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Abstract

This thesis presents e�cient computational techniques for optimizing road trans-

portation systems using the city of Singapore as a case study. In view of urban

commuting systems, the two most important determinants of tra�c, which can be

subjected to optimization, are identi�ed to be the road network and the routing

choices of the population. Alterations in each of them and their impact on tra�c

conditions are studied to evaluate the e�ciency and robustness of possible opti-

mization approaches. On one side, an optimal road network capacity redistribution

is computed reducing overall travel time. Respectively, the developed BISOS al-

gorithm provides a fast and e�cient computation of near system optimum paths

and achieves a signi�cantly greater decrease of total travel time compared to the

road network alteration approach and overall fuel consumption reduction. The ro-

bustness importance concept for any planned infrastructure is introduced. Tra�c

demands are repetitively perturbed in order to simulate long term varying tra�c

conditions. An embodiment of this concept is presented as a method for optimal

sensor placement performing equally well for various degrees of perturbation ensur-

ing robustness against tra�c demand changes. The individual �ndings in the thesis

are combined into a structured optimization process, split into four steps: 1) an

analysis step de�ning measures used to identify super-sensitive and highly dynam-

ical topological locations in the road network used as strategic steering tools; 2) a

planning step applying hypothetical changes at identi�ed problematic locations and

evaluating the respective outcomes using a modelling and simulation approach; 3)

a routing control step, executed by state of the art system optimum computation

algorithm; and �nally, 4) a surveillance step solving the optimal sensor placement

problem, which maximizes information gain with respect to the routing choices of

the driver population. The suggested methodologies and systems in this thesis can

be used in order to ensure robust, sustainable and environment friendly operational

state of future road transportation systems.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit e�zienten Berechnungsmethodiken

zur Optimierung von Straÿenverkehrssystemen. Hierzu dient der Stadtstaat Singapur

als Fallstudie. Hinsichtlich des städtischen Verkehrs gibt es primär zwei Aspekte, die

optimiert werden können: Das Straÿennetz, sowie die Routenwahl der Fahrer. Diese

Arbeit untersucht, inwiefern diese Aspekte beein�usst werden können, und wie sich

diese Änderungen auf den Verkehrs�uss auswirken, um somit mögliche Optimierungs-

ansätze bezüglich ihrer E�zienz und Robustheit zu bewerten.

Im ersten Schritt wird zunächst zum Zweck der Reduzierung der globalen Fahrtzeit

eine optimale Neuverteilung der Straÿenkapazität berechnet. Im Vergleich dazu, er-

reicht der hier vorgestellte BISOS-Algorithmus durch eine performante und e�ziente

Berechnung von nahezu optimalen Routen signi�kant bessere Ergebnisse. Auÿerdem

konnte gezeigt werden, dass der globale Benzinverbrauch durch diesen Ansatz gesenkt

werden kann.

Ein weiterer Kernaspekt dieser Arbeit ist die Einführung des Konzepts der Robustheit

für neu-geplante Infrastrukturen. Zur Evaluierung wurden diesbezüglich Schwankun-

gen im Verkehrsaufkommen simuliert, damit die Robustheit gegenüber sich langfristig

verändernden Verkehrsverhältnissen bewertet werden kann. Diese Methodik kann z.B.

für die optimale Platzierung von infrastrukturgebundenen Verkehrsüberwachungssen-

soren benutzt werden, um den Nutzen des Sensornetzes auch unter sich ändernden

Verkehrsaufkommen zu maximieren.

Die einzelnen Teilergebnisse dieser Arbeit werden anschlieÿend in einen strukturier-

ten Optimierungsprozess integriert, der in vier Schritte unterteilt werden kann: 1) Im

ersten Analyseschritt werden Metriken de�niert, um super-sensitive und hochdyna-

mische Teile des Straÿennetzes zu identi�zieren. Diese können dann als Stellschrauben

zur Verkehrsbeein�ussung benutzt werden. 2) Im zweiten Schritt werden theoretische

Änderungen an diesen Stellschrauben mit Hilfe von Modellierung und Simulation be-

wertet. 3) Im nächsten Schritt werden die geplanten Routen der einzelnen Fahrzeuge

mit Hilfe eines modernen Systemoptimierungsalgorithmus neu bestimmt. 4) Im letz-

ten Überwachungsschritt wird das Problem der Sensorplatzierung gelöst, mit dem

Ziel das gesammelte Wissen über die Routen der Fahrer zu maximieren.

Zusammengefasst dienen die in dieser Arbeit vorgeschlagenen Methodiken dazu, zu-

künftige Straÿenverkehrssysteme robuster, nachhaltiger und auch umweltfreundlicher

zu gestalten.
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Chapter 1

Introduction

1.1 Motivation

Statistics show road tra�c has been rising at an increasing rate over the past few decades,

leading to a progressive deterioration of tra�c conditions in metropolitan areas worldwide. As

reported in [1], the travel time and excess fuel wasted in congestion have signi�cantly increased.

The 2014 annual cost of congestion was estimated at $160 billion in the United States. In fact,

urban tra�c caused 6.9 billion hours of delay and 3.1 billion gallons of extra fuel wasted.

Advances in automotive fuel-saving technologies have not been enough to mitigate the rising

costs of congestion [2] as shown in Fig. 1.1. This highlights the current state of ine�ciency of

transportation systems and the need for an e�ective optimization strategy.

On the other end of the e�ciency spectrum are the innovative optimization algorithms and

modelling strategies harvesting the rapid increase in available computational power. Therefore

a potential strategy, which addresses the two main challenges, which transportation systems

are facing: 1) e�cient real-time tra�c management in the short term; and 2) forward-looking

development of the transportation infrastructure, in view of satisfying the time-volatility of

tra�c demand in the long term, can be tested and identi�ed by a computational model of

urban transportation systems.

Most broadly stated, the motivation behind this thesis and respectively its objective is to

build on top of state of the art analysis and optimization methods from the �eld of computer

science and apply them to road transportation systems. The resulting strategies can bring

insight into the future of large cities and point out e�cient economically-sustainable solutions,

robust against volatility in long term alterations of tra�c demand. Fortunately, a considerable
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1. INTRODUCTION

amount of data was made available for this research coming from the city of Singapore. This

allowed the testing of all suggested methodologies in a realistic environment enabled by the

collected data, backed by modelling and simulation techniques.

Figure 1.1: Statistical temporal trends in extra fuel spent yearly due to congestion in billions of

gallons and average fuel e�ciency in miles per gallon. Data used from [1] and [2].

1.2 Problem Statement

Congestion is perceived as the main problem of transportation systems. It occurs because of

the heterogeneous nature of tra�c demand in both time and space. Most commuters travel

at the same time during the morning and evening, creating rush hours, which are de�ned by

the working day temporal frame. Similarly, in space, there are central roads, which attract

many drivers and become congested, while other roads remain underutilized. A related but

qualitatively di�erent reason for the onset of congestion is the slower pace at which the road

infrastructure can be altered compared to the changes of commuting patterns. Therefore, road

infrastructure is constantly lagging in its attempts to match the faster changing tra�c demands

and in turn, locations where demand and infrastructure are mismatched exist in the system.

The latter leads to congestion.

There are two main tools, which can be used to tackle these problems. One is to redistribute

tra�c in a more homogeneous way in space, and the other is to change the road infrastructure

for it to match more precisely the tra�c demands and make those changes robust against

2
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possible future demand alterations. The problem to be resolved in this thesis is how to minimize

congestion on a system level, in the sense of minimizing overall population travel time, in a

robust and e�cient manner, by using routing and/or infrastructure changes. Furthermore, the

various approaches must be compared and the one most e�cient and feasible for implementation

should be identi�ed.

1.3 Sensitivity of Tra�c Conditions to Tra�c Components

In order to model tra�c, there are three main factors that should be taken into account, or

respectively, three main questions that need to be answered. Tra�c demand - from where, to

where, and when do people want to go, tra�c infrastructure (road network) - what medium

is used to get from origin to destination, routing choices - how do people get from origin to

destination provided the tra�c network. This thesis examines how changes in these three

components a�ect tra�c conditions. The motivation for this study, except from pure scienti�c

curiosity, is to identify the most bene�cial component to be altered and controlled by the

respective authorities in order to improve tra�c conditions.

1.3.1 Sensitivity to Infrastructure Changes

The sensitivity of tra�c conditions to alterations in the infrastructure is measured in two ways.

First, in an identi�cation of sensitive locations study the changes of total travel time, as a result

of simple lane redistributions at single intersections, can be measured. For the morning rush

hour period in Singapore, which is simulated, it is shown that the lane redistribution at the most

sensitive location can save 500 hours from the total travel time of the population corresponding

to 0.25% decrease. If all selected 500 sensitive intersections are �xed the total saved time on

a daily basis reaches more than 4, 500 hours (2.25%). Second, a systematic analysis for the

identi�cation of harmful roads further tests the sensitivity of tra�c conditions to changes in

the infrastructure. In this case, the small infrastructural change is the removal of a single road

segment from the road network. The results demonstrate that in the extreme cases the removal

of a single road can lead to up to 6, 400 hours (3.2%) saved on a daily basis, or in the other

extreme to 15, 700 hours (7.85%) lost in the case of removing a vital for the network road.

Changing the tra�c infrastructure is a direct way for transportation o�cials to optimize tra�c

conditions, but it is limited by the relatively high costs of physical implementation.
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1.3.2 Sensitivity to Tra�c Demand Changes

The sensitivity of tra�c conditions to changes in the commuting demands has been indirectly

measured in a study that aims at �nding optimal positions for sensor placement. The tra�c

demand is perturbed in order to create a robust placement solution. As a result of the perturba-

tion approach that was undertaken the routing choices at intersections have been recalculated

for di�erent degrees of perturbation of the original demand. It was observed that the di�erence

in the importance of the intersections, which is a combination of tra�c volume and entropy

of the routing choices varies very slightly with a coe�cient of variation of 0.005 for a 5% per-

turbation. The changes of tra�c conditions as a result of tra�c demand alterations have not

been examined in great detail in this work for two main reasons. First, they seem to be less

signi�cant than the changes induced by the other two tra�c de�ning factors (road network and

routing) based on this indirect measurement. Second, the demand does not depend completely

on the free will of people, in the sense that decisions regarding housing and work locations

are subject to external factors. In contrast to that, the decisions on how to get from origin to

destination can be seen as a free will decision since there are no real constraints imposed on

the drivers. It must also be noted, that the chosen mode of transportation can be in�uenced

by o�cials by promoting public over private transit options, thus reducing the demand volume

on the road network.

1.3.3 Sensitivity to Routing Changes

A signi�cant contribution of this thesis is the �nding that there is a high level of sensitivity of

tra�c conditions to changes in the routing of the population. The studies related to system

optimal tra�c assignment in this work demonstrate that in the case of Singapore a 70% decrease

of population travel time can be achieved if drivers take the paths computed by the proposed

algorithm. It is well-known that system optimal routing solutions in general increase the total

travel distance by the population compared to the shortest paths initial tra�c distribution.

Therefore, it is desirable to �nd out whether the fuel consumption also increases as a result of

the increase of overall travel distance. A fuel consumption calculation model is implemented

and it is demonstrated that although the population covers more distance, the fuel consumption

drops as a results of the decreased level of congestion in the city. To be more precise, in total

the population uses 15% less fuel, when system optimal routing is applied.

It is important to note that algorithms for computing system optimum tra�c assignment

has existed for more than 30 years. Due to the fact that such tra�c assignment has been
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considered infeasible in practice, those algorithms are mostly used to determine a theoretical

best utilization of the network rather than a real assignment that can be achieved. As a result

of this, the constraints of those optimization problems are weaker and, in fact, lead to infeasible

solutions that cannot be applied to real life systems. More precisely, there are no constraints

that the �ows along the roads should be integer values.

Although, such an additional constraint may seem easy to take into consideration, it signi�-

cantly changes the performance of the already existing algorithms. Furthermore, the algorithm

proposed in this work ensures that at all times of the computation every driver has a path from

origin to destination that is known, while current state of the art either does not provide any

information about the actual path of a driver or may split the driver between several possible

paths. The approach of current state of the art algorithms is therefore considered impracti-

cal since if a centralized control system for routing control is designed it needs to supply a

real route for each and every commuter. Furthermore, the algorithm suggested in this work

converges about 15 times faster than previous ones and has smaller memory requirements.

1.3.4 Sensitivity Summary

In conclusion, the three components that can be subject to change can be addressed in 2

aspects: e�ect potential and ease of alteration. Road network is easy to change but costly

and the results from a small change are not that signi�cant. Tra�c demand conditional on

the origins and destinations of commuters can be considered almost impossible to change, or

extremely challenging at least. The change of the way agents choose their routes is free of

charge and does not restrict when from and where to people can go. It �nds a more socially

bene�cial way for all of drivers to take. Furthermore, it brings the most signi�cant decrease

of overall travel time and fuel consumption by saving both time and money, while reducing

the negative congestion induced e�ects on the environment. Therefore, routing is a promising

approach to enabling more stable and sustainable growth for future transportation systems.

For this reason, the work in this thesis has an emphasis on social optimal routing strategies as

a way to achieve those goals.

1.4 Systematic Optimization Approach

The methods used to analyse the sensitivity of tra�c to the three main components are com-

bined with additionally developed methodologies forming a systematic optimization process for
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intelligent transportation systems consisting of four main steps. The �rst step of examining

not just tra�c but any functioning system is the analysis of already existing data extracted

from it. After the analysis step, future changes in the system can be planned in order to create

necessary conditions for more e�cient operation. Followed or concurrently with the planning

phase, an attempt may be made to control the system (if it is controllable) or steer it into a

more bene�cial and e�cient state of operation. The fourth step determines the most important

indicators of system performance and deploys e�cient surveillance sub-systems to monitor the

selected indicators e�ciently. The data from the surveillance step is fed into a new analysis

step and the system continues to improve over time. The process �ow is depicted on Fig. 1.2.

Figure 1.2: Flow chart of interactions between ITS optimization modules (blue) and tra�c

determining components (red). Green arrows represent �ow of data, while blue arrows represent

changes applied to tra�c de�ning components generated by optimization modules.

1.4.1 Analysis of Tra�c Data

The analysis step of this thesis consists of the identi�cation of problematic regions in the

topology of the road infrastructure and quantifying the ine�ciencies associated with them. As

the road network is a de�ning part of the whole transportation system, the approach of locating

critical parts of it �rst seems reasonable as a starting point. The typically used measure for

the importance, or criticality, of a road segment in literature is the number of vehicles that

6



1.4 Systematic Optimization Approach

are utilizing it. This work's contribution in this context is the examination of road network

as an additional factor for the criticality of a road. Due to the fact that tra�c infrastructure

can change in a much slower pace than tra�c demand, it may be expected that parts of the

network no longer match the path patterns of commuters and therefore create unfavourable

tra�c conditions. The analysis step contributes to current state of the art analysis techniques

with a measure de�nition for this mismatch and its computation for realistic tra�c conditions

in a large city scenario. The hypothesis of large amounts of discrepancy between tra�c demand

and infrastructure is con�rmed, showing hundreds of locations where changes are advisable.

As a continuation of the analysis part based on matching the infrastructure to the demand,

the optimal distribution of road widths within the city itself is computed. To the best of my

knowledge, this is the �rst work, which de�nes and solves such an optimization problem on a

large city scale. Although impractical, since the widths of all roads cannot be altered easily, the

di�erence between the optimal solution and the existing infrastructure can be seen as a good

measure of the overall mismatch of the city infrastructure with respect to the tra�c demands.

The aim of the optimization problem is to calculate the number of lanes on each road that

minimize the overall travel time given a certain demand pattern. The only constraint in the

problem is that the overall length of the road network in terms of lane meters must stay the

same. In other words, road capacities can only be redistributed within the system. In a sense

the solution to the optimization problem is what the network should look like if capacities had

to be assigned on every road in the present moment from scratch in terms of number of lanes

for each road.

As an additional step in the analysis phase and a prelude to the planning and control parts,

the Braess paradox has been examined. The paradox [3] states that the addition of new roads

to an existing infrastructure network may lead to an overall decrease of the performance of the

system. Seen from a reverse perspective, the removal of roads from the existing network may

lead to a performance increase. A systematic approach of measuring the impact of the removal

of a single road has been developed in order to quantify the changes in travel time as a result

of this type of network alteration. The Braess paradox has been intensely studied in previous

works, however, the systematic approach presented in this thesis, which is on a full city level, is

the �rst of its kind, and therefore a signi�cant step in con�rming the existence of the paradox

in realistic conditions.

This analysis step can help planners by identifying road segments that, in practical terms,

are harmful for the transportation system. Furthermore, the quanti�cation of those problematic
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roads is also easily performed by examining the change of overall travel time of the commuting

population. Naturally, an extensive search on the whole network, removing roads one by one is

computationally extensive. It has been performed for the case study of Singapore and the results

are presented in this work, however, a strategy for faster identi�cation of those segments using

a heuristic method presents interest for the academic community. An additional contribution

of this work is a heuristic based on the di�erence in tra�c �ows between, naturally occurring

tra�c and the system optimum solution for tra�c assignment. The systematic analysis of road

closures results is utilized as a validation step for the de�ned heuristic.

1.4.2 Planning of Infrastructural Alterations

The identi�cation of important, sensitive or critical places is not enough from the prospective

of a tra�c o�cial, who might be able to �x only a few problematic areas by altering the road

network. A prioritization procedure, needs to be suggested as well, thus directly providing

quanti�ed predicted outcomes of the suggested changes. Such a method is also presented in

this work, where the identi�ed problematic locations are altered according to the results from

the analysis step. More precisely, the changes in the road network that are applied consist of

optimizing the number of lanes at intersections in order for the turning options capacities to

be in agreement with the tra�c demands. E�ects of such changes are easier to evaluate, since

they do not alter the structure of the network in the sense of roads and intersections but only

change their widths. This implies that the shortest path between two points do not change

with the alterations. If it is assumed that the speed limits are not altered as well, it can be

deduced that the fastest paths do not change either.

The metric that is widely used throughout the thesis for determining the impact of various

changes in the tra�c system is the saved travel time. There are two reasons for this. First,

the majority of people consider time as one of their most valuable assets [4, 5] and second,

the time spent in congestion is proportional to the extra fuel consumed, [6, 7] and therefore,

transportation cost. By calculating the time saved from each change, the respective o�cials

can easily pick the most bene�cial locations to be addressed �rst. The novelty of this planning

approach is that the impact of the changes are evaluated holistically in the context of the whole

system, while typically in transportation literature, localized evaluations of various planning

approaches are performed.
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1.4.3 Routing Control

After the identi�cation of harmful roads in section 1.4.1, either by a systematic search or with

the help of a heuristic, it is clearly highlighted that the system in its original state is not

functioning optimally. More precisely, it is demonstrated that commuters do not choose their

routes in a way that minimizes overall system travel time. A road closure forces drivers to take

other routes and in the case where a road closure is bene�cial the only possible reason for that

is that the routes before the road was removed were not socially optimal to begin with. The

ratio between travel time computed with sel�shly chosen routes and optimal routes is referred

to as the Price of Anarchy [8].

Depending on the degree of non-linearity of the function that describes the relationship

between the number of vehicles on a road and the level of congestion, the price of anarchy

grows asymptotically as Φ(
d

logd
) [9]. In congested scenarios and non-linear tra�c conditions

this can easily mean doubling of the total travel time of the commuting population. It is,

therefore, highly bene�cial to have a centralized control system that is able to adequately

distribute tra�c and compute routes for drivers in order to minimize this negative e�ect.

Algorithms for system optimum routing computation exist for decades, however, they require

great computational power and storage capacity, due to the high number of routings that need

to be computed and the amount of viable paths that have to be stored. Furthermore, working

on better algorithms for system optimum computation has been on the sidelines in the past

since the actual realization of such a strategy in real life has been viewed as unreasonable.

With the increased presence of technology in transportation networks in the sense of route

guidance systems, computational e�ciency and power, and autonomous vehicles, the actual

implementation of such a system does not seem so far-fetched. It appears feasible that sooner

rather than later, people will not be as involved in their routing choices as they are now.

Therefore, the computation of system optimum routing solution has become an important

problem with serious application potential. The requirements of fast and e�cient computation,

however, remain due to the highly dynamic nature of tra�c. E�orts in improving the e�ciency

of such routing algorithms should be appreciated.

The contribution of the control part of this thesis is the design, implementation and analysis

of such a system optimum computation algorithm, which reduces computational time and

memory requirements that already existing algorithms have, while preserving the accuracy of

the �nal routing solution that is reached. Realistic tra�c scenarios can easily involve networks

with hundreds of thousands of nodes and millions of drivers on them that need to be routed.
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Even small improvements of computational e�ciency can therefore save large amounts of time

and bridge the gap between theoretical approaches and real world applications. Furthermore,

the positive e�ects of system optimum routing have been quanti�ed for a realistic scenario of a

full scale large city using the case study of Singapore. It is demonstrated how the saved total

travel time percentage increases when the population of the city increases as well. It is shown

that if the system optimum strategy is performed, the population of the city can increase twice,

while keeping the same total population travel time.

1.4.4 Tra�c System Surveillance

The �nal step of the process outline is tra�c surveillance. As shown in the analysis, planning

and control phases, it seems that routing has the highest potential to improve tra�c conditions.

Therefore, the object of the surveillance must be the routing choices commuters make. A

method for sensor placement is designed that aims at minimizing the entropy (uncertainty) of

the choices drivers make when they commute. This information theoretic approach to solving

the sensor placement problem is able to generically identify the most important locations to be

sensed, while avoiding the typical combinatorial problems that current state of the art methods

exhibit. It must be noted that in order to maximize the information gain with regard to routing

choices, static sensors are needed as opposed to participatory mobile sensing techniques.

The search for the set of optimal locations turns into an easily tackled problem, which

basically consists of picking one by one the most important locations. The de�ned importance

measure, based on entropy, possesses an intrinsic property that all locations are independent

from each other. This property helps to avoid the problem of redundant sensor positions and

thus allows immediate calculation of optimal sensor positions. Furthermore, the information

that can be extracted from such positioned sensor network is fundamental in its nature since

it captures tra�c characteristics at the intersections rather than at the roads themselves. The

completeness of the data collected at the examined intersections allows for the computation of

all secondary tra�c characteristics.

Tra�c demand conditions change rapidly due to the fast pace at which new buildings and

roads are constructed and the dynamic lifestyle of the commuter population involving frequent

changes in working locations and housing. The deployed sensor placement cannot be moved

once installed. Therefore, the optimal set of locations has to be robust against such type of

tra�c demand changes. A novel concept for transportation systems, which is similar to what
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is used for training data in machine learning, is presented in the thesis with direct application

to robust optimal sensor placement problems.

Perturbations are introduced in the typical tra�c demand consisting of commuters ex-

changing their housing locations, which aims at making the perturbations more realistic, since

it simulates the process of people moving from one place to another. Following that, an optimal

sensor placement solution is computed based not only on the current tra�c demand but also on

the perturbed one, so that the information gained is maximised. This procedure is analogous

to training machine learning algorithms where noise is added to the data in order to make the

trained entity more robust and increase its prediction or classi�cation accuracy. The concept

of robustness of tra�c planning can be applied not just to sensor placement problems but in

all city planning techniques, as it is a solid step towards solving the issue with the slower pace

of tra�c infrastructure changes compared to the tra�c demands by allowing the infrastructure

to change in a manner that is able to anticipate the future alterations of the tra�c demand.

1.5 A Holistic Complex System Optimization Approach

As part of this introduction the author would like to address the way of tackling problems

involving complex systems such as transportation. It might seem easier and practical to provide

solutions and proofs of concept on a local scale, i.e. neighbourhoods, intersections, highways

etc. It must be noted, however, that the changes at those locations although bene�cial locally

can be harmful for other parts of the system. Minimizing a non-convex function with several

local minima can be used as an intuitive analogy on a higher level of abstraction of such cases.

Considering only a portion of the parameter space and �nding the corresponding minimum

for this region, might seem optimal for the localized problem. Examining the whole domain,

however, might show that the localized solution is orders of magnitude worse than the actual

global minimum for the function. It is strongly believed that problems involving complex

systems should be studied on a global level and that the whole system should be modelled and

not be split in parts. The case study city Singapore that was chosen for this work is ideal for

this type of approach since it is a large city allowing for emergence of complexity and most

importantly an island city, which makes the whole system rather insulated and allows for its

analysis. In all studies proposed in this work the suggested methods, techniques, analysis and

optimization have been performed for the whole city thus allowing for a complete view of the

e�ects and for higher degree of certainty for the e�ciency of the described approaches.
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1.6 Thesis Structure

The structure of this thesis is designed so that the reader can follow a complete story of how and

why the research directions were chosen. In Chapter 2 the modelling and simulation approach

is described in detail, including the SEMSim tra�c assignment model from raw data, the

routing strategies, travel time computations, calibration and validation of the model. Chapter

3 performs and analysis of the mismatch between tra�c demand and tra�c infrastructure

and suggests heuristics for identifying super-sensitive locations and algorithms for computing

optimal number of lanes for each road. Chapter 4 demonstrates the paradox of the existence

of harmful roads in a city by performing a systematic search over the whole city of Singapore

and identifying every harmful road and quantifying its degree of harmfulness. Following an

interesting discovery about re-routing certain agents from congested roads, a novel system

optimal routing algorithm is described that overcomes a signi�cant portion of challenges current

state of the art algorithms are facing. In Chapter 5, the problem of optimally positioning

sensors in order to maximise the information about the routing choices of the commuters is

solved with an information theoretic approach, which also guarantees robustness against long

term tra�c variations of the sensor placement solution. Chapter 6 o�ers a summary of the

results, concluding remarks and future work directions.
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Chapter 2

Model and Simulation Approach

This chapter aims at setting the groundwork for all the experiments and studies that will

follow. It is based on the methodology parts of the author's contributions in [10, 11, 12, 13]. It

will describe the three main components needed for tra�c modelling and simulation, namely

the road network, the tra�c demand and the routing of agents (vehicles), and how they are

estimated from the available data. The agent generation used in this work is part of the

nano-scopic tra�c simulation platform SEMSim. Since hundreds of thousands of simulation

runs need to be evaluated for the various experiments in the next chapters, a macrosimulation

approach has been chosen for this thesis as it provides a fast computation of travel times from

the already designated routes. Furthermore, most of the experiments concentrate on improving

tra�c conditions during rush hour conditions and therefore the model was calibrated with real

data for such periods. Some experiments, however, make use of commuting patterns for a whole

day period, which can also be modelled in the proposed method by splitting the day into smaller

time segments and examining them separately.

2.1 Data and Methods

2.1.1 Overview

The road network used in this work is an unidirectional graph where nodes represent splitting

or merging points at which drivers can take decisions. An intersection can be represented as a

collection of nodes. Links represent road segments that connect two nodes, however, due to the

nature of the acquired data there are some links with just one successor and one predecessor. In

order for a vehicle to traverse between its origin and destination, a route needs to be calculated
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based on the provided graph. The paths of all commuters are calculated using a preference-

based routing approach. Every driver has a preference for path choice, based on speed, distance

or comfort, with assigned calibrated probabilities.

The travel time of every commuter is the sum the traverse times of all links included in

its route. Those delay times are calculated using a variation of the Bureau of Public Roads

(BPR) function [14]. Realistic tra�c is modelled by synthesizing a su�ciently large vehicle

population based on Origin-Destination data that has been collected for the simulated city.

Free �ow velocities vf , which are needed for the BPR function calculation, are extracted from

collected GPS tracking data. The further needed parameters αs and βs for the BPR function

are calibrated for di�erent types of roads depending on their speed limits using both GPS

tracking data and a travel time distribution of the population for the simulated time of day

period.

The case study in this work examines the city of Singapore with population of 5.4 mil-

lion people and around 1 million registered vehicles including taxis, delivery vans and public

transportation vehicles [15]. It is an island city, which further simpli�es the scenario since

the examined system is relatively closed. Publicly available data has been used to acquire the

unidirectional graph of Singapore, which comprises of 240, 000 links and 160, 000 nodes repre-

senting the road system of the city. The number of lanes, speed limit and length of every link

is available allowing the extraction of information about its capacity.

For the purposes of this model two separate data sets have been used. The �rst one is

the Household Interview Travel Survey (HITS) conducted in 2012 in the city of Singapore. It

studies commuting habits of the population. Information about the origin-destination pairs,

their temporal nature, and travel time distribution during rush hour periods is extracted from

it. The second data set consists of GPS trajectories of a 20, 000 vehicle �eet for the duration

of one month, providing information about recorded velocities at various locations in the city

during di�erent times of the day.

2.1.2 Data Sets

The two used data sets are described in terms of the underlying challenges, taken assumptions

and methods used to evaluate the degree of feasibility of the model, which is calibrated and

validated using those data sets.
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2.1.2.1 HITS

The �rst available data set is the Household Interview Travel Survey (HITS). It consists of

a signi�cantly large set of questions that aim at studying the travelling habits of Singapore's

population. The survey covers slightly more than 0.67% of the population, which amounts to

35715 participants. Each household representative has answered 108 questions about demo-

graphics, commuting preferences and motoring capabilities of his/her household. The questions

of interest for this work are the ones, which deal with the commuters' travel patterns. Every

participant was asked to describe his/her trips for the whole day prior to the day the survey

was taken. This information is described in the following format:

Origin Postal
Code

Destination
Postal Code

Time of Start
(hh:mm)

Duration
(mins)

Means of
Transportation

The origin and destination locations are speci�ed by a postal code. It should be noted that

Singapore has a 6 digit postal code system, which allows for every building to have a unique

postal code. Therefore the indicated origins and destinations can be pinned down with high

precision. The column titled �means of transportation� can include various travel model such

as private cars, taxi, public transportation, motorbike etc. Since the aim is to model the car

population in Singapore and its dynamics, the entries that are of interest are the ones, which

create tra�c. In other words, the entries that put an extra vehicle on the road should only be

examined. All surveyed people that use public transportation are excluded from the data set

since public transportation runs regardless of the number of people that use it. Moreover, the

entries of passengers in private cars are also excluded, in order not to count a vehicle multiple

times. The trips that are left after the �ltering process are used later for the agent generation

step.

Furthermore, information about user estimated or recalled duration of the trips, which is

also available, is used to create travel time distributions of the population, which is utilized in

the calibration process. It is important to note that the survey was conducted on Singaporean

residents from di�erent age groups, ethnicities, professions etc. It is, therefore, safe to assume

that the extracted data from the results is representative to an acceptable extent of the travel

patterns in the city.

2.1.2.2 QI Data

The second data set that used in this work is a GPS trajectory data from a commercial �eet

tracking system. The size of the �eet is roughly 20, 000 vehicles. It comprises mainly of goods
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vans, trucks and small lorries, however there is also a small portion of data included from car

leasing companies and personal trackers installed on private vehicles. The information about

trip duration, origins and destinations, therefore, cannot be used to extract travel patterns

reliably, since it is not representative for the commuting population but rather for the servicing

sector. It can be used, however, to estimate average speeds on the roads with a good coverage

of the whole network since, after all, the vehicles are sampling points of tra�c conditions at the

locations they visit. The available data is for the duration of two months in 2014. Each entry

has the following format:

Track id Latitude Longitude Heading Ground
speed

Time
stamp

The time di�erence between two consecutive sent signals (sampling period) from the same

vehicle can vary between 1 second and 30 minutes. Typically there are more data points when

a vehicle is turning and less sent messages (lower sampling rate) when the vehicle is going in

a straight line. Vehicles usually have lower speeds at turns and move faster when going in a

straight line. Therefore, there possibly exists a slight bias towards lower driving speeds being

recorded. In case of congestion, however, the vehicles typically go very slow in a straight line.

As a result of this, samples from congested roads may be smaller in number than expected

and therefore congestion may be underestimated when looking at such a data set. Since the

trackers send information 24 hours a day, there are time periods, throughout which the vehicles

are parked but still send out data. In order to exclude those samples all data points, where

there is no change in the position and velocity in the last 15 samples, are removed. The size of

the �nal working data set is around 120 million points. A map matching algorithm [16] is used

on every trajectory in order to assign every sample point to an actual link in the routing graph

of Singapore. All samples are then grouped according to links and time stamp in order to get

a picture of the velocity pro�le of the city throughout the day.

2.1.3 Model and Simulation

This next part of the methods description deal with the way agents are generated, the traf-

�c assignment of routes modelling, the design of the time delay function and the calibration

and validation of the parameters so that the generated tra�c is as realistic as the provided

data allows. This section describes closely the tra�c generation procedure in the nano-scopic

simulation SEMSim.
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2.1.3.1 Agent Generation

Most of the studies in this thesis aim at simulating tra�c conditions during rush hour. Between

the morning and evening typical commute times during weekdays, the morning tra�c peak is

preferred for analysis since the commuting intensity is more concentrated compared to evening

rush hour and the region of time during which it appears is more distinct as in the evening

people typically leave their working spaces at varying times and furthermore their destinations

might also vary depending on external conditions. The simulated fragment of the day needs to

be large enough in order to have enough data points from the HITS data to generate agents

realistically, however, the tra�c conditions during the time period have to be as homogeneous

as possible in order for the assumptions of the tra�c model to hold. As a result of these

considerations a one hour period from 7 to 8 is chosen, which is centred around the time when

most agents are starting their trips, which is around 7 : 30. Fig. 2.1 represents the distribution

of trip starts throughout the day. The selected period from the morning rush hour presents

both the peak of trips starts and a homogeneous trip generation rate, which is a predisposition

for static tra�c conditions [17].

Figure 2.1: Distribution of starting times of trips according to HITS data.

The total number of agents that need to be generated in order to have a quantitatively

good representation of the tra�c situation needs to be estimated as well. Assuming that HITS

data is representative of the portion of the population that uses taxis or personal vehicles to

commute it can be stated that,
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Car Users = Population× Car Users in HITS
Surveyed People in HITS

(2.1)

This provides a way to estimate the number of people in Singapore that commute using

a personal car or taxi (actively creating tra�c) by knowing the percentage of people in HITS

data that do so. The number of people who use cars and the total number of people in the

HITS data are extracted from the itineraries by examining only trips with start time in the

period 7− 8 a.m. This gives us roughly 309, 000 vehicles 1 that should be generated during the

examined time period.

After the total number of agents to be generated is computed, a way to assign each of them

an origin and destination should be designed. The description below describes the approach

used in SEMSim for OD assignment at the time this work has been conducted.

As described in Section 2.1.2.1 a list of trips that actively create tra�c on the roads has

been extracted from the HITS data set. Using this list a distribution of postal codes being

chosen as origins or destinations respectively is created, according to their intensities in the

actual itineraries. A Bayesian estimation approach is used with a prior uniform distribution

assumption. The process is as follows:

All existing postal codes in Singapore get an initial count of 1 and for every postal code

that appears in the �ltered trip data throughout the time period of interest the counter is

incremented by 1. Using those counters distributions for origin and destination postal codes are

constructed such that the probability of a postal code being chosen as an origin or destination

is proportional to its counter value. A full description of the tra�c generation procedure is

formalized in Algorithm 1

This OD matrix construction approach is chosen in order to homogenize the origins and

destinations of population extracted from the HITS data set in order to represent reasonably

well the tra�c demands of the city. As a result of this the origins and destinations of all agents

that need to be generated are determined. Next, the routes of all agents from their origins to

1This number does not take into consideration the expansion factors provided in the survey.
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destinations should be computed also included in Algorithm 1.
Data:
Gi Road network graph with weights according to preference i
PC Set of all postal codes (PC) in the city
Itineraries Set of all trip itineraries extracted from HITS
Agents Set of all agents to be generated
SampleRegion Itineraries → < Originregion,Destinationregion >
SamplePostalCode Region distribution → Postal code
SamplePreference Preference probabilities → Preference
ComputeRoute Origin PC × Destination PC × Graph → Route
BPR Link × Flow → Traverse time

Result: Set of traverse times along every link s - ts

Step 0: Set all postal origin and destination code counters to 1
foreach c ∈ PC do

co ← 1// set counter for PC c as origin to 1

cd ← 1// set counter for PC c as destination to 1

end
Step 1: Increase counter according to the intensity in the trip itinerary from HITS
foreach i ∈ Itineraries do

ioo ← ioo + 1// Increment the counter for PC the origin of trip i io as origin

id
d ← id

d
+ 1// Increment the counter for PC the destination of trip i id as destination

end
Step 2: Construct Distribution.
foreach l ∈ PC do

pol ←
lo∑

k∈PClo ko
// Calculate probability of code l picked as origin in its region

Do
lo ← Do

lo ∪ pol // Add the probability of code l to the distribution of the region

pdl ←
ld∑

k∈PCld kd
// Calculate probability of code l picked as destination in its

region

Dd
ld ← Dd

ld ∪ p
d
l // Add the probability of code l to the distribution of the region

end
Step 3: Assign origins and destination to agents and compute routes
foreach a ∈ Agents do

< Rao , Rad >← SampleRegion(Itineraries)// Sample origin and destination region

pair from itineraries

ao ← SamplePostalCode(Do
Ra

o
)// Sample a PC from region

ad ← SamplePostalCode(Dd
Ra

d
)// Sample a PC from region

P ← SamplePreference(pt, pd, pc)// Assign a routing preference

ar ← ComputeRoute(ao, ad, G
P )// Compute route of agent according to preference

end
Step 4: Calculate the �ows along every link and traverse times.
foreach a ∈ Agents do

route← ar// Get route of agent a

foreach s ∈ route do
fs ← fs + 1// Increment flow of link s

end
end
foreach s ∈ G do

ts ← BPR(s, fs)// Compute traverse time of link s

end
Algorithm 1: Tra�c Generation
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2.1.3.2 Routing

Since the aim of the modelling step is to represent reality as much as possible the routing

of the generated agents is preference-based. Some people prefer the shortest path, some the

fastest and some prefer comfort rather than speed or time. Furthermore, drivers seems to lack

a signi�cant degree of adaptation to changes in tra�c conditions.

The �ndings in [18] demonstrate that the routes, which drivers choose are predominantly

static. The study examines data from a considerable amount of GPS trackers through a period

of 18 months. The results show that drivers have strongly preferred routes that stay static,

in the sense that they do not adapt them to tra�c conditions changes in time. The routes

themselves have been compared with the optimal (informed of tra�c) routes and in more than

half of the cases they do not coincide. Furthermore, in 34% of the cases the chosen routine

routes are described as not even comparable to the optimal routes. This points out that people

do not always minimize time but possibly other factors such as distance and comfort as modelled

in our preference based routing. Furthermore, in [19] it was found that distance is the attribute

most likely to be minimized, indicating good spatial perception, while the same cannot be said

of journey times. This further highlights the need for a preference based routing approach.

In addition to that in [20] the authors found that one-third of the respondents, whose routing

habits are studied deviate more than 10% from minimum travel time routes. Approximately

60% of surveyed drivers stated that they would use the same route during peak and o�-peak

conditions, which demonstrates the lack of adaptability to tra�c information. In [21] it is shown

that although 50% of driver population listen to live tra�c reports 70% of them do not change

their routes. Those results are in sound agreement with the �ndings in [22] where it was found

that the path chosen on a trip was quite sensitive to the location of the origin and destination

and that the chosen path most often di�ered considerably from the shortest time path across

the network. Paths for trips made by the same driver were reported to be very consistent over

time.

There are two main messages that can be taken from the collection of results from data

collected describing routing behaviour. First, in a signi�cantly large portion of the cases, drivers

do not minimize their travelling time. Second, drivers will stick to their favoured route regardless

of the tra�c situation. For those reasons the preference based static routing was chosen over the

standard user equilibrium tra�c assignment. Furthermore the authors believe the assumption

that commuters have full knowledge of the tra�c conditions, which is fundamental to the user

equilibrium state, would not produce realistic results. The tra�c conditions simulated using the
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suggested preference based routing have been calibrated and validated with recorded data and

show to be in agreement with reality. User equilibrium computation takes signi�cantly more

time than preference based routing. Provided that hundreds of thousand of such assignments

have to be performed, at this point of time it is not feasible to utilize user equilibrium tra�c

assignment.

We therefore there are 3 distinct ways to calculate the routes. The various routing types are

realized by calculating the weights on the routing graph according to the respective preferences.

After that, a shortest path algorithm that minimizes the sum of the weights for a path between

origin and destination is used. The three types of de�ned weights are:

• wd = road length - minimizing distance

• wt =
road length
road speed

- minimizing time

• wc =
road length

road speed× number of lanes
- maximizing comfort

After the generation of every agent one of the three preferences is chosen at random with

probabilities pd, pt and pc respectively. The probability values are calibrated since the prefer-

ences of routing choices vary depending on the city of choice. When the type of preference is

chosen the corresponding route is calculated.

For each experiment run in this thesis a high performance cluster node was used. Each sim-

ulation ran on 32 threads on two Intel Xeon E5 (@ 2.60GHz) CPUs. The entire system has 192

GB of memory. A bi-directional Dijkstra implementation from the SEMSim tra�c nano-scopic

tra�c simulation is used for route computation[23]. Since routing requests can be paralleled

for each trip, the performance of the simulation bene�ted from the large number of threads.

As 3 di�erent metrics for weight calculation are used (distance, travel time and comfort), each

thread has to load all three routing graphs in order to ensure maximum performance.

2.1.3.3 Traverse Time Calculation

Some notation must be de�ned in order to proceed to describing the calculation of traverse

times. After calculating the routes of all agents, the number of vehicles that must pass through

every road segment can be extracted. The time needed to traverse a link ti for the link i is

calculated using an extended version of the Bureau of Public Roads (BPR) function:
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Variable Description

ti time it takes to traverse road segment i [s]

li length of road segment i [m]

vsf free �ow velocity on segment with speed limit s [m/s]

Fi �ow on segment i

wi number of lanes on road i

t simulation time from which the �ow is calculated [hours]

vmin minimum �ow velocity at link i at extreme congestion levels [m/s]

I(i) function that checks if there is an intersection at the end of link i

ds intersection added delay for roads with speed limit s [s]

αs parameter from the BPR function for roads with speed limit s

βs parameter from the BPR function for roads with speed limit s

S(i) number of successors of road segment i

P (i) number of predecessors of road segment i

Table 2.1: Notation Table for Traverse Time Calculation

ti = min

(
li
vsf

(
1 + αs

(
Fi

2000wit

)βs)
,
li

vmin

)
+ I(i)ds (2.2)

and

I(i) =

{
1 if S(i) + P (i) > 2

0 otherwise
(2.3)

2.1.3.4 Assumptions

There are four assumptions that are made regarding the tra�c model:

1. Agents are rational in the sense that they would choose the best possible route with

respect to their preferences.

2. There is no re-routing in the model.

3. In order to model the traverse time on every link using the capacity and the estimated

�ow, tra�c is assumed to be homogeneous. This may lead to a reduction of congestion

levels since homogeneous tra�c �ows are a best case scenario.

4. The minimum possible velocity at a link in extreme congestion is set to 5km/h. The BPR

function that is used to estimate traverse times is known not to represent realistically
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extremely congested situations as the traverse time exponentially goes to in�nity when

the �ow gets bigger. This is why a minimum possible speed is set for all links, which

means that in all cases agents keep moving forward with an average velocity of at least

5km/h.

Please note that some of the studies in this thesis use the classical BPR function without

the minimum velocity assumption and the added intersection timings for simplicity.

2.1.3.5 Extraction of Free Flow Speeds

All links are split according to their class into 3 categories with speed limits s = [50, 70, 90]

km/h. The free �ow velocities for the three classes of roads are extracted from the QI data

set, where the time variation of average velocities on all roads with the respective speed limits

is calculated as shown on Fig.2.2. The maximum average velocity for each group of roads

throughout the day is taken and set to be the free �ow velocity vsf .

(a) (b) (c)

Figure 2.2: Extraction of free �ow velocities for di�erent road categories. Fig. 2.2a),b) and

c) show average velocities throughout the day for roads with speed limit 50, 70 and 90 km/h

respectively. The red dotted lines are used to mark the maximum velocity, which are considered

to be also the free �ow velocity for the respective type of roads.

2.1.3.6 Calibration

In order to calibrate the parameters of the simulation, real world data from the HITS and QI

data sets is used. As a �rst step, the travel time distribution of commuters' trips who start

their journeys within the time period of interest is constructed. The aim of the calibration

process is to minimize the di�erence between this distribution and the one acquired from the
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Parameter Value in Simulation Value from Data

µt 2.99 2.90

σt 0.851 0.881

v50 [km/h] 22.4 22.8

v70 [km/h] 39.1 35.5

v90 [km/h] 64.3 59.3

Table 2.2: Comparison between simulation and real world data

simulation. Next, average velocities for all road classes are extracted from the QI data. Once

again, the di�erence between those velocities and the ones calculated in the simulation should

be minimized. This multi-objective optimization problem is solved using grid search.

The �rst parameters to be calibrated are the α and β parameters of the BPR function.

Their values can vary widely depending on the road conditions and drivers' behaviour, which is

why they have to be calibrated for a speci�c population and infrastructure pro�le. The values

that have been acquired after the calibration step fall well into the range of accepted values in

literature [24].

The next set of parameters that are calibrated are the preference probabilities. The values

mentioned in [25] are used as a starting point. The �nal calibrated values show that each of

the preferences is chosen with roughly an equal probability of one third.

The last set of parameters are the delays due to intersections for the three road classes.

The calibrated values show that the most time on average is lost at major road intersections

(usually due to tra�c lights), while small roads and highways do not exhibit such large delays.

The calibrated parameters and their respective values are noted in Table 2.3. On Fig. 2.3

the comparison between real and simulation data is presented. The speci�c values are also

shown in Table 2.2. It can be observed the there is a slight tendency for lower velocities in

results from the QI data set. This, as already mentioned in the data set description, may be

due to the sampling algorithm employed in order to collect the data and its tendency to exhibit

a higher sampling rate when vehicles are turning and therefore have lower velocities.

2.1.3.7 Validation

In order to validate the results of the calibration step, the three most congested road segments

according to the simulation are chosen. The velocity on those segments, which is calculated

using the traverse function either reaches the critical preset minimum of 5 km/h or is very
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Parameter Calibrated Value

α50 0.8

β50 2

α70 1

β70 3

α90 1.2

β90 5

pd 0.31

pt 0.33

pc 0.36

d50 [s] 1

d70 [s] 4

d90 [s] 1

Table 2.3: Calibrated Parameters and their values

close. All three examined roads have a speed limit of 90 km/h. All samples of vehicles that

have traversed those roads between 7 and 8 am on weekdays are extracted from the QI data.

Their velocity pro�le is shown on Fig. 2.4. It can be observed that in reality as well as according

to the simulation results those road segments are experiencing heavy congestion and low average

speeds.

It should be noted that in cases of severe congestion vehicles are mostly still, which results

in a decrease in the number of samples for such periods of time. Therefore, it is possible that

the velocity pro�les of the examined road segments in reality might show even higher degree of

congestion. The graph demonstrates that all three road segments, which are severely congested

in the simulation seem to be congested in reality as well according to the GPS tracking data,

which means that the tra�c assignment strategy and traverse time function have provided

appropriate approximations of reality for the desired level of detail.

Furthermore, in Fig.2.5 a congestion map produced by the simulation is presented and

compared to typical tra�c pictures from Google Maps for the desired period of time. Since this

service presents tra�c averaged over 10 minutes intervals, three di�erent pictures are shown

from the beginning, middle and the end of the examined period. The congestion map represents

closely what is provided by the real data estimations of the Google Maps service, which further

demonstrates that the applied simulation approach produces results which are not far from

reality.
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(a) (b)

Figure 2.3: Outcome of the calibration process. On Fig.2.3a) a log normal distribution can be

observed with the parameters extracted from the HITS data compared to a log normal distribution

with the parameters extracted from the simulation. Fig. 2.3b) depicts a comparison of the average

speeds of the three groups of roads extracted from QI data and from the simulation.

(a) (b) (c)

Figure 2.4: Velocity pro�le according to QI data of the most congested links from simulation

results. The velocity samples are taken for the period between 7 and 8 a.m. for weekdays.
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Chapter 3

Identi�cation of Mismatched

Sensitive Road Network Locations

and E�ect of Optimal Infrastructure

Design on Tra�c Performance

3.1 Overview

This chapter studies the interactions between two of the three main tra�c de�ning components,

namely the tra�c demand and road network. It presents analysis tools in the form of de�ned

measures to detect and identify critical locations with high impact on tra�c and sensitivity to

changes. The �rst part of the chapter combines the author's contributions in [12, 11].

The mutually induced adaptations of tra�c demand and infrastructure are present in the

evolution dynamics of every large city. As a result of those processes, roads and intersections

that, at the time of their construction have been steered by current tra�c demands, can become

mismatched when those demands change in time. This chapter will deal with the identi�cation

of locations that exhibit such suboptimal tra�c conditions and the analysis of the e�ects of

those mismatches on the overall commuting dynamics.

The generated tra�c from the model described in Chapter 2 enables the calculation of

turning probabilities on every node of the graph, which provide an overview of the di�erences

between tra�c demand characteristics and planned physical roads' capabilities.

A set of measures, which quantify the mismatch between demand and infrastructure is
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de�ned. Di�erent variations of the measures can be used to estimate deviations on single

intersections and on a city level. Furthermore, normalised measures have been designed in

order to enable the comparison between di�erent cities. The objective of the de�ned metrics

is the quanti�cation of mismatches ensuring prioritization of possible changes that need to be

applied to the road infrastructure so that it supplies adequate support for the population.

After a spatial and temporal picture of the demand-infrastructure mismatch is constructed,

a redistribution of turning lanes on the most problematic intersections is performed in order to

verify that the measures indeed locate high impact locations that are sensitive to changes. It

must be noted that the redistribution consists of changing the number of lanes corresponding to

di�erent turning options at an examined node, which means that no extra lanes should be built.

They should rather be shifted from one road segment successor to another. The analysis of the

changes in population travel time as a result of the applied infrastructure changes indicates

that a signi�cant amount of congestion reduction can be achieved especially during rush hour

periods. Furthermore, it has been observed that changes of the same magnitude at various

locations can have signi�cantly di�erent implications on overall tra�c conditions. High impact

locations, labeled as super-sensitive, have been studied and a metric for their detection has been

identi�ed. Such locations are important for transportation systems, since they can be utilised

as steering tools by tra�c o�cials.

A more general optimization problem for determining the optimal lane distribution on the

already existing road network has been formulated and solved. The main constraint of the

problem states that the network topology should not be altered in the sense of construction of

new roads or the removal of existing ones. Instead, the road capacities can be varied, in the

sense of the number of lanes, under the constraint that the total number of lane meters in the

network should be kept constant. The results show that the optimal lane distribution would

reduce by 36% the total travel time for the population, when shortest time routes are chosen by

the drivers. Although, impractical in the sense that such alterations to the whole road network

cannot be realistically performed, the mathematical distance between the current road network

and the one with optimal lane distribution, can be used as a global measure of the mismatch

between road infrastructure and the tra�c demand.

Fixing such type of mismatches can and will increase e�ciency of the transportation system,

however, the problem of the time-varying demand on a daily basis is harder to tackle. As

the complexity of tra�c conditions in large cities increases it becomes important and highly

desirable to be able to analyse adequately the temporal nature of such systems. Due to the
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high degree of heterogeneity of tra�c demand and road network topology in space [26] and

time (rush hour conditions), it becomes plausible that highly dynamical �hot spots� exist in a

network, which may present a challenge for city planning and conventional intersection control

methods.

An additional contribution of this work is the identi�cation of intersections, which exhibit

dynamically changing demand conditions in time and to quantify the level of volatility at those

locations. The measure, which is de�ned using turning probabilities variation in time is called

dynamic factor of an intersection. Highly dynamic intersections are identi�ed and observed,

thus demonstrating that such locations in fact exist and further contribute to the heterogeneous

dynamic pro�le of the road network. The immediate application of this measure is that it points

to intersections that require specialised control such as smart tra�c lights or other intelligent

transportation system techniques.

3.2 Introduction

3.2.1 Background and Motivation

Tra�c demand and road network topology are two of the three main factors that frame to a

large extent, the commuting picture in a city. They are strongly connected and a change in one

of them will inevitably a�ect the other. First, consider the example where the road network is

changed by building a new highway or extending an already existing road. The commuters will

adapt to this change and make use of the newly built road while reducing the tra�c on others.

Naturally, entrepreneurs might also construct new business or industrial centres in proximity

to the road, attracted by its high throughput thus shifting the tra�c demand by adding an

external attractor factor. In a similar fashion, although at a relatively slower pace, in case of

an overly large demand in a certain area action might be taken to change the road network and

satisfy those demands and consequently reduce congestion.

In order to formalise the description of the �rst factor, the tra�c demand of the population,

transportation engineers and o�cials usually use the Origin Destination (OD) Matrix. It is

used to present information about the typical origins, destinations and trip starting times of

the commuters in a structured way. This also allows for its mathematical integration in various

transportation models. The OD matrix answers the questions from where, to where and when

does the city population want to commute. There are two main distinct ways to estimate the

real origin destination pro�le of the population. The �rst one is by surveying a representative
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part of the population about their tra�c habits and then scaling the results for the whole

population similarly to what has been done with the HITS data set described in Chapter 2.

The second methodology makes use of information about tra�c �ows acquired from sensors on

various road segments. Given the tra�c �ows, there are techniques to estimate the OD pairs

and their intensities as in [27].

The second tra�c determining factor is the road infrastructure, which can be perceived as

the medium enabling tra�c demands to be met. The topology of the network is a result of the

evolution of the city in time. Recently, it has become relatively easy to acquire a connected

road network of almost every city. It is important to note, however, that some vital attributes

of a network such as the number of lanes for every road segment are troublesome to obtain.

As the reader might recall, the number of lanes on a road is used for the calculation of road

capacity, which is part of the delay function calculation. The absence of easily accessible lane

information, therefore might be the reason why until now there is no full scale analysis of overall

network capacity performance in big cities described in literature.

3.2.2 Demand-Infrastructure Mismatch

As a result of the constant interaction between demand and infrastructure, the road network

changes incrementally in time. Although such an incremental change is always intended in

the direction of improving tra�c conditions, it does not guarantee optimality. It is possible

that some already constructed roads turn out not to meet the demands any more or it is even

possible that those demands no longer exist. In other words, some roads may become obsolete

as a result of better alternatives appearing with time and changing demands. This ever altering

nature of network topology-tra�c demand dynamics creates the need of a measure that can

evaluate whether tra�c demands correspond to the potential the network has and vice versa.

At this point the reader's attention should be brought to the importance of the perfect

match between the road network capacity and the demand. Intuitively, when the capacity is

lower than demand, the undesired situation of tra�c congestion propagating through the whole

network is reached. Counter-intuitively, however, in the case of much higher capacity than

demand, congestion might increase as well, because of the higher willingness of commuters to

travel due to improved tra�c conditions [28]. This induces more journeys, which not only slow

down overall tra�c but also increase the harmful e�ects to the environment produced by fuel

emissions.
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Therefore, choosing just the right capacity of every road should be considered as the proper

way to ensure the smooth operation of a transportation system. A highly desirable trait of such

a system is that tra�c is spread onto the network in sound agreement with the network capacity

and its topology. As intersections are the places in a network where drivers make decisions,

which de�ne the tra�c conditions, it might be bene�cial to evaluate the deviation pro�le of the

network. This is done by examining the deviations at the decision points as shown in Fig. 3.1

and studying their temporal and spatial distribution.

Figure 3.1: A simplistic example showing a properly performing intersection in agreement with

the tra�c demand on top and an intersection where the infrastructure is signi�cantly deviating

from the tra�c demand as a result of construction of new business or housing areas. In order to

�x the mismatch, the roads corresponding to left and right turns should be assigned more lanes

and the road corresponding to the vehicles going straight should have a reduced number of lanes.

For the sake of simplicity of the visualisation it is assumed that there is no other incoming tra�c

for the intersection.

3.2.3 Temporal Variation of Demand and Dynamic Intersections

It might sometimes be impossible to match the capacity of a road precisely to the tra�c

demands because of the temporal �uctuations of tra�c conditions throughout the day and the

static nature of the road network. Dynamically changing demands over parts of the tra�c
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infrastructure present challenges to city planners and force them to �nd various solutions for

their optimal control by planning new infrastructure developments [29], control strategies [30],

novel policies [31], etc.

Major city intersections are typically controlled by tra�c lights. Highly congested systems

might also bene�t from the deployment of smart tra�c lights [32], that adapt in real time

to changes in the tra�c system and strive to ensure smooth �ow of tra�c. Although, there

are numerous discussed strategies for tra�c light control, there is a fundamental element that

is not present. How can the locations where those smart tra�c lights should be installed be

identi�ed? The installation costs of such type of technology are not negligible and therefore

it is not practical to simply deploy one at every intersection. Furthermore, some intersections

exhibit static behaviour throughout the day and in such cases a static frequency controlled

tra�c light system is su�cient. There is, however, a need for a method that identi�es the

intersections that have the biggest demand for adaptive control due to their rapidly changing

dynamics.

Although daily patterns do not seem to vary excessively, as observed in [33], morning and

evening rush hour tra�c patterns might exhibit signi�cant qualitative di�erences. This is due

to the fact that the OD pairs are reversed when people return home compared to when they go

to work. The locations where tra�c merges, therefore become locations where tra�c is being

split later on. In such cases a universal timing solution might just be inapplicable and even

lead to further congestion as shown in Fig. 3.2. This problem does not occur only when the

dynamics of the intersection have a bimodal nature due to morning and evening conditions.

It might be the case that even higher degrees of variations and abrupt changes in the drivers

demands at an intersection occur during the day as a result of the complexity of the system.

As it can be seen in Fig. 3.2, even if there is a successfully implemented dynamic control

over the �ow of vehicles, the varying volumes of cars taking di�erent turns at intersections will

require a changing capacity of the respective roads. The number of lanes and therefore the

capacity of roads is, however, strictly �xed. Consequentially, the number of lanes must also be

optimized according to the tra�c demand. If the worst case scenario is always considered, roads

will be planned with too many lanes and space will not be utilised optimally. Furthermore,

the construction of such broad roads might not be possible at all times. If the average case

is considered, also referred to as daily optimal, due to the extreme tra�c variability at the

intersection, at some point the �ow will have a radically higher value than the capacity of the

road, leading to an avalanche of congestions that will spread throughout the whole network.
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Figure 3.2: Diagram describing a simplistic example of change in demand depending on the

time of day. Next to every road a �ow vs time chart can be observed. In this example during

the morning, most of the agents make a right turn, while in the evening most of the agents would

make a left turn. This creates a dynamic intersection that experiences varying tra�c demand

throughout the day. As it can be seen after the roads merge again there is no variation. A static

optimal control strategy would be to have equal amount of cars go to the left and to the right

throughout the whole day. In this case congestions will occur for the cars making a right turn in

the morning and a left turn in the evening.
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In summary, highly dynamic intersection can can be di�cult to resolve with just tra�c

lights and proper road width planning and seem like a source of imminent problems. It is,

therefore, desirable that such locations are to be avoided in the �rst place by careful road

structure planning. The existence of such highly dynamic intersections implies an improper

network utilisation. Other methods can be considered to �x such locations if they already exist

by either using tra�c lights at other intersections to redirect �ows or construction of new roads

in order to relax the variability.

3.2.4 Inter-system Comparisons

Dealing with complex social systems requires that the analysed entity is considered in its whole

rather than examined only at speci�c locations. In the case of transportation systems, �xing

or optimising one intersection with dynamic behaviour might produce another one at a distant

intersection due to the high degree of interconnectedness that tra�c network exhibit. Therefore

evaluating the dynamic pro�le of all network intersections and comparing it to this of other

networks can give precious insight into their dynamics and the severity of their problems.

As already underlined, volatility and very dynamic and rapid changes in tra�c demand at

intersections makes their control challenging. It, is , therefore, it is desirable to have less such

intersection in a city in order to reduce congestion. In this line of thought, the level of such

dynamics can be used as an optimisation heuristic that needs to be minimised so that the

network utilisation e�ciency is improved.

3.2.5 Information Synthesis

Existing tra�c measures are governed mostly by demand and routing choice descriptors such

as link �ow, link average speed, etc. Measures connected to the topology of the infrastructure

are centrality, heterogeneity, entropy. They are, however, de�ned in a purely topological sense

[34]. It is strongly believed that both information contained in the OD matrix and network

topology should be employed in order to come up with a more useful analysis measures of tra�c

networks.

The main contributions of this chapter are:

• De�nition of a measure of intersection capacity deviation from demanded capacities ex-

tracted from turning option probabilities

• De�nition of an overall network utilisation factor
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• Case study with real world data for the city of Singapore identifying problematic inter-

sections and providing spatial and temporal analysis of road network utilisation.

• Numerical study evaluating the e�ects of lane redistribution approach at nodes on popu-

lation travel time.

• Correlation analysis for �nding the best measure for identifying super-sensitive locations

in the network.

• Optimization problem de�nition and solution for �nding the optimal lane distribution for

a whole network under constant road length constraints.

• De�nition of the dynamic factor measure for a node in a tra�c network used to identify

dynamic intersections.

• De�nition of the dynamic factor of a network in order to compare it to other networks.

• Analysis of heterogeneity of dynamic factor measures for a real world system.

3.3 Literature Review

The type of intersections, which attract most of the attention of researchers and city planners,

are referred to as �critical� and are identi�ed by their vehicle throughput. Naturally an inter-

section is critical if the �ow of drivers through it is high as discussed in [35] and [36], where

tra�c management strategies for such locations are also discussed. A critical tra�c volume

has been de�ned in [37] in order to decide between deploying a tra�c light or leaving an in-

tersection un-signalised assuming all approaching tra�c streams have the same prioritization.

When there is a highly dynamical behaviour on a system level, which is typical for large cities,

tra�c conditions may further bene�t from a control system based on self-organizing intersection

control as described in [38].

Modelling such type of intersections has been studied for more than thirty years. In [39]

a model based on queue dynamics as a function of demands and intersection characteristics is

described and a real time control strategy is tested. Kirchho�'s law for tra�c �ows at nodes

are utilised to model intersection performance in [40]. Un-signalised intersections have also

been modelled in [41] [42], where the tra�c �ows at non-signalised T-intersections in order

are described using Petri nets. The study described in [43] performs a statistical analysis on

critical intersections using data from various congested intersections in Shanghai during peak
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hour. The study shows that the characteristics of intersections varies evidently from site to

site. It must be pointed that most of the existing literature models single intersections, which

as already discussed is not good practice when studying a complex system.

In order to be able to plan or simulate an intersections one may choose to evaluate the

turning probabilities of the tra�c participants. This has been done in [44], where a road density

prediction method is described using the turning probabilities extracted from data. It should

be noted that most methods found in literature are concerned with analysing and simulating

intersections for rush hour conditions, while neglecting the temporal nature of tra�c, the change

that the �ows might exhibit throughout the day and their e�ects. Most of the studies in this

chapter also deal with rush hour conditions, however, the dynamic factor measure captures the

temporal nature of tra�c dynamics throughout a full day.

Modelling tra�c volumes in a city, which indirectly can be used to determine �ows at

intersections, has been performed in [45] by using a Gaussian mixtures approach. A crucial

network performance determining factor is how much the tra�c demand on it varies in time.

In [46] the variations of tra�c on a daily and weekly scale are examined using cluster analysis

techniques.

Road criticality can also be viewed as a combination of three factors: road �ow and capacity,

which looks at V/C ratio, path properties, examining estimation of path travel time, and

network centrality, examining the percentage of OD pairs that use a certain road. Those

components are encompassed in [47], where the authors demonstrate using tra�c indicators

that importance of road segments is mainly determined by the network structure and the �ows.

The majority of methods dealing with intersection analysis, however, focus mainly on the �ows,

and all approaches are solely de�ned by examining the tra�c demands. An alternative or

at least a complementary way of studying critical intersections in a network is to analyse it

on a topological level. There are purely graphical measures de�ned in order to point out to

�interesting� roads or intersections in a network.

In [48] critical links are identi�ed using a network robustness index based on link �ows, link

capacity and network topology. In [49] the most vital links or nodes are de�ned as the �rst n

links or nodes whose removal will lead to the biggest increase in average shortest path distance.

While in [50] the importance of roads is simply de�ned to be proportional to the tra�c load

on them. In [51] three measures of centrality for a street are suggested: closeness, betweenness

and straightness and their correlation to various economic activities in surrounding areas are

examined.
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Furthermore, the network itself can have some properties that are usually based on the sys-

tem's structure rather than on local properties of its elements. In [52] the development of the

Swiss road and railway network during the second half of the 20-th century is investigated. It

is observed that the spatial structure of transportation networks is very speci�c, which makes

it hard to analyse using general methods developed for complex networks. In [53] existing mea-

sures of heterogeneity, connectivity, accessibility, and interconnectivity are reviewed and three

supplemental measures are suggested and described, including measures of entropy, connection

patterns, and continuity. Entropy is used in order to determine the heterogeneity of the network

regarding a chosen parameter.

Please note that, the topology of a network, itself, holds an enormous amount of informa-

tion. Using it, insights into the structure of the roads can be gained. in [54] it is shown that

transportation networks are organized hierarchically. In [55] the e�ciency and accessibility in

Paris and London based on the network connectedness is measured. Furthermore, topology

information can be utilized in order to reconstruct agent's trajectories from GPS signals as in

[56].

A family of graph measures based on entropy are summarized in [34]. It consists of measures

from chemical structural analysis and social network analysis. The survey examines the overall

connectedness of graphs such as the topological information content and the entropy of the

weights of the edges. Furthermore, a measure of local features' such as entropy of nodes is

de�ned as well, based on length of links connected to it. The centrality measure of links is

also de�ned. Most measures deal with evaluating the information content in the graph itself.

It is interesting to note that, those measures are highly uncorrelated, which means that they

capture di�erent aspects of graphs, so the proper measure for each speci�c application should

be chosen with great care.

Road networks are subject to an incremental process of evolution. As societies change and

cities grow the tra�c demands and the road network itself changes with a high degree of self-

organization and spontaneous organization of hierarchies occurs. This phenomenon observed

in [57] leads to imperfections of the once planned infrastructure as the tra�c demands have

changed. Temporal variations in the relative importance of parts of the network have been

further observed as well. In [58] the evolution over 200 years of a North Milan road network is

followed. Two main processes are described in order to explain the collected observations. The

�rst one is the densi�cation of the road network around the main roads and the second is the

emergence of new roads as a results of urbanisation. The interconnectedness between those two
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processes is eminent and has been already mentioned in the introduction as the adaptation of

the road network to the changes in the demand and vice versa. It can be, therefore, concluded

that every location of the network which has been optimally planned for the time it has been

constructed will probably become suboptimal as a result of changes in both the travel patterns

and the network itself.

In conclusion, it is to be expected that there are mismatched locations naturally occurring

in cities with dynamic tra�c conditions due to either qualitatively di�erent tra�c throughout

the day or the faster pace of evolution of tra�c demand compared to the infrastructure. In

order to identify such locations currently there are separate measures for criticality in terms of

demand and topology, while a measure, which combines the two has not been developed.

3.4 De�ning the Measure of Deviation Between Network

Capacity and Tra�c Demand and Dynamic Factor of

Nodes

In this section the measure of deviation between node capacity and tra�c demand is intro-

duced. A mathematical formulation of the deviation of a node and an overall deviation of a

transportation network is de�ned and justi�ed. Furthermore, an absolute measure of mismatch

of an intersection that is derived from the number of lanes that need to be redistributed is

de�ned. Along with the deviation and mismatch measures, the dynamic factor of a node is

introduced.

Table 3.1 introduces the notation that will be used:

3.4.1 Calculation of Deviation and Mismatch Measures

The deviation of a node and the degree of mismatch between the network and the tra�c demand

are calculated in the following steps:

1. Calculate turning probabilities:

Let Nij be the number of cars that pass through the i-th node and after that through the

j-th node and let Pl be the path of agent l. Let the function f lij be de�ned as:

fij(Pl) =

{
1 if nodes ij are in Pl
0 otherwise

(3.1)

Then:
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Variable Description

Nij number of vehicles that moves from node i to node j for the whole day

Pl the path of the l-th agent

f lij function that is 1 if the sequence of nodes ij is in the path of agent l and 0

otherwise

A a set containing all the agents

ptij probability that an agent that is at node i will continue on to node j during

time period t

qtij turning probability that would be a perfect match for the infrastructure

Si set of nodes that are successors to node i

N t
ij number of cars that pass sequentially through node i and j during time

period t

T number of regions the day is split into

L length of a time period

R number of road segments in the network

wik number of lanes on the road between nodes i and k

rik ideal number of lanes between nodes i and k based on turning probabilities

mi absolute mismatch between number of lanes at an intersection i

∆t
ij deviation measure of road from node i to node j during time period t

∆t
i deviation measure of node i during time period t

∆ij daily deviation measure of road from node i to node j

∆i daily deviation measure of node i

∆̂t
ij corrected deviation measure of road from node i to node j during time period

t

∆̂t
i corrected deviation measure of node i during time period t

∆̂ij corrected daily deviation measure of road from node i to node j

∆̂i corrected daily deviation measure of node i

∆̂t corrected overall deviation measure of whole network for time period t

∆̂ corrected overall deviation measure of whole network

Cij capacity of road from node i to road j per hour

Gtij congestion factor for road from node i to node j for time period t

cv coe�cient of variation

Vij variation of tra�c on the road segment between nodes i and j

Vi variation of tra�c at node i

Dij dynamic factor on road segment between nodes i and j

Di dynamic factor at node i

Ci capacity of a node

wi average number of lanes associated with a node

D̂ij normalised dynamic factor on road segment between nodes i and j

D̂i normalised dynamic factor at node i

M dynamic factor of a city

Table 3.1: Notation used to derive deviation, mismatch and dynamic factor measures
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Nij =

|A|∑
l=1

f lij(Pl) (3.2)

where |A| is the number of agents.

Let ptij be the probability that an agent at node i continues to node j during time period

t. Let Si be the set of nodes that are successors of node i. Then the turning probability

is de�ned as the ratio between the number of drivers that pass through node i and then

proceed to node j and the total number of vehicles that pass through node i :

ptij =
N t
ij∑

k∈Si
N t
ik

(3.3)

2. Calculate intersection demand deviation value:

The objective of this measure is to quantify the degree to which the road infrastructure

at the intersection matches the tra�c demand. The turning probabilities at every inter-

section for every period of the day have already been de�ned. The metric of the degree

of discrepancy between the demand and actual roads is computed by comparing the ideal

ratios between the roads' capacities computed from the turning probabilities and the

physical number of lanes of the respective roads.

Let us �rst calculate what would be the best demand distribution such that the existing

road width ratios optimally ful�l the tra�c needs. The ideal turning probability qij from

node i onto a certain successor road ij can be calculated by dividing the width (number

of lanes) of the successor road by the total width of all possible successors as shown in

Equation 3.5. It must be noted that, the optimal turning probabilities can only assume

values of fractions of integers, since the number of lanes wij is an integer.

The next step is to take the di�erence between the real turning probability and the ideal

turning probability with respect to the already existing road infrastructure as shown in

Equation 3.6. Please note that, it is possible that the deviation value is non-zero even

if the distribution of lanes on the successor roads is optimal due to the integer fractions

that constitute the ideal turning probability, see Fig.3.3. Due to this fact, an absolute

mismatch measure mi is also de�ned in Equation 3.4, which states how many lanes must

be redistributed within an intersection in order to achieve optimal performance. This

measure computed by �nding the di�erence between the actual number of lanes of all
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successors wij and the ideal number rik, where the total number of lanes coming out of

the intersection is kept constant.

mi =

∑
k∈Si

‖wik − rik‖
2

(3.4)

Finally, in order to calculate the intersection demand deviation value ∆t
i the average of

all possible successors' deviations is taken as shown in Equation 3.7.

qtij =
wij∑
k∈Si

wik
(3.5)

∆t
ij =

∥∥ptij − qtij∥∥ (3.6)

∆t
i =

∑
k∈Si

∆t
ik

‖Si‖
(3.7)

3. Weigh the deviation by the temporal �ow pro�le of the node:

The time dependent deviation measures ∆t
ij and ∆t

i can be utilised to evaluate the degree

of change of the turning probabilities throughout the day and consequentially optimal lane

ratios. In order to make the analysis more complete, a deviation value that represents the

whole day rather than just one time period will be de�ned as well.

An averaging technique that turns the time period observations into a representative met-

ric for the whole day is, therefore, needed. Naturally, the values during some periods are

more important than others since a mismatch would be more harmful during rush hours.

Therefore, this performance is measured by the �ow of vehicles through the respective

road segment ij relative to the overall �ow for the whole day. As shown in Equation 3.8

the deviation of the turn for period t is simply weighed by the ratio between the vehi-

cles that have passed through it during this time period and the whole �ow throughout

the day. In a similar fashion as in Equation 3.7 the total daily deviation of the node is

calculated by averaging the deviations of all possible turns as shown in Equation 3.9.

∆ij =

〈
∆t
ij

N t
ij

T∑
k=1

Nk
ij

〉
t

(3.8)

∆i =

∑
k∈Si

∆ik

‖Si‖
(3.9)
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Figure 3.3: Visualisation of the di�erence between the deviation measure and the absolute

mismatch measure. In a) a perfect agreement between the turning probabilities and the number

of lanes is observed, since both ratios are 2 : 1. In b), however the ratio of the turning probabilities

is 3 : 1, while the lane ratio is still 2 : 1. In this case the deviation measure ∆i will be non-zero.

The absolute mismatch measure mi, however will still be 0 since given those turning probabilities

and the total number of lanes to be distributed, which is 3, the optimal ratio of lanes is still 2 : 1.

In c) the absolute mismatch measure is non-zero. The turning probabilities are in ratio 1 : 3,

however, the lanes are in ratio 2 : 1. In this case one lane should be moved from the successor road

on the right to the successor road on the left as shown in d). The absolute mismatch measure is

therefore mi = 1.
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4. Extension for computation of overall deviation of the network infrastructure

from tra�c demand

In order to extend the presented methodology to compute a measure that represents the

mismatch between the whole network infrastructure and the tra�c demand, the already

de�ned measures should be normalised in a way that enables comparison among distinct

cities. The term that, in practice, needs normalisation is the number of vehicles that

pass through every road segment ij. This is because it will obviously be of di�erent

magnitude in every examined city. In order to be able to compare one city to another

a more global measure must be used. It must take into consideration the performance

of a road rather than the absolute value of its throughput. The usage of the congestion

factor measure that constitutes of the �ow through the node over its capacity is proposed

as shown in equation 3.11. The capacity of a segment ij, Cij is de�ned as the number of

lanes multiplied by a standard number of vehicles that maximize the throughput of the

road segment per lane per hour and is usually set to 2000 [59].

Cij = 2000Lwij (3.10)

Gtij =
N t
ij

Cij
=

N t
ij

2000Lwij
(3.11)

Furthermore, in order to get a better picture of the overall road network deviation from

the tra�c demand, the individual intersection deviation values should be weighed by the

already computed congestion factor. In this way, if an intersection has a high deviation

value and is congested, it will receive a higher weight than an intersection that has the

same degree of deviation but the tra�c conditions on it are still on a satisfactory level.

Also consider the example where an intersection has a very high �ow of vehicles, but

due to its high capacity, the congestion factor is still low and another intersection has a

much lower �ow, but is experiencing congestion. Assuming equivalent deviation measures,

the second intersection will get a higher normalized deviation value. From one side, the

deviation at the �rst intersection a�ects more people, however, from another side the

e�ect is not as strong as it is for the congested intersection with smaller �ow. The choice

of measure to use should, therefore, be made with great care depending on the problem

at hand. The congestion factor is included as a correction in all the already computed

node deviations expressions as shown in Equations 3.15 to 3.17
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tmax = max
t
Gtij (3.12)

Gij = Gtmax
ij (3.13)

∆̂t
ij = ∆t

ijG
t
ij (3.14)

∆̂ij = ∆ijGij (3.15)

∆̂t
i =

∑
k∈Si

∆̂t
ik

‖Si‖
(3.16)

∆̂i =

∑
k∈Si

∆̂ik

‖Si‖
(3.17)

After the measures are normalised, the overall deviations of the network can be computed.

The generalized mean with power factor of α = 2 is used over all ∆̂i as in equation 3.19

and 3.18. The generalised or power mean is used in order to put an emphasis on the

extreme values in the distributions that exhibit higher deviations. The deviation value

for the whole city is also calculated for every time period separately in order to study the

dynamics of the deviation value throughout the day.

∆̂t =

(
1

N

N∑
i=1

(
∆̂t
i

)α) 1

α
(3.18)

∆̂ =

(
1

N

N∑
i=1

(
∆̂i

)α) 1

α
(3.19)

3.4.2 Calculating the Dynamic Factor of a Node

A node is de�ned as dynamic if many vehicles pass through it and if the choices that drivers

make at this node vary abruptly in time. In order to measure the variation of commuter choices

the rate of change of turning probabilities of agents in time should be examined. After that

the rate of change is weighed with the �ow through it. In this way it can be measured how big

and fast are the variations at the nodes are combined with how central their role in the tra�c

is. The following steps are taken to calculate the dynamic factor of a node and of a whole

transportation system. The dynamic factor calculation follows closely the logic used for the

deviation measure calculation. As a prerequisite, the turning probabilities should be calculated

following the de�nitions described in step 1. The rest of the procedure is described in the

following points.
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1. Calculate the variation of turning probabilities at nodes:

The variation of the turning probabilities is calculated using a slowness measure similar to

[60]. The derivative of the probability over time is examined. High values of the absolute

value of this derivative implies high degree of variation of the turning probabilities and

vice versa. This can be seen in Equation 3.20. Note that the term 〈〉t is used to depict

averaging over t.

It is interesting to note that the derivative was chosen to determine the degree of variation

rather the variance, which would be the more natural choice. This is due to the temporal

properties of the used turning probabilities. The change of turning probabilities in time is

observed and the sequence in which these alterations occur has a determining e�ect over

tra�c conditions. Therefore, a measure that takes into account this factor such as com-

puting the derivative is preferred over the variance, which is intrinsically order invariant.

Furthermore, the object of interest is the dynamics of the changes of behaviour at the

nodes rather than their deviation, and naturally the changes in a time series are observed

by examining their derivatives.

Since nodes are being examined, all the successors of a node should be taken into consid-

eration in order to evaluate the variation of the node itself. Therefore, the variation of

a node is de�ned as the average of the variations of the turning probabilities associated

with it as shown in equation 3.21. An average is used instead of a simple summation in

order to avoid cases of highly connected nodes, which exhibit static behaviour getting a

high dynamic factor.

Vij =
〈∥∥ṗtij∥∥〉t (3.20)

Vi =

∑
k∈Si

Vik

‖Si‖
(3.21)

2. Weight the variation of every node with the number of drivers that pass

through it:

In order to di�erentiate between nodes with a variation value, which have di�erent levels

of tra�c throughput, the variation of every node is weighed by the number of vehicles
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utilising it. The dynamic factor of a node i is de�ned as in equation 3.23 and intuitively

can be perceived to represent the speed at which the activity at this node is changing.

More precisely, it represents how rapid and diverse are the changes in the typical choices

that agents make at this node. In other words, the nodes that experience rapid changing

dynamics and are critical in the sense of tra�c demand will receive a high dynamic factor

value.

The change in tra�c demand throughout one time period is weighed by the number of

drivers that pass through the node during this time. In case of a big change that does not

a�ect many agents the dynamic factor is still small. Moreover, the logarithm of the �ow is

taken since, the main interest is the change of the turning probabilities. The term which

takes into consideration the volume of vehicles, is added in order to distinguish between

busy intersections and ones that have very small throughput since the latter may not have

such a big e�ect on global tra�c conditions. In case the dynamic factor is calculated with

the absolute value of the �ow, busy intersections that do not have that much variation in

turning probabilities will get very high dynamic factors, which is undesirable.

Dij =

〈∥∥ṗtij∥∥ log
∑
j∈Si

N t
ij

〉
t

(3.22)

Di =

∑
k∈Si

Dik

‖Si‖
(3.23)

3. Extension for Calculating the Dynamic Factor of a Network

Similarly to the case with the deviation measure a normalized measure is included by

using the congestion factor as shown in equation 3.26.

wi =

∑
j∈Si

wij

‖Si‖
(3.24)

Ci = 2000Lwi (3.25)

Gtij =
N t
ij

Ci
=

N t
ij‖Si‖

2000L
∑
j∈Si

wij
(3.26)

Dynamic factor measures are rede�ned with the normalized congestion factor term in

equation 3.28. Since the tra�c �ow is already normalised the logarithm should not be

taken anymore.
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D̂ij =

〈∥∥ṗtij∥∥ ∑
j∈Si

Gtij

〉
t

(3.27)

D̂i =

∑
k∈Si

D̂ik

‖Si‖
(3.28)

In order to compare the dynamic factor pro�les of the tra�c conditions of two or more

cities one can compare the dynamic factor distributions of all nodes. A dynamic factor of

a city M is de�ned as the generalised mean with power factor α = 2 of the distribution of

D̂i as in equation 3.29. The generalised or power mean, as in the case with the deviation

measure, is used in order to put an emphasis on the extreme values in the distribution

that make the network more dynamic.

M =

(
1

N

N∑
i=1

D̂α
i

) 1

α
(3.29)

3.4.3 Deviation Measure Calculation for Singapore Case Study:

In order to apply the designed measures in a realistic scenario and supply the needed infor-

mation for their computation, the tra�c generation procedure described in Chapter 2 is used.

Furthermore, in order to ensure easier assimilation of the results only nodes with a throughput

higher than 10000 vehicles per day are examined. First, the deviation factors (∆i) of every

node that satis�es the �ow constraints is calculated and their distribution is shown in Fig. 3.4a

On Fig. 3.4a it can be observed that the distribution resembles a log normal distribution

with a peak at around 0.1. The maximum deviation of a node in the examined case study is

0.74. It must be pointed out that the maximum possible value of ∆i is 1. An example case of

how the value can reach one is when all drivers passing through a certain node systematically

(throughout the whole day) turn onto a one lane road while no drivers are turning onto a road

with more than one lane coming from the same intersection. It can also be observed that the

intersections that have a deviation value of 0 (perfect match) or lower than 0.1 are only two

while the ones with a value around the peak, which is at 0.1 sum up to almost 70.

Although most of the intersections do not perfectly match the demand, the lane ratios

between the successors might still be optimal. In other words, the distribution of lanes leading

to the successor roads can still be optimal even if the deviation value is not exactly zero as

shown in Fig.3.3. It is necessary to examine the absolute mismatch measure mi as well in order
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(a)

(b)

Figure 3.4: Distributions of the measure ∆i and the mismatch of number of lanes between road

capacities and tra�c demand. Fig. 3.4a presents the distribution of the deviation measure for

every intersection in the city of Singapore that has a throughput higher than 10, 000 vehicles

per day. Fig. 3.4b is the distribution of the number of number of mismatched lanes, based on

the deviation of the road infrastructure and the tra�c demand, on intersections with throughput

higher than 10, 000 in cases where this number is bigger than 0. A value of 1 means that one lane

should be moved from one successor road of the node to another in order for the road structure

to be in optimal agreement with the tra�c demand.
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to estimate how many intersections do not have an optimal lane distribution. The measure

represents the number of lanes that should be transferred from one road to another in order to

optimally satisfy the demand. A distribution of this measure for the same set of intersections can

be seen in Fig.3.4b, however only the intersection with mi > 0 are included in the distribution.

Out of 711 examined high throughput intersections, 211 have an optimal lane distribution.

It can be observed that there are around 200 intersections that can bene�t from one lane

being moved from one road to the other and there is one intersection that can bene�t from

redistributing �ve lanes. The existence of places with such extreme deviations can be explained

as being caused by the heterogeneous nature of deviation between infrastructure and demand,

which can manifest in highly sensitive locations existing on the road network.

Next, let us examine the temporal nature of the measures. On Fig. 3.5a the evolution in

time of the measure ∆t is depicted, which summarizes the deviation of the whole network in the

form of a single value for every time period. It can be observed that the deviation has a stable

nature with a coe�cient of variation cv =
σ

µ
of only 0.0019. Therefore, the overall deviation of

the network is time invariant according to the suggested metric.

On Fig.3.5b the evolution in time of the measure ∆t
i for the intersection that shows the

highest overall deviation is depicted. It can be observed that there is no signi�cant variation

as the coe�cient of variation cv is 0.0470, however, the curve is relatively low throughout the

morning (7 : 30 − 9 : 30) and evening (17 : 30 − 19 : 30) rush hours, which means that at this

particular intersection, the mismatch between demand and road capacities is getting smaller

with increasing tra�c volumes.

This is the expected result since the intersections have most likely been optimised to perform

best during rush hour, since the deviations at those periods of time are the ones that can lead

to tra�c jams. A high deviation value at midnight may not be of such concern since even if the

road capacities do not match the demands, the vehicle �ows are not big enough for a tangible

e�ect on the tra�c conditions to be sensed. A signi�cant mismatch during morning or evening

tra�c peak, however, will inevitably lead to a setting of congestion and overall reduced network

performance.

Fig. 3.6 presents the spatial distribution of mismatched intersections. The biggest cluster

of mismatches is observed at the central business district (south central part), as it is the most

dynamically changing location in the city. The high pace of emergence of new buildings and

businesses, which attract new employees or move existing ones to new places inevitably results

in a mismatch of the tra�c demand with the relatively slowly changing road structure.
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(a)

(b)

Figure 3.5: Evolution of the deviation measures in time. Fig. 3.5a shows the measure ∆t for

di�erent values of t. This is the deviation of the road infrastructure of the whole network from

the tra�c demands. Fig.3.5b depicts the evolution in time of the measure ∆t
i of the intersection

with highest degree of deviation.
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It can also be observed that the other most mismatched intersections (red and dark orange)

are positioned along major roads that connect the down-town area with the east, west and

northern parts of the city. Those areas have been growing extensively in the past decade as a

result of the government's government attempt to relax tra�c demand in the down-town area

by building self su�cient districts in various parts of the island. As a result of this fast OD

alteration, the road network is lagging in its development and thus such levels of mismatch

between demand and infrastructure capabilities are not surprising to observe.

3.4.4 Dynamic Factor Calculation for Singapore Case Study

Similar to the deviation and mismatch case, the dynamic factors are presented only of the nodes

that have a signi�cant throughput, which is set to be more than 10, 000 vehicles per day. After

calculating the dynamic factor of every node that satis�es the constraints, a distribution of the

dynamic factors throughout the network is acquired as shown in Fig. 3.7

The observed distribution resembles a log-normal distribution peaking at dynamic factor

value of 0.75. A plateau can be noticed between 1 and 1.5, just after the peak. This might be

due to standard degrees of variation at the nodes with varying �ows of vehicles. The tail part

contains very few intersections with high dynamic factors. It seems like the distribution has a

fat tail and the nodes contained in the far right part exhibit abruptly and dynamically changing

turning probabilities and high tra�c of vehicles. These are the intersections which present the

biggest challenges for tra�c control and road infrastructure planning. Fig. 3.8 presents the

evolution in time of the turning probabilities of the most dynamic node in the network. It can

be observed that all three options that the drivers can choose from are varying abruptly in time

and that every option is the most preferred one during at least one period of the day.

The highly heterogeneous distribution of the dynamic factor can also be observed in its

spatial distribution on Fig.3.9. The majority of indicated locations are either intersections

between major roads or are connecting residential and business areas. The latter case presents

high dynamic factors due to qualitatively di�erent demands in the morning and evening. The

�rst type is created as a result of changes due to a steady dynamic nature of events at those

intersections. A cluster of points with high dynamic factor at the central business district (south

central part) can also be observed, which can be due to the high concentration of business o�ces

and constant movement of commuters within this area.
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Figure 3.7: Histogram depicting the distribution of Dynamical Factor values in the Singapore

road network. Only intersections with daily throughput higher than 10, 000 vehicles are taken into

consideration.

Figure 3.8: Turning probabilities of the most dynamic node according to the model in the city

of Singapore. The distinct time series represent the probability that a driver would choose the

corresponding outgoing road from the examined node throughout the day.
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3.5 Application of Recommended Changes in Infrastruc-

ture

After the identi�cation of mismatched intersections assured by the de�ned mismatch and devi-

ation measures, the analysis is extended by further investigating and validating those �ndings.

A simple and generic way of performing this task would be to apply the recommended changes

to the road network and observe the changes in tra�c conditions stemming from them. The

measure of improvement is chosen to be the overall change in travel time of the commuting

population. Furthermore, it is important to address the quantitative accuracy of the de�ned

measure or, in other words, to answer the question, whether ��xing� the most mismatched inter-

section brings the biggest improvement in overall travel time. In order to do this, the correlation

between the de�ned measures and the changes of system performance are examined.

3.5.1 Methods

The procedure of applying changes to the road network comprises of three main steps:

• Choose mismatched locations identi�ed by the de�ned measures. This step provides a

starting set of intersections for the study �ltering out the locations that do not need to

be examined.

• Calculate the optimal distribution of lanes at the chosen locations. Then the appropriate

changes are applied to the road network in order to evaluate the e�ect on the population

commuting time.

• Calculate the travel times of the population before and after the changes are applied to

the road network. This step involves the macro-simulation approach described in Chapter

2 in order to acquire the desired traverse times on every road segment.

3.5.1.1 Identi�cation of Locations to be Fixed

There are two main choices about the measure to be used to initially select the locations

to be examined: the deviation measure δi or the mismatch measure mi. It must be noted

that the goal of this step is to identify all the intersections that perform in a suboptimal way

due to a discrepancy between infrastructure and demand. It would therefore be pointless to

select intersections that exhibit problematic behaviour, which, however, cannot be �xed by lane

redistribution, which is the approach undertaken in this work. Therefore, it is reasonable to use
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the mismatch measure since it corresponds to exactly the intersections that can bene�t from

lane redistribution and also orders them by the number of lanes that should be exchanged. As a

reminder, the mismatch measure �lters out all locations that have a non-zero deviation measure,

but still possess optimal lane ratios between the turn options. At this point a fundamental

di�erence between the deviation and mismatch measures should be pointed out.

The deviation measure captures the absolute discrepancy between infrastructure and de-

mand in the sense that it performs a weighted average of the absolute di�erence between

optimal and real infrastructure. This is property is valuable for analysing the the performance

of the system as a whole, however, it might be misleading if used for localized cases. The

reason for this is the fact that the mismatch can occur in both directions, namely during one

part of the day, the optimal lane ratios might be in one extreme while in another portion of

the day another extreme distribution might be bene�cial. In such cases, it might happen that

the initial lane distribution is optimal in the long term and changes will lead to worsening

of tra�c conditions. This observation does not mean that the deviation measure has no use.

The existence of such places is undesired in a road network, since they become bottlenecks

during both rush hour periods. Those locations have quantitatively similar discrepancies in the

sense of created congestion but qualitatively di�erent reasons for those congestions. While the

mismatch measure cannot di�erentiate between them, the deviation measure can be used as a

heuristic together with the dynamic factor for locating precisely such cases.

As in the previous section, however, only locations with a daily �ow of more than 10, 000

vehicles were examined since only then, theoretically, congestion can be observed. To summa-

rize the chosen intersections are:

∀i : mi > 0 ∧
∑
t

∑
j∈Si

N t
ij > 10, 000 ∀t

3.5.1.2 Calculation of Optimal Lane Distribution and Road Network Changes at

Chosen Locations

In order to apply the changes to the network to eliminate the mismatch, one has to know the

optimal number of lanes of every successor of node i, which is de�ned as rik as noted in the

previous section. The calculation of rik involves taking a weighted average for the number

of vehicles choosing every option in time and then calculating the weighted probabilities for

the whole day and the respective optimal lane distribution. In order to obtain the optimal

probabilities, the real �ows are weighted by the throughput at the node i for time period t.
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The reason behind this approach is the non-linear relationship between �ow and time. In other

words, as the number of vehicles on the road increases the travel time increases in a non-linear

fashion and thus periods with high throughput are potentially signi�cantly more important

than periods with small volumes of vehicles passing through.

N̂ t
ij = N t

ij

∑
k∈Si

N t
ik (3.30)

Then the total weighted �ow is calculated by summing up the total weighted �ows and the

optimal probabilities are calculated according to the respective ratios.

N̂ij =
∑
t

N̂ t
ij (3.31)

p̂ij =
N̂ij∑
k∈Si

N̂ik
(3.32)

Following this the desired number of lanes rik is simply computed by choosing the appro-

priate number of lanes corresponding to the optimal probabilities p̂ij :

rik = min(1, bp̂ij
∑
l∈Si

wilc) (3.33)

Next, the number of lanes in the network description structure is changed in order to prepare

for the �nal travel time calculation step.

3.5.1.3 Calculation of E�ects of Mismatch Fix

In order to evaluate the e�ects on congestion of the alterations suggested in the previous section,

a comparison between the travel times before and after the changes in the infrastructure should

be performed. Therefore, a way of transforming the �ows on the road segments into travel

times is desired. The usual approach in transportation science is to use one of the �ow-time

relationships and, in this work, the Bureau of Public Roads (BPR) function was chosen. It is

a non-linear function that depends on the �ow and the capacity of the road( number of lanes

mostly ) in order to predict what will be the transit time along a road segment. The calibration

of the parameters of the BPR function with real world data and the validation of the results

can be found in more detail in Chapter 2. The BPR function is formalized as:

tij =
lij
vsf

(
1 + αs

(
Fij

2000wijt

)βs)
(3.34)
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where tij is the time to traverse link ij, vsf is the free �ow velocity at a link with speed limit

s, αs and βs are coe�cients to be calibrated for di�erent types of roads, Fij is the �ow on link

ij, wij is the number of lanes on ij and t is the time for which the �ow is observed. The main

measure that will be used in the following results chapter is the di�erence between the travel

time before and after the the changes in the road network multiplied by the number of people

utilizing the location in question.

Iij = Fij

(
lij
vsf

(
1 + αs

(
Fij

2000wijt

)βs)
− lij
vsf

(
1 + αs

(
Fij

2000rijt

)βs))
(3.35)

Iij = Fijα
s

(
Fij

2000 (wij − rij) t

)βs

(3.36)

(3.37)

In order to calculate the overall improvement of �xing the mismatched intersection all the

improvements of successors of node i must be summed up:

Ii =
∑
j∈Si

Iij (3.38)

More robust metrics of improvement will be de�ned in the next section.

3.5.2 Results

This section presents the results of the simulated tra�c conditions as a result of the recom-

mended changes to the tra�c network. Besides the examination of the pure improvement of

tra�c time, two other questions need to be addressed. First, how sensitive are the intersections

to changes in their lane distributions and are there locations that are super-sensitive to such

alterations. The identi�cation of such places allows for e�ective steering of tra�c conditions

with minimal e�ort, which is a highly desirable goal for a transportation network. Second, is

the sensitivity of intersections correlated with the de�ned measures. The deviation measures

that were de�ned perform well in identifying locations that exhibit high degrees of discrepancy

between demand and infrastructure, thus pointing to areas that are problematic but cannot

necessarily be �xed locally. Similarly, the dynamic factor identi�es locations that are likely to

exhibit problems throughout the day due to highly �uctuating tra�c conditions, which as well

cannot necessarily be �xed. Finally, the mismatch measure identi�es only locations that will

bene�t from local concrete changes of the road network. It will be interesting to see, with which

measure do the sensitivity of locations correlate to the most.
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3.5.2.1 Improvement of Tra�c in the Time Domain

Although it is intuitive that the recommended changes in the road network will bene�t the

system, it must be examined where those improvements are most notable during the day. Fig.

3.10 shows the total saved time by applying all recommended changes in the system at once

during the di�erent periods of the day. It can be noticed that very little e�ect is observed

during the non-rush hours as the before and after curves are virtually the same. During peak

tra�c conditions, however, it can be observed that there is a signi�cant di�erence between the

total travel times of the commuting population.

Figure 3.10: Comparison of time lost at chosen intersections with throughput higher than 10, 000

vehicles between original intersection lane distribution and after recommended mismatch �x was

applied to the road network.

This rather extreme di�erence between the performance of the network alteration during the

di�erent periods of the day is due to the highly heterogeneous tra�c distribution over time (the

existence of morning and evening rush-hours) and the non-linearity of the �ow-time diagram,

which introduces big changes in travel times for smaller in magnitude changes in the �ows of

vehicles on a given road segment. It can be observed that the peaks during morning and evening

commute time are much less pronounced after the road network alteration, which sums up to

more than 4, 600 hours of travel time saved on a daily basis from redistributing the lanes at

about 500 intersections.
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3.5.2.2 Measures of Sensitivity

Measuring saved time, although useful in general terms of transportation system optimization,

does not give much insight about the local in�uence of changes. Furthermore, some intersections

may have the ability (�exibility) to redistribute more lanes than others. As redistribution e�ort

is correlated with the number of intersections it will be informative to see, what is the time

improvement per redistributed lane:

Ui =
Ii
mi

(3.39)

To further normalize the measure of sensitivity can also be de�ned as the time saved per

lane per meter. It might happen that in some cases the road segment that receives an extra

lane is much longer than the one that loses a lane. In order to exclude such in�uences, the time

di�erence for every successor is divided by its length.

Ûi =

∑
j∈Si

Fijα
s

(
Fij

2000 (wij − rij) t

)βs

lij
mi

(3.40)

Fig. 3.11 shows histograms of the three measures of sensitivity.

Figure 3.11: Distribution of saved time measures of the chosen intersections with throughput

higher than 10, 000 vehicles. From left to right: total time saved, time saved per exchanged lane,

time saved per exchanged lane per meter.
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From the �gure it can be observed that the majority of intersections do not bring much

improvement as the histograms resemble exponential distributions. There is a small number

of intersections that form a fat tail of the distribution, which are responsible for most of the

saved time. Even the fully normalized measure of time saved per lane per meter exhibits highly

heterogeneous form, which points to the existence of super-sensitive locations, whose alteration

may lead to signi�cant change in overall tra�c conditions.

In order to visualize the heterogeneous distribution of saved time in a better way Fig. 3.12

pictures the distribution of saved time according to percentiles of the set of locations ordered

by their impact.

Figure 3.12: Distribution of the saved time by percentiles grouped according to total saved time

of the chosen intersections with throughput higher than 10, 000 vehicles.

The examined locations are ordered according to the time saved after lane redistribution.

It can be seen that locations in the top percentile (90th to 100th percentiles) are responsible for

nearly 75 percent of the overall saved time . These are the locations that will bene�t the most

from a redistribution, corresponding to roughly 50 intersections, which save 3 times more time

than all 450 other intersections combined. Fig. 3.11 and 3.12 clearly show that some locations

are far more critical than others. Intuitively, it makes sense that since tra�c is heterogeneously

distributed on the road network, some locations have far greater �ows than others; this results

in changes at those places having more e�ect than changes on others. Please be reminded,
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however, that in this case all examined locations have high throughputs (more than 10, 000

vehicles per day). Furthermore, the correlation coe�cient between the tra�c �ow and time

saved is 0.22 as seen from Table 3.2, which refutes the intuitive hypothesis that busier locations

can save more time by lane redistribution.

3.5.2.3 Spatial Distribution of Saved Time

Fig. 3.13 illustrates the positioning of sensitive locations geographically in the city of Singapore.

It must be pointed out that due to the highly heterogeneous nature of the time saved distribution

the third root of the saved time per lane measure had to be taken in order for more intersections

to be visible on the map.

Singapore's �nancial district is located in the south-central part of the city, which as can

be seen is a zone with a high concentration of mismatched intersections. However, the most

mismatched intersections are not in the region itself, but rather on the roads connecting it to

other parts of the city (like the eastern and northern regions) which are mostly residential zones.

Furthermore, it can be noticed that occasionally the locations are along a single major road.

This can be explained by the phenomenon suggested in the introduction of construction plans

reacting to infrastructure changes (like building of new roads) thus producing extra demand

for initially empty locations that were not taken into consideration in the initial road system

planning.

3.5.2.4 Correlation Analysis of Measures

As a �nal step of this study, let us examine the correlations between the various de�ned metrics

and measures in the chapter represented in Table 3.2.

Attention should be given to the realization that sensitivity measures show weak correlation

with the tra�c �ow, which indeed suggests that the examined locations do not necessarily save

more time because they exhibit higher �ows of vehicles. The metric that presents the most

interest is the saved time per lane per meter since it captures in the most robust way the

sensitivity of a location. It turns out that it is weakly correlated with both the deviation and

the dynamic factor measures. It is, however, important to note that the normalized deviation

measure de�ned in order to be able to compare tra�c conditions between di�erent sized cities

shows a much better correlation to the saved time per lane per meter metric. It is therefore,

advisable that precisely this measure is used in order to spot the super-sensitive locations in a

city. One reason for this outcome may be the formulation of the normalized deviation measure.
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Table 3.2: Correlation coe�cients between chosen sensitivity metrics, de�ned measures and

tra�c �ow.

Saved

Time

Saved

Time/

Lane

Saved

Time/

Lane/m

Tra�c

Flow

Dynamic

Factor

Deviation

Measure

Normalized

Deviation

Measure

Saved

Time

1 0.8856 0.5046 0.2235 0.0625 0.2424 0.4814

Saved

Time/

Lane

0.8856 1 0.6776 0.2312 0.0504 0.2235 0.5427

Saved

Time/

Lane/m

0.5046 0.6776 1 0.2672 0.0848 0.2154 0.6321

Tra�c

Flow

0.2235 0.2312 0.2672 1 0.4559 0.4144 0.3420

Dynamic

Factor

0.0625 0.0504 0.0848 0.4559 1 0.1473 0.0743

Deviation

Measure

0.2424 0.2235 0.2154 0.4144 0.1473 1 0.5728

Normalized

Deviation

Measure

0.4814 0.5427 0.6321 0.3420 0.0743 0.5728 1
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As a reminder, the idea behind it is to not include absolute values of the �ows on the roads

but rather work with congestion factors, which turn the absolute �ows into a ratio between

the �ow and the capacity of the road. This is the only measure that actually takes into

consideration the number of lanes on the road segments and therefore represents the potential

congestion infused time delays. The disadvantage of this approach is that this measure might

show a high value for a smaller mismatched intersection that is not going to have a big e�ect on

the overall tra�c performance. It turns out, however, that such roads are hard to come upon,

since no such cases were observed in the study performed.

3.6 System Optimum Lane Distribution Problem

In line with the �ndings from the previous sections that demonstrate the existing mismatch

between tra�c demand and the infrastructure a more generalised approach can be undertaken

in order to evaluate the degree of discrepancy. This section presents the problem of �nding

the optimal number of lanes on every existing road for minimizing the overall population travel

time subject to a set of constraints. In order to compute the travel times the BPR function

will be used once more, turning the calculated �ows on every road segment to travel times of

commuters.

As pointed out in the introduction of this chapter, it is vital that tra�c demands are met

by the infrastructure and that roads are neither under nor over utilized. As shown by the

fundamental law of tra�c [28], building more road infrastructure can have negative e�ects on

the overall system performance. The constraints of the optimization problem will be that road

lanes can be only redistributed. In other words, the total length of the roads multiplied by

the number of lanes of every segment should stay constant. The optimization problem can be

formalized as follows:

min
w

T (w) =
∑
i

ti(wi)Fi =
∑
i

li
vsf

(
1 + αs

(
Fi

2000wit

)βs)
Fi (3.41)

subject to
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∑
i

liwi ≤
∑
i

liw
0
i (3.42)

wi ≥ 1 ∀i (3.43)

wi ≤ 10 ∀i (3.44)

(3.45)

where ti(w) is the BPR function for traverse time dependent on the number of lanes wi.

The constraint 3.43 de�nes the upper bound for the total length of the road network and

constraint 3.44 ensures that all existing roads will have at least one lane allocated to them.

Finally, constraint 3.45 ensures that there are not segments with more than 10 lanes. Currently

in the Singapore network, the number of lanes on the widest road is 9. Typically, the objective

function in this problem is minimized with respect to the �ows Fi in order to obtain the system

optimum path distribution. This is a separate problem that will be discussed in more detail in

Chapter 4.

It must be noted that the objective function T (w) is non-linear, however, convex due to

the fact that it is a sum of convex functions ti(wi). Furthermore, the constraints are linear

inequalities, which ensures that the feasibility space of the problem is also convex. Therefore,

any minimum that is found by the optimization algorithm is guaranteed to be unique.

In order to solve the optimization problem the Interior Point Method [61] is used. The

barrier function is:

B(w, λ) = T (w)−
∑
i

λici (3.46)

where ci are the constraints in the form ci ≥ 0 and λi are the Lagrange multipliers such

that ci(w)λi = µ∀i, where µ is a small positive scalar that converges to 0 when a solution is

reached. The gradient of B(w, λ) therefore becomes:

∇T (w)−Aᵀλ = 0 (3.47)

where A is the Jacobian of the constraints c(w). Next, Newton's method is applied to get

the update directions (dw and dλ) for λ and w:

(
HB −Aᵀ

ΛA C

)(
dw
dλ

)
=

(
−∇T (w) +Aᵀλ

µ1 − Cλ

)
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where HB is the Hessian of the barrier function, Λ is the diagonal matrix of λ, C is the

diagonal matrix with the values of c(w) and µ1 is a column vector with all values µ.

The update rule is:

(w, λ)→ (w + αdw, λ+ αdλ) (3.48)

Since the constraints are linear the Hessian of B is a diagonal matrix containing the second

partial derivatives of the barrier function:

∂2T (w)

∂2w1
0 0 . . . 0

0
∂2T (w)

∂2w2
0 . . . 0

...
...

...
. . .

...

0 0 0 . . .
∂2T (w)

∂2wN



and in the case of the BPR function:

∂2T (w)

∂2wi
=

li
vsf
αs
(

Fi
2000t

)βs

Fiβ
s(βs + 1)

(
1

wi

)(βs+2)

(3.49)

The Jacobian of the constraints A is:


−l1 −l2 −l2 . . . −lN
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



and the gradient of the objective function ∇T (w) in the i-th direction is:

∇T (wi) = − li
vsf
αs
(

Fi
2000t

)βs

Fiβ
s

(
1

wi

)(βs+1)

(3.50)

Given the sparse nature of all the matrices, it is relatively easy to compute the update steps

numerically despite the large number of segments N = 240, 000.
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3.6.1 Results

The optimization problem was numerically solved in Matlab using the fmincon function with

provided analytical expressions for the Hessian of the barrier function and the gradient of the

objective function in order to speed up the process. After 68 iterations with initial step size

parameter α = 0.1 the optimization stopped after satisfying the function tolerance condition

set to 10−3. Fig. 3.14 shows the progress of the optimization algorithm as a function of the

iteration count. It can be observed that the optimal lane distribution leads to a 36% population

travel time decrease.

Figure 3.14: Progress of the optimization algorithm as a function of the iteration count.

Fig. 3.15 depicts the di�erence between the optimal solution and the current lane distri-

bution in Singapore. It can be observed that the major road arteries are allocated more lanes

in the optimal solution, while the more minor roads give away lanes. It should be noted that

the roads leading to the central business district are the ones that receive the biggest amount

of lanes, which is also intuitive since they exhibit the highest tra�c �ows. In total around

31, 000 road segments do not already have their optimal number of lanes, which means that

about 87% of the road network segments are optimal with respect to their lane count. There

is an abnormality occurring at the south west part. It can be seen that there is a speci�c route

that is heavily utilized for some reason, while the streets next to it remain empty. This is most
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probably not a realistic scenario and might be due to the fact that there is a strictly shorter path

there (lack of any viable alternatives). Furthermore, there also might be a heavily represented

origin or destination at the region that in�uences the agent generation process. Abnormalities

in the same region can also be observed in all other spatial pro�les in the chapter. At this point

the reader is asked ignore the results for this area since they might not be representative of the

reality.

These observations can be further validated by exploring the distribution of di�erence in

lane count between di�erent types of roads with respect to their class(express-ways, major,

minor) (Fig. 3.16) and their length (Fig. 3.17). The segments that experience the biggest

tra�c demand and congestion, which are the express-ways, receive the biggest amount of lanes,

which amounts to about 50% relative increase in the number of lanes. Major roads have about

40% relative increase and the minor roads are the ones that give away lanes with a relative

loss of 6%. It must be noted that the number of lanes given away does not equal the lanes

gained since the constraint of the optimization problem is to keep the total length of all lanes

combined and not their count, thus keeping the infrastructure capacity constant.

To further observe this, Fig. 3.17 presents the distributions of lane exchange within various

road groups based on segment length. It can be clearly observed that long roads give away lanes

and medium sized segments mostly redistribute within the group. The really short segments,

which are usually associated with turns at intersections, linking the two intersecting main roads,

receive large amounts of lanes for the optimal solution and almost double in number with a

89% relative increase. Those roads are evidently bottlenecks in the current road network and

despite their small length, the network can bene�t signi�cantly from their expansion.

In conclusion the suggested generalised measure of mismatch W is de�ned as the total

length of the road segments that need to be redistributed. Once more, this approach is preferred

against counting the number of redistributed lanes since it captures the e�ort required to achieve

optimality rather than calculating the distance between the current and the optimal solutions:

W =
∑
i

li
∣∣wi − wopti

∣∣
2

(3.51)

W is measured in meters, which might vary in magnitude from system to system. In order

to compare the mismatch of one city to another a relative measure can be de�ned, namely:

Ŵ =
W∑
i liwi

(3.52)
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Figure 3.16: Distribution of the lane di�erences in various types of roads. From left to right:

Expressways, Major roads, Minor Roads. All segments with no lane changes recommended have

been excluded for better visibility of the distributions.

Figure 3.17: Distribution of the lane di�erences for roads with various lengths. From left to

right: Long segments l > 100m, Medium segments 100m > l > 10m, short segments l < 10m.

All segments with no lane changes recommended have been excluded for better visibility of the

distributions.
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This metric represents the percentage of road length that needs to be redistributed. It is

interesting to note that the �ows, which are considered constant for the optimization problem

are actually the shortest time �ows computed with free �ow velocities. Another approach of

computing the �ows would be to compute the user equilibrium solution, which represents the

state of the system when all drivers have perfect information of current tra�c conditions and

no user would prefer to change his path. There is also a third possible way the routing can be

performed, which is referred to as the system optimum solution, when the paths of all commuters

are chosen so that the total travel time on the network is minimized. In summary, there are

three possible routings that can be performed: routing according to free �ow traverse times,

user equilibrium where no agent would change his route, and system optimum which minimizes

total travel time of the system. From system's perspective one would obviously choose the last

option, however, it might result in unfair routes for some drivers. Ideally, the network should

be designed in such a way that the fastest paths (routing option 1) coincide with the system

optimum and with the user equilibrium. This is the reason why, the shortest paths were taken

in order to de�ne the �ows in the system in this optimization problem.

3.7 Chapter Summary

3.7.1 Tra�c Demand-Infrastructure Mismatch Analysis

Chapter 3 points out to the fact that tra�c demand and road infrastructure are mismatched

as a result of the faster pace of change of the demand and con�rms the hypothesis, by locating

severely mismatched locations in the studied tra�c network. A set of measures is de�ned, based

on turning probabilities acquired from the tra�c assignment methodology application, which

are used to identify the most mismatched intersections. Furthermore, measure of the total

mismatch of the network are de�ned together with normalized version of the initially suggested

metric using the concept of congestion factors, in order to enable the comparison of degree of

mismatch between di�erent cities.

It has been observed that the distribution of the deviation between infrastructure and tra�c

demand has a fat tail, meaning that there are locations, which exhibit strong disagreement

between demand and infrastructure. The absolute mismatch measure that has been de�ned

points out to an intersection, where 5 lanes have to be redistributed in order for it to match

the demand in an optimal way. The measure of overall deviation in time, demonstrates that
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the total city deviation has small variation coe�cient and is therefore concluded to be time-

invariant. Examining the location with the highest deviation value, however, shows that the

deviation value drops during rush hours, which is expected since the intersection has possibly

been optimized for such tra�c conditions.

The spatial distribution of the intersections with high degrees of mismatch from the tra�c

demand is also examined. It is observed that the connections to and from regions with high

degree of dynamics, such as business districts and fast growing sub-cities are experiencing the

highest levels of mismatch between infrastructure capacity and tra�c demand. This further

strengthens the hypothesis that those deviations occur in cases where the tra�c demands of

the population change faster than the road topology can adapt.

3.7.2 Dynamic Locations

As a second step of evaluating the close �t that must exist in a transportation system between

demand and infrastructure, a problem, which cannot be resolved in a simple infrastructure

construction manner has been pointed out. The possible existence of intersections, which exhibit

strongly dynamic behaviour throughout the day is hypothesised and demonstrated for the

examined city using the dynamic factor measure, which is also de�ned in the chapter. The

qualitatively varying congestion problems at such locations cannot be resolved, with a change

in the infrastructure since they occur on a daily basis, level on which, the road infrastructure

is strictly static.

Furthermore, the dynamic factor measure is also de�ned for the whole city in order to enable

the comparison between di�erent systems. It has been shown that there are highly dynamic

intersections residing in the fat tail of the dynamic factor distribution, which is similar to the

case with mismatched intersections described in the �rst part of the chapter. It has also been

shown that the highest spatial concentration of highly dynamic intersections is in the business

district area, which is most likely due to the high volatility of people movements in the area.

One additional practical application of the dynamic factor measure would be as a quanti�er

of the need for smart tra�c regulation on intersections. It points out to the locations, which

exhibit very abrupt and strong changes of qualitative demand, and furthermore quanti�es how

dynamic their behaviour is, thus enabling prioritization of such locations for tra�c o�cials.

Furthermore, the reduction of the overall dynamic measure of a city can be used as a heuristic

for the transportation structural optimality.
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3.7.3 Fixing the Road Network

The second part of Chapter 3 implements the suggested changes to the mismatched locations

identi�ed by the designed measures and evaluates their e�ects. The results demonstrate that

��xing� those locations can bene�t the tra�c conditions in the city especially during rush hour

periods. Furthermore, it has been shown that the main contribution to the increased quality of

tra�c conditions comes from a very small number of locations. In other words, there are places

in the road network, which can greatly reduce the total travel time of the whole population if

small alterations are applied to them.

Those locations are referred to as super-sensitive and a correlation analysis study is per-

formed in order to �nd, which of the de�ned metrics can be used with the highest degree of

success in order to locate such super-sensitive places, which present great interest of trans-

portation o�cials as they require a more intelligent management approach. It has been shown

that counter intuitively, the the amount of �ow through an intersection is not correlated to its

criticality. The metric with the highest correlation to the sensitivity metric is the normalized

deviation measure exploiting the congestion factor of the examined location.

3.7.4 Optimal Lane Distribution Problem

Finally, a more general problem has been addressed and solved, namely the optimal distribution

of lanes on the road network under the condition that the total length of the road network in

lane meters is kept constant. The optimization problem is solved using the internal point

method and the results demonstrate that the optimal distribution of lanes can save 36% of

the overall population travel time and that 13% of the road segments currently do not have

an optimal number of lanes. It is further, observed that the road types, which �receive� lanes

are the highways and short segments road segments, which are likely to create bottlenecks. A

generic measure is therefore de�ned, which looks at the mathematical distance between the

current lane distribution and the optimal one in order to evaluate the overall degree of capacity

distribution ine�ciency of the network. A sensitivity analysis of the optimal lane distribution

solution can be performed as a continuation of this line of research in order to evaluate how

sensitive is the optimal solution to changes in the tra�c demand. The next chapter will deal

in more detail with the tra�c assignment problem and speci�cally with the system optimum

computation algorithms.
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Chapter 4

Identi�cation of Harmful Roads and

Routing Control for E�cient

System Optimum Tra�c

Assignment

4.1 Overview

The previous chapter has discussed the existence of mismatched, dynamic and super-sensitive

locations in a complex transportation system and road network alterations in the sense of

lane redistribution. This chapter will build on road alterations that might improve tra�c

conditions. This is done by examining the impact of the more severe measure of removing

road segments and evaluating the performance of the changed road network. This allows for

an extended sensitivity analysis of the system against road network alterations and also o�ers

insights into tra�c assignment problems. As every commuter chooses the most optimal route

from his/her own perspective, tra�c distribution on the road network becomes heterogeneous.

This results in a small number of roads, which are largely overpopulated, while others remain

underutilized [62]. In order to achieve a more homogeneous road utilization and thus reduce

congestion levels, drivers should take more socially aware routes. As this is not observed in

reality, a simple hypothetical situation is presented in this chapter, where roads are removed

from the network as a way to force drivers into choosing more socially bene�cial paths. It is

demonstrated that the removal of certain road segments can redistribute tra�c in a socially
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bene�cial way, leading to a decrease of total travel time of the population. This phenomenon has

been known for decades as the Braess Paradox, �rst mentioned in [3]. This chapter, presents,

the �rst systematic analysis on a large city level, of the existence of the paradox and quanti�es

the change in total travel time of the single closure of every road segment in the network. The

removal of the most harmful segment, out of the 240, 000 segments comprising the road network

of the examined city, leads to a 4% decrease of total travel time. The �rst part of the chapter

is based on the author's contributions in [10].

As the Braess paradox has been studied for a long time by transportation researches, a

natural question is, whether it can be detected by using some heuristic function instead of

testing the removal of every single road. This chapter demonstrates that road segments, which

should be removed from the network exhibit lower level of utilization for system optimum

tra�c assignment when compared against the utilization using the standard sel�sh routing

approach. Therefore, using such a heuristic one can �lter out most of the links in the network,

which are not likely to be harmful. As the objective of this work is to minimize overall travel

time in the system, removing a road in order to reduce overall travel time can be considered

a tool in achieving this. It is, however, in no way a complete solution. Furthermore, it is

rather impractical to close an existing road for the whole commuting population. This chapter

also presents the Backwards Incremental System Optimum Search (BISOS) also described in

the author's contribution [63], a very practical approach to achieving system optimum tra�c

assignment by incrementally closing roads only for a chosen set of agents.

The described approach redistributes the tra�c homogeneously among the city and con-

verges much faster than any other method for system optimum computation in literature.

Although it does not guarantee convergence to the exact optimum solution it gets signi�cantly

close to it for all practical purposes. Furthermore, as previous methods have been developed

for theoretical purposes, their �nal solutions need not be practically feasible or do not provide

explicit paths for the population. In contrast, the BISOS algorithm works only with feasible

solutions and preserves the information about the exact paths of all commuters, throughout the

whole process of computing the system optimum. Furthermore, in the context of this thesis,

the results from the chapter point clearly towards routing as the best tool to be used in order

to improve system performance. A decrease of 70% in total population travel time is achieved

by employing the BISOS routing method, which is higher in e�ect than the infrastructure al-

terations studied in the previous chapter. As system optimum routing solutions increase the

total distance traveled by the population, the fuel consumption is modelled as well in order
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to check if the time saved has a price in terms of higher commuting cost. The results clearly

demonstrate that on top of saving a considerable amount of time, fuel consumption also drops

as a result of optimal routing, due to the decrease of congestion levels in the city, thus making

centralized system optimum routing systems a strong candidate for ensuring the sustainability

of future transportation systems.

4.2 Introduction and Existing Literature

4.2.1 Motivation

Technological advancement and growing demand for optimal functioning mechanisms imposes

high standards of e�ciency on both existing and future systems. The most studied such systems

are usually large and depend to a great extent on the human factor. This increases their com-

plexity and thus decreases the ability to model them e�ectively and improve their performance.

The presence of people in a system may introduce a disorganized manner of operation, which

can lead to induced �aws that can, in theory, be �xed by a centralised control system. It is

also crucial that ine�ciencies at such a level are resolved with minimal amount of actions thus

minimising the probability of spawning further problems. The �rst part of this chapter can be

considered on an abstract level to locate butter�y e�ect events [64], in which small changes to

initial conditions can lead to performance changes that are much bigger in magnitude [65] and

use it as an e�cient steering tool, thus in a way exploiting the complexity of the system.

Transportation systems as a type of social complex system have a sparse and heterogeneous

structure, which makes them harder to steer into an optimal operating state, compared to

homogeneous and dense systems [66]. Numerous control techniques have been described in

literature, which achieve increase in tra�c performance. These include self-organizing tra�c

lights [67, 68, 69], or information dissemination techniques as [70, 71, 72, 73, 74, 75, 76], where

tra�c participants receive real time information about congestion in the network and adapt

their routes accordingly.

The rapid advancement of Intelligent Transportation Systems [77] is enabled by broader

distribution of personal smart devices, which provide higher data availability and thus a more

complete view of the network, which leads to faster coordination [78]. As, nowadays, drivers use

as support the advice provided by their navigation tool [79] they can be used to implement more

e�cient and robust tra�c control strategies. The potential for intensive interaction between

79



4. IDENTIFICATION OF HARMFUL ROADS AND ROUTING CONTROL
FOR EFFICIENT SYSTEM OPTIMUM TRAFFIC ASSIGNMENT

a commuting system and an ITS, which exists in present days can be used to steer tra�c

participants in a bene�cial way.

4.2.2 Price of Anarchy

Often societies are governed by non-coordinated actions performed by individuals, which aim

at optimizing their own state. The evolution of systems exhibiting such dynamics is studied in

[80]. Even though, every participant in such a system follows a self-de�ned optimal strategy,

the collective behaviour of the group is often suboptimal. In the context of transportation

systems tra�c assignment, the ratio between the population travel time computed for the user

equilibrium state, where every commuter chooses an optimal path, and the system optimum,

which minimizes total travel time is called the �price of anarchy� (POA) and is indicative of the

ine�ciency of the system due to decentralization. The user equilibrium tra�c assignment is

referred to as �sel�sh routing� and studied in [81], however, such behaviour also exists in other

complex networks such as the Internet [82].

Furthermore, measuring and reducing the price of anarchy has been the subject of numerous

studies such as [81] and [83]. In [84] a useful general theory is developed for bounding the price

of anarchy. A middle ground between centrally enforced solutions and completely unregulated

anarchy is sought after in order to achieve stability in [85].

4.2.3 User Equilibrium and System Optimum Tra�c Assignment

At this point it is important to recollect the di�erence between system optimum and user equi-

librium states of the system. As described �rst in [86], user equilibrium (UE) occurs when all

agents have perfect information about the tra�c situation in the system and distribute on it so

that no agent would be willing to change his/her path. This state of the system can be perceived

as an analogy of the Nash equilibrium also known as the Wardrop's equilibrium, which for a long

time has been used in order to calculate the expected distribution of tra�c in transportation

networks. In [87] various modelling techniques for user equilibrium are reviewed including indi-

vidual choice theory, interacting choice theory, e�ects on travel information a�ecting individual

choice and interacting behaviour.

On the other hand, system optimum (SO) aims at minimizing the total travel time of the

system de�ned in [17]. Although subtle, there is a di�erence between the two formulations.

In the case of UE all alternative paths with �ows on them have the same length in order to

ensure that no one has incentive to switch their route. This constraint does not exist in the SO
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formulation, which is concerned solely with everyone arriving at the destination and minimizing

the total travel time of the population. The ideal case would be that the UE and SO solutions

coincide. In other words, the commuters are �steered� into taking the most optimal routes by

di�erent types of incentives.

The di�erence between the performance of UE and SO has been thoroughly studied and

evaluated in [88], where the total travel time at user equilibrium is bounded from above as

twice the tra�c routed in an optimal way. In [89] an upper bound is given to the ine�ciency

of stochastic user equilibrium (SUE). The price of anarchy was coined to characterize this

ine�ciency in [90].

Furthermore, e�orts have also been made for the design of networks where the UE and SO

coincide. In [91] e�cient methods for sel�sh network design are examined in the case of linear

latencies and speci�c network topologies in polynomial times. In [92] it is shown that bases of

matroids are maximal structures in which Braes paradox does not occur.

In literature, the user equilibrium is more thoroughly studied since it is easier to compute and

more realistic [93, 94], however, the need for a system-wide view of performance has long been

recognised [95, 96, 97]. With the advancement in technology, namely GPS devices, increased

computational capabilities, and the rise of autonomous vehicles, it is natural that researchers

should be looking in the direction of system optimum computation since it does not seem so

unrealistic anymore.

4.2.4 Braess' Paradox

The �rst part of this chapter deals with evaluating the sensitivity of tra�c conditions to changes

in the road network. Similar to [76] and [71], which use information dissemination, an alteration

of the road network, closing a single road segment in this case, a�ects the route choices of the

population. It is shown that if the right road segment is closed, the commuters are generically

steered towards choosing more socially optimal routes.

Although unconventional, removing a road from the tra�c infrastructure may lead to im-

proved commuting conditions. The Braess paradox �rst mentioned in 1968 [98, 99], states that

adding extra capacity to a network where drivers act sel�shly, can, in some cases, decrease per-

formance. A generalisation of this paradox [100] states that removing edges for large networks

can produce an arbitrarily large improvement. It was further shown that the paradox can exist

in all varieties of LOS networks as well [101]. Even the development of the human brain has a
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mechanism called synaptic pruning during which synapses (connections between neurons) are

being removed in order to achieve more optimal learning [102].

There are numerous studies in real life cities that con�rm the existence of the Braes paradox

as in Stuttgart [103] and New York [104], where streets were closed for renovation or on purpose

and better tra�c conditions were observed. There are 70 more case studies from 11 countries

that examine such conditions summarized in [105, 106].

Due to its peculiar nature and the fact that it points out apparent problems of the topology

of the network, the Braess paradox has been studied intensively since its discovery. The paradox

is found in semiconductor networks in [107]. The work in [108] de�nes and studies the paradox

in networks with pricing and shows that under monopoly prices the paradox does not occur.

Attempts for a detection methodology for the paradox can be found in [106, 109, 110]. In [111]

it is shown, however, that the construction of Braess paradox free networks is NP hard; it is

also stated that the paradox cannot be detected e�ciently.

4.2.5 Towards a Centralized Routing Control System

After presenting empirical proof for the existence of signi�cant ine�ciencies in the way drivers

choose their paths, the second part of this chapter will provide a tool for minimizing such

ine�ciencies in the sense of a centralized routing system. One way of achieving such a task

can be realized by using guidance systems, which are widely available in a large portion of the

vehicles, and through suggested routes that �steer� drivers into socially optimal routes. In [112],

the authors suggest reactive guidance that aims at using information of current conditions to

calculate recommendation. Another type of guiding system has been suggested in [113], where

an anticipatory system is utilized, which predicts future demands and gives recommendations

with respect to that.

A more complex approach has been adopted more recently in [114], where a fair system

for user equilibrium is designed. It is based on distributed multi-agent tra�c model made

of vehicles with routing guidance systems. Vehicles, which are assumed as sel�sh, negotiate

over auction with OD agents and OD agents negotiate over auctions with intersection agents.

The end result is a better performance than traditional user equilibrium conditions with small

exceptions of certain OD pairs.

Another possible way to actively control routing choices is by using �nancial incentives. Toll

taxes have been studied for a long time; research e�orts have intensi�ed in the recent decades

due to the emergence of more e�cient charge collecting and detection tracking systems. In
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[115] a di�erentiated congestion pricing strategy is used, which calculates charges according

to travel characteristics and attributes. An incentive program is further designed to mitigate

the privacy concerns since the method minimizes the revenue from the tolls. The morning

commute problem described by [116] is extended in [117] for more modes of transportation.

Time dependent prices exist to achieve system optimum using wish curves that identify the

departures curves for various modes of transportation.

In [118] the formulation of the cell transmission model (CTM) is extended to allow more

general non-linear �ow time relationship. It is shown that under the proposed pricing scheme

the user equilibrium coincides with the system optimum under dynamic conditions. Neither

CTM [119] nor FDA (Finite Di�erence Approximation) [120] based models, however, nor their

solution include any explicit expressions or variables for the link travel times experienced by

users, which makes tra�c analysis more challenging. In [121] a price design mechanism is

studied that is based on quadratic structure, which aims at minimizing the price of anarchy.

A more practical approach is taken in [122] where network optimal tolls are computed with

constraints on the available edges. Due to the usual lack of complete data for the system, the

strategy in [123] is suggested to optimize road pricing with unknown demand and cost functions

based on a trial and error approach adjusting the link toll charges.

Finally, a third approach might be the method of [10] that will be suggested in the �rst

part of the chapter, where information about very congested areas can be supplied to portions

of the commuters with the goal of avoiding them. In this way, the targeted system state can

be achieved. This approach, assuming its correct implementation, will guide the system into

an optimal state. The partial provision of information to the society instead of full knowledge

(assumed in the case of user equilibrium) is the root of the di�erent tra�c performance between

minimal commuting time and Nash equilibrium with full information. This approach can be

considered as �fooling� the commuting population, or at least, part of it, however, an analysis

of such implications are beyond the scope of this work. It must be noted, that an autonomous

vehicle �eet scenario will not have to deal with such hurdles as the route choice is seamlessly

taken away from the human passenger.

Finally, it must be noted that using a pricing system that charges people traveling on certain

roads, performs precisely the same function as the method described in [10] at an abstract

level. The only di�erence is that, one is based on limiting tra�c based on �nancially imposing

restrictions and the other is based on a well designed information dissemination technique.
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Regardless, of the means, the second part of this chapter aims at solving the more general

problem of the optimal tra�c distribution.

The contributions in this chapter can be summarized as:

• First systematic analysis of the impact of road removal of every road segment in a realistic

large city scenario.

• Identi�cation and quanti�cation of all harmful road segments in a city.

• Design of a heuristic for Braess paradox detection based on system optimum solution.

• Numerical experiment demonstrating the invariance of total population travel time to a

constant size set choice of drivers to be re-routed from a certain road.

• Design and implementation of system optimum search algorithm, BISOS, with explicit

paths and integer valued �ow solutions, converging more than one order of magnitude

faster than current methods.

• Systematic analysis of the BISOS algorithm parameters.

• Evaluation of system optimum routing strategies for increasing population size.

• Fuel consumption model, evaluating the fairness and cost of system optimum routing

solutions.

4.3 Systematic Road Removal

The �rst set of studies that will be presented deal with evaluating the e�ects of a single road

segment closure on the system's performance. A systematic approach is taken for the identi�ca-

tion of road segments whose closure would result in improved tra�c performance. It consists of

examining all 240, 000 links one by one and removing them from the routing graph. For every

link removal a separate tra�c assignment run is performed and the routes and travel times of

the population are recalculated according to the new road network. The results are compared

to the initially simulated scenario in accordance with the model described in Chapter 2, while

the origins and destinations of all drivers are kept the same for all simulation runs.

The procedural sequences of actions for the systematic road closures are formalized in a

step-by-step manner below in Algorithm 2. It describes the process of closing every link in the
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Data:

G Road network graph consisting of nodes and links

A Set of all agents in the population

L Set of all links in G

ComputeRoutes Set of agents × Graph → Set of routes

ComputeTravelT imes Graph × Routes → Set of travel times

RemoveLink Link × Graph → Graph

Result: Set of average population travel times for respective link closures at 100% - t100

// Compute routes RA and travel times TA

RA ← ComputeRoutes(A,G)

TA ← ComputeTravelT imes(G,RA)

t0 ← mean(TA)

t100 ← t100 ∪ t0

foreach l ∈ L do
Gl ← RemoveLink(l, G)// Remove link l from the road network

Al ← ∀a ∈ A : l ⊆ Ra// Identify agents that pass through link l

// Re-caluclate routes of afftected agents and population travel times

RA
l ← ComputeRoutes(Al, Gl)

Rl ← RA
l ∪RA\Al

TA ← ComputeTravelT imes(G,Rl)

tl ← mean(TA)

t100 ← t100 ∪ tl// Store the computed population average travel time

end
Algorithm 2: Quantifying population travel time change for partial and full closure of links

road network individually and re-simulating the tra�c conditions, in terms of computing the

new traverse times for every link based on the new �ows.

The results of the experiment con�rm the existence of the Braess paradox in the examined

network. Furthermore the harmful e�ect of every link in terms of time saved as a result of its

closure can be quanti�ed. In 21 cases the closure of a link in the network leads to a decrease

of one minute or more in the average travel time, which corresponds to 3.73% overall system

performance increase. The most harmful link brings a 74.25 second decrease in overall trip

duration translating to 6400 saved hours for the driver population on a daily basis, solely from

the morning rush hour period. Although the existence of harmful roads has been predicted by

Braess, it is counter-intuitive that some of the most ine�cient road segments are major roads.
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Although part of the backbone of the network in a topological sense, the removal of certain

major road segments, would decrease overall travel time.

Fig. 4.1a shows that the full removal of the majority of road segments in the network would

have almost no e�ect on the average travel time of the population. The removal of a single

road segment does not present a drastic change to the network, therefore it is expected that the

e�ect of such a removal is minuscule. The reader is, however, probably more interested in the

counterexamples of this, which can be observed in more detail by removing the una�ected links

from the results set. This leaves out only the road segments that have a more signi�cant e�ect

on tra�c (illustrated on Fig. 4.1b). This distribution can be helpful not just for identifying

harmful links (segments on the far left side of the distribution) but also to locate roads, which

are crucial for the road network (segments on the far right side of the distribution). Such

segments are the weak spots of the infrastructure in the sense that their incapacitation would

result in signi�cant decrease of tra�c performance.

It seems that in most cases tra�c that has to be reassigned has to go through a smaller road

than the initial one and congests the system even further. This does not happen in only 639 out

of the 240, 000 examined cases, corresponding to a 99.73% probability of worse tra�c conditions

arising from a road closure. Intuitively, after considering the complexity of a large city road

network and the hundreds of thousands of vehicles on the roads, decreasing connectivity of the

road infrastructure will rather increase congestion than relieve it. As noted in the results, the

likelihood of observing commuters being forced into more socially bene�cial paths given a road

closure is indeed small, but, as demonstrated, not impossible. It seems that in such cases the

additional bottlenecks, if any, introduced by the road network alteration are less harmful than

the tra�c stress that is relieved from the initial state of the system.

One can consider two main reasons for the occurrence of the observed phenomenon. The

�rst one is sel�sh routing whose e�ects can be diminished if a certain road is closed leaving the

drivers no alternatives other than choosing a more socially optimal path. The second reason is

the nature of transportation networks evolution, which adapt in an incremental manner in time

to the changes in tra�c demand. As a natural consequence of that as new roads are added,

rarely old ones are removed. And although, evolutionary processes undeniably o�er working

solutions, their optimality is not guaranteed. It is, therefore, not improbable that some of the

old roads become obsolete or even harmful.

A detailed view at the implications of closing a harmful road, which depicts the �ow dif-

ferences before and after the removal of the road can be seen in Fig. 4.2. The closure of the
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(a)

(b)

Figure 4.1: Results of Study 1 and 2 summarized in histograms. Fig. 4.1a shows the distribution

of links according to their e�ect on the average population travel time. Fig. 4.1b shows the

same distribution, however all links that have an e�ect smaller than 10 seconds in magnitude are

excluded from the distribution.

examined segment can be observed to reduce the amount of tra�c on the roads in its proximity

since many existing paths become non-viable. The collective length of roads receiving tra�c is

far greater than that of the roads that experience reduced �ow volumes. Since no vehicles are

lost and their number is conserved, the vehicles that are taken from the closed road and the
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ones in its vicinity are spread over a larger portion of the city thus increasing the homogeneity

of tra�c �ows. A reduction in average travel time is observed and it can be concluded that the

streets, which receive tra�c produce less additional time (have a smaller marginal cost) than

what is gained by the streets that give away tra�c. Due to the non-linear nature of the traverse

time vs. �ow relationship taking an agent from a severely congested street and putting it on

a less congested one, reduces overall trip duration. Therefore, as a result of the road closure

tra�c from a group of highly congested roads is distributed along less populated parts of the

network thus relieving tra�c conditions.

Figure 4.2: A map representing the changes that occur in tra�c due to the closing of the road

indicated in blue. Green and red bars represent reduced and increased tra�c respectively. The

height of the bars illustrates the magnitude of the change.

4.3.1 Heuristic Design for Braess Paradox Detection

An attempt has been made in this work, to design a heuristic, which would speed up the process

of identifying Braess paradoxes in a network. Instead of removing all road segments one by one

from the network and recalculating the routes of the a�ected agents, it might be more bene�cial

to compute the system optimum solution and use it as guidance towards which segments to
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remove �rst in search of the paradox. The logic behind this approach is the following: since

the system optimum �ows minimize travel time, it is implied that if there is a harmful road on

the network, no user will be going through it in the system optimum solution. Therefore, by

identifying roads that experienced heavy tra�c in the initial tra�c assignment, but have much

smaller system optimum �ows, a Braess paradox road can be located. In other words, when the

system optimum solution shows that a road should not be used and there is heavy utilization

of it in the initial tra�c assignment, there is a high probability that this road is harmful and

its removal would lead to improvement of tra�c conditions.

Numerous heuristics based on the di�erence between system optimum solution and initial

assignment were designed in search of an optimal approach. The simplest one, however, proved

to be the most successful. The heuristic hi for segment i is simply the di�erence between

the initial �ows and the system optimum �ow on the respective road segment: hi = f0i − fsoi .

Ideally, the segment with highest value of h should also lead to the biggest improvement in total

travel time when removed from the network. Assuming bi is the time saved by the population

when link i is removed, then for for the best possible heuristic there must be perfect correlation

between b and h, or ρbh = 1. In the case of the de�ned heuristic the correlation coe�cient is

equal to 0.6, which, provided the complexity of detecting Braess roads, is a solid result.

In order to practically evaluate how helpful such a heuristic would be, let us visualize how

the already performed systematic experiment would have gone, if the heuristic was used instead

of trying every single road in the city. Fig. 4.3 depicts the number of roads that should be

explored using the heuristic values in order to identify the �rst 100 most harmful roads in the

system. The graph can be understood by interpreting the value on the y axis as the number

of roads that need to be examined using the heuristic in order to �nd the �rst n most harmful

roads, where n is the respective value on the x axis. In summary it can be observed that the

most harmful road is also the one, which has the highest value for the heuristic h. The 10 most

harmful roads can be identi�ed by examining 550 cases and the �rst 100 most harmful road

can be identi�ed within 1650 road segment examinations. Depending on the intrinsic goals

of an experiment, one might aim at just identifying the most harmful road, removing it and

then identifying the next most harmful segment in an incremental way. Another option would

be to identify a group of potentially harmful roads and then apply an optimization algorithm

to �nd the optimal combination of links to be removed. In any case, the suggested heuristic

brings a signi�cant decrease in the number of road removal evaluations required, by reducing

this number from 240, 000 to 1650, which is almost 150 times less.
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Figure 4.3: Number of road segment removals to be evaluated in order to �nd the �rst n most

harmful road segments.

4.3.2 Invariance of Total Travel Time to Choice of Agents to be Re-

routed

As the general objective of this work is to maximize utilization of the road network, it may be

contradictory and ine�cient to completely remove parts of it. Greater social bene�ts can be

achieved with milder measures than complete removal. As the initial tra�c generation chooses

optimal trips assuming free �ow conditions, the path that drivers are forced to reroute to will be

sub-optimal for them. Therefore, it might be more appropriate to not fully dispose of already

existing infrastructure, which can help avoid cases of extreme detours.

An additional study performed in [10], the most harmful roads are chosen and the degree

of closure is varied, in the sense that a certain percentage of agents are allowed to still pass

through while the rest were rejected access. The results of this study demonstrate that each

link has an optimal percentage of the volume of vehicles that need to pass through it, which

minimizes the total travel time of the population. The percentages of closure for every link can

restrict the access to the point which coincides with the system optimum �ow. The experiment

also produced some other signi�cant results. Since the set of agents that should be denied

access to the link can be chosen at random, several runs for the same percentage are performed.

The coe�cient of variation for the results of those runs is unexpected;y small.

Four of the most harmful roads were selected to be examined. The group of agents to be
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re-routed is sampled from all drivers that initially need to use the examined road segment. In

order to measure the sensitivity of the results against the sampling of agents to be rerouted 10

runs are performed for each percentage of closure, where every time a di�erent set of agents

is redirected. It is intuitive to expect variations in the results since every driver has a distinct

origin and destination and would a�ect the system di�erently after re-routing. The computed

coe�cient of variation σ / µ on those experiments is 4 × 10−4. The measured coe�cients of

variation
σ

µ
is recorded in Table 4.1.

The small coe�cient of variation suggests that the choice of agents, which need to �nd other

routes is not a decisive factor. This �nding can be used to simplify signi�cantly an optimal

routing solution computation. This is because the problem of �nding the optimal set of drivers

to reroute, which is considered NP hard, can be avoided. This �nding may be explained with

the fact that in a real world scenario there is a great variety of origin destination pairs. The

apparent homogeneity of agents at this level of abstraction enables a simpler and faster solution

to the system optimum problem which will be presented later in the chapter.

4.3.3 Spatial Distribution of E�ects of Full Road Closures

Fig. 4.4 illustrates a spatial perspective of the performed experiment. The segments, which

present a signi�cant change to the overall travel time if closed (positive and negative) are

coloured according to the magnitude of their e�ect. As already noted from the distribution

in Fig. 4.1, most of the segments that lead to a signi�cant change in population travel time,

if closed, would have a negative impact on the system. Although, in smaller quantities, the

harmful road segments seem to cover some of the backbone roads of the city. Topologically

speaking, those roads are considered rather central and thus important for the system, however,

according to the simulated results their removal can reduce congestion levels. Furthermore,

there are regions of the city where an alternation on a single road of bene�cial and harmful

segments can be observed. One of those sensitive regions is shown in more detail on Fig. 4.5.

4.3.4 Equilibria Analysis

The gathered data from the experiment allows for the analysis of the way optimality is perceived

at di�erent hierarchical levels of the driver population. Consider a single road is closed and three

sets of drivers. The �rst set is all drivers in the population, the second one is all drivers that

pass through the segment and the third set is composed of all a�ected drivers, who, however,

act sel�shly so that user equilibrium is achieved. In order to demonstrate how di�erent degrees
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Figure 4.4: Comparison of road closure e�ects. Road segments coloured in the red gamma

represent increase in average population travel time. The thicker and redder road segments are

represented the higher the increase of average population travel time. Road segments coloured in

the blue gamma analogically represent a decrease of average population travel time. The closure

of roads that are not coloured would result in a change of average travel time of less than 10

seconds.

of socially aware behaviour can a�ect tra�c conditions, let us compute the optimum percentage

of closure for the road segment in question for each of the three sets. The �rst set would choose

the percentage, which minimizes the total travel time of the population. The second group

will choose the percentage, which minimizes the total travel time of the group of people, which

passes through the road segment. The set of sel�sh drivers would choose the Nash equilibrium

point percentage where the travel time on or o� the closed road would be the same. The

calculated values of the optimal percentage of closing in the 3 cases can be found in Table 4.2.

Four road segments have been examined and in 3 out of the 4 cases the optimal percentages of

closure for the three groups are all di�erent.

The above experiment demonstrates clearly the concept of Price of Anarchy and also includes

a middle level of centralization in the sense of a group optimum (the second examined set). It

must be noted, the di�erence in chosen optimal percentages of closing are not due to lack

of information. All three groups are assumed to have perfect information about the road

conditions. The reason for this mismatch is simply the di�erent priorities that each of the
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Figure 4.5: Zoomed version of Fig. 4.4 in order to observe in more detail a sensitive area.

Road Social Optimum

[%]

Nash Equilibrium

[%]

A�ected Group Opti-

mum [%]

Road 1 100 70 90

Road 2 90 90 90

Road 3 40 27 50

Road 4 50 44 60

Table 4.2: Points of Equilibrium

examined sets has. It can be, therefore, concluded that it is vital that the system is always

considered as a whole because the collection of local optimal solutions may not produce the

expected result due to uncoordinated behaviour of the users.

4.4 Socially Optimal Routing

The results from the previous part of this chapter strongly suggest the existence of ine�ciencies

in the way people choose their routes. This is due to the lack of a centralized control system,

which �rst can coordinate the population and second, is aware of the routing choice every driver

is assigned. The main task of such a system would be to control the third tra�c determining
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factor, namely, the routing choices. Demands change in the long term faster than the network

can cope, as evident from the mismatch study in Chapter 3. Furthermore, the demands change

on a daily basis as observed from the existence of highly dynamic intersections (also shown in

Chapter 3). The road network is static in the short term and therefore cannot adapt to such

variations and react accordingly. The study done in the �rst part of the chapter, however, can

be extended in order to enable the static infrastructure to change dynamically. Removing roads

from the network, or making them very hard to access for only a certain group of drivers, in a

sense allows the road infrastructure to choose the way it looks like in front of each individual

user, thus making it appear to be dynamically changing perceived from the commuter's side.

This concept will be applied in order to solve e�ciently the problem of system optimum

routing. The problem consists of �nding the paths for all drivers in a city, which minimize the

total travel time of the population. By allowing the network to alter its appearance for the

di�erent drivers, a much faster approach for computing optimal routes can be achieved. The

�nding from the previous part of the chapter regarding the very small coe�cient of variation

of total travel time with respect to the subgroup of vehicles that have to avoid a certain road

segment, allows the circumvention of the NP hard problem of choosing, which vehicles to

reroute. In this way, using the BISOS algorithm that will be suggested later in this section,

the computation of system optimum becomes more feasible than the standard Frank Wolfe

algorithm [124] variations typically used until now, bringing it it closer to being utilized in real

life, real time applications.

On a side note, interest in the tra�c assignment �eld of research has been mainly con-

centrated on calculating user equilibrium solutions as this has been considered to be the only

feasible situation on the road. The system optimum, historically, has been computed just as a

theoretical minimum for the travel time of the population but never considered possible in real

life conditions. Hence researchers have spent more time developing specialised algorithms for

user equilibrium and rather neglected the computation of system optimum. Due to the rising

thrust in guidance systems and the development of autonomous vehicles, research into fast and

e�cient system optimum algorithms has become a signi�cantly relevant task.

Furthermore, all existing methods have rather weak constraints for the system optimum

problem since it has been only used for theoretical purposes. There are two main additional

constraints that the algorithm in this thesis has taken into account. If a centralized control

system is developed it needs to supply every driver that wants to get from a prede�ned origin to

his/her destination an explicit path, therefore the path for every agent on the road needs to be

95



4. IDENTIFICATION OF HARMFUL ROADS AND ROUTING CONTROL
FOR EFFICIENT SYSTEM OPTIMUM TRAFFIC ASSIGNMENT

known at all times of the computation of the optimal solution. The majority of existing work,

provides, as �nal solution, the optimal �ows on every road segment, which although proven to

be feasible, are impractical in terms of assigning speci�c routes to drivers. In fact, it is NP hard

to compute feasible routes from a set of feasible �ows.

Second, there is no integer constraint on the number of vehicles per road segment. The

�ows based algorithms, therefore, are allowed to split drivers between as many roads as they

want thus making the solution impractical. Furthermore, the path based algorithms that assign

optimal path �ows for every origin destination pair also do not have the constraint that the

number of people on each path has to be an integer. The addition of those two constraints,

namely, stored explicit path for every driver and integer number of vehicles passing through

every segment, means that the already existing methods that rely on the convexity of the

feasibility space do not present feasible solutions anymore. Next, the standard used algorithm

for system optimum computation is presented and existing solutions to the system optimum

problem are introduced.

4.4.1 Existing System Optimum Computation Algorithms

The work in [17] will be relied on in describing the system optimum problem and the user

equilibrium (UE) algorithm described there has been re-tailored here for the system optimum

problem. The classic formulation of the system optimum (SO) problem is:

min
F

T (Fi) =
∑
i

ti(Fi)Fi (4.1)

subject to

∑
k

podk = qod ∀o, d (4.2)

podk ≥ 0 ∀k, o, d (4.3)

where ti(w) is the BPR function for traverse time dependent on the �ow Fi. The constraint

4.2 makes sure that the �ow is conserved. podk is the �ow on path k between origin o and

destination d and qod is the number of vehicles that belong to this OD pair. Constraint 4.3

ensures that the �ows on all possible paths are non-negative. The de�nitional constraints linking

the path �ows with the link �ows are:
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F (i) =
∑
o

∑
d

∑
k

podk δ
od
i,k ∀i (4.4)

where δodi,k is 1 if path k between o and d passes through i and 0 otherwise. Please note

the lack of constraints that Fi is an integer. The necessary condition for a minimum are the

�rst-order conditions for a stationary point of the Langrangian:

L(p, λ) = T (Fp) +
∑
od

λod

(
qod −

∑
k

podk

)
(4.5)

The minimum of the Lagrangian with respect to p is constrained by:

podk ≥ 0 ∀k, o, d (4.6)

The variable λod is the vector of Lagrange multipliers associated with the �ow conservation

constraints for OD pair od. The �rst order conditions for a stationary point at the optimal

solution are then:

podk
∂L(p, λ)

∂podk
= 0 ∀k, o, d (4.7)

∂L(p, λ)

∂podk
≥ 0 ∀k, o, d (4.8)

∂L(p, λ)

∂λod
= 0 ∀o, d (4.9)

podk ≥ 0 ∀k, o, d (4.10)

(4.11)

Constraints 4.10,4.11 simply restate the conservation �ow and the non-negativity conditions.

Conditions 4.8 and 4.9 consist mainly of the partial derivative of the Lagrangian, which can be

expressed as:

∂L(p, λ)

∂podk
=

∂

∂pmnl
T (Fp) +

∂

∂podk
=

∂

∂pmnl

∑
od

λod

(
qod −

∑
k

podk

)
∀m,n, l (4.12)

The expression on the right hand is simpli�ed to: −λmn ∀l,m, n. By using the chain rule and

Equation 4.4 on the left becomes:

∑
i

δmni,l

(
t(Fi) + Fi

dt(Fi)

dFi

)
∀l,m, n (4.13)
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If ˆt(Fi) = t(Fi)+Fi
dt(Fi)

dFi
∀i, the ˆt(F (i)) basically is the marginal time that an additional

traveller on link i produces for the system as described in [125]. Therefore the partial derivative

of the objective function can be rewritten as:

∂

∂pmnl
T (Fp) =

∑
i

δmni,l
ˆt(Fi) = ˆcmnl ∀l,m, n (4.14)

Where ˆcmnl is the marginal total travel time on path l connecting OD pair mn. The �rst

order conditions of the SO problem can now be rewritten as:

pmnl ( ˆcmnl − λmn) = 0 ∀l,m, n (4.15)

ˆcmnl − λmn ≥ 0 ∀l,m, n (4.16)∑
l

pmnl = qmn ∀m,n (4.17)

pmnl ≥ 0 ∀l,m, n (4.18)

(4.19)

The resulting constraints simply state that the marginal total travel times on all used paths

connecting an OD pair have to be equal. Please note that in the case of UE computation the

total travel times on all used paths connecting an OD pair have to be equal. This theoretical

reminder has been shown here in order to see the importance of the marginal costs on the links.

Those costs are a manifestation of the non-linearity of the delay function. The algorithm that

has been presented in the next section relies heavily on those marginal costs and calculates

them in terms of a congestion factor in order to guide the optimization process.

SO problems are usually solved using the convex combination algorithm proposed by [124]

or an improved version called Partan, which was suggested in [126] and discussed in [127, 128].

A brief explanation of the convex combination algorithm applied on the SO problem is provided

next for completeness.

The approach of the convex combination algorithm can be intuitively explained as a lin-

earization of the objective function at the current point and optimal computation of the step

size that needs to be performed in the gradient minimizing direction. The linear program to be

solved with respect to all feasible y at every iteration of the algorithm is:

minyT
n(y) = ∇T (Fn) · yᵀ =

∑
i

(
∂t(F (i)n)

∂Fi
Fi + t(Fi)

)
yi (4.20)
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In this notation the upper index n is used to denote the iteration number. For example,

∇T (Fn) is the gradient of the objective function at the current solution F on iteration n. It

can be noticed that the marginal cost appears once more in the equation as the coe�cients of

the minimization variable y and therefore the problem can be rewritten as:

minyT
n(y) =

∑
i

ˆt(Fni )yi (4.21)

subject to

∑
k

podk = qod ∀o, d (4.22)

podk ≥ 0 ∀k, o, d (4.23)

(4.24)

The solution of this linear problem is simply computing the shortest paths of all commuters

by using as weights the marginal cost of every link, calculated at the previous iteration. The

descent direction is therefore, dn = yn − Fn. The �ow solution of the next iteration is:

Fn+1 → Fn + α(yn − Fn) (4.25)

The step size of the descent α is computed so that it minimizes the objective function in

the given direction. The derivative of the objective function with respect to α is:

∂

∂α
T (Fn + α(yn − Fn)) =

∑
i

(yi−Fi)t(Fi+α(yi−Fi)) + (Fi+α(yi−Fi))
∂t(Fi + α(yi − Fi))

∂α

(4.26)

This function can be evaluated if an analytical expression is provided for the delay function

t(Fi) and a root �nding method such as the bisection method can be applied to �nd the optimal

step size. Let us consider the �rst iteration of the algorithm where clearly F0 and y0 are both

integer valued solutions, since they present the �ows for the computed shortest paths. It must

be noted, however, that the step size α is not chosen such that the resulting new �ows F1 are

integer-valued. In fact the condition that needs to be satis�ed by α to ensure integer valued

solution at the end of the iteration is that the admissible values for the step size should split

the feasible region [0, 1] as the greatest common divider of the di�erence between the current

�ows F0 and y0, which is d0. The condition can be summarized as follows:
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α =
i

GCD(d)
∀i ∈ N ≤ GCD(d) (4.27)

Where GCD(d) represents the greatest common divider of the numbers in vector d. It must

be noted, that as long as there is a prime number in d or at least one of the numbers in d is

equal to 1, the greatest common divider will always be 1. This means that the only admissible

values for α are 0 and 1. On a more intuitive level, the existing algorithms say that points F0

and y0 are both feasible solutions and due to the convexity of the feasibility space, all points

on the line connecting them are also feasible solutions. The additional constraint for integer

values, however, states that only points on that line, which have all integer valued solutions

are feasible. Although, it might not seem to be such a binding constraint, it, for all intents

and purposes, makes the already existing algorithms incapable of �nding good solutions. In the

realistic scenario that has been studied in this work, there is not a single case where α has an

admissible value, other than 0 or 1. Therefore, the additional integer constraint in Equation

4.27, turns the convex combination method into a simple all-or-nothing assignment procedure,

which is known to not �nd an optimal solution. That being said, it would be unfair to compare

the solutions of the presented algorithm in this work with such a method. As the convex combi-

nation method computes a theoretical system optimum, although, with unfeasible assumptions

and thus solutions, it will still be used as a benchmark for the presented algorithm in its orig-

inal form. The convex combination method for SO computation is summarized in Algorithm 3.

Step 0: Initialize �ows.
Compute all routes on the basis of a preferred algorithm i.e shortest paths. The resulting
vector is: F1. Set n = 1
Step 1: Calculate new traverse times.
Set all tn(Fi) = tn(Fni )
Step 2: Find the descent direction.
Compute shortest paths and new �ows yn where the graph weights are equal to the
marginal costs. w(i) = ˆt(Fni )
Step 3: Find appropriate step size.
αn, which minimizes the objective function T (Fn + α(yn − Fn))
Step 4: Calculate the �ows for the next iteration.
Set Fn+1 → Fn + αn(yn − Fn)
Step 5: Calculate new traverse times and test for convergence.
Set all tn(Fi) = tn(Fni )
If the chosen convergence criterion is satis�ed stop, else set n→ n+ 1 and go to step 2

Algorithm 3: Convex combination method for calculating system optimum

The convex combination method will be implemented and used as a benchmark for the algo-

rithm suggested in this work. According to [17] it converges to a satisfactory solution within 5
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iterations. The Partan extension of the convex combination algorithm implementation shown

in [129] uses a simulated network there were roughly 50, 000 drivers for which using this method

more than 320, 000 paths must be computed. This translates to more than 6 paths per driver.

Very large real networks storing so many paths can lead to memory problems [129]. It must be

noted that in the suggested implementation this problem is non existent since only one path is

stored per commuter at all times.

Some existing algorithms work with path �ows instead of link �ows and thus employ a

method called column generation, which reduces the size of the problem by concentrating on

basic variables. This was �rst studied for user equilibria in [130]. Detailed description of UE and

SO algorithms can be found in [17, 131]. Furthermore, computation of Wardrop's equilibrium

or UE is discussed rigorously in [132] and algorithmic implementation are suggested in [133]

that shifts �ows from paths until all path costs equalize and in [134, 135, 136]. What makes the

suggested algorithm di�erent from existing ones is that it works with link �ows and also that

it stores the paths of all drivers at all times. In fact, new paths are computed only for certain

vehicles and the old ones do not need to be stored, which makes it less demanding for memory.

Furthermore, there is no need for explicitly implementing column generation methods, since

they naturally appear in the algorithm as it only deals with a the most congested links in the

system and thus the rest are not subject to attention. The algorithm can be perceived as a

backwards version of the incremental assignment shown in [17]. Instead of assigning vehicles

one by one and changing the weights at every step according to the current tra�c situation,

all commuters are assigned routes according to shortest path or other graph weight choice and

then the vehicles are re-routed one by one from the most congested links in the network. This

strategy can be seen as a greedy backwards incremental approach.

A di�erent modelling approach has been demonstrated in [137] where a cell-based extension

of the Merchant-Nemhauser model[138] is presented and it is shown that it becomes a linear

program. It is also pointed out, however that marginal cost algorithms can be more e�cient.

In [139] a Nash equilibrium and a system optimum approaches are compared in an evacuation

scenario. The system optimum approach is used using weights speci�ed by the marginal travel

time described in [125]. These are also used in the new algorithm described in this work.

Theoretical work for formulation of SO problems has been done in [140] where a single

destination system optimum dynamic tra�c assignment is formulated using the cell transmission

model as a linear programming problem. It also shows that a su�cient condition for SO is

that every unit of �ow follows the time-dependent least marginal cost path to the destination.
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No attempt was made to address computational requirements. Furthermore, in [141] Nash

equilibrium is examined as sel�sh routing using non-convex functions as latency functions and

it is demonstrated that the equilibrium is not optimal in a congested network. They use the

user equilibrium de�ned in [86] as a starting point. The introduction of arc capacities creates

multiple equilibria and it is shown that the price of anarchy may jump to in�nity.

It is possible that in an SO solution some of the commuters might have to choose paths

that are much longer than the shortest ones. This problem is addressed in [129], which deals

with solving the SO problem by also minimising an unfairness measure that they de�ne as the

ratio between a recommended path to the shortest possible path. Additional constraints to the

optimization problem are added so that no path exceeds a certain unfairness ratio. It is shown

that the resulting solution is still better than the UE. In the presented algorithm, the unfairness

is also computed, however, not in the sense of additional traveled distance but rather in the

sense of extra fuel spent.

On a more theoretical side of the fairness problem, in [142] it has been proven that the

optimization problem of �nding the minimum of the maximum latency of �ows in networks is

NP-hard even with linear latency functions and one origin and destination pair. In this case,

however all �ow-carrying paths have the same length, which means that the optimal distribution

is also fair, which is not true for non-linear latency functions. The Nash equilibrium, which

can be computed e�ciently is shown to be within a constant factor of the system optimum. It

is, however, shown that the price of anarchy is unbounded even with a linear latency functions

when there are multiple origins and one destination. It is also shown that the unfairness is

bounded from above by a polynomial of the degree of the latency function.

An improved numerical approach for faster computation of the interior point method (IPM),

which can be used to solve the SO problem is described in [143]. A distributed multi-vehicle

routing algorithm is proposed that minimizes the network breakdown probability. Through

distributed matrix decomposition techniques the algorithm is scalable and is able to perform

well in large city scenarios. One advantage of this approach is that it allows for an easy extension

to control only a portion of the tra�c in an optimal way, which is a more realistic scenario.

This algorithm is similar to the one used in Chapter 3 for optimal lane computation, however

it does not exploit the fact that there is a road network and routing on it is faster than using

the IPM.

Finally, an approach that might have larger implications in the future with the increase

of computational power is described in [144]. A surrogate based optimization approach with
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one-stage and two-stage models is used in order to speed up the objective function evaluation

because a tra�c simulation was used to evaluate the travel times rather than a latency function.

4.4.2 Proposed Algorithm: Backwards Incremental System Optimum

Search (BISOS)

The algorithm presented in this section aims at resolving some of the ine�ciencies underlined in

the previous section of already existing algorithms and to provide, feasible and practical solution

to the SO tra�c assignment problem. First of all, it does not have to store in memory any of the

possible paths for an OD pair. For every user there is exactly one path from origin to destination

that needs to be stored at all times. If a large city needs to be analysed in the sense of an SO

solution, the path storage can become problematic, when dealing with millions of vehicles that

each has several possible paths. Second, no unnecessary paths need to be computed. Instead of

recomputing paths for all users at every iteration step, the proposed algorithm re-routes only

a portion of the vehicles that are on the most congested road in the current iteration. This

amounts to a severe reduction in the number of paths to be calculated, which is in fact the most

time consuming part of any SO algorithm. In this way the column generating methods, which

are usually used, can be viewed as a natural consequence of the algorithm since only roads

that are congested beyond a certain threshold are inspected. Finally, it is considerably simpler

to implement this algorithm and furthermore many of the computations can be performed in

parallel in order to gain an additional performance boost.

Intuitively the BISOS algorithm can be described in the following way. Similar to the

incremental assignment [17] it deals with vehicles one by one, or in chunks, but not all at once.

The incremental assignment method starts o� with all weights of the graph equal to the free

�ow travel times on the links. Each group of vehicles that is assigned on the network computes

its paths according to the shortest path algorithm. After each chunk is assigned routes, the

weights are recalculated so that each weight represents the current travel time on the respective

link. This algorithm was aimed at achieving user equilibrium, however, it is shown that such

state is not reached by it.

The BISOS algorithm can be viewed to do a similar process but in a backwards manner.

First, all routes are computed based on shortest path algorithm with weights given by the free

�ow traverse time of the links. After that the most congested road is identi�ed, by looking

at the marginal cost of the road segments. A prede�ned number of vehicles are removed from

the road by changing the weight of that road to its current marginal cost. The new routes
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are computed for those vehicles using the new routing graph with the updated weight. In a

way increasing the weight to the marginal cost of the link can be perceived as closing the road

segment for the rerouted vehicles since the marginal cost is signi�cantly larger than the free

�ow cost. Once the link is determined to be unable to give away more vehicles (re-routing

vehicles from it leads to an increase in overall population travel time), the next most congested

link is explored. When all the links that have a �ow higher than their prede�ned capacity

are explored, the iteration is �nished. Please note, that the most congested link is chosen by

examining the congestion factor of the link, which is proportional to the marginal cost.

For this work the BPR function is going to be used in order to evaluate the congestion at

morning rush hour in a static environment since in [17] it has been pointed out that during rush

hours, tra�c exhibits steady - state behaviour. The general version of the BISOS algorithm is

formalized in Algorithm 4.

There are some concerns with such type of greedy optimization. The major one is that

converging to the optimal solution is not guaranteed. The random selection of vehicles to be

re-routed at every sub-iteration excludes the possibility of optimal solution. At this point the

reader must be reminded of the �nding discussed in the end of the �st part of this chapter in

Section 4.3.2. It has been shown that the variation
σ

µ
of the resulting tra�c conditions with

respect to choosing di�erent set of agents to move from a speci�c road segment is less than

10−4. Therefore, it can be argued that the optimal set of agents to be moved need not be

computed explicitly. In the results section the �nal result of the suggested algorithm will be

compared to the actual SO solution achieved by the convex combination algorithm in order to

verify this assumption.

Furthermore, as the set of agents to be re-routed is chosen at random, it is possible although

with small likelihood that, the randomly sampled agents, which have to be removed from a

certain road have no viable alternatives. In this case, the total travel time will be increased

and as a result of that, the road segment will not be explored again within the current main

iteration. In order to avoid this, one might set a counter of how many times, the road segment

can �fail� in the sense of not producing an improvement to tra�c conditions when a set of agents

is removed from it. The performance of the algorithm for di�erent values of the counter will be

examined in the results section.
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Data:
G Road network graph consisting of nodes and links
A Set of all agents in the population
ComputeRoute Agent × Graph → Route
ComputeTravelT imes Graph × Routes → Set of travel times
RemoveLink Link × Graph → Graph
RandomSample Set of agents × Number of Agents → Set of agents
CalculateF lows Set of routes × Graph → Set of �ows

Result: Set of opimal path �ows F, set of routes of the population RA

Step 0: Initialize �ows.
Compute all routes on the basis of a preferred algorithm i.e shortest paths. The resulting
initialized vectors are: the �ows F, the routes RA, the graph of every agent a is set to
the original graph Ga ← G.
T ← CalculateTravelT imes(G,RA) // Compute the total travel time

E ← ∅ // Initialize the set of links that should not be explored anymore

Step 1: Identify most congested link.

The congestion is de�ned as c(i) = α

(
Fi

2000w(i)

)β
U ← ∀i :

Fi
2000w(i)

> 1 // identify all links with flows over the capacity

U ← U \ E// Remove the already explored links from the list.

m← max c(U)// Identify the next link to explore.

Step 2: Change weight and re-route a given percentage of passing agents determined by
the step-size σ.
Al ← RandomSample(Am, σ)// Randomly sample the indicated by σ number of vehicles

from the set of all vehicles passing through link m Am

SetWeight(m,MarginalCost(m))// Set the weight of the most congested link to its

marginal cost

foreach v ∈ Ai do
Rv ← ComputeRoute(G)// compute new route

R̃A ← Rv ∪RA\v// replace old route with new route

end
Step 3: Recalculate �ows and travel times and check if there is an improvement.
F = CalculateF lows(RA, G)
T̃ = CalculateTravelT imes(G,RA)
if T̃ < T then

T ← T̃ // Update the minimum travel time.

RA ← R̃A// Update the routes of the population.

else
E ← E ∪m// Add the link to the already explored links list

if U = ∅ then
Go to Step 4

end
end
Go to Step 1
Step 4: Test for convergence.
E ← ∅
ResetWeights(G)
// Reset all weights on the graph to the free flow times

If the chosen convergence criterion is satis�ed stop, else set go to Step 1.
Algorithm 4: Backwards incremental system optimum search algorithm
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The choice of which link to examine is one of the more challenging aspects of the suggested

algorithm. It is very likely that the most congested link will not be able to give away all its

commuters and that at some point, moving a vehicle from it to an alternative path will start to

increase the overall population time rather than decrease it. However, the link might still have

the highest congestion value. In order to solve this problem, once such a situation occurs, the

link in question is excluded from the list of explorable links and its weight is not reset from the

marginal cost value assigned to it.

This, however, gives rise to another problem. After tra�c redistribution occurs at the lower

congestion levels, the initially excluded very congested links might become viable redistribution

options once again. For this reason, at every iteration of the algorithm, the set of unexplorable

links is reset. In other words, starts as the empty set and all weights are set back to their

free �ow initial values. Then, for example, at the second iteration of the algorithm, the most

congested link that was removed from the explorable set of links can be attempted again after

all redistributions on the lower levels of congestion have been done.

In order to bridge the gap between the optimal solution and the solution provided by the

BISOS algorithm, the threshold for congested links to be examined can be reduced to an

arbitrary value. In the general implementation, the threshold is set to one, which is the capacity

of the road and the most optimal state of operation in the sense that it maximizes the throughput

of vehicles. This threshold can be reduced in order to further redistribute tra�c on streets with

lower congestion levels. The variation of the solution quality and computing time as a result of

such change will be examined in the results section.

Another way to view the algorithm is through a simulated annealing [145] analogy. If the

temperature of the system is the number of vehicle redistributions that have been performed,

in order to �nd a good solution, one would need to cool down the system at a slow rate. This is

one of the reasons why it is not bene�cial to redistribute many vehicles from many roads all at

once. Therefore, the step size (the number of agents to be rerouted at once) of the algorithm

should be chosen with great care.

A standard stopping criterion is chosen for the suggested algorithm. If the relative di�er-

ence between the solution of two consecutive iterations is less than a predetermined ratio, the

algorithm halts. Please note, that the algorithm can only halt at the end of an iteration. One

possible drawback of such a strategy is that once a very good solution is reached at the end

of one iteration, the algorithm is forced to go through all over-capacitated links once again
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and try to compute new paths for a large number of agents in vain, since there is not much

redistribution to be done.

The proposed algorithm is also prone to providing more fair paths to the vehicles, since

the weights of the routing graph are not being changed, therefore, drivers that should be

rerouted �nd the second best shortest path that exists between the origin and destination. As

a conclusion the suggested algorithm provides a reduction of memory requirements, reduction

of computation time and an increase of fairness of the calculated paths.

4.4.3 Results

This section will examine the performance of the algorithm compared to other already existing

methods. The performance will be evaluated with respect to the speed of the algorithm and

the accuracy of the �nal solution. Furthermore, the performance for di�erent step sizes will be

examined . Finally, an experiment investigating the improvement that the algorithm brings to

the overall tra�c situation will be examined for di�erent population sizes. The city of Singapore

will be used as a case study for all experiments.

4.4.3.1 Quality of Solution Compared to SO Solution and Speed of Convergence

The SO solution for the tra�c assignment was computed using the convex combination method

and compared to the solution of the proposed algorithm. The basis of the comparison will

be the number of paths to be computed since this is the most time-consuming part of SO

computation algorithms and is independent of the machine used (unlike the runtime). The

speed of convergence comparison of the BISOS algorithm and the convex combination algorithm

with and without the integer constraint is shown in Fig. 4.6.

It can be observed that the BISOS algorithm converges much faster than the convex com-

bination method. In fact, the BISOS algorithm needs only 87, 000 route computations, which

is about a quarter of the computations needed for just one iteration of the convex combination

algorithm. Altogether, the BISOS algorithm converges 15 times faster. This is a signi�cant

result. Since the optimal solution is not guaranteed by BISOS, Fig. 4.7 examines the di�erence

between the quality of the solutions presented by the BISOS algorithm with di�erent congestion

thresholds and the convex combination method with and without the integer constraint.

It can be observed that the BISOS algorithm is not only faster the the convex combination

method but also provides a much better solution that the integer constrained version of the con-

vex combination method. Furthermore, the �nal solution is only within 1% di�erence from the
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Figure 4.6: The convergence speed with respect to needed route computations for convergence for

the BISOS algorithm and the convex combination algorithm with and without integer constraints.

Figure 4.7: A demonstration of the trade-o� between computing time and quality of system

optimum solution and comparison between the �nal solution of BISOS algorithm and the convex

combination method with and without integer constraints.

theoretical, although infeasible, system optimum solution. The trade-o� between computation

time and optimality can be observed as well. Decreasing the threshold congestion value, makes

the algorithm examine more road segments, thus increasing the number of route computations,

however distributing more tra�c and further reducing congestion levels. The default value of
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the congestion threshold th is kept at 1 for the rest of the experiments since the throughput of

a road is maximized for this value. The results from Fig. 4.7 have been summarized in Table

4.3.

Algorithm Number of route

computations

Final travel

time improve-

ment [%]

Number of sub-

iterations

BISOS σ = 1, th = 1 46, 557 69.32 46, 557

BISOS σ = 2, th = 1 60, 058 70.05 30, 029

BISOS σ = 4, th = 1 68, 296 70.23 17, 074

BISOS σ = 8, th = 1 78, 064 70.39 9, 758

BISOS σ = 16, th = 1 85, 296 70.4 5, 331

BISOS σ = 32, th = 1 94, 176 70.4 2, 943

BISOS σ = 16, th = 0.2 1, 179, 040 71.48 73, 690

BISOS σ = 16, th = 0.5 428, 672 71.46 26, 792

BISOS σ = 16, th = 0.75 192, 336 71.39 12, 021

CC 1, 240, 000 72.07 NA

CCinteger 1, 240, 000 29.75 NA

Table 4.3: BISOS comparison with convex combination method for di�erent step sizes and

threshold values.

4.4.3.2 Performance for Various Step Sizes

Varying the step size σ of the algorithm has two main aspects to be examined. The �rst one is

the speed of convergence. Technically, the bigger the step size, the higher the opportunity to

parallelize the algorithm. For example if the step size is set to 20 vehicles to be re-routed at

one step, in the presence of 20 cores available the time for one iteration will be virtually the

same as re-routing 1 vehicles at a time. The increase of the step size, however, might become

practically unnecessary when a realistic maximum number of available cores is reached. The

second aspect to be examined is the quality of the solution that is reached with the various

step sizes. Fig. 4.8 depicts the step size in�uence on the quality of the �nal solution and the

number of route computations for convergence.

A rather unexpected result, which can be observed on Fig. 4.8b and Table 4.3 is that the

SO solution gets better with increasing step size. Intuitively, the opposite can be expected

to be true since using a smaller step size would allow to �nd the point where a road cannot

give away any more vehicles in a more precise way. The results can be explained with the

109



4. IDENTIFICATION OF HARMFUL ROADS AND ROUTING CONTROL
FOR EFFICIENT SYSTEM OPTIMUM TRAFFIC ASSIGNMENT

(a)

(b)

Figure 4.8: BISOS algorithm evolution for di�erence step sizes Fig. 4.8a and convergence speed

as a function of required route computations for convergence with respect to BISOS's step size

4.8b.

stochastic nature of the BISOS algorithm. Naturally, there exist agents in the set of drivers,

which pass through a road segment, which should not be moved. When a big group is sampled,

even if such agents exist others, counteract their negative in�uence of the total travel time and

the re-routing step is still successful and the segment continues to be examined. When only

one agent is sampled at a time, if its re-routing is not bene�cial for the system, the algorithm
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labels the examined segment unexplorable and moves on to the next most congested road, even

though, there might be more tra�c to be reassigned. In other words, a high step size ensures

the existence of the �nding in Section 4.3.2, while a small step size increases the probability of

premature removal of the road from the examinable roads list. This concept is formalized in

Appendix A.

In order to test the correctness of this statement, a new parameter is included in the al-

gorithm, which allows a certain number of unsuccessful re-routings for each routing segment.

This number, which is refereed to as the �failed attempts limit� or FAL is varied in order to

observe its e�ect on the quality of the SO solution. The results are shown on Fig. 4.9

Figure 4.9: Trade-o� between number of computations and quality of SO solution for di�erent

values of the failed attempt limit value.

It can be observed that, as predicted, with increasing the FAL the quality of the BISOS

solution increases. Furthermore, the very exceedingly small di�erence between number of route

computations for FAL= 5 and FAL= 10 indicates that saturation is reached and no further

increase in the FAL value is required.

4.4.3.3 Scaling of Algorithm with Population Size

As the performance of the BISOS algorithm has been validated and proven exceedingly better

than the complex combination method for the examined case study, it is important to eval-

uate how the performance of the algorithm scales with increasing population size. The �rst

component to be evaluated is the quality of the solution, which will be once again compared
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to the non-integer constrained convex combination method, despite the fact that it provides

infeasible solutions. The population size has been increased in incremental steps to twice the

current population and the system optimum was found using both algorithms. The quality of

the solution is measured as in the previous section using the ratio between the percentage of

improvement provided by the BISOS and the CC algorithms. It is important to note that the

origins and destination of all drivers are identical for both algorithms. Next, the computational

performance of both approaches was compared by looking at the ratio of route computations

performed for each of the population sizes. The results can be found in Fig. 4.10.

It can be observed that as the population size is increased the solution computed by BISOS

get closer to the theoretical minimum travel time computed by the CC algorithm. It can also

be noticed that there is no de�nitive trend for the scaling of the speed of convergence ratio. The

BISOS solution is found between 12 and 19 times faster than the CC solution. Additionally,

since the aim of this part of the thesis is to evaluate the possible e�ects system optimal routing

might have in the future Fig. 4.11 represents the system optimum travel time evolution as the

population size is increased.

An expected exponential growth of the total population time can be observed as a result

of both increased number of drivers and the non-linearity of the delay function. Fig. 4.11

also depicts the comparison between the total population travel time for 310, 000 with sel�sh

fastest path routing and the SO population travel times. It can be stated, that according to

the results, if SO optimum routing is utilized the driver population of the examined city can

be doubled in size and the total travel time of the population would still be the same as the

sel�sh routing current one. At this point it should be mentioned that the total population

travel time for SO in the case of 620, 000 drivers, in fact, has twice as many trips. This means

that if the average trip time of a driver is being compared, SO would allow doubling of the

population size, while halving the average trip duration. The presented results strongly imply

the importance of utilization of system optimum routing centralized system in the future of

transportation systems.

4.4.3.4 Fuel Consumption Model and Evaluation

In order to evaluate the added cost of choosing optimal routes, which increase the total traversed

distance by the population, the fuel e�ciency of the BISOS solution is evaluated and compared

against the initial tra�c distribution. In this section it is shown that on top of saving travel

time for the whole population, the tra�c redistribution algorithm also saves fuel. This is due
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(a)

(b)

Figure 4.10: E�ects of increasing population size on the speed of convergence ratio between

BISOS and CC for increasing population size Fig. 4.10a and on the ratio between relative im-

provement of total travel time for the BISOS and CC algorithms Fig. 4.10b

to the fact that vehicles are much more ine�cient in congested environments. Therefore, when

congestion is reduced, fuel consumption is decreased as well. It must be noted, however, that

the fuel decrease happens despite the increase of overall path length of the users. There are

two main changes that the new distribution brings, which a�ect the fuel consumption. First,

the congestion levels are decreased, which reduces fuel consumption. Second, the overall path
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Figure 4.11: Comparison between total population travel times for di�erent population sizes.

The red dashed line, represents the total population travel time for the 310, 000 initial population

under fastest path sel�sh routing tra�c assignment.

length of the commuters is increased, which increases fuel consumption. Apparently, the e�ect

from the �rst factor is stronger and therefore, a reduction in the total amount of consumed fuel

is observed.

The fuel consumption calculation is derived from an average speed fuel consumption model

developed �rst in [146] and further discussed in [147, 148, 149, 150]. This model, also known

as the elemental model, creates a relationship of fuel consumed by a measure of distance that

is inversely proportional to the average velocity. It has been chosen for this study since it only

requires information about the average velocity on a road segment and is thus very applicable to

macrosimulation approaches like the one undertaken in this work. The model can be formalized

as:

C = k1 +
k2
V

(4.28)

Where C is the fuel consumed per 100 km in litres and V is the average velocity in km/h.

The parameters k1 and k2 are �tted using linear regression using real world measurements

of vehicle fuel consumption. The BPR delay function allows the calculation of the average

speed on a road, given the �ows. In order to get the total fuel consumption of the commuter

population from the �ows on every road segment, the following formula can be applied:
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CT =
∑
i

Fi

k1 +
k2
t(Fi)

li

li
100

 (4.29)

Where CT is the total number of fuel consumed in litres, li is the length of the segment i in

km and t(Fi) is the traverse time of link i with �ow Fi in hours. Since the model only promises

accurate representation of fuel consumption for average velocities higher than 10 km/h, the

minimum speed of all segments is set to 10. This might underestimate fuel consumption is

congested cases, however, the results still demonstrate very clearly that fuel is indeed saved.

For the standard use case scenario of Singapore, on top of saving 70% time, the system opti-

mum solution also saves roughly 15% fuel. The personal implications on the agent population,

however, should also be calculated in order to check if there are users, which are forced into

spending more fuel than needed. Fig. 4.12 depicts the distribution of fuel saved in litres for the

agent population.

Figure 4.12: Distribution of di�erence of saved fuel for each agent for system optimum routing

tra�c assignment.

It can be observed that some of the drivers indeed use more fuel for the system optimum

solution. This extra fuel, however, as can be observed from the distribution is at most half a

litre more. This seems to be a reasonably small excess cost, compared to the social bene�ts

brought forward by the system optimum solution.
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4.4.3.5 Participation Rate E�ect on Average Travel Time

The BISOS algorithm can be used as an engine empowering a city-scale routing platform, which

can service the driving population of a city. If a system consisting of only autonomous vehicles

is considered, then system optimum routing can be seamlessly integrated as the route choice

can also be made automatically. If there are human-drivers in the system, however, they might

not all utilize the platform and follow the suggested system optimum routes. Therefore, the

participation rate e�ect on the system's performance should be studied.

In order to do that, the following scenario is set up. The percentage of drivers using the

SO platform is varied from 0 to 100 in 10% intervals. Once the percentage is set, the par-

ticipants (people following the advice of the SO platform) and non-participants (people not

following the advice of the SO platform) are chosen at random from the agent population. The

non-participants simply choose the fastest routes under free-�ow tra�c conditions while the

participants query the SO platform and follow the system optimum route. Fig. 4.13 shows

the simulated average travel time of the system for di�erent percentages of participation of the

driver population. Furthermore, a similar platform, which, however, computes user equilibrium

routes was implemented as well in order to observe the di�erence of system performance be-

tween the two approaches. The user equilibrium platform basically represents a service very

similar to Google Maps, where a person would query the platform with an origin and destination

and will be provided with the fastest route given the current tra�c conditions.

Figure 4.13: Participation rate e�ect on average travel time for system optimum and user

equilibrium tra�c assignment.
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Two main observations can be made. First, the di�erence of performance between 100%

and 40% participation is very small in the SO case, which means that only about 40% of the

population need to be convinced to follow the advice of the SO routing platform. Second, less

people are required to follow the SO system compared to the UE system in order to achieve

the same average travel time. For example 30% participation rate in the SO platform produces

almost the same average travel time as 50% participation rate for the UE platform. This would

mean that providing the right routes in a routing platform can make a signi�cant di�erence on

tra�c conditions and that SO routing platforms need, in general, less participants in order to

function at a satisfactory level.

4.5 Chapter Summary

4.5.1 Sensitivity of Tra�c Conditions to Road Removal

In Chapter 4 the sensitivity of the tra�c system against single road segment removals is studied.

It has been shown that the closure of a single road segment might reduce overall travel time for

the whole commuting population by as much as 4% which corresponds to thousands of saved

hours on a daily basis. This rather extreme outcome of a small change in initial conditions is

a manifestation of the complexity of the system and is also known in transportation literature

as the Braess paradox.

The contribution of this part of the chapter lies in the scale of the performed experiment.

A realistic scenario is being simulated by taking a complete road network of a large city and

populating it with agents according to collected real world data that is also used for the cali-

bration and validation of the presented model. The completeness of the scenario ensures that

the e�ects of the paradox are not only local but global. Exploiting the computational power

available in present days will be a key tool for the planning, control and support of future smart

cities. Simulation based methods such as adaptive and selective road closures can be used to

ensure e�cient utilization of resources and fast instantaneous adaptability to tra�c demand

changes.

The method of simulating outcomes of network changes can also be used for future infras-

tructure planning to avoid building roads that produce congestion and for personalized road

pricing or exchange of road usage permits that can be used to balance tra�c �ows and achieve

a social equilibrium state. It is expected that future smart cities will rely heavily on simulation

approaches enabled by the increase of computational power availability. A futuristic ITS would
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make use of a system optimum routing approach, which will enable it to dynamically change

the road network and thus continuously steer the system dynamics into optimal states.

4.5.2 System Optimum Computation Using BISOS Algorithm

This is the motivation for the second part of the chapter, which deals with the e�cient com-

putation of such system optimum routings. The main contribution of this part of the thesis

and possibly of the whole work is the BISOS algorithm, which aims at computing a system

optimum routing solution for all agents in a transportation system. The suggested algorithm

converges 15 times faster than current algorithms and furthermore, provides explicit paths for

every single driver, which is something that to my best knowledge none of existing methods do.

The immense reduction of route computations needed for the algorithm to converge and

the practicality of its functionality present a great step in the direction of a centralized routing

control system. The key practical aspect of the algorithm except its speed, is that it can

be halted at virtually any point of time, if time constraints require this, and would still be

able to produce explicit paths for all agents in the system, which is a highly desired trait for

real time operating systems. Such an algorithm may turn system optimum routing strategies

from theoretical measures for estimating the utilization of a road system into practically used

strategies for severe reduction of congestion levels.

This algorithm can also be used as a �rst step of a hybrid system optimum computation.

Since it reaches a good solution order of magnitude faster than the existing one, in case the

theoretical minimum should be computed, the �rst few iterations of the standard algorithms can

be sped up by using the BISOS algorithm �nal solution as a starting point for the conventional

methods.

Furthermore, on a di�erent level, the reduction of total travel time of the population as a

result of system optimum routing (roughly 70%) clearly demonstrates that the routing choice

component of tra�c determination is the most promising one to be controlled and presents the

key to ensuring smooth tra�c operation. A comparison has been made between the total travel

time of the population with sel�shly chosen fastest routes and a population double its size,

which employs a system optimum routing. The results show that even though the population

size has been doubled the average travel time of a driver will still be half of what it is in the

case of sel�sh routing.

This chapter has demonstrated the importance of routing for the improvement of the per-

formance of a transportation system. As the potential e�ect of changes in any of the main
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tra�c determining components is being measured in this thesis, the component with the high-

est potential to bene�t transportation systems has been identi�ed as the routing choices of the

population. For this reason, the following chapter aims at maximizing the routing choice infor-

mation collected from a sensor network by placing the sensors at the most optimal locations.
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Chapter 5

Robust Route Information

Maximising Sensor Placement

5.1 Overview

After the tra�c situation has been analysed and actions are taken in order to plan for a more

sustainable future of the transportation system, the most important tra�c determining compo-

nents should be monitored in order to observe accurately and e�ciently the tra�c conditions.

As the routing choices of drivers have been shown to be an e�ective steering mechanism to

ensure e�cient state of operation of the transportation system, a surveillance system would

aim at maximizing the information about them. This chapter introduces a new entropy based

metric to help identify the most important, uncertain, elements of a transportation system, as

a function of network topology and level of tra�c. The presented work here is taken from the

author's contribution in [13]. Consequentially the presented metric is used to solve the sensor

placement problem, maximising the information gain in terms of drivers' routing choices by

sensing the most uncertain areas in the system. It is demonstrated that utilising the proposed

strategy makes the performance robust against short and long term variations of tra�c pat-

terns. A new concept of robustness of transportation systems is introduced, which is based on

perturbing the current OD matrix of the demand and requiring that an optimal solution of any

planning type performs well for various degrees of perturbation thus making it robust against

such tra�c demand alterations. Finally, a method for �nding the optimal number of sensors

to be installed in a city is proposed. It models and maximises the utility stemming from the

trade-o� between cost, performance, robustness and reliability of the sensor placement problem
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solution.

5.2 Introduction

5.2.1 Motivation

Identifying the most important modules or elements of a complex system is a problem that is

of great interest to engineers and researchers. Its most signi�cant entities or subsystems are,

depending on the system, either cautiously monitored, robustly controlled, or rigorously studied

in order to gain deeper understanding of the system's dynamics. In the case of transportation

systems, �important� parts of the network are usually sensed in order to get information about

the overall tra�c state. Engineers go even further by trying to change and control tra�c pa-

rameters at such locations by planning new infrastructure developments [29], control strategies

[30], novel policies [31], etc.

The aim of sensing tra�c, until now has been mostly to determine the �ows in a city. The

problem of optimal placement of counting sensors in order to estimate an Origin - Destination

(OD) matrix has been around for more than four decades [27]. Knowing the OD matrix, the

�ows can be extracted [151, 152] and knowing the �ows, the traverse times on the respective

roads can also be evaluated [153], thus providing aggregated information about the tra�c

situation.

Given the increased pace of introduction of new technologies to the market and growing

availability of computing power, tra�c sensing and city planning are getting more interdepen-

dent and strongly connected. There are methods that use sensed data in real time in order to

apply changes to the tra�c system [32]. Therefore, sensors may not be placed with the sole

reason to observe tra�c. Smart cities use their sensors' data streams in order to optimise their

performance in real time. With the increased number of sensor types such as plate scanning,

velocity measuring, emissions measuring, etc. and their reduced error rate, it is now a matter

of great importance to shift the sensor placement problem toward a more active goal. The

information stream coming out from the sensors should be utilised by control algorithms or

long term planning strategies in order to �actively� sense the tra�c by controlling it at the

same time.

Fundamentally, sensors are put in such positions so that they maximize the information

gain. The locations that need to be sensed in order to maximize the information gain are the

ones of higher importance. In other words, the chosen locations to be sensed are usually the
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ones that present the highest uncertainty with respect to a prede�ned information measure. In

case the uncertainty of both nodes is of equal magnitude, the one that is more used is of greater

importance. Therefore, the uncertainty of drivers' choices at every node should be weighted by

the number of drivers that utilise it. Depending on the de�nition of information the placement

problem can take di�erent forms.

5.2.2 Choice of Information Measure

In most cases, information is considered to be a characteristic of the link, like throughput

or �ow velocity. If, however, the aim is to �nd intrinsically important locations, the places

where the choices, that lead to those characteristics, are made should be examined. Average

�ows, velocities, densities on road segments are perceived as the factors that describe tra�c

conditions. The main factor that determines all those, however, is the routing choices that the

drivers make. Routing choices can account for a signi�cant di�erence of tra�c performance

as shown in [154], where a 70% improvement of average travel time for the whole system was

demonstrated by just optimally selecting the paths of the drivers and also in Chapter 4. A

novel and more e�cient approach for sensing tra�c would then be to try and maximise the

information about the routing choices of commuters rather than the �ows, speeds and densities

on the roads.

By knowing the routing choices of drivers at key intersections, a detailed map of the speci�c

�ows on the links can be inferred, which is what usually sensor placement strategies aim at.

In addition to this, however, information about where the �ows come from is also available.

Therefore, by gaining information about the routing choices, both the link and path �ows can

be simultaneously approximated. Furthermore, by examining di�erences between sensed �ows

and predicted ones from the routing choices, the OD matrix can also be estimated. There-

fore, routing choices stand as the source of information that determines the usually addressed

problems of estimating OD matrix, path �ows and link �ows.

5.2.3 Sensing Intersections vs. Road Segments

Intersections are the places where drivers make choices, and what is sensed at the connecting

road segments are just the consequences of those choices. Therefore, instead of examining

links in a tra�c network, a more topologically central approach would be to examine nodes

(intersections) instead. It is important to note that the uncertainties and the dynamics of each

node are expected to be weakly correlated with respect to their spatial connections. Contrary to
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the speed, �ow, etc. measures of road segments, which are usually correlated in case of physical

proximity, the uncertainty at nodes tends not to have a distance dependent correlation. This key

di�erence diminishes the need for a combinatorial mutual information optimisation approach

of high complexity in order to �nd the optimal sensor placement, because there is intrinsically

no redundant information in the sensing network.

Sensing a node or a group of nodes representing an intersection in a road network boils

down to tracking the decisions of the drivers that pass through it. This task can be performed

by placing plate scanning sensors on the roads that lead to the intersection and out of it. This

sensing architecture allows us to both evaluate the turning choices of the commuters as well as

still collect information about �ows on the separate links. More than that, since in order to

properly �sense� a node, only the �ows along its connecting edges are needed, sensors can be

placed at any position on the edge. Thus, if positioned at a midpoint along the edge, the sensors

will also be able to collect information about the cruising speed along it, therefore maximising

the information input.

5.2.4 Robustness

Another pressing matter that has been ignored in the past is the robustness of a sensor placement

solution. Usually, robustness is understood as the error rate or redundancy of a particular sensor

placement. In this work, however, robustness has been examined from a di�erent angle. Due

to the fact that sensors are quite expensive and their installation consumes both time and

resources, the need to move the sensors around (if at all possible) after they are once installed

should be minimized. In this sense, robustness of a sensor placement can be de�ned as the

property of the set of locations to stay important when the tra�c demand conditions in the

system are changed. Such changes may include short term changes in the OD matrix such

as daily variations of tra�c (evening rush hour vs. morning rush hour or weekday against

weekend) and also long term changes in the network demand such as people moving around

the city and changing living districts and jobs, building of new living complexes or business

centres, etc. Such changes may severely alter the situation for a given sensor placement and

thus make the investment for their installation obsolete. The robustness of a planned sensor

network against variations in the tra�c demand is of great importance, especially for constantly

evolving large cities.
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5.2.5 Combination of Demand and Topology Information

In a more fundamental aspect, existing measures concentrate mostly on the two out of three

main components that determine tra�c conditions separately: tra�c demand(where and when

do people want to go) and transportation network topology(the medium that allows the com-

muters to move). The existing measures governed mostly by the demand are link �ows, path

�ows, link average speed, etc. Measures connected to the topology are centrality, heterogeneity,

entropy, etc. There have been previous e�orts to de�ne entropy (uncertainty) of a node or a link

but only in a purely topological sense [34]. There is a strong need of employing the information

contained in the OD matrix, namely the tra�c demand, as well in order to come up with a

more useful de�nition and measure of the uncertainty of a node and the importance of it being

sensed. The combination of demand and topology, in fact, further allows the measure to take

into consideration the third main tra�c determining component - the routing choices of the

population. In this study the entropy of a node is de�ned and consequently its importance by

using both information about the tra�c demand and topological information about the net-

work, which surely gives a better overview than basing the de�nition on just one of them. The

information from both sources must be entangled since they are actively a�ecting each other.

In this way a single measure that represents all the available information can be de�ned.

The main contributions of this work are:

• De�nition of entropy of a network and importance of nodes.

• Characterization of the concept of robustness of planned infrastructure against long term

changes in the OD matrix.

• Study on the robustness of the measure against changes in the OD matrix.

• Design of methods for �nding the most robust optimal sensor placement against short

and long term variations

• Design of a method for �nding the optimal number of sensors to be placed in a given

network.

5.3 Literature Review

Determining the importance of locations in tra�c networks is crucial. There are two main

branches of research that are interested in locating central spots in a network. The �rst one is
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tra�c sensing. In most sensor placement problems, the set of locations to be sensed is chosen

such that, the resulting synthesis of data is the most informative, which boils down to sensing

the important locations that describe the tra�c demand. The other area is complex networks

research. Importance is then de�ned and studied in a purely topological sense by examining the

transportation network without considering any tra�c demands. This review will cover both

areas with an emphasis on the sensor placement studies.

There have been many attempts to �nd optimal sensor placement in order estimate an

important tra�c characteristic. One of the most comprehensive surveys [155] discusses and

summarizes existing sensor location problems. It de�nes the tra�c sensing problems into cat-

egories depending on sensor types (AVI sensors, counters etc.), prior information and �ows of

interest (link �ows, route �ows, OD �ows). The optimisation problems are divided into two

categories: Flow observability problems and �ow estimation problems. Moreover, it describes

di�erent rules for optimisation and analyses methods such as �ow intercepting, demand inter-

cepting, independence of tra�c counts (mutual information). This work is valuable because it

summarizes and categorizes the various approaches by providing a unifying picture of existing

strategies.

One of the most standard tra�c characteristic to be observed is the OD matrix. Estimating

it from sensor data has become a central problem discussed in numerous studies [156, 157, 158].

In [159] the sensor location problem for OD matrix estimation is de�ned and a solution is

suggested. The study deals with counting sensors, while other studies also include the possibility

of using (AVI) Automated Vehicle Identi�cation readers, which are more informative since they

also collect information about the identity of the car, which allows for easier tracking and

therefore path estimation [160]. In [161] both types of sensors are used in a method that

places counting sensors and AVI readers to maximize the expected information gain for an OD

demand estimation problem. It also takes into consideration uncertainty in historical demand

information. A technique for calculating the optimal number and locations of plate scanning

sensors for a given OD matrix is also presented in [162]. Those approaches are centred around

the goal of estimating the OD matrix. In most of the cases they are applied on arti�cial networks

as a proof of concept, however their high complexity might turn into a disadvantage if one tries

to apply such a strategy for a real life large city. Therefore there is a need for sensor placement

method that is less computationally intensive so that it is practically applicable.

Once the locations of sensors are �xed one might use a linear approximation technique in

order to estimate the OD pairs using tra�c counts o�ine such as the one described in [163].
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In case plate scanning sensors are used a method for path reconstruction from such type of

data can be used as in [160]. In [164] methods for extracting information from sensors data in

order to estimate travel times are discussed, while also looking at sensor failure probabilities.

Furthermore, due to the heterogeneous nature of collected data, information demands and the

limited storage capacity of road side sensors, a maximum content dissemination strategy must

be employed as well as done in [165]. Another issue that must be taken into account once the

road segments that need to be sensed are determined is the feasibility of positioning a sensor

there. More precisely, it must be veri�ed if the sensor will be able to handle the volume in

the sense of contact time and contact rate or more sensors must be placed at the same road

segment in order to increase the accuracy of the extracted data. A rigorous analysis of these

problems can be found in [166].

There are more universal approaches for choosing the most important locations to be sensed,

which are based on maximizing information gain. There are information theoretic techniques

such as [167],where a non-myopic strategy is used to �nd the most informative locations for

sensors, [168] where a Kalman �ltering structure is employed in order to solve a traverse time

prediction problem via optimally placing sensors, and [169] where a method for target local-

ization and tracking is presented, which computes the posterior target location distribution

minimizing its entropy. Furthermore, in [170] the spatial and temporal correlation between the

�ows are used in order to feed an ant colony optimisation algorithm that �nds optimal sensor

locations.

Information theoretic approaches, however, may vary among each other. In [171] tra�c

phenomena are modelled as Gaussian processes. They discuss maximizing entropy for sensor

locations and also mutual information between the locations and demonstrate that the mutual

information approach performs better for certain type of scenarios. Moreover the method is

extended to �nd robust placement against failures of sensors and uncertainties in the model

and uses real world data sets. This is a generic method that can be applied to di�erent types

of sensors. It locates the most representative links in the network that reduce the uncertainty

about the unobserved links. There is, however, no method that is able to determine the most

important links in the sense of locations where drivers makes the choices that are later observed

at the representative links.

With the advancement of technology some type of sensors now can be mobile instead of

static, while granting better coverage. In [172] a mobile tra�c surveillance method is presented.

A routing problem is de�ned such that it computes the optimal paths for the mobile sensors and
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show that in most cases it performs better than a static network. Mobile sensors provide several

advantages such as bigger area of coverage, adaptability to changes in tra�c patterns and are

the better approach when there is no prior knowledge about the system. In [173] a strategy for a

sensor placement for monitoring mass objects is described. By allowing the sensors to be mobile

the sensing network can self-organize in order to achieve better coverage. An expectation-

maximization algorithm is used in order to update the distributions of objects, which are then

used to implement an adaptive sensor placement strategy for the desired tracking task. On the

other hand, static sensor placements are easier to implement, cheaper to maintain and due to

their static nature are able to use technologies that are more complex and precise. One more

advantage of static sensor networks is that they are able to provide a better �instantaneous�

picture of the tra�c situation in the sense that mobile sensors collect samples that vary both

spatially and temporally, while static sensors collect much larger number of samples for exactly

the same time period. Especially in rush hour conditions with fast changing tra�c patterns

such temporal stability is valuable for a more precise estimation of tra�c characteristics.

In [47] the authors demonstrate using tra�c indicators that importance of road segments

is mainly determined by the network structure and the �ows. Even though, this statement is

clearly known there is still no indicator of importance of road segments that fully utilizes the

�ow information and the topological properties of the network. As it can be seen most methods

to determine important locations for sensor placement are based mostly on the �ows; while in a

separate part of literature people look at purely topological properties of transportation graphs.

Important locations can be determined based solely on the topology of a network. Some

e�orts deal with identifying critical links using a network robustness index based on link �ows,

link capacity and network topology as in [48]. In [49] the most vital links or nodes are de�ned

as the �rst n links or nodes whose removal will lead to the biggest increase in average shortest

path distance. While in [50] the importance of roads is simply de�ned to be proportional

to the tra�c load on them, in [51] three measures of centrality for a street are suggested:

closeness, betweenness and straightness and their correlation to various economic activities in

the respective areas are examined.

Moreover, the network itself can have some properties that are usually based on the structure

of the system and not on local properties of its elements. In [52] the development of the

Swiss road and railway network during the second half of the 20th century is investigated.

It is observed that the spatial structure of transportation networks is very speci�c, which

makes it hard to analyse using methods developed for complex networks. In [53] existing
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measures of heterogeneity, connectivity, accessibility, and interconnectivity are reviewed and

three supplemental measures are proposed, including measures of entropy, connection patterns,

and continuity. Entropy is also used in order to determine the heterogeneity of the network

regarding a chosen parameter.

The topology of a network holds an enormous amount of information. It may provide

insights into the structure of the roads (transportation networks are organized hierarchically

as shown in [54]). In [55] they measure the e�ciency and accessibility in Paris and London

based on the network connectedness. Moreover, this information can be utilized in order to

reconstruct driver's trajectories from GPS signals as in [56]. There is also a family of graph

measures based on entropy that are rigorously summarized in the survey [34]. It includes some

measures from chemical structural analysis and social network analysis. The survey examines

the overall connectedness of graphs such as the topological information content and the entropy

of the weights of the edges. A measure of local features' such as entropy of nodes is de�ned as

well, based on length of links connected to it. The centrality measure of links is also de�ned.

Most of the measures deal with evaluating the information content in the graph itself. Those

measures are highly uncorrelated, which means that they capture di�erent aspects of graphs,

so the proper measure should be chosen for each speci�c task.

Once a measure of importance is de�ned and the most informative locations are chosen,

there is one more aspect that needs to be examined. The robustness of those choices depends

on the evolution of both the topology of the network and on the evolution of the OD matrix

as well. Those two factors are naturally also highly interdependent. In [57] the evolution

of the topology of networks is observed. A high degree of self-organization and spontaneous

organization of hierarchies is observed in the city of Indiana. Also variations in the relative

importance of parts of the network are observed. In [58] the evolution over 200 years of a North

Milan road network is observed. Two main processes can explain the developments that occur.

Densi�cation of the road network around the main roads and emergence of new roads as a

results of urbanisation. An evaluation of the robustness against such type of long term network

evolution for any type of sensor placement is lacking at the moment.

5.4 Measuring Importance of Nodes

In this section the measure of importance of nodes is introduced. A node is de�ned as important

if many drivers pass through it and there is high uncertainty about the choices they make. In
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order to get the uncertainty an entropy measure at the node is needed. Following that stream

of logic, the measure is weighed by the throughput of drivers. In this way it can be measured

how much this node adds to the overall uncertainty of the road network given an OD matrix.

The notation that will be used throughout this chapter is introduced in Table 5.1.

Shannon's entropy is calculated using the transition probabilities between the states of the

system. Let us assume that the state of an is its current link. The set of possible transitions from

this state represents the set of actions of the turning on any of the links that are successors

of the current link. The entropy of the node connecting those links is calculated using this

information.

The following are the steps taken in order to calculate the importance of a node:

1. Calculate turning probabilities:

Let Nij be the number of cars that pass through the i-th node and after that through the

j-th node, where node j is a successor of node i in the directed graph describing the road

network, and let Pl be the path of the l-th . Then let the function fij(l):

fij(Pl) =

{
1 if nodes ij are in Pl
0 otherwise

(5.1)

Then:

Nij =

|A|∑
l=1

f lij(Pl) (5.2)

, where |A| is the number of s.

Let pij be the probability that an at node i continues to node j

Let Si be the set of nodes that are successors of node i. Then the turning probability can

be de�ned as the ratio between the number of cars that pass through node i and then

proceed to node j and the total number of cars that pass through node i :

pij =
Nij∑
k∈Si

Nik
(5.3)

2. Calculate the entropy at every node:

The entropy of a node i, Hi, is calculated using Shannon's entropy de�nition. A state is

represented as the current link an is on and the transition probabilities are the turning

probabilities from this node to its successors. Then the entropy becomes:
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Variable Description

Nij number of cars that moves from node i to node j

Pl the path of the l-th

fij(l) function that is one if the sequence of nodes ij is the that path of l

A a set containing all the s

pij probability that an that is at node i will continue on to node j

Si set of nodes that are successors to node i

Hi entropy of node i

Ii importance of node i

T number of regions the day is split into

N t
ij number of cars that pass sequentially through node i and j during time

period t

Ht
i entropy of node i during time period t

Iti importance of node i during time period t

Īi overall daily importance of node i

Īdi the overall importance of node i for a degree of perturbation d

R total reduced entropy

L a set of sensor locations

Ld locally optimal sensor placement for a degree of perturbation d

Lo globally optimal robust sensor placement

V ard[I
d
i ] the mathematical variance of Ii across all possible values of the d coe�cient

Ed[I
d
i ] the mathematical expectation of Ii across all possible values of the d coe�-

cient

gd a function that takes as argument a set of sensor locations L and return the

total reduced entropy for a given degree of perturbation d

VLo variation level of the importance values of sensor placement Lo
Md
Lo

percentage of mismatched sensors between locally optimal placement Ld and

globally optimal robust placement Lo
MLo

the overall percentage of mismatched sensors for all degrees of perturbation

QLo performance measure of robust optimal solution Lo
KLo

cost of installing solution Lo
ULo

utility function value of solution Lo

Table 5.1: Notation for importance of node measure derivation.
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Hi = −
∑
j∈Si

pij log pij (5.4)

3. Weight the entropy of every node with the number of s that pass through it:

In order to di�erentiate between nodes that have a high entropy value that have high and

low tra�c throughput, the entropy of every node is weighed by the number of s utilising

it. The importance of node i is de�ned as:

Ii = Hi

∑
j∈Si

Nij (5.5)

Although the main goal of this work is not to design the physical architecture needed to sense

an intersection, an example architecture is provided on Fig. 5.1. Since sensing a certain

intersection might require several sensors placed in close proximity it is important to comment

on the redundancy of the positions of sensors.

When deploying sensors in order to maximise information about �ows or velocities using

common methodologies, the measured values are usually highly correlated in space due to the

fact that what is being sampled is in fact continuous sequence of road segments that belong to

the same road. In the case of sensing, based on the proposed importance of a node measure,

the main value that determines the priority of sensing a certain intersection is the collection of

turning probabilities at it. It is trivial to observe that those are not correlated in space.

Let us consider an intersection between two main roads. The importance value for this

intersection is likely to be high and therefore a group of sensors should be placed there. It

is not likely that there is such an intersection in close proximity to this one, since this would

be considered as an ine�cient design and even if there is another major intersection in close

proximity, this would be a topological peculiarity of the road network rather that an intrinsic

property of spatial correlation as in the case of sensor placement strategies that maximise

information about the �ows or average speeds.

Therefore, sensor placement based on importance values of intersections is intrinsically not

prone to redundancy of sensor positions. If a situation occurs where two neighbouring intersec-

tions both possess a high importance value it is vital to understand that this is not a redundancy

issue and in fact both intersection should be sensed in this case since the information acquired
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(a) (b)

(c) (d)

Figure 5.1: Illustration of a suggested positioning strategy for sensors for di�erent types of

intersections. On Fig. 5.1a the graph representation of an intersection with all allowed turns is

presented. As it can be observed this scenario can be represented with a single node connecting

all the edges leading to the intersection and leading out of it. On Fig. 5.1b the green circles

represent plate scanning sensors that need to be installed in order to be able to obtain the necessary

information to calculate all the turning probabilities. It should be noted that this is the simplest

possible case and that the sensors positioned at the intersection do not even need to collect the id

of the passing vehicles in order to evaluate the turning probabilities. Fig. 5.1c depicts a slightly

more complicated case where U-turns are not allowed. In this case 8 separate nodes are needed

in order to represent the intersection using an unidirectional graph. As observed in Fig. 5.1d all

edges from and to the intersection need to be observed by the plate scanning sensors in order to

extract the needed information to calculate the turning probabilities and the entropy of all nodes.

from each of them is di�erent. Naturally, the edges connecting the two intersections should not

be sensed twice.

An example of calculating turning probabilities, entropy and importance of nodes is given

in Fig. 5.2. Furthermore, the exact positions of the sensors in the simple example network are

shown depending on the number of sensors to be put.
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Figure 5.2: Diagram providing an example of calculating importance of nodes. The �rst thing

to do is to calculate the entropy of every node. Nodes 3,4 and 5 have only one successor, which

means that there is only one turning probability with value 1, which means that the entropy and

therefore the importance of those nodes is 0. As it can be seen on the graphs, no choices are

being made at those nodes, therefore they have a small importance value. The entropy of node

1 is calculated using Eq. 2 is H1 = 0.3 and the importance from Eq.3 is I1 = 3. Similarly for

the other nodes H2 = 0.41 and I2 = 2.05. Therefore, the nodes that are of interest and in this

case have non-zero values are nodes 1 and 2. In case sensors for one intersection are available the

most important node (1) is sensed. The precise positions of the sensors are on the links L12 and

L13, which ensure complete knowledge of the choices made at the intersection. In case one more

intersection can be sensed, obviously it should be intersection 2 and the green sensors represent

the additional links that should be sensed. Since there already is a sensor placed at L12, only

sensors on L23 and L24 have to be added in order to gain complete information about the routing

choices at node 2. Since the entropy of all other nodes is 0 after the placement of the red and

green sensors, full information about the network is guaranteed.

134



5.5 Achieving Robustness Against Changes in the OD Matrix

Changing tra�c demands over the course of a day results in the importance value of a node

changing as well. Some nodes may experience high importance values during morning rush

hour while having lower values during the evening. In case sensors are placed at nodes, whose

importance value varies signi�cantly throughout the day, they cannot be moved if some other

nodes become more important. This is the reason why the nodes that overall, have the biggest

importance values across the day, must be located.

Since it is also important to study the daily variation of importance let us examine the

notation describing splitting the day into time-of-day (TOD) intervals:

N t
ij - the number of s that go from node i to node j in period t

Ht
i - the entropy of node i during period t

Iti - the importance of node i during period t

Next step is to come up with an importance value representative for the whole day. Some

regions of the day are of less interest than others simply because the amount of information

that can be extracted is smaller. Typically, the factor that plays the largest role in this case is

the amount of tra�c. Therefore, the total importance of a node for the whole day is computed,

using a weighted average of importance values of the node for di�erent regions of the day. The

weight function is governed by the number of s that pass through the node during the respective

time region. Then, the overall daily importance of a node can be de�ned as:

Īi =

T∑
t=1

Iti

∑
k∈Si

N t
ik∑

k∈Si
Nik

(5.6)

The second term in the sum is simply the number of cars that pass through the node throughout

time region t over the total number of cars that pass throughout the whole day and T is the

number of regions the day is split into. This de�nition of overall importance puts an emphasis

on the nodes that are interesting during the important parts of the day. This weighting is

included in order to avoid high importance values throughout periods of time where the node

is not being utilised.

5.5 Achieving Robustness Against Changes in the OD Ma-

trix

In reality, apart from the changes in the OD matrix over the course of the day, there is another

process that alters the tra�c demand in a less intense and more gradual way. This process
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is a result of long term changes to both the population and the city structure. In order to

demonstrate that the method is robust against such type of variations a generic way to �alter�

or �perturb� the tra�c demand is implemented.

5.5.1 Methodology for Altering the OD matrix

Let every have a list of itineraries, which is composed of separate trips. Every trip has an origin,

destination and start time. In most cases an agent takes two trips per day: from home to work

in the morning and from work to home in the evening. Let us take two agents. We assume

that the �rst origin and the last destination in the itinerary of those agents is their place of

residence. Then exchange those locations, as if the �rst now lives in the home of the second and

vice versa. This is done for a predetermined percentage of all the s. This percentage is referred

to as the degree of disturbance. By executing this strategy the number of people starting from

or arriving at all the regions is not changed. This means that the intensity of people starting

from any region is not changed and the intensity of people arriving at those regions is also not

altered. The factor that is perturbed is precisely the OD matrix, since only the intensities of

the connections between origins and destinations are varied.

This procedure is visualised in Fig. 5.3

5.5.2 Strategy for Robust Placement

In order to �nd locations that are optimal for performance and robust against variations in the

OD matrix a measure that represents the importance of a set of nodes for di�erent degrees of

perturbation has to be found. This is the overall importance of the chosen locations. Every

node i has an importance measure Īi. Assume that a given number of sensors from all possible

locations can be taken and then calculate the total reduced entropy in the network which is:

R =

|L|∑
i=1

Īi (5.7)

For every di�erent degree of perturbation every node has a calculated importance value Īdi

where d is the degree of perturbation.

Let the resulting reduced entropy from a set of locations L for di�erent degrees of pertur-

bation d be calculated by the function gd(L) = R, let the optimal placement for a given degree

of perturbation d be Ld and gd(Ld) = Rd
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Figure 5.3: Diagram illustrating the exchange of origins or living locations of two s. Both s still

have the same work locations however they switch their homes. In this way the OD pairs intensity

is changed.
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An optimal placement Lo is sought, which maximizes the reduced entropy relative to the

local maximum across the various perturbations:

max
Lo

∑
d

gd(Lo)

gd(Ld)
(5.8)

5.5.3 Strategy for Finding the Optimal Number of Sensors

There are four aspects that should be taken into account when designing a utility function to

be maximised in order to �nd the optimal number of sensors.

1. The variation of the importance value across the perturbations:.

Every node has a di�erent importance value across the perturbations Īdi . The degree

of variation must be evaluated so that globally important nodes are located rather than

nodes that have just one high importance value among various degrees of perturbation. In

order to do that, the variance for every node i across di�erent degrees of perturbations d:

V ard[Īdi ] is calculated. Then it is normalised by the average value across the perturbations

so that this measure is comparable to others:

V ard[Īdi ]

Ed[Īdi ]
(5.9)

In order to evaluate the total variation level of the importance for a sensor placement the

average of the scaled variances is computed for all chosen locations:

VLo = Ei

[
V ard[Īdi ]

Ed[Īdi ]

]
(5.10)

The number of nodes to be included in the set of optimal locations Lo is varied; this

can also be referred to as its cardinality: |Lo|. The goal is to minimise the variation

of importance of the same node across the degrees of perturbation in order to ensure

robustness of the placement.

2. The percentage of mismatched sensors:

De�ne Md
Lo

as the percentage of sensors that are mismatched between the optimal sensor

placement for a certain degree of perturbation Ld for a given number of sensors, and the

robust optimal solution Lo. This is basically the cardinality of the di�erence between the

two sets divided by the cardinality of the set:
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Md
Lo

=

∣∣Lo \ Ld∣∣
|Lo|

(5.11)

Then the overall percentage of mismatched sensors is just the average of this measure

across all degrees of perturbation:

MLo = Ed[M
d
Lo

] (5.12)

This is a measure of distance between the optimal solution for d and the robust optimal

solution for all degrees of perturbation. It can also be understood as a value signifying the

percentage of sensors that need to be moved in order to reach the local optimal solution.

This measure should be minimised to ensure robustness of the placement. In other words,

the sensor locations should be as universal as possible.

3. Performance measure of the robust optimal solution compared to the local

optimal solutions:

This measure is used to describe how close is the robust optimal solution to perfectly

match the locally optimal solutions.

QLo
=
∑

d

gd(Lo)

gd(Ld)
(5.13)

This measure should be maximised since maximum performance is sought.

4. Cost of sensors:

A function that punishes high number of sensors is further included. For simplicity a

linear function is used, which grows with the increase in number of sensors:

KLo
= α |Lo| (5.14)

The utility function that needs to be maximised subject to the number of sensors or the cardi-

nality of the set Lo then becomes:

max
|Lo|

ULo = w1QLo − w2VLo − w3KLo − w4MLo ,

where
4∑
i=1

wi = 1
(5.15)
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All the separate functions are scaled to assume values between 0 and 1, however depending

on the designers choice some measures can be given more weight by varying w1−4. On Fig.5.5.3

all the separate functions and the utility function that determines the optimal sensor number

can be seen.

5.6 Optimal Sensor Placement for Singapore Case Study

First, tra�c is assigned for a whole day using the methodology described in Chapter 2.

5.6.1 Importance Analysis

At �rst, the entropies of every node of the network within each of the time periods that the day

is split into is calculated. Following this the robustness against daily variations technique is

executed. This results in the the overall daily importances of the nodes used to �nd the optimal

sensors placement as described in section 5.4. Fig. 5.4 shows the Singapore road network and

the importance of nodes. It can be observed that the sensors cover the city well with accents

on the central business district (south central part), the highway intersections and intersection

of highways with other large roads. Moreover, there are plenty of sensors in the residential

areas(east and north central), which, however, have lower importance values due to the smaller

number of cars that go through those intersections.

Next, the change in tra�c demand as explained section 5.5.1 is simulated. Fig. 5.5 visualises

the results of applying the change. Since it is not practical to visualise all OD pairs, in the

visualisation only the intensities of OD pairs that have as origin the university area around the

Nanyang Technical University (NTU) in the western part of the city are shown. We can observe

the change in the destinations intensities as people increase their trips to the east part of the

city while reducing the trips that stay within the western part.

The following step is �nding the optimal sensor placement for Singapore that is robust

against such type of variations in the OD matrix as described in section 5.5.2. In order to

evaluate the performance of the robust placement the following set of actions is executed:

1. For each degree of perturbation run a set of 10 simulations in order to get an averaged

value for all the required parameters. The number of simulations is determined so that

the degree of variation is below a certain threshold as described in [174].

2. Using the simulation outputs, calculate the turning probabilities, entropies, and impor-

tance of all nodes
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5.6 Optimal Sensor Placement for Singapore Case Study

Figure 5.4: Averaged importance value of nodes for a full day. The sensor placement resulting

from those values is optimally robust against daily tra�c variations.

Figure 5.5: Visualising the e�ects of perturbing the OD matrix. A heat map showing the

di�erences between the OD matrices (original and with 30 % perturbation). We have taken only

the pairs that have as destination the area around the Nanyang Technical University (NTU) and

plotted the intensities of the di�erent origins. Yellow colouring means intensity has not changed,

red means higher intensity in the second OD matrix and green means lower intensity in the second

OD matrix.
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3. Find the optimal placement of sensors for every degree of perturbation.

4. Using the optimisation strategy described above, calculate a robust sensor placement.

5. Compare the performance of the robust sensor placement to the performance of the locally

optimal (in the sense of perturbation degree) sensor placements. The performance in this

case is the ratio between the total reduced entropy R of the robust placement to the total

reduced entropy of the locally optimal placements.

In Fig. 5.6 a comparison of the performance of the optimally robust method versus the locally

optimal solutions for sensor placement can be observed.

Figure 5.6: Comparison of the performance of the optimally robust method across the various

degrees of perturbation for the OD matrix to the performance of the locally optimal sensor place-

ments. It can be observed that the robust placement is performing better in the sense that it

is more invariant to changes in the OD matrix. The performance value is stable throughout the

changes of the tra�c demands.

Following this, the performance of those sets of locations for other degrees of perturbations

is computed. For example the blue line on Fig. 5.6 represents the optimal sensor placement for

the original OD matrix. Naturally, since the sensor placement was made based on the tra�c

patterns in this scenario, the performance is 100%. We can then see that the performance of

this sensor placement if the tra�c is governed by the OD matrix perturbed by 5% decreases.

The more the tra�c demand is perturbed, the more the performance of the optimal sensor

placement calculated from the original OD matrix decreases. The goal of the method is to

achieve robustness in the sense that the performance stays consistently high as the OD matrix
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is varied. The performance of the robust sensor placement solution is also depicted on the

graph as the black dotted line. It can be observed that the robust solution does not vary that

much when the OD matrix is perturbed and is performing better than the rest. It can be

concluded that the performance of optimal sensor placements calculated from a speci�c OD

matrix vary more than the performance of the sensor placement strategy that uses not just

one OD matrix but rather a set of perturbed variations of it. Moreover, the de�ned measure

of overall importance proves to have very little degree of variation, which makes it a suitable

candidate for a robust measure of importance of nodes.

Finally, the optimal number of sensors to be placed in Singapore are computed as described

in section 5.5.3. For the sake of simplicity let all the discussed factors be equally important. In

Fig. 5.7 the functions related to the process of �nding the sensor count are plotted. On the last

sub-graph the utility function whose maximum corresponds to the optimal number of sensors

to be installed can be observed. For the case of Singapore this number is 582. Surely, if some

factors are more important than others, they can be weighted di�erently and this will a�ect

the optimal number of sensors.
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(a) (b)

(c) (d)

Figure 5.7: Functions that construct the utility function and the utility function itself that need

to be maximized by the number of sensors: 5.7a performance of the sensor placement as a function

of the sensor number, 5.7b Overall variation of the importance values of the sensor network as a

function of sensor count, 5.7c Overall Percentage of mismatched sensors for the sensor network as

a function of the sensor number, 5.7d Utility function that maximizes 5.7a and minimizes 5.7b,

5.7c and the number of sensors

144
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5.7 Chapter Summary

5.7.1 Sensor Placement

Chapter 5 points out the need for an importance measure that is able to combine and re�ne

information about the tra�c demand contained in the OD matrix and the information about

the topology of the network. In this way one can point to the locations in the network that hold

the biggest amount of uncertainty related to drivers' routing choices; this is a crucial underlying

factor that determines tra�c conditions in a network. It has been discussed that nodes should

be examined instead of links since the intersections are the places were decisions are made and

the roads are the locations were the results of those choices are observed.

A measure of importance is de�ned, which satis�es the aforementioned conditions using

information theory. More precisely, the measure is a combination of the �ow through a node

and the entropy of the node itself. The novel de�nition of entropy of a node that is provided

in this chapter is dictated by the routing choices drivers made instead of by purely topological

factors.

It has been observed that the importance of nodes can vary throughout the day due to

changes in tra�c patterns, moreover a method is designed to �nd the most robust sensor

placement against such type of changes, which are referred to as short term tra�c demand

variations. Long term changes are also being addressed by this work. A method is designed to

simulate long term city dynamics and their e�ect on the tra�c demand in the city by realistically

perturbing the OD matrix.

A technique, which allows designers to weigh various factors connected to their preferences

regarding the sensor network and its functionality is designed, in order to determine the optimal

number of sensors that need to be placed. The utility function consists of the variation factor of

the sensor readings, the average percentage of mismatched sensors under varying tra�c demand,

the performance and the sensor installation and sustaining cost.

5.7.2 Robustness

The concept of making sensor placement, or any other planned infrastructure robust against

such perturbations in the OD matrix is another signi�cant contribution of this work. As pointed

out in the introduction this technique is analogous to the addition of noise in the training data

of a neural network or another entity in order to increase its performance (typically prediction

or pattern recognition accuracy). Planned infrastructure, which is optimal with respect to all
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various degrees of perturbation of the OD matrix will therefore, be much more robust against

changes of this type. Naturally, a method is described in order to �nd a robust sensor placement

against long term OD variations using the OD perturbations, providing certainty that sensors

will not have to be moved once they are installed.

The heterogeneity of the nodes' importance as a network characteristic can be of great im-

portance as well, as it is directly proportional to the utilization factor of the transportation

network. In case of homogeneous importance values, there is lack of central points at which

congestion is created. Homogeneity of the importance measure also means that drivers are

evenly spread across the network and utilize fully its infrastructure. Heterogeneity, on the

other hand, means that drivers' paths are very similar with the exception of several hub points

through which everyone passes. This might bring imbalance of tra�c on the network as some

roads become congested while others stay empty. Following this argument it might be inter-

esting to use the measure of heterogeneity of the importance measure of a network in order to

either evaluate the tra�c performance or optimise the routing of commuters leading to overall

reduction of congestion.

The work described in this chapter represents the �nal step of surveillance in the four step

suggested transportation system optimization strategy. The reader is encouraged to advance

to the next chapter, which provides a general summary of the collection of e�orts encompassed

in the thesis.
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Chapter 6

Conclusion

The �nal conclusion chapter of this thesis connects all �ndings in the previous chapters and

discusses their purpose and collective impact for road transportation systems optimization. The

main subject of discussion in this dissertation is tra�c optimization enabled by computational

power and e�cient algorithms. As the vehicle population around the globe keeps increasing,

congestion steadily but surely becomes a major factor leading to signi�cant losses of time and

money. Furthermore, ine�ciencies in road transportation systems present harmful environmen-

tal consequences. The questions that were outlined in the beginning of the dissertation aim at

identifying the sources of commuting system ine�ciencies. This work also tries to �nd e�ec-

tive, sustainable ways for eliminating these sources by determining the most bene�cial tra�c

de�ning components to be in�uenced and applying state of the art algorithms to control them.

Aside from the contributions presented in the thesis there are 5 main messages, which emerge

from the collection of results acquired in the various experiments, that can be taken out from

this work as suggested directions of future e�orts and insights into road transportation system

dynamics.

6.1 Main Messages

Several messages can be taken out from the synergies of results acquired in this work. First,

Chapter 3 demonstrates that tra�c infrastructure is not in agreement with tra�c demand,

which is a main source of increased congestion levels and worsened tra�c conditions. Second,

the results from Chapter 3 indicate that there are some highly dynamical and super-sensitive

locations in a city, which can be identi�ed and optimized in order to achieve bene�cial results

on a system level. Furthermore, the �rst part of Chapter 4 demonstrates that small changes in
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speci�c parts of the road network can have bigger e�ect on congestion levels of the whole system,

further identifying potential steering tools for e�cient tra�c control. Third, the collective

�ndings in all chapters indicate strongly that controlling the way agents choose their routes

is a cost e�ective method (as no infrastructure needs to be built) for tra�c optimization and

has the greatest potential in terms of magnitude of improvement of performance. Fourth, as

routing choices are the most in�uential component of a tra�c system, surveillance methods,

such as sensor placement should be routing-centric, in the sense that the information gain that

must be maximised should be de�ned in terms of the information gathered about the routing

choices of the drivers. Chapter 5 points out the need for an importance measure that is able

to combine and re�ne information about the tra�c demand contained in the OD matrix and

the information about the topology of the network in order to maximize the information gain

of a sensor network. Fifth, the concept of adding noise to the OD matrix in the sense of

perturbations to tra�c demands, presented in Chapter 5, demonstrates promising results and

should be used in order to ensure robust planning and control strategies in order to mitigate

the e�ects of fast varying tra�c demands.

6.2 Theoretical Implications

The �nding in Chapter 4, which allows the BISOS algorithm to bypass the NP hard problem of

choosing set of drivers to be rerouted opens the door for more algorithms that seek performance

at a very small cost in accuracy of �nding the optimum solution. The signi�cant speed up of the

algorithm brings theoretical work one step closer to being applied in practice by showing that

the relative di�erence between theoretical optimum and a �shortcut� solution such as BISOS

algorithm decreases to nearly negligible values for the large city scenario, which was considered.

The holistic nature of the simulated road transportation system, provides the �rst demon-

stration of the existence of Braess paradox in a realistic city scenario. The road closing study

in Chapter 4 has further theoretical implications as it presents a technique to be used for iden-

ti�cation of both harmful and critical roads. This aspect of the thesis can be perceived as

fundamental study of the surface of tra�c projection on road networks since the experiment,

viewed from a higher level of abstraction, computes the derivative of the tra�c distribution

with respect to the network.

The projection of tra�c onto the road network is also central for the importance measure

de�ned in Chapter 5, which combines the �ow through a node and the entropy of the node itself.
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The novel de�nition of entropy of a node captures the combination of demand and topology

being dictated by the routing choices drivers made instead of purely topological factors. The

main theoretical implication of this is that it captures the projection of tra�c onto a topology,

thus allowing further classi�cation of locations and criticality analysis.

Apart from deepening theoretical understanding within the �eld, this work also serves as

a conceptual bridge between the �elds of transportation and machine learning. The concept

of making sensor placement, or any other planned infrastructure robust against perturbations

in the OD matrix is another signi�cant contribution of this work. As pointed out in the

introduction this technique is analogous to the addition of noise in the training data of a neural

network or another entity in order to increase its performance (typically prediction or pattern

recognition accuracy). Planned infrastructure, which is optimal with respect to all various

degrees of perturbation of the OD matrix will therefore, be much more robust against changes

of this type. This concept aims at bridging the gap between machine learning and transportation

research by demonstrating that theoretical concepts from one �eld can be successfully applied

in the other.

6.3 Policy Implications

The �ndings in this work demonstrate that routing control can lead to greater reduction of

overall travel time for the commuting population. Therefore, e�orts must be concentrated

in developing e�cient and fast ways to optimally guide the driver population and distribute

tra�c demand such as the BISOS algorithm, which has been presented. One strong trait of the

BISOS algorithm is that the logic supporting it, is founded in actions that can be physically

taken, rather than in inapplicable mathematical framework. The approach of providing di�erent

information to di�erent drivers, thus enabling tra�c load balancing, is viable and provided the

high potential impact such a strategy can have, various policies enabling this techniques must

be implemented. A key approach of such a task would be to make drivers perceive the marginal

costs of their actions, thus self organizing in a socially optimum state.

Furthermore, if excessive tra�c congestion is viewed as the marginal costs to society of

congestion exceeding the marginal costs of e�orts to reduce congestion (such as adding to road

or other transport infrastructure), the system optimum routing approach presents a strategy

that can both ease tra�c conditions and is cost free in the sense that no construction of

infrastructure is necessary. In a way the functioning of the BISOS algorithm can be viewed
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as empowering the previously static road infrastructure to present itself in a di�erent way to

each of the tra�c participants, thus making it dynamical and able to adapt to all possible

tra�c demand changes. The importance of this realization lies in the fact that routing control

is demand invariant as it can adapt instantaneously to any changes presented by the drivers

population, while road network changes have to be applied every time a signi�cant change in

tra�c demand occurs. This further points out to the necessity of new policies that enable and

encourage approaches that can a�ect the way people choose their routes.

6.4 Limitation of the Study and Future Research

One of the main limitations of the study is the amount of data that has been used in order to

generate the driver population. As a result of this, the work is concentrated on the methodol-

ogy of tra�c optimization rather than stating with certainty precise changes that have to be

implemented in the city's infrastructure. In order to validate the �ndings from the case study

in Singapore, more complete data about the OD pairs and the way people choose their routes

is needed. Provided the required data exists, the same experiments should be performed in

more cities with varying topological and tra�c characteristics, which will further strengthen

the arguments made in this work.

The routing model described in Chapter 2 assumes that people behave rationally, which,

as it is suggested by real life measurements, is not consistently true. Therefore, a possible and

desired future project would be to implement a more elaborate user behaviour model describing

both following instructions for optimal routing and route choice itself. In order to validate such

a model, however, real data is needed. Furthermore, as it is unrealistic to think that all people

might behave rationally and follow a suggested route, a study that determines what percentage

of population is needed to follow directions can be performed.

A macroscopic simulation approach is used in this study as the number of separate simula-

tions that need to be run in order to acquire the results is several million. With the increase of

computational power available, however, using a micro and even nano-simulation can become

feasible sooner rather than later and therefore all the studies can be performed with higher

degree of detail in the future.

On a theoretical side, the empirical �ndings of this thesis should be formalized in a theory

of super-sensitive locations from dynamic systems point of view, which can enable their fast

detection using machine learning techniques.
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6.5 Final Remarks

Future work on the concept of robust planning would require the development of a more

comprehensive tool for modelling long term changes in city dynamics, such as building new

living or business areas, building new road segments etc. Implementation of such types of

changes will bring qualitatively di�erent type of OD matrix variations, since this processes will

create completely new origins and destinations. Moreover the population growth should be

modelled as well. Furthermore, this thesis deals explicitly with optimizing tra�c conditions

for vehicles. A natural future step would be to also include pedestrians and incorporate their

utility functions as well, especially when dealing with intersection control.

6.5 Final Remarks

Knowing and understanding the general guidelines outlined in this �nal chapter, can play

an important role in �ghting the existing problems of increasing population, congestion cost,

environmental damages and tra�c demand variability. Ensuring e�cient, highly intelligent and

informed solutions are in place is key to providing the future commuting populations with a

robust, sustainable and environment friendlier intelligent transportation system backed up by

state of the art optimization algorithms, vast amounts of computing power and socially aware

attitude.
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Appendix A

Appendix

Assume that the improvement in total travel time of the removal of a single driver from a road

is a Gaussian random variable X, with mean µX and deviation σX. When a group of N agents

is removed from a road, the random variable of the total time saved Y can be expressed as the

sum of all the individual variables:

Y =

N∑
i=1

Xi (A.1)

The mean and deviation of the variable Y are then:

µY = NµX (A.2)

σY =
√
NσX (A.3)

(A.4)

We are interested in comparing the probability that each of the two variables X and Y is

smaller than 0 in which case the examined road segment will not be explored anymore. The

probabilities can be calculated in the following way:

P (X < 0) =

0∫
−∞

1

σ
√

2π
exp− (x− µ)2

2σ2
(A.5)

P (Y < 0) =

0∫
−∞

1√
Nσ
√

2π
exp− (y −Nµ)2

2Nσ2
(A.6)

(A.7)
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Therefore the cumulative distribution function of the two variables should be examined. In

the case of Gaussian distributions the CDF of a function is described using the error function

erf and can written as:

FX(x) =
1

2

[
1 + erf

(
x− µx√

2σx

)]
(A.8)

FY(y) =
1

2

[
1 + erf

(
y −Nµx√

2
√
Nσx

)]
(A.9)

(A.10)

We are interested in comparing the values of FX(0) and FY(0), which are:

FX(0) =
1

2

[
1 + erf

(
− µx√

2σx

)]
(A.11)

FY(0) =
1

2

[
1 + erf

(
− Nµx√

2
√
Nσx

)]
(A.12)

(A.13)

Since the erf is monotonically increasing, we just need to �nd out, which of the two argu-

ments inside the error function is bigger. Since µX > 0, since the examined road is congested,

it is apparent that:

− µx√
2σx

> − Nµx√
2
√
Nσx

(A.14)

Therefore, the probability of X being smaller than zero is higher than the probability of Y

being smaller than 0 and thus the probability to have a non-bene�cial sampling sub-iteration

is higher when the step size is smaller.
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