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1

Introduction

Inferring properties of a physical system from measurement data is a cornerstone of physical

science. By inferring sufficiently many properties one can completely characterize a system in

the following sense: Physical models approximately describe certain traits of a system by a set

of parameters from which all model-specific predictions can be computed. Consequently, within

the context of this model, inferring these parameters from measurement data gives a complete

description of the system. For instance, when modelling air as an ideal gas it can be completely

characterized by measuring pressure, volume and temperature.

The present dissertation is concerned with inferring such complete descriptions or initial

conditions in the context of quantum mechanics. Quantum mechanics is an intrinsically prob-

abilistic theory: Even when knowing the initial conditions of a quantum system, in general the

outcome of a measurement cannot be predicted. Only the probability with which an outcome

occurs in a statistical experiment can be determined. A full description of a quantum system

is provided by its state, which is a complete specification of the outcome distributions of all

possible measurements. One can take the viewpoint that a state provides a description of a

statistical ensemble of quantum systems rather than that of an individual system. Form this

perspective quantum state tomography is the process of inferring the unknown state of an en-

semble of quantum systems from the data obtained by performing measurements on instances

of the ensemble. It is a vital routine in quantum information science where it is used to test

processing devices. However, with growing system size quantum tomography quickly becomes

a challenging task and sometimes infeasible. For instance, to determine a maximum likelihood

estimate of a quantum state of eight ions required hundreds of thousands of measurements and

weeks of post-processing in an experiment conducted by Häffner et al. [1]. However, as the
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1. INTRODUCTION

experimenter typically has some prior information about the state he wants to identify, only

the subset of states consistent with this information has to be considered for tomography. For

example, it could be known that the state is pure, has certain symmetries or is a ground state

of a local Hamiltonian. In such cases one can hope for a more efficient tomography and in-

deed, based on ideas of compressed sensing, a practical protocol for the tomography of low-rank

quantum states was provided in [2, 3].

Following similar lines of research, the present dissertation is concerned with how and to

what extent prior information about a quantum system can be utilized for a more efficient

tomography procedure. The prior information is typically given in terms of a predefined subset

of the state space together with the promise that the quantum state to be measured is contained

in or at least close to this subset. Given such a subset, the focus is on the following three issues:

1. What is the minimal number of measurement outcomes necessary to discriminate any two

quantum states of the subset?

2. Can this minimal number of measurement outcomes be reached when restricting to a class

of admissable measurement settings as for instance projective measurements?

3. Can one find measurement settings with a close to minimal number of outcomes, which

allow for a stable and computationally tractable reconstruction of every quantum state

of the subset?

The first two issues are addressed for rather general subsets. For the last issue the analysis

focuses on quantum states of bounded rank. Similar questions are analyzed in the context of

other signal processing tasks such as phase retrieval or deconvolution problems.

The focus of the present dissertation is mainly on the number of measurement outcomes.

The question of how many identically prepared quantum systems are needed to estimate an

unknown quantum state to a given precision level is not regarded1.

In the remainder of this introduction, a brief summary of the six articles included in the

present dissertation is given. The main results as well as the methods used to obtain them are

discussed and connections to existing literature are pointed out.

In the second chapter, mathematical and technical foundations are presented. First, the basic

notions of finite-dimensional quantum mechanics are introduced, followed by a brief introduc-

tion to quantum state tomography. Finally, the last part of this chapter is concerned with

1In the context of phase retrieval and blind deconvolution this issue need not be considered as the sampling

problem does not arise.
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1.1 Summary and Discussion of Results

quantum state tomography in the scenario where prior information constrains the set of rele-

vant states to a subset of lower dimensionality. The focus is on results and concepts from the

existing literature which are particularly relevant for the present dissertation.

These two chapters are followed by the contributed articles ordered according to their publica-

tion date. Each article is preceded by a short technical summary of its main results.

1.1 Summary and Discussion of Results

The articles included in the present dissertation can be classified with respect to the issues 1,

2 and 3, yet, here they are ordered according to their publication date. As the tomography

of bounded rank quantum states is closely related to topics in signal processing such as phase

retrieval, low-rank matrix recovery or deconvolution, some of the articles are targeted towards

these lines of research (articles III, IV).

1. Article I: The Role of Topology in Quantum Tomography

This article is concerned with Issue 1 in scenarios where prior information effectively

restricts the state space to a smooth manifold of lower dimensionality. More precisely, it

approaches the following question: Given a smooth manifold embedded in the state space,

what is the minimal number of binary measurement settings1 required to discriminate any

two distinct states of the manifold? It is assumed that every setting can be measured

arbitrarily often, resulting in a precise knowledge of all the binary outcome distributions.

The basic idea is that the minimal number of binary measurement settings is essentially

determined by topological obstructions. For instance, if the manifold is homeomorphic

to a Klein bottle one would expect that at least four measurement settings are needed as

the Klein bottle cannot be continuously mapped into three-dimensional Euclidean space

without self-intersections. In the context of quantum tomography, topological arguments

were first deployed in [4] to determine, i.a., the minimal number of binary measurement

settings necessary to discriminate any two pure quantum states up to logarithmic cor-

rections. The respective analysis is based on results concerning embeddings of complex

projective space into Euclidean space [5, 6]. However, as the argument given in [4] relies

on a specific technical assumption, it remained unclear for which manifolds the topological

reasoning is valid.

1Equivalently, one can ask for the minimal number of outcomes of a generalized measurement.
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1. INTRODUCTION

This article introduces a general framework showing that under mild stability assumptions

on the measurements, the topological reasoning is valid for arbitrary smooth manifolds.

More precisely, considering a measurement procedure as a smooth mapping from the man-

ifold to Euclidean space, the argument solely relies on the assumption that this map is a

smooth embedding. It is then shown that the embedding property is equivalent to two

mild stability properties a practical measurement procedure should satisfy. In addition,

when allowing for measurements on several copies of the state, it is shown that the min-

imal number of binary measurement settings needed to discriminate any two states of a

given manifold is precisely the minimal dimension of Euclidean space the manifold can be

embedded into. The approach is then applied to states with bounded rank, taken from a

unitary orbit and invariant under a given unitary symmetry. The topological reasoning

only yields lower bounds on the minimal number of binary measurement settings. By

means of explicit constructions, also upper bounds are provided. In most cases the up-

per and lower bounds are reasonably close, demonstrating the success of the topological

approach in these scenarios.

It remains an open problem to what extent the lower bounds obtained in this article

apply to practical measurement devices as relevant aspects such as the complexity of the

necessary post-processing of the measurement data or the ability to verify the assumed

prior information are not considered in the analysis. However, the results of the articles

III and V suggest that they can be reasonably tight also in more realistic scenarios.

2. Article II: Constrained Quantum Tomography of Semi-Algebraic Sets with Applications to

Low-Rank Matrix Recovery

This article is concerned with Issue 2. In practice, an experimenter typically cannot im-

plement an arbitrary (generalized) measurement, but only has access to a limited class

of realizable measurements. For instance, this class could be the set of von Neumann

measurements or, when dealing with mutipartite systems, the set of local measurements.

This raises the following question: Given a subset of the state space, are there natural

classes of measurements for which an efficient tomography procedure is possible? Article

II approaches this problem with regards to the minimal number of measurement outcomes

leading to the related question: Given a set of states and a class of admissible measure-

ments, is there an admissible measurement whose number of outcomes is comparable to

the topological lower bound that can discriminate any two states of the set? Phrased
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1.1 Summary and Discussion of Results

differently, this article is concerned with finding upper bounds on the minimal number of

measurement outcomes necessary to discriminate any two distinct states of a given subset

of the state space in scenarios where the class of admissible measurements is restricted.

The case of pure state tomography with von Neumann measurements was considered in

[7, 8, 9], where it is shown that any two pure states can be discriminated by merely four

von Neumann measurements. For dimensions greater than four this result is known to be

sharp [9]. In the context of phase retrieval and low-rank matrix recovery, similar results

were obtained in [10, 11, 12, 13, 14, 15].

Motivated by the algebraic geometry approach taken in [10], Article II extends these

results by showing that von Neumann measurements, or more generally rank one mea-

surements, are in a certain sense suited for state discrimination on arbitrary semi-algebraic

subsets of the state space. From this, a Whitney type embedding result can be proven

straightforwardly: There is a collection of von Neumann measurements which can dis-

criminate any two distinct elements of a given set of states as long as their cumulative

number of independent outcomes exceeds twice the set’s dimension. Considering specific

subsets, it is shown that any two quantum states of rank at most r can be discriminated

by essentially the minimal number of von Neumann measurements. In addition, similar

results are provided for measuring expectation values of local observables.

The algebraic arguments used in this article allow for a rather general analysis of the state

discrimination problem. However, these techniques have the drawback that some aspects

which are essential for a practical tomography procedure cannot be regarded. For in-

stance, error tolerance is crucial because of imperfect prior information and the statistical

nature of quantum state tomography. However, although a qualitative stability analy-

sis is possible, the algebraic techniques cannot provide quantitative stability guarantees.

Another drawback of the algebraic approach is that it does not yield efficient recovery

algorithms.

Rather than providing practical measurement devices, the purpose of this article is to

identify interesting measurement schemes, like, e.g., von Neumann measurements, that

allow tomography on subsets of the state space. Furthermore, the techniques can be com-

bined with those of Article I to establish fundamental bounds on the minimal number of

measurement settings needed for state discrimination, as is done in case of discriminating
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1. INTRODUCTION

low-rank quantum states with von Neumann measurements. These bounds can then serve

as a benchmark for practical measurement devices.

3. Article III: Explicit Frames for Deterministic Phase Retrieval via PhaseLift

This article addresses Issue 3 in the context of phase retrieval, which is the task of re-

constructing a signal up to a global phase from intensity measurements. Phase retrieval

is mathematically closely related to the tomography of pure quantum states. One of the

most prominent applications of phase retrieval arguably is X-ray crystallography, which

aims to reconstruct the electron density of a crystal from X-ray diffraction patterns.

Based on ideas from matrix recovery [16, 17], the PhaseLift approach [18, 19, 20] provides

a stable and computationally tractable recovery scheme for phase retrieval: First, by a

lifting step, the recovery problem is formulated as a linearly constrained rank minimization

problem and in a second step relaxed to a convex program. It is then shown that an n-

dimensional signal can be recovered up to a global phase by means of PhaseLift in the

sense that the convex relaxation is precise with high probability if O(n) randomly chosen

intensity measurements are performed. Furthermore, the recovery is also stable with

respect to noise.

Article III pursues a deterministic approach to PhaseLift. Motivated by the results given

in [21], for any dimension n, the article provides 5n− 6 intensity measurements such that

every signal can be recovered up to a global phase by solving the relaxed optimization

problem. Indeed, this is the smallest known number of intensity measurements for which a

computationally tractable recovery is possible and the first explicit construction of a small

collection of measurements which allow uniform recovery via PhaseLift. These results are

also generalized to the recovery of low-rank positive matrices. The employed recovery

procedure is stable with respect to noise in the sense that the reconstruction error scales

linearly in the noise level. However, as the constant of proportionality is not estimated,

this result does not imply stability in a practical sense.

While the convex programs used in the PhaseLift approach are in principle computation-

ally tractable, solving them becomes impractical for large signal dimensions. Concerning

the cost of computation, there are more favourable approaches as for instance those pro-

posed in [22, 23]. Based on 6n−3 intensity measurements, another deterministic approach

to phase retrieval which makes use of a different recovery scheme was introduced in [24, 25].
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1.1 Summary and Discussion of Results

4. Article IV: Optimal Injectivity Conditions for Bilinear Inverse Problems with Applications

to Identifiability of Deconvolution Problems

This article is concerned with issues 1 and 2 in the context of bilinear inverse problems,

i.e., inverse problems where the task is to recover two inputs, the signal and the filter,

from bilinear measurements. Practically relevant instances of such inverse problems are

for instance blind deconvolution1 [26, 27, 28, 29, 30] or self-calibration problems [31, 32].

Again by a lifting approach, a bilinear inverse problem can be formulated as a linearly

constrained rank minimization problem. However, one often has to make additional struc-

tural assumptions on the input pair since many problems, such as blind deconvolution,

are otherwise ill-posed.

Identifiability for bilinear inverse problems under sparsity constraints is the question

whether a sparse input pair is unambiguously determined by the measurement outcomes.

It was first considered in [33, 34], in particular providing negative results for the case

of blind deconvolution. In [35] these cases were identified as exceptional in the sense

that the dictionary pairs for which given inputs are not identifiable have measure zero

if the inputs’ sparsity level is low enough. Near optimal identifiability results were pro-

vided in [36], where the analysis was furthermore extended to injectivity, i.e., uniform

identifiability over all sparse enough input pairs.

Different from [33, 34, 35, 36], Article IV is based on techniques from algebraic geometry.

These techniques are used to improve the results given in [36] and also to show the

optimality of the resulting conditions. More precisely, the article provides a lower bound

on the number of outcomes of a bilinear map capable of discriminating any two input pairs

of given sparsity level. As this result holds for arbitrary bilinear maps and dictionaries,

in particular it yields an upper bound on the input sparsity level up to which blind

deconvolution is possible. This bound is tight, as it is shown to be attained by generic

dictionary pairs.

The argument which yields the dictionary pairs attaining the lower bound is based on the

approach taken in Article II. Consequently, the results do not entail tractable reconstruc-

tion algorithms. However, the optimal identifiability bounds obtained in this article can

be used as a benchmark for future research on bilinear inverse problems.

1Blind deconvolution is the specific bilinear inverse problem where the bilinear map is the circular convolu-

tion.
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1. INTRODUCTION

5. Article V: Stable Pure State Quantum Tomography from Five Orthonormal Bases

This article addresses Issue 3 in the context of pure state tomography which, as mentioned

before, is closely related to phase retrieval.

Motivated by ideas from compressed sensing, in [2, 3] tomography procedures are proposed

which allow the stable and computationally tractable recovery of low-rank quantum states

from few measurement outcomes. In particular, it is shown that an arbitrary pure state

of a d-qubit system can be efficiently reconstructed with high probability from O(n lnn)

Pauli measurements drawn at random, where n := 2d. Using different proof techniques,

improved stability results are provided in [37, 38]. Furthermore, in [38] an analysis of the

sample complexity is given. From a practical point of view however, it may be favourable

to implement an explicitly specified measurement setup rather than a random one. Such

a deterministic recovery scheme based on five von Neumann measurements was proposed

and experimentally demonstrated in [39]. However, as their scheme is adaptive, i.e., the

outcome distribution of the first measurement affects the choice of the subsequent ones,

the actual number of needed von Neumann measurements is significantly higher if the

procedure is required to work uniformly for all pure states.

Article V provides a recovery scheme which is both deterministic and non-adaptive,

thereby overcoming the mentioned drawbacks of [2, 3, 39]: For any dimension, five von

Neumann measurements are constructed which allow the recovery of every pure state by

means of a convex program. Conceptually, the taken approach is similar to the one of

Article III, however the argument is considerably simplified (yet less general) by following

a different proof strategy. As compared to Article III, the main technical advance is to

realize the additional structure von Neumann measurements entail. This is achieved by

generalizing a construction given in [8]. As the stability results provided in Article III

transfer directly, the recovery is also stable, but again quantitative stability guarantees are

not available. Therefore, numerical simulations are performed which indicate a reasonable

noise tolerance in practice.

6. Article VI: Dynamical Quantum Tomography

This article is concerned with Issue 2. Originating from the approach presented in Arti-

cle II, quantum tomography is considered in the following scenario: The experimenter is

given a fixed measurement setup and has to identify the state of an ensemble of quantum

systems. Before measuring with the setup on a system of the ensemble, he can subject

8



1.1 Summary and Discussion of Results

the system to a known time evolution for a desired period of time. For a suitable time

evolution, a setup with just few outcomes renders an informationally complete state to-

mography possible. For instance, given an ensemble of identically prepared electrons, by

performing a Stern-Gerlach experiment only one component of the spin can de deter-

mined. However, if the electrons are subjected to a suitably directed magnetic field for

different time periods before performing the measurement, the spin can be completely

recovered.

In this article, it is shown that for suitable unitary time evolutions any state of a d-level

system can be uniquely identified by measuring with a setup which has d outcomes at

d+1 equidistant time points. This result is tight in the sense that the previous statement

cannot hold for a setup with fewer outcomes also if measuring at more time points.

Furthermore, when considering more general time evolutions, it is shown that a binary

setup suffices. Vaguely speaking, this shows that any state can be completely identified

by the time evolution of a single observable’s expectation value1. It is shown that the

measurement scheme also is well-suited for state discrimination on subsets of the state

space, where good upper bounds on the number of required time points are provided.

As the approach taken in this article is based on the one taken in Article II, it has similar

drawbacks (see summary of Article II).

1This only holds when both the observable and the time evolution are chosen suitably.
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Methods

In this chapter, a brief introduction to basic mathematical and physical concepts of quantum

mechanics is provided and some results on quantum state tomography are summarized. As the

articles included in the present dissertation are exclusively concerned with finite-dimensional

quantum mechanics, the exposition is restricted to this case, thereby avoiding technical sub-

tleties the infinite-dimensional theory entails. Throughout this chapter, references for basic

definitions and some basic results from quantum information theory and differential topology

are omitted. Concerning quantum information theory, the reader may for instance consult the

book by Michael A. Nielsen and Isaac L. Chuang [40]. Definitions and results related to differ-

ential topology can be found in the books [41, 42]. The author does not claim ownership for

the results presented in this chapter, even if a reference is omitted.

In Section 2.1, a brief introduction to quantum mechanics is provided, where both the phys-

ical concepts as well as their mathematical description are considered. Due to their relevance in

the following, measurements are discussed in somewhat more detail. Quantum states and mea-

surements are introduced in Section 2.1.1 and Section 2.1.2 is concerned with time evolutions

in quantum mechanics.

In Section 2.2, an introduction to quantum state tomography is provided. The estima-

tion problem involved in reconstructing a quantum state from measurement data is explained.

Furthermore, some estimation techniques are briefly discussed.

Section 2.3 is concerned with quantum state tomography in the scenario where prior infor-

mation restricts the set of relevant states to a subset of lower dimensionality. In this section,

the focus is mainly on Issue 1, i.e., on the number of measurement outcomes necessary to dis-

criminate any two states of the subset. Essentially this section summarizes results and ideas

11



2. METHODS

given in [4]. First, measurements are analyzed from a topological point of view and afterwards

as smooth mappings from the state space to Euclidean space. The gained insight is then used to

lower bound the number of binary measurement settings required to discriminate any two pure

states. This approach serves as a starting point for the analysis given in Article I. Additionally,

a result showing that the obtained lower bound is close to optimal is presented. The given proof

motivates the approach taken in the articles II and VI.

Finally, in Section 2.4, the compressed sensing approach to quantum state tomography is

presented (see [2, 3, 37, 38]), which addresses Issue 3 for quantum states of rank at most r.

Article V is closely related to these articles as it aims at similar results and utilizes similar

convex programs for the recovery. From a technical point of view however, the approach taken

in Article V is very different from the probabilistic approaches taken in [2, 3, 37, 38]. The

discussion focuses on [37, 38], where an analysis based on the restricted isometry property (see

[16]) is given.

Notation

Throughout this chapter, (H, 〈·, ·〉) denotes a Hilbert space of finite dimension n and ‖ · ‖ =√
〈·, ·〉 denotes the associated norm. In the following, the explicit specification of the scalar

product often is omitted. The set of linear operators B : H → H is denoted by L(H). Given

Hilbert spaces (H1, 〈·, ·〉1), (H2, 〈·, ·〉2), the adjoint of an operator B : H1 → H2 is the unique

operator B∗ : H2 → H1 such that 〈x,B∗y〉1 = 〈Bx, y〉2 holds for all x ∈ H1, y ∈ H2.

Furthermore, H(H) := {B ∈ L(H)|B∗ = B} denotes the set of self-adjoint operators. An

operator B ∈ L(H) is called positive, written as B ≥ 0, if and only if (iff) B is self-adjoint with

non-negative eingenvalues. In the following, L(H) is viewed as a Hilbert space equipped with

the Hilbert-Schmidt inner product, 〈A,B〉HS := tr(A∗B), ∀A,B ∈ L(H). The Hilbert-Schmidt

norm is denoted by ‖ · ‖HS . The set of all unitary operators on H is denoted by U(H). The

complex span of a set of operators B ⊆ L(H) is denoted by SpanB.

By choosing an orthonormal basis, H is sometimes identified with Cn equipped with the

standard inner product. Under this identification an operator B ∈ L(H) has a concrete repre-

sentation as a complex n × n matrix. The Euclidean norm on both Cn and Rn is denoted by

‖ · ‖. The transpose and conjugate transpose of an n×m matrix A ∈ Cn×m is denoted by At

and A∗, respectively.

12



2.1 Finite-dimensional Quantum Mechanics

2.1 Finite-dimensional Quantum Mechanics

2.1.1 Quantum States and Measurements

Conceptually, it is useful to split an experiment into two steps, preparation and measurement1.

Specifying the preparation procedure of a quantum system determines the outcome probabili-

ties of all possible measurements. From this perspective, a quantum state can be understood as

the equivalence class of preparation procedures yielding identical outcome probabilities for all

measurements. Similarly, a measurement can be understood as the equivalence class of mea-

surement procedures which yield identical outcome distributions (in a statistical experiment)

for all quantum states. The following correspondence rules connect these physical concepts to

the mathematical objects introduced before.

Rule 1. (Quantum state). A quantum state corresponds to a positive linear operator % on H

with normalization tr(%) = 1, i.e., to an element of S(H) := {% ∈ L(H)| % ≥ 0, tr(%) = 1}. The

set S(H) is called state space.

In the following, the term quantum state is used for both the physical concept, its mathematical

description as an element of S(H) and its concrete matrix representation when identifying H

with Cn. The set of quantum states is compact as well as convex and the set of its extreme

points, called pure states, is given by2

S1(H) := {ρ ∈ S(H)| ρ2 = ρ} = {ψψ∗|ψ ∈ H, ‖ψ‖ = 1}.

The set of quantum states of rank at most r is denoted by

Sr(H) := {% ∈ S(H)| rank % ≤ r}.

Rule 2. (POVM). A measurement corresponds to a positive operator valued measure (POVM)

on H, i.e., to a mapping P : 2I → L(H), A 7→
∑
i∈A Pi, where I is a finite set labelling all

possible measurement outcomes and {Pi}i∈I is an indexed family of positive operators such

that P (I) =
∑
i∈I Pi = 1H.

The elements of {P ({i})}i∈I , P ∈ POVMH, are called effect operators. The set of all POVMs

on H is denoted by POVMH. The normalization and positivity conditions for both quantum

states and POVMs ensure that for all % ∈ S(H), the map 2I 3 A 7→ 〈P (A), %〉HS ∈ [0, 1] is a

1The ambiguity of this step is not problematic as different splits lead to equivalent descriptions.
2ψψ∗ is the element of H(H) which acts on any ξ ∈ H as (ψψ∗)(ξ) := ψ〈ψ, ξ〉.
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2. METHODS

probability measure over (I, 2I). Therefore, a POVM P represents a measurement in the sense

that it associates to a quantum state ρ the probability measure

pP,% := 〈P, %〉HS

over the set of measurement outcomes. If not stated otherwise, in the following it is assumed

that for each POVM P : 2I → L(H) with m outcomes one has I = {1, 2, . . . ,m}. In order

to simplify the presentation, the one-to-one correspondence between POVMs P ∈ POVMH

and their associated indexed families of effect operators {P ({i})}i∈I is sometimes exploited by

writing P = {P ({i})}i∈I .

A different yet closely related way to describe measurements is in terms of observables.

An observable O is a self-adjoint element of L(H). Let {λ1, . . . , λm} be the set of eigenval-

ues of the observable O and {P1, . . . , Pm} be the set of associated spectral projections. As

{P1, . . . , Pm} is a set of positive operators with
∑m
i=1 Pi = 1H, the map P : 2{1,...,m} 3 A 7→∑

i∈A Pi ∈ L(H) is a POVM. The observable O is then understood as the equivalence class of

measurement procedures characterized by P and furthermore each eigenvalue λi is understood

as the measurement result corresponding to the event i ∈ {1, . . . ,m}. With this interpretation,

〈O, %〉HS =
∑m
i=1 λi〈Pi, %〉HS =

∑m
i=1 λipP,%({i}) is the expectation value of O for an ensemble

of quantum systems prepared in state % ∈ S(H). The POVMs which are induced by observables

are called projective measurements. If in addition all effect operators are rank one, a projective

measurement is called von Neumann measurement. Clearly, projective measurements are more

restrictive than POVMs which are sometimes called generalized measurements for this reason.

However, the two notions are closely related in the sense that each POVM can be lifted to a

projective measurement on a larger system.

Theorem 1 (Naimark’s dilation theorem). Let P ∈ POVMH be a POVM. Then, there exists a

Hilbert space H′, a linear isometry V : H→ H′ and a projective measurement P ′ ∈ POVMH′

with the same number of outcomes as P such that for all % ∈ S(H) one has

〈P, %〉HS = 〈P ′, V %V ∗〉HS .

Proof. The proof given here closely follows the proof of Theorem 2.6 in [43]. Let e1, . . . , en

be an orthonormal basis (ONB) of H and let P ∈ POVMH be such that for all i ∈ I =

{1, . . . ,m} there exists ψi ∈ H with P ({i}) = ψiψ
∗
i . Let H′ be an m-dimensional Hilbert

space and let f1, . . . , fm be an ONB of H′. Define the linear map V : H → H′ by setting

V ei = fi for all i ∈ {1, . . . , n}. Since
∑m
i=1 ψiψ

∗
i = 1H, the n×m matrix Mij := 〈ei, ψj〉 is an

isometry. Therefore, M can be extended to an m ×m unitary matrix M̃ . Then, the vectors

ψ̃j :=
∑m
i=1 M̃ijfi, j ∈ {1, . . . ,m}, form an orthonormal basis. Define a POVM P ′ ∈ POVMH

14



2.1 Finite-dimensional Quantum Mechanics

by setting P ′({j}) := ψ̃jψ̃
∗
j for all j ∈ {1, . . . ,m}. Then, it follows by construction that

〈P ({j}), %〉HS = 〈P ′({j}), V %V ∗〉HS holds for all % ∈ S(H) and j ∈ {1, . . . ,m}.
Now consider the case where the rank of the operators P ({i}), i ∈ I, is arbitrary. For

every i ∈ I let P ({i}) =
∑αi

j=1 Pi,j be a spectral decomposition into rank one elements and

define a POVM P̃ ∈ POVMH with
∑m
i=1 αi outcomes by setting P̃ ({(i, j)}) = Pi,j for each

(i, j) ∈ Ĩ := {(i, j)}i∈I,j∈{1,...,αi}. Proceeding as in the case of rank one effect operators, one

obtains a Hilbert space H′, a linear isometry V and a POVM P̃ ′ ∈ POVMH′ . Finally, setting

P ′({i}) :=
∑αi

j=1 P̃
′({(i, j)}) for all i ∈ I yields a POVM P ′ : 2I → L(H) with the desired

properties.

Remark 2. Let P ∈ POVMH be a POVM such that every element of {P ({i})}i∈I is rank one.

Then, the above construction shows that one can choose H′ with dimH′ = m. Furthermore,

the construction yields a von Neumann measurement in this case.

Composite quantum systems are described by means of tensor products. More precisely,

when considering k ∈ N distinct quantum systems with state spaces S(H1), . . . , S(Hk) and sets

of POVMs POVMH1
, . . . , POVMHk

the state space and the set of POVMs of the composite

system are given by S(H1 ⊗ . . . ⊗Hk) and POVMH1⊗...⊗Hk
, respectively. Given a quantum

state % ∈ S(H1 ⊗H2) on a composite system the reduced state of the first system is given by

tr2(%) := (1L(H1) ⊗ tr)(%), where tr : H2 7→ C is the trace associated to the second system.

From Theorem 1 it can be shown in a straightforward way that any POVM can be imple-

mented as a projective measurement on a composite system.

Corollary 3. Let P ∈ POVMH be a POVM. Then, there exists a Hilbert space HE, a projective

measurement P ′ ∈ POVMH⊗HE
with the same number of outcomes as P and a pure state

σ ∈ S1(HE) such that for all % ∈ S(H) one has

〈P, %〉HS = 〈P ′, %⊗ σ〉HS .

Proof. Let e1, . . . , en be an ONB of H and let P ∈ POVMH be such that for all i ∈ I =

{1, . . . ,m} there exists ψi ∈ H with1 P ({i}) = ψiψ
∗
i . Let HE be an nE-dimensional Hilbert

space such that n · nE ≥ m and let f1, . . . , fnE
be an ONB of HE . Define a linear isometry

V : H 7→ H ⊗HE by setting V (ei) = ei ⊗ f1 for all i ∈ {1, . . . , n} and let σ = f1f
∗
1 . Let H′ ⊆

H⊗HE be an m-dimensional subspace of H⊗HE containing V (H) and let H′⊕H′⊥ ' H⊗HE

be the associated orthogonal decomposition. With this choice of V and H′ one can proceed as

in the proof of Theorem 1 to obtain a projective measurement P̃ ′ ∈ POVMH′ . To conclude the

proof, define the projective measurement P ′ ∈ POVMH⊗HE
by setting P ′({i}) = P̃ ′({i})⊕ 0

for 1 ≤ i < m and P ′({m}) = P̃ ′({m})⊕ 1H′⊥
.

1For higher rank operators {P ({i})}i∈I consult the respective part in the proof of Theorem 1.
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2.1.2 Time Evolution in Quantum Mechanics

Taking the viewpoint that time evolutions act on quantum states rather than measurement

procedures leads to the following correspondence rule.

Rule 3. (Time evolution). A time evolution corresponds to a map S(H) 3 % 7→ T(%) ∈ S(H),

where T : L(H) → L(H) is linear, trace-preserving, i.e., tr(T(X)) = tr(X) for all X ∈ L(H),

and completely positive1, i.e., (1H′ ⊗ T)(X) ≥ 0 for all finite-dimensional Hilbert spaces H′

and all X ∈ L(H′ ⊗H) with X ≥ 0.

The set of all linear maps T : L(H)→ L(H) which are completely positive and trace-preserving

(CPTP) is denoted by CPTPH. CPTP maps allow the following representation.

Theorem 4 (Kraus representation, [44, 45]). A linear map T : L(H) → L(H) is completely

positive iff there is a number k ∈ N and operators Ai ∈ L(H), i = 1, . . . , k, such that for any

X ∈ L(H) one has

T (X) =

k∑
i=1

AiXA
∗
i .

The operators Ai, i = 1, . . . , k, are called Kraus operators of T and T is trace-preserving iff∑k
i=1A

∗
iAi = 1H.

Closed quantum systems, i.e., quantum systems with a physically reversible time evolution,

are often considered separately. Physically reversible time evolutions correspond to the subset

{T ∈ CPTPH| ∃U ∈ U(H) : T(B) = UBU∗, ∀B ∈ L(H)} of CPTP maps. Similar to the case

of POVMs and von Neumann measurements, every CPTP map can be realized as the restriction

of reversible dynamics on a composite system to a subsystem.

Theorem 5 (Stinespring dilation, [46]). A linear map T : L(H) → L(H) is CPTP iff there

exists a finite-dimensional Hilbert space H′, a unitary operator U ∈ U(H⊗H′) and a quantum

state σ ∈ S1(H) such that for all X ∈ L(H) one has

T(X) = tr2(U(X ⊗ σ)U∗).

2.2 Quantum State Tomography

Quantum state tomography aims to identify a preparation procedure, or more precisely the

quantum state % ∈ S(H) it corresponds to. The preparation procedure can be viewed as a black

1This requirement ensures that quantum states are mapped to quantum states also if the time evolution is

only applied to a subsystem of a composite system.
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box which, on invocation, outputs a quantum system prepared accordingly. In order to identify

the quantum state % of the black box, experiments of the following kind can be repeatedly

performed: One invokes the black box to obtain a quantum system and then performs a mea-

surement procedure. Note that the experimenter could use different measurement procedures

in different experiments. Performing such an experiment with a procedure characterized by a

POVM P : 2I → L(H) yields an outcome which is understood as an (independent) realiza-

tion of a random variable R with values in I distributed according to the probability vector

p := (〈P ({i}), %〉HS)mi=1 ∈ Rm. Hence, repeating the experiment with P fixed yields inde-

pendent realizations of R and consequently the observed relative frequencies give an empirical

estimate of p. The goal is then to infer % from the measurement data, i.e., from the observed

frequencies.

To enable the estimation of % the experimenter can, or when restricting to projective mea-

surements even has to, determine relative frequencies of more than one POVM. This motivates

the definition of a measurement scheme.

Definition 1 (Measurement scheme). A tuple M := (P1, . . . , Pl) of POVMs Pi : 2Ii →
L(H), i = 1, . . . , l, is called a measurement scheme on H of size l. The number of outcomes of

M is
∑l
i=1 |Ii|.

The set of all measurement schemes on H is denoted by MSH. The complex span of all

the effect operators Pi({j}), i = 1, . . . , l, j = 1, . . . ,mi, of a measurement scheme M :=

(P1, . . . , Pl) ∈MSH is denoted by SpanM .

Proposition 6 (see Proposition 1 in [4]). Let Σ ⊆ L(H) be a subspace. There is a measurement

scheme M ∈MSH with SpanM = Σ iff Σ is an operator system, i.e., iff Σ∗ = Σ and 1H ∈ Σ.

Proof. Let M ∈ MSH be such that SpanM = Σ. Then, by the definition of a measure-

ment scheme, the subspace Σ is the complex span of self-adjoint operators and consequently

(SpanM)∗ = SpanM . Furthermore, by the normalization condition for POVMs, 1H ∈ Σ.

Conversely, assume Σ is an operator system of dimension k ∈ N and let B1, . . . , Bk be a basis

of Σ. Every Bj , j = 1, . . . , k, can be decomposed as Bj = Xj + iYj with Xj , Yj ∈ H(H). As Σ

is an operator system by assumption, it follows that B∗j ∈ Σ and hence Xj , Yj ∈ Σ, j = 1, . . . , k.

Note that for every j ∈ {1, . . . , k} there are numbers aj , bj ∈ R such that X ′j := aj1H + Xj

and Y ′j := bj1H + Yj are positive and, as 1H ∈ Σ, both are elements of Σ. Finally, there are

numbers cj , dj ∈ R, j = 1, . . . , k, such that Z := 1H −
∑k
j=1(cjX

′
j + djY

′
j ) is positive. Let

I := {0, 1, . . . , 2k} and define a POVM P : 2I → L(H) by setting P (0) = Z, P (j) = cjX
′
j for

j = 1, . . . , k and P (k + j) = djY
′
j for j = 1, . . . , k. Then, M := (P ) is a measurement scheme

and SpanM = Σ.
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Remark 7. Let Σ be an operator system. Given a POVM P ∈ POVMH such that SpanP = Σ,

one can obtain a POVM P ′ ∈ POVMH with dim Σ outcomes such that SpanP ′ = Σ by simply

adding up redundant effect operators to one operator.

In order for a measurement scheme M := (P1, . . . , Pl) ∈MSH to enable the tomography of

any quantum state in S(H) it clearly has to be able to discriminate any two distinct quantum

states when the sample size goes to infinity. In other words, there has to be a one-to-one

correspondence between quantum states and the outcome distributions associated to measuring

P1, . . . , Pl. This motivates the following definitions.

Definition 2 (Measurement map). The measurement map DP associated to a POVM P ∈
POVMH is the linear map1

DP : H(H)→ Rm, X 7→ (〈P ({i}), X〉HS)mi=1.

It maps a quantum state % ∈ S(H) to its associated probability vector DP (%) ∈ Rm to which

observed relative frequencies converge when the sample size goes to infinity. The measurement

map DM associated to a measurement scheme M := (P1, . . . , Pl) ∈ MSH is the linear map

defined by setting DM (X) := (DPi(X))li=1 for all X ∈ H(H).

Definition 3 (Informationally complete). A measurement scheme M ∈ MSH is information-

ally complete iff the mapping S(H) 3 % 7→ DM (%) is one-to-one, i.e., iff DM (σ) 6= DM (%) for

all σ, % ∈ S(H) with σ 6= %.

Theorem 8. Let M := (P1, . . . , Pl) ∈MSH be a measurement scheme and let ΣM := SpanM∩
H(H). Then, the following are equivalent.

1. M is informationally complete,

2. DM is injective,

3. ΣM = H(H).

Proof. By definition of DM one has RangeD∗M = ΣM . Hence, the equivalence of 2. and 3.

follows from the identity (RangeD∗M )⊥ = KerDM . It remains to be proven that 1. implies 2.

as the converse clearly holds. Assume that M is informationally complete, i.e., that DM |S(H)

is injective. As by the normalization condition for POVMs on has 1H ∈ RangeD∗M , it suffices

to show that DM |H0
is injective, where H0 := {X ∈ H(H) : tr(X) = 〈1H, X〉HS = 0}. As

S(H) is a subset of the affine subspace { 1
n1H + X|X ∈ H0} with non-empty interior, DM |H0

is injective by linearity of DM .

Remark 9. In particular this result implies that if M := (P1, . . . , Pl) ∈ MSH is an informa-

tionally complete measurement scheme the number of outcomes of M has to be greater or equal

to n2 + l − 1.

1Recall that H(H) ⊆ L(H) denotes the set of self-adjoint operators.
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In view of the last theorem, a straightforward method to reconstruct quantum states from

measurement data is linear inversion [47]. One issue of this approach is that an estimator

obtained by means of linear inversion need not be a quantum state.

A common approach to recover an unknown quantum state from measurement data which

avoids this problem is maximum likelihood estimation (MLE). When performing several experi-

ments with an informationally complete measurement procedure P := {P1, . . . , Pm} ∈ POVMH

the MLE estimate of the true state % ∈ S(H) is given by

%̂ := arg max
σ∈S(H)

L(σ),

where L(σ) :=
∏m
i=1 tr(Piσ)fi is the likelihood function and fi, i = 1, . . . ,m, is the observed

frequency of the outcome i. Note that %̂ exists by the compactness of S(H) and continuity of

L. Equivalently, minimizing the negative log-likelihood yields

%̂ = arg min
σ∈S(H)

(− logL(σ)) = arg min
σ∈S(H)

m∑
i=1

−fi log (tr(Piσ)) . (2.1)

As the trace is linear and the negative logarithm is convex, the function S(H) 3 σ 7→ − logL(σ)

is a linear combination of convex functions and thus convex itself1. Hence, the MLE estimate

%̂ is a minimizer of a convex optimization problem. Maximum likelihood techniques were for

instance studied in [48, 49, 50, 51]. These techniques were also widely used in experiments (see,

e.g., [52, 53, 54, 55, 56, 57]).

Apart from MLE, also Bayesian methods were proposed for estimation (see, e.g., [58, 59,

60, 61, 62, 63]). In practice, MLE often yields rank deficient estimates (see [63]). In scenarios

where there is no prior information favouring low-rank quantum states, such an estimate might

not be desirable. Bayesian methods do not suffer from this issue. They provide a full rank

estimate together with a set of error bars. Other approaches with this feature are for instance

the hedged maximum likelihood approach proposed in [64] or the approach taken in [65], where

both the likelihood and the von Neumann entropy functionals are maximized. Furthermore,

approaches to obtain confidence regions were proposed in [66, 67] which can yield very tight

error bounds.

2.3 Quantum State Tomography under Prior Information

An experimenter might have some prior information about the preparation procedure he wants

to identify by means of quantum state tomography. Mathematically, this prior information can

1Recall that S(H) is a convex set.
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be represented in terms of the subset R ⊆ S(H) of quantum states consistent with the prior.

If the set R is of low dimensionality1 as compared to the set S(H) of all quantum states, there

are at least two ways in which one might be able to take advantage of the prior information:

First, it might be possible to save measurement outcomes since quantum states in R might be

uniquely determined among all other states in R by fewer outcomes as suggested by Remark 9.

Second, it might be possible to reduce the sample complexity meaning that the number of

quantum systems one has to prepare in order to get a good estimate of their quantum state

might decrease. In the following, the focus is on the first option.

Definition 4 (R-complete). Let R ⊆ S(H) be a subset. A measurement scheme M ∈MSH is

R-complete iff the mapping R 3 % 7→ DM (%) is injective. A POVM P ∈ POVMH is R-complete

iff the measurement scheme M = (P ) ∈MSH is R-complete.

In order to perform a feasible tomography on a subset R ⊆ S(H) with a measurement

scheme M ∈MSH, the scheme M clearly has to be R-complete. The converse need not hold as

the injectivity of DM |R does not imply the existence of a robust and computationally tractable

recovery procedure required by a feasible tomography. In this section, the following question

is studied: Given a subset R ⊆ S(H), what is the minimal number m(R) ∈ N such that there

exists an R-complete measurement scheme M ∈ MSH (or POVM P ∈ POVMH) with m(R)

outcomes? By the argument above, the minimal number of measurement outcomes needed to

perform a robust and computationally tractable state tomography on the subset R could be

greater than m(R). However, it turns out that m(R) can be a reasonable benchmark.

A different approach to the state discrimination problem for the special case of pure quantum

states was considered in [68, 69]. Given a measurement scheme M ∈ MSH, the mapping

DM |S1(H) is not required to be injective, but rather injectivity is considered in a generic sense.

In such a scenario far apart pure states might not be distinguishable and consequently there

would be disjoint neighbourhoods of these states that have similar measurement outcomes. This

might not be desirable regarding the stability of the tomography scheme.

2.3.1 Topological features

The following proposition shows that from a topological point of view measurement maps are

well-behaved.

1The dimensionality could be measured for instance in terms of the Hausdorff dimension.
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Proposition 10 (Proposition 6 of [4]). If R ⊆ S(H) is a closed subset and M ∈ MSH is

R-complete, the mapping DM |R is a topological embedding, i.e., DM |R is a homeomorphism

onto its image.

Proof. The set R is compact as it is a closed subset of the compact set S(H). The map DM

is linear and hence continuous in the standard topologies. Consequently, the map DM |R is

continuous when R is equipped with the induced topology. Finally, as M is R-complete by

assumption, the continuous map DM |R is injective and hence a homeomorphism onto its image

by the compactness of R.

This proposition motivates the idea to not consider the specific structure of the mapping

DM |R, but to relax the initial question by asking for the minimal number mT (R) ∈ N such that

the subset R ⊆ S(H) can be embedded into Euclidean space of dimension mT (R) as a topological

space. By Proposition 10, the number mT (R) is a lower bound on m(R). Unfortunately, there

is no general mathematical framework to deal with this rather general case. However, if R is

a smooth manifold powerful tools based on algebraic topology are available. Therefore, the

subsets of S(H) considered in the following are assumed to additionally come with a manifold

structure.

Definition 5 (Immersion and embedding). Let M and N be smooth manifolds1. A smooth

map ψ : M → N is an immersion iff the differential dψp : TpM → Tψ(p)N is injective for all

p ∈ M and a smooth embedding iff ψ is both an immersion and a homeomorphism onto its

image.

A subset P ⊆ S(H) is called (embedded) manifold iff there exists a manifold M and a smooth

embedding ψ : M→ H(H) such that ψ(M) = P.

Definition 6 (P-embedding). Let P ⊆ S(H) be a manifold. A measurement scheme M ∈MSH

is a P-embedding iff DM |P is a smooth embedding. A POVM P ∈ POVMH is a P-embedding

iff the measurement scheme M = (P ) ∈MSH is a P-embedding.

The question which can be approached with tools from algebraic topology is the following:

Given a manifold P ⊆ S(H), what is the smallest number mI(P) ∈ N (mE(P) ∈ N) such that

there exists a smooth immersion ψ : P → RmI(P)(embedding ψ : P → RmE(P))? The number

mI(P) (mE(P)) is called immersion (embedding) dimension. However, only in the case where

P-complete measurement schemes M ∈ MSH are indeed P-embeddings it is clear that these

numbers are a lower bound on m(P).

1Here, a smooth manifold is a second countable locally Euclidean Hausdorff topological space together with

a smooth atlas. Smooth manifolds are assumed not to have boundaries.
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The following lemma shows that the R-complete and R-embedding properties of a measure-

ment scheme M ∈MSH solely depend on the operator system ΣM := SpanM .

Lemma 11. Let R ⊆ S(H) be a subset and let M ∈MSH be a measurement scheme. Further-

more, denote by ΠΣM
: L(H)→ L(H) the orthogonal projection on ΣM .

1. The measurement scheme M is R-complete iff ΠΣM
|R is injective.

2. If R is a closed manifold, the measurement scheme M is an R-embedding iff ΠΣM
|R is a

smooth embedding.

Proof. By the definition of the map DM , one has ΣM ∩H(H) = RangeD∗M . Consequently, the

map ΠΣM
|H(H) is the orthogonal projection on the range of D∗M and hence Ker ΠΣM

|H(H) =

KerDM . Let %, σ ∈ R with σ 6= % and assume M to be R-complete. Then, 0 6= DM (%) −
DM (σ) = DM (%− σ) and hence %− σ /∈ KerDM . As Ker ΠΣM

|H(H) = KerDM , it follows that

0 6= ΠΣM
(% − σ) = ΠΣM

(%) − ΠΣM
(σ), i.e., ΠΣM

|R is injective. The converse direction can be

proven similarly.

Now assume R to be a closed manifold. Note that d(DM |R)% = DM |T%R for all % ∈ R by

linearity of DM and similarly d(ΠΣM
|R)% = ΠΣM

|T%R. Assuming M to be an R-embedding, the

map DM |R is an immersion. By linearity of DM this is equivalent to T%R ∩ KerDM = ∅ for

all % ∈ R. As Ker ΠΣM
|H(H) = KerDM it follows that ΠΣM

|R is an immersion. Since DM |R
is injective by assumption, by 1. the map ΠΣM

|R is injective. As ΠΣM
|R is continuous and

injective, it is a homeomorphism onto its image by the compactness of R. Again, the converse

can be proven similarly.

Remark 12. With respect to the R-complete and R-embedding properties two measurement

schemes M1,M2 ∈ MSH are thus equivalent, written as M1 ∼ M2, if SpanM1 = SpanM2.

Hence, for each POVM P := {P1, . . . , Pm} ∈ POVMH one can define an equivalent collection

of binary measurement settings by Mb := ({Pi,1H − Pi})mi=1 ∼ (P ).

2.3.2 The Immersion Dimension

To illustrate how methods from algebraic topology can be utilized to lower bound the immersion

dimension of a manifold, a particular method based on Stiefel-Whitney classes is presented in

this section. A regular homotopy of immersions is a homotopy such that each map in the

deformation process is an immersion. Hirsch-Smale theory is the study of regular homotopy

classes of immersions. In this framework, Hirsch [70] proved the following result showing that

the existence of an immersion of a manifold into Euclidean space is equivalent to a vector bundle

equation.

Theorem 13 (Hirsch). Let M be a d-dimensional compact manifold. There exists an immersion

of the manifold M into Rd+k iff there exists a rank k vector bundle NM on M such that the
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sum of NM with the tangent bundle TM is trivial, i.e.,

TM⊕NM = ξd+k,

where ξd+k denotes the trivial bundle on M of rank d+ k .

In the previous theorem the bundle NM can be interpreted as a normal bundle on M. If

M is a d-dimensional compact smooth manifold that can be embedded into Euclidean space of

dimension d+ k, the vector bundle equation

TM⊕NM = ξd+k (2.2)

can be used to lower bound the immersion dimension of M. For instance, this can be achieved

by means of Stiefel-Whitney classes (see, e.g., Chapter 4 of [71] or Chapter 3 of [72] for an

introduction to Stiefel-Whitney classes): Denote by H∗(M;Z2) the cohomology ring of the

manifold M with coefficients in Z2 and by ^ the cup product. The total Stiefel-Whitney class

of a vector bundle V on a compact smooth manifold M is denoted by ω(V ) ∈ H∗(M;Z2). As

the Stiefel Whitney class of a direct sum of vector bundles is the cup product of the summands’

Stiefel Whitney classes (see Theorem 3.1 of [72]), one obtains

ω(TM⊕NM) = ω(TM) ^ ω(NM).

Using Equation 2.2 and the fact that ω(ξd+k) = 1 (see Proposition 2 in Chapter 4 of [71]), this

yields

ω(TM) ^ ω(NM) = 1

⇔ω(NM) = ω(TM), (2.3)

where ω(TM) denotes the inverse of ω(TM). From this, one can obtain the following non-

immersion result (see, e.g., Chapter 4 of [71]).

Proposition 14. Let M be a compact smooth manifold of dimension d. Let k ∈ N be the largest

integer such that ω(TM)k 6= 0. Then, the manifold M cannot be immersed in Euclidean space

of dimension d+ k − 1, i.e., mI(M) ≥ d+ k.

Proof. Assume M could be immersed in Euclidean space of dimension d + k − 1. Then, by

Theorem 13, there exists a bundle NM on M of rank k − 1 such that TM ⊕ NM = ξd+k−1.

By Theorem 3.1 of [72], it holds that ω(NM)i = 0 for i > rankNM = k − 1. In particular this

yields ω(NM)k = 0. Using Equation (2.3) this yields ω(TM)k = 0, a contradiction.

This illustrates one way to obtain non-immersion results from topological invariants. The

non-immersion results for complex flag manifolds which are used in Article I are based on the

integrality theorem given in [5].
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2.3.3 Pure Quantum States as an Example

In this section, it is demonstrated how non-embedding respectively non-immersion results can

be used to lower bound the number of measurement outcomes required to discriminate any two

pure states. It is first shown that a measurement scheme which can discriminate any two pure

states gives rise to a smooth embedding of the set of pure states S1(H) into Euclidean space.

This result is a consequence of Theorem 5 and Lemma 1 of [4].

Lemma 15. Let M ∈ MSH be an S1(H)-complete measurement scheme. Then, M is an

S1(H)-embedding.

Proof. By Proposition 10, the map DM |S1(H) is a topological embedding. It remains to be

shown that DM |S1(H) is an immersion.

First, as DM |S1(H) is injective, it follows that if DM (X) = 0 for an X ∈ ∆(S1(H)) :=

{λ(%1 − %2) : %1, %2 ∈ S1(H), λ ∈ R+} then one has X = 0, because otherwise there would exist

%1, %2 ∈ S1(H) and λ > 0 such that X = λ(%1 − %2) and hence 0 = D(X) = D(λ(%1 − %2)) =

λ(D(%1)−D(%2)), a contradiction.

Let % ∈ S1(H) be arbitrary. By the linearity of DM , it follows that d(DM |S1(H))% =

DM |T%S1(H). In order to prove the injectivity of the linear map DM |T%S1(H), by the above

argument it suffices to show that T%S1(H) ⊆ ∆(S1(H)).

Consider the smooth curve γH : R → S1(H), t 7→ eiHt%e−iHt, where H ∈ H(H) is self-

adjoint. Then, one has (see, e.g., the proof of Lemma 1 in [4])

T%S1(H) =

{
d

dt
γH(0) = i(H%− %H) : H ∈ H(H)

}
.

Since % is rank one, the commutator i[H, %] := i(H%− %H), H ∈ H(H), is the difference of two

operators of rank at most one. Consequently, i[H, %] is a self-adjoint operator of rank at most

two for all H ∈ H(H). As tr(i[H, %]) = 0, it follows that i[H, %] either has precisely two nonzero

eigenvalues with equal magnitude and opposite sign or is equal to zero. It suffices to show that

every traceless rank two self-adjoint operator X ∈ H(H) is proportional to the difference of two

rank one projections %1, %2 ∈ S1(H). As every such X has precisely two nonzero eigenvalues

with equal magnitude and opposite sign, this follows from the spectral theorem.

The set of pure states S1(H) can be identified with the complex projective space P (H) '

PCn−1. Indeed, the map ψ : P (H) → H(H), [v] 7→ vv∗/‖v‖ is a smooth embedding. Conse-

quently, if M ∈MSH is S1(H)-complete, the map DM ◦ψ is a smooth embedding of a complex

projective space into Euclidean space by Lemma 15. It follows that the embedding dimension

of PCn−1 lower bounds the number of measurement outcomes needed to discriminate any two
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2.3 Quantum State Tomography under Prior Information

pure states, i.e.1,

m(S1(H)) ≥ mE(PCn−1) + 1.

As a result, the lower bounds on mE(PCn−1) given in [5] yield lower bounds on m(S1(H)).

Theorem 16 (Section 4.6 of [5]). It holds that

mE(PCn−1) >


4n− 4− 2α(n− 1) ∀n > 1

4n− 4− 2α(n− 1) + 1 for n odd and α(n− 1) = 2 mod 4

4n− 4− 2α(n− 1) + 2 for n odd and α(n− 1) = 3 mod 4,

where α(k) is the number of ones in the dyadic expansion of k ∈ N.

As α(n) = O(log n), this bound is essentially determined by the 4n term. Explicit construc-

tions of embeddings of complex projective space into Euclidean space given in [6] show that

the lower bounds of Theorem 16 are close to optimal. Fortunately, the construction given in

[6] yields an explicit set of self-adjoint operators {Ai}i∈I ⊆ H(H) such that the linear map

H(H) 3 X 7→ (tr(AiX))i∈I can discriminate any two pure states (for more details, see the

proof of Theorem 4 in [4]). Consequently, the subspace Σ := Span {Ai}i∈I ∪ {1H} is an oper-

ator system and by Proposition 6 and Remark 7, there exists a POVM with dim Σ outcomes

such that SpanP = Σ. As a result, the construction given in [6] gives rise to S1(H)-complete

POVMs and therefore also yields strong upper bounds on the number m(S1(H)).

Theorem 17 (Theorem 3 of [4]). There exists an S1(H)-complete POVM P ∈ POVMH with

m = 1 +

{
4n− 4− α(n− 1) for even n

4n− 4− α(n− 1) + 1 for odd n

outcomes.

Next, pure state tomography by means of von Neumann measurements is considered. It

follows from Theorem 16 that in dimensions greater than four at least four von Neumann

measurements are required to discriminate any two pure states. Using Hermite polynomials,

an S1(H)-complete measurement scheme consisting of four von Neumann measurements is ex-

plicitly constructed in [8] showing that the lower bound is tight for dimensions greater than

four.

Definition 7 (Orthogonal polynomials). A sequence of univariate real polynomials (pn)n∈N0

is called a sequence of orthogonal polynomials iff the following two condictions hold:

1Because of the normalization condition for POVMs there is one redundant outcome and therefore the lower

bound is not mE(PCn−1) but mE(PCn−1) + 1.
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1. pn is of degree n for every n ∈ N0.

2. There exists a Borel measure µ with
∫
R |x|

ndµ(x) <∞ for all n ∈ N0 such that 〈pn, pm〉 :=∫
R pn(x)pm(x)dµ(x) = 0 for all n,m ∈ N with n 6= m.

In Section 5 of [9], the construction given in [8] was generalized to arbitrary sequences of

orthogonal polynomials yielding the following result.

Theorem 18 (Section 5 of [9]). Let (pn)n∈N be a sequence of orthogonal polynomials. Further-

more, let x0, . . . , xn−1 and y0, . . . , yn−2 be the zeros of the polynomials pn and pn−1 respectively.

For i = 0, . . . , n− 1 define the vectors

v1
i := (p0(xj), p1(xj), . . . , pn−1(xj)),

v2
i := (p0(xj), e

iπ/np1(xj), . . . , e
i(n−1)π/npn−1(xj)).

For i = 0, . . . , n− 2 define the vectors

v3
i := (p0(yj), p1(yj), . . . , pn−2(yj), 0),

v4
i := (p0(yj), e

iπ/np1(yj), . . . , e
i(n−2)π/npn−2(yj), 0)

and set v3
n−1 := (0, . . . , 0, 1) as well as v4

n−1 := (0, . . . , 0, 1). Then,

P l := {vlj(vlj)∗/‖vlj‖2| j = 0, . . . , n− 1}, l = 1, 2, 3, 4,

are von Neumann measurements and the measurement scheme M := (P l)4
l=1 is S1(Cn)-complete.

In [7] it is shown that Haar almost all collections of four von Neumann measurements on

Cn are S1(Cn)-complete.

The results presented above are concerned with measurements which can separate any two

pure states. A stronger separability property was considered in [21, 73]. These articles analyze

measurement schemes which can discriminate pure states from arbitrary states, i.e., measure-

ments schemes M ∈MSH such that if M(%) = M(σ) holds for some % ∈ S1(H) and σ ∈ S(H)

then % = σ. Geometrically, this means that the affine space {M(%) + X|X ∈ KerM} is a

separating hyperplane in the sense that it intersects the set S(H) in precisely the point %. This

property is crucial for the analysis given in the articles III and V.

2.3.4 Whitney Embedding Theorem

In this section, a general upper bound on the number m(R) is presented which depends solely

on the dimension of the subset R ⊆ S(H). It straightforwardly follows from the basic version

of the Whitney embedding theorem (see, e.g., Section 8 in Chapter 1 of [41]).
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Theorem 19. Let P ⊆ S(H) be a closed manifold. Then, there exists a P-embedding P ∈
POVMH with 2 dimP + 2 outcomes.

Proof. As P is an embedded manifold, there exists a smooth manifold M and a smooth embed-

ding ψ : M 7→ H(H) with ψ(M) = P. Let k := dimM.

First, the following claim is proven: Let L : H(H) → Rm be linear map such that L ◦ ψ is

an injective immersion. If m > 2k + 1, there exists a vector v ∈ Rm such that Πv ◦ L ◦ ψ is an

injective immersion, where Πv is the orthogonal projection on S := {w ∈ Rm| 〈w, v〉 = 0}.
In order to prove this, let g : TM → Rm, (x, v) 7→ L ◦ dxψ(v) and f : M ×M × R+ →

(x, y, λ) 7→ λ((L ◦ ψ)(x)− (L ◦ ψ)(y)). Both f and g are smooth and as dim(M×M× R+) =

2k + 1 < m and dim(TM) = 2k < m, there is a point v ∈ Rm that is neither in the image of

f nor in the image of g (this is a consequence of Sard’s theorem, see for instance Section 7 in

Chapter 1 of [41]). Furthermore, one has v 6= 0 as 0 is contained in both the images of f and

g. The vector v has the desired property: Suppose that (Πv ◦ L ◦ ψ)(x) = (Πv ◦ L ◦ ψ)(y) for

some x, y ∈ M with x 6= y. It follows that Πv((L ◦ ψ)(x) − (L ◦ ψ)(y)) = 0. Consequently,

(L ◦ ψ)(x) − (L ◦ ψ)(y) = λv for some λ ∈ R. As L ◦ ψ is injective and x 6= y, one has

λ 6= 0. Therefore, one has f(x, y, 1/λ) = v, contradicting the choice of v. Similarly, suppose

d(Πv ◦ L ◦ ψ)x(w) = Πv ◦ L ◦ dxψ(w) = 0 for some (x,w) ∈ TM with w 6= 0. By the definition

of Πv and the injectivity of dψx, it follows that λv = L ◦ dψx(w) for some λ 6= 0. Consequently,

g(x, 1/λw) = v, contradicting the choice of v.

This shows that there exists a linear map L : H(H)→ R2k+1 such that L ◦ψ is an injective

immersion1. The manifold P is compact as it is a closed subset of a compact set. Consequently,

the map L ◦ ψ is a smooth embedding.

By Proposition 6 and Remark 7 there exists a POVM P ∈ POVMH with 2k + 2 outcomes

such that RangeL∗ ⊆ SpanP . Finally, Lemma 11 concludes the proof.

Remark 20. Note that the strength of this result essentially depends on the dimensions of

∆(P) := f(M×M×R+) and g(TM) rather than the dimension of P. The result was obtained

by means of the estimates dim ∆(P) ≤ 2 dimP + 1 and dim g(TM) ≤ 2 dimP. Hence, given a

specific manifold P ⊆ S(H), this proof strategy leaves room for improvement.

In the context of the phase retrieval problem, a conceptually similar approach was used

in [10] to find intensity measurements which can discriminate any two signals up to a phase.

However, they consider the problem in the framework of semi-algebraic geometry rather than

smooth manifold theory. As it comes with a rich dimension theory, semi-algebraic geometry

allows for a stronger and more flexible argument. The articles II, IV, VI make use of this

approach. The flexibility of algebraic geometry methods in particular facilitate the analysis of

constrained measurements schemes such as von Neumann measurements.

1Identifying H(H) with Rn2
, one can start the argument given above with the identity map and inductively

apply it until on obtains the desired map L.
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The dimension argument is the crucial step in the proof of Theorem 19 and a similar

theorem, called Mané’s Theorem (see [74, 75]), can be proven for the Hausdorff dimension.

Mané’s Theorem states that for an arbitrary compact set R ⊆ S(H) almost any linear map (in

a Lebesgue measure sense) L : H(H) → Rm is injective when restricted to R if m is strictly

larger than twice the Hausdorff dimension of R.

2.4 Feasible Tomography of Low-Rank Quantum States

In this section, a computationally tractable recovery procedure for low-rank quantum states

based on techniques from compressed sensing is presented (see [2, 3, 37, 38]). This procedure

has also been experimentally tested [76].

Throughout this section, let H = (C2)⊗d. The set of Pauli observables on H is given by

POH := {σ1 ⊗ . . .⊗ σd| ∀i ∈ {1, . . . , d} : σi ∈ {1, σx, σy, σz}} ,

where σx, σy, σz ∈ H(C2) are the standard Pauli operators. Let A be a discrete, uniformly

distributed, operator-valued random variable with range POH and let A1, . . . ,Am be be inde-

pendent realizations of A, i.e., with replacement samples of POH
1. Define the measurement

map D as

D : H(H) 3 X 7→ (tr(AiX))mi=1.

The measurement map D is associated to the following measurement procedure: First, take m

independent realizations A1, . . . ,Am of the random variable A. Then estimate the expectation

values tr(Ai%), i ∈ {1, . . . ,m}, in a statistical experiment, where % ∈ S(H) is the state to be

measured. More precisely, given k quantum systems prepared in state %, for each i ∈ {1, . . . ,m}

take k/m of these systems, measure the observable Ai on each of the k/m systems and average

the observed outcomes to obtain an estimate of tr(Ai%). In the following, the resulting estimate

of D(%) is denoted by D̂(%).

The result of this tomography scheme is given by

b̃ := D̂(%) = D(%) +

√
m

n
z,

where z ∈ Rm is an error term accounting for statistical noise caused by the finite sample size,

or more generally for all sources of error the measurement procedure is exposed to.

1The main reason to sample with replacement is that i.i.d. random variables considerably simplify the

analysis.
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Motivated by results in matrix recovery (see [16, 17, 77]), the idea presented in [2, 3] is to

utilize this probabilistic measurement procedure for the tomography of bounded rank quantum

states. It is shown that an unknown state of rank at most r can be reconstructed with high

probability from m = O(rn log2 n) expectations of randomly sampled Pauli observables. The

reconstruction can be implemented by means of a semidefinite program (SDP) and hence is

computationally tractable (see, e.g., [78, 79, 80, 81] for solvers). The articles III and V deploy

essentially the same convex programs for the recovery.

In the remainder of this section, the similar yet technically different approach taken in

[37, 38] is presented in somewhat more detail.

In the absence of noise, an intuitive approach for reconstructing low-rank quantum states

from measurement outcomes is the following: Let σ ∈ Sr(H) be the unknown quantum state.

Among all quantum states % ∈ S(H) which are consistent with the measurement outcomes,

i.e., D(%) = D(σ), choose the one with the smallest rank. In case D can discriminate any

two quantum states of rank at most r, there is indeed only one such state. However, as rank

minimization is NP-hard in general [82], this approach is not computationally feasible. With

the intuition that the trace norm is a good convex surrogate for the rank function, the following

two estimators can be understood as convex relaxations of this approach. To simplify notation

in the following, define

D :=

√
n

m
D,

b :=

√
n

m
b̃.

The first estimator, known as the matrix Dantzig selector, is obtained by constrained trace

norm minimization:

%̂D := arg min
X∈H(H),‖D∗(D(X)−b)‖∞≤λ

‖X‖1, (2.4)

where λ > 0 is an error scale that has to be chosen in advance and ‖ · ‖∞,‖ · ‖1 denote the

Schatten∞-norm and the trace norm, respectively. The second estimator, known as the matrix

Lasso, is obtained by least squares regularized with the trace norm:

%̂L := arg min
X∈H(H)

1

2
‖D(X)− b‖2 + µ‖X‖1, (2.5)

where again µ > 0 is a constant that has to be chosen in advance.

One approach to prove recovery guarantees for these estimators is by means of the restricted

isometry property (RIP) [16].
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Definition 8 (RIP). A linear map D : H(H)→ Rm satisfies the restricted isometry property

with distortion 0 ≤ δ < 1 over R ⊆ H(H) iff

(1− δ)‖X‖HS ≤ ‖D(X)‖ ≤ (1 + δ)‖X‖HS

holds for all X ∈ R.

Theorem 21 (Theorem 2.1 of [37]). Let δ ∈ [0, 1). If m = Crn log6 n, then, with probability

1− p, the linear map D satisfies the RIP over Sr(H) with distortion δ, where C is a constant

which only depends on δ and C = O(1/δ2). The probability of failure p is exponentially small

in δ2C.

This result shows that Sr(H) can be embedded in Euclidean space of dimension m =

O(rn log6 n) with only little distortion.

In the following, a quantum state % ∈ S(H) is decomposed as % = %r +%c, where %r ∈ Sr(H)

is the best rank r approximation to % and %c is the residual part. Combining Theorem 21 with

Lemma 3.2 of [83] yields strong error bounds for the estimators (2.4) and (2.5).

Theorem 22 (Theorem 1 of [38]). Let m = Crn log6 n, where C is an appropriate absolute con-

stant. Then, there exist absolute constants C1, C2, C
′
1, C

′
2 > 0 such that the following statements

hold with high probability over the choice of D:

1. Assume the noise z ∼ N(0, σ1) is a Gaussian random vector. Choose λ > 0 such that

λ ≥ ‖D∗(z)‖∞. Let % = %r + %c ∈ S(H) be any quantum state and let %̂D be the Dantzig

selector (2.4). Then, the inequality

‖%̂DS − %‖1 ≤ C1rλ+ C2‖%c‖1

holds with high probability over the Gaussian noise z.

2. Assume the noise z ∼ N(0, σ1) is a Gaussian random vector. Choose µ > 0 such that

µ/2 ≥ ‖D∗(z)‖∞. Let % = %r + %c ∈ S(H) be any quantum state and let %̂L be the Lasso

(2.5). Then, the inequality

‖%̂L − %‖1 ≤ C ′1rµ+ C ′2‖%c‖1

holds with high probability over the noise z.

Remark 23. As opposed to the dual certificate approach taken in [2, 3], the analysis based

on the RIP comes with uniform recovery guarantees and stronger error bounds. However, the

number m of required measurements exceeds the ones given in [2, 3] by a poly log n factor.

The first term in the error bound accounts for the statistical noise and is sensitive to the

sample size. The second term is determined by the tail %c and hence can account for imperfect

prior information.

Finally, the sample complexity of the tomography scheme introduced above can also be

estimated.
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2.4 Feasible Tomography of Low-Rank Quantum States

Theorem 24 (Theorem 2 of [38]). Let m = Crn log6 n, where C is an appropriate absolute

constant. Let ε > 0 and assume the sample size satisfies t = O
((

nr
ε

)2
log n

)
. Then, the

following statements hold with high probability over the choice of D:

1. Choose λ = ε
C1r

. Let % = %r + %c ∈ S(H) be any quantum state and let %̂D be the Dantzig

selector (2.4). Then, the inequality

‖%̂L − %‖1 ≤ ε+ C2‖%c‖1

holds with high probability over the measurement data.

2. Choose λ = ε
C′1r

. Let % = %r + %c ∈ S(H) be any quantum state and let %̂L be the Lasso

(2.5). Then, the inequality

‖%̂L − %‖1 ≤ ε+ C2‖%c‖1

holds with high probability over the measurement data.

By Theorem 4 of [38], this result is nearly optimal in the sense that when using this to-

mography scheme, the number of samples t has to grow at least as fast as O(n
2r2

logn ) to achieve a

constant size confidence interval in trace norm for all rank r states.

The sample complexity of more general tomography schemes is analyzed in [84]. The authors

show that O(nr log n) samples suffice in order to achieve a constant size confidence interval in

trace norm and also prove that this result is nearly optimal.
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The Role of Topology in Quantum Tomography

M. Kech, P. Vrana and M. Wolf August 24, 2016

Quantum tomography is considered in the scenario where prior information constrains
the set of relevant quantum states to a smooth submanifold of the state space. Start-
ing from the topological approach taken in [1], a general framework is provided to
lower bound the number of binary measurement settings needed to discriminate any
two states of a given submanifold. Furthermore, the framework is applied to several
concrete scenarios.

1 Stability and Smooth Embeddings

Let POVMm
H be the set of POVMs on H with m outcomes. The set POVMm

H is
equipped with the topology induced by the metric d(P, P ′) := ‖DP −DP ′‖∞, ∀P, P ′ ∈
POVMm

H .

Definition 1 (Stability). Let R ⊆ S(H) be a subset. A POVM P ∈ POVMm
H is

called stably R-complete iff there exists a neighbourhood N ⊆ POVMm
H of P such

that the restricted map DP ′ |R is injective for all P ′ ∈ N .

As the following theorem shows, if the subset R ⊆ S(H) is a closed manifold this
notion of stability is equivalent to the restricted measurement map being a smooth
embedding. Consequently, under the premise of stability, non-embedding results for a
manifold P ⊆ S(H) yield lower bounds on the number of binary measurement settings
needed to discriminate any two points of P.

Theorem 1. Let P ⊆ S(H) be a closed manifold. A POVM P ∈ POVMm
H is stably

P-complete iff DP |P is a smooth embedding.

The following theorem shows that, when allowing for measurements on many copies
of the unknown state, the minimal number of binary measurement settings needed to
discriminate any two states of a closed manifold P ⊆ S(H) is precisely the embedding
dimension of P. Let ιk : S(H)→ S(H⊗k), % 7→ %⊗k.

Theorem 2. Let P ⊆ S(H) be a closed manifold. There exists a smooth embedding
of P into Euclidean space of dimension m iff, for some k ∈ N, there exists a stably
ιk(P)-complete POVM P ∈ POVMm+1

H⊗k

2 Application

For n ∈ N, let α(n) be the number of ones in the binary expansion of n. Furthermore,

for n ∈ N and k ∈ {1, . . . , n}, let α1(n) :=
∑n−1
i=0 α(i) and β(n, k) := α1(n)− α1(k)−

α1(n−k). Let s = ((s1, n1), . . . , (sr, nr)) ∈ (R×N)r be such that s1 ≥ 0, si+1 ≥ si for



all i ∈ {1, . . . , r− 1},
∑r
i=1 nisi = 1 and

∑r
i=1 ni = n. Denote by S(s) ⊆ S(H) the set

of all quantum states with spectrum s. Then, S(s) is diffeomorphic to the complex flag
manifold U(n)/U(n1)× . . .×U(nr) and Proposition 7 of [2] together with Theorem 1
yield the following result.

Theorem 3 (States of fixed spectrum). Let m(s) be the smallest number such that

there exists a stably S(s)-complete POVM P ∈ POVM
m(s)
H . Then, for all subsets

K ⊆ {1, . . . , r} it holds that

m(s) > 4k(n− k)− 2β(n, k) + 1

where k :=
∑
i∈K ni.

Let α ∈ HA ⊗HB with Schmidt rank k such that ‖α‖ = 1. Let

SB(α) := {ββ∗ ∈ S(HA ⊗HB)|β = (1⊗ U)α, U ∈ U(HB)}

be the Bob unitary orbit of α. Furthermore, for n, k ∈ N with n ≥ k let

N(n, k) := min

{
n− k < i ≤ n :

(
n

i

)
(mod 2) = 1

}
,

σ(n, k) := 2 ·max

{
0 ≤ i < N(n, k) :

(
nk + i− 1

i

)
(mod 2) = 1

}
.

Theorem 4 (Bob unitary orbit). Let m(α) be the smallest number such that there

exists a stably SB(α)-complete POVM P ∈ POVMm(α)
H . Then, one has

m(α) > (2n− k)k + σ(n, k) + 1.

The set SB(α) is diffeomorphic to the complex projective Stiefel manifold PWn,k :=
{[M ] ∈ P (Cn×k) : M∗M = 1k} and the previous theorem is proven by computing the
Stiefel-Whitney class of the tangent bundle of PWn,k.
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Abstract
We investigate quantum tomography in scenarios where prior information
restricts the state space to a smooth manifold of lower dimensionality. By
considering stability we provide a general framework that relates the topology
of the manifold to the minimal number of binary measurement settings that is
necessary to discriminate any two states on the manifold. We apply these
findings to cases where the subset of states under consideration is given by
states with bounded rank, fixed spectrum, given unitary symmetry or taken
from a unitary orbit. For all these cases we provide both upper and lower
bounds on the minimal number of binary measurement settings necessary to
discriminate any two states of these subsets.

Keywords: quantum tomography, immersions, topology

(Some figures may appear in colour only in the online journal)

1. Introduction

The reconstruction of a quantum state from the outcome of an experiment, called quantum
state tomography, is a task of fundamental importance in quantum information science.
Already for small systems this task may be non-trivial, requiring many measurements and
extensive postprocessing to reconstruct a state. With growing system size this complexity
becomes exceedingly relevant [1].

There are at least three kinds of resources that can be considered in this context: (i) the
number of measurement settings or, mathematically equivalent, the number of measurement
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outcomes if a single generalized measurement is considered, (ii) the number of samples to be
measured, i.e., the sampling complexity, which takes the statistics into account and (iii) the
classical post-processing that is required to interpret the data. In this work we will focus
on (i).

We are interested in cases where prior information is available that effectively restricts
the state space to a submanifold of lower dimensionality. This information may concern the
rank of the density operator, its spectrum, symmetry, energy, associated particle number or
other properties and combinations thereof.

The question behind our analysis is: what is the minimal number of binary measurement
settings that is required to uniquely identify the state under the assumption that it is taken
from the given submanifold? Motivated by the results in [2] our aim is a better understanding
of the relation between the minimal number of required measurement settings and the
topology of the considered submanifold. Such a relation is most clear in low dimensional
examples: suppose the submanifold forms a Klein bottle. Then, although it is two-dimen-
sional, it requires at least four binary measurement settings to identify every point since,
loosely speaking, in less than four dimensions the Klein bottle has no realization without self-
intersections.

This topological reasoning was introduced in [2] and there applied successfully for
instance to the case of pure state quantum tomography. The latter has been a topic of active
research in quantum information theory [2–12], closely related to the problem of phase
retrieval [13, 14].

On a Hilbert space of dimension d, the set of pure states is of dimension d2 2− , whereas
the set of all states is of dimension d 12 − . Consequently, in order to uniquely identify an
arbitrary state, one has to at least perform d 12 − different binary measurements, whereas in
the case of pure states one can hope that d( ) measurements suffice to uniquely identify a
state. In [2] it was shown that to leading order d4 binary measurements are necessary and
sufficient to identify pure states and the compressed sensing approach of [11, 12, 15] provides
an algorithm based on r d(d log( )) binary measurements with which a d d× matrix of rank
r can be reliably identified.

The approach we take in this paper extends the results of [2] and gives a general
framework for the validity of the topological reasoning in quantum tomography. Thereby, we
show that the approach is applicable in the presence of of statistical fluctuations, imprecise
prior information or inaccuracies in the implementation of the measurement set-up. Moreover,
we provide a detailed analysis of a variety of old and new examples of submanifolds.

Outline. We consider measurements as smooth maps from a smooth submanifold of
states into Euclidean space. The methods we deploy to find bounds on the number of mea-
surement outcomes necessary to identify a state of a given submanifold uniquely rely on the
technical assumption that this smooth map is a smooth embedding.

In section 3 we give an operational meaning of the smooth embedding assumption and we
determine the relation of quantum tomography to the embedding problem in differential topology.

First, in section 3.1, we justify the smooth embedding assumption by relating it to properties
one would generally require of measurements. More precisely, we give two natural notions of
stability and we show that these are in fact equivalent to the measurement being a smooth
embedding. In the sense of these stability properties our approach is robust with respect to noise.

Secondly, in section 3.2, we generalize the measurement scheme by allowing for mea-
surements on several copies of a state. We then show that any smooth embedding can be
approximated by these generalized measurements. This proves that asking for the minimal
number of measurement that is needed to identify all states of a given submanifold of states is
equivalent to asking for the minimal dimension in which this manifold can be embedded.
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Having justified our methods of finding bounds in section 3, we devote section 4 to
applying this method in concrete scenarios. We obtain upper and lower bounds on the number
of measurement outcomes necessary to identify states of certain interesting submanifolds. The
lower bounds result from topological obstructions, whereas the upper bounds rely on the
explicit construction of measurement schemes. The methods used in this section are very
different from the the ones used in the first two sections and from this point of view section 4
can be read independently.

First, we investigate states of fixed spectrum and we relate these to states of bounded rank
in section 4.1. More precisely, we present lower bounds on the number of measurements
necessary to identify states of fixed spectrum and these lower bounds turn out to be very close
to the upper bounds for states of bounded rank obtained in [2]. In this way we obtain good
upper and lower bounds for both the states of fixed spectrum and the states with boun-
ded rank.

In section 4.2, we obtain lower and upper bounds for states with a unitary symmetry and
we use this to obtain both lower and upper bounds for states of fixed spectrum with a unitary
symmetry in section 4.3.

Finally, in section 4.4, we obtain upper and lower bounds for states in a bipartite system
that lie in the Bob-unitary orbit of a certain pure state, i.e. we consider all states that can be
reached from a given pure state by acting with a unitary matrix that just effects Bobʼs
subsystem. Physically, this scenario may correspond to an interferometry experiment. Note
that if the initial state is maximally entangled, this orbit is the set of maximally entangled
states which may be interesting in its own right. Identifying a maximally entangled state is
equivalent to determining the unitary matrix that acted on Bobʼs subsystem. So this method
can also be used for process-tomography of unitary time evolutions, complementing the
results in [16, 17].

Proofs of technical results can be found in the appendix.

2. Preliminaries

Let  be a finite dimensional Hilbert space. We denote by ( )  the complex vector space of
linear operators on . H ( ) denotes the real vector space of hermitian operators on  and
H ( )0 denotes the real vector space of traceless hermitian matrices, i.e.
H h H h( ) { ( ) : tr( ) 0}0 ≔ ∈ = . Throughout we consider these spaces as inner product
spaces equipping them with the Hilbert–Schmidt inner product. Furthermore, ( )  will
denote the set of quantum states on , i.e. H( ) { ( ) : 0, tr( ) 1}  ρ ρ ρ≔ ∈ ⩾ = .

A positive operator valued measure (POVM) corresponds to a set of positive semidefinite
operators P P P{ , , }m1≔ … in H ( ) such that

P .
i

m

i

1

∑ =
=

An element of P is called an effect operator. We define the dimension of P by
P mdim 1= − . In quantum mechanics, POVMs are used to describe general measurements

[18, 19].
There is an operator system4

Pσ associated to each POVM P given by the complex linear
span of the operators of P. For an operator system σ denote by σ the real vector space of

4 An operator system ( ) σ ⊆ is a linear subspace such that  σ∈ and †σ σ= .
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hermitian operators in σ, i.e. h h h{ : }†σ σ≔ ∈ = 5. In the following we assume the effect
operators of a POVM P to be linearly independent over . Note that by this convention

Pdim dim 1Pσ= − . To each operator system σ one can associate the orthogonal projection
from H ( ) to H ( ) σ ⊆ . Throughout we denote this associated projection by πσ .

Definition 2.1. A POVM P P P{ , , }m1≔ … induces a linear map

( )( ) ( )
h H

P P

: ( ) ,

tr , , tr .

P
m

m1


ρ ρ ρ
→
↦ …

P is called -complete for a subset ( )  ⊆ if hP ∣ is injective and it is called
 -embedding for a smooth submanifold ( )  ⊆ if hP ∣ is a smooth embedding6.

Recall that the question behind our analysis concerns the minimal m for which there is a
 -complete POVM for a given smooth submanifold ( )  ⊆ that characterized the
available prior information. From the dimension D dim ≔ alone one obtains that m D⩾ is
necessary and m D2 1= + is generally sufficient [2]. For better bounds, one has to invoke
more of the (topological) structure of the manifold.

In the following all manifolds and submanifolds are assumed to be smooth. Throughout
we regard both ( )  and submanifolds ( )  ⊆ with n ≃ as submanifolds of

H ( ) n2
 ≃ equipped with the subspace topology and the standard smooth structure. We

often use this picture to identify the tangent space at a point ρ ∈ , T ρ , with a linear
subspace in H ( ) , i.e. we think of tangent vectors v T ∈ ρ as hermitian operators. We
assume submanifolds ( )  ⊆ to be closed and without boundary. In particular, this means
that  is an embedded submanifold by the compactness of ( )  , i.e. the inclusion is a
homeomorphism onto its image.

3. Topological analysis of measurements

3.1. Stable measurements

Let ( )  ⊆ be a submanifold. In order for our methods for finding bounds on the
dimension of  -complete POVMs to apply, we need the technical requirement that these
POVMs are  -embeddings. In this section we justify this assumption. We develop two
notions of stability for a  -complete POVM and we show that these notions are equivalent to
the POVM being a  -embedding. These notions of stability are properties one would natu-
rally require for  -complete POVMs. Thus, under the premise of stability,  -complete
POVMs are  -embeddings.

For a given POVM P the notions of  -embedding and  -completeness just depend on its
associated operator system Pσ as the following proposition shows.

Proposition 3.1. Let P be a POVM, hP be the associated linear map, ( )  ⊆ be a
submanifold and let H: ( )P P

π σ→ be the orthogonal projection on P
σ .

1. P is  -complete if and only if P π ∣ is injective.

5 Note that σ determines σ uniquely.
6 A smooth mapping M N:ψ → is called a smooth embedding if d xψ is injective for all x M∈ and ψ is a
homeomorphism onto its image.

J. Phys. A: Math. Theor. 48 (2015) 265303 M Kech et al

4



2. P is a  -embedding if and only if hP is  -complete and d P( )P P Tπ π∣ = ∣ρ ρ is
injective for each ρ ∈ .

Proof. Since we equipped H ( ) with the Hilbert–Schmidt inner product, by the definition
of hP, we get P hspan ker( )P P


σ = ⊆ ⊥ and since hrank dimP P

σ= , we get hker( )P P
σ = ⊥

by dimensional reasons. So h hP P Pπ= ◦ .
For the first statement, let P be  -complete and hP be the associated linear map. Since

hP ∣ is injective and h hP P Pπ= ◦ , we get that P π ∣ is injective.
Conversely, let P π ∣ be injective. Then, since h hP P Pπ= ◦ , hP ∣ is injective because

P π ∣ is injective and hP is injective restricted to the image of Pπ .
Noting that by linearity we have h h hd( ) dP P T P T  ∣ = ∣ = ∣ρ ρ ρ , the above reasoning

also applies for the second statement. □

For a submanifold ( )  ⊆ ,  -completeness and being a  -embedding are the only
properties of a POVM we are interested in. Thus, by proposition 3.1, there is a natural
equivalence relation on the set of POVMs, namely

P P .P Pσ σ∼ ′ ⇔ = ′

Since every n-dimensional operator system is generated by an n( 1)− -dimensional POVM
[2], the operator systems are precisely the equivalence classes.

Since the proofs we give are easier to formulate using operator system we often state our
results in terms of operator systems and then transfer them to POVMs.

Let n( )Σ be the set of n-dimensional operator systems. For a subset ( )  ⊆ we call
n( )σ Σ∈ -complete if π ∣σ is injective and for a submanifold ( )  ⊆ we call n( )σ Σ∈

a  -embedding if π ∣σ is a smooth embedding.
A metric on n( )Σ , which is natural for our purpose, can be defined in terms of any norm

on the corresponding linear map πσ . For an arbitrary linear map L H H: ( ) ( ) → we
consider

L L Bsup ( ) ,op
B H B( ), 1

∥ ∥ = ∥ ∥
∈ ∥ ∥⩽

where ·∥ ∥ denotes the Hilbert–Schmidt norm. The sought metric is then given by
d( , ) opσ σ π π′ = ∥ − ∥σ σ′ . The following definition refers to the metric topology induced on

n( )Σ .

Definition 3.2. (Stability). Let ( )  ⊆ be a subset. An -complete operator system
n( )σ Σ∈ is called stably -complete if there exists a neighbourhood N n( )Σ⊆ of σ such

that every Nσ′ ∈ is an -complete operator system. A POVM P is called stably -complete
if its associated operator system Pσ is  -complete .

Remark. In the following we will see that closeness of POVMs is equivalent to closeness of
the associated operators systems. Thus, this definition says that a stably  -complete POVM P
is robust against inaccuracy in its implementation in the sense that every close enough POVM
is also  -complete.

The intuition behind this definition is best envisioned by thinking of operator systems as
planes in H ( ) d2

 ≃ , see figure 1.
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Now we are in a position to state one of the main results of this section.

Theorem 3.3. (Stable measurements are embeddings). Let ( )  ⊆ be a closed
submanifold and let n( )σ Σ∈ be  -complete. Then σ is stably  -complete if and only if it
is a  -embedding.

Since the proof of this theorem is rather lengthy we relegated it to appendix A.1.
Theorem 3.3 is a statement about operator systems. In order to provide it with an

operational meaning, we prove the corresponding stability result for POVMs in the following.

Corollary 3.4. Let ( )  ⊆ be a closed submanifold and let P P P{ , , }m1≔ … be a
 -complete POVM of dimension m 1− with associated linear map hP. P is a  -embedding if
and only if there is an 0ϵ > such that every POVM Q with h h vsup ( )v H v P Q( ), 1 ϵ∥ − ∥ <∈ ∥ ∥⩽
is  -complete.

Proof. Let n = and let Pπ be the orthogonal projection associated to P P P{ , , }m1≔ … .
Let 0ϵ > such that every POVM Q with h h vsup ( )v H v P Q( ), 1 2 ϵ∥ − ∥ <∈ ∥ ∥⩽ is

 -complete. We show, that there is 0δ > such that for all m( )σ Σ′ ∈ with

P opπ π δ∥ − ∥ <′σ

there is a POVM P P P{ , , }m1′ ≔ ′ … ′ with Pσ σ= ′′ and h h vsup ( )v H v P P( ), 1 2 ϵ∥ − ∥ <∈ ∥ ∥⩽ ′ ,
hence πσ′ is  -complete by proposition 3.1.

For every 0η > , we can slightly deform P to a POVM P P P˜ { ˜, , ˜ }m1≔ … with full rank
effect operators such that P P̃i i η∥ − ∥ < and P P̃σ σ= :let P P˜ ( )i

n

n i n
≔ +

η
η

+
for

i m1, ,= … . Then, for i m1, ,= … , P P̃i i
n

n
η η∥ − ∥ = <

η+
. Note that we also ensured

that the smallest eigenvalue of P̃i is bigger than 2η for i m1, ,= … and η small enough.
For some m( )σ Σ′ ∈ with

P opπ π δ∥ − ∥ <′σ

let P P( ˜ )i iπ′ ≔ σ′ , i m1, ,= … . Then, for i m1, ,= …

( ) ( )P P P P n˜ ˜ ˜i i P i iπ π δ∥ − ′∥ = ∥ − ∥ <′σ

and thus the Pi′ are positive for n 2δ η< . Furthermore, P P( ˜ ) ( )i
m

i i
m

i1 1 π π∑ ′ = ∑ = =σ σ= ′ = ′
. For small enough δ, the Pi′ are linearly independent because the Pi are linearly

Figure 1. This figure shows a submanifold H ( ) d2
 ⊆ ≃ and two close operator

systems H, ( ) d2
σ σ′ ⊆ ≃ that are  -complete.
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independent by assumption. Thus Pσ σ′ = ′ by dimensional reasoning. Finally

( )

( )

h h

P P P P P P

P P P P

m n

˜ ˜

˜ ˜

.

P P op

i

m

i i
i

n

i i i i

i

m

i i i i

2

1

2

1

2

1

2

2 2

∑ ∑

∑

η δ

∥ − ∥

⩽ ∥ − ′∥ = ∥ − + − ′∥

⩽ ∥ − ∥ + ∥ − ′∥

< +

′

= =

=

By choosing η and δ so small that m n( )2 2 2η δ ϵ+ < , hP′ is injective by assumption and thus
σ′ is injective by 3.1. Thus, Pσ is stably  -complete and 3.3 concludes the proof of this
direction.

Conversely, suppose σ is a  -embedding. Corollary A.2 states, that there is an 0ϵ >
such that every POVM Q with h B h Bsup ( ) ( )B H B P Q( ), 1 ϵ∥ − ∥ <∈ ∥ ∥⩽ is a  -embedding and
thus in particular  -complete. □

However, the notion of stability for measurements developed so far may not be satis-
factory yet since it just considers inaccuracy in the implementation of the measurement set-
up. Noisiness of the outcome, resulting from e.g. dissipation or finite statistics, or noisiness of
the input, originating from e.g. inaccurate prior information, are inevitable but not considered
in the definition.

In the remainder of this section we show that also from this point of view, stably
 -complete is a operationally meaningful property.

The idea of the following lemma, which is the essential ingredient for the second theorem
of this section, is to construct a neighbourhood for every point of submanifold ( )  ⊆ that
can be approximated by the tangent space at that point. Let H: ( ( ))T   π → be the
mapping that associates to each point ρ ∈ its orthogonal projection Tπρ to T H ( ) ⊆ρ

and let Nπ be the analogue mapping for the normal space, i.e. idN T
H ( )π π+ =ρ ρ for all

ρ ∈ . Furthermore, B ( )x ϵ denotes the open ball with center x H ( )∈ and radius 0ϵ > , i.e.
B y H x y( ) { ( ) : }x ϵ ϵ≔ ∈ ∥ − ∥ < and d denotes the metric induced by ·∥ ∥.

Lemma 3.5. Let ( )  ⊆ be a submanifold. For every 0η > there is an 0ϵ > such that
for all ρ ∈

( )B ( ) .N∩ρ ρ π ρ ρ η ρ ρ′ ∈ ⇒ ∥ ′ − ∥ < ∥ − ′∥ϵ ρ

Since the proof of this lemma in rather technical, it is relegated to appendix A.2.

The following theorem is the second main result of this section. It is formulated in terms
of operator systems but again the result transfers to POVMs. Since the interpretation of the
theorem may not be obvious let us first give some intuition and motivation: adding small
perturbations to states of a submanifold ( )  ⊆ can be thought of as blowing up  to a
small tubular neighbourhood d{ ( ) : ( , ) }   ρ ρ ϵ= ∈ <ϵ . The dimension of ϵ is then
equal to the dimension of H ( ) . Thus, one cannot expect  -complete POVMs to stay
injective when allowing for small errors. However, one can hope for being able to separate
points in ϵ that are sufficiently far away, in the sense that ( ) ( )P Pπ ρ π ρ≠ ′ for Cρ ρ ϵ∥ − ′∥ >
withC 0> a constant. For a given small enough ϵ such a C obviously exists however it is not
immediate that C can be chosen independent of ϵ. The following theorem asserts that for ϵ
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smaller than a certain fixed value, C is independent of ϵ. The existence of a C independent of
ϵ means that the measurement can be made arbitrarily precise by reducing the errors.

Theorem 3.6. Let ( )  ⊆ be a submanifold and let P be a POVM with associated
orthogonal projection Pπ . P is stably  -complete if and only if there exists 00ϵ > and C 2>
such that for all ϵ with 0 0ϵ ϵ< <

( )( ) ( )C B B, with ( ) .P P ∩ρ ρ ρ ρ ϵ π ρ π ρ′ ∈ ∥ − ′∥ > ⇒ ′ = ∅ϵ ϵ

Proof. Let P be stably  -complete and thus a  -embedding by theorem 3.3 and let ρ ∈ .
Let l max P

T T
op π π π≔ ∥ ◦ − ∥ρ ρ ρ∈ and let η as well as ϵ̃ be as in lemma 3.5. Shrink 0ϵ such

that C ˜0ϵ ϵ< .
Note that l 1< because Pπ is an immersion. Without the immersion property we could

not assume l 1< and in fact this is the essential idea of this proof7.
Noting that B C{( , ) : }2

0ρ ρ ρ ρ ϵ= ′ ∈ ∥ − ′∥ ⩾ is compact, min B( , )κ ≔ ρ ρ′ ∈
(Pπ ρ ρ∥ − ′∥ is attained and thus 0κ > by the injectivity of Pπ . If necessary, shrink 0ϵ

such that 20ϵ κ< . Then, for B( ( ) )C 0 ∩ρ ρ′ ∈ − ϵ the claim holds because
( ) 2P 0π ρ ρ κ ϵ∥ − ′ ∥ ⩾ > and B B( ( )) ( ( ))P Pπ ρ π ρ=ϵ ϵ .
Finally, let B ( )C 0 ∩ρ ρ′ ∈ ϵ and Cρ ρ ϵ∥ − ′∥ > , 0 0ϵ ϵ< < . Then

( ) ( )

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

l C l1 1 ,

P P
T

P
N

P
T T T

T
P

T T

2 2

π ρ ρ π π ρ ρ π π ρ ρ

π π ρ ρ π ρ ρ π ρ ρ η ρ ρ

π ρ ρ π π ρ ρ π ρ ρ η ρ ρ

ρ ρ η η ϵ η η

∥ − ′ ∥⩾∥ − ′ ∥ − ∥ − ′ ∥

⩾∥ − ′ − − ′ + − ′ ∥ − ∥ − ′∥

⩾∥ − ′ ∥ − ∥ − ′ − − ′ ∥ − ∥ − ′∥

>∥ − ′∥ − − − > − − −

ρ ρ

ρ ρ ρ

ρ ρ ρ

where we used the fact that, for l0 1⩽ < , we can choose η small enough such

that ( )l1 02η η− − − > . Furthermore, we can choose C 0> such that

( )C l1 22η η− − − > . Since B B( ( )) ( ( ))P Pπ ρ π ρ=ϵ ϵ , this proves the statement.

For the converse, let , ρ ρ′ ∈ and ρ ρ≠ ′. Choosing Cmin{ , (2 )}0ϵ ϵ ρ ρ= ∥ − ′∥ , we
find B B( ( )) ( ( ))P P∩π ρ π ρ′ = ∅ϵ ϵ and thus ( ) ( )P Pπ ρ π ρ≠ ′ .

Finally, assume P π ∣ is not an immersion at some ρ ∈ . Let H: ( 1, 1) ( ) γ − → ⊆
be a smooth curve with (0)γ ρ= and v(0) ker

t P
d

d
γ π= ∈ . Let C 0> as in the theorem, then

C
t

t

t

t
v2 lim

( ( ) )
( )

lim
( ( ) )

2
2 ( ) 0,

t

P

t

P
P

0 0

π γ ρ
γ ρ

π γ ρ
π⩽

∥ − ∥
∥ − ∥

⩽
∥ − ∥

= ∥ ∥ =
→ →

a contradiction. Here we assumed t t( ) 2γ ρ∥ − ∥ > which is clearly true for t small enough
by lemma 3.5. □

Remark. Note that it is essentially the constant l that determines C. For small l, i.e. in the
case where the tangent spaces are not steep with respect to Pσ , we can ensure that C is close to

7 The bigger l is, the steeper the tangent spaces can be with respect to the operator system Pσ . By the previous lemma
we saw that small neighbourhoods around a point ρ ∈ can be approximated by the tangent space at that point. We
can ensure that these approximations are so good that the fluctuations around the steepest tangent space have no
component orthogonal to Pσ and in this sense we can locally think of  as a plane.

J. Phys. A: Math. Theor. 48 (2015) 265303 M Kech et al

8



2 (if we make 0ϵ small enough). On the other hand if l is close to one C has to be big and in
this sense l is a measure for the stability of the POVM P.

0ϵ is mainly determined by the constant κ, which is more of ‘global’ nature. Loosely
speaking it is a measure for how bad  wiggles around in H ( ) .

It is worth noting, that if Pπ fails to be an immersion, C → ∞ for 0ϵ → and from this
point of view, stably  -complete measurements are the ones that can be made arbitrarily
precise.

This theorem transfers to the corresponding theorem for POVMs as the following cor-
ollary shows.

Corollary 3.7. Let ( )  ⊆ be a submanifold and let P be a POVM with associated linear
map hP. P is a smooth embedding if and only if there exists 00ϵ > andC 2> such that for all
ϵ with 0 0ϵ ϵ< <

( )( ) ( )C h B h B, with ( ) .P P ∩ρ ρ ρ ρ ϵ ρ ρ′ ∈ ∥ − ′∥ > ⇒ ′ = ∅ϵ ϵ

Proof. Let Pπ be the orthogonal projection associated to P. Let minv vsupp , 1Pλ ≔ π∈ ∥ ∥=
h v( )P∥ ∥ and observe that 0λ > since hP is injective on the support of Pπ . Thus
h h( ) ( ) ( )P P P Pρ ρ π ρ ρ λ π ρ ρ∥ − ′ ∥ = ∥ ◦ − ′ ∥ > ∥ − ′ ∥. Then, the proposition holds for hP by
replacing C with C λ. □

Finally, this result also incorporates robustness against noisiness of the outcome as the
following corollary shows.

Corollary 3.8. Let ( )  ⊆ be a submanifold and let P be a stably  -complete POVM
with associated linear map hP. There exists 00ϵ > and C 2> such that for all ϵ with
0 0ϵ ϵ< <

( ( )h B h B( ) ( ) for all .P P C
1

2 ∩ ρ ρ ρ⊆ ∈ϵ ϵ
−

Proof. Let C, 0ϵ be as in corollary 3.7. Let ρ ∈ and h B h( ( ( ))P P
1

2ρ ρ′ ∈ ϵ
− with

Cρ ρ ϵ∥ − ′∥ > . Then, h h2 ( ) ( ) 2P Pϵ ρ ρ ϵ< ∥ − ′ ∥ < , a contradiction. □

3.2. Generalized measurements and smooth embeddings

Linear measurements are clearly not sufficient to realize all smooth embeddings. More pre-
cisely, if there is a smooth embedding : ( ) m  ϕ ⊆ → , then there need not be an
m-dimensional POVM that is a  -embedding. For example the set N x y{( , )≔

x y x: 1, 0.5}2 2 2∈ + = ⩾ − can clearly be embedded in 1 , but an injective orthogonal
projection has to have rank two. However, the embedding cannot get arbitrarily bad because
from Whitneyʼs embedding theorem we know that there is a  -embedding in Euclidean space
of twice the dimension of  .
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In this section we generalize our approach to measurements of the type

( )Ptr n
iρ⊗

and we show that these measurements can approximate any smooth embedding. This means
that if there exists a smooth embedding : ( ) m  ψ ⊆ → , then there is POVM of
dimension m that is a  -embedding. Thus, the problem described in the beginning of this
section can be circumvented by this generalized measurement scheme.

Let us fix some notation.

Definition 3.9. A measurement P P P{ , , }m1≔ … on k copies is a POVM on H ( ) k ⊗ .
P induces a linear map

( )( ) ( )
h H

P P

: ( ) ,

tr , , tr .

P
k m

k
m

k
1


ρ ρ ρ

→

↦ …

⊗

⊗ ⊗

Let i H H: ( ) ( ) ,k k  ρ ρ→ ↦⊗ ⊗ . P is called -complete for a subset ( )  ⊆ if
h i hP P i ( ) ◦ ∣ = ∣ is injective and it is called a  -embedding for a submanifold ( )  ⊆
if hP i ( )∣ is a smooth embedding.

The following proposition makes the connection to the theory developed in the last section.

Proposition 3.10. The mapping i H H: ( ) ( ) ,k k  ρ ρ→ ↦⊗ ⊗ is smooth. Furthermore,
for a smooth closed submanifold ( )  ⊆ , i ∣ is a smooth embedding.

The proof of this proposition is relegated to appendix A.3.

Remark. Let n k( , )Σ be the set of n-dimensional operator systems on ( ) k  ⊗ . Each
n-dimensional measurement on k copies P generates an operator system spanPσ =
P n k{ } ( , )i P Pi Σ∈∈ . If ( )  ⊆ is a closed submanifold, i ( ) ( ) ( )k k    ⊆ =⊗ ⊗ is a
closed submanifold by the previous proposition. So the ideas and results of the last section
can be naturally applied to measurements on k copies. In particular for a submanifold

( )  ⊆ the notions of  -embedding and  -complete naturally apply to the equivalence
classes n k( , )σ Σ∈ of measurements on k copies (P P P Pσ σ∼ ′ ⇔ = ′).

Theorem 3.11. Let ( )  ⊆ be a closed submanifold and let n k( , )σ Σ∈ be  -complete.
Then σ is stably  -complete if and only if it is a  -embedding.

Proof. By the previous remark i ( ) ( ) k  ⊆ ⊗ is a closed submanifold. Then the claim
follows by applying 3.3 to i ( ) and σ. □

Choosing an othonormal basis { }i i d{1, , }2σ ∈ … of H ( ) with 1 σ = gives an identifi-

cation H ( ) d2
 ≃ . Under this identification we can think of elements in H ( ) k ⊗ as ele-

ments in P ( )k d2
 , the vector space of polynomial functions of degree k on H ( ) d2

 ≃ 8.

8 Note that by viewing H ( ) as a smooth manifold this corresponds to choosing a particular coordinate system
x x( , , )d1 2… .
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More precisely, let H k HSym( ( ), ) ( ) k ⊆ ⊗ be the vector space of symmetric ele-

ments of degree k in H ( ) k ⊗ . Then, use the identification H ( ) d2
 ≃ to define a linear map

( )H k P: Sym( ( ), ) (1)k d2
ϕ →

by the relation

x x( )( ) tr ,
i

n

i i

n

1

2⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟∑ϕ η η σ=

=

⊗

where H kSym( ( ), )η ∈ and x d2
∈ .

Lemma 3.12. The mapping ϕ is an isomorphism.

Proof. Let d Hdim ( )= . Note that

( )H k
n k

k
Pdim Sym ( ( ), )

1
dim .k d2

 ⎜ ⎟⎛
⎝

⎞
⎠= + − =

Then, by linearity of ϕ, it is enough to check that ϕ is surjective. Under the identification
H ( ) d2

 ≃ , a basis of P ( )k d2
 is given by polynomials of the form x x i... ,i i jk1 ∈

d i i{1, , }, k1… ⩽ ⋯ ⩽ . For each such polynomial p x x...i ik1= there is a Symη ∈
H k( ( ), ) such that x p( )( )ϕ η = , namely · ... ·i ik1η σ σ= , where · denotes the symmetric
product. □

Remark. Note that every ( ) ρ ∈ decomposes as i
d

i2

2

ρ σ= + ∑ = and thus x 11 = on

( )  . From this point of view P ( )k d2
 corresponds to P ( )k d 12

⩽ − , the set of polynomials of
degree d k⩽ in x x, , d2 2… .

The following lemma is the crucial ingredient of the main theorem of this section. Let
H h h H( ) { : ( ) }0 0   + ≔ + ∈ .

Lemma 3.13. Let H( ) ( ) n n
0

1    ⊆ ⊆ + ≃ × − be a closed submanifold and
: mψ → be a smooth embedding. Then, there is a k ∈ and a map

p p p P˜ ( , , ), ( )m i
k n n

1
1ψ′ = … ∈ ⩽ × − , such that ˜ ψ ψ′ = ′ ∣ is a smooth embedding.

The proof of this lemma can be found in appendix A.4.

Theorem 3.14. Let ( )  ⊆ be a closed submanifold. There is a smooth embedding of 
in m if and only if, for some k ∈ , there exists a stably  -complete m-dimensional
measurement on k copies.

Proof. 3.11 gives one direction. For the other direction, let : mψ → be a smooth
embedding. Then, by 3.13, there is a smooth embedding p p p P( , , ) ,m i

k
1 ψ ′ = … ∣ ∈ ⩽

( )n n 1 × − . p pspan { , ( ), , ( )}m
1

1
1 σ ϕ ϕ= …− − (ϕ form 3.12) is clearly an operator system
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whose dimension is less or equal to m 1+ . σ is a  -embedding because ψ ′ ∣ is an
embedding and thus stably  -complete by 3.11. □

Thus, under the premise of stability, asking for the minimal dimension of a  -complete
POVM is equivalent to the related problem in differential topology of finding the smallest m
such that  can be smoothly embedded in m .

4. Upper and lower bounds for concrete submanifolds

In this section we obtain lower as well as upper bounds on the dimension of complete and
stable POVMs on some interesting submanifolds of states. The procedure is to first relate the
submanifolds to well-known homogeneous spaces and then to obtain or use existing non-
immersion results for these. Upper bounds are obtained by directly constructing POVMs.

First, we give bounds for the set of states with fixed spectrum. Thereby we also obtain
bounds for the closely related set of states with bounded rank.

Then, we give a brief analysis of states with an underlying unitary symmetry which is
needed in the next section, where we generalize the previous results to states of fixed
spectrum with an underlying symmetry.

Finally, we obtain bounds for the set of pure states of bipartite systems, obtained from the
action of the unitary group of the second system on some fixed pure state.

In the following let n = .

4.1. States of fixed spectrum and states of bounded rank

First, we consider the set of states in ( )n with fixed spectrum s s s( , , )n1= … 9 and we
denote by D s sdiag( , , )s n1≔ … the diagonal matrix with entries from s.

The set of all states with spectrum s, ( )n
s , is the orbit of Ds with respect to the action G

of U n( ) on ( )n by conjugation, i.e.

{ }UD U U U n: ( ) .s
n

s
† ≔ ∈

The isotropy group of ρ under this action isU n U n( ) ( )k1 × ⋯ × , where ni is the multiplicity
of the ith biggest eigenvalue. Note that n nj

k
j1∑ == . By theorem 3.62 of [20], factoring the

orbit map over this isotropy group induces a diffeomorphism

( )( )U n U n U n( ) ( ) .k
n

s1 × ⋯ × ≃

Thus, s
n can be identified with a complex flag manifold.

In [21], Walgenbach obtains lower bounds for the immersion dimension of complex flag
manifolds. To present his result, we first introduce some notation.

Definition 4.1. Let n ∈ , k n{0, 1, , }∈ … .

n n

n i

n k n k n k

( ) number of ones in the binary expansion of ,

( ) ( ),

( , ) ( ) ( ) ( ).
i

n

1

0

1

1 1 1

∑

α

α α

β α α α

≔

≔

≔ − − −
=

−

Let n n{ , , }k1 … be a partition of n. Let K be some subset of k{1, , }… and set m ni K i= ∑ ∈ .

9 By spectrum we mean the set of eigenvalues order increasingly together with their multiplicities.
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Proposition 4.2. [21] The complex flag manifold U n U n U n( ) ( ) ( )k1 × ⋯ × cannot be
immersed in Euclidean space of dimension m n m n m4 ( ) 2 ( , ) 1β− − − and it cannot be
embedded in Euclidean space of dimension k n m n m4 ( ) 2 ( , )β− − .

Next, we want to obtain upper bounds on the dimension of stably s
n -complete POVMs.

Let σ be the function that associates to each h H ( )n∈ its spectrum. For A H ( )n⊆ , let
A D s M M ASpec( ) { : ( ), }s σ≔ = ∈ and let G A UMU U U n M A( ) { : ( ), }†≔ ∈ ∈ .

Lemma 4.3. ( )G Spec( )s
n

s
n Δ Δ= and ( )T G TSpec( )s

n
D s

n
s = as sets. Furthermore, let

r be the biggest multiplicity of an eigenvalue in s, then rank M n r( ) 2( ) 1< − + for
M Ts

n
s
n ∪Δ∈ .

Proof. The first claim is essentially true by definition. For the second claim, let us compute
the tangent space at Ms. Let h H ( )n∈ and consider the curve t D: e eht

s
hti iγ ↦ − . The

derivative at t = 0 of this curve is then an element of T SD s
n

s and we find

[ ]
t t

D h D
d

d

d

d
e e i , .t t

ht
s

ht
t s0 0

i i
0γ = == =

−
=

In the canonical basis, these elements are of the form

A B

A C

B C

0 i i ...
i 0 i
i i 0

.
†

† †

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⋮ ⋱

Thus, by dimensional reasons, all elements of T SD s
n

s are of this form. Furthermore for
U U n( )∈ , observe that

[ ]U h D U UhU UD U, ,s s
† † †⎡⎣ ⎤⎦=

and thus

c T S T S

v UvU

:U D s
n

UD U s
n

†

s s
†→

↦

is an isomorphism. This proves the second claim. To prove the last claim, observe that for
U V U n, ( )∈

( ) ( )UD U VD V U D U V D Vs s s s
† † † † λ λ− = − − −

and similarly

[ ] [ ] [ ]h D h D h h D, , [ , ] , .s s s λ λ= − = −

Choosing λ to be the eigenvalue in s with the biggest multiplicity r, the expressions above are
differences of rank n r− matrices and thus maximally of rank n r2( )− . □

Remark. It is immediate that a POVM P, that is injective on the set of hermitian operators
with rank smaller than r, r , is an s

n -embedding. This is because r r2 Δ = and thus
Ts

n
s
n

r r2   ∪Δ Δ= = by 4.3.
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As a consequence, the POVM constructed in [2] for states of bounded rank is also a

s
n -embedding and we obtain the following upper bounds.

Proposition 4.4. Let m be the biggest multiplicity of an eigenvalue in the spectrum s and let
r n m≔ − . Then, there is a POVM P of dimension r n r4 ( ) 1− − that is a s

n -embedding.

Remark. Note that for r n 2= the dimension of the POVM is n n n n4 2( 2) 1 12− − = − .
Thus, it is the trivial POVM that can identify all states and hence we also get a s

n -embedding
for r n 2> .

The construction of the POVM is based on [22]. The idea is to use a totally non-singular
matrix, like e.g. the Vandermonde-matrix, to construct a linear subspace of M n( , ) that just
contains matrices of rank bigger than r2 .

As presented in the table 1, these results are rather close to the lower bounds of [21].
Thus, the POVM of [2] gives good upper bounds on s

n and in addition we have indirectly
obtained good lower bounds on the dimension of a POVM that is complete with respect to the
states of bounded rank.

4.2. States with unitary symmetry

Next, we shortly discuss subsets of states invariant under some unitary subgroup.
More precisely, we analyze the structure of the fix point sets of the action by conjugation

GH of some subgroup H U n( )⊆ , i.e.

{ }( ) ( ) U U U H: , .n
H

n †  ρ ρ ρ≔ ∈ = ∀ ∈

Consider the sets B UBU B U H( ) { ( ) : , }n
H

n †  ≔ ∈ = ∀ ∈ . ( )n
H is a C* algebra,

since it is certainly a vector space and closed under the *-involution by the unitarity of H and
thus the structure theorem [23] yields that ( )n

H is unitarily equivalent to
M n( , )i

k
i m1 i ⊕ ⊗= .

Observe that the linear isomorphism

( ) ( )M n M n

m m

: , ,

( , , )
1

, ,
1

. (2)

i

k

i
i

k

i m

k m
k

k m

1 1

1
1

1

i

i k

  

 

 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ι

ρ ρ ρ ρ

⊕ → ⊕ ⊗

… ↦ ⊗ … ⊗

= =

descends to a diffeomorphism on states. Form this we immediately get the following
proposition.

Proposition 4.5. There is a POVM P with Pdim dim ( )n
H= that is stably

( )n
H -complete.

4.3. Unitarily invariant states of fixed spectrum

Now, given some unitary subgroup H U n( )⊆ , we want to identify GH-invariant (cf 4.2)
states of fixed spectrum s10, i.e.

10 Here s has to be compatible with the decomposition illustrated in section 4.2.
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{ }( ) ( ) U U U H s: , , spec( ) .n
H s

n
,

†  ρ ρ ρ ρ≔ ∈ = ∀ ∈ =

Via the map ι defined in (2), there is natural action ofU Un nk1 × ⋯ × on B ( )n
H coming from

its action on M n( , )i
k

i1 ⊕ = . ( )n
H is then the orbit of this action on the set

{ }( ) ( ) ( )D D M M s, , : .M M
c

k
c

1k
k

1
1 ⎡⎣ ⎤⎦∪ ∪≔ … ⋯ =

Here Mi is a multiset of order ni and M( )i
ci is the union of ci copies of Mi. By the same

argument as in the previous section the orbit of some ρ ∈ under GH is diffeomorphic to a
product of complex flag manifolds U n U n( ) ( )i

k
i j

k
j
i

1 1
j∏ ∏= = . Since  is clearly finite,

( )n
H s, is a disjoint union of products of complex flag manifolds. Thus, it is enough to look

at one of these components at a time to get non-immersion results.

Table 1. Dimension/lower bounds on immersion dimension [21]; upper bound on
embedding dimension 4.4 for U l k U l U( ) ( ) (1)k+ × .

l\k 2 3 4

5 22/34;39
6 26/40;47
7 30/50;55 48/76;83
8 34/60;63 54/90;95
9 38/66;71 60/98;107 84/134;143
10 42/72;79 66/110;119 92/148;159

Table 2. Lower bounds on immersions ofW Pn
n

,1 ≃ for n 2, , 17= … . In the first row
the result is obtained from the dual Stiefel–Whitney classes in the second row the
results of [26] are presented.

2 6 6 14 14 14 14 30 30 30 30 30 30 30 30 62
2 6 8 14 16 21 22 30 32 37 38 45 46 52 52 62

Table 3. Lower bounds on immersion dimension of PWn r, obtained from dual Stiefel–
Whitney classes 4.8.

n\r 2 3 4 5 6 7 8 9 10 11 12 13

2 2 3
3 6 7 8
4 6 11 14 15
5 14 19 22 23 24
6 14 27 30 31 34 35
7 14 27 38 39 46 47 48
8 14 27 38 47 54 59 62 63
9 30 43 54 63 70 75 78 79 80
10 30 51 54 63 86 91 94 95 98 99
11 30 55 72 79 86 107 110 111 118 119 120
12 30 59 78 79 102 107 126 127 134 139 142 143
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For some component, let mi be the number associated to the ith factor in the product, that
is constructed just like the number m for 4.2.

Proposition 4.6. The product of complex flag manifolds U n U n( ) ( )i
k

i j
k

j
i

1 1
j∏ ∏= = cannot

be immersed in Euclidean space of dimension m n m n m(4 ( ) 2 ( , )) 1i
k

i i i1 β∑ − − −= and it

cannot be embedded in Euclidean space of dimension m n m n m4 ( ) 2 ( , )i
k

i i i1 β∑ − −= .

The proof of this result can be found in appendix A.5. Of cource, 4.4 also transfers to this
situation and gives upper bounds on the dimension of stably ( )n

H s, -complete POVMs.

4.4. Bob-unitary orbit

Let A B α ∈ ⊗ , 1α α〈 ∣ 〉 = . In this section we investigate pure states of the form

{ }( ) ( )U U U( ) : ( ) , .B A B B    α β β β α≔ ∈ ⊗ = ⊗ ∈

Let e e{ , , }1 dim A… , f f{ , , }1 dim B… be orthonormal bases of A respectively B such that

e f
i

r

i i i
1

∑α α= ⊗
=

is a Schmidt decomposition, where r is the Schmidt rank of α. Then, ( )B α is diffeomorphic
to the projective Stiefel manifold PWn r, . In order to see this, note that U( ( ))B  α⊗ is

diffeomorphic to the complex Stiefel manifolds W m m m{ : * · }n r
d r

,  ≔ ∈ =× via

i U W

M e Uf Uf f

: ( ( )) ,

.

n k

i j

i

r

i i i i j

,

,

1

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

α

α

⊗ →

⊗ ≔
=

Factoring both sides over the free action of the cyclic group S1 ⊆ , m z m·↦ , then yields
the desired map [20].

In order to state the main result of this section we introduce two functions.

Definition 4.7. Let n k, ∈ and n k⩾ .

N n k n k i n
n

i

n k i N n k
nk i

i

1. ( , ) min : (mod 2) 1 ,

2. ( , ) 2 · max 0 ( , ) :
1

(mod 2) 1 .⎜ ⎟

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭σ

≔ − < ⩽ ≡

≔ ⩽ < + − ≡

Proposition 4.8. Let , 1A B α α α∈ ⊗ 〈 ∣ 〉 = , with Schmidt rank k and n dim B= .
Then ( )B α cannot be immersed in Euclidean space of dimension n k k n k(2 ) 1 ( , )σ− − +
and cannot be embedded in Euclidean space of dimension n k k n k(2 ) 1 ( , ) 1σ− − + + .

The proof of this result is very similar to [24] and can be found in appendix A.6. This
non-immersion result is obtained deploying a standard approach based on the dual Stiefel–
Whitney class of the tangent bundle [25].

For k = 1 the complex projective Stiefel manifold is just the complex projective space, so
in this chase we can compare the result obtained here to the upper bounds of Milgram [26],
which are known to be close to optimal. Table 2 shows these bounds for some dimensions.
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For n 2k= , k ∈ , the dual Stiefel–Whitney classes give no obstructions, whereas they
essentially equal Milgramʼs result in [26] for n 2 1k= + , k ∈ , and hence are close to
optimal in this case.

In [27], it is shown that PWn n, and PWn n, 1− is parallelizable for n 2≠ and thus can be
immersed in Euclidean space of codimension one by a result of Hirsch [28]. For PW k4, and
PW k8, , there are no obstructions because the dual Stiefel–Whitney classes vanish for
nk q2r= , q r, ∈ and N n k( , ) 2r< [24].

In table 3 these bounds are presented for some explicit scenarios. The dual Stiefel–
Whitney classes do not generally give good obstructions, but can be supplemented by other
methods. Another approach to the non-immersion problem is due to [29]. In a similar vein,
another method is given to obtain non-immersion results, with the exterior powers iγ of
KO X( ) playing the role of the Stiefel–Whitney classes. Both of these methods are worked out
and compared in [24].

Next, we give upper bounds on the dimension of an ( )B α -embedding, presenting two
different approaches.

The first approach is based on the upper bounds obtained for states of fixed spectrum.
The problem is split into determining the minor obtained by tracing over A and afterwards
determining the relative phases.

Before stating the upper bounds, let us first prove the following lemma which will be
useful later on.

Lemma 4.9. Let e f
i

r
i i i1

∑α λ≔ ⊗
=

, O H ( )A∈ , S H ( )B∈ , U U ( )B∈ and

P e f
i

r
i i i1

∑ λ≔ ∣ 〉〈 ∣α =
. Then O USU P U O P U Str( ) tr(( ) ( ) )T† †α α⊗ ∣ 〉〈 ∣ = α α .

Proof. The prove of this is a straightforward computation

( )

( )

( ) ( )

O USU O USU

e f O USU e f

e O e f USU f

e O e f USU f

f f e O P USU f

f U P O P US f

P U O P U S

tr

tr .

i j

r

i j i i j j

i j

r

i j i j i j

i j

r

j j
T

i i i j

i j

r

i j j j
T

i

i

r

i
T

i

T

† †

, 1

†

, 1

†

, 1

†

, 1

†

1

† †

†

∑

∑

∑

∑

∑

α α α α

λ λ

λ λ

λ λ

λ

⊗ = ⊗

= ⊗ ⊗ ⊗

=

=

=

=

=

α

α α

α α

=

=

=

=

=

□

The following proposition is motivated by a method to embed Lie groups in Euclidean
space, introduced in [30].

J. Phys. A: Math. Theor. 48 (2015) 265303 M Kech et al

17



Proposition 4.10. Let A B α ∈ ⊗ with Schmidt rank k and n dim B= . Then, there is
a ( )B α -embedding of dimension r n r n4 ( ) 1 4 5− − + − for r n 2< and n n1 4 52 − + −
for r d 2⩾ .

Proof. First, note that by lemma 4.9 we can assume w.l.o.g. that i jλ λ≠ for
i j r i j1 , ,⩽ ⩽ ≠ , because this can always be achieved by choosing O appropriately.

The idea is to take advantage of the natural projection PW
U n

U U n r
:

( )

(1) ( )
n r r,π →

× −
,

which just amounts to choosing O = in lemma 4.9. More precisely, for O = we get

P OP

0
r

†

1⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

λ

λ=
⋱

⋱

α α

and thus we are in the situation discussed in the last section with the isotropy group given by
U U n r(1) ( )r × − . This means, the projected state can be embedded in dimension

r d r4 ( ) 1− − using the POVM of 4.4. Let us call this map 1ϕ .
Let v r∈ be the vector with a one in every entry and consider the map

U n U n r
U U v

: ( ) ( ) ,
( 0).

nψ − →
↦ ⊕

This is clearly well defined and also observe that ψ descents to a map
PW U n U n r U P˜ : ( ) ( ( ) (1))n r

n
, ψ ≃ − × → . Let U V U n, ( )∈ with U V∼ in

U n U U n r( ) (1) ( )r × − , i.e. U V D W( )( ) = ⊕ ⊕ with D U (1)r∈ and W U n r( )∈ − .
Then,Uv Vvλ= just has a solution forU V∼ inU n U U n r( ) ( (1) ( ))× − . To see this, note
that

U v V v
V D W v V v

D v v
Dv v

( 0) ( 0)
( )( )( 0) ( 0)

( )( 0) ( 0)
 



λ
λ
λ
λ

⊕ = ⊕
⊕ ⊕ ⊕ = ⊕

⊕ ⊕ = ⊕
=

and thus D λ= is the only solution.
Hence, supplementing the embedding above by ψ̃ guarantees injectivity and the only

problem left, is embedding P n .
In terms of lemma 4.9 ψ̃ corresponds to choosing P O P v v 0T † †= ⊕α α , the projective

version of v 0⊕ . Then choose S according to the POVM of [2] to obtain an embedding in
Euclidean space. Let us call this mapping 2ϕ

The map ( , )1 2ϕ ϕ ϕ≔ is clearly smooth as well as injective and thus a topological
embedding by compactness of ( )B α . From lemma 4.9 it is easy to see that

U U( e ) ( e )
t t

Ht Htd

d 0
i i † α α∣ ⊗ ∣ 〉〈 ∣ ⊗=

− for H h 0= ⊕ and h ≠ diagonal gives a n 1−
dimensional subspace VU of the tangent space at U U( ) ( )U

† α α α≔ ⊗ ∣ 〉〈 ∣ ⊗ . VU is clearly
in the kernel of d 1 Uϕ ∣α . Thus, by dimensional reasoning, it is enough to see that d 2 Uϕ ∣α is
injective on VU. Since the POVM of [2] can identify all rank one matrices, it is enough to see
that h v v h0 [ † 0, 0]⊕ ↦ ⊕ ⊕ is injective for h ≠ diagonal. This can be easily verified by
a direct computation. □
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Remark. This result is best for r close to n, so in particular for PWn n, , the set of maximally
entangled states. For PWn n, we obtain an embedding in Euclidean space of codimension
n4 5− .

Furthermore, note that in the context of quantum process tomography, the result for
maximally entangled states can be used to identify a unitary time evolution. Preparing a
certain maximally entangled state, the POVM given above can identify unitary processes up
to a phase, i.e. with n( )2 measurements.

The second approach relies on the direct construction of an ( )B α -embedding.

Proposition 4.11. Let A B α ∈ ⊗ with Schmidt rank r and n dim B= . Then, there is a
( )B α -embedding of dimension nr n2 2 3+ − .

Proof. First, note that w.l.o.g. we can assume 1r1λ λ= ⋯ = = , as can be easily seen from
lemma 4.9.

Then, for O e e S f f,i j k l= ∣ 〉〈 ∣ = ∣ 〉〈 ∣ we obtain

( )( ) ( )P U O P U S f U f f U ftr *,T
i k j l

† =α α

so from this point of view any linear combination of such products of elements of P Uα
determines an operator, that need not be hermitian, and a set of such equations determines an
operator system (here we think of P Uα as a matrix in the e f{ } , { }i i r l l n{1, } {1, }∈ … ∈ … basis). It is
worth noting that an equation not corresponding to a non-hermitian operator actually
corresponds to two operators in the operator system, namely its hermitian and anti-
hermitian part.

Let M U e P U f( )n i j i j( 1) ≔ 〈 ∣ ∣ 〉α− + for i r j n{1, , }, {1, , }∈ … ∈ … and M 0k ≔ for

k nr> . For k nr n{1, , 1}∈ … + − , define operators G̃k via the equations

G U M U M U( ) ( ) ( ).k

i i k i

n

i k i
1, 1

1
*∑≔

= ⩽ + −
+ −

Then, the operator system Gσ spanned by the G̃k is an ( )B α -embedding. It is clear that the
dimension of Gσ is nr n2 2 3+ − , noting that non-hermitian operators count twice.

Let U V U, ( )B∈ . In order to prove injectivity, we have to show that if
G U G V( ) ( )k k= , then there is a ϕ ∈ such that P U P Vei=α

ϕ
α . First, observe that for

M U M U( ) ( ) 0k1 = ⋯ = = we have k n⩽ because P Uα has full rank. Let m be the smallest
number such that Mm does not vanish. Then the claim is clearly true for all j m< . Now, let
l m> and assume that the claim holds for all j l⩽ , then

G U M U M U

M U M U M U M U

M V M U M V M V

G V

( ) ( ) ( )

( ) ( )* ( ) ( )

( )e ( )* ( ) ( )

( ),

m l

i i m l i

n

i m l i

m l

i m i m l i

n

i m l i

m l

i m i m l i

n

i m l i

m l

1, 1
1

*

1

1, 1
1

*

i
1

1, 1
1

*

∑

∑

∑

=

= +

= +

=

ϕ

+
= ⩽ + + −

+ + −

+
= + ⩽ + + −

+ + −

+
= + ⩽ + + −

+ + −

+

thus M U M Ve ( ) ( )l l
i

1 1=ϕ−
+ + .
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To conclude the proof, we need to show that the measurement constructed above is
an immersion. For h H ( )B∈ , U U ( )B∈ and and define a curve t( )γ ≔

U U( e ) ( e )UhU t UhU ti † i† †
 α α⊗ ∣ 〉〈 ∣ ⊗ − . The derivative of this curve yields tangent vectors at

U U( ) ( )† α α⊗ ∣ 〉〈 ∣ ⊗ and by lemma 4.9 an effect operator O S⊗ maps these to

( ) ( )
( )

t
P U O P U S

P O P U h S U

d

d
tr e e

itr [ , ] .

t
UhU t T UhU t

T

0
i

†
i

† †

† †⎛
⎝⎜

⎞
⎠⎟

=

α α

α α

=
−

For k nr n{1, , 1}∈ … + − , this yields the equations

F U h M U M Uh M Uh M U( , ) ( ) ( ) ( ) ( ).k

i i m l i

n

i k i i k i
1, 1

1
*

1
*∑= −

= ⩽ + + −
+ − + −

Observe that F U h F U h c( , ) ( , )k k = + holds for each c ∈ . Furthermore, it is easy to see
that for every k nr{1, , }∈ … and every h H ( )B∈ there is a λ ∈ such that
M U h( ( )) 0k λ + = and thus we can assume w.l.o.g. that M Uh( ) 0k = .

Let m be the smallest number such that M U( )m does not vanish and assume w.l.o.g.
M Uh( ) 0m = . Let l nr m{1, , 1}∈ … + − . It is easy to see that the vanishing of these
equations for all i l⩽ implies that M Uh( ) 0j = for j l k1⩽ + − and thus, we obtain

injectivity on a real vector space of dimension nr r2 12− − . □

In table 4 both of these methods are compared. It is clear that the embedding in 4.11
works best for k m 1≪ , because this approach does not take the orthogonality of the fi into
account. The embedding in 4.10 works best for k m 1∼ , because just in this case the
projected state can be determined efficiently.

Appendix A. Technical appendix

A.1. Proof of theorem 3.3

Before we give the proof, let us first fix some notion.
Let H( ( ))  be the orthogonal group on the inner product space H ( ) . The gen-

eralized Pauli basis together with the identity  gives an identification of H ( ) d2
 ≃ and

the Hilbert–Schmidt inner product induces the standard inner product on d2
 . Thus

H( ( ))  can be identified with ( )d2
 , the standard orthogonal group on d2

 . Denote by

Table 4. Dimension/Lower bounds on immersion dimension 4.8; first upper bound on
embedding dimension 4.10; second upper bound on embedding dimension 4.11 for
PWn r, .

n\r 5 9 17 65

5 24/24;40;57
9 64/70;112;105 80/80;112;177
17 144/166;302;201 224/238;352;337 288/288;352;609
65 624/742;1454;777 1088/

1198;2270;1297
1920/

2014;3518;2337
4224/4224;4480;8577

129 1264/
1510;2990;1545

2240/
2478;4830;2577

4096/
4318;8126;4641

12544/
12670;17152;17025

J. Phys. A: Math. Theor. 48 (2015) 265303 M Kech et al

20



H O H Ov v( ( )) { ( ( )) : }v   ≔ ∈ = the stabilizer subgroup of v H ( ) d2
∈ ≃ .

Note that for O H( ( ))  ∈ and n( )σ Σ∈ , we have O n( )σ Σ∈ . Thus there is an action
of H( ( ))   on n( )Σ

n H n n

O O

( ) ( ( )) ( ) ( )

( , ) ( , ).

  Σ Σ Σ
σ σ σ

× → ×
↦

The geometric intuition of thinking of operator systems as planes in H ( ) d2
 ≃ is essential

for the following proof. Then, for O H( ( ))  ∈ , Oσ is just a rotated plane and the
intuition is that for small rotations these operator systems are close.

Proof. Let n( )σ Σ∈ be stably  -complete and πσ be the associated orthogonal projection.
Furthermore let SH B H B( ) { ( ) : 1} ≔ ∈ ∥ ∥ = be the unit sphere in H ( ) . Assume by
contradiction that σ is not a  -embedding, i.e. πσ is not an immersion. Then, since
d ( ) T π π=σ ρ σ ρ , there exists a point ρ ∈ and a smooth curve : ( 1, 1) γ − → with

(0)γ ρ= and v v SH˙ (0) , ( )γ σ= ∈ ∈⊥ . The idea is that t vt( )γ ρ≈ + for small t and to
obtain a contradiction we construct for a point t vt( )ρ γ ρ′ = ′ ≈ + ′ an operator system σ′
with ( ) 0π ρ ρ′ − =σ′ . This procedure is presented in figure A1.

More precisely, we prove that for each 0δ > there is a t (0, 1)∈ such that
t V Ov O H O( ) { · : 0, ( ( )), }op γ ρ λ λ δ∈ ≔ + > ∈ ∥ − ∥ <ρ

δ .

First, we prove that Vρ
δ is open. Note that the left action

H SH SH SH
O v Ov v

( ( )) ( ) ( ) ( )
( , ) ( , )

    × → ×
↦

is smooth and transitive. Thus, the orbit map H SH O Ov: ( ( )) ( ),v   β → ↦ is smooth
and factors over the natural projection H H H: ( ( )) ( ( )) ( ( ))v     π → (theorem
3.62 of [20]), i.e. ˜

v vβ β π= ◦ with ṽβ a diffeomorphism. In particular vβ is open because π is
open11.

Since vβ is open there is an 0η > such that B B V( ) (1)v ∩η∅ ≠ ⊆ρ ρ ρ
δ

+ . By possibly

shrinking η we can even assume that B V( )v η ⊆ρ ρ
δ

+ because of the conic structure of Vρ
δ. It

follows that B s V( )sv η ⊆ρ ρ
δ

+ for s 0> .

Figure A1. This figure shows the curve γ with (0)γ ρ= , t( )γ ρ′ = ′ and

v(0)
t

d
d

γ σ= ∈ ⊥ together with the operator system σ′ that is constructed such that

( )ρ ρ σ′ − ∈ ′ ⊥.

11 For an open set A H( ( )) ⊆ we find A H A O A( ( )) ( ( )) · ( )v O H
1

( ( ))v   π π = = ⋃−
∈ . So A( ( ))1π π− is

open for any open set A H( ( )) ⊆ and thus π is open.
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Then

t tv

t

t tv

t
t

( ) ( ) ( ) (0)
0 as 0,

γ ρ γ γ∥ − + ∥ = ∥ − − ∥ → →

whereas we find for the distance d tv B t t t( , ( )) inftv B t( )tvρ η ρ ρ η+ ∂ ≔ ∥ − ′∥ =ρ ρ η+ ′∈∂ ρ+ .

So by continuity of the norm there is a t 0> such that t V((0, ))γ ⊆ ρ
δ.

But then, for every 0δ > , there is an O H( ( )) ∈ , a 0λ > and a t 0> with

d O

O O

O O

O

( , )

2 2

O op

op

op op

op

1

1



σ σ π π

π π

π π π π

δ

=∥ − ∥

=∥ − ∥

⩽∥ − ∥ + ∥ − ∥

⩽ ∥ − ∥ <

σ σ

σ σ

σ σ σ σ

−

−

such that t Ov( ) (0) 0γ γ λ− = ≠ . But then, t O O t( ( ) (0)) ( ( ( ) (0)))O
1π γ γ π γ γ− = − =σ σ

−

O v( ) 0λ π =σ by assumption on v. Also note that t, ( ) (0) γ γ〈 − 〉≔
tr t[ ( ( ) (0))] 0 γ γ− = and T, 0 〈 〉 =ρ and thus we can choose O H( ( ))  ∈ . So
Oσ is an operator system but it is not  -complete, contradicting the stability of σ.

Conversely, suppose σ is a  -embedding. A.2 states, that there is an 0ϵ > such that
every n( )σ Σ′ ∈ with B Bsup ( ) ( )B H B( ), 1 π π ϵ∥ − ∥ <σ σ∈ ∥ ∥⩽ ′ is a  -embedding and thus in
particular  -complete.. □

A.2. Proof of lemma 3.5

The following proof uses geometric concepts and is based on the identification of the tangent
spaces with planes in H ( ) .

Proof. Tπ is smooth, as can be easily seen in local coordinates. The mapping

( )
:

, T T

op

 ψ
ρ ρ π π
× →
′ ↦∥ − ∥

′
ρ ρ

is clearly continuous as a composition of continuous mappings and thus, for every 0η > ,
there is an open neighbourhood N

0ρ of 0 ρ ∈ such that ( , ) 40ψ ρ ρ η< for all N
0

ρ ∈ ρ . Let
00ν > and let B ( )5 00 ρν be the open ball of radius 5 0ν around 0ρ , such that B ( )5 00 ∩ρν is

contained in N
0ρ .

Let B ( )00 ∩ρ ρ∈ ν . Then, for all B˜ ( )4 0 ∩ρ ρ∈ ν , we find

( )( , ˜) ( , ) ˜ , 2. (A.1)0 0ψ ρ ρ ψ ρ ρ ψ ρ ρ η< + <

Let B ( ) ∩ρ ρ′ ∈ ∂ ϵ , 0 0ϵ ν< < . Furthermore, let : [0, ] ( )  γ λ → ⊆ be a geodesic
that connects ρ and ρ′ with (0)γ ρ= and t v v( ) , 1

t t
d

d 0γ ∣ = ∥ ∥ == . Since v( , )ρ ↦

t vt( ) exp( , )
t t t t

d

d 0
d

d 0
2

2

2

2γ ρ∣ = ∣= = is a smooth function from the compact set Sdim 1 × − to

H ( ) , there is k 0⩾ such that k
t

vtmax
d

d
exp( , )v S t( , )

2

2 0dim 1  ρ≔ ∥ ∣ ∥ρ ∈ × =− . It follows from

the geodesic equation
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( )

( )

( )

( )

t
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t
t

t
t

t
t t

t
t v

t t t
t

t vt

d

d
( ) 0,

d

d
( )

d

d
( ) 0,

d

d
( ) d

d

d
,

( ( )) d d
d

d
( ).

t
T

T
t

T T

T
t

t
T T

T
t t

t
T T T

( )

2

2

(0)

2

2 ( ) (0)

2

2

(0)
0

( ) (0)

2

2

(0)
0 0

( ) (0)

2

2 (0)

⎜ ⎟

⎛
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⎞
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⎛
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⎞
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⎛
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⎞
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⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫ ∫

π γ

π γ π π γ

π γ π π γ

π γ π π γ π ρ

=

+ − =

+ ′ −
′

′ =

+ ′ ″ −
″

″ = +

′

′
″

γ

γ γ γ

γ γ γ

γ γ γ γ

However, for t [0, 4 ]0ν∈

( )

( )

( )

( )

t
t

t

t
t

t

t k kt k

d
d

d

d
d

d

d 2 2 2 .

t

t
T T

t

t
T T

t

0
( ) (0)

2

2

0
( ) (0)

2

2

0
0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

∫

π π γ

π π γ

η η η ν

′ −
′

′

⩽ ′ −
′

′

< ′ = ⩽

′

′

γ γ

γ γ

as well as

( )

( )

( )

( )

t t
t

t

t t
t

t

t t k kt k

d d
d

d

d d
d

d

d d 2 4 4 ( ) .

t t

t
T T

t t

t
T T

t t

0 0
( ) (0)

2

2

0 0
( ) (0)

2

2

0 0

2
0

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫ ∫

∫ ∫

π π γ

π π γ

η η η ν

′ ″ −
″

″

⩽ ′ ″ −
″

″

< ′ ″ = ⩽

′
″

′
″

′

γ γ

γ γ

Thus, we find

t vt kt k( ( ) ( )) 4 4 ( )T
(0)

2
0

2π γ ρ η η ν− + < <γ

and

t
t v

t
t

t
t

t
t v

t
t

t
t

t
t v

k

d

d
( )

d

d
( )

d

d
( )

d

d
( )

d

d
( )

d

d
( )

d

d
( )

2 2 ,

t
T T T

t
T T T

( ) (0) (0)

( ) (0) (0)

0

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

γ π γ π γ π γ

π γ π γ π γ

η η ν

− = − + −

⩽ − + −

⩽ +

γ γ γ

γ γ γ

Note that γ stays inside B ( )5 00 ρν . Furthermore, for η and 0ν small enough, γ intersects
B ( )2 00 ρ∂ ν and γ intersects B ( )ρ∂ ϵ close to radial. In particular it follows that t t( )γ ρ↦ ∥ − ∥
is strictly increasing as long as γ stays inside B ( )2 00 ρν . Then, each geodesic intersects B ( )ρ∂ ϵ
exactly once before it passes through B ( )2 00 ρ∂ ν for each ϵ with 0 0ϵ ν< < . Let Kρ be the
connected component of B ( )0 ∩ ρν containing ρ and let K

0ρ be the connected component of
B ( )2 00 ∩ ρν containing 0ρ . The above reasoning implies that K B ( )∩ ρρ ϵ is connected and

that K B ( )˜ 00
∩ ρρ ϵ is connected for 0 ˜ 2 0ϵ ν< < .
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We can assume w.l.o.g. that B ( )0 ∩ρν is connected for all B ( )00ρ ρ∈ ν . Because if not,
we can shrink 0ν until B ( )2 00 ρν contains a single connected component. To see this, shrink 0ν
such that 0 max K B K0 , ( ( ) )0 2 0 0 0ν ρ ρ< < ∥ − ′∥∩ρ ρ ρ∈ ′∈ −ρ ν ρ .

We then find for 0 0ϵ ν< < and t [0, 4 ]ϵ∈

t t vt vt

vt t vt t k

( ( ) ) ( ( ) ( ) )

( ( ) ( ) 4 .

T T

T

(0) (0)

(0)
2

π γ ρ π γ ρ

π γ ρ η ϵ

∥ − ∥ = ∥ − + + ∥

> ∥ ∥ − ∥ − + ∥ > −
γ γ

γ

Hence, t t B t k( ) and ([0, ]) ( ) 42 0
2

0γ ρ γ ρ ϵ η ϵ= ′ ⊆ ⇒ < +ν .
Choosing 0ν such that k4 10ν < , we find for the component of t( ) (0)ρ ρ γ γ′ − = −

normal to T ρ

t
t

t
t

t

t
t

t
t

t

t t k k

( ) d
d

d
( )

d
d

( )

d
d

d
( )

d
d

( )

d 2 2 ( 4 ) 2 ( 1 4 ) 2

.

N
t

T

t

t
T T

t

0
(0)

0
( ) (0)

0

2
0

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

∫

∫

π ρ ρ γ π γ

π γ π γ

η η η ϵ ϵ ϵη ν ηϵ

η ρ ρ

′ − = ′
′

′ −
′

′

⩽ ′
′

′ −
′

′

< ′ = < + ⩽ + <

= ∥ − ′∥

ρ γ

γ γ′

Now, for a given 0η > , construct such neighbourhoods for all ρ ∈ to obtain a cover
of  by open sets, B{ ( ) } ∩ρν ρ∈ρ . By compactness of  there is a finite subcover
B{ ( ) }i i Ii

∩ρν ∈ρ and set mini I i
ϵ ν≔ ρ∈ . □

Remark. Note that the proof of this lemma shows that for 0 ϵ̃ ϵ< < , B ( )˜ ∩ρϵ is
connected.

A.3. Proof of proposition 3.10

Proof. To see that i is smooth, choose an orthonormal basis { }i i Iσ ∈ of hermitian operators
for H ( ) . Expansion in this basis gives global coordinates on H ( ) . Expansion in
{ }i i i i I, ,k k1 1σ σ⊗ ⋯ ⊗ … ∈ gives global coordinates on H ( ) k ⊗ . In these coordinates i is just a
polynomial and hence smooth.

 is a smooth submanifold and since H( ) ( )   ⊆ ⊆ , i  is smooth. We prove that
i ∣ is injective. Note that a aiff · , 1k k kρ σ σ ρ= = =⊗ ⊗ . But then H, ( )σ ρ ∈ implies
a { 1, 1}∈ − and the positivity of both σ and ρ yields a = 1.

Finally, i ∣ is an immersion. To see this let ρ ∈ and v T ∈ ρ . Furthermore, let

H: ( 1, 1) ( )γ − → be a smooth curve with (0)γ ρ= and v(0)
t

d

d
γ = . First, observe that for

k = 2

i v
t

i
t

t
t t t

t
v v

d
d

d
( ) lim

( ) (0)

lim ( ( ) (0)) ( ) ( (0) ( )) (0)
.

t
t

t

0
0

2 2

0

γ γ γ

γ γ γ γ γ γ ρ ρ

= ◦ = −

= − ⊗ − − ⊗ = ⊗ + ⊗

ρ =
→

⊗ ⊗

→

This inductively generalizes to arbitrary k ∈ and we get

i v vd .
i

k
i k i

1

1∑ρ ρ= ⊗ ⊗ρ
=

⊗ − ⊗ −
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This is zero if and only if v = 0, what can be easily seen by orthogonally decomposing v with
respect to ρ.

Finally, since i  is smooth, injective and an immersion, it is a smooth embedding by the
compactness of ( )  ⊆ . □

Remark. Note that the proof shows that i H ( ) {0} − is an immersion.

A.4. Proof of lemma 3.13

In this lemma we prove that, for a submanifold ( )  ⊆ , every smooth embedding

: mψ → can be approximated by a polynomial map F H: ( ) d m
0

12
   + ≃ →− . Let

us first state lemma 1.3 of [31].

Lemma A.1. [31] Let U n⊆ be open and W U⊆ be open with compact closure W U⊆ .
Let f U: n→ be a smooth embedding. There exists 0ϵ > such that if g U: n→ is
smooth and

D g x D f x and g x f x( ) ( ) ( ) ( )2 2ϵ ϵ∥ − ∥ < ∥ − ∥ <α α

for all x W∈ , 1α∣ ∣ = , then g W∣ is an embedding.

Now we give the proof of lemma 3.13.

Proof. Note that ˜ ψ ψ′ = ′ is smooth because it is a restriction of smooth functions to a
smooth submanifold. ψ can be extended to a compactly supported smooth map ψ̃ on

H ( ) n
0

12
  + ≃ − and let K n 12

⊆ − be a compact set containing supp ψ̃ . In the following
we make use of an approximation result given by theorem 1 in [32]. The relevant part for us is
that for every 0η > , there is a k ∈ such that ψ̃ and dψ̃ can be approximated simultaneously
by a map p p p P˜ ( , , ), ( )i i

k n n
1

1ψ′ = … ∈ ⩽ × − , i.e x xsup ˜ ( ) ˜ ( )x K 2ψ ψ η∥ − ′ ∥ <∈ and
d v d vsup ˜ ( ) ˜ ( )x v TK v x x( , ) , 1 2

ψ ψ η∥ − ′ ∥ <∈ ∥ ∥⩽ .

Let W{( , )}i i i Iϕ ∈ be a finite atlas on  and let B r B r W˜( ) ( ( ))i i i iϕ≔ ⊆ be the image of an

open ball of radius ri around the origin such that B r˜( 2)i I i ⋃ =∈ and B r W˜( )i i⊆ . Applying
lemma 1.3 of [31] to iψ ϕ◦ , W( )i

1ϕ− and B r( )i , we obtain for each i I∈ an 0iϵ > such that
for all ψ ′ with D Dsup ( ) ( )B r i i i( ) 2i

ψ ϕ ψ ϕ ϵ∥ ◦ − ′ ◦ ∥ <α α , 1α∣ ∣ ⩽ , B r˜( )iψ ′ ∣ is an embedding.
For 1α∣ ∣ = , we have

( )

( )

( ) ( )

( )

D x D x

D x

v D

v D

sup ( ) ( )

sup d d ( )

sup d d sup

sup d ˜ d ˜ sup .

x B r
i i

x B r
x x i

x v TB r v
x x

B r
i

x v TK v
x x

B r
i

( )
2

( )
( ) ( ) 2

( , ) ˜( ), 1
2

( )
2

( , ) , 1 2 ( )
2

i

i

i i

i

ψ ϕ ψ ϕ

ψ ψ ϕ

ψ ψ ϕ

ψ ψ ϕ

∥ ◦ − ′ ◦ ∥

= ∥ − ′ ◦ ∥

⩽ ∥ − ′ ∥ ∥ ∥

⩽ ∥ − ′ ∥ ∥ ∥

α α

ϕ ϕ α

α

α

∈

∈

∈ ∥ ∥⩽

∈ ∥ ∥⩽

For 1α∣ ∣ = , let Dsupi i B r i, ( ) 2i
κ ϵ ϕ≔ ∥ ∥α α and let min { , }i i i, 1 ,ϵ ϵ κ≔ α α∣ ∣= . Then, for

every ψ̃′ with x xsup ˜ ( ) ˜ ( )x K 2ψ ψ ϵ∥ − ′ ∥ <∈ and d v d vsup ˜ ( ) ˜ ( )x v TK v x x( , ) , 1 2
ψ ψ ϵ∥ − ′ ∥ <∈ ∥ ∥⩽ ,

˜ B r˜( )iψ′ is an embedding for all i I∈ and by theorem 1 of [32] such a ψ̃′ exists for some k ∈ .
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Finally we show that there is an 0ϵ ⩾ such that for every ψ̃′ with D D˜ ˜ψ ψ ϵ∥ − ′∥ <α α ,
ψ ′ ∣ is injective. Then ψ ′ is both an immersion and injective and thus a smooth embedding

by the compactness of  .
B r B r˜( ) ˜( )i

c
i≔ − and B r˜( 2)i are closed and therefore compact as closed subsets of a

compact set. Then, by the continuity of the norm, p qmin ( ) ( )i q B r p B r˜( ) , ˜( 2)i
c

iη ψ ψ≔ ∥ − ∥∈ ∈

exists and it is bigger than 0 because ψ is injective and B r B r˜( ) ˜( 2)i
c

i∩ = ∅. By possibly

shrinking ϵ, make sure that
1

4
mini I iϵ η⩽ ∈ .

Assume p q( ) ( )ψ ψ′ = ′ , p q, ∈ . Since ψ ′ ∣ is an embedding around p, there is an
i I∈ such that p B r˜( 2)i∈ and p B r˜( )i

c∈ . Thus

p q p q p p q q

p q p p q q

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )

4 2 0,

2 2

2 2

ψ ψ ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ϵ ϵ

∥ ′ − ′ ∥ = ∥ − + ′ − + − ′ ∥
⩾ ∥ − ∥ − ∥ ′ − + − ′ ∥

⩾ − >
a contradiction. □

A direct consequence of this proof is the following corollary, which was used in the third
section.

Corollary A.2. Let ( )  ⊆ be a submanifold and let L H: ( ) m → be a linear map
such that L ∣ is a smooth embedding. Then, there is an 0ϵ > such that for every linear map
L H: ( ) m′ → with L L vsup ( )v H v( ), 1 2 ϵ∥ − ′ ∥ <∈ ∥ ∥⩽ , L ′ ∣ is a smooth embedding.

Proof. Let K H ( )⊆ be a compact set containing  . Furthermore let b H H: ( ) ( ) →
be a smooth and compactly supported bump function which equals the identity on K.
Then, the proof of 3.13 shows that there is an 0η > such that for every smooth
map H: ( ) mψ → with x L b xsup ( ) ( )( )x K 2ψ ϵ∥ − ◦ ∥ <∈ and sup x v TK v( , ) , 1∈ ∥ ∥⩽

v d L b vd ( ) ( ) ( )x x 2
ψ η∥ − ◦ ∥ < , ψ ∣ is a smooth embedding. But for ψ linear we find

v d L b v

v L v

v L v

sup d ( ) ( ) ( )

sup ( ) ( )

sup ( ) ( )

x v TK v
x x

x v TK v

v H v

( , ) , 1
2

( , ) , 1
2

( ), 1
2

ψ

ψ

ψ

∥ − ◦ ∥

= ∥ − ∥

= ∥ − ∥

∈ ∥ ∥⩽

∈ ∥ ∥⩽

∈ ∥ ∥⩽

and

x L b x

x v L v

sup ( ) ( )( )

sup sup ( ) ( ) .
x K

x K v H v

2

( ), 1
2

ψ

ψ

∥ − ◦ ∥

⩽ ∥ ∥ ∥ − ∥
∈

∈ ∈ ∥ ∥⩽

Thus, the claim holds for xsup 0x Kϵ η≔ ∥ ∥ >∈ . □

A.5. Proof of proposition 4.6

In order to prove 4.6, let us first fix some notation. Let X be an oriented smooth compact
manifold and K X( ) be the K-ring of X, i.e. the ring of equivalence classes of complex vector
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bundles on X, where E E∼ ′ if E n E m+ ≃ ′ + (an introductory text on this topic is e.g.
[33])12. Let p X p TX H X( ) ( ) ( , )i i

i2 ≔ ∈ be the image of ith rational Pontryagin class

evaluated on the tangent bundle TX. Furthermore, let A p pˆ ( , , )n1 … be the Â-genus, i.e. the

genus associated to the power series
z

sinh z

2

( 2)
[34]13. Let K X H Xch: ( ) *( , )→ be the

Chern class and let X K X H Xch( ) ch( ( )) *( , )≔ ⊆ . For z z H X*( , )
i

i
0

2 ∑≔ ∈
=

∞
, with

z H X( , )j
i

2
2 ∈ , let z z tt

i
i j( )

0
2∑≔

=

∞
for t ∈ . Note that yz y z( ) t t t( ) ( ) ( )= .

For z Xch( )∈ , d H X( , )2 ∈ , t ∈ we define the Hilbert polynomial in t to be
H t z e A p X X( ) ( ˆ ( ( )))[ ]X z d

t d
, ,

2≔ , where X[ ] is the fundamental class of X [35, 36]. Further-
more for q ∈ let q q( ) exponent of 2 as primefactor of2ν ≔ . The result of Walgenbach
in [21] is based on the result of Mayer in [37].

Theorem A.3. [37] Let X be a n2 -dimensional compact oriented smooth manifold and H be
the Hilbert polynomial associated with d H X Z( ; )2∈ and z Xch( )∈ .

Then X cannot be immersed in Euclidean space of dimension H2 ( ( )) 12
1

2
ν− − and

cannot be embedded in Euclidean space of dimension H2 ( ( ))2
1

2
ν− .

Walgenbach obtains his results by computing H ( )1

2
for some d H X Z( ; )2∈ and

z Xch( )∈ using combinatorical methods. With the following lemma, 4.6 follows directly by
observing that a b a b( · ) ( ) ( )2 2 2ν ν ν= + . Let X1, X2 be n2 -dimensional compact oriented
smooth manifolds and let X X X:i i1 2π × → , i 1, 2= , be the canonical projections.

Lemma A.4. For z Xch( )i i∈ , d H X( , )i i
2 ∈ and X X X[ ] ( )*[ ]i i 1 2π= × , i 1, 2= , let

z z z( ) ( )1
*

1 2
*

2π π≔ , d d d( ) ( )1
*

1 2
*

2π π≔ + . Then

H t H t H t( ) ( ) ( ).X X z d X z d X z d, , , , , ,1 2 1 1 1 2 2 2=×

Proof. First, note that z K X X( )1 2∈ × , since

( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )

z z E E

E E E E

( ) ( ) ch ch

ch ch ch .

1
* 1 2

* 2 1
* 1 2

* 2

1
* 1 2

* 2 1
* 1 2

* 2

π π π π

π π π π

=

= = ⊕

Furthermore note that

)( )
( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

p X X p T X X p TX TX

p TX p TX p TX p TX .

1 2 1 2 1
* 1 2

* 2

1
* 1 2

* 2 1
* 1 2

* 2

π π

π π π π

× = × = ⊕

= =

This, together with the fact that all cohomology classes involved are even dimensional and
hence commute, yields

12 Here m denotes the m-dimensional trivial bundle.
13 This means that by construction the identitiy p E F p E p F( ) ( ) ( )⊕ = of the total rational Pontryagin class
transfers to the Â-genus.
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A.6. Proof of proposition 4.8

Let X be a smooth compact n-manifold with tangent bundle TX . Let X: n kϕ → + be an
immersion and let NX be the normal bundle, i.e. TX NX n k⊕ ≃ + . Furthermore let ω be the
total Stiefel–Whitney class. Let us state the following well-known result.

Proposition A.5. [25] Let i be the degree of X NX H X( ) ( ) *( , )2ω ω= ∈ . Then X cannot
be immersed in Euclidean space of dimension n i+ and cannot be embedded in Euclidean
space of dimension n i 1+ + .

In order to use this result, we need to compute PW( )n k,ω . The following is similar to
[24], where the dual Stiefel–Whitney class of the real projective Stiefel manifolds is com-
puted. Let L be the complex line bundle associated to theU (1)-principal bundleW PWn k n k, ,→
and let x be the mod 2 Euler class of L14. In [38], the cohomology ring H PW*( , )n k, 2 for
k n< is found to be

( )x x y y[ ] ( ,..., ),N
n k n2 1 Λ⊕ − +

with y H PW( , )i
i

n k
2 1

, 2∈ − . It is shown in [27], that TPWn k, is stably isomorphic to nkL*,

where L* is regarded as a real vector bundle. Hence TPW L( ) ( *)n k
nk

,ω ω= and we obtain

( )( ) ( )NPW TPW L* .n k n k

nk

, ,ω ω ω= =
−

Since the odd Stiefel–Whitney classes of complex vector bundles (regarded as real vector
bundles) vanish [33], and the Euler class is mapped to the top Stiefel-Whitney class under the
coefficient homomorphism H PW H PW*( , ) *( , )n k n k, , 2 → [33], we get L L( ) ( *)ω ω= =

x1 + . Thus

( )NPW x

nk j

j
x

(1 )

( 1)
1

.

n k
nk

i

j j

,

1

⎛
⎝⎜

⎞
⎠⎟∑

ω = +

= − + −

−

=

∞

We now want to find
m k( , )γ = the biggest j such that the coefficient of x j does not vanish in x x[ ] ( ).N

2

14 I.e. the image of the Euler class of L under the coefficient homomorphism H PW H PW*( , ) *( , ).n k n k, , 2 →
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Since we factor over the ideal generated by xN , we clearly have j N n k( , )⩽ . Passing to
mod 2, we get m k n k2 ( , ) ( , )γ σ= . This proves 4.8.
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Constrained Quantum Tomography of Semi-Algebraic Sets
with Applications to Low-Rank Matrix Recovery

M. Kech and M. Wolf August 24, 2016

Quantum state tomography is considered in the scenario where both the set of relevant
quantum states and the set of admissible measurement schemes are constrained by
algebraic equalities and inequalities. Upper bounds on the minimal number of von
Neumann measurements needed to discriminate any two states of a given subset of the
state space are provided.

Similar results are obtained if the tomography scheme consists of determining ex-
pectation values of local observables.

1 Main Result

Let POVMm
H be the set of POVMs on H with m outcomes and let

POVM1,m
H := {P ∈ POVMm

H | ∀i ∈ {1, . . . ,m} : rankP ({i}) = 1} ⊆ POVMm
H

be the set of rank one POVMs with m outcomes. Furthermore, let R ⊆ S(H) be
a subset and let ∆(R) := {λ(% − %′)| %, %′ ∈ R, λ > 0}. A semi-algebraic subset
D ⊆ H(H) \ {0} is said to represent ∆(R) iff the following condition holds: If there
exists a measurment scheme M ∈MSH such that KerDM ∩∆(R) \ {0} is non-empty,
then so is KerDM ∩ D.

Theorem 1 (Universality). Let R ⊆ S(H) be a subset and let D ⊆ H(H) be a
semi-algebraic subset that represents ∆(R). If k(m − 1) > dimD, then almost all

measurement schemes M ∈
∏k

i=1 POVM
1,m
H are stably R-complete.

The proof of this theorem is inspired by the approach taken in [1]. In principle, the
argument is close to the proof of the Whitney embedding theorem given in Chapter
2 of the present dissertation. Proving that the dimension argument remains valid
when restricting to rank one POVMs is the main technical step and strongly relies on
the dimension theory of real algebraic geometry. Naturally, from this result one can
straightforwardly prove a Whitney type embedding result.

Corollary 2 (Whitney). Let R ⊆ S(H) be a semi-algebraic subset. If k(m − 1) >

2 dimR, then almost all measurement schemes M ∈
∏k

i=1 POVM
1,m
H are stably R-

complete.

2 Application

Theorem 1 can be straightforwardly applied to quantum states of bounded rank and
yields the following result:



Theorem 3 (States of rank at most r). If k(m − 1) > 4r(n − r), then almost all

measurement schemes M ∈
∏k

i=1 POVM
1,m
H are stably Sr(H)-complete.

The following special case of this result might be of particular interest.

Corollary 4 (States of rank at most r). If k(n − 1) > 4r(n − r), then almost all

collections of k von Neumann measurements M ∈
∏k

i=1 POVM
1,n
H are stably Sr(H)-

complete.

For r = 1 this reproduces the main result of [2]. Corollary 4 yields an upper bound
on the minimal number of von Neumann measurements needed to discriminate any
two quantum states of rank at most r and the non-immersion results of [3] show that
this bound is indeed tight for dimensions greater than four.

3 Legal statement

The project was assigned by Prof. Michael Wolf. I am the principal author of this
article and I was significantly involved in all parts of this article.
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We analyse quantum state tomography in scenarios where measurements and states are
both constrained. States are assumed to live in a semi-algebraic subset of state space and
measurements are supposed to be rank-one POVMs, possibly with additional constraints.
Specifically, we consider sets of von Neumann measurements and sets of local observables.
We provide upper bounds on the minimal number of measurement settings or outcomes that
are required for discriminating all states within the given set. The bounds exploit tools from
real algebraic geometry and lead to generic results that do not only show the existence of
good measurements but guarantee that almost all measurements with the same dimension
characteristic perform equally well.
In particular, we show that on an n-dimensional Hilbert space any two states of a semi-

algebraic subset can be discriminated by k generic von Neumann measurements if k(n− 1)
is larger than twice the dimension of the subset. In case the subset is given by states of
rank at most r, we show that k generic von Neumann measurements suffice to discriminate
any two states provided that k(n− 1) > 4r(n− r)− 2. We obtain corresponding results for
low-rank matrix recovery of hermitian matrices in the scenario where the linear measurement
mapping is induced by tight frames.
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I. INTRODUCTION

Let us note in the beginning that the reader mainly interested in low-rank matrix
recovery can find our corresponding results in Section IV. There we find linear measurement
mappings induced by tight frames that can discriminate any two matrices of rank at most
r.

Quantum state tomography, which aims at identifying quantum states from the out-
comes of an experiment, is a central task in quantum information science. Full state
tomography is often challenging and sometimes infeasible. However, if there is some prior
information about the state under investigation, this can considerably simplify the prob-
lem: the number of measurement settings necessary to uniquely identify a given state can
significantly decrease if the state is not arbitrary but is known to lie on a confined subset
of state space.

Using topological properties of the measurement map and the constrained set, lower
bounds on the minimal number of measurement settings necessary to discriminate any two
pure states were obtained in [1]. Relating these topological features of the measurement
map to stability properties, it was shown in [2] that under the premise of stability the
approach of [1] can be generally applied. Using this result, lower bounds on the necessary
number of measurement settings for several other subsets were obtained in [2].

The present paper deals with the issue of finding upper bounds: given a subset of state
space, find a measurement scheme that can discriminate any two states of this subset with
as few measurement settings as possible. This appears to be a rather hard problem in
general. Already in the case of pure state quantum tomography it has received significant
attention in topology [3, 4], quantum information science [1, 5–9, 9–14] and sampling theory
[15–18].

In addition to constraining the set of states, we also restrict the set of measurements
in order to capture the fact that arbitrary measurements may not be feasible in an ex-
periment. The imposed constraints could for example be the restriction to von Neumann
measurements or to local measurements when dealing with a multipartite system. The case
of pure state tomography with von Neumann measurements was addressed in [11, 19, 20].
In [11, 19] it was shown that any two pure states can be discriminated by merely 4 von
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Neumann measurements. This is known to be sharp for pure states of an n-dimensional
Hilbert space if n > 4 and [20] has a special focus on the cases n ≤ 4. The more gen-
eral setting of low-rank matrix recovery with restricted measurements was considered in
[21]. However, their focus is to determine the asymptotic behaviour, and this allows us to
improve on some of their results.

We propose a method that can deal with these problems rather generally and we then
apply it to different scenarios.

In this paper we neither consider the statistical aspects of quantum tomography nor
the algorithmic problem of reconstructing the state from the measurement data.

Outline. In Section II we fix notation, introduce measurement schemes that are relevant
in the following and give some preliminary results about hermitian matrices of bounded
rank. Furthermore, we illustrate the connection between phase retrieval and quantum
tomography.

In Section III, we propose a method to find sets of measurements that can discriminate
any two states of a given subset of the state space, generalizing the approach taken in [15] to
find frames for the phase retrieval problem. The method can be applied to all semi-algebraic
subsets and it can naturally deal with constrained measurement like e.g. von Neumann
measurements. Rather than giving explicit constructions, the method asserts that almost
all sets of measurement that fulfil certain constraints allow for a unique identification.

In Section IV, we apply this procedure to low-rank matrix recovery, showing that a
generic frame with m > 4r(n − r) frame vectors can discriminate any two hermitian
matrices of rank at most r. This generalizes [16] where the case r = 1 was considered. In
addition we shown that the statement also holds when restricting to tight frames.

In Section V, we prove that under a further condition the sets of measurements obtained
by the method introduced in Section III fulfil the stability property introduced in [2]. In
the scenarios where the method is feasible this condition is satisfied and therefore the
stability property holds rather generally.

In Section VI, we present the main result of this paper. Loosely speaking, it asserts that
one can perform tomography on all semi-algebraic subsets of the state space by measuring
sets of positive operator valued measures that consist exclusively of rank one operators,
in particular von Neumann measurements. From this result we straightforwardly obtain
Whitney type embedding results for these measurement schemes. Furthermore, we consider
the problem of discriminating states of bounded rank: In [1, 2] lower bounds on the number
of measurement outcomes necessary to uniquely identify quantum states with bounded
rank were established and these lower bounds turned out to be close to the upper bounds
obtained in [1] where it was shown that 4r(n−r) measurement outcomes suffice in order to
identify states of an n-dimensional system with rank at most r. However, the measurement
that does realize this upper bound has a rather complicated structure. We prove that the
same upper bounds as in [1] can be realized when measuring a positive operator valued
measure which exclusively consist of rank one operators and we prove similar results for
measuring sets of von Neumann measurements. Note that our results come with less
measurement outcomes than the compressed sensing approach of [10], however we do not
provide a tractable reconstruction procedure.

Section VII deals with the problem of reconstructing states of multipartite systems from
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the expectation values of local observables. Just like in Section V, we first give a theorem
stating that one can do tomography on all semi-algebraic subsets of the state-space by
performing measurements of this type. Then we obtain Whitney type embedding results
and also for the problem of identifying states of bounded rank we obtain corresponding
results.

In Section VIII, proofs of technical results are given.
Most of our results assert that almost all measurements have a certain property. In the

appendix we present the measure with respect to which this is true.

II. PRELIMINARIES

Throughout H denotes a finite-dimensional complex Hilbert space. H(H) denotes the
real vector space of hermitian operators1 on H and S(H) denotes the set of quantum states
on H, i.e. S(H) = {% ∈ H(H) : % ≥ 0, tr(%) = 1}. We regard H(H) as an inner product
space, equipping it with the Hilbert-Schmidt inner product. The Hilbert Schmidt norm is
denoted by ‖ · ‖2. By SH(H) := {X ∈ H(H) : ‖X‖22 = tr(X2) = 1} we denote the unit
sphere in H(H). Furthermore, for a subset A ⊆ H(H), ∆(A) denotes the set of differences
of operators in A, i.e. ∆(A) = {X − Y : X,Y ∈ A}. M(m,n,C) (M(m,n,R)) denotes
the set of complex (real) m × n matrices and we write M(n,C) (M(n,R)) as shorthand
for M(n, n,C) (M(n, n,R)).

In the following, measurements are modelled by linear mappings form the set of her-
mitian operators (respectively hermitian matrices) to Rm, where m is the number of mea-
surement outcomes.

Definition II.1. (Measurement map.) A linear mapping h : H(H) → Rm is called a
measurement map. The number of outcomes of h is m.

(Constrained) Measurements in Quantum Mechanics

In this section we focus on the specific measurement maps that typically arise in quan-
tum mechanics. In quantum mechanics positive operator valued measures (POVMs) are
used to describe general measurements [22, 23]. For the purpose of this paper a POVM on
H is a tuple P = (Q1, ..., Qm) of positive semidefinite operators on H such that

m∑
i=1

Qi = 1H.

An element of P is called an effect operator. We define the dimension of P by dimP := |P |.
A whole measurement scheme might consist of measuring more than one POVM.

Definition II.2. A measurement scheme on H is a tuple M = (P1, ..., Pk) of POVMs on
H. We define the dimension of M by dimM := dimP1 + ...+ dimPk.

1 We denote the adjoint of a linear operator B : H1 → H2 by B†.
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A POVM P can be identified with the measurement scheme that just contains P . In the
following we sometimes make use of this identification and regard POVMs as measurement
schemes.

A POVM P = (Q1, ..., Qm) induces a measurement map

hP : H(H)→ Rm

X 7→
(
tr(Q1X), ..., tr(QmX)

)
.

Similarly a measurement scheme M = (P1, ..., Pk) induces a measurement map

hM : H(H)→ R|P1|+...+|Pk|

X 7→
(
hP1(X), ..., hPk(X)

)
.

Definition II.3. A measurement scheme M is called R-complete for a subset R ⊆ S(H)
if hM |R is injective.

Our main results are statements about rank one POVMs and von Neumann measure-
ments, so let us define these terms: A POVM P is called rank one POVM if all effect
operators are of rank one. We denote the set of m-dimensional rank one POVMs on H
by Mm

1 (H). In the following we implicitly assume that m ≥ dimH because otherwise
Mm

1 (H) would be empty.
Later on we often use the following correspondence between linear isometries and

Mm
1 (Cn): The equations

M †M = 1n, M ∈M(m,n,C),

can be considered as real algebraic equations under the identification M(m,n,C) ' R2nm.
The solution set U(m,n) is the set of linear isometries U : Cn → Cm. Note that U(m,n)
is non-empty if and only if m ≥ n and that for n = m it is the set of unitaries. We write
U(n) as shorthand for U(n, n).

Let {ei}i∈{1,...,m} be the standard basis of Cm. Then, the sought correspondence is
given by the map

φ : U(m,n)→Mm
1 (Cn)

U 7→ (U †e1e
†
1U, ..., U

†e1e
†
1U).

(1)

If the effect operators of a POVM are projections on mutually orthogonal subspaces,
the POVM is called von Neumann measurement. In this paper, we just deal with rank
one von Neumann measurements and therefore, in the following, the term von Neumann
measurement always refers to rank one von Neumann measurements. Note, that the set
of rank one von Neumann measurements is precisely the set of (dimH)-dimensional rank
one POVMs.

The measurement scheme consisting of k m-dimensional rank one POVMs on H is
denoted byMm

1,k(H), i.e.

Mm
1,k(H) = {(P 1, ..., P k) : P i ∈Mm

1 (H)}.

For m = dimH this is the set of k rank one von Neumann measurements which, we denote
byMk

vN(H).
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Hermitian Matrices of Bounded Rank

In this section we prove a lemma about hermitian operators with bounded rank, which
is frequently used in the following. Denote by Pr(H) the set of hermitian operators on H
with rank at most r, i.e. Pr(H) := {X ∈ H(H) : rank(X) ≤ r}. We write Pnr as shorthand
for Pr(Cn).

Lemma II.1. Pnr is a real algebraic set of dimension r(2n− r).

Proof. First note that Pnr is a real algebraic set: It is given by the set of pointsX ∈M(n,C)
for which all (r+1)×(r+1)-minors vanish and that satisfy X = X†. These conditions turn
into a set of real algebraic equations under the canonical identification M(n,C) ' R2n2 .

To determine the dimension of Pnr consider the semi-algebraic set V n
r = {(P1, ..., Pr) :

Pi ∈ Pn1 , tr(PiPj) = δij , Pi ≥ 0} 2. The dimension of V n
r is given by r(2n − r) − r.

To see this, consider the smooth and transitive action of U(n) on the complex matrices
M(n,C) given by (U,M) → (U,UMU †) and let VD be the orbit of the diagonal matrix
D := diag(r, r − 1, ..., 1, 0, ...) under this action. Noting that the stabilizer subgroup of D
is U(n−r)×U(1)r we obtain VD ' U(n)/(U(n−r)×U(1)r) by Theorem 3.62 of [24]. But
the semi-algebraic map ψ : V n

r → VD, (P1, ..., Pr) 7→
∑r

j=1 jPj is clearly bijective. Hence
we find dimV n

r = dim(U(n)/(U(n− r)× U(1)r)) = n2 − (n− r)2 − r = r(2n− r)− r by
Theorem 2.8.8 and Proposition 2.8.14 of [25].

The semi-algebraic map

η : Rr × V n
r → Pnr

(λ1, ..., λr, P1, ..., Pr) 7→
r∑
i=1

λiPi.
(2)

is clearly surjective. By Theorem 2.8.8 of [25], we hence conclude that dimPnr ≤ dimV n
r +

r = r(2n−r) and furthermore that indeed dimPnr = r(2n−r) by noting that φ is injective
if we require λ1 > ... > λr > 0.

Corollary II.2. The set D1 := {X ∈ Pnr : tr(X2) = 2} is a real algebraic set of dimension
r(2n− r)− 1 and the set D2 := {X ∈ Pnr : tr(X2) = 2, tr(X) = 0} is a real algebraic set
of dimension r(2n− r)− 2.

Proof. From the proof of Lemma II.1 it is immediate that both D1 and D2 are real algebraic
sets. To determine the dimension of D1, one can go along the lines of the proof of Lemma
II.1 and simply replace Rn by the unit sphere Sn−1 in the definition of the mapping η.
Similarly, to determine the dimension D2, one can go along the lines of the proof of Lemma
II.1 and this time replace Rn by {x ∈ Sn−1 :

∑n
i=1 xi = 0} in the definition of the mapping

η.

2 A hermitian matrix is positive semidefinite if and only if all of its principal minors are greater than of
equal to zero. Thus, the equations Pi ≥ 0 can be regarded as algebraic inequalities.
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Frames and Rank One POVMs

Finally, we discuss the connection between pure state tomography and the phase re-
trieval problem in sampling theory. A finite set F = {v1, ..., vm} of vectors in Cn is called
a frame if there exist constants a, b > 0 such that

a‖x‖22 ≤
m∑
i=1

|〈x, vi〉|2 ≤ b‖x‖22 for all x ∈ Cn. (3)

A frame F = {v1, ..., vm} induces a measurement map

MF : Cn/∼ → Rm

[x] 7→ (|〈v1, x〉|2, ..., |〈vm, x〉|2)

where x ∼ y iff there is a λ ∈ R such that x = eiλy 3. Since the task in phase retrieval is
to reconstruct signals modulo phase from intensity measurements, one considers frames F
such that MF is injective.

Each frame F = {v1, ..., vm} induces a map

hF : H(Cn)→ Rm

X → (tr(Xv1v
†
1), ..., tr(Xvmv

†
m)).

(4)

Noting that hF (xx†) = MF (x), we conclude that hPF |Pn1 is injective if and only if MF is
injective.

A corollary of one of our main results is a statement about tight frames, so let us
define this term. A frame F is called tight frame if a = b in inequality (3). If in addition
a = b = 1, F is called tight frame.

The following proposition shows the well-know fact that tight frames correspond to
rank one POVMs.

Proposition II.3. Let F be a tight frame. Then the associated set of rank one operators
PF is a POVM.

Proof. Let F = {v1, ..., vm}. Since F is a tight frame, we obtain the following equality
from inequality (3):

m∑
i=1

|〈vi, x〉|2 = ‖x‖22.

This can be rewritten as
m∑
i=1

|〈vi, x〉|2 = tr(xx†
m∑
i=1

viv
†
i ) = ‖x‖2.

3 Note that MF is also well-defined for F = {v1, ..., vm} with vi ∈ Cn, i.e. if we do not require F to be a
frame.
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But since this holds for all x ∈ Cn we conclude that
∑m

i=1 viv
†
i = 1Cn : Assume

∑m
i=1 viv

†
i 6=

1Cn . Since
∑m

i=1 viv
†
i is hermitian there has to be an eigenvector w of

∑m
i=1 viv

†
i with

eigenvalue λ 6= 1. But then w†
∑m

i=1 viv
†
iw = λ‖w‖22 6= ‖w‖22, a contradiction.

Remark Note that the correspondence is given by the map φ defined in equation (1)
where the frame vectors are given by the rows of the isometry.

Let P be a POVM. In pure state tomography, not hP |Pn1 is required to be injective, but
hP |Sn1 where Sn1 := {% ∈ S(Cn) : %2 = %} is the set of pure states. However, by the
definition of a POVM, 1n ∈ P and this implies that if hP |Sn1 is injective, also hP |Pn1 is
injective. From this point of view, pure state quantum tomography with rank one POVMs
is equivalent to phase retrieval with tight frames.

III. THE BASIC IDEA

Let us begin by explaining the basic idea of the method we utilize to find one-to-one
measurement schemes which originates from the approach taken in [15] to find frames for
the phase retrieval problem.

The method essentially relies on the following observation: A measurement scheme
P := ((Q1

1, ..., Q
1
m), ..., (Qk1, ..., Q

k
m)) is R-complete with respect to a subset R ⊆ S(H) if

and only if the equations

tr(QjiX) = 0, i ∈ {1, ...,m− 1}, j ∈ {1, ..., k} (5)

have no solution for X ∈ ∆(R)− {0}.
For a given subset R ⊆ S(H), we want to characterize non-injective measurement

schemes via the equations (5) and use the dimension theory of semi-algebraic sets to show
that these have measure zero. Therefore, we consider measurement schemes that are con-
strained by real algebraic equalities or inequalities. In the following, the set of measurement
schemes is a semi-algebraic setM such that for all M ∈M we have dimP = m,∀P ∈M
and |M | = k where m, k ∈ N are some fixed numbers. For example, if k = 1, this could
be the restriction to the set of m-dimensional rank one POVMsMm

1 (H). Furthermore, in
order to ensure that the equations (5) in fact become real algebraic equations, we have to
replace ∆(R) − {0} by a suitable semi-algebraic set. We do this by constructing a semi-
algebraic set D ⊆ H(H)4 with the following property: If there is a measurement scheme
M and an X ∈ ∆(R)− {0} with

hM (X) = 0 (6)

then there exists X ′ ∈ D with

hM (X ′) = 0. (7)

4 Here we identify H(H) with (dimH)2-dimensional real affine space.
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If a semi-algebraic set D ⊆ H(H) with 0 /∈ D has this property, we say that D represents
∆(R)− {0}.

The solution set of the equations (7) characterizes the non-injective measurement
schemes: Let M̃ be the real semi-algebraic set obtained from M× D by imposing the
equations (7). By construction of D, the non-injective measurement schemes are con-
tained in the projection of M̃ ⊆ M×D on the first factor with the canonical projection
π1 : M× D → M. But if dimM̃ < dimM, we also have dimπ1(M̃) < dimM 5 and
thus the non-injective measurement schemes have measure zero in M. Here we used the
well-know fact that, for a suitably chosen measure, the measure of a semi-algebraic subset
S of a semi-algebraic set A has measure zero in A if dimA > dimS. For more details on
the measure see Appendix A.

This approach is most efficient if the equations (7) are transversal to M×D. In this
case dimM̃ < dimM is equivalent to k(m− 1) > dimD and thus the quality of our result
is determined by how low-dimensional we can choose the semi-algebraic set D.

IV. LOW-RANK MATRIX RECOVERY WITH FRAMES

To illustrate how this procedure works, let us consider the problem of low-rank matrix
recovery with frames. We show that any two hermitian matrices of rank at most r can be
discriminated from a generic frame with m ≥ 4r(n− r) frame vectors. The proof we give
is inspired by the proof of Theorem 3.1 in [15]. Let r ∈ {1, . . . , [n/2]}6.

Theorem IV.1. (Low-Rank Matrix Recovery with Frames.) Let m ≥ 4r(n − r). For
almost all frames F = {v1, .., vm} the map hF |Pnr is injective.

Proof. Let F = (v1, ..., vm), vi ∈ Cn, and consider the equations

v†iXvi = 0, i ∈ {1, ...,m}, (8)

in vi ∈ Cn, X ∈ ∆(Pnr ) − {0}. As explained above, these equations determine the subset
N of F ∈ Cnm ' R2nm for which hF |Pnr fails to be injective.

Note that ∆(Pnr ) − {0} = Pn2r − {0}. Consider the algebraic set D := {X ∈ Pn2r :
tr(X2) = 1} and note that we have dimD = 4r(n− r)− 1 by Corollary II.2. Furthermore,
D represents ∆(Pnr )− {0}: Clearly 0 /∈ D. Next, consider a measurement scheme M and
X ∈ Pn2r − {0} such that hM (X) = 0. But then there is X ′ := X

‖X‖2 ∈ D such that
hM (X ′) = 1

‖X‖2hM (X) = 0.
Under the identification Cnm ' R2nm the equations (8) are m equations on the real

algebraic set Cnm × D and next we prove that imposing these equations decreases the
dimension of Cnm × D by at least m: Note that it suffices to prove that imposing the
equation (8) on Cnm, for fixed X ∈ D, decreases the dimension by at least m. But for

5 π1 maps semi-algebraic sets to semi-algebraic sets and does not increase the dimension. See Theorem
2.2.1 and Proposition 2.8.6 of [25].

6 Here [x] :=largest integer i such that i ≤ x.
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fixed X ∈ D, the i-th equation of (8) just involves the variables of the i-th factor in (Cn)m.
Thus it suffices to prove that for given X ∈ D imposing the equation

p(v) := v†Xv = 0, v ∈ Cn, (9)

on Cn ' R2n decreases the dimension by at least one. But for given X ∈ D there is v ∈ Cn
such that p(v) = v†Xv = tr(Xvv†) 6= 0 because H(Cn) has a basis of rank one operators
and X 6= 0. Thus, (9) is a non-trivial algebraic equation on the irreducible algebraic set
Cn ' R2n. But this immediately implies that (9) does decrease the dimension 7.

Let M be the algebraic subset of Cnm × D obtained by imposing the equations (8)
and denote by π1 : Cnm × D → Cnm the canonical projection on the first factor. For
m > dimD = 4r(n − r) − 1, we find dimπ1(M) < dimCnm = 2nm since imposing the
equations (8) on Cnm decreases the dimension by at least m. Thus, we conclude that
π1(M) has Lebesgue measure zero 8 in Cnm. Hence, the subset of F ∈ Cnm for which
hF |Pnr is injective has full Lebesgue measure. Note, that the subset of frames in Cnm has
full Lebesgue measure for m ≥ n. Choosing the measure on the set of frames to be the
restriction of the Lebesgue measure, also the subset of frames for which MF is injective
has full measure.

For r = 1, this is the phase retrieval problem and in this case Theorem IV.1 reproduces
the main result of [16].

Corollary IV.2. Let m ≥ 4n− 4. For almost all frames F = {v1, .., vm} the map MF is
injective.

Proof. Let F = {v1, ..., vm}, vi ∈ Cn, and consider the equations

|〈vi, x〉|2 − |〈vi, y〉|2 = v†i (xx
† − yy†)vi = 0, i ∈ {1, ...,m},

in x, y, vi ∈ Cn where xx† − yy† 6= 0. These equations determine the subset N of F ∈
Cnm ' R2nm for which MF fails to be injective. It is easily seen that the equations

v†iXvi = 0, i ∈ {1, ...,m}, (10)

whereX ∈ ∆(Pn1 )−{0}, determine the same subsetN . But the equations (10) are precisely
the equations (8) for r = 1. Thus, the proof can be concluded by going along the lines of
the proof of Theorem IV.1.

A similar result holds true for tight frames.

Theorem IV.3. (Low-Rank Matrix Recovery with Tight Frames.) If k(m − 1) ≥ 4r(n −
r) − 1, then for almost all collections of tight frames F1, . . . , Fk, with |Fi| = m for all
i ∈ {1, . . . , k}, the mapping (hF1 , . . . , hFk)|Pr(Cn) is injective.

The proof of this Theorem relies on Lemma VI.1 which is our main technical result.
Therefore we relegate its proof to Section VIII.

7 Every proper algebraic subset of the irreducible algebraic set R2m has dimension less than 2m.
8 The Lebesgue measure on Rn is a rescaling of the n-dimensional Hausdorff-measure.
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V. STABILITY

The measurement schemes obtained by the method presented in Section III typically
come with a stability property. Let

M(n1, ..., nk) := {M := (P 1, ..., P k) : P i POVM with dimP i = ni}.

In this section we denoteM(n1, ..., nk) byM. We equipM with the topology induced by
the metric

d(M,M ′) := ‖hM − hM ′‖ = sup
X∈H(Cn)

‖hM (X)− hM ′(X)‖2
‖X‖2

where M,M ′ ∈M.

Definition V.1. Let R ⊆ S(Cn) be a subset. An R-complete measurement scheme
M ∈ M is stably R-complete if there exists a neighbourhood N of M such that every
measurement scheme M ′ ∈ N is R-complete.

Let R ⊆ S(Cn) be a subset and let D ⊆ S(Cn) be a semi-algebraic set that represents
∆(R)− {0}. Consider the semi-algebraic map

ψ : D → H(Cn)

X 7→ X

‖X‖2
.

(11)

By Proposition 2.2.7 and Theorem 2.8.8 of [25], D̃ := ψ(D) is semi-algebraic with dim D̃ ≤
dimD. Furthermore D̃ clearly represents ∆(R)− {0}.
Lemma V.1. If D̃ is closed, every R-complete measurement scheme M ∈ M is stably
R-complete.

Proof. Note that D̃ ⊆ SH(Cn). SH(Cn) is compact and thus D̃ is compact being a closed
subset of a compact set. By the continuity of the induced map hM and compactness of D̃,
κ := minX∈D̃ ‖hM (X)‖2 exists and κ > 0 since M is R-complete. Now let B(M,κ/2) :=
{M ′ ∈ M : supX∈SH(Cn) ‖hM (X) − h′M (X)‖2 < κ/2} and note that B(M,κ/2) is open.
But then

min
X∈D̃

‖hM ′(X)‖ ≥ min
X∈D̃

‖hM (X)‖| − min
X∈D̃

‖hM ′(X)− hM (X)‖

≥ min
X∈D̃

‖hM (X)‖| −max
X∈D̃

‖hM ′(X)− hM (X)‖

≥ κ− max
X∈SH(Cn)

‖hM ′(X)− hM (X)‖

≥ κ− κ/2 = κ/2.

Thus all measurement schemes M ′ ∈ B(M,κ/2) are R-complete.

Remark Note that D̃ need not be closed for this lemma to apply: In the situations
presented in the following the conclusions solely depend on the dimension of D̃. By Propo-
sition 2.8.2 of [25] the dimension of D̃ coincides with the dimension of its closure D̃ in
the norm topology on H(Cn). Furthermore, by Proposition 2.2.2 of [25], the closure of a
semi-algebraic set is semi-algebraic. Thus D̃ represents ∆(R)− {0} and dim D̃ ≤ dimD.
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VI. QUANTUM TOMOGRAPHY WITH VON NEUMANN MEASUREMENTS

Universality of Rank One POVMs

The following lemma is the main technical result of this paper. It asserts that the
equations (7) are independent when restricting to rank one POVMs. More precisely let
H = Cn and denote by {ei}i∈{1,...,n} the standard basis of Cn.

For a fixed non-zero X ∈ H(Cn), consider the equations

pji (M1, . . . ,Mk) := tr(M †i eje
†
jMiX) = e†jMiXM

†
i ej = 0,

i ∈ {1, ..., k}, j ∈ {1, ...,m},

qjli (M1, . . . ,Mk) := e†jM
†
iMiel − δjl = 0,

i ∈ {1, ..., k}, j, l ∈ {1, ..., n},

(12)

in (M1, . . . ,Mk) ∈ Πk
i=1M(m,n,C). Under the canonical identification M(m,n,C) '

R2nm, these can be considered as real algebraic equations in the 2knm variables
(M1, ...,Mk).

Lemma VI.1. Let X ∈ H(Cn) with X 6= 0. Imposing the equations (12) on
Πk
i=1M(m,n,C) decreases the dimension by at least kn2 + k(m− 1).

Remark Regarding X ∈ D ⊆ H(Cn) as an variable, the equations (12) can be considered
as equations on

∏k
i=1M(m,n,C) × D. Then, Lemma VI.1 implies that imposing the

equations (12) on
∏k
i=1M(m,n,C)×D decreases the dimension by at least n2 + k(m− 1)

for every semi-algebraic set D ⊆ H(Cn) with 0 /∈ D.

Since the proof of this result is rather technical we relegate it to Section VIII. Lemma VI.1
allows us to prove the main theorem of this section.

Theorem VI.2. (Universality) For R ⊆ S(Cn) a subset, let D be a semi-algebraic set
that represents ∆(R) − {0}. If k(m − 1) > dimD, almost all measurement schemes M ∈
Mm

1,k(Cn) are stably R-complete.

Remark Note that Theorem VI.2 reduces the problem of finding an R-complete rank
one POVM for some subset R ⊆ S(H) to finding a semi-algebraic subset D ⊆ H(H)
which represents ∆(R) − {0} and in this sense Theorem VI.2 guarantees the universality
of rank one POVMs. Furthermore the quality of the result solely depends on the algebraic
dimension of D.

The proof of this result can be found in Section VIII.
From this Theorem we directly obtain a Whitney type embedding result for rank one

POVMs. Essentially, it is a direct consequence of the following lemma.

Lemma VI.3. Let R ⊆ S(H) be a semi-algebraic subset. Then dim(∆(R) − {0}) ≤
2 dimR.
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Proof. We can assume w.l.o.g that R is algebraic, because if not we can take its Zariski
closure 9. Let Diag(R×R) := {(X,Y ) ∈ R ×R : X = Y }. Noting that Diag(R×R) is
an algebraic set, D := (R×R)− Diag(R×R) is quasi-algebraic. But the semi-algebraic
map

φ : D → ∆(R)− {0}
(X1, X2) 7→ X1 −X2

is surjective, and thus dim(∆(R)− {0}) ≤ D = 2 dimR by Theorem 2.8.8 of [25].

Corollary VI.4. Let R ⊆ S(Cn) be a subset. If k(m− 1) > 2 dimR, almost all measure-
ment schemes M ∈Mm

1,k(Cn) are stably R-complete.

Proof. We can assume w.l.o.g. that R is algebraic because if not we can consider its
Zariski closure. By the proof of Lemma VI.3, ∆(R)−{0} is semi-algebraic and furthermore
dim(∆(R)− {0}) ≤ 2 dimR. Finally, Theorem VI.2 with D = ∆(R)− {0} concludes the
proof.

Two special cases of this Theorem may be of particular interest.

Corollary VI.5. Let R ⊆ S(Cn) be a subset. If k(n− 1) > 2 dimR, almost all tuples of
k von Neumann measurement M ∈Mk

vN (Cn) are R-complete.

Proof. This immediately follows from Corollary VI.4 for m = n.

Corollary VI.6. Let R ⊆ S(Cn) be a subset. If m − 1 > 2 dimR, almost all rank one
POVMs M ∈Mm

1 (Cn) are stably R-complete.

Proof. This immediately follows from Corollary VI.4 for k = 1.

Remark Effectively we have the bound m − 1 > max{2 dimR, n − 2} which is due to
the fact that a rank one POVM on Cn has to be at least n-dimensional. If we relax this
to merely requiring the POVM to be projective this shortcoming can be avoided, i.e. for
projective POVMs m − 1 = 2 dimR + 1 can be attained. This can be seen by modifying
the proof of Lemma VI.1.

Rank One POVMs for States of Bounded Rank and States of Fixed Spectrum

In this section we improve the Whitney type bounds of Corollary VI.4 for the cases in
which the subset R ⊆ S(H) is given by the states of bounded rank or the states of fixed
spectrum. The results we obtain in this section easily follow from theorem VI.2. Let us
note that all results of this section can be immediately transferred to measurement schemes
which fulfil a universality property analogous to theorem VI.2.

In the following, r ∈ {1, ..., [n/2]}. Denote by Sr(H) the states with rank at most r,
i.e. Sr(H) := {% ∈ S(H) : rank(%) ≤ r}. We write Snr as shorthand for Sr(Cn).

In analogy to the proof of Theorem IV.1, we first construct the set we use to represent
∆(Sr(H))− {0} and determine its dimension.

9 The algebraic dimension is invariant under taking the Zariski closure, see Proposition 2.8.2 of [25]
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Lemma VI.7. The set D := {X ∈ P2r(H) : tr(X) = 0, tr(X2) = 2} is an algebraic set
that represents ∆(Sr(H))− {0} and dimD = 4r(dimH− r)− 2.

Proof. Note that Sr(H) ⊆ Pr(H) and thus ∆(Sr(H)) ⊆ ∆(Pr(H)) = P2r(H). P2r(H)
is algebraic by Lemma II.1 and hence P2r(H) − {0} represents ∆(Sr(H)) − {0}. In fact
∆(Sr(H)) − {0} can be represented by a smaller set. Namely one can consider set D :=
{X ∈ P2r(H) : ‖X‖22 = tr(X2) = 1, tr(X) = 0}. Note that D is algebraic by Corollary
II.2 and that 0 /∈ D. The equation tr(X) = 0 just considers the fact that states have
unit trace. Next consider a measurement scheme M and X ∈ ∆(Sr(H)) − {0} such that
hM (X) = 0. Then, there is X ′ := X

‖X‖2 ∈ D such that hM (X ′) = 0. Hence D indeed
represents ∆(Sr(H))−{0}. Finally, by Corollary II.2, we have dim(D) = dim(P2r(H))−2 =
4r(n− r)− 2.

Theorem VI.8. If k(m − 1) ≥ 4r(n − r) − 1, almost all measurement schemes M ∈
Mm

1,k(Cn) are stably Snr -complete.

Proof. Using the set of Lemma VI.7 to represent ∆(R) − {0}, the result follows directly
form Theorem VI.2.

As explained in Section IV.A of [2], the lower bounds on the immersion dimension
of complex flag manifolds of [26] transfer to lower bounds on the dimension of Sr(H)-
complete POVMs. In addition, the discussion following this explanation suggests that the
upper bound on m we obtain here is close to optimal.

Next, let us state some corollaries of this theorem.

Corollary VI.9. If m(n − 1) ≥ 4r(n − r) − 1, almost all tuples of k von Neumann
measurements M ∈Mm

vN(Cn) are stably Snr -complete.

Proof. This follows from Theorem VI.8 for m = n.

For r = 1 this reproduces the main result of [11]. In Table I you can see how this result
compares to the lower bounds of [26] for some explicit scenarios.

Corollary VI.10. If m − 1 ≥ 4r(n − r) − 1, almost all rank one POVM P ∈ Mm
1 (Cn)

are stably Snr -complete.

Proof. This follows from VI.8 for k = 1.

Finally we consider states of fixed spectrum. Let s 10 be a spectrum on Cn and denote
by Sns ⊆ S(Cn) the states with spectrum s.

Corollary VI.11. Let s be a spectrum on Cn such that the highest multiplicity of an
eigenvalue in s is n − r. Then, if k(n − 1) ≥ 4r(n − r) − 1, almost all tuples of k von
Neumann measurements M ∈Mk

vN(Cn) are stably Sns -complete.

10 A spectrum on Cn is a multiset of n increasingly ordered positive real numbers that sum up to one. We
call the elements of s eigenvalues.
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l\k 2 3 4

5 6/7

6 6/7

7 7/7 9/10

8 7/7 9/10

9 7/8 9/10 12/12

10 7/8 10/10 12/13

TABLE I: Lower bounds on the minimal number of von Neumann measurements necessary to
discriminate any two quantum states of rank at most k from [26] for Sk+lk ./ Upper bounds on the
minimal number of von Neumann measurements necessary to discriminate any two quantum states
of rank at most k from Corollary VI.9 for Sk+lk .

Proof. This follows directly from Theorem VI.8 for m = n noting that ∆(Sns ) − {0} can
be represented by the set of Lemma VI.7 11.

Corollary VI.12. Let s be a spectrum on Cn such that the highest multiplicity of an
eigenvalue in s is n− r. Then, if m− 1 ≥ 4r(n− r)− 1, almost all POVMs P ∈Mm

1 (Cn)
are stably Sns -complete.

Proof. This follows directly from Theorem VI.8 for k = 1 noting that ∆(Sns )−{0} can be
represented by the set of Lemma VI.7.

VII. QUANTUM TOMOGRAPHY WITH LOCAL OBSERVABLES

In this section we address the problem of reconstructing states of multipartite systems
from the expectation values of local observables.

Let H =
⊗k

i=1Cni and let n :=
∏k
i=1 ni. We define the set Hloc(H) of local observables

on H by

Hloc(H) := {O1 ⊗ ...⊗Ok : Oi ∈ SH(Cni)} ⊆ H(H).

Just like a POVM, a tuple of observables O := (O1, ..., Om) ∈ H(H)m, induces a linear map
hO : H(H) → Rm, X 7→ (tr(O1X), ..., tr(OmX)) and hence Definition II.3 and Definition
V.1 naturally generalize to finite tuples of observables.

The following theorem is the analogue of Theorem VI.2 and it is the main result of this
section.

11 For more details see Lemma IV.3 of [2].
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Theorem VII.1. (Universality) For R ⊆ S(H) let D ⊆ H(H) be a semi-algebraic set that
represents ∆(R)− {0}. If m > dimD, almost all O ∈ Hloc(H)m are stably R-complete.

The proof of this Theorem is given in Section VIII.
Again, we directly obtain a Whitney type embedding result for subsets R ⊆ S(H) if

the measurement consists of determining expectation values of local observables.

Corollary VII.2. Let R ⊆ S(H) be a subset. If m > 2 dimR, almost all O ∈ Hloc(H)m

are stably R-complete.

Proof. We can assume w.l.o.g. that R is algebraic because if not we can consider its Zariski
closure. By the proof of Lemma VI.3, ∆(R)−{0} is semi-algebraic and dim(∆(R)−{0}) ≤
2 dimR. Finally, Theorem VII.1 concludes the proof.

Just like in the case of rank one POVMs also this measurement scheme applies to the
problem of discriminating states of bounded rank or states of fixed spectrum.

Corollary VII.3. If m ≥ 4r(n − r) − 1, almost all O ∈ Hloc(H)m are stably Sr(H)-
complete.

Proof. Let D be the quasi-algebraic set of Lemma VI.7. Then the result follows directly
from Theorem VII.1.

Corollary VII.4. Let s be a spectrum on H such that the highest multiplicity of an eigen-
value in s is n− r. If m ≥ 4r(n− r)− 1, almost all O ∈ Hloc(H)m are stably Sns -complete.

Proof. This follows directly from Corollary VII.3 noting that the set of Lemma VI.7 rep-
resents ∆(Sns )− {0}.

Finally, let us apply Theorem VII.1 to local Pauli observables on qubit systems. Let
H =

⊗d
i=1C2. The set of local Pauli observables Hσ(H) on H is given by

Hσ(H) := {σ1 ⊗ ...⊗ σd : σi ∈ SH(Cni)0}

where H(Cni)0 := {X ∈ H(Cni)0 : tr(X) = 0} is the real vector space of traceless
hermitian ni×ni matrices and SH(Cni)0 := {X ∈ H(Cni)0 : ‖X‖2 = 1} is the unit sphere
in H(Cni)0.

Corollary VII.5. Ifm ≥ 4r(2d−r)−1, almost all O ∈ Hσ(H)m are stably Sr(H)-complete.

Proof. Theorem VII.1 also holds for Hσ(H) 12. The remainder of the proof is then along
the lines of the proof of Corollary VII.3.

12 See the remark after proof of Lemma VIII.3.
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VIII. TECHNICAL RESULTS

Proof of Lemma VI.1

Before giving the proof of Lemma VI.1 let us first explain the methods we use to
compute the dimension of the relevant algebraic set.

We take advantage of the fact that the dimension of an algebraic set V is given by
the dimension of the tangent space at non-singular points of V (see Definition 3.3.3 of
[25]). Let us make this more precise: Let R[x1, ..., xn] be the ring of real polynomials in
n variables and denote by dp the differential of a real polynomial p ∈ R[x1, ..., xn], i.e.
dp(y) =

∑n
i=1

∂p
∂xi
|ydxi. Let VI be the real common zero locus of a set of real polynomials

I := {p1, ..., pm} ⊆ R[x1, ..., xn]. For all x ∈ VI ,
m∑
i=1

αidpi(x) = 0 (13)

gives a system of linear equations in α1, ..., αm ∈ R. In the following we mainly use the
following facts:

1. The rank of the system of linear equations (13) at a non-singular point of VI is given
by n− d where d is the dimension of VI 13.

2. The non-singular points of VI are an algebraic subset of dimension less than d by
Proposition 3.3.14 of [25].

.
By computing these systems of linear equations, we prove that for a given non-zero

X ∈ H(Cn), imposing the equations (12) on Πk
i=1M(m,n,C) decreases the dimension by

at least n2 + k(m− 1).
First, let us state a lemma which allows us to efficiently compute the systems of linear

equations for the equations (12). Let A ∈ M(s,m,R), C ∈ M(m, t,R), B ∈ H(Cn).
Furthermore, identify M(m,n,C) with R2mn via the canonical map ι : M(m,n,C) →
R2mn, Y 7→ (Re(Y ), Im(Y )) . Then the equations

pIlo(Y ) := Im(AY BY †C)lo = 0, pRlo(Y ) := Re(AY BY †C)lo = 0,

l ∈ {0, ..., s}, o ∈ {0, ..., t},

can be considered as real algebraic equations in the variables yRjk := (Re(Y ))jk, y
I
jk :=

(Im(Y ))jk, j ∈ {0, ...,m}, k ∈ {0, ..., n}.

Lemma VIII.1. Let Y ∈ M(m,n,C) be such that AY BY †C = 0. Then, the system of
linear equations

L(Y ) :=

s∑
l=1

t∑
o=1

(
αRlodp

R
lo(Y ) + αIlodp

I
lo(Y )

)
= 0

13 See Definition 3.3.4 and Proposition 3.3.10 of [25].
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in αRlo ∈ R, αIlo ∈ R is equivalent to ATMαC
TY B + CM †αAY B = 0 where (Mα)lo :=

αRlo + iαIlo, l ∈ {0, ..., s}, o ∈ {0, ..., t}.

Proof. Let

Ljk = (∂yRjk
− i∂yIjk)

s∑
l=1

t∑
o=1

(
αRlo p

R
lo + αIlo p

I
lo

)
, j ∈ {1, ...,m}, k ∈ {1, ..., n}.

Then the system of linear equations {Ljk(Y ) = 0}j∈{1,...,m},k∈{1,...,n} is equivalent to
L(Y ) = 0 since

L =

s∑
l=1

t∑
o=1

αRlo m∑
j=1

n∑
k=1

(
(∂yRjkp

R
lo)dy

R
jk + (∂yIjkp

R
lo)dy

I
jk

)
+ αIlo

m∑
j=1

n∑
k=1

(
(∂yRjkp

I
lo)dy

R
jk + (∂yIjkp

I
lo)dy

I
jk

)
=

m∑
j=1

n∑
k=1

((
∂yRjk

s∑
l=1

t∑
o=1

(
αRlo p

R
lo + αIlo p

I
lo

))
dyRjk +

(
∂yIjk

s∑
l=1

t∑
o=1

(
αRlo p

R
lo + αIlo p

I
lo

))
dyIjk

)

=

m∑
j=1

n∑
k=1

(
Re(Ljk)dyRjk − Im(Ljk)dyIjk

)
.

Let ∂yjk = ∂yRjk
− i∂yIjk and note that ∂yjkYlm = 2δjlδkm, ∂yjkY

∗
lm = 0. Then,

Ljk(Y ) = (∂yRjk − i∂yIjk)

s∑
l=1

t∑
o=1

(
αRlo

1

2
(AY BY †C +AY ∗B∗Y TC)lo + αIlo

1

2i
(AY BY †C −AY ∗B∗Y TC)lo

)

=
1

2
∂yjk

s∑
l=1

t∑
o=1

(
(M∗α)lo(AY BY

†C)lo + (Mα)lo(AY
∗B∗Y TC)lo

)
=

s∑
l=1

t∑
o=1

m∑
p=1

n∑
q=1

(
(M∗α)loAlpδpjδqk(BY †C)qo + (Mα)lo(AY

∗B∗)lqδqkδpjCpo
)

= (ATM∗αC
TY ∗BT + CMT

αAY
∗B∗)jk

= (ATMαC
TY B + CM†αAY B)∗jk.

Hence L(Y ) = 0 is equivalent to ATMαC
TY B + CM †αAY B = 0.

Under the identification M(m,n,C) ' R2mn given by the map ι defined above, also the
equations

rRlo(Y ) := Re(Y †Y )lo − δlo = 0, rIlo(Y ) := Im(Y †Y )lo = 0,

l, o ∈ {1, ..., n},

can be considered as real algebraic equations in the variables yRjk := (Re(Y ))jk, y
I
jk :=

(Im(Y ))jk, j ∈ {0, ...,m}, k ∈ {0, ..., n}.

Corollary VIII.2. Let Y ∈M(m,n,C) be such that Y †Y − 1n = 0. Then, the system of
linear equations

L(Y ) :=
n∑

l,o=1

(
γRlodr

R
lo(Y ) + γIlodr

I
lo(Y )

)
= 0
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in γRlo ∈ R, γIlo ∈ R is equivalent to Y (Mγ + M †γ) = 0 where (Mγ)lo := γRlo + iγIlo, l, o ∈
{1, · · · , n}.

Proof. The proof of this result can be obtained by going along the lines of the proof of
Lemma VIII.1, so we just give the calculation that differs: L(Y ) = 0 is equivalent to
{Ljk(Y ) = 0}j∈{1,··· ,m},k∈{1,··· ,n} where

Ljk(Y ) = (∂yRjk − i∂yIjk)

n∑
l,o=1

(
γRlo

1

2
(Y †Y + Y TY ∗)lo + γIlo

1

2i
(Y †Y − Y TY ∗)lo

)

=
1

2
∂yjk

n∑
l,o=1

(
(M∗γ )lo(Y

†Y )lo + (Mγ)lo(Y
TY ∗)lo

)
=

n∑
l,o=1

m∑
p=1

(
(M∗γ )loδkoδjp(Y

†)lp + (Mγ)lo(Y
∗)poδlkδpj

)
= (Y ∗M∗γ + Y ∗MT

γ )jk

= (YMγ + YM†γ)∗jk.

Hence L(Y ) = 0 is equivalent to Y (Mγ +M †γ) = 0.

Remark Note that combining the equations of Lemma VIII.1 and Corollary VIII.2 yields
the system of linear equations Y (Mγ+M †γ)+ATMαC

TY B+CM †αAY B = 0 (see equations
13).

Let us now give the proof of Lemma VI.1.

Proof. For a given non-zero X ∈ H(Cn) and i ∈ {1, ..., k}, consider the following equations
in (M1, . . . ,Mk) ∈

∏k
i=1M(m,n,C):

pji (M1, ...,Mk) := tr(M †i eje
†
jMiX) = e†jMiXM

†
i ej = 0, j ∈ {1, ...,m},

and

qjli (M1, ...,Mk) := (M †iMi)jl − δjl = 0, j, l ∈ {1, ..., n}.

Under the canonical identification
∏k
i=1M(m,n,C) ' R2knm, these equations can be

regarded as real algebraic equations in 2knm variables. Let Ii := {pji}j∈{1,...,m} and
Ji := {qjli }j,l∈{1,...,n}.

We have to show that the dimension of the real common zero locus of the equa-
tions Kk =

⋃k
i=1 Ii ∪ Ji is at most 2kmn − kn2 − k(m − 1). Denote by ι1 :

M(m,n,C) → Πk
i=1M(m,n,C), M 7→ (M, 0, ...) the inclusion in the first factor and let

πi : Πk
i=1M(m,n,C) → M(m,n,C), (M1, ...,Mi, ...,Mk) 7→ Mi be the projection on the

i-th factor. Then we find Ii∪Ji = (J1∪I1)◦ι1◦πi, where (J1∪I1)◦ι1◦πi := {p◦ι1◦πi : p ∈
J1 ∪ I1}. Thus, we conclude that VKk '

∏k
i=1 VK1 and it suffices to reduce to k = 1. We

stick to the notation introduced in the beginning of this section and denote the algebraic
set obtained from M(m,n,C) by imposing the equations I := I1 and J := J1 by VI∪J .
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Let us now determine the system of linear equations L associated to I ∪J at U ∈ VI∪J .
The contribution of the j-th equation of I to L is obtained from Lemma VIII.1 by choosing
A = e†j , B = X, C = ej , Y = U and thus the contribution of I is given by

m∑
j=1

αRj eje
†
jUX, α

R
j ∈ R.

Similarly, by Corollary VIII.2, the contribution of J to L is given by,

U(Mγ +M †γ)

where (Mγ)jk := γRjk+iγIjk, i, j ∈ {1, ...n}, γRjk, γIjk ∈ R. Note that this just gives conditions
on the hermitian part of Mγ and define Γ ∈ H(Cn) by Γ := Mγ +M †γ .

Combining these two parts, the system of linear equations associated to the equations
I∪J at U ∈ VI∪J is equivalent to the following system of linear equations in α1, ..., αm ∈ R
and γRkj ∈ R, γIkj ∈ R, k, j ∈ {1, ..., n},

UΓ +DαUX = 0 (14)

where Dα =
∑m

j=1 αjeje
†
j . Observing that Γ is uniquely determined by the equations (14),

the rank of (14) is at least n2 and we can reduce to the anti-hermitian part of (14) to find
the remaining m− 1 independent equations:

0 = UΓU † +DαUXU
† −

(
UΓU † +DαUXU

†
)†

= −[UXU †, Dα]. (15)

Next we study the commutator [UXU †, Dα] in detail. As X is an arbitrary hermitian
matrix, we have to carefully consider all possible combinations of eigenspaces, or more
precisely eigenspace degeneracies, X could have.

In order to achieve this, let us begin with the following example, which will be the
starting point for the decomposition of X: Let M be a subset of {1, ...,m} and define the
diagonal projection DM ∈ M(m,R) by e†iDMej := δi,jδj,M , where δj,M = 1 for j ∈ M
and 0 else. The following observation is the crucial idea for the remainder of the proof:
If [UXU †, DM ] 6= 0 for all proper subsets M of {1, ...,m} then m − 1 of the operators
{[UXU †, D{i}]}i∈{1,...,m} are linearly independent. To show this, assume that there are
aj ∈ R, j ∈ {1, ...,m}, with ak 6= al for some k, l such that

∑m
j=1 aj [UXU

†, D{j}] = 0.
Since the commutativity of hermitian matrices is determined solely by their eigenspaces, we
deduce [UXU †, DE ] = 0, where E := {j ∈ {1, ...,m} : aj = ak}. But this is a contradiction
since E is a proper subset of {1, · · · ,m}. Hence, the only solution is a1 = a2 = · · · = am
and this proves the claim. Thus, in this case we conclude that the solution of the system
of linear equations (15) is given by α1 = ... = αm and hence there are m − 1 linearly
independent equations.

Next, we decompose VI∪J into quasi-algebraic subsets for which the argument we just
gave can be applied14. Let P [m] be the set of partitions of {1, ...,m}. We say that a subset

14 By means of this decomposition we can separately consider all possible eigenspace degeneracies of X.
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S ⊆ {1, ...,m} is subordinate to a partition P ∈ P [m] if there is M ∈ P such that S is a
proper subset of M . For given P ∈ P [m], define the quasi-algebraic set WP to be the set
of U ∈ VI∪J such that

[DM , UXU
†] = 0, ∀M ∈ P, (16)

and

[DN , UXU
†] 6= 0, ∀N ⊆ {1, ...,m} subordiante to P.

The set VI∪J can clearly be decomposed into the sets WP :

VI∪J =
⋃

P∈P [m]

WP .

Having already checked that 2mn− dimWP = m− 1 + n2 if P is the trivial partition,
we conclude the proof by showing that 2mn − dimWP ≥ m − 1 + n2 for all non-trivial
P ∈ P [m] 15. In order to prove this, we first show that the rank of the system of linear
equations associated to WP is at least n2 +m− 1 for all points in WP .

Let P = {M1, ...,Ml,Ml+1} ∈ P [m] be an arbitrary non-trivial partition. Choosing
A = DMj , B = X, C = idm and Y = U in Lemma VIII.1 yields

DMjMβjUX +M †βjDMjUX,

where Mβj ∈ M(m,C) with (Mβj )lo := βRj;lo + iβIj;lo, l, o ∈ {1, ...,m}, βRj;lo, βIj;lo ∈ R
and similarly with the roles of A and C exchanged. Thus, equation (16) for Mj gives the
following contribution to the system of linear equations associated to WP at U ∈WP :

[DMj ,Mβj −M
†
βj

]UX.

Thus, the system of linear equations associated to WP at U ∈ WP is equivalent to the
following system of linear equations in α1, ..., αm ∈ R, γRkj ∈ R, γIkj ∈ R, k, j ∈ {1, ..., n},
and βRj;lo ∈ R, βIj;lo ∈ R, j ∈ {1, ..., l + 1}, l, o ∈ {1, ...,m}:

UΓ +DαUX +
l+1∑
k=1

[DMk
,Mβk −M

†
βk

]UX = 0.

Again, we can eliminate Γ by reducing to the anti-hermitian part to obtain

UΓU† +DαUXU
†+

l+1∑
k=1

[DMk
,MH

βk
]UXU† −

(
UΓU† +DαUXU

† +

l+1∑
k=1

[DMk
,MH

βk
]UXU†

)†

⇔ [UXU†, Dα] +

l+1∑
k=1

[UXU†, [MH
βk
, DMk

]] = 0, (17)

15 Note that, depending on the choice of X, many of the WP might be empty. If X = 1n, n = m for
instance, all WP would be empty.
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where MH
βj

is the anti-hermitian m×m matrix defined by MH
βj

:= Mβj −M
†
βj
.

Conjugating with DMj yields

[UXU †, DMjDα] = 0,

where we used [UXU †, DMj ] = 0 together with DMj [M
H
βk
, DMk

]DMj = DMjM
H
βj
DMj −

DMjM
H
βj
DMj = 0. By construction of WP , we have [UXU †, DMjDM ] 6= 0 for all proper

subsets M ⊆ Mj . Since the commutativity of hermitian matrices is solely determined by
their eigenspaces we conclude just like in the case of the trivial partition that DMjDα ∝
DMj for all j ∈ {1, ..., l+ 1} 16. Thus, if there is U ∈WP , the rank of (17) at U is at least
n2 +m− l − 1.

To find the remaining l independent equations consider the remaining equations
l+1∑
j=1

[UXU †, [MH
βj
, DMj ]] = 0.

There is i ∈ {1, ..., l + 1} with DMiUXU
† 6= 0 because otherwise we would conclude

that UXU † = 0 which is a contradiction since U ∈ U(m,n) and X 6= 0 by assumption.
Multiplying by DMk

from the left and DMi from the right yields

l∑
j=1

DMk
[UXU †, [MH

βj
, DMj ]]DMi = 0

⇔
l∑

j=1

[UXU †, DMk
[MH

βj
, DMj ]]DMi = 0

⇔[UXU †, DMk
(MH

βi
−MH

βk
)DMi ] = 0.

For each k ∈ {1, ..., l + 1} − {i} this gives at least one equation on MH
βk
: First, assume

|Mi| = 1. Then there is q ∈ {1, . . . ,m} such that Mi = {q}. Furthermore, since

0 6= DMiUXU
† = DMiUXU

†DMi = (edqaggerUXU
†q)qq†,

we conclude that e†qUXU †q 6= 0. But this is a contradiction to the q-th equation of I.
Hence we can assume |Mi| ≥ 2. By construction of WP there is an eigenvector vk 6= 0

of UXU † in the range of DMk
with eigenvalue λk and a eigenvector vi 6= 0 of UXU † in

the range of DMi with eigenvalue λi. Since we assumed |Mi| ≥ 2, by construction of WP ,
UXU † has at least two eigenvectors in the range of DMi with different eigenvalues because
otherwise there would be a proper subset of N ⊆ Mi such that [UXU †, DN ] = 0. Thus,
we can choose λi such that λi 6= λk. We then find

v†k[UXU
†, DMk

(MH
βi
−MH

βk
)DMi ]vi = 0

⇔v†k(M
H
βi
−MH

βk
)vi(λk − λi) = 0

⇔v†kM
H
βi
vi − v†kM

H
βk
vi = 0.

16 In particular, note that if Dα solves the system of linear equations (17) we have [UXU†, Dα] = 0.
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But this clearly gives a non-trivial condition on MH
βk

since MH
βk

= Mβj −M
†
βj
. Thus we

conclude that, if there is U ∈WP , the rank of (17) at U is at least m− l − 1 + l = m− 1
and hence the rank of the system of linear equations associated to WP at U is at least
n2 +m− 1. But if WP is non-empty, it does contain a non singular-point by Proposition
3.3.14 of [25]. And thus the rank of the system of linear equations associated to WP at
this non-singular point is at least n2 + m − 1. Hence 2kmn − dimWP ≥ n2 + m − 1 by
Proposition 3.3.10 of [25].

Proof of Theorem VI.2

Proof. Let ψ be the map defined in (11). We can assume that D is a closed subset of
SH(Cn) because if not we can replace it by the closure of ψ(D) without increasing its
dimension 17. Let M̃ := {(U1, ..., Uk, X) ∈

∏k
i=1 U(m,n) × D : e†jUiXU

†
i ej = 0, j ∈

{1, . . . ,m}, i ∈ {1, . . . , k}}.
First, we fix the measure onMm

1,k(Cn): Let φ be the map defined in equation (1). We
define the measure µ onMm

1,k(Cn) to be the pushforward measure of the 2knm-dimensional
Hausdroff measure µH on

∏k
i=1 U(m,n) ⊆ R2nmk, i.e. µ(A) := φ∗(µH)(A) = µH(φ−1(A))

for A ⊆Mm
vN(Cn) a measurable set.

Note that φ is the quotient projection with respect to the left action of the toral
goup T :=

∏k
i=1 T (m), T (m) := {diag(λ1, ..., λm) : λi ∈ U(1)} on

∏k
i=1 U(m,n) given

by ((U1, ..., Uk), (T1, ..., Tk)) 7→ ((U1, ..., Uk), (T1U1, ..., TkUk)). Also note that the equa-
tions (12) are invariant under the action of T and hence Tπ1(M̃) = π1(M̃) where
π1 :

∏k
i=1 U(m,n) × D →

∏k
i=1 U(m,n) is the projection on the first factor. Thus, for

µH(π1(M̃)) = 0, we find

µ
(
φ ◦ π1(M̃)

)
= µH

(
φ−1

(
φ ◦ π1(M̃)

))
= µH

(
Tπ1(M̃)

)
= µH

(
π1(M̃)

)
= 0.

Hence, it suffices to prove that µH(π1(M̃)) = 0.
Finally, for k(m−1) > dimD we find dimπ1(M̃) ≤ dim

∏k
i=1 U(m,n)+dimD−m(k−

1) < dim
∏k
i=1 U(m,n) by Lemma VI.1. So π1(M̃) has µH -measure zero in

∏k
i=1 U(m,n).

The stability follows directly from Lemma V.1.

Remark Note that by the remark after Lemma VI.1, this proof just depends on D ⊆
H(Cn) and hence naturally extends to semi-algebraic subsets R ⊆ H(Cn). Furthermore,
this proof shows that indeed π1(M̃) has µH -measure zero in

∏k
i=1 U(m,n). Thus the

statement of Theorem VI.2 naturally also holds for tight frames U ∈ U(n,m).

17 See remark after Lemma V.1 for more details.
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Proof of Theorem VII.1

For a given non-zero X ∈ H(H), consider the equations

pi((O1
1, . . . , O

1
k), . . . , (O

m
1 , . . . , O

m
k )) := tr((Oi1 ⊗ · · · ⊗Oik)X) = 0, i ∈ {1, ...,m}, (18)

in ((O1
1, . . . , O

1
k), . . . , (O

m
1 , . . . , O

m
k )) ∈ (Πk

i=1H(Cni))m. Under the identificationH(Cni) '
Rn2

i , these equations can be considered as real algebraic equations in the variables
((O1

1, . . . , O
1
k), . . . , (O

m
1 , . . . , O

m
k )). The following Lemma is the analogue of Lemma VI.1.

Lemma VIII.3. Let X ∈ H(H) be non-zero. Imposing the equations (18) on
(Πk

i=1SH(Cni))m decreases the dimension by at least m.

Proof. The equation pi just involves the variables (Oi1, . . . , O
i
k) of the i-th factor of

(Πk
i=1H(Cni))m. Thus, it suffices to prove that, for given non-zero X ∈ H(H), impos-

ing the equation

p((O1, . . . , Ok)) := tr((O1 ⊗ · · · ⊗Ok)X) = 0 (19)

on Πk
i=1SH(Cni) decreases the dimension by at least one.

In order to see that this is true, note that there are (O1, . . . , Ok) ∈ Πk
i=1SH(Cni)

such that tr((O1 ⊗ · · · ⊗Ok)X) 6= 0 because
⊗k

i=1H(Cni) has a basis of normalized local
operators and X 6= 0. But then, the equation (19) is a non-trivial algebraic equation on
the irreducible algebraic set Πk

i=1SH(Cni) and thus the dimension has to decrease since for
a proper algebraic subset V of an irreducible algebraic setW we have dimV < dimW .

Remark By going along the lines of the this proof, it is easily seen that Lemma VIII.3
also holds when going from hermitian matrices to traceless hermitian matrices, i.e. if
we replace (Πk

i=1SH(Cni))m by (Πk
i=1SH(Cni)0)m. Furthermore, the proof of Theorem

VII.1 also holds when going from (Πk
i=1SH(Cni))m to (Πk

i=1SH(Cni)0)m and considering
Hloc,0(H) := {O1 ⊗ ...⊗Ok : Oi ∈ SH(Cni)0} instead of Hloc(H).

Now we can give the proof of Theorem VII.1.

Proof. Let ψ be the map defined in (11). We can assume that D is a closed subset of
SH(H) because if not we can replace it by the closure of ψ(D) without increasing its
dimension 18. Let M be the semi-algebraic set obtained from (Πk

i=1H(Cni))m × D by
imposing the equations (18).

For m > dimD we get dimπ1(M) < dim(Πk
i=1SH(Cni))m by Lemma VIII.3.

Now consider θ(π1(M)) where

θ : (Πk
i=1SH(Cni))m → (Hloc(H))m,

(O1
1, . . . , O

1
k), . . . , (O

m
1 , . . . , O

m
k ) 7→ (O1

1 ⊗ · · · ⊗O1
k), . . . , (O

m
1 ⊗ · · · ⊗Omk ).

18 See remark after Lemma V.1 for more details.
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Note that θ is a surjective semi-algebraic map and thus (Hloc(H))m is semi-algebraic with
dim((Hloc(H))m) ≤ dim((Πk

i=1SH(Cni))m). Furthermore, θ is injective when restricting to
positive matrices and hence d := dim(Hloc(H))m = dim(Πk

i=1SH(Cni))m.
Finally, since dimπ1(M) < d and θ is semi-algebraic, we have dim (θ(π1(M))) < d and

thus θ(π1(M)) has zero d-dimensional Hausdorff measure. Stability follows directly from
Lemma V.1.

Proof of Theorem IV.3

Proof. By going along the lines of the proof of Lemma VI.7, it is easily seen that D :=
{X ∈ P2r(H) : tr(X2) = 2} represents ∆(Pnr ) − {0} and furthermore we have dimD =
4r(n− r)− 1 by Corollary II.2 19. Applying Theorem VI.2 20 to the set D then concludes
the proof.

Appendix A: Hausdorff Measure on Semi-Algebraic Sets

The term ”almost” all used in many of the results of this paper refers to the Hausdorff
measure on real affine space. In this section we define the Hausdorff measure and we prove
the well-known fact that a semi-algebraic set of dimension d has zero (d+ 1)-dimensional
Hausdorff measure.

For a non-empty subset A ⊆ Rn the diameter of S is defined by diam(S) := sup{‖x−
y‖2 : x, y ∈ S}.

Let m ∈ R. For an arbitrary subset S ⊆ Rn the m-dimensional Hausdorff measure
µmH(S) is defined by (see Section 2.3 of [27])

µmH(S) = lim
δ→0

inf{
∞∑
i=1

(diam(Si))
m : S ⊆ ∪i∈N(Si), diamSi < δ}.

Proposition A.1. Let m > n. A semi-algebraic set S of dimension n has zero m-
dimensional Hausdorff measure.

Proof. Every n-dimensional semi-algebraic set S can be expressed as S =
⋃k
i=1 Si for some

k ∈ N where the Si are diffeomorphic to (0, 1)ni , ni ≤ n (see Proposition 2.9.10 of [25]).
Let us denote these diffeomorphisms by φi : (0, 1)ni → Si. Since S is a finite union it
suffices to prove that the m-dimensional Hausdorff measure of Si is zero for m > n.

For each point p ∈ Si, there is a neighbourhood Np of p such that φi|Np is Lipschitz.
Constructing such neighbourhoods for all p ∈ Si, we obtain an open cover of Si by the open
sets {Np}p∈Si and since Rn is second countable there is a countable subcover {Si∩Npj}j∈N.

Finally, we just have to see that the Hausdorff measure of Npj is zero for all j ∈ N. But
φi(Npj ) is the image of a set of zero m-dimensional Hausdorff measure under a Lipschitz
map and thus φi(Npj ) has zero m-dimensional Hausdorff measure as well.

19 Note that the definition of a representing set naturally generalizes to subsets R ⊆ H(Cn).
20 Theorem VI.2 also applies in this situation. See the remark after proof of Theorem VI.2 for more details.
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Remark Note that this proof in particular shows that the n-dimensional Hausdorff mea-
sure of an n-dimensional semi-algebraic set does not vanish and hence it is a suitable
measure for our purposes.

The set of measurement schemes always is a semi-algebraic subset S of a real affine space
and the measure we choose for S is the m-dimensional Hausdorff measure where m is the
dimension of S. If we say that almost all elements of an m-dimensional semi-algebraic set
S has a certain property we mean that it fails to hold on a subset A ⊆ S that has m-
dimensional Hausdorff measure zero. We do this by showing that the algebraic dimension
of A is smaller than m and applying Proposition A.1.
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Explicit Frames for Deterministic Phase Retrieval via
PhaseLift

M. Kech August 24, 2016

The phase retrieval problem aims to reconstruct a signal x ∈ Cn up to a global phase
factor fromm intensity measurements, i.e., from measurements |〈x, v1〉|2, . . . , |〈x, vm〉|2,
where vi ∈ Cn, i = 1, . . . ,m. PhaseLift [1] is a reconstruction approach for the phase
retrieval problem and essentially consists of two steps. First, as one has

|〈x, v〉|2 = tr(xx∗vv∗), ∀x, v ∈ Cn,

the phase retrieval problem is equivalent to recovering a positive rank one matrix
from linear measurements. More precisely, given measurement vectors vi ∈ Cn, i =
1, . . . ,m, such that the phase retrieval problem is well-posed, a signal x ∈ Cn can be
recovered up to a global phase from the rank one matrix minimizing

minimize rankX

subject to X ≥ 0, tr(Xviv
∗
i ) = tr(xx∗viv

∗
i ), i = 1, . . . ,m.

As rank minimization is intractable in general [2], in a second step this optimization
problem is relaxed to the semidefinite program (SDP)

minimize trX

subject to X ≥ 0, tr(Xviv
∗
i ) = tr(xx∗viv

∗
i ), i = 1, . . . ,m.

(1)

1 Main Result

In this article, 5n− 6 measurement vectors are constructed such that every signal x ∈
Cn can be recovered up to a global phase from their associated intensity measurements
by solving the SDP (1).

For k ∈ {1, . . . , 2n− 3}, choose yk ∈ R \ {0} and set

vk :=
(
1, yk e

iπ
2n , y2k e

2 iπ2n , . . . , yn−1k e(n−1)
iπ
2n

)t
. (2)

Theorem 1 (Frame for PhaseLift). Let1 F := {e0, . . . , en−1, v1, v1, . . . , v2n−3, v2n−3}
and assume y1 < y2 < . . . < y2n−3. Then, for every x ∈ Cn, the unique minimizer of

minimize trX

subject to X ≥ 0, tr(Xvv∗) = tr(xx∗vv∗), ∀v ∈ F ,

is given by xx∗.

1The vectors e0, . . . , en−1 denote the standard basis vectors of Cn.



2 Stability

This approach can be generalized to the recovery of positive semidefinite matrices
of rank at most r. Let P(Cn) := {X ∈ H(Cn)|X ≥ 0} and Pr(Cn) := {X ∈
P(Cn)| rankX ≤ r}.

Definition 1. (r-complete.) A linear map M : H(H) → Rm is called r-complete iff
M(X) 6= M(X ′) holds for all X ∈ Pr(Cn) and X ′ ∈ P(Cn) with X 6= X ′.

The linear map M : H(Cn) → R5n−6 induced by the measurement vectors given
in Theorem 1 is 1-complete. Furthermore, in the article r-complete linear maps M :
H(Cn)→ R4r(n−r)+n−2r are constructed for all 1 ≤ r ≤ n.

Consider the SDP

minimize tr(Y )

subject to Y ≥ 0, ‖M(Y )− b‖ ≤ ε,
(3)

where ε ≥ 0 is a constant representing the error scale.
The r-complete property comes with the following qualitative recovery result.

Theorem 2 (Recovery of low-rank positive matrices). Let M : H(H) → Rm be r-
complete and let ε > 0. There is a constant CM > 0 independent of ε such that for
all Xr ∈ Pr(Cn) and E ∈ H(Cn) with ‖M(E)‖2 ≤ ε, any minimizer Y of (3) for
b = M(Xr + E) satisfies

‖Y −Xr‖HS ≤ CM ε.
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We explicitly give a frame of cardinality 5n− 6 such that every signal in Cn can be recov-
ered up to a phase from its associated intensity measurements via the PhaseLift approach.
Furthermore, we give explicit linear measurements with 4r(n − r) + n − 2r outcomes that
enable the recovery of every positive semidefinite n× n matrix of rank at most r.
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I. INTRODUCTION AND MAIN RESULT

Phase Retrieval is the task of reconstructing a signal x ∈ Cn up to a phase from intensity
measurements.

In [1] it was shown that m ≥ 4n− 2 generic intensity measurements suffice to discrimi-
nate any two signals in Cn up to a phase. With a similar approach this result was slightly
improved to m ≥ 4n− 4 in [2] 1. The bound m ≥ 4n− 4 is known to be close to optimal.
More precisely, by relating phase retrieval to the problem of embedding complex projec-
tive space in Euclidean space, it was shown in [6] that, up to terms at most logarithmic
in n, m ≥ 4n− 4 intensity measurements are necessary to discriminate any two signals in

∗Electronic address: kech@ma.tum.de
1 In the context of pure state tomography, [3–5] show that the 4n − 4 bound also holds for von Neu-
mann measurements. In addition similar bounds for the recovery of low-rank matrices with constrained
measurements are provided in [3].

mailto:kech@ma.tum.de
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Cn up to a phase. However, [1, 2] do not provide a tractable recovery scheme. A result
indicating that some redundancy is needed in order to allow for computationally efficient
phase retrieval is given in [7].

There have been several approaches that do provide recovery schemes [8–10], in the
present paper however we focus on the approach of [11] known as PhaseLift. Their approach
consists of two steps: First, phase retrieval is lifted to the problem of recovering rank one
Hermitian matrices from linear measurements. Secondly, by means of a convex relaxation,
the recovery problem is formulated as a trace norm minimization over a spectrahedron.
The authors of [11] then prove that O(n) intensity measurements suffice to recover a
signal modulo phase with high probability by solving the relaxed optimization problem.
Furthermore, stability guarantees for the recovery were established in [12, 13]. While
these convex relaxations are in principal tractable, solving them becomes computationally
expensive with increasing signal dimension [14].

However, [11–13] still leave room for improvement. For example, by working with
Gaussian random vectors additional structure that might facilitate the use of PhaseLift is
not incorporated and also from a practical point of view Gaussian random vectors might
not be desirable. Recently, it was shown that a partial derandomization of PhaseLift
can be achieved by using spherical designs [15, 16]. The purpose of the present paper is
similar. However, rather than drawing the measurements from a smaller, possibly better
structured set, we aim for finding explicit measurements that allow for phase retrieval via
PhaseLift. Another deterministic approach to the phase retrieval problem was introduced
in [17]. They improved their results in [18], providing recovery algorithms together with
explicit error bounds for phase retrieval with 6n− 3 frame vectors.

Our contribution is the following: We explicitly give 5n − 6 intensity measurements
from which every signal in Cn can be reconstructed up to a phase using PhaseLift. More
precisely, for k ∈ {1, . . . , 2n− 3} let

vk :=
(

1, xk e
iπ
2n , x2

k e
2 iπ
2n , . . . , xn−1

k e(n−1) iπ
2n

)t
, xk ∈ R \ {0}. (1)

Furthermore denote by {ei}i∈{0,...,n−1} the standard orthonormal basis of Cn.

Theorem I.1. If x1 < x2 < . . . < x2n−3, then every signal x ∈ Cn can be reconstructed
up to a phase from the 5n− 6 intensities

{|〈e0, x〉|2, . . . , |〈en−1, x〉|2, |〈v1, x〉|2, |〈v1, x〉|2, . . . , |〈v2n−3, x〉|2, |〈v2n−3, x〉|2}

via PhaseLift.

This result is stated more carefully in Section III as Corollary III.2. Its proof relies on
the results of [19].

Let us highlight three features of this result:

1. To our knowledge the 5n− 6 is the smallest number of intensity measurements that
allow for a uniform and computationally tractable recovery.

2. Results based on random intensity measurements typically guarantee that the recov-
ery succeeds with high probability if the number of measurements exceeds a given
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threshold which is usually determined up to a multiplicative constant. As opposed
to this, Theorem I.1 comes with two advantages that might be desirable from a prac-
tical point of view: First, the recovery is not just guaranteed to succeed with high
probability but indeed works deterministically. Secondly, since the measurements
are given explicitly there is no need for finding a suitable value for the threshold.

3. Theorem I.1 merely requires 5n− 6 intensity measurements. This illustrates that n
additional measurements as compared to the nearly optimal bound of [1] suffice to
render PhaseLift feasible.

The approach we take originates from low-rank matrix recovery [20–24] and indeed
the previous results can be generalised to this setting: In Section III, we give an explicit
family of linear measurements with 4r(n− r) +n− 2r outcomes from which every positive
n × n matrix of rank at most r can be recovered by means of a semidefinite program.
This strongly relies on the construction of the null spaces of such measurements given in
[19]. Our contribution is to explicitly characterize the orthogonal complements of these
null spaces leading to the proofs of our main results.

As stability was not mentioned in the abstract, I did not change this part. I changed
the last section in the introduction to: Finally we also prove a weak stability result in
Section IV, showing that the reconstruction error is linear in the error scale. As we do not
know how to estimate the constant of proportionality appearing in the stability bound,
this result is not of practical relevance, but might give a roadmap for proving stability in
the future. However, we provide some numerical results that might indicate the constant’s
qualitative behaviour.

II. PRELIMINARIES

Let us first fix some notation. By M(n, q) (M(n, q,R)) we denote the set of complex
(real) n × q matrices. The transpose (conjugate transpose) of a matrix A ∈ M(n, q) is
denoted by At (A∗). For i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , q − 1}, we denote the entry in
the i-th row and j-th column of a matrix A ∈ M(n, q) by Aij 2. By H(n) we denote the
real vector space of Hermitian n × n matrices. We equip H(n) with the Hilbert-Schmidt
inner product and ‖ · ‖2 denotes the Frobenius norm. By Sn we denote the set of positive
semidefinite n× n matrices and by Snr ⊆ Sn we denote the subset of positive semidefinite
matrices of rank at most r. In the following we assume that r ∈ {1, . . . , dn/2e − 1} 3. The
set of linear maps M : H(n)→ Rm is denoted byM(m).

Definition II.1. (m-measurement.) An m-measurement is an element ofM(m).

In the following we denote an m-measurement simply by measurement if we do not
want to specify m.

2 Note that the indices we use to label matrices begin with 0, not with 1.
3 dke := the smallest integer i such that i ≥ k.
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Remark For each m-measurement M there exists a unique G := (G1, . . . , Gm) ∈ H(n)m

such that

M(X) =
(
tr(G1X), . . . , tr(GmX)

)
for all X ∈ H(n). By MG we denote the m-measurement associated in this way to an
G ∈ H(n)m. In the following we sometimes use this identification to speak of elements
G ∈ H(n)m as m-measurements.

Definition II.2. (r-complete.) A measurementM is called r-complete iffM(X) 6= M(X ′)
for all X ∈ Snr and X ′ ∈ Sn with X 6= X ′. A tuple G ∈ H(n)m is called r-complete iff MG

is r-complete.

Given a measurement M and a measurement outcome b = M(X), X ∈ Snr , consider the
following well-known semi-definite program [20, 22, 23] 4

minimize tr(Y )

subject to Y ≥ 0, M(Y ) = b.
(2)

The significance of the r-complete property is due to the following observation:

Proposition II.1. Let M be an r-complete measurement and let X ∈ Snr . If b = M(X),
then X is the unique minimizer of the semidefinite program (2).

Proof. Let X ∈ Sr(Cn) be a Hermitian matrix of rank at most r and let M be an r-
complete measurement. Then, X is the unique feasible point of the spectrahedron

{Y ∈ H(n) : Y ≥ 0, M(Y ) = M(X)}. (3)

This follows immediately from {Y ∈ H(n) : Y ≥ 0, M(Y ) = M(X)} = {Y ∈ Sn :
M(Y ) = M(X)} and the definition of r-complete.

Remark Note that if 1 ∈ Range(M∗), the r-complete property also is necessary for a
deterministic reconstruction via the semidefinite program (2).

This shows that for an r-complete measurement the semidefinite program (2) reduces to a
feasibility problem.

Finally, let us state the observation of [19, 25] which gives a useful characterization of
the r-complete property:

Proposition II.2. A measurement M is r-complete if and only if every nonzero X ∈
Ker(M) has at least r + 1 positive eigenvalues.

4 This is a convex relaxation of the rank minimization problem.
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Proof. Consider the set ∆ := {Y − Z : Y ∈ Snr , Z ∈ Sn} and note that every X ∈ ∆ has
at most r positive eigenvalues. Furthermore, note that a measurement M is r-complete if
and only if ∆ ∩Ker(M) \ {0} = ∅.

Now assume that every X ∈ Ker(M) \ {0} has at least r + 1 positive eigenvalues.
Since every Y ∈ ∆ has at most r positive eigenvalues we find Y /∈ Ker(M) \ {0}, i.e.
∆ ∩Ker(M) \ {0} = ∅.

Conversely, assume that M is r-complete. ∆ clearly contains all matrices with at most
r positive eigenvalues and hence Ker(M) \ {0} cannot contain an element with r or less
positive eigenvalues.

Remark If every nonzero X ∈ Ker(M) has at least r+ 1 positive eigenvalues, then every
nonzero X ∈ Ker(M) also has at least r+1 negative eigenvalues since X ∈ Ker(M) implies
−X ∈ Ker(M).

III. RECONSTRUCTION OF LOW-RANK POSITIVE MATRICES

Our approach relies on [19] where a method to construct the null spaces of r-complete
m-measurements for m = 4r(n − r) + n − 2r is provided. Their construction is based on
the ideas of [26], details can be found in Appendix A of [19].

First, we focus on the phase retrieval problem.

Theorem III.1. Let

G :=

(
e0e
∗
0, . . . , en−1e

∗
n−1,

v1v
∗
1

‖v1v∗1‖2
,
v1v
∗
1

‖v1v∗1‖2
, . . . ,

v2n−3v
∗
2n−3

‖v2n−3v∗2n−3‖2
,
v2n−3v

∗
2n−3

‖v2n−3v∗2n−3‖2

)
,

where the vi are defined in Equation (1). If x1 < x2 < . . . < x2n−3, then the measurement
MG is 1-complete.

The proof of this theorem can be found in Section V.

Remark From the proof of this result it is easily seen that the kernel ofMG is independent
of the choice of the xi. Thus, for the purpose of robustness, the xi should be chosen such
that the smallest singular value of MG is maximized.

Let us next state Theorem I.1 in a more precise way.

Corollary III.2. (Phase Retrieval via PhaseLift.) Let M be a measurement given by
Theorem III.1 and let x ∈ Cn. If b = M(xx∗), then xx∗ is the unique minimizer of the
semidefinite program (2).

By Proposition II.1, this is an immediate consequence of Theorem III.1.
Let us next focus on the recovery of low-rank positive matrices. This, however, requires

some further definitions: First, let

Cnr := {X ∈ H(n) : tr(Xeie∗j ) = 0, 2r − 1 ≤ i+ j ≤ 2(n− r)− 1, i 6= j, }. (4)
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E.g. Cn1 ⊆ H(n) is the subspace of n×n diagonal matrices and C7
3 is the subspace of H(7)

of the from 

∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0 ∗
∗ ∗ 0 ∗ 0 ∗ ∗
∗ 0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗


.

For x ∈ R\{0}, k ∈ {2r−1, . . . , 2(n−r)−1}, define the Hermitian matrices Rk(x), Ik(x) ∈
(Cnr )⊥ by 5

(Rk(x))jl := δj+l,kx
j , j, l ∈ {0, . . . , n− 1}, j > l,

(Ik(x))jl := iδj+l,kx
j , j, l ∈ {0, . . . , n− 1}, j > l,

where δi,j denotes the Kronecker delta. E.g. for n = 5, r = 2 these are

R3(x) =


0 0 0 1 0
0 0 x 0 0
0 x 0 0 0
1 0 0 0 0
0 0 0 0 0

 , I3(x) =


0 0 0 i 0
0 0 ix 0 0
0 −ix 0 0 0
−i 0 0 0 0
0 0 0 0 0

 , R4(x) =


0 0 0 0 1
0 0 0 x 0
0 0 0 0 0
0 x 0 0 0
1 0 0 0 0

 , I4(x) =


0 0 0 0 i
0 0 0 ix 0
0 0 0 0 0
0 −ix 0 0 0
−i 0 0 0 0

 ,

R5(x) =


0 0 0 0 0
0 0 0 0 1
0 0 0 x 0
0 0 x 0 0
0 1 0 0 0

 , I5(x) =


0 0 0 0 0
0 0 0 0 i
0 0 0 ix 0
0 0 −ix 0 0
0 −i 0 0 0

 .

Theorem III.3. Let G0 be a basis of Cnr and let x1, x2, . . . , xr ∈ R \ {0} with x1 < x2 <
. . . < xr. For k ∈ {2r − 1, . . . , 2(n− r)− 1} define

Gk := (Ik(x1), Rk(x1), . . . , Ik(xr), Rk(xr)).

and let G := G0 ∪G2r−1 ∪ · · · ∪G2(n−r)−1
6. Then the measurement MG is r-complete and

|G| = 4r(n− r) + n− 2r.

Remark If an m-measurement is injective when restricted to Snr , it was shown in [6, 27]
that, up to terms at most logarithmic in n, we have m ≥ 4r(n− r). Furthermore, in [3, 6]
it was shown that there indeed exist injective m-measurements for m = 4r(n−r). Thus, it
might be worth noting that the measurements given by Theorem III.3 solely require n−2r
additional measurement outcomes as compared to the nearly optimal bound 4r(n− r).

Finally, by Proposition II.1, the measurements given by Theorem III.3 allow for the recov-
ery of low-rank positive matrices.

Corollary III.4. (Recovery of low-rank positive matrices.) Let M be a measurement given
by Theorem III.3 and let X ∈ Snr . If b = M(X), then X is the unique minimizer of the
semidefinite program (2).

5 As Rk(x), Ik(x) ∈ (Cnr )
⊥ both have vanishing diagonal and since they are hermitian, it suffices to define

all elements above the diagonal.
6 For tuples of Hermitian matrices X := (X1, . . . , Xi) ∈ H(n)i, Y := (Y1, . . . , Yj) ∈ H(n)j we define their
union X ∪ Y to be the tuple X ∪ Y := (X1, . . . , Xi, Y1, . . . , Yj) ∈ H(n)i+j .
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IV. STABILITY

In this section we discuss the stability of r-complete measurements.
Assume there is an error term E ∈ H(n) that perturbs the matrix Xr ∈ Snr we intend to

recover to the matrix X = Xr +E. Measuring with an r-complete measurement M yields
the perturbed outcome b = M(X). Clearly, the matrix Xr cannot always be perfectly
recovered from the outcome b, however, if ‖M(E)‖2 is small, there is a recovery procedure
that yields a matrix close to Xr. For that purpose, consider the following well-known
optimization problem

minimize tr(Y )

subject to Y ≥ 0, ‖M(Y )− b‖2 ≤ ε
(5)

where ε ≥ 0 is a constant representing the error scale.

Theorem IV.1. (Stable recovery of low-rank positive matrices.) Let M be an r-complete
measurement and let ε > 0. There is a constant CM > 0 independent of ε such that for all
Xr ∈ Snr and E ∈ H(n) with ‖M(E)‖2 ≤ ε, any minimizer Y of (5) for b = M(Xr + E)
satisfies

‖Y −Xr‖2 ≤ CM ε.

Remark In the proof of this theorem we show that CM ≤ 2
σmin

(1 + 1
κ) where σmin is the

smallest singular value of M and κ := −maxZ∈Ker(M),‖Z‖2=1 λn−r(Z) 7. However we do
not know how to compute κ for a given r-complete measurement M and hence we cannot
make this bound more explicit.

The proof of this theorem can be found in Section V. In order for this result to be a practical
stability guarantee, one would have to estimate the constant CM . At this point we do not
know how this can be achieved. In order to indicate the magnitude of the constant CM ,
let us next present some numerical results. For this purpose consider the tuple

Gn :=

(
e0e
∗
0, . . . , en−1e

∗
n−1,

I1(1)

‖I1(1)‖2
,
R1(1)

‖R1(1)‖2
, . . . ,

I2n−3(1)

‖I2n−3(1)‖2
,
R2n−3(1)

‖R2n−3(1)‖2

)
and note that by Theorem III.3 the associated measurement MGn is 1-complete. Figure
1 presents numerical results that might indicate the scaling of CMGn

for the sequence of
measurements (MGn)n∈N.

Just like in [12], this recovery scheme can also be used for the phase retrieval problem.
For a Hermitian matrix A ∈ H(n), we denote by Eig(A) ∈ Rn the tuple of eigenvalues of
A ordered decreasingly together with their multiplicities. Furthermore, we define λi(A) :=
Eig(A)i−1, i ∈ {1, . . . , n}.

7 λn−r is defined later this section.
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dimension n
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||Y
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||/
0

0
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15

FIG. 1: For each n ∈ {3, 6, . . . , 75} we choose uniformly at random a normalized vector x ∈ Cn

and an error term f ∈ R5n−6 with ‖f‖2 ≤ ε := 10−3. Then we run the program (5) with the
outcome b = MGn(xx∗) + f . The figure shows the maximum value of ‖Y − xx∗‖2/ε for 2200
repetitions where Y is the minimizer of (5).

Proposition IV.2. (Stability for Phase Retrieval.) Let X = xx∗ + E, where x ∈ Cn is
the signal and E ∈ H(n) is an error term. Let M be a 1-complete measurement and let
ε ≥ ‖M(E)‖2. Furthermore, let Y be any minimizer of the optimization problem (5) for
b = M(X) and set x̂ :=

√
λ1(Y )x′ where x′ ∈ Sn−1 is an eigenvector of Y with eigenvalue

λ1(Y ). Then

‖xx∗ − x̂x̂∗‖2 ≤ 2CM ε,

where CM is the constant given by Theorem IV.1. Furthermore, for some ϕ ∈ [0, 2π) we
have

‖x− eiϕx̂‖2 ≤
2
√

2CM
‖x‖2

ε.

This result follows from Theorem IV.1 by a straightforward computation. The proof is
given in Section V.

Remark The proofs of V.5 shows that the above stability results also hold true the fol-
lowing recovery scheme:

minimize ‖M(Y )− b‖2
subject to Y ≥ 0,

(6)

where M is r-complete and b = M(Xr + E), Xr ∈ Snr .
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V. TECHNICAL APPENDIX

Let us first introduce some notation we use throughout this section. Let A ∈ M(n, q),
i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , q − 1}. By A,i we denote the (n − 1) × q matrix obtained
from A by deleting the i-th row and by A,j we denote the n × (q − 1) matrix obtained
from A by deleting the j-th column. By A{i} we denote the i-th row of A and by A[j] we
denote the j-th column of A. Furthermore, for k ∈ {0, . . . , n+ q − 2}, we denote the k-th
anti-diagonal of A by A(k), i.e. A(k) := (Aij)i+j=k

8.

A. Proof of Theorem III.3

Since Theorem III.1 is obtained by manipulating the measurements obtained from The-
orem III.3 we begin by proving the latter. The construction we give in the following yields
a more general class of r-complete measurements than the ones given by Theorem III.3
and it strongly relies on the notion of totally non-singular matrices.

Definition V.1. (Totally non-singular.) A matrix A ∈ M(n, q) is called totally non-
singular if A has no vanishing minor.

The following lemma is a central ingredient for the construction given in the following.

Lemma V.1. Let q ∈ {1, . . . , n − 1} and let A ∈ M(n, q) be totally non-singular. Then,
there exists a totally non-singular matrix B ∈M(n, n− q) such that A∗B = 0.

Proof. We give a proof by induction in the dimension n for q fixed.
Base case. Let us begin with the base case n = q + 1. Note that for a given A ∈

M(q + 1, q) there always exists a nonzero matrix (actually just a vector) B ∈M(q + 1, 1)
such that A∗B = 0, in particular if A is totally non-singular.

Since B exists, it is enough to prove that if A is totally non-singular B is totally non-
singular as well: Assume for a contradiction that B is not totally non-singular, i.e. that B
has a vanishing entry. By permuting rows we can assume A and B to be of the form

A =

(
F
D

)
, B =

(
0
E

)
for some matrices F ∈M(1, q), D ∈M(q, q) and E ∈M(q, 1). But then

A∗B = F ∗0 +D∗E = D∗E = 0.

In particular this implies that the q × q submatrix D of A is singular, contradicting the
fact that A is totally non-singular by assumption.

Induction step. Assume the claim holds for an n > q and let A ∈ M(n + 1, q) be
totally non-singular. Note that for each i ∈ {0, . . . , n}, the n× q matrix A,i is totally non-
singular since A is totally non-singular. Thus, by the induction hypothesis, we can find for

8 The ordering is such that the matrix element with smaller i comes first.
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each i ∈ {0, . . . , n} a totally non-singular matrix Ci ∈ M(n, n − q) such that A∗,iCi = 0.
For i ∈ {0, . . . , n}, j ∈ {0, . . . , n− q} let C(i, j) ∈M(n+ 1, n+ 1− q) be the matrix with
C(i, j),j,i = Ci and 0 else. Then, for all i ∈ {0, . . . , n}, j ∈ {0, . . . , n− q}, C(i, j),j,i is totally
non-singular, C(i, j)[j] = 0 and A∗C(i, j) = 0 by construction.

Step 1. First, for each i ∈ {0, . . . , n}, we deform C(i, 0) into a matrix C̃(i, 0) ∈
M(n+ 1, n+ 1− q) with the following properties:

1. A∗C̃(i, 0) = 0,

2. C̃(i, 0),0,i is totally non-singular,

3. All (n+ 1− q)× (n+ 1− q) minors of C̃(i, 0),i are nonzero.

Let i ∈ {0, . . . , n}. For σ := (k0, . . . , kn−q) ∈ Σ := {(l0, . . . , ln−q) : 0 ≤ l0 < . . . <
ln−q ≤ n− 1} define the projection Pσ : M(n+ 1, n+ 1− q)→M(n+ 1− q, n+ 1− q) by
Pσ(X){j} := (X,i){kj} for all X ∈M(n+ 1, n+ 1− q), j ∈ {0, . . . , n− q}. Now let σ ∈ Σ,
and set Eσ := Pσ(C(i, 0)). By permuting rows we can assume A and C(i, 0) to be of the
form

A =

(
F
D

)
, C(i, 0) =

(
Eσ
Fσ

)
(7)

for some matrices F ∈M(n+ 1− q, q), D ∈M(q, q) and Fσ ∈M(q, n+ 1− q).

Next, we show that there is a vector uσ =

(
vσ
wσ

)
9, where vσ ∈ Cn+1−q, wσ ∈ Cq,

such that A∗uσ = 0 and det(Eσ + Pσ(uσe
∗
0)) = det(Eσ + vσe

∗
0) 6= 0: Since Ci is totally

non-singular, Eσ has rank n − q. Thus we can find a vector vσ ∈ Cn+1−q such that
det(Eσ + vσe

∗
0) 6= 0 10. Finally, we just have to ensure that A∗uσ = 0. Since D is

totally non-singular there is a vector wσ ∈ Cq such that D∗wσ = −F ∗vσ and this gives

A∗
(
vσ
wσ

)
= F ∗vσ + D∗wσ = 0. Repeating this construction, we can find a collection of

vectors {uσ}σ∈Σ ⊆ Cn+1 such that for all σ ∈ Σ we have A∗uσ = 0 and det
(
Pσ(C(i, 0) +

uσe
∗
0)
)
6= 0.

Next, for distinct σ1, σ2 ∈ Σ, define the mapping K(λ) := C(i, 0) + uσ1e
∗
0 + λuσ2e

∗
0,

λ ∈ C and note that by construction A∗K(λ) = 0 for all λ ∈ C. Note that by construction
K(λ),0,i = Ci is totally non-singular for all λ. Furthermore, the (n + 1 − q) × (n + 1 − q)
minors det

(
Pσ1(K(λ))

)
and det

(
Pσ2(K(λ))

)
can be considered as polynomials in λ. The

polynomial equations det
(
Pσ1(K(λ))

)
= 0 and det

(
Pσ2(K(λ))

)
= 0 are non-trivial: For

λ = 0 we have det
(
Pσ1(K(0))

)
= det

(
Pσ1(C(i, 0) + uσ1e

∗
0)
)
6= 0 by construction. For λ

large one can consider 1
λuσ1e

∗
0 as a small perturbation to uσ2e∗0. Thus, using linearity of

9 The direct sum decomposition of uσ is with respect to the decomosition given by Equation (7), i.e.
A∗uσ = F ∗vσ +D∗wσ.

10 Note that Eσ[0] = 0 by construction of C(i, 0).
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the determinant in the 0-th column, we conclude that

det
(
Pσ2(K(λ))

)
= det

(
Pσ2(C(i, 0) + uσ1e

∗
0 + λuσ2e

∗
0)
)

= λ · det
(
Pσ2(C(i, 0) + uσ2e

∗
0) +

1

λ
Pσ2(uσ1e

∗
0)
)
6= 0

for large enough λ by the continuity of the determinant and the fact that det
(
Pσ2(C(i, 0)+

uσ2e
∗
0)
)
6= 0 by construction. A non-trivial polynomial equation in one variable just has a

finite set of solutions and hence the set

{λ ∈ C : det
(
Pσ1(K(λ))

)
= 0 ∨ det

(
Pσ2(K(λ))

)
= 0}

= {λ ∈ C : det
(
Pσ1(K(λ))

)
= 0} ∪ {λ ∈ C : det

(
Pσ2(K(λ))

)
= 0}

is finite. In particular there is an aσ2 ∈ C such that det
(
Pσ1(K(aσ2))

)
6= 0 and

det
(
Pσ2(K(aσ2))

)
6= 0 11. Applying the same argument to L(λ) := C(i, 0) + uσ1e

∗
0 +

aσ2uσ2e
∗
0 + λuσ3e

∗
0, λ ∈ C, where σ3 ∈ Σ is distinct from σ1, σ2, yields an aσ3 ∈ C

such that det
(
Pσ1(L(aσ3))

)
6= 0, det

(
Pσ2(L(aσ3))

)
6= 0 and det

(
Pσ3(L(aσ3))

)
6= 0 12.

Finally, since |Σ| is finite, we can inductively apply the argument to obtain a matrix
C̃(i, 0) = C(i, 0) + uσ1e

∗
0 +

∑
σ∈Σ,σ 6=σ1 aσuσe

∗
0 with the desired properties.

Step 2. Secondly, we construct for each i ∈ {0, . . . , n} a matrix Di ∈M(n+ 1, q) with
the following properties:

1. A∗Di = 0.

2. (Di),i is totally non-singular.

Let i ∈ {0, . . . , n}. Let Di(λ1, . . . , λn−q) := C̃(i, 0) +
∑n−q

j=1 λjC(i, j) where λj ∈ C,
j ∈ {1, . . . , n − q}, and note that by construction we have A∗Di(λ1, . . . , λn−q) = 0 for
all λ1, . . . , λn−q ∈ C. By choosing (λ1, . . . , λn−q) appropriately one can make sure that
(Di(λ1, . . . , λn−q)),i is totally non-singular: First let G(λ) := C̃(i, 0) + λC(i, 1), λ ∈ C.
Just like in Step 1, the minors of G(λ),0,i and G(λ),1,i together with the (n+1−q)×(n+1−q)
minors of G(λ),i yield a finite set of polynomial equations in λ. All of these polynomial
equations are non-trivial: For λ = 0 none of the minors of G(0),0,i = Ci and none of the
(n + 1 − q) × (n + 1 − q) minors of G(0),i = C̃(i, 0),i vanish by construction of C̃(i, 0).
For large λ one can consider 1

λ C̃(i, 0) as a small perturbation to C(i, 1). Hence, for large
enough λ, none of the minors of 1

λG(λ),1,i vanishes by the fact that C(i, 1),1,i = Ci is totally
non-singular by construction and the continuity of the minors. Thus, just like in Step 1, we
conclude that there are just finitely many values of λ for which any of these polynomials
vanishes. In particular there is an λ1 ∈ C such that both G(λ1),0,i and G(λ1),1,i are totally
non-singular and all (n+ 1− q)× (n+ 1− q) minors of G(λ1),i are nonzero. Applying the
same argument to H(λ) := C̃(i, 0) + λ1C(i, 1) + λC(i, 2), λ ∈ C, yields an λ2 ∈ C such
that H(λ2),0,i , H(λ2),1,i and H(λ2),2,i are totally non-singular and all (n+ 1− q)× (n+ 1− q)

11 In fact this holds for almost all aσ2 ∈ C.
12 Also in this case we obtain a finite set of non-trivial polynomial equations in λ and thus the argument

given before can be applied to find aσ3 .
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minors of H(λ2),i are nonzero. Choosing the values for λj , j ∈ {1, . . . , n− q}, inductively
in this fashion finally yields a matrix Di with the desired properties.

Step 3. To complete the induction step we choose by a similar argument as in Step
1 and Step 2 before parameters γj ∈ C, j ∈ {1, . . . , n}, in B := D0 +

∑n
j=1 γjDj such

that B,i is totally non-singular for each i ∈ {0, . . . , n}, i.e. such that B is totally non-
singular: First define I(λ) := D0 + λD1, λ ∈ C. Clearly I(0),0 = (D0),0 is totally
non-singular by construction of D0. Furthermore, for large λ , 1

λD0 can be considered
as a small perturbation to D1. Thus, for λ large enough, 1

λI(λ),1 is totally non-singular
by construction of D1 and the continuity of the minors. Hence, all the minors of I(λ),0
and I(λ),1 yield non-trivial polynomial equations in λ and therefore there are just finitely
many values for λ for which any of these minors vanishes. In particular there is a γ1 ∈ C
such that both I(γ1),0 and I(γ1),1 are totally non-singular. Applying the same argument
to J(λ) := D0 + γ1D2 + λD2 yields a γ2 ∈ C such that J(γ2),0, J(γ2),1 and J(γ2),2 are
totally non-singular. Continuing to choose the γi, i ∈ {1, . . . , n}, inductively in this fashion
then yields a totally non-singular matrix B with A∗B = 0.

Lemma V.2. Let q ∈ {1, . . . , n−1} and let A ∈M(n, q,R) be totally non-singular. Then,
there exists a totally non-singular matrix B ∈M(n, n− q,R) such that AtB = 0.

Proof. The arguments given in the proof of Lemma V.1 also apply to real numbers.

For k ∈ {1, . . . , 2n−3}, define the inclusion in the k-th antidiagonal ιk : Cγ(n,k) → H(n)
by

(ιk(v))jl :=
1√
2


vj if j + l = k, j < l
v∗l if j + l = k, l < j
0 else

where

γ(n, k) =

{
dk/2e if k ≤ n− 1
dn− 1− k/2e if k > n− 1

is the length of the upper half of the k-th antidiagonal. By expanding in the generalised
Gell-Mann orthonormal basis of H(n), it is easily seen that the inclusion of real vectors in
the same antidiagonal preserves the standard inner product, i.e. for k ∈ {1, . . . , 2n − 3}
we have

tr
(
ιk(v)ιk(w)

)
= 〈v, w〉, ∀v, w ∈ Rγ(n,k). (8)

Furthermore, the inclusion of an imaginary and a real vector in the same antidiagonal
yields Hilbert-Schmidt orthogonal matrices, i.e. for k ∈ {1, . . . , 2n− 3} we have

tr
(
ιk(v)ιk(iw)

)
= 0, ∀v, w ∈ Rγ(n,k), (9)

and finally that inclusions of vectors in different antidiagonals also yield Hilbert-Schmidt
orthogonal matrices, i.e. for k, j ∈ {1, . . . , 2n− 3} with k 6= j we have

tr
(
ιk(v)ιj(w)

)
= 0, ∀v ∈ Cγ(n,k), w ∈ Cγ(n,j). (10)

The following theorem is the main result of the present paper.
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Theorem V.3. Let G0 be a basis of Cnr 13. Furthermore, for k ∈ {2r−1, . . . , 2(n−r)−1},
let Ak, A′k ∈M(γ(n, k), r,R) be totally non-singular and define the tuple

Gk :=
(
ιk(Ak[0]), ιk(iA

′
k[0]), ιk(Ak[1]), ιk(iA

′
k[1]), . . . , ιk(Ak[r − 1]), ιk(iA

′
k[r − 1])

)
.

Then G := G0 ∪G2r−1 ∪G2r ∪ · · · ∪G2(n−r)−1 is r-complete and |G| = 4r(n− r) + n− 2r.

Proof. The idea of the proof is to use Lemma V.2 to determine a basis of the null space
of MG such that the construction of [19] can be applied. We do this in the first step of
the proof. In the second step of the proof we use the construction of [19] to show that MG

indeed is r-complete.
Step 1. First, by Lemma V.2, there are totally non-singular Bk, B

′
k ∈

M(γ(n, k), γ(n, k)− r,R), k ∈ {2r + 1, . . . , 2(n− r)− 3}, such that

AtkBk = 0,

(A′k)
tB′k = 0.

(11)

Now let

G⊥k :=
(
ιk(Bk[0]), ιk(iB

′
k[0]), . . . , ιk(Bk[γ(n, k)− r − 1]), ιk(iB

′
k[γ(n, k)− r − 1])

)
,

k ∈ {2r + 1, . . . , 2(n− r)− 3}

and let G⊥k = (0) for k ∈ {2r−1, 2r, 2(n−r)−2, 2(n−r)−1}. In the remainder of this first
step we prove that G⊥2r−1 ∪ · · · ∪G⊥2(n−r)−1 is a basis of Ker(MG): For k ∈ {1, . . . , 2n− 3},
let Qk := {X ∈ H(n) : X(j) = 0 ∀j 6= k ∧ Xii = 0 for 2i = k} be the subspace of
Hermitian matrices with vanishing diagonal and non-vanishing entries only in the k-th
antidiagonal. By Equation (10), H(n) can be decomposed into the following mutually
orthogonal subspaces:

H(n) = Cnr ⊕Q2r−1 ⊕ · · · ⊕Q2(n−r)−1. (12)

Note that Span(Gk ∪ G⊥k ) ⊆ Qk for all k ∈ {2r − 1, . . . , 2(n − r) − 1}. Hence, by the
decomposition (12), to show that G⊥2r−1 ∪ · · · ∪G⊥2(n−r)−1 is a basis of Ker(MG) it suffices
to prove that for k ∈ {2r − 1, . . . , 2(n − r) − 1} the matrices G⊥k ∪ Gk span the subspace
Qk and that Span(G⊥k ) ⊆ Ker(MG). First observe that indeed Span(G⊥k ) ⊆ Ker(MG) for
every k ∈ {2r + 1, . . . , 2(n− r)− 3}: Note that for every k ∈ {2r + 1, . . . , 2(n− r)− 3},

tr
(
ιk(Ak[l])ιk(Bk[j])

)
= 〈Ak[l], Bk[j]〉 = (AtkBk)lj = 0,

tr
(
ιk(iA

′
k[l])ιk(iB

′
k[j])

)
= 〈A′k[l], B′k[j]〉 = ((A′k)

tB′k)lj = 0,

∀l ∈ {0, . . . , r − 1}, j ∈ {0, . . . , γ(n, k)− r − 1},
(13)

by equations (8) and (11). Furthermore,

tr
(
ιk(iA

′
k[l])ιk(Bk[j])

)
= 0,

tr
(
ιk(Ak[l])ιk(iB

′
k[j])

)
= 0,

∀l ∈ {0, . . . , r − 1}, j ∈ {0, . . . , γ(n, k)− r − 1},
(14)

13 Cnr was defined in Equation (4).
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by Equation (9). I.e. Span(G⊥k ) is orthogonal to Span(Gk) and thus Span(G⊥k ) ⊆ Ker(MG).
To conclude the first step, we prove that G⊥k ∪ Gk spans the subspace Qk for every

k ∈ {2r − 1, . . . , 2(n − r) − 1}: Let k ∈ {2r − 1, . . . , 2(n − r) − 1}. Since Ak is totally
non-singular, the columns of Ak are linearly independent and the same argument applies
to A′k. Hence, by the equations (8) and (9), Gk is a tuple of linearly independent Hermitian
matrices. The same argument applies toG⊥k , k ∈ {2r+1, . . . , 2(n−r)−3}. But we have seen
that Span(Gk) is orthogonal to Span(G⊥k ) for k ∈ {2r+ 1, . . . , 2(n− r)− 3}. Furthermore,
for k ∈ {2r − 1, . . . , 2(n− r)− 1}, |G⊥k |+ |Gk| = 2(γ(n, k)− r) + 2r = 2γ(n, k) = dimQk
and thus G⊥k ∪Gk indeed spans Qk.

Finally, observe that

|G| = dimCnr +

2(n−r)−1∑
i=2r−1

|Gi| =
2r−2∑
i=1

2γ(n, i) + n+

2(n−2r)+1∑
i=1

2r

= (2r)2 − 2(2r) + n+ 2r(2(n− 2r) + 1)

= 4r(n− r) + n− 2r.

Step 2. In the second step, we essentially reproduce the construction of [19] and some
ideas of [26]. We show in the following that every nonzero matrixX ∈ Ker(MG) has at least
r + 1 positive and r + 1 negative eigenvalues and this concludes the proof by Proposition
II.2.

Let X ∈ Ker(MG) be arbitrary. By the interlaced eigenvalue Theorem (Theorem 4.3.15
of [28]) it suffices to prove that there is an 2(r + 1) × 2(r + 1) principal submatrix of
X with r + 1 positive and r + 1 negative eigenvalues. We conclude the proof by finding
such a submatrix: There is a smallest number k ∈ {2r + 1, . . . , 2(n− r)− 3} such that X
has non-vanishing entries in the k-th antidiagonal. First note that either the real or the
imaginary part of the k-th antidiagonal does not vanish. Let us consider the case where
the real part does not vanish, the other case can be shown analogously. The real part of
the k-th antidiagonal of Ker(MG) is spanned by the γ(n, k) − r real matrices of G⊥k , i.e.
each X ∈ Ker(MG) is a linear combination of the γ(n, k) − r real matrices of G⊥k . But
then there have to be at least 2(r+ 1) non-vanishing entries in the k-th antidiagonal of X
because otherwise there would be a vanishing (γ(n, k)− r)× (γ(n, k)− r) minor of Bk and
this contradicts the fact that Bk is totally non-singular (For more details see Lemma 9 of
[26].). I.e. there is a 2(r + 1)× 2(r + 1) principal submatrix of X of the from:

0 0 0 . . . 0 0 x1

0 0 0 . . . 0 x2 y1
1

0 0 0 . . . x3 y2
1 y1

2
...

...
...

...
...

...
0 0 x3 . . . 0 y2

2r−2 y1
2r−1

0 x2 y2
1 . . . y2

2r−2 0 y1
2r

x1 y1
1 y1

2 . . . y1
2r−1 y1

2r 0


, xi ∈ C \ {0}, i ∈ {1, . . . , r + 1}, (15)

where yji ∈ C, j ∈ {1, . . . , r}, i ∈ {1, . . . , 2(r + 1)− 2j}, are arbitrary.
Finally, we show by induction that a matrix of this form has at least r + 1 positive

and r + 1 negative eigenvalues: The claim clearly holds for r = 0. Now assume the claim
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holds for r ∈ N0. Let Y be a 2(r + 2) × 2(r + 2) matrix that is of the form illustrated in
Equation (15). Then, one can obtain a principal 2(r + 1) × 2(r + 1) submatrix Y ′ of Y
that is of the same form by e.g. deleting the first and last row as well as the first and last
column of Y . Thus, by the induction hypothesis and the interlaced eigenvalue Theorem
(Theorem 4.3.15 of [28]), Y has at least r + 1 positive and r + 1 negative eigenvalues. A
straightforward calculation shows that det(Y ) · det(Y ′) < 0. Since the determinant of a
matrix is the product of its eigenvalues, the claim follows from det(Y ) · det(Y ′) < 0.

In the following the r = 1 case is of particular interest because Theorem III.1 is obtained
from this case by choosing the totally non-singular matrices appropriately.

Corollary V.4. Let G0 := (e0e
∗
0, . . . , en−1e

∗
n−1). Furthermore let wk, vk ∈ Rγ(n,k), k ∈

{1, . . . , 2n − 3}, be such that every entry of vk and every entry of wk is nonzero. Then
G := G0 ∪

(
ι1(v1), ι1(iw1)

)
∪ · · · ∪

(
ι2n−3(v2n−3), ι2n−3(iw2n−3)

)
is 1-complete and |G| =

5n− 6.

Proof. First, note that G0 is a basis of Cn1 . Furthermore as by assumption all en-
tries of matrices wk, vk ∈ Rγ(n,k) ' M(γ(n, k), 1,R), k ∈ {1, . . . , 2n − 3}, are nonzero,
we conclude that all their minors are nonzero14. Consequently the matrices wk, vk ∈
M(γ(n, k), 1,R), k ∈ {1, . . . , 2n − 3}, are totally non-singular. Hence G0 and Gk :=(
ι1(v1), ι1(iw1)), k ∈ {1, . . . , 2n − 3} fulfil the conditions of Theorem V.3 for r = 1 and
thus G = G0 ∪G1 ∪ . . . ∪G2n−3 is 1-complete.

Example For i ∈ {1, . . . , 2n− 3}, we can choose wi = vi =
√

2e, where e := (1, . . . , 1) ∈
Rγ(n,i) is the vector with a one in every component. Altogether this yields 2(2n− 3) +n =
5n− 6 Hermitian operators for G. For n = 4 these are


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,


0 i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,


0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 ,


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 ,


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ,


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 0
0 0 0 0
0 0 0 i
0 0 −i 0

 .

Finally, let us give a proof of Theorem III.3.

Proof. For k ∈ {2r − 1, . . . , 2(n − r) − 1}, define Ak, A′k ∈ M(γ(n, k), r,R) by setting
(Ak)jl = (A′k)jl = xjl+1 for all j ∈ {0, . . . , γ(n, k) − 1}, l ∈ {0, . . . , r − 1}. Observe that
both Ak and A′k can be considered as the first r columns of a γ(n, k)×γ(n, k) Vandermonde
matrix and since xj 6= xl for all j, l ∈ {1, . . . , r} with j 6= l and xl 6= 0 for all l ∈ {1, . . . , r}
they are thus totally non-singular. Applying Theorem V.3 to Ak, A′k then concludes the
proof.

14 The minors of a m× 1 matrix are simply the entries of the matrix.
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B. Proof of Theorem III.1

Let us now give a proof of Theorem III.1.

Proof. Define Yk, Xk ∈ H(n), k ∈ {1, . . . , 2n− 3}, by

(Xk)jl := δj+l,k cos

(
j − l
2n

π

)
,

(Yk)jl := iδj+l,k sin

(
j − l
2n

π

)
,

j, l ∈ {0, . . . , n− 1}.

Next observe two things:

1. The matrices {X1, Y1, . . . , X2n−3, Y2n−3} ⊆ H(n) are linearly independent by equa-
tions (9) and (10).

2. Since 0 < j−l
2n π <

π
2 for j, l ∈ {0, . . . , n− 1}, j > l, we find (Xk)jl 6= 0 and (Yk)jl 6= 0

for j + l = k, j > l.

Let uk, wk ∈ Rγ(n,k), k ∈ {1, . . . , 2n− 3}, be such that ιk(uk) = Xk− δk/2,dk/2eedk/2ee∗dk/2e,
ιk(iwk) = Yk and note that both uk and wk have no vanishing entry. Thus, by Corollary
V.4, G̃ := (e0e

∗
0, . . . , en−1e

∗
n−1) ∪ (X1, Y1, . . . , X2n−3, Y2n−3) is 1-complete.

Let G := (e0e
∗
0, . . . , en−1e

∗
n−1, v1v

∗
1, v1v

∗
1, . . . , v2n−3v

∗
2n−3, v2n−3v

∗
2n−3). To conclude the

proof, we show that Span(G) = Span(G̃). First note that for k ∈ {1, . . . , 2n− 3}

vkv
∗
k =

2n−3∑
j=1

xjk(Xj + Yj) + e0e
∗
0 + x2n−2

k en−1e
∗
n−1,

vkv
∗
k =

2n−3∑
j=1

xjk(Xj − Yj) + e0e
∗
0 + x2n−2

k en−1e
∗
n−1

and thus Span(G) ⊆ Span(G̃). In order to show that Span(G̃) ⊆ Span(G), consider the
matrix

T :=


x1 x2

1 x3
1 . . . x2n−3

1

x2 x2
2 x3

2 . . . x2n−3
2

x3 x2
3 x3

3 . . . x2n−3
3

...
...

...
...

x2n−3 x2
2n−3 x3

2n−3 . . . x2n−3
2n−3.


The matrix T is a Vandermonde matrix and thus invertible if xi 6= xj for i 6= j. Hence we
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find 15

Xk =
1

2

2n−3∑
j=1

(T−1)kj(vjv
∗
j + vjv

∗
j − 2e0e

∗
0 − 2x2n−2

k en−1e
∗
n−1),

Yk =
1

2

2n−3∑
j=1

(T−1)kj(vjv
∗
j − vjv∗j )

and this shows that Span(G̃) ⊆ Span(G).

Remark Note that there are many possible choices for the phases of the vi. The only
constraint is that jϕ 6= kπ

2 for all j ∈ {1, . . . , n− 1}, k ∈ Z.

C. Proof of Theorem IV.1 and Proposition IV.2

For Xr ∈ Snr , E ∈ H(n), ε ≥ 0 and a measurement M define the set

Fε(Xr, E,M) := {Y ∈ Sn : ‖M(Y )− b‖2 ≤ ε}, (16)

where b = M(Xr + E).

Lemma V.5. (Stability.) Let M be an r-complete measurement and let ε > 0. Then,
there exists a constant CM > 0 independent of ε such that for all Xr ∈ Snr , and E ∈ H(n)
with ‖M(E)‖2 ≤ ε we have

Y ∈ Fε(Xr, E,M)⇒ ‖Y −Xr‖2 ≤ CM ε.

Proof. Denote by π : H(n) → Range(M∗) the orthogonal projection on the subspace
Range(M∗) ⊆ H(n) and by π⊥ : H(n) → Ker(M) the orthogonal projection on the
subspace Ker(M) ⊆ H(n). Furthermore, let Y ′ := π⊥(Xr) + π(Y ) and let σmin be the
smallest singular value of M 16. Then, we find

‖Xr − Y ′‖ = ‖π(Xr − Y )‖2 ≤
1

σmin
‖M(Y −Xr)‖2

≤ 1

σmin
(‖M(Xr)− b‖2 + ‖M(Y )− b‖2) ≤ 1

σmin
(‖M(E)‖2 + ε)

≤ 2

σmin
ε. (17)

From the spectral variation bound for Hermitian matrices (Theorem III.2.8 of [29]) we
conclude that

‖Eig(Xr)− Eig(Y ′)‖2 =

√√√√ r∑
i=1

(
λi(Xr)− λi(Y ′)

)2
+

n∑
i=r+1

λi(Y ′)2

≤ 2

σmin
ε.

15 Different from the rest of the present paper, the indices we use to label T begin with 1, not with G.
16 We assume M to have full rank.
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But this implies that |λi(Y ′)| ≤ 2
σmin

ε for i ∈ {r + 1, . . . , n}.
Next, note that

κ := − max
Z∈Ker(M),‖Z‖2=1

λn−r(Z)

exists by compactness of {Z ∈ Ker(M) : ‖Z‖2 = 1} and continuity of λn−r. Furthermore,
by Proposition II.2, every nonzero Z ∈ Ker(M) has at least r+ 1 negative eigenvalues and
hence we conclude that κ > 0.

There exists Z ∈ Ker(M) with ‖Z‖2 = 1 and α ≥ 0 such that Y = Y ′ + αZ 17. Since
Y ≥ 0 we conclude from Weyl’s inequality (Theorem III.2.1 of [29]) that

0 ≤ λn(Y ′ + αZ) ≤ λr+1(Y ′) + αλn−r(Z) ≤ 2

σmin
ε− ακ.

and hence we find

α ≤ 2

κσmin
ε. (18)

Finally, combining equations (17) and (18), we conclude that

‖Y −Xr‖2 = ‖Y ′ + αZ −Xr‖2 ≤ ‖Y ′ −Xr‖2 + ‖αZ‖2

≤
(

2

σmin
+

2

κσmin

)
ε.

Choosing CM = 2
σmin

(1 + 1
κ) then proves the claim.

Remark Since κ just depends on Ker(M), it is independent of the choice of basis for
Range(M∗). Thus, since it is always possible to choose an orthonormal basis of Range(M∗),
the constant CM is mainly determined by κ.

The proof of Theorem IV.1 is an immediate consequence of this lemma.

Remark Let M be a measurement that is not r-complete. Then there exist Zr ∈ Snr and
Z ∈ Sn with Zr 6= Z such that M(Zr −Z) = 0 and we find Z ∈ Fε(Zr, E,M) for all ε > 0
and E ∈ H(n) with ‖M(E)‖2 ≤ ε. Thus, if 1 ∈ Range(M∗), the r-complete property is
necessary to enable the recovery of every Xr ∈ Snr via the optimization problem (5).

Finally let us give the proof of Proposition IV.2.

Proof. From Theorem IV.1 we obtain the bound ‖Y − xx∗‖2 ≤ CM ε and the proof of
Lemma IV yields the bound

√∑n
i=2 λi(Y )2 ≤ CM ε. From this we find

‖xx∗ − x̂x̂∗‖2 ≤ ‖Y − xx∗‖2 + ‖Y − x̂x̂∗‖2 ≤ 2CM ε.

17 Note that αZ = π⊥(Y )− π⊥(Xr) ∈ Ker(M).
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Finally let ϕ ∈ [0, 2π) be such that 〈x, eiϕx̂〉 is positive. Then,

‖x− eiϕx̂‖22‖x‖22 =
(
‖x‖22 + ‖x̂‖22 − 2Re

(
〈x, eiϕx̂〉

))
‖x‖22

=
(
‖x‖22 + ‖x̂‖22 − 2|〈x, x̂〉|

)
‖x‖22

≤
(
‖x‖22 + ‖x̂‖22 − 2|〈x, x̂〉|

) (
‖x‖22 + ‖x̂‖22 + 2|〈x, x̂〉|

)
=
(
‖x‖22 + ‖x̂‖22

)2 − 4|〈x, x̂〉|2

= ‖x‖42 + ‖x̂‖42 − 2|〈x, x̂〉|2 + 2‖x‖22‖x̂‖22 − 2|〈x, x̂〉|2

≤ 2
(
‖x‖42 + ‖x̂‖42 − 2|〈x, x̂〉|2

)
= 2‖xx∗ − x̂x̂∗‖22
≤ 2(2CM ε)
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Optimal Injectivity Conditions for Bilinear Inverse Problems
with Applications to Identifiability of Deconvolution

Problems

M. Kech and F. Krahmer August 24, 2016

In bilinear inverse problems the aim is to reconstruct two vectors u ∈ Cn1 \ {0}, v ∈
Cn2\{0} from the measurement outcome B̃(u, v), where B̃ : Cn1×Cn2 → Cm is a bilin-
ear map. At best, this is possible up to the equivalence relation (u, v) ∼ (λu, 1/λv), λ ∈
C \ {0} .

Definition 1. (Strong identifiability modulo scaling [1].) A subset V ⊆ Cn1 \ {0} ×
Cn2 \ {0} is strongly identifiable modulo scaling with respect to a bilinear map B̃ :
Cn1 × Cn2 → Cm iff the following condition holds: If there exist (u, v), (u′, v′) ∈ V
such that B̃(u, v) = B̃(u′, v′), then (u, v) ∼ (u′, v′).

1 Tight Bounds for the Injectivity Problem

Let Cn
s := {x ∈ Cn : x is s-sparse} and let

M1
s1,s2(n1, n2) := {uvt : u ∈ Cn1

s1 , v ∈ Cn2
s2 }.

As they allow for a more convenient presentation, the results in this section are given
in terms of linear maps B : Cn1×n2 → Cm rather than bilinear maps1 B̃ : Cn1×Cn2 →
Cm.

Definition 2 (Stably (s1, s2)-injective). A linear map B : Cn1×n2 → Cm is called
stably (s1, s2)-injective iff there exists a constant C > 0 such that ‖B(X)‖ ≥ C‖X‖HS

holds for all X ∈ {λ(X − Y )|X,Y ∈M1
s1,s2(n1, n2), λ > 0}.

The first result gives a general lower bound on the number of measurement outcomes
of a stably (s1, s2)-injective linear map.

Theorem 1 (Lower bound). If the linear map B : Cn1×n2 → Cm is stably (s1, s2)-
injective, then

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

The following theorem shows that the lower bound given by Theorem 1 is indeed
tight.

1Recall that there is a one-to-one correspondence between bilinear maps B̃ : Cn1 × Cn2 → Cm and
linear maps B : Cn1×n2 → Cm.



Theorem 2 (Upper bound). Almost all2 linear maps B : Cn1×n2 → Cm are stably
(s1, s2)-injective if

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

2 Blind Deconvolution

The circular convolution of vectors v, w ∈ Cm is denoted by v ~ w ∈ Cm, i.e., for all
i ∈ {0, . . . ,m− 1} one has (v ~ w)i :=

∑m−1
j=0 vjw(i−j)modm. The mapping

C : Cm × Cm → Cm, (v, w) 7→ v ~ w

clearly is bilinear.
Denote by

F (m, k) := {X ∈ Cm×k| rankX = k}

the set of all tuples of k linearly independent vectors in Cm. In the following theorem
the term “almost all” refers to the Lebesgue measure on Cm×k.

Theorem 3 (Deconvolution with sparsity constraint). For E ∈ F (m, k), set ran(E)s :=
{x ∈ ranE : x is s-sparse when expanded in E.}. Let s1, s2 ∈ N+ be such that
2(s1 + s2) − 2 ≤ m and let k, l ∈ N be such that s1 < k ≤ m, s2 < l ≤ m.
Then, for almost all pairs (E,D) ∈ F (m, k) × F (m, l) the set ran(E)s1 × ran(D)s2
is strongly identifiable modulo scaling with respect to the circular convolution map
C : Cm × Cm → Cm, (v, w) 7→ v ~ w.

For k ≤ m, consider the Grassmannian

G(m, k) := {P ∈ Cm×m|P is a rank k orthogonal projection.}.

Let d be the metric on G(m, k) defined by setting d(P, P ′) := ‖P − P ′‖HS for all
P, P ′ ∈ G(m, k). In the following theorem, the term “almost all” refers to the Haar
measure on the compact metric space G(m, k)×G(m, l).

Theorem 4 (Deconvolution with subspace constraint). Let k, l ∈ N+ be such that
2(k+ l)− 4 ≤ m. Then, for almost all pairs of projections (P, P ′) ∈ G(m, k)×G(m, l)
the set ranP ×ranP ′ is strongly identifiable modulo scaling with respect to the circular
convolution map C : Cm × Cm → Cm, (v, w) 7→ v ~ w.

It follows form Theorem 1 that the bounds given in the theorems 3 and 4 are indeed
optimal.

2By vectorizing the input matrices, the set of linear maps B : Cn1×n2 → Cm can be identified with
Cn1n2×m. The term “almost all” refers to the Lebesgue measure on Cn1n2×m.
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2

I. INTRODUCTION

While inverse problems have been subject of study for many years, a new viewpoint has
been taken in the last years, starting with the fundamental works on compressed sensing
[2, 3]. Namely, rather than assuming that the inverse problem is completely determined by
the application and potentially maximally ill-posed, the paradigm was to use the remaining
degrees of freedom in the problem design as much as possible to ensure a unique solution.

A common observation in many scenarios is that most measurement setups behave near
optimally. There are two ways to make this precise and works following both approaches:
On the one hand, one can choose the measurement parameters at random and study
conditions entailing that recovery is possibly with high probability. On the other hand
one can take an information theoretic approach, aiming to establish identifability (that
is, solution uniqueness or injectivity) for all measurement parameters except for a set of
measure zero. In contrast to the �rst approach, the goal is not to devise working solutions,
but rather to establish fundamental limits for the number of measurements, which can
then be used as a measure to judge the quality of a concrete measurement setup. As a
consequence, the number of measurements needed in the second approach is smaller, but
the resulting statement is weaker in the sense that much weaker claims are made about
the stability with respect to noise and none about algorithms to �nd the unique solution.

These approaches have been extensively applied to linear inverse problems, that is,
one considers linear measurements of a signal known to satisfy some additional model
assumptions. In this context, the randomized approach is addressed in many works in
the areas of compressed sensing � here the signal is assumed to be sparse �, low rank
matrix recovery, and beyond (see [4] for a textbook with many references). The article
[5] provides a comprehensive treatment to randomized linear inverse problems on a very
general level via convex optimization. The linear setup has also been studied from the
identi�ability viewpoint. Under sparsity assumptions, this problem relates to the study
of the spark of the measurement matrix, that is, (one more than) the largest number
of linearly independent columns (cf. [6]). For low rank matrix recovery, identi�ability
conditions have been established in [7]. Again for low rank matrix recovery, identi�ability
conditions for random signal models have recently been studied in [8].

More recently, similar considerations have also been applied to the phase retrieval prob-
lem, where one still considers linear measurements, but only the (square of) their absolute
values is observed. Recovery guarantees for randomized setups have �rst been proven in
[9] and extended in many follow-up works. At the core of many of these works is a lifting
idea, namely that phaseless measurements can be expressed as linear measurements on the
outer product of the signal with itself. For the study of injectivity conditions, an algebraic
geometry viewpoint has proven useful. It turned out to be crucial whether one deals with
real or complex measurements. Optimal injectivity bounds (up to a global phase factor)
for the real case were proven in [10], while the complex case has proven signi�cantly more
di�cult and bounds have successively improved over the last few years [10�12].

For bilinear inverse problems, i.e., measurements that depend in a bilinear way on two
input signals, such considerations are only in their beginnings. Here one can only hope
for injectivity up to a global multiplicative constant. Again, via a lifting approach, such
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problems can be identi�ed with low rank matrix recovery problems. So if no structural
constraints are imposed, recovery guarantees directly carry over. The setup with additional
sparsity assumptions, again under random measurements, is somewhat more involved and
has been studied in [13]. Deterministic conditions for injectivity are derived in [14], where
the authors also consider scenarios where one only �nds uniqueness up to more general
multiplication groups.

Without additional assumptions, there is still a gap between both the randomized and
the algebraic setup and measurement systems arising in applications. Namely, applications
impose additional constraints on the structure of the measurements, which correspond to a
measure zero set in the space of unrestricted measurements, so the aforementioned results
typically do not have implications about whether any of the solutions satisfy these con-
straints. This motivated the study of structured random measurements in all the scenarios
mentioned (see [15] for a survey on such approaches, not yet including bilinear problems).
In compressed sensing, for example, randomly subsampled Fourier measurements have
been considered [16], as motivated by applications in magnetic resonance imaging [17], as
well as subsampled convolutions with a random vector [18], as motivated by applications
in remote sensing and coded aperture imaging [19]. For low-rank matrix recovery, a mea-
surement model arising in collaborative �ltering application consists of randomly selected
of matrix entries, which yields the so-called matrix completion problem [20]. For the phase
retrieval problem, concatenations of Fourier measurements and random diagonal matrices
have been studied, which are motivated by the idea of introducing a mask in a di�raction
imaging setup [21�23].

Lastly, for bilinear inverse problems, two important classes of models that have been
studied are calibration problems as well as blind deconvolution and demixing problems.
From a randomization viewpoint, calibration problems have been studied in [24], blind
deconvolution problems are studied in [25], and blind demixing problems are studied in [26].
All these papers are based again on lifting ideas. Identi�ability conditions for calibration
problems are derived in [14].

Identi�ability for the blind deconvolution problem under sparsity or subspace con-
straints has �rst been studied in [27, 28], in particular providing negative results for signals
sparse in the standard basis. Subsequently, this case has been identi�ed as exceptional by
providing identi�ability results that hold for all sparsity bases except for a set of measure
zero [29]. These results have then been improved to a near-optimal number of measure-
ments [1]. The authors distinguish between weak and strong identi�ability. The former
notion relates to the number of measurements needed to ensure that for a given �xed signal
and a generic set of sparsity bases, there is no other signal resulting in the same measure-
ments; the latter requires that property uniformly for all potential signal. In the case of
weak identi�ability, the set of measurements, where the property fails is allowed to di�er
for each signal, so there will not necessarily be a set of bases for which one has injectivity,
i.e., uniqueness for all signals at the same time.

Conditions for strong identi�biability in the blind deconvolution problem are also the
main application of our results. The same techniques also yield conditions for weak identi-
�ability (see Appendix B). In contrast to the result in [1], the our identi�ability results for
both cases are tight, that is, our theory implies matching upper and lower bounds for the
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number of measurements needed. Also, our proof techniques are very di�erent to those in
[1]; our work is mainly based on techniques from algebraic geometry.

Outline. In Section II we �x notation and review the notions of weak and strong
identi�ability for bilinear inverse problems.

Then, in Section III, we give the main results of the present paper. We aim at discrimi-
nating any two pairs of vectors (v, w), (v′, w′) ∈ Cn1×Cn2 up to the trivial scaling ambiguity
from the outcomes B(v, w), B(v′, w′) of a bilinear measurement map B : Cn1 ×Cn2 → Cm
under the premise that v, v′ are s1-sparse and w,w

′ are s2-sparse. We show that a bilinear
map performing this task exists if and only if m ≥ 2(n1 + n2)− 4 in case s1 = n1, s2 = n2
and m ≥ 2(s1 + s2)− 2 otherwise.

In the second part of this section we apply our results to derive strong ident�ability
conditions for the deconvolution problem, which aims at identifying a signal v ∈ Cm
and a �lter w ∈ Cm up to the trivial scaling ambiguity from their circular convolution
v ~ w, and compare our results to previous work. Dimension counting already implies
that blind deconvolution is infeasible in general, however identi�ability may be possible
when assuming v ∈ V and w ∈ W for some lower dimensional subspaces V,W ⊆ Cm.
Indeed we show that for generic subspaces V,W ∈ Cm it is possible to discriminate any
two pairs of vectors (v, w), (v′, w′) ∈ V × W up to the trivial scaling ambiguity from
their circular convolutions v ~ w and v′ ~ w′ if 2(dimV + dimW ) − 4 ≤ m. The bound
m ≥ 2(dimV + dimW )− 4 is precisely the lower bound established in the �rst part of this
section making this result optimal.

Furthermore we consider the scenario in which v ∈ Cn1 is assumed to be s1-sparse in
some basis E ⊆ Cn1 and w ∈ Cn2 is assumed to be s2-sparse in some basis D ⊆ Cn2 .
Similar to the previous result we show that for generic bases E,D any two pairs of vectors
(v, w), (v′, w′) ∈ Cn1 × Cn2 consistent with the sparsity constraints can be discriminated
from their circular convolution up to the trivial scaling ambiguity if 2(s1 + s2) − 2 ≤ m.
Again, since the bound m ≥ 2(s1 + s2)− 2 is precisely the lower bound established in the
�rst part of this section, this result is optimal.

The proofs of our main results are given in Section IV, some measure theoretic techni-
calities are deferred to Appendix A.

Our techniques also apply to the weak identi�ability problem, i.e., the corresponding
problem for (u, v) �xed. For this problem, in Appendix B, we also slightly improve the
conditions derived in [1] in the case of sparsity constraints and show optimality.

II. PRELIMINARIES

Let us �rst �x some notation. We denote the Euclidean norm by ‖·‖2. ByM(n1, n2) we
denote the set of complex n1×n2 matrices. In the following we always assume n1, n2 ≥ 2.
The transpose (conjugate transpose) of a matrix X ∈ M(n1, n2) is denoted by Xt (X∗).
We equip M(n1, n2) with the Hilbert-Schmidt inner product de�ned by setting 〈X,Y 〉 =
tr(X∗Y ) for all X,Y ∈M(n1, n2) and by ‖ · ‖F we denote the Hilbert-Schmidt/Frobenius
norm. For i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2} we denote by Xi the i-th row and by Xij the
entry in the i-th row and j-th column of a matrix X ∈ M(n1, n2) . By 1n we denote the
identity on Cn. We denote byM r(n1, n2) ⊆M(n1, n2) the set of complex matrices of rank
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at most r. For 0 < s ≤ n let Cns := {x ∈ Cn : x is s-sparse.}. Furthermore let

M1
s1,s2(n1, n2) := {uvt : u ∈ Cn1

s1 , v ∈ Cn2
s2 }.

For two subsets V,W ⊆ M(n1, n2) we de�ne the set V −W := {X − Y : X ∈ V, Y ∈ W}
and we write ∆(V ) as shorthand for V − V . By L(m) we denote the set of linear maps
M : M(n1, n2)→ Cm and by B(m) we denote the set of bilinear maps B : Cn1×Cn2 → Cm.
Finally, the kernel and the range of a linear map L are denoted by kerL and ranL,
respectively.

Using the Hilbert-Schmidt inner product we can identify L(m) with (M(n2, n1))
m.

Indeed, for every linear map M ∈ L(m) there exists (Y1, . . . , Ym) ∈ (M(n2, n1))
m such

that for all X ∈M(n1, n2) we have M(X) = (tr(Y1X), . . . , tr(YmX)) and conversely every
Y := (Y1, . . . , Ym) ∈ (M(n2, n1))

m induces a linear map MY ∈ L(m) by setting

MY (X) := (tr(Y1X), . . . , tr(YmX)) (1)

for all X ∈M(n1, n2).
In bilinear inverse problems the objective is to reconstruct two vectors u ∈ Cn1 \ {0},

v ∈ Cn2 \{0} form a measurement outcome z = B(u, v) ∈ Cm where B ∈ B(m) is a bilinear
map. In the best case this can be done modulo the trivial ambiguity

B(u, v) = B(λu, 1/λv), ∀λ ∈ C \ {0}.

This ambiguity naturally induces an equivalence relation on Cn1 \ {0} ×Cn2 \ {0} and we
denote the equivalence class of (u, v) ∈ Cn1 \ {0} × Cn2 \ {0} by [(u, v)], i.e., [(u, v)] =
[(u′, v′)] for some u′ ∈ Cn1 \ {0}, v′ ∈ Cn2 \ {0} if there exists λ ∈ C \ {0} such that
(u, v) = (λu′, 1/λv′).

This motivates the following notion of identi�ability which is basically the same as part
2 of De�nition 2.1 in [1].

De�nition II.1. (Strong identi�ability modulo scaling.) A subset V ⊆ Cn1 \{0}×Cn2 \{0}
is identi�able modulo scaling with respect to a map B ∈ B(m), if B(u, v) = B(u′, v′) for

some (u, v), (u′, v′) ∈ V implies [(u, v)] = [(u′, v′)].

This strong notion of identi�ability requires that every measurement corresponds to a
unique signal. The following weaker notion, basically the same as part 1 of De�nition 2.1
in [1], requires this only for the measurement arising from a given �xed signal.

De�nition II.2. (Weak identi�ability modulo scaling.) The restriction of a map B ∈ B(m)
to a subset V ⊆ Cn1 \ {0} × Cn2 \ {0} is weakly identi�able modulo scaling at (u0, v0) if

B(u, v) = B(u0, v0) for some (u, v) ∈ V implies [(u, v)] = [(u0, v0)].

III. MAIN RESULTS

A. Tight Bounds for the Injectivity Problem

In the following we �rst obtain a general lower bound on the number m ∈ N for which
there exists an (s1, s2)-injective bilinear map B ∈ B(m). Then, in a next step, we show
that this lower bound is indeed tight.
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It is well-known that there is a one-to-one correspondence between the sets B(m) and
L(m). Indeed, every bilinear map B : Cn1 × Cn2 → Cm induces a unique linear map M :
M(n1, n2)→ Cm such that for all x ∈ Cn1 , y ∈ Cn2 we haveM(xyt) = B(x, y). Conversely
each linear map M : M(n1, n2) → Cm induces a bilinear map B : Cn1 × Cn2 → Cm by
setting B(x, y) := M(xyt) for all x ∈ Cn1 , y ∈ Cn2 . Throughout the present section we
take advantage of this correspondence and work with the set L(m) of linear maps rather
than the set B(m) of bilinear maps.

De�nition III.1. ((s1, s2)-injective.) A linear map M ∈ L(m) is (s1, s2)-injective if

M |M1
s1,s2

(n1,n2) is injective.

Clearly, a bilinear map B ∈ B(m) is (s1, s2)-injective modulo scaling if and only if the
associated linear map M ∈ L(m) is (s1, s2)-injective.

Let us next introduce a notion of stability for (s1, s2)-injective linear maps.

De�nition III.2. (Stability.) A linear map M ∈ L(m) is stably (s1, s2)-injective if

there exists a constant C > 0 (possibly dependent on all the parameters of M) such that

‖M(X)‖2 ≥ C‖X‖F for all X ∈ ∆(M1
s1,s2(n1, n2)).

Remark Formally, the notion of stability we give here can be understood as a general-
ization of the notion of stability given in De�nition 2.3 of [30] for the Phase Retrieval
Problem. Indeed for x, y ∈ Rn we have on the one hand

‖x− y‖22‖x+ y‖22 − ‖xxt − yyt‖2F = 2(‖x‖22‖y‖22 − 〈x, y〉) ≥ 0

by the Cauchy-Schwarz inequality and on the other hand

‖xxt − yyt‖ = sup
‖v‖2=1

vt(xxt − yyt)v =
1

2
sup
‖v‖2=1

vt((x+ y)(x− y)t + (x− y)(x+ y)t)v

≤ sup
‖v‖2=1,‖u‖2=1

ut((x+ y)(x− y)t)v = ‖x− y‖22‖x+ y‖22,

where ‖·‖ denotes the operator norm. However, di�erent from [30], throughout the present
paper we do not aim for a universal constant C for which the stability bound holds, but
rather allow C to depend on all the parameters of the linear map M .

Under the premise of this rather weak notion of stability we obtain the following lower
bound on the number of measurement outcomes necessary for (s1, s2)-injectivity.

Theorem III.1. (Lower bound.) If there is a stably (s1, s2)-injective linear map M ∈
L(m), then

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

The proof of this result can be found in Section IV.
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Remark Let us note that this lower bound also applies to a slightly more general scenario
which will be of relevance in the next part of this section. Indeed, let V ⊆ Cn1 , W ⊆ Cn2

be subspaces with bases E := {e1, . . . , edimV } ⊆ V and F = {f1, . . . , fdimW } ⊆ W ,
respectively. Denote by Vs1 ⊆ V the elements of V that are s1-sparse in the basis E and
by Ws2 ⊆ W the elements of W that are s2-sparse in the basis F . If a bilinear map
B ∈ B(m) is such that B restricted to Vs1 × Ws2 is injective modulo scaling, then the
bilinear map B̃ : CdimV × CdimW → Cn, (x, y) 7→ B(

∑
i xiei,

∑
i yifi) is (s1, s2)-injective

modulo scaling. Thus, under the premise of stability, the lower bound given in III.1 also
applies to this scenario.

Next we show that the lower bound given by Theorem III.1 is indeed tight. In the
following theorem the term �almost all� refers to the Lebesgue measure on (M(n1, n2))

m

which represents L(m) via (1).

Theorem III.2. (Upper bound.) Almost all linear maps M ∈ L(m) are stably (s1, s2)-
injective if

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

The following Theorem shows that the lower bound established in Theorem III.1 also
applies for a certain structured subset of L(m) which will be of relevance in the next
section. In the following theorem the term �almost all� refers to the Lebesgue measure.

Theorem III.3. For almost all (Y,Z) ∈M(m,n1)×M(m,n2), the linear map

MY,Z : M(n1, n2)→ Cm, X 7→ (tr(Zt1Y1X), . . . , tr(ZtmYmX))

is stably (s1, s2)-injective if

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

The proof of this result can be found in Section IV.

B. Blind Deconvolution with Subspace and Sparsity Constraints

In this section we apply Theorem III.3 to the deconvolution problem. By v ~ w ∈ Cm
we denote the circular convolution of vectors v, w ∈ Cm, i.e., for all i ∈ {1, . . . ,m} we have
(v ~ w)i =

∑m
j=1 vjw[(i−j−1)modm]+1 . The mapping

C : Cm × Cm → Cm

(v, w) 7→ v ~ w

is easily seen to be bilinear. Since the dimension of the domain of C is larger than the
dimension of the range of C, C cannot be injective modulo scaling for m > 1. However,
when imposing sparsity or subspace constraints on the domain of C this can change.
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Let us �rst focus on subspace constraints. For k ≤ m, consider the set

G(m, k) := {P ∈M(m,m) : P is a rank k orthogonal projection.}

which can naturally be identi�ed with the Grassmannian of k-dimensional subspaces of
Cm. We make (G(m, k), d′) a compact metric space by setting d′(P, P ′) := ‖P − P ′‖F for
all P, P ′ ∈ G(m, k). Let µk be the Haar measure of (G(m, k), d′) with respect to the action
G : U(m) × G(m, k) → G(m, k), (U,P ) 7→ UPU∗ of the unitary group U(m) on G(m, k)
1. In the following theorem, the term �almost all� refers to the product measure measure
µk × µl.

Theorem III.4. (Deconvolution with subspace constraint.) Let k, l ∈ N+ be such that

2(k + l) − 4 ≤ m. Then, for almost all pairs of projections (P, P ′) ∈ G(m, k) × G(m, l),
ranP×ranP ′ is strongly identi�able modulo scaling with respect to the circular convolution

map C : Cm × Cm → Cm, (v, w) 7→ v ~ w.

Remarks

(a) Note, that this result is optimal. Indeed, since ∆(M1(dimV,dimW )) =
M2(dimV,dimW ), we conclude that ∆(M1(dimV,dimW )) is closed. Thus, by
Proposition IV.3, the map C restricted to ranP × ranP is injective modulo scal-
ing if and only if the associated linear map LC : M(k, l) → Cm (cf. remark after
Theorem III.1) is stably (k, l)-injective. Hence, by Theorem III.1, there do not exist
projections (P, P ′) ∈ G(m, k) × G(m, l) such that C restricted to ranP × ranP ′ is
injective modulo scaling if 2(k+ l)−4 > m. This shows the statement for the second
part. For the �rst part the same argument applies.

(b) As a comparison, Theorem 3.2 in [1] requires 2(k+l) < mmeasurements to guarantee
strong identi�ability, so as expected there is only a small improvement. We hence
consider it to be our main achievement that our bounds are provably optimal.

The proof of this theorem is given in Section IV.
Next we consider sparsity constraints. Denote by

F (m, k) := {X ∈M(m, k) : rankX = k}

the set of all collections of k linearly independent vectors in Cm. In the following theorem
the term �almost all� refers to the Lebesgue measure.

Theorem III.5. (Deconvolution with sparsity constraint.) For E ∈ F (m, k), set

ran(E)s := {x ∈ ranE : x is s-sparse when expanded in E.}. Let s1, s2 ∈ N+ be such that

2(s1 + s2)− 2 ≤ m and let k, l ∈ N be such that s1 < k ≤ m, s2 < l ≤ m. Then, for almost

all pairs (E,D) ∈ F (m, k) × F (m, l), ran(E)s1 × ran(D)s2 is strongly identi�able modulo

scaling with respect to the circular convolution map C : Cm × Cm → Cm, (v, w) 7→ v ~ w.

1 Recall that for (X, d) a compact metric space and G be a group of isometries of (X, d) that acts tran-
sitively on X, the Haar measure λ on (X, d) with respect to G is the unique G-invariant Borel measure
with λ(X) = 1 (See for instance theorems 1.1 and 1.3 of [31]).



9

Remarks

(a) Note that under the premise of stability this result is optimal. Indeed, by Theorem
III.1 and the remark afterwards there do not exist (E,D) ∈ F (m, k)× F (m, l) such
that C restricted to ran(E)s1× ran(F )s2 is identi�able modulo scaling if 2(s1 +s2)−
2 > m.

(b) As a comparison, Theorem 3.2 in [1] requiresm > 2(s1+s2) measurements for strong
identi�ability in this case.

(c) Note that this result also applies to the standard convolution C̃ : Cn × Cn →
C2n−1, (u, v) 7→ (

∑+∞
j=−∞ ujvi−(j−1))

2n−1
i=1 , where uj = 0, vj = 0 for j 6∈ {1, . . . , n}.

Indeed, by embedding Cn appropriately in C2n−1, C̃ can be understood as a restric-
tion of the circular convolution C : C2n−1 × C2n−1 → C2n−1.

The proof of this theorem is given in Section IV.

IV. PROOFS

A. Algebraic Geometry Background and Notation

The proof of Theorem III.1 relies on results from classical algebraic geometry so let us
�x some conventions (which are close to [32]). We call a set V ⊆ Cn an algebraic set if
it is the common zero locus of a set of complex polynomials in n variables. The Zariski
topology on Cn is de�ned by choosing its closed sets to be the algebraic sets. A non-empty
subset V of Cn equipped with the Zariski topology is called irreducible if it cannot be
expressed as a union of two proper subsets of V , each of which is relatively closed in V .
We call an algebraic set an a�ne variety if it is irreducible. Subsets of an algebraic set
that are relatively open in the Zariski topology are called quasi algebraic sets. For a subset
V ⊆ Cn , we denote by P (V ) ⊆ P (Cn) its projecti�cation, i.e., the image of V under the
canonical projection P : Cn → P (Cn). If a subset V ⊆ Cn is the common zero locus of a
set of homogeneous polynomials, we call P (V ) a projective algebraic set. We denote by V
the analytic closure of a subset V ⊆ Cn, i.e., its closure in the standard topology of Cn.
Furthermore V Z denotes the closure of a subset V ⊆ Cn in the Zariski topology. By dimV
we denote the algebraic dimension of a subset V ⊆ Cn.

For a subset A ⊆ {1, . . . , n} de�ne the projection PA : Cn → Cn by setting

(PA(x))i :=

{
xi if i ∈ A,
0 else

for all x ∈ Cn and i ∈ {1, . . . , n}. Furthermore, let A(n, s) := {A ⊆ {1, . . . , n} : |A| = s}.
Then

M1
s1,s2(n1, n2) =

⋃
A∈A(n1,s1), B∈A(n2,s2)

WA,B,

where WA,B := {PAu(PBv)∗ : u ∈ Cn1 , v ∈ Cn2}. Let Ss1,s2 := W{1,...,s1},{1,...,s2}.
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B. Proof of Theorem III.1

Theorem III.1 can be proven straightforwardly from the following three propositions.
Their proofs are relegated to the end of this subsection.

Proposition IV.1. We have

dim ∆(M1
s1,s2(n1, n2)) =

{
2(n1 + n2 − 2) if s1 = n1, s2 = n2,
2(s1 + s2 − 1) else.

Proposition IV.2. The analytic closure of ∆(M1
s1,s2(n1, n2)) is the common zero locus of

a set of homogeneous polynomials. In particular ∆(M1
s1,s2(n1, n2)) = ∆(M1

s1,s2(n1, n2))Z .

Proposition IV.3. A linear map M ∈ L(m) is stably (s1, s2)-injective if and only if

P (kerM) ∩ P (∆(M1
s1,s2(n1, n2))) = ∅.

Proof of Theorem III.1. By Proposition IV.3 a linear map M ∈ L(m) is stably (s1, s2)-
injective if and only if P (kerM) ∩ P (∆(M1

s1,s2(n1, n2))) = ∅. Clearly P (kerM) is a pro-

jective algebraic set and by Proposition IV.2, P (∆(M1
s1,s2(n1, n2))) also is a projective

algebraic set.
By the intersection theorem for complex varieties (see Theorem 7.2 of [32]), together

with the observation that a projective algebraic set contains an irreducible projective al-
gebraic subset of the same dimension, two projective algebraic sets V,W ⊆ P (Cn+1)
have non-empty intersection if dimV + dimW ≥ n. Hence, if M is stably (s1, s2)-
injective we have dimP (kerM) + dimP (∆(M1

s1,s2(n1, n2))) < dimP (Cn1n2). Noting that

dimP (kerM) ≥ n1n2−m−1 2, we �nd n1n2−m−1+dimP (∆(M1
s1,s2(n1, n2))) < n1n2−1.

But this implies, using again Proposition IV.2, that

m ≥ dimP (∆(M1
s1,s2(n1, n2))) + 1 = dim ∆(M1

s1,s2(n1, n2))

= dim ∆(M1
s1,s2(n1, n2))Z = dim ∆(M1

s1,s2(n1, n2))

and Proposition IV.1 concludes the proof.

Proof of Proposition IV.1. Let A ∈ A(n1, s1), B ∈ A(n2, s2). We begin by determining
the dimension of WA,B. WA,B is the set of X ∈M1(n1, n2) such that ((1n1−PA)X)ij = 0,
(X(1n2 − PB))ij = 0 for all i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}. Furthermore, M1(n1, n2) is
well-known to be an algebraic set 3 and hence WA,B is an algebraic set. Let IA : Cs1 →
ranPA, IB : Cs2 → ranPB be the canonical linear embeddings, then the mapping

η : M(s1, s2)→WA,B, X → IAXIB (2)

also is a linear embedding. In particular η|M1(s1,s2) yields an isomorphism between
M1(s1, s2) and WA,B. Hence, using Example 12.1 of [33], we �nd dimWA,B =
dimM1(s1, s2) = s1 + s2 − 1.

2 Note that if V ⊆ Cn is such that P (V ) is a projective algebraic set, then dimP (V ) = dimV − 1.
3 M1(n1, n2) is the common zero locus of the 2× 2-minors.
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We now start by considering the case n1 = s1 and n2 = s2. In this case we �nd
∆(M1

n1,n2
(n1, n2)) = ∆(M1(n1, n2)) = M2(n1, n2). The set M

2(n1, n2) is an algebraic set
and its dimension is given by 2(n1 + n2 − 2) (Again by Example 12.1 of [33].).

Secondly, let us assume that s1 < n1, the case s2 < n2 can be treated analogously. Let
A,A′ ∈ A(n1, s1), B,B

′ ∈ A(n2, s2). Consider the morphism

ψ : WA,B ×WA′,B′ →M(n1, n2)

(X,Y )→ X − Y

and note that ψ(WA,B ×WA′,B′) = WA,B −WA′,B′ . Therefore we �nd

dim(WA,B −WA′,B′) ≤ dimWA,B + dimWA′,B′ = 2 dimS = 2(s1 + s2 − 1)

and since ∆(M1
s1,s2(n1, n2)) =

⋃
A,A′∈A(n1,s1), B,B′∈A(n2,s2)

WA,B −WA′,B′ this implies

dim ∆(M1
s1,s2(n1, n2)) ≤ 2(s1 + s2 − 1). (3)

Since s1 < n1 there exist A,A′ ∈ A(n1, s1) such that 1 ∈ A, 1 /∈ A′ and 2 ∈ A′, 2 /∈ A.
Furthermore, let B ∈ A(n2, s2) and consider the set

D :=WA,B ×WA′,B ∩ {(X,Y ) ∈M(n1, n2)×M(n1, n2) : X11 6= 0, Y21 6= 0,

Y21 ·X1 −X11 · Y2 6= 0}.

The set D clearly is non-empty and quasi algebraic. Furthermore we have dimD = 2(s1 +
s2 − 1). One way to see this is the following: Since both WA,B and WA′,B are isomorphic
toM1(s1, s2), WA,B×WA′,B is isomorphic toM1(s1, s2)×M1(s1, s2). By Proposition 12.2
of [33] M1(s1, s2) is irreducible

4 and hence an a�ne variety. By Exercice 3.15 of [32], the
product of two a�ne varieties is irreducible and henceM1(s1, s2)×M1(s1, s2) is irreducible.
Finally, by Example 1.1.3 of [32] a non-empty quasi algebraic subset of an irreducible set
is irreducible. Hence D is irreducible and thus by Exercise 1.6 and Proposition 1.10 of [32]
we have dimD = dimDZ = dimWA,B ×WA′,B = 2(s1 + s2 − 1) 5.

Next we prove that dimψ(D) = dimD = 2(s1 + s2 − 1) by showing that the morphism
ψ|D is injective: Let (X,Y ) ∈ D. Then, by the de�nition of D, X1 and Y2 are non-
vanishing and linearly independent. Hence there are vectors ω1(X), ω2(Y ) ∈ Cn2 such

4 Proposition 12.2 of [33] just states that P (M1(s1, s2)) is irreducible. An algebraic set is irreducible if and
only if its associated polynomial ideal is prime and the same holds for projective algebraic sets (see for
instance Corollary 1.4 and Exercise 2.4 (b) of [32]). But the polynomial ideals associated to PM1(s1, s2)
and M1(s1, s2) clearly are equal and thus M1(s1, s2) is irreducible as well.

5 A more direct approach consists of showing the injectivity of the mapping

(Cs1 \ {0} × Cs2−1 \ {0})× (Cs1 \ {0} × Cs2−1 \ {0}) \ S → D,

((u, v), (u′, v′)) 7→

(
IA(u)IB

((
1
v

))t

, IA′(u′)IB

((
1
v′

))t
)

where S := {((u, v), (u′, v′)) ∈ (Cs1 \ {0} × Cs2−1 \ {0})× (Cs1 \ {0} × Cs2−1 \ {0}) : v1 − v′1 = 0, u1 =
0, u′2 = 0} and IA denotes a linear embedding of Cs

1 into ranPA. We leave details to the reader.
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that 〈ω1(X), X1〉 = 1, 〈ω2(Y ), X1〉 = 0, 〈ω1(X), Y2〉 = 0 and 〈ω2(Y ), Y2〉 = 1. Note that
〈ω1(X), Yi〉 = 0 for all i ∈ {1, . . . , n1} by the fact that Y is rank one. Similarly we have
〈ω2(Y ), Xi〉 = 0 for all i ∈ {1, . . . , n1}. Again using the fact that both X and Y are rank
one it follows from a straightforward computation that for all i ∈ {1, . . . , n1} we have

〈ω1(X), (X − Y )i〉X1 = 〈ω1(X), Xi〉X1 = Xi

−〈ω2(Y ), (X − Y )i〉Y2 = 〈ω2(Y ), Yi〉Y2 = Yi.

This explicitly de�nes an inverse map of ψ on ψ(D), showing that ψ|D is injective.
But since ψ(D) ⊆ ∆(M1

s1,s2(n1, n2)) =
⋃
A,A′∈A(n1,s1), B,B′∈A(n2,s2)

WA,B −WA′,B′ we

�nd 2(s1 + s2 − 1) = dimD = dimψ(D) ≤ dim ∆(M1
s1,s2(n1, n2)), which, together with

Inequality (3), concludes the proof.

Proof of Proposition IV.2. Since

∆(M1
s1,s2(n1, n2)) =

⋃
A,A′∈A(n1,s1), B,B′∈A(n2,s2)

WA,B −WA′,B′ ,

it su�ces to prove that WA,B −WA′,B′ is the common zero locus of a set of homogeneous
polynomials for all A,A′ ∈ A(n1, s1), B,B

′ ∈ A(n2, s2).
So let A,A′ ∈ A(n1, s1), B,B

′ ∈ A(n2, s2). By the �rst paragraph in the proof of
Theorem 3.16 of [33], ψ(WA,B ×WA′,B′) = WA,B −WA′,B′ ⊆ M(n1, n2) contains a non-
empty quasi algebraic subset of its Zarisiki closure 6. Consequently, the analytic closure
of WA,B −WA′,B′ coincides with its Zariski closure by Theorem 1 in Chapter 1.10 of [34].
Hence the analytic closure of WA,B −WA′,B′ is the common zero locus of a �nite set of
polynomials {pi}i∈I .

Let X ∈WA,B −WA′,B′ . We now show that λX ∈WA,B −WA′,B′ for all λ ∈ C: There
exists a sequence (Xn)n∈N ⊆ WA,B −WA′,B′ that converges to X. Next observe that if
Y ∈ WA,B −WA′,B′ we also have λY ∈ WA,B −WA′,B′ for all λ ∈ C. Now let λ ∈ C
and observe that the sequence (λXn)n∈N ⊆ WA,B − WA′,B′ converges to λX and thus
λX ∈WA,B −WA′,B′ .

Finally we just have to show that WA,B −WA′,B′ is the common zero locus of a set
of homogeneous polynomials. Let i ∈ I and let di be the degree of pi. Consider the
decomposition pi =

∑di
j=0 pi,j where the pi,j are homogeneous polynomials of degree j. Let

X ∈WA,B −WA′,B′ . Then we have for all λ ∈ C

0 = pi(λX) =
d∑
j=0

λjpi,j(X).

Since this holds for all λ ∈ C, we conclude that pi(X) = 0 if and only if pi,j(X) = 0 for
all j ∈ {1, . . . , d}. Repeating this for all i ∈ I we �nd a set J := {pi,j}i∈I,j∈{1,...,di} of
homogenous polynomials such that WA,B −WA′,B′ is the common zero locus of J .

6 Here, we use the fact that Cn is homeomorphic to P (Cn+1) \ {x0 = 0} (See Proposition 2.2 in [32].).
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Proof of Proposition IV.3. Assume for a contradiction that there is X ∈ M(n1, n2) with
‖X‖F = 1 such that P (X) ∈ P (kerM) ∩ P (∆(M1

s1,s2(n1, n2))). Then there is a sequence
(Xn)n∈N ⊆ ∆(M1

s1,s2(n1, n2)) with ‖Xn‖F = 1 for all n ∈ N that converges to X. Thus,
by the continuity of M , the sequence ‖M(Xn)‖2 converges to ‖M(X)‖2 = 0. In particular
for any c > 0 there is an N ∈ N such that ‖M(XN )‖2 ≤ c.

Conversely set C = minY ∈O ‖M(Y )‖2 where O := {Y ∈ ∆(M1
s1,s2(n1, n2)) : ‖Y ‖F =

1}. If P (kerM) ∩ P (∆(M1
s1,s2(n1, n2))) = ∅ we have ‖M(Y )‖2 > 0 for all Y ∈ O and by

compactness of O we conclude C > 0.

C. Proofs of Theorems III.2 and III.3

The approach we take in this section is similar to the approach taken in [35] to prove
injectivity for the phase retrieval problem. The proofs of the theorems are immediate
consequence of the following two proposition. Their proof is very close to the proof of
Proposition III.1 in [36].

Proposition IV.4. Let

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

(4)

Then, the set of (Y,Z) ∈M(m,n1)×M(m,n2) such that the linear map

MY,Z : M(n1, n2)→ Cm, X 7→ (tr(Zt1Y1X), . . . , tr(ZtmYmX))

is not stably (s1, s2)-injective has strictly smaller dimension than the set M(m,n1) ×
M(m,n2).

Remark This proposition directly implies Theorem III.3.

Proof. Consider the quasi algebraic set

W :=
⋃

i∈{1,...,n1},j∈{1,...,n2}

∆(M1
s1,s2(n1, n2)) ∩ {X ∈M(n1, n2) : Xij = 1}.

Intuitively, the set W is the union of the canonical charts of P (∆(M1
s1,s2(n1, n2))) and

hence we �nd P (W) = P (∆(M1
s1,s2(n1, n2))) and furthermore, using Proposition IV.1,

dimW = dimP (∆(M1
s1,s2(n1, n2))) = dim ∆(M1

s1,s2(n1, n2))− 1 < m.

For (Y,Z) ∈M(m,n1)×M(m,n2) and X ∈M(n1, n2) de�ne the polynomials

pi(Y, Z,X) := tr(ZtiYiX), i ∈ {1, . . . ,m}. (5)

By V we denote the common zero locus of the polynomials {pi}i∈{1,...,m}. Now consider
the algebraic set

D := (M(m,n1)×M(m,n2)×W) ∩ V
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and let π : M(m,n1)×M(m,n2)×W → M(m,n1)×M(m,n2) be the projection on the
factor M(m,n1)×M(m,n2). Let

N := {(Y,Z) ∈M(m,n1)×M(m,n2) : MY,Z is not stably (s1, s2)-injective.},

then we have N ⊆ π(D) 7. Indeed, let (Y, Z) ∈ N . Then, by Proposition IV.3, there exists
Q ∈ P (kerMY,Z)∩P (∆(M1

s1,s2(n1, n2))). Since P (W) = P (∆(M1
s1,s2(n1, n2))), there exists

an X ∈ W such that P (X) = Q. But then, by linearity of MY,Z , we have MY,Z(X) = 0,
i.e., (Y,Z,X) ∈ D. Consequently we have (Y, Z) ∈ π(D).

We will assume for now and show later that dimD = dimM(m,n1) + dimM(m,n2) +
dimW −m. Then, using m > dimW, we �nd that

dimπ(D) ≤ dimD = dimM(m,n1) + dimM(m,n2) + dimW −m
< dimM(m,n1) + dimM(m,n2).

That is, π(D) ⊆ M(m,n1) ×M(m,n2) has strictly smaller dimension than M(m,n1) ×
M(m,n2) (and thus has Lebesgue measure zero in M(m,n1)×M(m,n2)).

Hence, to conclude the proof, it su�ces to show that indeed dimD = dimM(m,n1) +
dimM(m,n2) + dimW −m. To show this, it su�ces to prove that for �xed X ∈ W the
equations {pi = 0}i∈{1,...,m} reduce the dimension of M(m,n1)×M(m,n2) by m (cf. [35]).
But for �xed X ∈ W, the i-th equation of (5) just involves the variables of the i-th factor
of (Cn1 ×Cn2)m 'M(m,n1)×M(m,n2). Hence it su�ces to prove that for �xed X ∈ W
the equation

tr(vwtX) = 0, v ∈ Cn2 , w ∈ Cn1 , (6)

reduces the dimension of Cn1 × Cn2 by one. But Equation (6) is a non-trivial algebraic
equation on Cn1 × Cn2 because X 6= 0 and M(n1, n2) has a basis of rank one operators.
Hence, by Proposition 1.13 of [32], Equation (6) reduces the dimension of Cn1 × Cn2 by
one.

Proposition IV.5. Let

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

Then, the set of Y := (Y1, . . . , Ym) ∈ (M(n2, n1))
m such that the linear map

MY : M(n1, n2)→ Cm, X 7→ (tr(Y1X), . . . , tr(YmX))

is not stably (s1, s2)-injective has smaller dimension than the set (M(nn, n1))
m.

Remark This proposition directly implies Theorem III.2.

7 We even have N = π(D). This, however, will not be of relevance for our argument.
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Proof. Instead of the polynomials de�ned in Equation (5), now consider the polynomials

qi(Y,X) := tr(YiX), i ∈ {1, . . . ,m}

in (Y1, . . . , Ym) ∈ (M(n2, n1))
m and X ∈M(n1, n2).

All the arguments given in the remainder of the proof of Proposition IV.4 are also valid
for these polynomials. Thus the proof can be concluded by going along the lines of the
proof of Proposition IV.4.

D. Proof of theorems III.4 and III.5

Denote by F :=
(

1√
m
e2iπ

kl
m

)m
k,l=1

∈ M(m,m) the discrete Fourier matrix. Then we

have the following well-known identity

v ~ w = mF ∗ ((Fv)� (Fw)) ,∀v, w ∈ Cm, (7)

where � denotes the Hadamard product, i.e., for a, b ∈ Cm we have a� b = (aibi)
m
i=1.

Proof of Theorem III.5. Since F is invertible it su�ces to show that the map C ′ : Ck ×
Cl → Cm, (u, v) 7→ (FEu) � (FDv) is injective modulo scaling for Lebesgue almost all
(E,D) ∈M(m, k)×M(m, l). Let u ∈ Ck, v ∈ Cl and (E,D) ∈M(m, k)×M(m, l), then

(C ′(u, v))i = (FEu)i(FDv)i = etiFEuv
tDtF tei = tr

(
[(FD)i]

t(FE)iuv
t
)
,

where {ei}i∈{1,...,m} denotes the standard orthonormal basis of Cm. Theorem III.4 implies
that C ′ is injective modulo scaling for Lebesgue almost all (FE,FD) ∈M(m, k)×M(m, l)
and hence, since the Lebesgue measure λ is unitarily invariant, also for Lebesgue almost
all (E,D) ∈M(m, k)×M(m, l).

Finally, the proof of Theorem III.4 proceeds identically as the proof of Theorem III.5.
It only remains to check that in the process of converting the statement of Theorem III.5
into a statement about the Haar measure on Grassmannians, the set I := {(E,D) ∈
M(m, k) × M(m, l) : C ′ is injective modulo scaling.} is mapped to a full measure set.
However, since this part of the argument is mainly technical, we relegate it to Appendix
A.
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APPENDIX A: COMPLETITION OF THE PROOF OF THEOREM III.4

Let S(m, k) := {Y ∈ M(m, k) : ‖Y ‖F = 1} ⊆ M(m, k) be the unit sphere in M(m, k).
We make (S(m, k), d) a compact metric space by setting d(X,Y ) := ‖X − Y ‖F for all
X,Y ∈ S(m, k). Let U(m, k) be the group of isometries of (S(m, k), d) and let σk be the
Haar measure on S(m, k) with respect to U(m, k) . Let

πk : M(m, k) \ {0} → S(m, k), X 7→ X

‖X‖F
.

Furthermore let π : M(m, k) \ {0} × M(m, l) \ {0} → S(m, k) × S(m, l), (X,Y ) 7→
(πk(X), πl(Y )). It is well-known that for all Borel sets A ∈ B(S(m, k)) we have
σk(A) = λ(π−1k (A) ∩ Bm,k)/λ(Bm,k) where Bm,k = {X ∈ M(m, k) : ‖X‖F ≤ 1} is
the unit ball in M(m, k). But the mapping π : M(m, k) \ {0} × M(m, l) \ {0} →
S(m, k) × S(m, l), (X,Y ) 7→ (X/‖X‖F , Y/‖Y ‖F ) maps the set I of full measure in λ
to the set π(I) of full measure in σk × σl. Indeed, since π−1(π(I)) =

⋃
ν>0 νI = I and
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(λ× λ)(Ic) = 0, we �nd

(σk × σl)(π(I)) =
(λ× λ)

(
π−1(π(I)c) ∩ (Bm,k ×Bm,l)

)
λ (Bm,k)λ(Bm,l)

=
(λ× λ)

(
π−1(π(I))c ∩ (Bm,k ×Bm,l)

)
λ (Bm,k)λ(Bm,l)

=
(λ× λ) (Ic ∩ (Bm,k ×Bm,l))

λ (Bm,k)λ(Bm,l)
= 0.

Let Sk(m, k) := {X ∈ S(m, k) : rankX = k} and consider the continuous mapping

ϕk : Sk(m, k)→ G(m, k)

X 7→ ΠranX .
(A1)

where ΠranX denotes the orthogonal projection on ranX. Furthermore let ϕ : Sk(m, k)×
Sl(m, l)→ G(m, k)×G(m, l), (X,Y ) 7→ (ϕk(X), ϕl(Y )). Observe that ϕ(π(I)) is precisely
the set of (P, P ′) ∈ G(m, k)×G(m, l) such that C|ranP×ranP ′ is injective modulo scaling.
We de�ne a measure µ̃k on G(m, k) by setting µ̃k(A) := σk(ϕ

−1
k (A)) for all Borel subsets

A ∈ B(G(m, k)). From this one can seen that in the measure µ̃k × µ̃l, the set ϕ(π(I)) 8

has full measure and hence the following proposition concludes the proof of Theorem III.4.

Proposition A.1. The measure µ̃k coincides with the the Haar measure µk on G(m, k).

Proof. First note that µ̃k(G(m, k)) = σk(ϕ
−1(G(m, k))) = σk(Sk(m, k)) = 1. Hence it

su�ces to check that µ̃(UAU∗) = µ̃(A) for all U ∈ U(m) and A ∈ B(G(m, k)). Let
U ∈ U(m) and A ∈ B(G(m, k)). Then, since U(m)Sk(m, k) = Sk(m, k),

µ̃k(UAU
∗) = σk({X ∈ Sk(m, k) : ΠranX ∈ UAU∗})

= σk({X ∈ Sk(m, k) : U∗ΠranXU ∈ A})
= σk({X ∈ Sk(m, k) : ΠranU∗X ∈ A})
= σk(U{X ∈ Sk(m, k) : ΠranX ∈ A})
= σk({X ∈ Sk(m, k) : ΠranX ∈ A}),

where we used the unitary invariance of σ in the last step.

APPENDIX B: WEAK IDENTIFIABILITY CONDITIONS FOR

DECONVOLUTION MAPS

In this appendix we apply the techniques used in the present paper to the weak identi�-
ability problem, achieving a small improvement with respect to Theorem 3.1 in [1] (which
agrees with our result except that a strict inequality m > s1 + s2 is required) and showing
optimality of the resulting bound. As the proofs are in large parts very similar to those of
our main results, we omit some details.

8 Note that ϕ−1(ϕ(π(I))) = π(I).
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Theorem B.1 (Weak identi�ability conditions). For E ∈ F (m, k), let ran(E)s = {x ∈
ranE : x is s-sparse when expanded in E.}. Let s1, s2 ∈ N+ be such that s1 + s2 ≤ m and

let k, l ∈ N be such that s1 ≤ k ≤ m, s2 ≤ l ≤ m. Then, for Lebesgue almost all pairs

(E,D) ∈ F (m, k)×F (m, l), the pair of vectors (v, w) ∈ ran(E)s1 × ran(D)s2 is identi�able

up to scaling with respect to the circular convolution map C : Cm × Cm → Cm, (v, w) 7→
v ~ w.

Proof. The proof of this theorem can be given along the lines of the proof of Theorem III.5
respectively Proposition IV.4. The only di�erence is that the set W in Proposition IV.4
has to be replaced by the set (vwt −M1

s1,s2(n1, n2)) \ {0}. Clearly vwt −M1
s1,s2(n1, n2) is

isomorphic to M1
s1,s2(n1, n2) and thus dim(vwt −M1

s1,s2(n1, n2)) = dimM1
s1,s2(n1, n2) =

s1 + s2 − 1 by the proof of Proposition IV.1.

The following theorem shows that this bound is indeed optimal.

Theorem B.2. If a bilinear map B ∈ B(m) is such that (u, v) ∈ Cn1
s1 \ {0} × Cn2

s1 \ {0} is
weakly identi�able up to scaling with respect to B then m ≥ s1 + s2.

Let us �rst give two propositions that allow us to prove this theorem.

Proposition B.3. If there exists a bilinear map B ∈ B(m) such that (v, w) ∈ Cn1
s1 \ {0}×

Cn2
s1 \{0} is weakly identi�able up to scaling then there exists a linear map M : M(s1, s2)→

Cm such that P (e1e
t
1 −M1(s1, s2)) ∩ P (kerM) = ∅ 9.

Proof. We stick to the notation introduced in Subsection IVB. Let (v, w) ∈ Cn1
s1 \ {0} ×

Cn2
s1 \ {0} and let MB : M(n1, n2) → Cm be the linear map induced by B. Clearly

there exist A ∈ A(n1, s1), B ∈ A(n2, s2) such that vwt ∈ WA,B. Consider the iso-
morphism η|M1(s1,s2) : M1(s1, s2) → WA,B de�ned in (2). Let U1, U2 ∈ M(s1, s2) be
unitaries such that η(U1e1e

t
1U2) = vwt. De�ne a linear map M : M(s1, s2) → Cm by

setting M(X) = MB ◦ η(U1XU2) for all X ∈ M(n1, n2). Now, assume for a contra-
diction that there is an X = e1e

t
1 − ṽw̃t for some ṽ ∈ Cs1 \ {0}, w̃ ∈ Cs2 \ {0} with

P (X) ∈ P (e1e
t
1 −M1(s1, s2)) ∩ P (kerM). Then we have B(v, w) − B(IAU1ṽ, IBU2w̃) =

MB(vwt − η(U1ṽw̃
tU2)) = M(X) = 0, the sought contradiction.

Proposition B.4. The set P−1
(
P (e1e

t
1 −M1(s1, s2))

)
is the common zero locus of a set

of homogeneous polynomials and dimP (e1e
t
1 −M1(s1, s2)) = s1 + s2 − 1.

Proof. For 1 ≤ i < i′ ≤ s1 and 1 ≤ j < j′ ≤ s2 de�ne the 2× 2 minors

Mij,i′j′ : M(s1, s2)→ C, X 7→ det

(
Xij Xij′

Xi′j Xi′j′

)
.

Then VG = P−1(P (e1e
t
1−M1(s1, s2))) is the common zero locus of the set of homogeneous

polynomials G := {Mij,i′j′}1≤i<i′≤s1,1≤j<j′≤s2,(i,j) 6=(1,1). To determine the dimension of
P (e1e

t
1 −M1(s1, s2)) consider the injective morphism

η : C× (M1(s1, s2) ∩ {X ∈M(s1, s2) : X22 6= 0})→ VG, (λ,X)→ λe1e
∗
1 +X.

9 Here e1 denotes the �rst basis vector of the standard orthonormal basis of Cn.
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Now note that dim(M1(s1, s2)∩{X ∈M(s1, s2) : X22 6= 0}) = dimM1(s1, s2) = s1+s2−1
10 and hence we �nd dimP (e1e

t
1−M1(s1, s2)) = dimC+dimM1(s1, s2)−1 = s1+s2−1.

Now we are in a position to proof Theorem B.2.

Proof of Theorem B.2. Using Proposition B.3 it su�ces to show that if for a linear map
M : M(s1, s2)→ Cm one has P (kerM) ∩ P (e1e

t
1 −M1(s1, s2)) = ∅, then m ≥ s1 + s2.

Clearly, for such an M ∈ L(m), P (kerM) is a projective algebraic set and, by Propo-
sition B.4, P (e1e

t
1 −M1(s1, s2)) is also a projective algebraic set. Then, the result follows

again from the intersection theorem for projective varieties (cf. proof of Theorem III.1).

10 M1(s1, s2) is irreducible by Example 12.1 of [33] and hence M1(s1, s2) ∩ {X ∈ M(s1, s2) : X22 6= 0}
is irreducible as a non-empty open subset of the irreducible set M1(s1, s2) (see Exercise 1.1.3 of [32]).
Finally we have dim(M1(s1, s2) ∩ {X ∈ M(s1, s2) : X22 6= 0}) = dimM1(s1, s2) by Exercise 1.6 and
Proposition 1.10 of [32].
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In [1], a measurement scheme consisting of four von Neumann measurements that
allows the discrimination of any two pure quantum states is constructed. Starting
from the construction of [1], this article provides a measurements scheme consisting of
five von Neumann measurement which satisfies the following separation property (see
[2, 3]).

Definition 1. (Pure state complete among all states.) A measurement scheme M ∈
MSCn is called pure state complete among all states (PCA) iff DM (σ) 6= DM (%) holds
for all σ ∈ S1(Cn) and % ∈ S(Cn) with σ 6= %.

If a measurement scheme M ∈ MSCn is PCA one can decide from the outcome
distributions DM (%) whether or not a quantum % ∈ S(Cn) is pure. However, most
notably PCA measurement schemes allow for a computationally tractable tomography
of pure quantum states.

1 Main Result

Denote by e0, . . . , en−1 the standard orthonormal basis of Cn and set v0j := ej , for
j = 0, . . . , d− 1. For j = 0, . . . , d− 1, let

v1j :=

√
2

d+ 1

(
sin

(
1
j + 1

d+ 1
π

)
, sin

(
2
j + 1

d+ 1
π

)
, . . . , sin

(
d
j + 1

d+ 1
π

))
,

v2j :=

√
2

d+ 1

(
sin

(
1
j + 1

d+ 1
π

)
, sin

(
2
j + 1

d+ 1
π

)
eiπ/d, . . . , sin

(
d
j + 1

d+ 1
π

)
ei(d−1)π/d

)
.

Similarly, for j = 0, . . . , d− 2, let

v3j :=

√
2

d

(
sin

(
1
j + 1

d
π

)
, sin

(
2
j + 1

d
π

)
, . . . , sin

(
(d− 1)

j + 1

d
π

)
, 0

)
,

v4j :=

√
2

d

(
sin

(
1
j + 1

d
π

)
, sin

(
1
j + 1

d
π

)
eiπ/d, . . . , sin

(
(d− 1)

j + 1

d
π

)
ei(d−2)π/d, 0

)
and set v3d−1 := en−1 as well as v4d−1 := en−1.

Theorem 1. The multisets P i := {vij(vij)∗| j ∈ {0, . . . , d − 1}}, i = 0, 1, 2, 3, 4, are
von Neumann measurements and the measurement scheme M := (P0, P1, P2, P3, P4)
is PCA.



2 Stability

Let σ ∈ S1(Cn) be a pure state, let f ∈ R5n be an error term and let M ∈MSH be a
PCA measurement scheme. Consider the convex program

minimize ‖DM (Y )− b‖
subject to Y ≥ 0,

(1)

where b := DM (σ) + f is the noisy measurement outcome.
Then, the following qualitative recovery result holds.

Theorem 2 (Stable Recovery). Let ε > 0. There is a constant CM > 0 independent
of ε such that for all pure states σ and all error terms f ∈ R5n with ‖f‖ ≤ ε, any
minimizer Y ∗ of (1) satisfies

‖Y ∗ − σ‖HS ≤ CM ε.

3 Legal statement

I am the principal author of this article and I was significantly involved in all parts of
this article.
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Abstract – For any finite dimensional Hilbert space, we construct explicitly five orthonormal
bases such that the corresponding measurements allow for efficient tomography of an arbitrary
pure quantum state. This means that such measurements can be used to distinguish an arbitrary
pure state from any other state, pure or mixed, and the pure state can be reconstructed from the
outcome distribution in a feasible way. The set of measurements we construct is independent of
the unknown state, and therefore our results provide a fixed scheme for pure state tomography, as
opposed to the adaptive (state dependent) scheme proposed by Goyeneche et al. in [Phys. Rev.
Lett. 115, 090401 (2015)]. We show that our scheme is robust with respect to noise, in the sense
that any measurement scheme which approximates these measurements well enough is equally
suitable for pure state tomography. Finally, we present two convex programs which can be used
to reconstruct the unknown pure state from the measurement outcome distributions.

Introduction. – The aim of quantum tomography is
to reconstruct the unknown state of a quantum system by
performing suitable measurements on it. Tomography is
a vital routine in quantum information, where it is used
to characterize output states and test processing devices.
However, quantum tomography is a consuming task: in or-
der to obtain enough information for state reconstruction
of a d-level system, it is necessary to perform measure-
ments of d + 1 different orthonormal bases, or a general-
ized measurement with at least d2 outcomes. This poor
scaling has led to the search for more efficient methods
which allow for a reduction of resources in specific cases.

Recent focus has been on the identification of unknown
pure (or more generally low rank) states [1–7]. Any two
pure states can be distinguished with a measurement hav-
ing just ∼ 4d outcomes [1] or, when restricting to pro-
jective measurements, with only four orthonormal bases
[3, 7, 8]. The drawback of these approaches is that the
measurements they provide cannot distinguish pure states
from all states, implying that one needs to know that the

state is pure prior to the measurement in order not to con-
fuse it with mixed states having the same measurement
outcome distributions. Moreover, none of the approaches
allows an efficient recovery algorithm, mainly since the
non-convex nature of the problem renders usual techniques
from convex optimization useless.

In [9], a scheme involving five orthonormal bases along
with a reconstruction algorithm was proposed and exper-
imentally demonstrated. Remarkably, such a scheme al-
lows to certify the purity assumption on the state directly
from the measurement outcomes. However, this method
is adaptive in the sense that the outcome distribution of
the first measurement affects the choice of the subsequent
ones. Therefore, if one requires the procedure to work for
all pure states the overall number of required measurement
settings is considerably larger than five.

At the cost of a slightly higher number O(d ln d) of
measurement outcomes, tomographic procedures based on
compressed sensing were proposed in [10–12]. This ap-
proach allows for the stable recovery of pure quantum

p-1
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states, as well as satisfies the requirement of distinguish-
ing pure states from all states [13]. However, rather than
providing a functioning measurement set-up, compressed
sensing techniques guarantee that, with high probabil-
ity, any state can be reconstructed by using sufficiently
many randomly drawn measurement settings. From a
practical point of view, however, a deterministic approach
which provides an explicit measurement set-up may be
favourable.

In this Letter we overcome these drawbacks by con-
structing five orthonormal bases such that every pure state
can be efficiently reconstructed from the corresponding
measurements. For any dimension d, our set of measure-
ments is fixed and therefore there is no need for data pro-
cessing in between the measurements. We show that these
measurements distinguish pure states from all states, and
this therefore shows that the scaling∼ 5d in the total num-
ber of outcomes is the same as without the constraint of
having projective measurements [14]. More importantly,
we prove that the presented set-up is robust with respect
to noise. Finally, we provide reconstruction algorithms
for the practical retrieval of the unknown state from the
measurement data. We remark that, as compared to the
compressed sensing results of [10–12], our result comes
with fewer measurement outcomes. However, the stability
guarantees that we can derive are weaker.

Construction of the bases. – We begin by con-
structing, for any dimension d, five orthonormal bases
B0, . . . ,B4 which determine any pure state among all
states. This means that for any pure state represented
by a unit vector ψ, and any density matrix %, the equali-
ties∣∣〈v`j | ψ〉∣∣2 = 〈v`j | % v`j〉 for all v`j ∈ B` and ` = 0, . . . , 4

imply that % = |ψ〉〈ψ|. The construction is an extension of
[8] where, based on the properties of Hermite polynomials,
four orthonormal bases B1, . . . ,B4 capable of distinguish-
ing any two pure states were presented. That construction
generalizes easily to any sequence of orthogonal polynomi-
als as explained in [3]. Remarkably, by adding the canon-
ical basis B0 = {e0, . . . , ed−1} to this set, we obtain the
five bases with the desired property.

To begin with, let us fix a sequence of orthogonal poly-
nomials, that is, a sequence (pn)∞n=0 of real polynomials
such that pn is of degree n and

〈pj , pi〉 :=

∫ ∞
−∞

pj(x)pi(x)w(x)dx = δij

for some positive weight function w. For a d-dimensional
system we will only need the first d + 1 polynomials. To
construct the first two bases, let x0, . . . , xd−1 be the ze-
ros of pd, which are real and distinct numbers satisfying
pd−1(xj) 6= 0 for all j ∈ {0, . . . , d − 1} [15, Section 3.3].
Pick an α ∈ R such that eijα /∈ R for all j ∈ {1, . . . , d−1}.

Now for j = 0, . . . , d− 1, set

v1j := (p0(xj), p1(xj), . . . , pd−1(xj)) ,

v2j :=
(
p0(xj), e

iαp1(xj), . . . , e
i(d−1)αpd−1(xj)

)
and denote B1 = {v1j /‖v1j ‖ | j = 0, . . . , d − 1} and B2 =

{v2j /‖v2j ‖ | j = 0, . . . , d − 1}. The fact that these are
actually orthonormal bases can be readily checked using
the Christoffel-Darboux formula [15, Theorem 3.2.2]

n∑
i=0

pi(x)pi(y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

where kn is the leading coefficient of pn (see [3,8] for more
details). This formula evaluated at n = d−1 and x = y =
xj also yields the normalization factor∥∥v1j∥∥2 =

∥∥v2j∥∥2 =
kd−1
kd

p′d(xj)pd−1(xj).

For the remaining two bases, let y0, . . . , yd−2 be the zeros
of pd−1. As the polynomials pd and pd−1 have no common
zeros, the yj :s are distinct from the xj :s. By a similar
reason, pd−2(yj) 6= 0 for all j = 0, . . . , d − 2. For j =
0, . . . , d− 2 define the non-zero vectors

v3j := (p0(yj), p1(yj), . . . , pd−2(yj), 0) ,

v4j :=
(
p0(yj), e

iαp1(yj), . . . , e
i(d−2)αpd−2(yj), 0

)
,

and by setting v3d−1 := ed−1 as well as v4d−1 := ed−1 we
have arrived at the two orthonormal bases B3 = {v3j /‖v3j ‖ |
j = 0, . . . , d − 1} and B4 = {v4j /‖v4j ‖ | j = 0, . . . , d − 1}.
The normalization is now given by∥∥v3j∥∥2 =

∥∥v4j∥∥2 =
kd−2
kd−1

p′d−1(yj)pd−2(yj).

Theorem 1. The five orthonormal bases B0, . . . ,B4 con-
structed above determine any pure state among all states.

Proof. Let ψ =
∑d−1
j=0 cjej be a unit vector and let % be

an arbitrary state such that
∣∣〈v`j | ψ〉∣∣2 = 〈v`j | % v`j〉 for all

v`j ∈ B` and ` = 0, . . . , 4. From the standard basis B0 we

get %k,k = |ck|2 for all k. Let n denote the largest number
such that %n,n = |cn|2 6= 0 so that by the positivity of %,
%k,l = %l,k = 0 for all k > n. By the definition of the bases
and the equalities of the probabilities we then have

n∑
k,l=0

(%k,l − ckcl)pk(z)pl(z) = 0 (1)

n∑
k,l=0

(%k,l − ckcl)ei(l−k)αpk(z)pl(z) = 0 (2)

for all z = xj and z = yj , but since the polynomials have
degree at most 2n ≤ 2d − 2 and they vanish on 2d − 1
distinct points, they must be identically zero. In other
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words, the above equalities must hold for all z ∈ R. Let
us denote tk,l = %k,l − ckcl so that tl,k = tk,l and tk,k = 0.
By looking at the highest degree terms in (1) and (2) we
get Re (tn,n−1) = Re (e−iαtn,n−1) = 0, which imply that
tn,n−1 = 0. In other words, the matrix elements of the
two states coincide on the diagonal and the bottom right
(d−n+1)×(d−n+1)-block. We now proceed by induction.

Firstly, whenever the two states coincide on some bot-
tom right (d − r) × (d − r)-block, with 1 ≤ r ≤ n − 1,
we have tk,l = 0 for k ≥ r and l ≥ r. But then the
highest degree terms in (1) and (2) give Re (tn,r−1) =
Re (ei(r−n−1)αtn,r−1) = 0, which yield tn,r−1 = 0, that
is %n,r−1 = cncr−1. Secondly, using this and the positivity
of % we can calculate for all r − 1 < k < n

0 ≤

∣∣∣∣∣∣
%r−1,r−1 %r−1,k %r−1,n
%k,r−1 %k,k %k,n
%n,r−1 %n,k %n,n

∣∣∣∣∣∣
=

∣∣∣∣∣∣
|cr−1|2 %r−1,k cr−1cn
%r−1,k |ck|2 ckcn
cr−1cn ckcn |cn|2

∣∣∣∣∣∣
= −|cn|2|%r−1,k − cr−1ck|2

which is satisfied if and only if the right-hand side is zero.
Since cn 6= 0, this gives us %r−1,k = cr−1ck. The two
states therefore coincide on a larger bottom right block.
By induction, the states must be equal.

To give an example of the previously explained construc-
tion of five bases, we take the Chebyshev polynomials of
the second kind (Un)∞n=0. These are the unique polynomi-
als such that [15, p. 3]

Un(cos θ) =
sin ((n+ 1)θ)

sin θ

holds for all n = 0, 1, . . . and θ ∈ [0, 2π). The n roots of
Un are given by

cos

(
j + 1

n+ 1
π

)
, j = 0, . . . , n− 1 ,

and its leading coefficient is kn = 2n. Hence, the normal-
ized vectors of the first and the third basis are

v1j =

√
2

d+ 1

(
sin

(
1
j + 1

d+ 1
π

)
, . . . , sin

(
d
j + 1

d+ 1
π

))
v3j =

√
2

d

(
sin

(
1
j + 1

d
π

)
, . . . , sin

(
(d− 1)

j + 1

d
π

)
, 0

)
with v3d−1 = (0, . . . , 0, 1). The bases B2 and B4 are similar.

More general measurements and stability. – A
realistic measurement is affected by noise and therefore
cannot be described simply by an orthonormal basis. Even
more, an optimal measurement for a given task might not
even be related to an orthonormal basis. For these rea-
sons, one needs to have a wider mathematical framework

for measurements. A general measurement in quantum
mechanics can be modelled by a positive operator valued
measure (POVM) [16], which is a function j 7→ P (j) from
a finite set of measurement outcomes {1, . . . ,m} to the
linear space of d × d Hermitian matrices H(d) such that
P (j) ≥ 0 and

∑m
j=1 P (j) = 1. In practice one might want

to measure more than one POVM. For instance, a noisy
measurement of each orthonormal basis can be described
by a separate POVM. By a measurement scheme we mean
a set Q := {P1, . . . , Pl} of POVMs. It is not restrictive to
assume that all POVMs in a given measurement scheme
have the same set of outcomes {1, . . . ,m}. A measure-
ment scheme Q therefore induces a linear map MQ from
the real vector space H(d) to the set of real l×m matrices
Mlm(R) via

MQ(X)i,j = tr [XPi(j)] .

The image of a state % is the real matrix whose i-th row
contains the outcome probabilities corresponding to Pi.
Analogously to the case of projective measurements, we
say that the measurement scheme Q determines any pure
state among all states if for any pure state σ = |ψ〉〈ψ| and
any state %, the equality MQ(σ) = MQ(%) implies % = σ.
By adapting the argument of [2, Theorem 1], we obtain
the following characterization.

Proposition 1. A measurement scheme Q determines
any pure state among all states if and only if every non-
zero element of kerMQ has at least two positive eigenval-
ues.

Proof. The measurement scheme Q does not determine
pure states among all states if and only if MQ(σ − %) = 0
for some states σ and % such that σ is pure and σ − % 6=
0. This implies that σ − % ∈ kerMQ, and σ − % has at
most one positive eigenvalue by Weyl’s inequalities [17,
Theorem III.2.1]. Conversely, if X ∈ kerMQ is non-zero
and has at most one positive eigenvalue, then it has exactly
one positive eigenvalue since tr [X] =

∑
jMQ(X)i,j = 0.

Hence, its positive part X+ has rank 1. Defining the states
σ = X+/tr [X+] and % = (X+ −X)/tr [X+], we have that
σ is pure, σ − % = X/tr [X+] 6= 0 and MQ(σ − %) =
MQ(X)/tr [X+] = 0.

With this framework of measurement schemes we are
now prepared to discuss the noise robustness of the re-
sult stated in Theorem 1. First, we will need to have a
notion of closeness of two measurement schemes, and for
this reason we fix norms on the real vector spacesH(d) and
Mlm(R). Since these are finite dimensional vector spaces,
all norms are equivalent and the choice is not important
for our purposes. Typical choices are, e.g., the trace norm
‖X‖ = tr [|X|] on H(d), and on Mlm(R) the supremum of
the `1-norm over all lines, i.e.,

‖M‖ = sup
i

∑
j

|Mi,j | .
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The inequality ‖MQ(%)−MQ′(%)‖ ≤ ε then means that
the measurement outcome distributions of all the POVMs
in Q and Q′ measured on the same state % are uni-
formly close in the total variation norm. We will say
that two measurement schemes Q and Q′ are ε-close if
‖MQ −MQ′‖∞ < ε, where ‖·‖∞ is the uniform operator
norm in the chosen norms of H(d) and Mlm(R).

Theorem 2 (Stability). If a measurement scheme Q de-
termines any pure state among all states, then there is an
ε > 0 such that every measurement scheme Q′ which is
ε-close to Q has this same property.

Proof. For i ∈ {1, . . . , d}, denote by λi(X) the i-th great-
est eigenvalue of a Hermitian matrix X ∈ H(d). Let
K := {X ∈ H(d) : λ2(X) ≤ 0, ‖X‖ = 1} be the set of
unit norm Hermitian matrices with at most one positive
eigenvalue. Consider the map φ : H(d)→ Rd,

φ(X) = (λ1(X),−λ2(X), . . . ,−λd(X))

and let L := [0,+∞)d. We have K = φ−1(L) ∩ H(d)1,
where H(d)1 is the unit sphere in H(d). Since H(d)1 is
compact, L is closed, and φ is continuous by Weyl’s per-
turbation theorem [17, Corollary III.2.6], we conclude that
K is a compact set.

We claim that a measurement scheme Q determines
pure states among all states if and only if c :=
minX∈K ‖MQ(X)‖ > 0. First, assume c > 0, and let
X 6= 0 be such that λ2(X) ≤ 0. We have X/ ‖X‖ ∈ K,
hence

‖MQ(X)‖ = ‖X‖
∥∥∥∥MQ( X

‖X‖

)∥∥∥∥ ≥ c ‖X‖ 6= 0,

that is, X /∈ kerMQ. Therefore, Q determines any pure
state among all states by Proposition 1. Conversely, sup-
pose thatQ has the latter property. By the compactness of
K, there is X ∈ K such that c = ‖MQ(X)‖. Since Propo-
sition 1 implies that every non-zero element of kerMQ has
at least two positive eigenvalues, we have MQ(X) 6= 0 and
thus c 6= 0.

Finally, if ‖MQ −MQ′‖∞ < ε, then

min
X∈K

‖MQ′(X)‖ ≥ min
X∈K

(‖(MQ(X)‖

− ‖(MQ −MQ′)(X)‖) ≥ c− ε.

Hence, for any ε < c, the measurement scheme Q′ deter-
mines any pure state among all states.

Pure state quantum tomography. – The most no-
table practical feature of measurement schemes that de-
termine pure states among all states is that they allow for
a computationally efficient tomography of pure quantum
states. Essentially, this is due to the fact that for every
pure state σ, the unique solution to the feasibility problem

find X

subject to X ≥ 0, MQ(X) = MQ(σ)

is given by σ. Indeed, since tr [X] =
∑
jMQ(X)i,j , the

constraints imply that any solution is a state. Such a state
must then coincide with σ, as the measurement scheme Q
determines σ among all states.

In practice, the state σ might not be pure, but just well
approximated by a pure state, the measurement MQ(σ)
might be affected by systematic errors and furthermore
there is statistical noise. Because of that, in a realistic
scenario, one has to reconstruct σ from the perturbed mea-
surement data b := MQ(σ) + f , where f ∈ Mlm(R) is a
small error term capturing all of these sources of error. In
the remainder of this section we present two convex opti-
mization problems which allow for a recovery of any pure
state σ from the noisy measurement data b provided that
the measurement scheme Q determines pure states among
all states. Results in this direction have been reported also
in [18].

First, consider the well-known [19] semi-definite pro-
gram

minimize tr(Y )

subject to Y ≥ 0, ‖MQ(Y )− b‖ ≤ ε,
(3)

where ε > 0 is an error scale which has to be fixed in
advance. Then, as an easy consequence of [20, Theorem
IV.1], we get the following recovery result (a simple proof
is reported below).

Theorem 3 (Stable Recovery I). Let ε > 0. There is a
constant CQ > 0 independent of ε such that for all pure
states σ and all error terms f ∈ Mlm(R) with ‖f‖ ≤ ε,
any minimizer Y ∗ of (3) satisfies

‖Y ∗ − σ‖ ≤ CQε.

Secondly, consider the following convex program, which
was also proposed in [21]

minimize ‖MQ(Y )− b‖2
subject to Y ≥ 0.

(4)

Note that, different from the program (3), there is no need
to guess an error scale ε in advance, which might be desir-
able from a practical point of view. The next result then
follows from [20, Lemma V.5] (see also below).

Theorem 4 (Stable Recovery II). Let ε > 0. There is a
constant CQ > 0 independent of ε such that for all pure
states σ and all error terms f ∈ Mlm(R) with ‖f‖ ≤ ε,
any minimizer Y ∗ of (4) satisfies

‖Y ∗ − σ‖ ≤ CQε.

Proof of Theorems 3 and 4. Note that for both of the
optimizations (3) and (4) the minimizer Y ∗ satisfies
‖MQ(Y ∗) − MQ(σ) − f‖ ≤ ε. Hence, in both cases we
find

ε ≥ ‖MQ(Y ∗)−MQ(σ)− f‖ ≥ ‖MQ(Y ∗ − σ)‖ − ‖f‖

≥ ‖Y ∗ − σ‖ inf
X,σ′≥0, X 6=σ′

rankσ′=1

‖MQ(σ′ −X)‖
‖σ′ −X‖

− ε. (5)
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By Weyl’s inequalities,{
σ′ −X
‖σ′ −X‖

: X,σ′ ≥ 0, X 6= σ′ and rankσ′ = 1

}
⊆ K ,

where K := {X ′ ∈ H(d) : λ2(X ′) ≤ 0, ‖X ′‖ = 1} .

(Actually, it is easy to see that the two sets are equal.)
By the argument in the proof of Theorem 2, the set K
is compact. Since the measurement scheme Q determines
pure states among all states, we have MQ(X ′) 6= 0 for all
X ′ ∈ K by Proposition 1, and hence

cQ := min
X′∈K

‖MQ(X ′)‖ > 0.

This, together with (5), implies

‖Y ∗ − σ‖2 ≤
2

cQ
ε

and hence we can choose CQ = 2/cQ.

Note that in both Theorems 3 and 4, the constant CQ
appearing in the stability bound might depend on all the
parameters of Q. We do not know how to estimate CQ
and hence we cannot make our stability results more ex-
plicit. Therefore, we have to rely on numerical simula-
tions to evaluate whether the measurement schemes we
constructed perform well enough in practise.

Numerical results. – For our simulations we choose
the measurement schemes constructed from the Cheby-
shev polynomials of the second kind (Un)∞n=0. More-
over, we choose α = π/d and we use the Hilbert-Schmidt
norm ‖·‖2 on both H(d) and Mlm(R). For dimensions
d = 10, 20, . . . , 60, we ran the semi-definite program (3)
for 105 times, where we sampled the pure states and error
terms f ∈Mlm(R) with ‖f‖2 = ε independently according
to the respective Haar measures. The error scale was set
to ε = 10−4.

Figure 1 shows the empiric probability density func-
tion of the reconstruction error for the dimensions d =
10, 30, 50. In all cases the distribution appears to be well
located, indicating a good reconstruction for most signals.

Figure 2 shows the empiric 96%,99% and 99.75% quan-
tiles of the reconstruction error as well as its arithmetic
mean. In the selected range of dimension the 99.75%
quantile error does not exceed 60ε. This suggests that
for most signals the reconstruction is feasible. Further-
more, all quantiles appear to scale sublinearly with the
dimension.

Conclusion. – We have presented an explicit con-
struction of five measurement settings which allow the
efficient reconstruction of pure quantum states. Unlike
earlier approaches, our method is deterministic and non-
adaptive, meaning that the setting is fixed and works for
all states. An important fact from the practical point of
view is that the scheme is robust with respect to noise.

Fig. 1: (Color online) The empiric probability density function
of the relative reconstruction error ‖Y ∗−σ‖2/ε for dimensions
d = 10, 30, 50, where Y ∗ is the minimizer of the semi-definite
program (3).

Thus, state reconstruction from the measurement data
can then be applied at the practical level by using the
presented algorithms.
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Dynamical Quantum Tomography

M. Kech August 24, 2016

This article is concerned with tomography schemes where the experimenter can utilize
a fixed measurement setting P ∈ POVMH and a known time evolution T ∈ CPTPH
to perform (several) experiments of the following kind: Before making measurements
with the setting P , the experimenter can chooses a number of time steps k ∈ N and
subject the given ensemble of quantum systems prepared in state % ∈ S(H) to the
time evolution T k.

Particularly, given a POVM P := {P1, . . . , Pm}, a CPTP map T ∈ CPTPH and a
total number of time steps l ∈ N0, the focus is on the measurement scheme

T (P )l := ({P1, . . . , Pm}, . . . , {(T ∗)l−1(P1), . . . , (T ∗)l−1(Pm)}) ∈MSH.

This article provides bounds on the number of outcomes m of the POVM P and
the total number of time steps l required to allow for perfect state discrimination,
also considering the scenario where prior information constrains the set of relevant
quantum states to a subset of lower dimensionality.

1 Main Results

First, the focus is on unitary time evolutions. For U ∈ U(H) define the CPTP map

TU : L(H)→ L(H)

X 7→ UXU†.

The article provides a subset A ⊆ UH of feasible unitaries, i.e., unitaries that are
well-suited for the proposed tomography scheme. For these unitaries, the following
theorem is proven.

Theorem 1 (Informationally complete tomography). Let U ∈ A be feasible. Then,
for almost all POVMs P with n outcomes the measurement scheme T n+1

U (P ) is infor-
mationally complete.

This result is optimal in the sense that there cannot be a POVM P with less out-
comes such that T l

U (P ) is informationally complete for some l ∈ N:

Proposition 2. Let P be a POVM and let l ∈ N. If spanR T l
U (P ) = H(H), then P

has at least n outcomes.

The analysis can also be extended to state discrimination on subsets of the state
space. Indeed, a universality theorem similar to Theorem VI.2 of [1] is proven which
immediately implies the following corollaries.



Corollary 3 (Whitney). Let U ∈ A be feasible and let R ⊆ S(H) be a semi-algebraic
subset. Let m ≥ n and let l ∈ N be such that l(m− 1) > 2 dimR. Then, for almost all
POVMs P with m outcomes the measurement scheme T l

U (P ) is stably R-complete.

Corollary 4 (States of bounded rank). Let U ∈ A be feasible. Let m ≥ n and let
l ∈ N be such that l(m − 1) ≥ 4r(n − r) − 1. Then, for almost all POVMs P with m
outcomes the measurement scheme T l

U (P ) is stably Sr(H)-complete.

Furthermore, similar results are obtained when allowing general CPTP maps T ∈
CPTPH. Indeed, it is shown that in this scenario POVMs with two outcomes can
suffice for an informationally complete tomography and that they are also suited for
state discrimination on semi-algebraic subsets of the state space.
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We consider quantum state tomography with measurement procedures of the following
type: First, we subject the quantum state we aim to identify to a know time evolution for
a desired period of time. Afterwards we perform a measurement with a fixed measurement
set-up. This procedure can then be repeated for other periods of time, the measurement
set-up however remains unaltered.
Given an n-dimensional system with suitable unitary dynamics, we show that any two

states can be discriminated by performing a measurement with a set-up that has n outcomes
at n+ 1 points in time.
Furthermore, we consider scenarios where prior information restricts the set of states

to a subset of lower dimensionality. Given an n-dimensional system with suitable unitary
dynamics and a semi-algebraic subset R of its state space, we show that any two states
of the subset can be discriminated by performing a measurement with a set-up that has n
outcomes at l steps of the time evolution if (n−1)l ≥ 2 dimR. In addition, by going beyond
unitary dynamics, we show that one can in fact reduce to a set-up with the minimal number
of two outcomes.
Keywords: quantum tomography, prior information
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I. INTRODUCTION AND SUMMARY

Quantum tomography is the task of identifying an unknown quantum state form the
outcomes of a measurement. It is an integral part of quantum information science its im-
plementation, however, is expensive. Yet, in some relevant scenarios it can be simplified:
If prior information constrains the set of states to a subset of lower dimensionality the
number of measurement outcomes necessary to uniquely identify a state can reduce con-
siderably. In particular pure state tomography, or more generally tomography on states of
bounded rank, has received significant attention and still is a field of active research.

Methods to find lower bounds on the number of measurement outcomes necessary to
discriminate any two states of a given subset of the state space were first provided in [1] and
later it was shown in [2] that these method apply in a rather general framework. However,
from a practical point of view not all measurements might be feasible for implementation
and thus one might want to restrict to a set of admissible measurements. Doing so, it is
not clear whether the lower bounds established in [1, 2] still apply. In the context of pure
state tomography it was shown in [3–6] that any two pure states can be discriminated by
performing four von-Neumann measurements, which is indeed tight for systems of dimen-
sion n ≥ 5. Additionally, in [6] this result was extended to more general subsets of the
state space, including states of bounded rank. In the closely related fields of phase retrieval
and low rank matrix recovery similar questions were addressed in [7–12]. Finally, at the
cost of requiring slightly more measurement outcomes, robust reconstruction algorithms
are provided in [13–15].

Purpose of the present paper. The conventional approach to quantum tomography is
to design a certain measurement set-up. Performing a statistical experiment, the state
is identified from the relative frequencies of the measurement outcomes. If the system is
of dimension n, at least n2 outcomes are required to identify an unknown state. In the
present paper we consider a more general scenario. Suppose we are given a measurement
set-up and that, in addition, the system can be evolved according to a know time evolution.
Rather than performing a conventional measurement with the set-up, we take advantage of
the time evolution by considering measurement procedures of the following kind: Having
evolved the system for a desired period of time, we perform a measurement 1 with the
given measurement set-up. Then, the procedure can be repeated for other periods of time.
Using this measurement scheme, we show that for suitable time evolutions any state can
be identified with a measurement set-up that has solely two outcomes. Furthermore, also
considering the scenario where prior information constrains the relevant set of states to a
subset of lower dimensionality, we provide upper bounds on the minimal number of points
in time on which one has to perform a measurement in order to be able to discriminate
any to states of a given subset of the state space.

In the present paper we do not consider the algorithmic problem of reconstructing the
state from the measurement data.

Outline. In Section II, we fix notation and introduce notions that are relevant for the

1 Performing a measurement should be understood as determining the relative frequencies of the measure-
ment outcomes in the asymptotic limit of complete statistics.
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following.
In Section III, we consider systems with discrete unitary dynamics. The first part is

devoted to informationally complete tomography. Given the possibility to perform a mea-
surement with a given measurement set-up at several time steps of the unitary evolution,
we show that this set-up has to have at least n outcomes to perform an informationally
complete tomography if the system is n-dimensional. Furthermore, we show that under
some condition on the time evolution, an informationally complete tomography can be per-
formed by measuring with a set-up that has n+ 1 outcomes at n time steps. In the second
part we consider tomography on subsets of the state space. We show that performing a
measurement with a set-up that has m ≥ n outcomes at sufficiently many points in time is
a universal measurement scheme in the sense of [6]. This allows us to prove a Whitney type
embedding result: Given an n-dimensional system with suitable unitary dynamics and a
semi-algebraic subset R of its state space, we show that any two states of the subset can
be discriminated by performing a measurement with a set-up that has m ≥ n outcomes
at l ≥ 2 dimR

m−1 steps of the time evolution. Furthermore, we show that any two states of
an n-dimensional system whose rank is at most r can be discriminated by performing a
measurement with a set-up that has m ≥ n outcomes at l ≥ 4r(n−r)−1

m−1 time steps. This
upper bound on the number of time steps is close to the lower bound established in [1, 2].

In Section IV, we generalize the system dynamics to a larger class of discrete CPTP
time evolutions. Just like in Section III we prove a universality result in the sense of
[6]. Different form the case of unitary system dynamics, in this case there is just the
trivial lower bound on the number of outcomes of the measurement set-up and indeed an
informationally complete tomography can be performed by measuring with a set-up that
has just two outcomes at n2 − 1 points in time. Similar to the last section, given an n-
dimensional system with suitable CPTP dynamics and a semi-algebraic subsetR of its state
space, we show that any two states of the subset can be discriminated by measuring with a
set-up that hasm ≥ 2 outcomes at l ≥ 2 dimR

m−1 steps of the time evolution. Furthermore, we
show that any two state of an n-dimensional system of rank at most r can be discriminated
by measuring with a measurement set-up that has m ≥ 2 outcomes at l ≥ 4r(n−r)−1

m−1 steps
of the time evolution.

Having solely dealt with discrete time evolutions before, in appendix B we consider
the possibility of performing measurements at rational points in time of a continuous time
evolution.

II. PRELIMINARIES

By B(Cn) we denote the complex vector space of linear operators on Cn. By H(n) we
denote the real vector space of hermitian operators on Cn and H(n)0 denotes the subspace
of H(n) consisting of traceless hermitian operators. We equip both H(n) and B(Cn) with
the Hilbert-Schmidt inner product. By SH(n)0 := {X ∈ H(n)0 : ‖X‖2 = 1} we denote
the unit sphere in H(n)0 where ‖ · ‖2 denotes the Hilbert-Schmidt norm. By S(Cn) we
denote the set of quantum states on Cn, i.e. S(Cn) := {ρ ∈ H(n) : ρ ≥ 0, tr(ρ) = 1}.
Furthermore, for a subset A ⊆ H(n), we denote by ∆(A) the set of differences of operators
in A, i.e. ∆(A) := {X − Y : X,Y ∈ A}. By U(n) we denote the set of unitary operators
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on Cn. We call a subset A ⊆ Rn an algebraic set if it is the real common zero locus of a
set of real polynomials in n variables and we call it a semi-algebraic set if it is the set of
common solutions of a finite set of real polynomial inequalities in n variables (cf. [16]).

General quantum mechanical measurements can be described by positive operator val-
ued measures (POVMs)[17, 18]. For the purpose of the present paper we use the following
definition.

Definition II.1. (POVM.) A POVM on Cn is a tuple P = (Q1, . . . , Qm) of positive
semidefinite operators on Cn such that

m∑
i=1

Qi = 1Cn .

An element of P is called an effect operator. The dimension of P is dimP := |P | − 1.

There is a linear map hP associated to each POVM P = (Q1, . . . , Qm) given by

hP : H(n)→ Rm

x 7→
(
tr(Q1x), . . . , tr(Qmx)

)
.

A whole experiment might consist of measuring more than one POVM.

Definition II.2. (Measurement-scheme.) A tuple of POVMs is called a measurement-
scheme.

For a tuple of natural numbers I = (m1, . . . ,ml) let

M(I) := {(P i)li=1 : P i is an mi-dimensional POVM}.

Similar to a POVM, a measurement-scheme M = (P 1, . . . , P k) induces a linear map

hM : H(n)→ R|P
1|+...+|Pk|

x 7→
(
hP 1(x), . . . , hPk(x)

)
.

We equipM(I) with the topology induced by the metric

d(M,M ′) := ‖hM − hM ′‖

where ‖ · ‖ denotes the operator norm.

Definition II.3. (R-complete.) A measurement-scheme M is called R-complete for a sub-
set R ⊆ S(Cn) iff hM |R is injective. An S(Cn)-complete POVM is called informationally
complete.

Furthermore, we use the following notion of stability of measurement-schemes (cf. Def-
inition III.2 [2]).
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Definition II.4. (Stability.) Let R ⊆ S(Cn) be a subset and let I be a tuple of natural
numbers. An R-complete measurement-scheme M ∈ M(I) is stably R-complete iff there
exists a neighbourhood N ⊆ M(I) of M such that each measurement-scheme M ′ ∈ N is
R-complete.

In case the subset R ⊆ S(Cn) is a smooth submanifold, the equivalence of this notion
of stability to other stability properties is proven in [2].

Finally, let us define the measurement-schemes we work with in the following. Let
l ∈ N. For T : B(Cn) → B(Cn) a unital completely positive map and P := (Q1, . . . , Qm)
a POVM define the measurement-scheme

T l(P ) :=
(

(Q1, . . . , Qm) , (T (Q1), . . . , T (Qm)) , . . . , (T l−1(Q1), . . . , T l−1(Qm))
)
. (1)

Here the POVM P is understood to be the initial measurement set-up and T l(P ) is the
measurement-scheme in which the POVM P is measured at l steps of the discrete time
evolution described by completely positive trace preserving (CPTP) map T †.

III. UNITARY TIME EVOLUTION

Informationally Complete Tomography

For given U ∈ U(n) let

TU : B(Cn)→ B(Cn)

x 7→ UxU †

be the associated unital CPTP map. Furthermore, let FU be the fix point set of TU , i.e.
FU := {X ∈ B(Cn) : TU (X) = X} and let let F sa

U := {X ∈ H(n) : TU (X) = X}. Note
that we have the block decomposition TU = TU |FU

⊕ TU |F⊥U .
We first deal with the problem of performing informationally complete quantum tomog-

raphy using a given unitary time evolution.

Proposition III.1. Let P be a POVM and let m ∈ N. If spanR T m
U (P ) = H(n), then

dimP ≥ n− 1.

Proof. Let P := (P1, . . . , Pk) be a POVM and assume spanRT m
U = H(n). Clearly

dimF sa
U ≥ n because F sa

U contains the vector space of real matrices that are diagonal
in a basis that diagonalizes U .

Let ΠF sa
U

: H(n) → F sa
U be the orthogonal projection on F sa

U and note that
ΠF sa

U
◦ T j

U (X) = ΠF sa
U

(X) for all X ∈ H(n) and j ∈ N. Therefore F sa
U = ΠF sa

U
(H(n)) =

ΠF sa
U

(spanRT m
U (P )) = spanR{ΠF sa

U
(P1), . . . ,ΠF sa

U
(Pk)} and hence dimF sa

U ≤ k.
Combining this, we conclude k ≥ dimF sa

U ≥ n.

Thus, to allow for an informationally complete tomography, the POVM P has to be
at least (n − 1)-dimensional. Furthermore, assuming P to be n-dimensional, one has
to measure at a minimum of n points in time to achieve an informationally complete
tomography and in the following we will see that this indeed suffices.
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Definition III.1. (Feasible.) A unitary matrix U ∈ U(n) is feasible iff the algebraic
multiplicity of each eigenvalue of TU |F⊥U is one and dimFU = n.

Let us note that almost all unitaries are feasible.

Theorem III.2. (Informationally complete tomography.) Let U ∈ U(n) be feasible. Then,
for almost all POVM P of dimension n the measurement scheme T n

U (P ) is informationally
complete.

The proof of this result can be found in Subsection VA.

Tomography under Prior Information

In this subsection we extend the results of the previous subsection to quantum tomog-
raphy on subsets R ⊆ S(Cn).

Definition III.2. Let R ⊆ S(Cn) be a subset. A semi-algebraic set D ⊆ H(n) with
0 /∈ D represents ∆(R) iff for every measurement-scheme M with hM (X) = 0 for some
X ∈ ∆(R)− {0} there exists Y ∈ D such that hM (Y ) = 0.

Remark Note that a measurement-schemeM is not R-complete if and only if there exists
X ∈ ∆(R)− {0} such that hM (X) = 0. Thus, the set of measurement-schemes that solve
the equation hM (Y ) = 0 for some Y ∈ D contains the set of measurement-schemes that
are not R-complete.

The next theorem is the main result of this section. It asserts that the measurement-
scheme T l

U (P ) defined in Equation (1) is suited to perform tomography on arbitrary semi-
algebraic subsets R ⊆ S(Cn).

Theorem III.3. (Universality.) Let U ∈ U(n) be feasible. For R ⊆ S(Cn) a subset, let
D be a semi-algebraic set that represents ∆(R). Let m ≥ n− 1 and let l ∈ N be such that
lm > dimD. Then, for almost all POVM P of dimension m the measurement-scheme
T l
U (P ) is stably R-complete.

The proof of this theorem can be found in Subsection VB.
In the following we discuss some consequences of Theorem III.3. First, it directly implies

a Whitney type embedding result.

Corollary III.4. (Whitney.) Let U ∈ U(n) be feasible and let R ⊆ S(Cn) be a subset.
Let m ≥ n− 1 and let l ∈ N be such that lm > 2 dimR. Then, for almost all POVM P of
dimension m the measurement scheme T l

U (P ) is stably R-complete.

Proof. Assume w.l.o.g. that R is algebraically closed, because if not we can replace R by
its algebraic closure without changing the dimension (see Proposition 2.8.2 of [16]). By
the proof of Lemma IV.2 of [6], ∆(R)−{0} is a semi-algebraic set with dim ∆(R)−{0} ≤
2 dimR. Applying Theorem III.3 to ∆(R)− {0} concludes the proof.
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Theorem III.3 can also be applied to tomography on states of bounded rank. Let
Sr(Cn) := {ρ ∈ S(Cn) : rank(ρ) ≤ r} be the set of quantum states of rank at most r.

Corollary III.5. (Tomography on states of bounded rank.) Let U ∈ U(n) be feasible. Let
m ≥ n− 1 and let l ∈ N be such that lm ≥ 4r(n− r)− 1. Then, for almost all POVM P
of dimension m the measurement-scheme T l

U (P ) is stably Sr(Cn)-complete.

Proof. The proof follows directly from applying Theorem III.3 to the algebraic set D
defined in Lemma IV.6 of [6].

Remark If a measurement-scheme is Snr -complete, it was shown in [1, 2] that, up to terms
at most logarithmic in n, we have m ≥ 4r(n− r) and in this sense the lower bound given
in Corollary III.5 is nearly optimal.

Let us note that similar to Corollary V.12 of [6], Corollary III.5 implies corresponding
results for tomography on states of fixed spectrum.

IV. CPTP TIME EVOLUTION

In this section we generalize the scenario of Section III by considering a larger class of
system dynamics. With this generalization the lower bound on the dimension of the initial
POVM as given by Proposition III.1 can be relaxed. Indeed we show that one dimensional
POVMs can suffice for informationally complete tomography and that they are also suited
for tomography on subsets R ⊆ S(Cn).

Definition IV.1. (Feasible.) A CPTP map T is feasible iff it is invertible and the algebraic
multiplicity of each of its eigenvalues is one.

The following result is the main result of this section. It is a universality result analogous
to Theorem III.3.

Theorem IV.1. (Universality.) Let T be a feasible CPTP map. For R ⊆ S(Cn) a
subset, let D be a semi-algebraic set that represents ∆(R). Furthermore, let m ∈ N and
let l ∈ N be such that lm > dimD. Then, for almost all m-dimensional POVMs P the
measurement-scheme (T †)l(P ) is stably R-complete.

The proof of this theorem can be found in Subsection VC. An immediate consequence
is the case k = 1 which may be of particular interest as it shows that in fact an initial
POVM of minimal dimension suffices to perform tomography on arbitrary subsets of the
state space.

Corollary IV.2. Let T be a feasible CPTP map. For R ⊆ S(Cn) a subset, let D be a
semi-algebraic set that represents ∆(R). Furthermore, let l ∈ N be such that l > dimD.
Then, for almost all one dimensional POVM P the measurement-scheme (T †)l(P ) is stably
R-complete.
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Remark Given a one dimensional POVM P := {P1, P2}, all the relevant information is
contained in P1 as P2 = 1Cn −P1. In this sense one can identify a one dimensional POVM
with an observable O := P1. Under this identification the measurement-scheme T l(P )
corresponds to measuring the expectation value of O at l time steps of the time evolution
given by T . Corollary IV.2 then states that any two states of a given subsetR ⊆ S(Cn) can
be discriminated by determining the expectation value of a single observable at sufficiently
many time steps.

In the remainder of this section we give some further corollaries of Theorem IV.1. Of
course Theorem IV.1 also covers the case of informationally complete tomography.

Corollary IV.3. (Informationally Complete Tomography) Let T be a feasible CPTP map.
Furthermore, let m ∈ N and let l ∈ N be such that lm ≥ n2 − 1. Then, for almost all m-
dimensional POVM P the measurement-scheme (T †)l(P ) is informationally complete.

Proof. Note that SH(n)0 represents ∆(S(Cn)). Applying Theorem IV.1 to SH(n)0 , together
with the observation that dimSH(n)0 = n− 2, concludes the proof.

Another immediate consequence is a Whitney type embedding result.

Corollary IV.4. (Whitney.) Let T be a feasible CPTP map and let R ⊆ S(Cn) be a
subset. Furthermore, let m ∈ N and let l ∈ N be such that lm > 2 dimR. Then for almost
all m-dimensional POVM P the measurement-scheme (T †)l(P ) is stably R-complete.

Proof. Assume w.l.o.g. that R is algebraically closed, because if not we can replace R by
its algebraic closure without changing the dimension (see Proposition 2.8.2 of [16]). By
the proof of Lemma IV.2 of [6], ∆(R)−{0} is a semi-algebraic set with dim ∆(R)−{0} ≤
2 dimR. Applying Theorem IV.1 to ∆(R)− {0} concludes the proof.

Finally, Theorem IV.1 can also be straightforwardly applied to tomography on states
of bounded rank.

Corollary IV.5. (Tomography on states of bounded rank.) Let T be a feasible CPTP map.
Furthermore, let m ∈ N and let l ∈ N be such that lm ≥ 4r(n−r)−1. Then, for almost all
POVM P of dimension m the measurement scheme (T †)l(P ) is stably Sr(Cn)-complete.

Proof. The proof follows directly from applying Theorem IV.1 to the algebraic setD defined
in Lemma IV.6 of [6].

V. PROOFS OF TECHNICAL RESULTS

The proofs of the following results are all based on the approach presented in [6]: Let
R ⊆ S(Cn) be a subset. Among all admissible measurement-schemes we characterize the
subset N of non R-complete measurement-schemes by real algebraic equations. We then
prove that the subsetN has a smaller dimension than the set of all admissible measurement-
schemes, showing that almost all admissible measurement-schemes are R-complete.
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Denote by P(m) the set of m-dimensional POVMs. Let us begin by briefly discussing
the measure we choose on P(m). Via the injective mapping

η : P(m)→ (H(n))m, (Q1, . . . , Qm+1)→ (Q1, . . . , Qm)

we can identify P(m) with the subset η(P(m)) of (H(n))m. The measure we choose on
P(m) is the Lebesgue measure it inherits when identified with the subset η(P(m)) ⊆
(H(n))m.

A. Proof of Theorem III.2

The proof of this theorem serves as a blueprint for the other proofs presented in this
section. Therefore, let us begin by giving a short outline of the proof to make our argument
more transparent. Let K = (H(n))n. Furthermore, observe that ∆(S(Cn)) ⊆ H(n)0 and
thus H(n)0 − {0} represents ∆(S(Cn)).

For i ∈ {1, . . . , n}, j ∈ {0, . . . , n− 1} define real polynomials

pi,j :K ×H(n)0 ' Rn3 × Rn2−1 → R,

(P,X) 7→ tr
(
(TU )j(Qi)X

)
= tr

(
Qi(T †U )j(X)

)
.

Denote by V the real common zero locus of the set of polynomials {pi,j}i∈{1,...,n}, j∈{0,...,n−1}
and let

M := (K × (H(n)0 − {0})) ∩ V.

Clearly, M is a semi-algebraic set and furthermore it characterizes the n-dimensional
POVMs P for which T n

U (P ) is not informationally complete in the following sense: Let
π1 : K ×H(n)0 → K denote the projection on the first factor K. Let

KNC := {P ∈ P(n) : T n
U (P ) is not informationally complete}.

Then, since η(P(n)) is a subset of K and H(n)0−{0} represents ∆(S(Cn))−{0}, we have
η(KNC) ⊆ π1(M). We show in the following that dimM < dimK = n3. But then, by
Theorem 2.8.8 of [16], we have dimπ1(M) < dimK = n3 and thus π1(M) has measure
zero in K. Since η(KNC) is a subset of π1(M), we finally conclude that η(KNC) also has
measure zero in K.

As a first step, we construct a decomposition of H(n)0 with respect to the eigenstates
of T †U which allows us to simplify the analysis in the following. By changing the basis if
necessary, we can assume U to be a diagonal matrix. Let {λij}i,j∈{1,...,n} 2 be the multiset
of eigenvalues of T †U such that for all i, j ∈ {1, . . . , n} we have

T †U (eij) = λijeij ,

2 Note that if U = diag(λ1, . . . , λn), then λij = λ∗i λj for all i, j ∈ {1, . . . , n}.
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where eij denotes the matrix whose only non-vanishing entry is a 1 in the i-th row and
j-th column. For k ∈ N0 let

E2k := {X ∈ H(n)0 : tr(Xeij) 6= 0 for at most 2k pairs (i, j), i 6= j}.

Note that E0 = FU ∩H(n)0 since U is feasible by assumption.

Proposition V.1. E2k is an algebraic set with dimEk = n− 1 + 2k.

Proof. Let C := {(i, j) ∈ N2 : i > j}. For S ⊆ C let N(S) := {X ∈ H(n)0 : tr(Xes) =
0, ∀s ∈ S}. N(S) is a linear subspace and thus clearly an algebraic set. Furthermore, let
(j, l) ∈ C and note that ejl = (ejl + elj) + i(−iejl + ielj). Thus, for a hermitian matrix
X ∈ H(n)0 we have tr(Xejl) = 0 if and only if tr (X(ejl + elj)) and tr (X(iejl − ielj)) = 0.
The matrices {ejl + elj , iejl − ielj}(j,l)∈C ⊆ H(n)0 are linearly independent and hence
dimN(S) = n2 − 1− 2|S|. But E2k =

⋃
S⊆C,|S|=n2−n

2
−kN(S). Hence, as a finite union of

algebraic sets, E2k is an algebraic set and furthermore dimEk = n2 − 1 − 2(n
2−n
2 − k) =

n− 1 + 2k.

Let R0 := E0 − {0}. For k ∈ {1, . . . , dn/2e − 1} 3 let Rk := E2k − E2k−2 be the set of
hermitian matrices with precisely 2k non-vanishing off-diagonal entries and let Rdn/2e :=

H(n)0−E2dn/2e−2. Observe that Rdn/2e might be empty and thatH(n)0−{0} =
⋃dn/2e

k=0 Rk.
Furthermore, for k ∈ {0, . . . , dn/2e}, letMk := (K ×Rk) ∩ V and observe that

M =

dn/2e⋃
k=0

Mk.

Hence, to complete the proof of Theorem III.2, it suffices to prove the following proposition.

Proposition V.2. Let k ∈ {0, . . . , dn/2e}. Then dimMk < dimK.

Proof. Let R1
k := {X ∈ Rk : tr(XE0) = 0} and R2

k = Rk − R1
k

4. Going along the
lines of the proof of Proposition V.1, it is seen that that dimR1

k = 2k. For i ∈ {1, 2} let
Mi

k := (K ×Ri
k) ∩ V and note thatMk =M1

k ∪M2
k.

In a first step, we prove that dimM2
k < dimK. In order to do so we prove the following

proposition as an intermediate step.

Proposition V.3. For X ∈ R2
k, the set of matrices {(T †U )j(X)}j∈{0,...,2k} is linearly inde-

pendent over C.

Proof. First note that by construction of R2
k there is an i ∈ {1, . . . , n} such that

0 6= tr(Xeii) =: X0. Furthermore, by construction of Rk, there are distinct eigen-
vectors ei1j1 , . . . , ei2kj2k such that for all m ∈ {1, . . . , 2k} we have im 6= jm and 0 6=
tr(Xeimjm) =: Xm. Let Y = spanC({eii} ∪ {eimjm}m∈{1,...,2k}) 5 and let πY : B(Cn) → Y

3 Here dxe := smallest integer greater than x.
4 Note that R1

0 = ∅.
5 Note that {eii} ∪ {eimjm}m∈{1,...,2k} indeed is an orthonormal basis of Y .
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be the orthogonal projection on Y . It is enough to show that
{
πY

(
(T †U )j(X)

)}
j∈{0,...,2k}

is a set linearly independent operators over C. Consider the (2k + 1) × (2k + 1) matrix

M :=
(
tr
(
πY

(
(T †U )l(X)

)
eimjm

))2k

l,m=0
, where ei0j0 = eii. The determinant of M is pro-

portional to the determinant of the Vandermonde matrix whose entries are determined by
the eigenvalues of T †U :

det(M)

= det


X0 X0 . . . X0

λ0
i1j1

X1 λ1
i1j1

X1 . . . λ2k
i1j1

X1

...
...

...
λ0
i2kj2k

X2k λ1
i2kj2k

X2k . . . λ2k
i2kj2k

X2k

 = X0 · . . . ·X2k det


1 1 . . . 1

λ0
i1j1

λ1
i1j1

. . . λ2k
i1j1

...
...

...
λ0
i2kj2k

λ1
i2kj2k

. . . λ2k
i2kj2k



=
X0 · . . . ·X2k

λi1j1 · . . . · λi2kj2k
det


1 1 . . . 1

λ1
i1j1

λ2
i1j1

. . . λ2k+1
i1j1

...
...

...
λ1
i2kj2k

λ2
i2kj2k

. . . λ2k+1
i2kj2k


=

X0 · . . . ·X2k

λi1j1 · . . . · λi2kj2k

∏
0≤o<p≤m

(λipjp − λioj0),

where λi0j0 = 1. Since U is a unitary matrix, we have λimjm 6= 0 for all m ∈ {1, . . . , 2k}.
Furthermore, since U is feasible by assumption, λiljl 6= λimjm for all m, l ∈ {0, . . . , 2k}
with m 6= l. This, together with Xm 6= 0, m ∈ {0, . . . , 2k}, shows that det(M) 6= 0 and
hence proves the claim.

Now let X ∈ R2
k be fixed. From the previous proposition we conclude that at least

n ·min{(2k + 1), n} of the linear equations

tr
(
Qi(T †U )j(X)

)
= 0, i ∈ {1, . . . , n}, j ∈ {0, . . . , n− 1}, (Q1, . . . , Qn) ∈ K, (2)

are independent. Hence the dimension of the solution set of the equations (2) is by at least
n ·min{2k+1, n} smaller than the dimension of K. Since this holds for all X ∈ R2

k we find

dimM2
k ≤ dimK + dimR2

k − n(2k + 1) = dimK + n− 1 + 2k − n(2k + 1)

≤ dimK − 2(n− 1)k − 1 < dimK

if k ∈ {0, . . . , [n/2]− 1} using Proposition V.1 and furthermore

dimM2
[n/2] ≤ dimK + dimH(n)0 − n2 = dimK + n2 − 1− n2

= dimK − 1 < dimK.

In the second step we show that dimM1
k < n3 6. Let X ∈ R1

k be fixed. By going
along the lines of the proof of Proposition V.3 it follows that the smaller set of operators

6 Note that we can restrict to k > 0 since R1
0 = ∅.
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{(T †U )j(X)}j∈{0,...,2k−1} still is linearly independent over C 7. We conclude that at least
n ·min{2k, n} of the linear equations

tr
(
Qi(T †U )j(X)

)
= 0, i ∈ {1, . . . , n}, j ∈ {0, . . . , n− 1}, (Q1, . . . , Qn) ∈ K, (3)

are independent. Thus, the dimension of the solution set of the equations (3) is by at least
n ·min{2k, n} smaller than the dimension of K. Since this holds for all X ∈ R1

k we find

dimM1
k ≤ dimK + dimR1

k − n(2k) = dimK + 2k − 2nk

≤ dimK − 2(n− 1)k < dimK

if k ∈ {1, . . . , dn/2e − 1} and furthermore

dimM1
dn/2e ≤ dimK + dimH(n)0 − n2 = dimK + n2 − 1− n2

= dimK − 1 < dimK.

Finally, sinceMk =M1
k ∪M2

k, we conclude dimMk < dimK.

B. Proof of Theorem III.3

Let K = (H(n))m 8. Define the semi-algebraic map φ by

φ : H(n)0 − {0} → SH(n)0

x 7→ x

‖x‖2
.

(4)

Let D be the semi-algebraic set that represents ∆(R), then φ(D) represents ∆(R) by
Proposition 2.2.7 of [16] and dimφ(D) ≤ dimD by Theorem 2.8.8 of [16]. SH(n)0 is closed
in the norm topology and by Proposition 2.8.2 of [16] the dimension of a semi-algebraic
set coincides with the dimension of its closure in the norm topology. We conclude that
the closure φ(D) of φ(D) is a subset of SH(n)0 with dimφ(D) ≤ dimD. In addition,
by Proposition 2.2.2 of [16], φ(D) is semi-algebraic and hence represents ∆(R). In the
following we replace D by φ(D) if D is not a closed subset of SH(n)0 .

For the most part, the remainder of this proof can be straightforwardly obtained by
going along the lines of the proof of Theorem III.2. However, for the sake of completeness,
let us give the whole argument.

For k ∈ {0, 1, . . . , dl/2e−1}, let Di
k := D∩Ri

k, i = 1, 2, and note that we have dimD1
k ≤

2k − 1(if k > 1) and dimD2
k ≤ n − 2 + 2k 9. Let D[l/2] := D −

⋃[l/2]−1
k=0 (D1

k ∪ D2
k) and let

7 Considering X ∈ R1
k in the proof of Proposition V.3 just corresponds to setting X0 = 0. The remainder

of the argument still applies.
8 Just like in the last subsection, we identify the set of m-dimensional POVMs on Cn with the semi-

algebraic subset η(P(m)) of (H(n))m.
9 We get the upper bounds 2k−1 and n−2+2k rather then 2k and n−1+2k. This is because D ⊆ SH(n)0

and dim(Ek ∩ SH(n)0) = n− 2 + 2k + 1 as can be seen from the proof of propositions V.1 and V.4.
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D1
[l/2] := {X ∈ D[l/2] : tr(XE0) = 0}, D2

[l/2] = D[l/2] −D1
[l/2]. Note that dimDi

[l/2] ≤ dimD
for i = 1, 2. Also note that D =

⋃[l/2]
j=1 (D1

j ∪ D2
j ).

Just like in the proof of Theorem III.2, for j ∈ {0, . . . , l − 1}, i ∈ {1, . . . ,m}, define
real polynomials

pi,j :K ×H0(n) ' Rmn2 × Rn2−1 → R,

(P,X) 7→ tr
(
Qi(T †U )j(X)

)
.

Denote by V the common zero locus of the polynomials {pi,j}j∈{0,...,l−1}, i∈{1,...,m} and for
i ∈ {1, 2}, k ∈ {0, 1, . . . , dl/2e}, letMi

k := (K ×Di
k) ∩ V.

First we prove that for all k ∈ {0, 1, . . . , dl/2e} we have dimM2
k < dimK. So let

k ∈ {0, . . . , dl/2e}. If D2
k = ∅ we have M2

k = ∅ and thus we clearly have dimM2
k <

dimK. Otherwise let X ∈ D2
k be fixed. From Proposition V.3 we conclude that at least

m ·min{2k + 1, l} of the linear equations

tr
(
Qi(T †U )j(X)

)
= 0, j ∈ {0, . . . , l − 1}, i ∈ {1, . . . ,m}, (Q1, . . . , Qm) ∈ K, (5)

are independent. Hence the dimension of the solution set of the equations (5) is by at least
m · min{2k + 1, l} smaller than the dimension of K. Since this holds for all X ∈ D2

k we
find

dimM2
k ≤ dimK + dimD2

k −m(2k + 1) ≤ dimK + n− 2 + 2k −m(2k + 1)

= dimK − (m− (n− 1))− 2k(m− 1)− 1 < dimK

for k ∈ {0, . . . , [l/2] − 1}, using the assumption that m ≥ n − 1. Also by assumption we
have dimD < ml and thus dimD2

[l/2] ≤ dimD < ml. Hence we conclude that

dimM2
[l/2] ≤ dimK + dimD −ml

< dimK +ml −ml = dimK.

Next we prove that for all k ∈ {1, . . . , dl/2e} we have dimM1
k < dimK. So let k ∈

{1, . . . , dl/2e}. If D1
k = ∅ we haveM1

k = ∅ and thus clearly dimM1
k < dimK. Otherwise

let X ∈ D1
k be fixed. From Proposition V.3 we conclude that at least m ·min{2k, l} of the

linear equations

tr
(
Qi(TU )j(X)

)
= 0, j ∈ {0, . . . , l − 1}, i ∈ {1, . . . ,m}, (Q1, . . . , Qm) ∈ K, (6)

are independent. Hence the dimension of the solution set of the equations (6) is by at least
m ·min{2k, l} smaller than the dimension of K. Since this holds for all X ∈ D1

k we find

dimM1
k ≤ dimK + dimD1

k −m(2k) = dimK + 2k − 1− 2mk

= dimK − 2k(m− 1)− 1 < dimK

for k ∈ {1, . . . , [l/2]− 1}. Using dimD1
[l/2] ≤ dimD < ml we also conclude that

dimM1
[l/2] ≤ dimK + dimD −ml

< dimK +ml −ml = dimK.
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Finally, let π1 : K × H(n)0 → K be the projection on the first factor K and let M :=⋃dl/2e
k=0 (M1

k ∪M2
k). Clearly,M is a semi-algebraic set. Let

KR := {P ∈ P(m) : T l
U (P ) is not R− complete.}.

Then, since η(P(m)) is a subset of K and D represents ∆(R), we have η(KR) ⊆ π1(M).
We have shown that for all i ∈ {1, 2}, k ∈ {0, . . . , dl/2e} we have dimMi

k < dimK and
thus dimM < dimK. Hence we find dimπ1(M) < dimK by Theorem 2.8.8 of [16]. But
since η(KR) is a subset of π1(M), we conclude that η(KR) has measure zero in K.

Finally, since D is a closed subset of SH(n)0 , the stability follows form Lemma IV.1 of
[6].

C. Proof of Theorem IV.1

Just like in the proof of Theorem III.3, we replace D by φ(D) if D is not a closed subset
of SH(n)0 .

Again, the remainder of this proof is close to the proof of Theorem III.2. Let
{1, e1, . . . , en2−1} be the set of eigenvectors of T †. For k ∈ N0 let

Dk := {X ∈ SH(n)0 : tr(Xei) 6= 0 for at most k elements i ∈ {1, . . . , n2 − 1}}.

Proposition V.4. For k ∈ {1, . . . , n2 − 1}, Dk is an algebraic set of dimension at most
k − 1.

Proof. For A ⊆ {1, . . . , n2 − 1} let N(A) := {X ∈ B(Cn) : tr(X) = 0 ∧ ∀i ∈ S : tr(Xei) =
0} and note that dimCN(A) = n2 − 1− |A| since the set of operators {1, e1, . . . , en2−1} is
linearly independent over C. From this it follows that for all A ⊆ {1, . . . , n2 − 1} we have
dim(N(A)∩H(n)0) ≤ n2−1−|A|: Assume for a contradiction that dim(N(A)∩H(n)0) =
m > n2 − 1 − |A|. Then there are is a set {h1, . . . , hm} ⊆ H(n)0 ⊆ N(A) of linearly
independent operators over R. Being a set of hermitian operators, {h1, . . . , hm} is also
linearly independent over C and hence we conclude that dimN(A) ≥ m, a contradiction.
Now note thatDk =

(⋃
A⊆{1,...,n2−1}:|A|=n2−1−kN(A)

)
∩SH(n)0 . ThusDk is a real algebraic

set and dimDk ≤
(
n2 − 1− (n2 − 1− k)

)
− 1 = k − 1.

For k ∈ N let Qk := Dk −Dk−1. For k ∈ {1, . . . , l− 1} let Dk := D ∩Qk and note that
Dk is a semi-algebraic set with dimDk ≤ k − 1. Furthermore let Dl := D −

⋃l−1
k=1Dk and

note that dimDl ≤ dimD. Then we have
⋃l

k=1Dk = D.
Let K := (H(n))m 10. Just like in the proof of Theorem III.2, for j ∈ {0, . . . , l−1}, i ∈

{1, . . . ,m}, define real polynomials

pi,j :K ×H0(n) ' Rmn2 × Rn2−1 → R,
(P,X) 7→ tr

(
Qi(T )j(X)

)
.

10 Just like in Subsection VA, we identify the set of m-dimensional POVMs on Cn with the semi-algebraic
subset η(P(m)) of (H(n))m.
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Denote by V the common zero locus of the polynomials {pi,j}j∈{0,...,l−1}, i∈{1,...,m} and set
Mk := (K ×Dk) ∩ V for k ∈ {1, . . . , l}.

Next we prove that for all k ∈ {1, . . . , l} we have dimMk < dimK. So let k ∈ {1, . . . , l}.
If Dk = ∅ we have Mk = ∅ and thus we clearly have dimMk < dimK. Otherwise let
X ∈ Dk be fixed. Using feasibility of the map T , it is seen, by going along the lines
of the proof of Proposition V.3, that the set of operators {(T )i(X)}i∈{0,...,k−1} is linearly
independent over C. This implies that at least m · k of the linear equations

tr
(
QiT j(X)

)
= 0, j ∈ {0, . . . , l − 1}, i ∈ {1, . . . ,m}, (Q1, . . . , Qm) ∈ K, (7)

are independent. Hence the dimension of the solution set of the equations (7) is by at least
m · k smaller than the dimension of K. Since this holds for all X ∈ D1

k we find

dimMk ≤ dimK + dimDk − km ≤ dimK + (k − 1)− km
≤ dimK − (m− 1)k − 1 < dimK

for k < l. For k = l we find

dimMk ≤ dimK + dimDl − lm ≤ dimK + dimD − lm
< dimK + lm− lm < dimK,

where we used the assumption that lm > dimD.
Let π1 : K×H(n)0 → K be the projection on the first factorK and letM :=

⋃l
k=1Mk.

Clearly,M is a semi-algebraic set. Let

KR := {P ∈ P(m) : (T †)l(P ) is not R− complete.}.

Then, since η(P(m)) ⊆ K and D represents ∆(R), we have η(KR) ⊆ π1(M). We have
shown that dimMk < dimK for all k ∈ {1, . . . , l} and thus dimM < dimK. Hence we
find dimπ1(M) < dimK by Theorem 2.8.8 of [16]. But since η(KR) is a subset of π1(M),
this implies that η(KR) has measure zero in K.

Finally, since D is a closed subset of SH(n)0 , stability follows form Lemma IV.1 of [6].

Appendix A: Continuous Time Evolution

In this appendix we consider continuous dynamics generated by Lie semigroups. Let
L : B(Cn) → B(Cn) be a unital conditional completely positive map generating the one
parameter family of unital CP maps Tt := etL : B(Cn)→ B(Cn) where t ∈ R+

0 .
Instead of measuring the initial POVM after equidistant time steps of the system

dynamics given by Tt we now consider more general time steps. More precisely, for
T := (t1, . . . , tl) a tuple of rational numbers such that 0 < t1 < t2 < . . . < tl < 1
and P := (Q1, . . . , Qm) a POVM define the measurement-scheme

LT (P ) := ((P1, . . . , Pm), (Tt1(P1), . . . , Tt1(Pm)), . . . , (Ttl(P1), . . . , Ttl(Pm))) .

To obtain generalizations of Theorem III.3 and Theorem IV.1 it suffices to generalize
Proposition V.3 to rational points in time, the remainder of their proofs can be transferred.
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For T := (t1, . . . , tl) ∈ Ql such that 0 < t1 < t2 < . . . < tl < 1 and Λ := {λ1, . . . , λl} ⊆
C− {0, 1} a subset define

V Λ
T :=


1 1 . . . 1

1 λt11 . . . λtl1
...

...
...

1 λt1l . . . λtll

 .

Proposition A.1. V Λ
T is invertible.

Proof. Let N,m1, . . . ,ml ∈ N be such that ti = mi
N . Extend Λ to a set Λ̃ :=

{λ1, . . . , λml
} ⊆ C − {0, 1} . Let λ̃i := λ

1
N
i , i ∈ {1, . . . ,ml}. Then detV Λ

T is a minor
of the matrix

V :=



1 1 . . . 1 . . . 1

1 λ̃1 . . . λ̃m1
1 . . . λ̃ml

1
...

...
...

...
1 λ̃m1 . . . λ̃m1

m1
. . . λ̃ml

m1
...

...
...

...
1 λ̃ml

. . . λ̃m1
ml

. . . λ̃ml
ml


.

Multiplying V from the left with the diagonal matrix Diag(λ̃1, . . . , λ̃ml
) gives a Vander-

monde matrix. This Vandermonde matrix is totally non-singular since Λ̃ ⊆ C− {0, 1} by
construction. Thus detV Λ

T does not vanish.

From Proposition A.1 we directly obtain the following generalizations of Theorem III.3
and Theorem IV.1 respectively.

Corollary A.2. Let T := (t1, . . . , tl) ∈ Ql such that 0 < t1 < . . . < tl < 1. Let h ∈ H(n)
be such that eih is feasible. For R ⊆ S(Cn) a subset, let D be a semi-algebraic set that
represents ∆(R). Let m ≥ n − 1 and let l ∈ N be such that (l + 1)m > dimD, then for
almost all POVM P of dimension m, the measurement scheme T l

U (P ) is stably R-complete.

Corollary A.3. Let T := (t1, . . . , tl) ∈ Ql such that 0 < t1 < . . . < tl < 1. Let L be
a unital conditional completely positive map such that eL is feasible. For R ⊆ S(Cn) a
subset, let D be a semi-algebraic set that represents ∆(R). Let m ∈ N and let l ∈ C be
such that (l+1)m > dimD, then for almost all m-dimensional POVM P , the measurement
scheme T l(P ) is stably R-complete.
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