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Forest management plans in Bavaria are generally updated only once every 10 years. However, the increasingly
dynamic forest structure due to climatic changes requires more frequent data collection in order to maintain
up-to-date information. This study explored the use of RapidEye satellite data to provide more frequent updates
to the information database. Forest structural information such as quadratic mean diameter (dq), basal area
(BA), stem number (SN) and volume (V) were estimated using multi-seasonal analysis of three RapidEye datasets
from 2009. Spectral indices and textural metrics provided additional image feature layers. Forest inventory plots
were stratified based on the forest type. A correlation analysis was conducted between terrestrial inventory
data and that derived from RapidEye data. A cross-validated stepwise forward regression analysis was performed
for each forest type. The coefficient of determination and relative root mean square error (rRMSE) showed that
stratification improved the regression models, which obtained determination measures ranging from 0.37 to
0.63 and rRMSE ranging from 25 to 131 per cent. Biases of the regression estimates were small, hence the
results obtained from applying the models were of an acceptable level of accuracy. The analysis confirmed the po-
tential of RapidEye data to support forest management.

Introduction
Bavaria contains 2.56 million hectares of forest area, which
amounts to approximately one-third of its total land surface
(Schnell and Bauer, 2005). As a result of legal decisions and due
to European Union regulations, forest owners are obliged to fulfil
several different national and international requirements. Exam-
ples of these requirements include evaluating and monitoring of
NATURA 2000 areas and compliance with the Flora-Fauna-Habitat
Directive. Furthermore, due to climate change, foresters are faced
with the challenge of establishing forests with high level of struc-
tural andbiological diversity. In view of these challenges, Felbermeier
et al. (2010) conducted a study in Bavaria to analyse the require-
ments of foresters that can potentially be met using remote
sensing techniques. The results showed a strong demand for infor-
mation about forest structure at the forest enterprise level such as
timber volume (V); stem number (SN) and basal area (BA). This in-
formation is usually derived from periodic national and regional
forest inventories, which are carried out in time steps of 10 years
in Bavaria. Up-to-date information is thus difficult to obtain.

Several studies have looked at this phenomenon at the local
or global scales, by investigating the option of updating forest
databases with remote sensing data (Wolter et al., 2009;
Ozdemir and Karnieli, 2011; Rahlf, 2011; Stepper and Schneider,
2012). For forest management in Bavaria, remote sensing
systems which deliver information at the 1:10 000 mapping scale
are generally considered most appropriate. This scale represents
spatial resolutions from 2 to a maximum of 10 m. Forest structural

attributes are mainly derived by evaluating spectral information.
The approach described in Wolter et al. (2009) used ‘Systeme
Pour l’Observation de la Terre’ (SPOT) 5 satellite data to estimate
forest structural attributes such as diameter at breast height
(DBH), tree height and BA, via partial least squares regression.
WorldView-2 data have also been tested as a basis for deriving
information on stand development, forest change analysis and
estimation of structural attributes via regression analyses, as
described in Ozdemir and Karnieli (2011).

To estimate timber V, SN and BA, spectral information has
usually been combined with textural information. Coburn and
Roberts (2004), Kayitakire et al. (2006), Wunderle et al. (2007)
and Ozdemir and Karnieli (2011) showed that textural features
based on image grey-level co-occurrence matrices (GLCMs;
Haralick et al., 1973; Haralick, 1979) are helpful tools for remote
sensing image analysis in the forest. Textural analysis can be
used to identify patterns in images based on colour, contrast,
shape, tone, size and shadow which may represent actual differ-
ences among features on the ground. Coburn and Roberts (2004)
found that the Angular Second Moment (ASM), Entropy and Con-
trast features were the most relevant textural features when ana-
lysing 4 m spatial resolution optical images for three different types
of coniferous stand classification. Kayitakire et al. (2006) showed
that the GLCMs ASM, Contrast, Variance, Homogeneity, Correlation
and Entropy were effective for estimating forest structure attri-
butes such as BA, height, age, DBH and stand density using
IKONOS-2 data of 1 m resolution. Rahlf (2011) suggested similar
features (Mean, Variance, Homogeneity, Contrast and Dissimilarity)
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for height estimation using RapidEye data. No publications were
available that specifically addressed the estimation of attributes
such as V, quadratic mean diameter (dq), BA and SN using RapidEye
data.

Indices such as Normalized Differenced Vegetation Index
(NDVI), Ratio Index (RE), Simple Ratio Index (SR), Near-Infrared-
Green Ratio (GR) and Green-Red-Vegetation Index (VI) have often
been used to study forest structural information (Eckert, 2006;
Wolteret al., 2009).The RE index was identified in a study by Schnei-
der et al. (2012) as an effective spectral index for the detection of
forest structure change. The benefits of using multi-seasonal
images were confirmed by Maselli et al. (2005), who estimated
BA using a multi-seasonal set of Landsat 7 ETM + scenes. Subse-
quently, Elatawneh et al. (2013) conducted a classification using
up to eight datasets from two different years to conduct multi-
temporal RapidEye image analysis for tree species discrimination.
Given the high temporal frequency of available RapidEye data,
these scenes seem very suitable for this approach.

The work presented here focused on forest structural attributes
estimation at the stand level using data obtained from the
RapidEye high-resolution remote sensing system. The high repeti-
tion rate of the RapidEye sensor (each nadir scene is theoretically
recaptured every 5.5 days), combined with the large swath width
of 77 km and the affordable price of 0.95E km22 (RapidEye AG,
2011) offers a wide range of new opportunities. The aim of the re-
search described in this paper was to examine the potential for
using RapidEye data to estimate dq, SN, BA and V via regression
analysis to support forest inventories. In particular, we evaluated
the possibilities for improving forest structural attribute estimation
by stratifying inventory plots, as well as the use of multi-seasonal
datasets to increase model accuracy.

Materials and methods

Study area
The study area is situated in the south-eastern part of Bavaria within the
municipality of Traunstein (47851′42′′N; 12839′20′′E, 600–700 m above
sea level) and consists of �234 ha of forest which is owned by the city of
Traunstein and managed by the Chair for Forest Growth and Yield at the
Technische Universität München. Spruce (Picea abies (L.) H. Karsten) (43
per cent), beech (Fagus sylvatica L.) (22 per cent) and fir (Abies alba Mill.)
(13 per cent) are the dominant tree species in the area. Other tree species
at the test site include ash (Fraxinus excelsior L.) (6 per cent), maple (Acer
pseudoplatanus L.) (5 per cent) and scattered individuals of various other
species (11 per cent). Depending on the management treatment used in
the stands and the soil conditions, the forest structure varies from
even-aged pure stands to uneven-aged mixed stands. The geology at the
research site is known as the Swabian-Bavarian young moraine and
molasse foothills (Schnell and Bauer, 2005), a landscape dominated by a
mixture of plateaus and valleys.

Dependent variables (forest variables)

The following variables obtained from the terrestrial inventory data from
2008 were used as dependent variables in the regression analysis: dq, BA,
SN and V. The inventory was carried out following the methods used in Bav-
arian State-owned forests (FER, 2011). In the test site forest, the inventory
plots were systematically arranged in a 100×100 m sample grid. Each plot
consisted of three concentric circles within which various forest information
was noted – an inner circle of 31 m2 (3.15 m radius) in which all trees
with a DBH smaller than 10 cm were measured, an intermediate circle of

125 m2 (6.31 m radius) wherein all trees with a DBH ranging between 10
and 30 cm were recorded and an outer circle of 500 m2 (12.62 m radius)
in which all trees with a DBH . 30 cm were measured.

The inventory data from each of the 228 field plots were then allocated
to one of four strata. The method used – stratification into pure and mixed
plots of deciduous and coniferous trees – was based on the approach
employed by Ďurský (2000), Heurich (2006), Latifi et al. (2012) and Straub
et al. (2013). This approach, where forest plot data for the different forest
types (strata) are analysed separately, has been shown to reduce the esti-
mation error of dq, BA, SN and V. Only measurements from trees with a DBH
of .7 cm were used to calculate dq, BA, SN and V (Kramer and Akça, 2008).
Given that restriction, 12 field plots were excluded as they contained only
young trees (DBH , 7 cm). Therefore, data from only 216 field plots out of
228 were used to calculate the aforementioned attributes. The dominant
tree species were identified based on a calculation of the total basal area
of each species of tree within each plot. All plots that contained a BA of
,20 per cent of species other than the dominant species in that stand
were considered ‘pure plots’. Thus, 80 per cent was chosen as the threshold
for assignment of a plot to the ‘pure’ stratum (Ďurský, 2000; Heurich, 2006).
Accordingly, 55 plots were allocated to the ‘pure coniferous’ (pc) stratum, j1
and 20 plots to the ‘pure deciduous’ (pd) stratum, j2. The remaining plots
were assigned either to stratum j3 – ‘deciduous dominant’ (dd) (57 plots)
or stratum j4 – ‘coniferous dominant’ (cd) (84 plots). The stratified field
plots were located in stands in different developmental stages. The
summary statistics for the structural information for both the stratified
and unstratified sample plots are listed in Table 1.

Table 1 Summary statistics for forest structural information of all forest
inventory sample plots (n¼ 216) and for four strata of the same sample
plots based on the species composition in the stand

Attributes Stratum ( j) Number of
sample
plots (n)

Standard
deviation

Min. Mean Max.

dq (cm) Unstratified 216 13 8 33 63
cd ( j4) 84 13 10 34 62
pc ( j1) 55 13 8 36 61
dd ( j3) 57 13 9 33 63
pd ( j2) 20 15 8 26 54

SN (ha21) Unstratified 216 181 20 334 3364
cd ( j4) 84 350 20 306 1943
pc ( j1) 55 521 20 370 3364
dd ( j3) 57 438 20 368 2505
pd ( j2) 20 173 20 232 560

BA
(m2 ha21)

Unstratified 216 14 1 23 67
cd ( j4) 84 11 5 23 58
pc ( j1) 55 17 1 31 67
dd ( j3) 57 8 4 19 47
pd ( j2) 20 9 1 9 34

V (m3 ha21) Unstratified 216 181 2 259 931
cd ( j4) 84 145 21 256 734
pc ( j1) 55 236 2 363 931
dd ( j3) 57 123 10 217 527
pd ( j2) 20 138 2 106 496

pc ( j1)¼ pure coniferous stratum j1; pd ( j2)¼ pure deciduous stratum j2; dd
( j3)¼ deciduous dominant stratum j3; cd ( j4)¼ coniferous dominant
stratum j4; dq¼ quadratic mean diameter (cm); SN¼ stem number
(ha21); BA¼ basal area (m2 ha21); V¼ volume (m3 ha21).
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Independent variables (remote sensing-based variables)

The RapidEye satellite system is a constellation of five satellites carrying
identical sensors, all of which were launched at the end of 2008 (RapidEye
AG, 2011). Each sensor collects data in five bands – blue (440–510 nm),
green (520–590 nm), red (630–685 nm), Red Edge (690–30 nm) and
near-infrared (NIR) (760–850 nm) – at a spatial resolution of 6.5 m
which is resampled to 5 m during pre-processing. The data used in this
study consisted of a set of 3A correction level (after radiometric, sensor
and geometric correction, with a resampled pixel size of 5 m) RapidEye
scenes acquired during the growing season in 2009. The first dataset (17
May) wasconsidered to be representative of spring with the trees just reach-
ing full leaf, while the second (1 August) was acquired during the peak of the
growing season when the maximum photosynthetic activity takes place.
The third scene (7 September) coincided approximately with the beginning
of autumn when the leaves began to change colour. Thus, the three images
were chosen in order to capture each of the most important seasonal
phenological states of the trees located in the study area. Quality control
of the geometric correction was conducted using ENVIw 4.3 (ENVI, 2005)
and atmospheric correction was applied to the RapidEye data using the
ATCOR 3 model, which was implemented in PCI-Geomatica (Richter, 2011).

The RapidEye image pixels were segmented into image objects
using the eCognitionw Developer 8.9 software package. A multi-resolution
algorithm was chosen for this segmentation (Baatz and Schäpe, 2000),
using the following settings: scale – 10, shape – 0.5 and compactness –
0.8. Based on their position and size (500 m2 circular polygons) the inven-
tory plots were used to create a segmentation boundary (Figure 1). The
image objects contained within this segmentation boundary were used
as training objects for extracting the textural and spectral features. Subse-
quently, the segmentation was used to classify the entire test site into
broadleaf and coniferous forest. The test site was then subdivided into
cells, each with a size of 15×15 m. These cells and the classification were
used to stratify the area into pc, cd, pd and dd as the basis for the estimation
of the forest structure attributes shown in Figure 1. This approach was used
to regionalize the models to the test site.

In addition to the mean spectral values of the five RapidEye bands, the
spectral values calculated from neighbourhood statistics (Skewness and
Standard Deviation (Std.Dev.)) and various vegetation indices were also
used for the study. In order to derive appropriate vegetation indices to
analyse the effects of spectral reflectance and absorption in forest stands
(Richardson and Everitt, 1992), the following vegetation indices were com-
puted from the RapidEye data:

NDVI (NIR 2 RED)/(NIR + RED) Rouse et al. (1974) (1)
RE GREEN×RED EDGE/RED Schneider et al. (2012) (2)
SR NIR/RED Jordan (1969) (3)
GR NIR/GREEN Lyon et al. (1998) (4)
VI GREEN/RED Kanemasu (1974) (5)
Brightness (BLUE + GREEN + RED +

RED EDGE + NIR)/5
Trimble Reference

Book (2013)
(6)

Eight GLCMs – Mean, Std.Dev., Correlation, Dissimilarity, Entropy, ASM,
Contrast and Homogeneity – were selected for this study, as our review of
the literature led us to determine that they were the most relevant for
forest structure attribute estimation. The values for the different texture
features were calculated within the image objects derived from the seg-
mentation process as described above using the eCognitionw Developer
8.9 software package. The formulas used for the GLCM texture features
are described in the Trimble Reference Book (2013).

Statistical methods
The final dataset of independent variables used for the statistical analysis
was made up of 120 texture features (derived from three datasets of five

bands each), 18 spectral ratio features and 45 spectral features. These fea-
tures were used to estimate the forest structure information dq, SN, BA and
V (dependent variables) forcomparisonwith the same attributes calculated
using actual data that had been previously collected at 216 terrestrial field
plots stratified into the four strata as described above. For each dependent
variable, eithera simple ora multiple regression model was established. The
prediction ability of the model with and without stratification as well as the
effect of seasonality was tested.

To analyse the relationships between the dependent and the independ-
ent variables, the Pearson’s correlation coefficient (r) was calculated for
each pair (P-value of ,0.05 and 0.01; Table 2). Collinearity of the predictors
was checked manually through examination of the bivariate correlations.
The variance inflation factors (VIFs), as measures of multicollinearity,
were analysed for each of the predictors.

The forest structural information was modelled as a function of
the spectral and textural features derived from the RapidEye satellite
images. A stepwise forward selection algorithm implemented with the
SPSS command ‘reg.’ was chosen to determine the remote sensing-based
independent variables most suitable for inclusion in the model. This selec-
tion process was used to determine the independent variables with the
largestpositive or negative correlations with the outcome (dependent) vari-
ables. A variable was retained in the model if it significantly improved the
ability of the model to predict the outcome. Then, the next variable with a
large semi-partial correlation with the outcome was considered. A variable
was only retained if its influence on the dependent variable (ŷ)was found to
be significant. The process was ended when there were no further statistic-
ally significant variables remaining. To avoid an artificial increase in the co-
efficient of determination (R2), a restriction of four for the amount of
independent variables and a cut-off value for VIF of less than four was
required in order for an independent variable to remain in the model,
according to Castillo-Santiago et al. (2010) and Ozdemir and Karnieli
(2011). The basic model function of a multiple regression can be written
as follows:

ŷi = b0 + b1x1 + b2x2 + · · · + bixi (1)

where ŷi is the predicted value for the dependent variable (in this case, the
forest variable to be estimated), xi are the independent variables (here,
derived from the remote sensing data) i¼ 1,. . .,m and bi represents the
coefficients to be estimated i¼ 0,. . ., m.

As a final step, we checked the assumptions of the model for linearity
and normality. The standardized residuals of the different models were
first visually assessed for normality using a histogram with density plot
and normal probability plot of the residuals. We also analysed the disper-
sion and shape of the standardized residuals for homogenous variances
when plotted against the standardized predicted values. The quality of
the model as a whole was checked by evaluating the F-ratio from the
output of the analysis of the variance (ANOVA). The influence of each of
the independent variables in the models was checked via t test (significant
P , 0.05).

Accuracy assessment
The prediction error of the selected models was estimated by the leave-
one-out cross-validation method (LOOCV), a special case of a k-time cross-
validation (Latifi et al., 2010; Straub et al., 2010). LOOCV was conducted for
each regression model in the four strata ( j1, j2, j3, j4) as well as for the models
without stratification. Owing to the relatively low number of observations in
each of the strata ( j1¼ 55, j2¼ 20, j3¼ 57, j4¼ 84), the LOOCV approach
was preferred over k-fold cross-validation. The predicted value for the kjth
observation (inventory plot k from the stratum j) was calculated using the
regression equation obtained by fitting the model without the kjth observa-
tion. The method starts with all observations and proceeds by eliminating
one observation and using the model to predict the dependent variable
for the observation that was eliminated. This process was repeated until
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each observation had been used once for validation (kj 2 1) (Stone, 1974).
The performance was then evaluated by means of the root mean square
error (RMSE) and the relative RMSE (rRMSE) (Witten et al., 2011). The bias
was calculated using the following formula:

Bias =

∑n
i=1 (yi − ŷi)

n
(2)

where yi is the observed variable for plot j, ŷi is the predicted variable for plot
j, �yi is the mean of the observed variable for plot j, and n is the number of
sample plots used for validation. The relative bias as a diagnostic
measure was calculated as follows:

Bias = [%] = Bias
�y

× 100 (3)

The accuracy of the regionalization of each of the models was checked using
a test of means. A mean value from the modelled data for a particular forest
attribute (e.g. V) was calculated by selecting 216 cells at random from the
regionalized data and calculating the mean of those values. This process
was repeated 1000 times per model in order to create a distribution of
means from the regionalized data from each model for each attribute.
These means were then compared with the mean values for each of these
forest attributes that had been derived from the terrestrial inventory data.

Results

Estimation accuracy (Regression models)

A summary of the basic information obtained from the analyses
described above is given in Table 1. Analysis of the correlation coef-
ficients revealed that only a small number of the extracted spectral
features were significantly correlated with the forest variables as
shown in Table 2. The vegetation indices NDVI and VI showed no
significant correlation with the forest structure variables. Moreover,
a number of variables were not chosen for inclusion in the models
because of multicollinearity.

The image features showing high correlation to the dependent
variables were used as independent variables in the regression
analyses. The results of the different models and the variables
selected are given in Table 3. The values of the t test (Table 3)
showed that all independent variables had a significant impact
on the dependent variables. In Table 4, the calculated values are
summarized and the strength of the relationships between the
models and the dependent variables (multiple correlation coeffi-
cients, coefficient of determination, RMSEModel and the F-ratio of
the ANOVA) is clearly demonstrated. The F-ratios for all of the
models tested were significant and thus showed the principally
significant relationship between dependent and independent

Figure 1 Processing steps used for spectral value extraction. (A) Test site with inventory grid. (B) Inventory plot size and position. (C) Segmentation into
objects. (D) Mapping of V predictions on a grid of 15×15 m spatial resolution.
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Table 2 Correlation coefficients, r, for the linear relationships between forest structural information unstratified and stratified, compared with features (spectral
reflectance, texture features and indices) derived from RapidEye images

dq SN BA V

(a) Unstratified (n¼ 216)
Mean NIR 05 20.445** 0.188**
GLCM Entropy Green 09 0.171* 0.060*
GLCM Std.Dev. Red Edge 08 20.203**
Skewness Red 09 20.154*
Skewness NIR 08 0.188**
SR 09 0.240**
Brightness 08 20.657** 20.636**
GLCM Mean Red 05 20.139*
GLCM ASM NIR 08 0.173*
Std.Dev. Red 05 20.264**
GR 09 0.280**

(b) cd ( j4) (n¼ 84)
SR 09 20.503**
Mean Green 05 20.381**
GLCM Contrast Red Edge 08 20.233*
GLCM Contrast NIR 05 0.273*
GLCM ASM NIR 08 0.388**
GLCM Homogeneity NIR 05 0.274*
Mean NIR 05 0.227*
Skewness Red 08 20.263*
Brightness 08 20.576** 20.613**
GLCM Std.Dev. Green 09 0.293** 0.301**
GLCM ASM Red 08 0.376**

(c) pc ( j1) (n¼ 55)
RE 05 20.644**
Std.Dev. Green 05 0.350**
SR 05 20.644**
GLCM ASM Red Edge 05 0.310* 0.434**
Brightness 08 20.721**
Brightness 05 20.714**
GLCM Entropy Red 09 20.330*
Mean Red 09 20.497**
GLCM Correlation NIR 05 0.296*

(d) dd ( j3) (n¼ 57)
GLCM Std.Dev. Red Edge 08 20.374** 20.339**
GLCM Mean Green 09 20.364**
GLCM Correlation Red 09 0.270*
GLCM Entropy Green 09 0.331*
GLCM ASM Green 09 0.428**
Mean NIR 05 0.322*
GLCM Std.Dev. NIR 05 0.350**
GLCM Mean Blue 09 20.379** 20.358**
Mean Red Edge 08 20.310*
GR 09 0.334* 0.399**
GLCM Entropy Blue 05 20.311*
Brightness 08 20.290*

(e) pd ( j2) (n¼ 20)
GLCM Std.Dev. NIR 08 0.607**
Std.Dev. Red Edge 08 20.550*
GLCM Std.Dev. Blue 08 20.604** 20.545*
GLCM ASM RedEdge 09 0.487* 0.533*

*P-value ≤0.05 (two-tailed) considered significant.
**P-value ≤0.01 (two-tailed) considered significant.
05¼May; 08¼ August; 09¼ September.
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Table 3 Regression models for the forest structural information (dependent variables) and the RapidEye image features (independent variables) for
unstratified and stratified forest sample plots

Dependent variables Predictive model based on image feature Std. error Beta VIF t Sig. R2

Unstratified
dq (cm) b0 38.30 14.43 2.66 0.009 30

b1 20.10 Mean NIR 05 0.01 20.46 1.0 27.93 ,0.001
b2 10.10 GLCM Entropy Green 09 2.65 0.22 1.0 3.81 ,0.001
b3 20.56 GLCM Std.Dev. Red Edge 08 0.19 20.18 1.0 23.03 0.003
b4 23.68 Skewness Red 09 1.39 20.15 1.0 22.65 0.009

Stratified
dq (cm) (cd, j4) b0 65.12 7.74 8.41 ,0.001 38

b1 21.48 SR 09 0.36 20.39 1.1 24.10 ,0.001
b2 20.34 Mean Green 05 0.15 20.21 1.2 22.18 0.032
b3 20.003 GLCM Contrast Red Edge 08 0.001 20.22 1.0 22.41 0.018
b4 0.002 GLCM Contrast NIR 05 0.001 0.21 1.1 2.28 0.025

dq (cm) (pc, j1) b0 49.01 3.85 12.73 ,0.001 55
b1 20.11 RE 05 0.02 20.65 1.0 26.95 ,0.001
b2 1.52 Std.Dev. Green 05 0.39 20.36 1.0 3.87 ,0.001

dq (cm) (dd, j3) b0 156.00 44.45 3.51 0.001 43
b1 21.07 GLCM Std.Dev. Red Edge 08 0.28 20.40 1.0 23.80 ,0.001
b2 20.99 GLCM Mean Green 09 0.28 20.38 1.0 23.62 0.001
b3 18.82 GLCM Correlation Red 09 8.20 0.25 1.1 2.30 0.026
b4 10.56 GLCM Entropy Green 09 4.79 0.24 1.1 2.20 0.032

dq (cm) (pd, j2) b0 294.44 37.24 22.54 0.021 37
b1 2.54 GLCM Std.Dev. NIR 08 0.78 0.61 1.0 3.24 0.005

Unstratified
SN (ha21) b0 1503.36 393.11 3.82 ,0.001 19

b1 2405.03 GLCM Entropy Green 09 90.87 20.28 1.0 24.46 ,0.001
b2 16.67 SR 09 10.33 0.12 1.4 1.61 0.108
b3 214.56 Skewness NIR 08 51.37 0.27 1.0 4.18 ,0.001
b4 0.93 Mean NIR 05 0.32 0.22 1.5 2.92 0.004

Stratified
SN (ha21) (cd, j4) b0 21081.64 258.38 24.19 ,0.001 36

b1 81384.42 GLCM ASM NIR 08 19394.81 0.38 1.0 4.20 ,0.001
b2 10705.03 GLCM Homogeneity NIR 05 2839.64 0.34 1.0 3.77 ,0.001
b3 1.16 Mean NIR 05 0.38 0.27 1.0 3.04 0.003
b4 2101.54 Skewness Red 08 41.27 20.23 1.0 22.46 0.016

SN (ha21) (pc, j1) b0 21404.78 412.42 23.41 0.001 31
b1 50.09 SR 05 12.47 0.46 1.0 4.02 ,0.001
b2 85672.99 GLCM ASM Red Edge 05 29071.60 0.34 1.0 2.95 0.005

SN (ha21) (dd, j3) b0 22765.63 651.45 24.25 ,0.001 40
b1 21669.98 GLCM ASM Green 09 6635.68 0.35 1.0 3.27 0.002
b2 2.02 Mean NIR 05 0.58 0.38 1.1 3.46 0.001
b3 41.34 GLCM Std.Dev. NIR 05 12.10 0.38 1.1 3.42 0.001

SN (ha21) (pd, j2) b0 495.41 99.89 4.96 ,0.001 30
b1 217.87 Std.Dev. Red Edge 08 6.40 20.55 1.0 22.79 0.012

Unstratified
BA (m2 ha21) b0 90.89 17.67 5.15 ,0.001 48

b1 20.41 Brightness 08 0.03 20.63 1.1 212.22 ,0.001
b2 20.37 GLCM Mean Red 05 0.13 20.14 1.0 22.77 0.006
b3 909.06 GLCM ASM NIR 08 385.11 0.12 1.0 2.36 0.019
b4 20.56 Std.Dev. Red 05 0.28 20.10 1.1 22.01 0.046

Continued
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variables. Also, the analysis of the VIF showed that there was no
multicollinearity among the independent variables used in the
models (Table 3). Furthermore, the test for normality using the
histogram with density plot and normal probability plot of residuals
revealed nearly normally distributed residuals in general. It can,
therefore, be concluded that the selected regression models are
appropriate. Figure 2 shows two example plots of the standardized
residuals against the standardized predicted values for Vand dq for
the stratum pc. Similar plots were analysed for all of the predicted
structural attributes showing no particular trend in the residuals.
The points were well distributed on both sides of the 1:1 line; no
major shift was found in any of the models. Only the V model for
stratum pd showed a small shift of 2.67 per cent as bias.

Table 3 shows the coefficient of determination (R2) obtained for
each model of the unstratified and stratified forest sample plots.

The major findings in terms of the best predictors for each forest
variable can be summarized as follows: the variable dq was best
predicted using the GLCMs Contrast Red Edge and Contrast NIR,
Std.Dev. Red Edge and Std.Dev. NIR, Mean Green, Correlation Red
and Entropy Green. The indices SR and RE, in combination with
any of the spectral features Mean Green, Mean NIR, Std.Dev.
Green and Skewness Red, also explained dq quite well. For
stratum pc, we obtained the highest R2 (0.55) when the spectral
features, Std.Dev. Green and the index RE were used. The lowest
R2 (0.37) within the stratification was obtained in stratum pd
using the GLCMs Std.Dev. NIR. The accuracy check of the regional-
ization of dq compared with the terrestrial data showed a differ-
ence in the mean value of 0.47 cm.

The best estimate of SN was found using the GLCMs ASM Green,
ASM Red Edge and ASM NIR, Homogeneity NIR, Std.Dev. NIR and

Table 3 Continued

Dependent variables Predictive model based on image feature Std. error Beta VIF t Sig. R2

Stratified
BA (m2 ha21) (cd, j4) b0 8.84 12.96 0.68 0.497 40

b1 20.37 Brightness 08 0.06 20.56 1.0 26.54 ,0.001
b2 0.81 GLCM Std.Dev. Green 09 0.26 0.27 1.0 3.08 0.003

BA (m2 ha21) (pc, j1) b0 39.55 11.77 3.36 0.001 58
b1 20.56 Brightness 08 0.08 20.65 0.9 27.00 ,0.001
b2 2126.20 GLCM ASM Red Edge 05 769.55 0.26 0.9 2.76 0.008

BA (m2 ha21) (dd, j3) b0 35.95 8.22 4.37 ,0.001 40
b1 2 0.09 GLCM Mean Blue 09 0.03 20.33 1.1 22.96 0.005
b2 20.14 Mean RedEdge 08 0.06 20.27 1.1 22.45 0.018
b3 16.71 GR 09 6.38 0.30 1.1 2.62 0.012
b4 23.22 GLCM Entropy Blue 05 1.29 20.28 1.1 22.50 0.015

BA (m2 ha21) (pd, j2) b0 25.14 8.20 20.63 0.539 53
b1 20.19 GLCM Std.Dev. Blue 08 0.06 20.54 1.0 23.23 0.005
b2 1560.58 GLCM ASM Red Edge 09 644.67 0.41 1.0 2.42 0.027

Unstratified
V (m3 ha21) b0 479.74 75.50 6.35 ,0.001 42

b1 25.30 Brightness 08 0.47 20.60 1.1 211.27 ,0.001
b2 192.30 GR 09 74.74 0.14 1.1 2.57 0.011

Stratified
V (m3 ha21) (cd, j4) b0 5.95 166.61 0.04 0.972 49

b1 24.672 Brightness 08 0.75 20.53 1.1 26.24 ,0.001
b2 11.57 GLCM Std.Dev. Green 09 3.35 0.28 1.0 3.45 0.001
b3 158.28 GLCM ASM Red 08 65.85 0.20 1.1 2.40 0.019

V (m3 ha21) (pc, j1) b0 1481.75 336.31 4.41 ,0.001 63
b1 25.12 Brightness 05 0.91 20.55 1.3 25.62 ,0.001
b2 2164.42 GLCM Entropy Red 09 74.91 20.19 1.0 22.20 0.033
b3 29.66 Mean Red 09 3.99 20.23 1.2 22.42 0.019
b4 358.87 GLCM Correlation NIR 05 169.40 0.19 1.1 2.12 0.039

V (m3 ha21) (dd, j3) b0 666.78 170.87 3.90 ,0.001 42
b1 279.92 GR 09 90.13 0.33 1.0 3.11 0.003
b2 27.41 GLCM Std.Dev. Red Edge 08 2.77 20.29 1.0 22.68 0.010
b3 21.32 GLCM Mean Blue 09 0.42 20.34 1.0 23.13 0.003
b4 22.04 Brightness 08 0.93 20.24 0.9 22.21 0.032

V (m3 ha21) (pd, j2) b0 2162.57 127.56 21.27 0.220 51
b1 22.60 GLCM Std.Dev. Blue 08 0.94 20.48 1.0 22.77 0.013
b2 26997.605 GLCM ASM Red Edge 09 10031.29 0.46 1.0 2.69 0.015

t test significant P-value ,0.05.
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Entropy Green. Furthermore, the index SR and the spectral features
Mean NIR, Std.Dev. Red Edge, Skewness Red and Skewness NIR also
fit the models well. The coefficient of determination for stratified
SN varied between 0.30 (pd) and 0.40 (dd) (Table 4). The R2 in
stratum pd was best explained with the spectral feature Std.Dev.
Red Edge; and in stratum dd, with texture feature GLCMs ASM
Green and Std.Dev. NIR and the spectral feature Mean NIR. The ac-
curacy test of the regionalized models for the mean value of the
predicted SN (393 ha21) compared with the mean value derived
from terrestrial measurements (334 ha21) showed a difference
of 259 ha21.

The GLCMs texture features Std.Dev. Green and Std.Dev. Blue,
ASM Red Edge and ASM NIR, Mean Blue and Mean Red, as well as
Entropy Blue best explained BA. The indices Brightness and GR
and the spectral features Mean Red Edge and Std.Dev. Red were
also included in these models. As shown in Table 4, the variation
of R2 among the different strata for the models of BA ranged
from 0.40 (cd and dd) to 0.58 (pc). Regionalization accuracy
showed a difference of 26.12 m2 ha21 between the predicted
mean value and the measured mean value.

V was best explained by the texture feature GLCMs Std.Dev.
Green, Std.Dev. Blue and Std.Dev. Red Edge, ASM Red and ASM Red
Edge, Entropy Red, Correlation NIR and Mean Blue. The indices
Brightness and GR and the spectral feature Mean Red contributed
to these models as well. The R2 for the stratified models of V
ranged between 0.42 (dd) and 0.63 (pc) (Table 4). The mean
value for V predicted by the models across the entire test site
was only 18.83 cubic meters less than that found using on the
ground measures.

All regression models derived were statistically significant (P ≤
0.05). Relatively low R2 values ranging from 0.31 to 0.43 were cal-
culated for the models predicting dq (in strata cd, dd and pd), SN
(all strata), BA (strata cd and dd) and V (stratum dd). In contrast,
dq (stratum pc), BA (strata pc and pd) and V (strata cd, pc and
pd) were relatively well predicted, as the models explained a

considerable amount of the variability in these forest structural
attributes. The calculated coefficients of determination for these
models and the RMSEs derived from the LOOCV were 0.49 (109.0
m3ha21), 0.51 (118.9 m3 ha21), 0.53 (7.2 m2 ha21), 0.55
(9.0 cm), 0.58 (11.6 m2 ha21) and 0.63 (157.1 m3 ha21), respect-
ively (Tables 4 and 5).

Stratification approach

The stratification of the forest sample plots based on forest type
yielded a significant improvement in the results of the regression
analyses and provided a clearer picture of the strata for which
the model prediction worked particularly well. This was especially
true for the variation in bias. For nearly all attributes, the highest
values for the RMSE, rRMSE and bias were those for the pd
stratum. The results for both the stratified and unstratified
approaches are given in Table 5. For all strata, this approach
resulted in a lower RMSE than that found for the unstratified esti-
mation of all attributes: for dq, the estimated rRMSE was reduced
from 33.6 to 31.2 per cent. The RMSE for the stratified estimation
of SN (111.6 per cent) was lower than the 114.4 per cent found
for the unstratified estimation and the error in the estimation of
BAwas reduced from 44.0 to 39.8 per cent. Finally, the stratified es-
timation of standing volume had a lower RMSE about 47.7 per cent
compared with that found for the unstratified estimation about
54.1 per cent.

Multi-seasonal approach

In addition to the investigation of the impacts of forest stand
stratification on forest attribute estimation, the value of using
multi-seasonal image components was analysed. The influence
of multiple datasets is summarized in Table 6. The model with dq
as the dependent variable showed an R2 of 29.8 per cent in
stratum cd using mono-temporal image analysis, while the

Table 4 Strength of the relationship between each of the simple and multiple regression models of the stratified test site

Dependent variable Multiple correlation
coefficient (R)

Coefficient of
determination (R2)

RMSEModel F Significance

dq (cm) (cd) 0.62 0.38 10.1 12.2 ,0.001
dq (cm) (pc) 0.73 0.55 8.8 31.1 ,0.001
dq (cm) (dd) 0.66 0.43 10.0 9.9 ,0.001
dq (cm) (pd) 0.61 0.37 12.4 10.5 0.005
SN (ha21) (cd) 0.60 0.36 286.6 11.3 ,0.001
SN (ha21) (pc) 0.56 0.31 441.2 11.7 ,0.001
SN (ha21) (dd) 0.63 0.40 347.7 11.9 ,0.001
SN (ha21) (pd) 0.55 0.30 148.2 7.8 0.012
BA (m2 ha21) (cd) 0.63 0.40 8.3 27.2 ,0.001
BA (m2 ha21) (pc) 0.76 0.58 11.3 36.2 ,0.001
BA (m2 ha21) (dd) 0.63 0.40 6.7 8.5 ,0.001
BA (m2 ha21) (pd) 0.73 0.53 6.6 9.5 0.002
V (m3 ha21) (cd) 0.70 0.49 105.6 25.2 ,0.001
V (m3 ha21) (pc) 0.80 0.63 149.0 21.2 ,0.001
V (m3 ha21) (dd) 0.65 0.42 97.4 9.4 ,0.001
V (m3 ha21) (pd) 0.71 0.51 102.7 8.7 0.002

ANOVA F-value probability P-value ≤0.05.
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analysis of this stratum using multi-seasonal images increased the
coefficient of determination to 38.0 per cent. Similar results were
achieved with the same attribute in stratum dd, where the analysis
using the mono-temporal image showed an R2 of 24.5 per cent
compared with an R2 of 43.0 per cent obtained using multi-
seasonal image analysis. Smaller improvements in R2 for dq were
also found for strata pc and pd, although the differences were
not as large (Table 6). An increase in R2 was also seen for SN and
BA when using the multi-seasonal approach. The estimation
showed better results for attribute SN in stratum dd and attribute
BA for strata pc and cd using the mono-temporal approach. If ac-
quisition of only one image were possible, the best seasonal image
for the estimation of attribute dq would be the image from May for
the strata cd and pc; while the best results for single image analysis
for the deciduous strata were achieved with the data from August
and September. Similar results were seen for attribute V.

Discussion and conclusions
Among the four forest variables investigated, the variables dq,
Ba and V were most accurately estimated by the models.
We found nothing in the literature with which we compare our
results for dq. A comparison of the mean values predicted using
the remote sensing data with the terrestrially measured mean
values revealed overestimations in the model results for SN
(259 ha21), BA (26.12 m2 ha21) and V (218.83 m3 ha21).
The models of dq showed an underestimation of the mean value
of 0.47 cm. Our study also supports the findings about the forest
variables SN and BA conducted by Ozdemir and Karnieli (2011).
In that study, the estimated forest variable SN showed a R2 of 38
per cent (RMSE 110 ha21) and BA a R2 of 54 per cent (RMSE
1.79 m2 ha21) using 2 m resolution (WorldView-2) data. Kayitakire
et al. (2006) estimated the forest variable BA with a resulting R2 of

Figure 2 Field-measured forest structural information vs satellite-derived forest structural information and their residuals. Upper plot (A) scatter plot of
dq and (B) residual plot of dq in stratum pure coniferous and the lower plot (C) scatterplot of V and (D) residual plot of V in stratum pure coniferous.
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35 per cent (RMSE 6.85 m2 ha21) using 1 m resolution data
(IKONOS-2). A comparison with the results published by Straub
et al. (2013) for V and BA at the stand level at the same test site
showed similar results to ours. The RMSE they achieved for V esti-
mation using the stratification approach was 34.3 per cent for
aerial image data and 37.7 per cent for LiDAR data, while our
study showed a RMSE of 47.7 per cent using RapidEye data. The
RMSE we found for the attribute BA was 39.8 per cent, in compari-
son with the results found by Straub et al. (2013) using the stratifi-
cation approach for both aerial images (35.6 per cent) and LiDAR
data (31.6 per cent). Our study showed slightly higher RMSE
values than those obtained by Straub et al. (2013), which could
be interpreted as an effect of the lower spatial resolution of the
image data we used. These results confirm that while a pixel size
of 5 m spatial resolution can be problematic for forest attribute es-
timation, these data can still compete with higher resolution data
in terms of the results they bring. However, the pixel sizes of
RapidEye data do not allow single tree detection; accordingly, the
number of trees within one inventory plot cannot be determined
with high accuracy using these data (Fehlert, 1984; Kenneweg
et al., 1991).

Textural features such as GLCM Dissimilarity and indices like
NDVI and VI showed little importance as predictors in the regres-
sion analysis. However, the use of textural features improved our
results, thus confirming the findings of Kayitakire et al. (2006)
using IKONOS-2 data, Wunderle et al. (2007) using SPOT 5 data
and Ozdemir and Karnieli (2011) using WorldView 2-data. The
GLCMs Contrast and Entropy best explained the forest variables
BA and V, as described in the studies by Kayitakire et al. (2006)
and Ozdemir and Karnieli (2011). Also the window size of 15×
15 m used here confirmed its effectiveness, as published in the
work by Kayitakire et al. (2006). The best results obtained in their
study comparing the effectiveness of different window sizes (5×
5 m, 15×15 m and 25×25 m) were for the models with a
window size of 15×15 m.

Wolter et al. (2009) and Eckert (2006) used various vegetation
indices to estimate structural attributes in their studies. In our
study, the best results were achieved using the indices SR, GR, RE
and Brightness. The effectiveness of these indices for estimating

BA and V can be explained after Eckert (2006) as follows: a low
value for this attribute implies the presence of stands of coniferous
forest with shady areas and relatively low stand density where one
would expect high values for Vand BA, while higher values for these
indices imply broadleaved forest with a closed canopy. Further-
more, the spectral feature Mean NIR was chosen three times in dif-
ferent models as a predictor. Eckert (2006) reported that low NIR
reflectance is related to old-growth, low stand density and
stands with high timber volume, whereas high reflectance in the
NIR implies small timber and mixed timber stages with high
stand densities. In our study, Mean NIR proved to be a good predict-
or for the attribute SN.

Our results also show that the stratification approach generally
improved the estimation of forest structural information. Heurich
(2006) and Latifi et al. (2012) used similar approaches involving
stratification of forest plots into coniferous, deciduous and mixed
strata, while Straub et al. (2013) used only coniferous and decidu-
ous strata. Another finding of the study presented here was that
forest information could be predicted with higher accuracy in con-
iferous stands than in deciduous stands. Wolter et al. (2009)attrib-
uted a similar finding to the greater contrast between sunlight and
shadow in coniferous stands. Also, the stronger correlation among
the dependent structural variables dq, BA and V for conifers
improved the results obtained for the pc and cd strata. One
concern is the relatively high bias in the pd strata (2.67 per cent).
The bias could be a result of small trees being excluded from the
analysis. Alternatively, an overestimation in the model may have
been caused by either the low number of inventory plots available
(for pd, n¼ 20) or the high level of variation within the forest stands
in Traunstein, as described by Heurich (2006) when using LiDAR
data to estimate forest information in the Bavarian Forest National
Park. The estimated forest variable SN showed improvements in
the models with species-based stratification approach. However,
the RMSE and bias showed high SN values as compared with the
other three forest variables. A similar result was also observed by
Ozdemir and Karnieli (2011). This could be improved by stratifying
based on the age of stands as suggested by the same authors.

The potential advantages of the multi-seasonal approach were
also analysed in a study by Maselli et al. (2005), who estimated

Table 5 Plot level LOOCV RMSEs, relative RMSEs (%) and bias using stratified and unstratified stepwise-selected variables

dq SN BA V

RMSE (cm) Bias (cm) RMSE (ha21) Bias (ha21) RMSE (m2 ha21) Bias (m2 ha21) RMSE (m3 ha21) Bias (m3 ha21)
rRMSE (%) rBias (%) rRMSE (%) rBias (%) rRMSE (%) rBias (%) rRMSE (%) rBias (%)

cd 10.5 0.08 308.6 4.70 8.5 20.01 109.0 20.09
31.1 0.24 100.8 1.50 37.1 20.04 42.7 20.04

pc 9.0 20.02 483.0 3.37 11.6 0.03 157.1 2.52
24.9 20.06 130.5 0.91 37.0 0.10 43.3 0.69

dd 10.6 0.05 390.7 3.89 7.4 20.06 106.4 20.51
32.5 0.15 103.8 1.03 39.8 20.32 49.1 20.24

pd 13.0 0.31 158.6 3.30 7.2 0.25 118.9 1.99
49.9 1.19 68.3 1.42 76.3 2.67 112.2 1.88

Stratified 10.4 0.11 372.9 4.03 9.0 0.01 123.3 0.65
31.2 0.33 111.6 1.21 39.8 0.05 47.7 0.25

Unstratified 11.2 0.00 382.1 2.54 10.0 0.02 140.0 213.31
33.6 0.00 114.4 0.76 44.0 0.11 54.1 25.14
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BA using a seasonal time series of Landsat 7 ETM + datasets.
However, Maselli et al. (2005) reported only a marginal and incon-
sistent improvement in estimation through the use of multi-
seasonal datasets. Our study showed similar findings for SN and
BA, depending on the stratum. In all strata, significant improve-
ments were obtained for the estimation of the attributes dq and
V using the multi-seasonal approach. Furthermore, the study pre-
sented here found that the relationship between terrestrial mea-
surements of forest attributes and spectral information is more
obvious when images from the beginning or the end of the
growing season are used, confirming the findings of Maselli et al.
(2005) as well as those of Elatawneh et al. (2013) for a forest in
Freising, Germany.

The study presented here examined the potential for the esti-
mation of forest structural attributes using forest stand-type

stratification and high-resolution, multi-seasonal RapidEye data.
Object-based extraction of image features, spectral bands, indices
and textural features from RapidEye sensor data provided an effi-
cient basis for estimating forest attributes using simple or multiple
linear regression analysis. The regionalization of the datato the test
site showed good results. Furthermore, RapidEye data have the
advantages of high areal coverage and the affordable price of
only 0.95E per km2 (RapidEye AG, 2011). Thus, the costs of forest
inventories could be reduced by using RapidEye archive data for
forest structural estimation. Another major advantage of this
data is the high temporal resolution. The RapidEye satellite
system offers a repetition rate of 5.5 days (nadir view), whereas a
forest inventory will not likely be repeated more often than every
10 years. Therefore, RapidEye data can provide timely information
about changes in the forest structure and thus can be used to simu-
late interim forest inventories. Furthermore, it can provide the input
data necessary to initialize forest growth simulators.

Both the methodology used and the RapidEye data evaluated,
however, bring to light some shortcomings of our study. The rela-
tively high RMSE obtained can most likely be attributed to the
mixed pixel effect of the 5 m resolution data used. However, our
aim was to estimate structural information on a regional scale,
which means at the enterprise level. Thus, the RMSE found in our
study calculated at a stand level is sufficient to fulfil the expected
requirements, particularly when estimating attributes for the
entire forest area. The application of the chosen predictors to differ-
ent forest areas and different RapidEye datasets could lead to dif-
ferent results under different circumstances; thus, the approach
needs to be tested in further studies. The study did, however,
show the potential applicability of high-resolution data as a first
step in supporting forest management plans by estimating forest
structural information. The map produced can be used as prelimin-
ary advice to forest enterprises for forest management plan prep-
aration. In future, we also intend to assess how well the estimated
values work to initialize a growth simulator.
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Table 6 Comparison of the R2 and the absolute and relative RMSEs found
using multi-temporal and mono-temporal analysis for the estimation of
forest structural information

R2 RMSE rRMSE

dq (%) (cm) (%)
Multi-seasonal cd 38.0 10.5 31.1
Mono-temporal 05 cd 29.8 10.9 32.5
Multi-seasonal pc 55.0 9.0 24.9
Mono-temporal 05 pc 54.5 9.0 24.9
Multi-seasonal dd 43.0 10.6 32.5
Mono-temporal 08 dd 24.5 11.8 36.4
Multi-seasonal pd 37.0 13.0 49.9
Mono-temporal 09 pd 36.9 13.0 49.9
SN (%) (ha21) (%)
Multi-seasonal cd 36.0 308.6 100.8
Mono-temporal 09 cd 24.5 323.4 105.7
Multi-seasonal pc 31.0 483.0 130.5
Mono-temporal 05 pc 31.0 483.1 130.6
Multi-seasonal dd 40.0 390.7 103.8
Mono-temporal 05 dd 45.4 383.8 101.8
Multi-seasonal pd 30.0 158.6 68.3
Mono-temporal 09 pd 30.2 158.7 68.3
BA (%) (m2 ha21) (%)
Multi-seasonal cd 40.0 8.5 37.2
Mono-temporal 09 cd 41.5 8.8 38.4
Multi-seasonal pc 58.0 11.6 37.0
Mono-temporal 05 pc 62.2 11.1 35.7
Multi-seasonal dd 40.0 7.4 39.8
Mono-temporal 08 dd 23.9 8.0 42.6
Multi-seasonal pd 53.0 7.2 76.3
Mono-temporal 09 pd 36.0 8.0 86.5
V (%) (m3 ha21) (%)
Multi-seasonal cd 49.0 109.0 42.7
Mono-temporal 08 cd 44.9 110.8 43.3
Multi-seasonal pc 63.0 157.1 43.3
Mono-temporal 08 pc 54.2 168.5 46.4
Multi-seasonal dd 42.0 106.4 49.1
Mono-temporal 09 dd 27.3 110.2 50.8
Multi-seasonal pd 51.0 118.9 112.2
Mono-temporal 09 pd 29.7 125.6 118.4
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Elatawneh, A., Rappl, A., Reshush, N., Schneider, T. and Knoke, T. 2013 Forest
tree species identification using phenological stages and RapidEye data: a
case study in the forest of Freising. In 5. RESA Workshop From the Basics
to the Service. Boldt (ed). GITO, pp. 23–38.

ENVI. 2005 User‘s Guide. 4.3. edn.

Fehlert, G.P. 1984 Kalibrierung von MSS-Satellitenbilddaten zur Auswertung
zeitlicher Reflexionsänderungen an Fichtenbeständen. DFVLR Forschungsbericht,
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Erfassung von Waldschäden auf der Basis von Spektralsignaturen. In
DLR Abschlußdokumentation – Untersuchung und Kartierung von
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