
findings presented here by Huang et al. refute this explanation:

they show that a depolarized resting membrane potential (either

through heterologous expression of mutant channels or direct cur-

rent injection using dynamic clamp) leads to increased dorsal root

ganglion cell excitability. As the authors carefully discuss, it is not

easy to reconcile these differing findings/interpretations. It is pos-

sible that insensitivity to pain due to the L811P mutation does not

relate to an altered resting membrane potential, but to the marked

shift in channel gating that although causing hyperexcitability, ul-

timately leads to fatigue of these neurons.

Notwithstanding some of these challenges in ascribing clinical

phenotype to channel biophysics it is clear that gain of function

mutations in Nav1.9 can cause neuropathic pain in humans. We

do not yet know whether these mutations are fully penetrant and

whether [as has been shown for Nav1.7 (Persson et al., 2013)]

these mutations have an active role in promoting axon degener-

ation. Mutations in Nav1.7, 1.8 and 1.9 have now all been asso-

ciated with painful neuropathy as a consequence of dorsal root

ganglion cell hyperexcitability and as such are targets for the de-

velopment of novel analgesics, which may have the added advan-

tage of also being disease-modifying.
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Clinical and pathogenetic implications of occipital
bending in depression

The lifetime prevalence of major depressive disorder is �16.5%

and, each year, �800 000 individuals worldwide die as a result of

suicide, a high proportion of whom suffered from severe depres-

sion. Even with treatment, 20% of patients experience chronic

symptoms, meaning that major depressive disorder accounts for

a greater number of years lived with disability than any other

illness. A combination of genetic susceptibility, chronic stress and

developmental factors predispose to depression by triggering al-

terations in neuroplasticity, biochemistry, and brain structure. As

illustrated by a recent meta-analysis, structural brain changes pre-

dominantly affect the lateral ventricles, basal ganglia, thalamus,

hippocampus and frontal lobes (Kempton et al., 2011). In this

issue of Brain, Maller et al. (2014) reveal that structural changes

also extend to the occipital lobes, with ‘occipital bending’—in

which one occipital lobe wraps around the other—three times

more prevalent in patients with treatment-resistant major depres-

sive disorder than in healthy controls.

Bending or asymmetry of the occipital cortex has not been

examined in major depressive disorder before. However, it is

worth noting that although the occipital cortex is not among the

core regions that exhibit structural changes in major depression,

alterations in biochemistry, white matter structure, resting state

connectivity and grey matter volume have previously been re-

ported in the occipital lobes in this disorder (Bhagwagar et al.,

2007; Grieve et al., 2013; Liao et al., 2013; Meng et al., 2014).

A comprehensive meta-analysis identified the right occipital lobe,
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with the inferior fronto-occipital fasciculus as its major connecting

fibre tract, as one of the most consistently reported locations of

decreased white matter integrity in patients (Liao et al., 2013).

Reductions in the volume of the occipital lobes—particularly mid-

line regions—have also been described (Grieve et al., 2013).

Hence, there is reason to believe that the increase in occipital

bending in major depressive disorder is related to these previously

reported alterations in occipital lobe structure and function; this

should be investigated further through studies that combine dif-

ferent imaging modalities.

The results of Maller and colleagues raise additional questions.

First, what are the mechanisms underlying this increased preva-

lence of occipital bending in major depressive disorder? And

second, what is its clinical relevance? With regards to the first

question, Maller et al. (2014) propose that ventricular enlarge-

ment may be one mechanism underlying increased occipital bend-

ing. Ventricular enlargement is among the most frequently

reported structural alterations in major depressive disorder

(Kempton et al., 2011) and may exacerbate the natural curvature

of occipital cortex. Maller et al. did not measure ventricular

volume directly, but they did find CSF volume to be increased in

patients, significantly in males and non-significantly in females.

Whether increased occipital bending represents a mere ‘side-

effect’ of another pathological process such as ventricular en-

largement, or has psychopathological relevance in itself remains,

however, to be determined. Notably, increased occipital bending

has also been reported in schizophrenia (Deutsch et al., 2000),

which is known to feature significant and, most probably, progres-

sive ventricular enlargement. This indicates that the two param-

eters may be related or may share a common origin. Brain

alterations in schizophrenia are thought to reflect in large part

disturbed neurodevelopmental processes. Major depression, on

the other hand, is not generally seen as a disorder of neurodeve-

lopmental origin. However, studies have linked stress, such as

famine during a critical gestational period, to the manifestation

of major depressive disorder. For instance, Brown et al. (2000)

compared the risk of major affective disorder in birth cohorts

who were and were not exposed, in each trimester of gestation,

to famine during the Dutch Hunger Winter of 1944–45. They

found that the risk of developing a major depressive disorder

was significantly increased for those exposed to famine during

the third trimester of gestation, which represents a critical period

in brain development. These studies indicate that alterations in

white and grey matter structure, and potentially gross anatomical

changes such as increased occipital bending, may result from early

neurodevelopmental alterations. Altered grey matter structure in

patients with a first episode of major depressive disorder points to

a similar conclusion (Zou et al., 2010).

It should not go unnoticed, however, that Maller et al.

observed occipital bending in 12% of healthy controls, too.

This result, together with the increased prevalence of occipital

bending in patients with treatment-resistant major depression,

implies that occipital bending could be a vulnerability marker

for a predisposition to major depression. This predisposition

may result in a manifest illness if further environmental triggers

such as chronic stress or adverse developmental conditions

are experienced. On the other hand, the observation that

female patients with occipital bending show more severe depres-

sion than those without occipital bending, suggests that in pa-

tients with a manifest depression, occipital bending may indicate

a more severe and chronic subtype of the illness. It is plausible

that patients with distinct, potentially neurodevelopmental, struc-

tural alterations develop a more severe form of depression than

those for whom environmental factors contribute more to their

pathogenesis. This hypothesis, however, must be substantiated by

further studies, especially as the duration of illness—as well as

other factors accompanying a chronic illness that may also affect

brain structure, such as long-term medication use—were not re-

ported in the current study. Moreover, this association, if valid at

all, would only apply to female patients, as there was no differ-

ence in depression severity between those with and without oc-

cipital bending across the patient group as a whole.

As an alternative hypothesis, it is conceivable that occipital

bending may not be specific for major depressive disorder, but

may instead be a parameter signalling an increased vulnerability

to affective or psychotic disorders in general. The current results,

in association with the increased prevalence of occipital bending

in schizophrenia, seem to support this assumption. But as little is

known about the prevalence of occipital bending in other psy-

chiatric disorders, this hypothesis needs further investigation. As

the assessment of occipital bending is simple, further studies in

different psychiatric populations and supplementary studies in pa-

tients with major depression should be easy to implement. Should

occipital bending—perhaps in association with additional param-

eters—be identified as a structural marker for an increased vul-

nerability to affective or psychotic disorders or, more specifically,

as an indicator of an increased predisposition to more severe

forms of major depression, examination of occipital bending

would provide new possibilities for early recognition and inter-

vention. In this case, the findings of Maller and colleagues will

give depression therapy and research a new direction. However,

further studies combining different methods and study designs

are necessary to increase our understanding of the mechanisms

underlying the emergence of occipital bending and its clinical

relevance.
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