

Theorem 1. Let a control affine system (1) with l state and

output constraints and a locally Lipschitz nominal control

signal uno be given. Let Bi, 1 ≤ i ≤ l, be control

barrier functions associated with the constraints and let H
as in (10) be the corresponding set of admissible states.

Let Assumptions 1 and 2 hold. Then, the control law u∗(x)
obtained by solving the quadratic program (14) is Lipschitz

continuous and renders the set H positively invariant.

Proof of Theorem 1.

The proof is conducted in two steps. First, uniqueness and

Lipschitz continuity of the solution is proved. In a second

step the invariance of the set H is shown.

Step 1: Uniqueness and Lipschitz continuity:

Let u∗(x) be a solution of (14) at a point x ∈ R
n. According

to [13, Theorem 1], if the conditions

(i) w∗(x) > 0, where w∗(x) is the solution of the linear

program

w∗(x) = max
(u,w)∈Rm+1

w (16)

s. t.
[
A(x) 1l×1

]
[
u

w

]

≤ b(x) , (17)

(ii) A(x) and b(x) are Lipschitz continuous at x,

(iii) uno(x) is Lipschitz continuous at x,

with A(x) ∈ R
l×m and b(x) ∈ R

l from (15) hold at a

state x ∈ R
n, then the solution u∗(x) of the QP (14) is

unique and Lipschitz continuous at x.

Condition (i) is based on the Mangasarian-Fromovitz

constraint qualification [14]. If the constraint qualification

holds, which is expressed by w∗(x) > 0, the solution of the

QP (14) is unique at x. Conditions (ii) and (iii) are necessary

for the Lipschitz continuity of the solution of (14). To verify

Condition (i), the linear program (LP) (16) is rewritten to

include the constraints (17) in the objective function

w∗(x) = max
u∈R

m

1≤i≤l

γ

Bi(x)
− LfBi(x)− LGBi(x)u .

This is possible since the set H is not empty by Assump-

tion 2, which means that the constraints do not conflict and

the optimization is strictly convex. Substituting

Ḃ(x) =
∂B(x)

∂x
(f(x) +G(x)u)
︸ ︷︷ ︸

ẋ

= LfB(x) + LGB(x)u

yields

w∗(x) = max
u∈R

m

1≤i≤l

w(x)



with w(x) = γ
Bi(x)

− Ḃi(x). As the CBFs ful-

fill (CBF-p3), w(x) ≥ 0 holds. By definition (10), the

boundary ∂H is not part of H, which means that w(x) > 0
holds within H, as w(x) = 0 holds only on ∂H. As a

result, w∗(x) > 0 is fulfilled on H, confirming Condition (i).

Condition (ii) holds for all x ∈ H as local Lipschitz con-

tinuity of A(x) and b(x) follows from Definition 4, which

demands that a CBF Bi and its Lie derivatives LfBi(x)
and LGBi(x) are locally Lipschitz. As the nominal control

signal uno is assumed to be locally Lipschitz, Condition

(iii) holds as well. Therefore, all three conditions hold for

all x ∈ H and the control value u∗(x) obtained by solving

the QP (14) is unique and Lipschitz for all x ∈ H.

Step 2: Invariance of H:

The constraint of (14) ensures that u∗(x) lies in KB . Step 1

shows that the solution u∗(x) is Lipschitz continuous. With

Assumptions 1 and 2, Corollary 1 is applicable and u∗(x)
renders the set H positively invariant. �

Theorem 1 shows, that the CBF approach is applicable to

nominally controlled systems with multiple, not conflicting

constraints. By solving the QP (14) the invariance of H (10)

and a minimal error eu are obtained simultaneously. Thus,

nominal control is followed whenever the state x is suffi-

ciently far away from the bounds. Additional characteristics

and capabilities of the approach are stated without proof in

the following remarks.

Remark 1: Theorem 1 does not require nominal control to

be Lyapunov stable to render H controlled invariant. In order

to achieve a desired control or performance goal, however,

stability is necessary for reaching that goal.

Remark 2: The approach is also applicable with multiple

constraints of arbitrary relative degree r > 2 as Theorem 1

holds independently from the relative degree. However, as

the CBF has to fulfill Definition 4 and LGB(x) 6= 0, the

design of the CBF may become more complicated.

Remark 3: Enforcing a constraint with relative degree r

on a system with more than r states results in uncontrolled

internal dynamics, which may cause undesired behavior. For

robotic systems of the form (2), this is the case for upper

bounds on the torques, accelerations and velocities. This

results in a deviation from the desired trajectory and a slower

motion than expected from nominal control. It does, however,

not cause unexpectedly fast or large motions and results in

the desired constraint admissible behavior.

Remark 4: The approach and Theorem 1 are also applica-

ble with non-conflicting, time-dependent constraints hi(x, t).
If the CBF properties are fulfilled for all instants of time t

and the hi(x, t) are sufficiently smooth, the only difference

is an additional partial time derivative in Ḃi =
∂Bi

∂x
ẋ+ ∂Bi

∂t
,

which changes the conditions in the sets of admissible control

values for single KB(x) and multiple constraints KB(x) to

LfBi(x) + LGBi(x)u+
∂Bi

∂t
−

γi

Bi(x)
≤ 0 .

V. EXPERIMENTAL EVALUATION

In this section, the developed control scheme is verified

in an experiment on an anthropomorphic manipulator with

seven degrees of freedom [15]. A desired compliant be-

havior is achieved by implementing an impedance control

law, representing nominal control. Naturally, other nominal

control laws may be applied and yield a different behavior.

By using impedance control, however, the experiment illus-

trates that even if the nominal control input is influenced

by a human-generated signal, the proposed control scheme

achieves compliance with the constraints. Simultaneously,

multiple Cartesian workspace constraints are enforced using

CBFs and a QP.

Note that although in the following constraints are im-

posed solely on the Cartesian position of the end effector, in

general it is also possible to introduce constraints on joint

level, on the entire manipulator or on the respective velocities

by defining appropriate constraint functions and CBFs.

A. Experimental Procedure

In a first experiment, the Cartesian end effector posi-

tion p = [p1 p2 p3]
⊺ is constrained in the three orthogonal

directions as depicted in Fig. 2. The constraint functions

p1

p2
p3

Fig. 2: Manipulator with Cartesian box constraints: tool

center point and constraints.

hup,i(p) = pi,max − pi,d

hlow,i(p) = pi,d − pi,min

where i ∈ {1, 2, 3} and pi,min and pi,max are the lower and

upper bounds, respectively.

In a second experiment, a single, moving, spherical con-

straint is enforced. While the radius rs of the constraint is

constant, the time-dependent Cartesian center position c(t)
of the obstacle is detected by the Qualisys Motion Tracking

System. In this case, the constraint function is determined by

h(p, t) = ‖c(t)− p‖2 − rs ,

where ‖ · ‖2 denotes the Euclidean vector norm.

The control structure of both experiments is depicted in

Fig. 3. The control law (14) with CBFs of the form (8) is

combined with nominal control and a simplified model of the

robot dynamics to generate a constraint admissible reference

trajectory pd as input to the position-controlled robotic

system. An impedance control law [16], which enables the

system to react to the external force f ext ∈ R
m, measured
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Fig. 3: Control structure of the experiments.

by a JR3 sensor attached to the end effector, provides the

nominal control signal uno.

uno = f ext +MP p̈r +DP (ṗr − ṗd) +KP (pr − pd) (18)

The control structure is implemented using the Mat-

lab/Simulink Real Time Workshop. The code runs with a

sampling rate of 1 kHz. The real time QP solver is generated

by CVXGEN [17]. The necessary parameters are given in

Tab. I. Note that the parameters aE and bE may differ for

each constraint, i.e. in a setup with multiple constraints, each

constraint may be assigned a different set of parameters.

Parameter Value

Sampling time TA 0.001 s

Mass of robot MP

[

10

10

10

]

kg

Impedance
control

DP 80 · I3 Ns/m

KP 200 · I3 N/m

CBF-based
control
(static)

γ 10

aE 100

bE 10

CBF-based
control
(sphere)

γ 10

aE 1

bE 1

Constraint
parameters

pmax [0.70, 0.40, −0.35]⊺ m

pmin [0.57, 0.13, −0.50]⊺ m

rs 0.25 m

TABLE I: Model and Control parameters.

During the experiments, the nominal control input forces

the end effector to follow a given, desired trajectory and

to react compliantly to a human input. Nominal control

does, however, not take any constraints into account, i.e. the

generated nominal control input may induce a violation of

constraints. Therefore, the developed control scheme based

on CBFs replaces the nominal control input by a constraint

enforcing input.

B. Experimental Results

In Fig. 4, the Cartesian position of the end effector and the

measured external forces during the first experiment with six

static constraints are depicted. During the first few seconds,

0.55

0.6

0.65

0.7

p
1

[m
]

0.1

0.2

0.3

0.4

p
2

[m
]

0 10 20 30 40 50

−0.5
−0.45
−0.4
−0.35

Time t [s]

p
3

[m
]

(a) End effector position: reference trajectory pr,
bounds and desired position of the end effector pd.

0

50

f
p
1

[N
]

−20

0

20

f
p
2

[N
]

0 10 20 30 40 50

−20

−10
0

Time t [s]

f
p
3

[N
]

(b) Measured external forces: f ext = [fp1 fp2 fp3 ]
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Fig. 4: Experiment with six static Cartesian constraints.

the desired position follows the reference trajectory, as the

end effector is away from the bounds and no forces are

applied. If the end effector is at a distance from the constraint

and an external force is applied, cf. p3 from t = 25s to

t = 45s, or if the system is close to a constraint and the

force is directed away from the limit, cf. p3 from t = 5s to

t = 10s, the end effector gives way to the external force.

This shows the effect of the nominal impedance control law.

Figure 4a also shows that the desired trajectory never

violates a constraint even though the reference trajectory

does not adhere to the constraints, cf. p1 from t = 3s to

t = 9s. In addition, when the trajectory is close to a boundary

and forces are applied pushing the end effector towards the

limit, cf. p1 and p2 from t = 15s to t = 25s, no violation

occurs. Hence the controller enforces the constraints in the



presence of external forces and even if the reference leaves

the admissible set of states.

The measured position of the end effector pm is not

included in the plots, as it coincides almost exactly with

the desired position and gives no additional value. However,

the measured position shows some negligible violations (<

1mm) of the constraint, which are due to measurement noise

and an inexact system modeling in the trajectory generation,

where Coriolis, centripetal and gravity effects are neglected.

These slight violations do, however, not challenge the general

feasibility of the approach.

Figure 5 shows the results of the second experiment, where

the obstacle moves, the reference position is constant and

no forces are applied. During the first few seconds, the
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Fig. 5: Reaction of the end effector to the moving constraint:

the negative deviation of the end effector from the

reference position −‖pm − pr‖2, the distance between

the surface of the sphere and the reference position ‖c −
pr‖2 − rs and the constraint function h(p, t).

constraint is at a distance from the end effector and the

end effector holds the desired position, which leads to no

deviation as depicted in the figure. However, if the constraint

moves towards the end effector, i.e. ‖c−pr‖2−rs decreases

in value, a deviation from the reference position occurs as

the system has to move to avoid a violation of the constraint.

The almost coinciding blue, dashed and black lines show

that the end effector only deviates as much from the desired

position as is necessary to avoid a violation. This is also

emphasized by the constraint function, which illustrates the

distance between the end effector and the constraint and

which approaches zero in these cases.

Both experiments illustrate the capabilities of the devel-

oped control scheme. It combines the desired nominal behav-

ior with the given limits to achieve a constraint admissible

behavior and it is able to handle time-dependent constraints.

VI. CONCLUSION

In this paper, a novel design of constraint enforcing CBF-

based control as an add-on to an existing control loop is

introduced. The approach is applicable to nonlinear control

affine systems with an existing nominal control structure. It

enforces an arbitrary number of constraints, while allowing

for nominal system behavior as long as it is constraint

admissible. In two experiments on a redundant anthropomor-

phic manipulator, the control scheme combines compliant

behavior, generated by a nominal impedance control scheme,

with static Cartesian workspace constraints and a moving

spherical constraint. Future work may focus on the issue that

CBF-based control is currently not able to resolve constraint

violations.
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