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Abstract. During the design of large infrastructural projects like inner-city subway tracks, it proves 

necessary to consider differing model scales, ranging from kilometers to centimeters. This problem 

can be addressed by using multi-scale product models comprising multiple levels of detail (LoD). 

Ensuring consistency across the different LoDs can be achieved by applying parametric modeling 

techniques while creating the model. However, the correct application of constraints and 

dependencies has shown to be too complex to be handled manually. To address this issue, this papers 

presents an automated detailing mechanism, which is based on the use of graphs and graph 

transformations. We show how procedural parametric models based on two-dimensional sketches 

can be represented by graphs and how refinement steps can be realized through the rule-based 

transformation of such a graph. 

1. Introduction 

The ongoing digitalization of planning processes in the building sector has led to increasing 

demands on the complexity of the underlying digital models. One requirement on such a digital 

model is its capability to represents substantially diverging scales and levels of details. In 

particular, this is the case in the planning of large infrastructure facilities ranging over several 

kilometers (tunnels or roads). To efficiently assist planners, the corresponding models need to 

support the efficient modeling and management of geometric objects on both, large and small 

scales. 

One approach to representing spatially extended facilities with an adaptive semantic and 

geometric resolution is the use of multiple levels of detail (LoDs). This approach is well 

established in the domain of Geographic Information Systems (GIS). Previous research extends 

the LoD concept used in the GIS domain towards consistent multi-scale representations of 

building information models, particularly used for the modeling of shield tunnels. One 

conclusion of this research is that the manual creation of these consistency preserving models 

is very complex, time consuming and error-prone and should be supported by automation 

mechanisms (Borrmann et al., 2014b). 

This paper presents one possible approach to realize these automation mechanisms. It describes 

a detailing automation approach, which is based on the use of graphs and graph transformations. 

It further shows how procedural parametric three-dimensional geometric models based on two-

dimensional sketches can be represented by graphs and how refinement steps can be realized 

through the rule-based transformation of these graphs. 

The prospected benefit of this approach for end users is the reduction of the effort to manually 

create the consistency preserving models. Doing so, it allows them to focus on the conceptual 

and engineering aspects of the design process instead of time-consuming and repetitive 

modeling operations. 
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This paper is structured as follows: In Section 2 related works and the theoretical background 

of the research are outlined. Section 3 discusses the general approach of using graphs to 

represent a parametric 3D model. Section 4 focuses on the development of a specific graph 

rewriting system as a case study and describes the prototypical software tool that is used to 

interpret the graph-based representation and creates the actual 3D model. The paper concludes 

with a summary and a discussion of future work. 

2. Related Work and Theoretical Background 

2.1 Multi-Scale Modeling of Shield Tunnels 

The idea of modeling and visualizing buildings and infrastructure facilities in different LoDs 

has been well established in the GIS domain for several years. The general concept is to provide 

different geometric representations of a semantic object. Which of these representations is 

actually used to display the object depends on the particular context, for example with respect 

to the user’s requirements. An important example is CityGML, an XML-based data model for 

the representation of mainly static 3D city models (Kolbe 2009). CityGML defines five LoDs 

where representations in coarser LoDs are generated from finer ones by abstraction. In contrast,  

the design process of construction projects starts with a very general representation that gets 

gradually refined and more and more detailed as planning evolves (Borrmann et al. 2014). 

Additionally, the concept of CityGML does not include any automated consistency preservation 

mechanisms to ensure that changes in one LoD are propagated to the other LoDs due to the 

independent storage of an object’s geometry in each LoD. 

To fulfill the needs of consistency-preservation and multi-LoD representation, a multi-scale 

product model for shield tunnels has been developed by Borrmann and Jubierre (2013), which 

is based on a single scale model introduced by Yabuki et al. (2013). This multi-scale model 

uses procedural geometry description and parametric modeling techniques to provide 

mechanisms for automatic consistency preservation across the different LoDs. A 3D 

representation of the five LoDs of the tunnel model is depicted in Figure 1. 

 

Figure 1:   A 3D representation of the LoDs of the multi-scale shield tunnel product model (Borrmann 

and Jubierre, 2013). The first LoD, which only represents the alignment, is not depicted. 

2.2 Parametric and Procedural Modeling 

The concept of parametric modeling was developed in the 1990s (Shah and Mäntylä 1995) and 

is by now well established and used in many commercial and open source CAD applications 

e.g. Autodesk Inventor, Siemens NX and FreeCAD. While mainly applied in mechanical 

engineering, the concept has also been used to create flexible models of infrastructure facilities 

(Ji et al., 2013). 

Parametric geometric 2D models (sketches) are composed of geometric objects and 

parametrical constraints. A system of constraints and objects is defined during the creation of a 

sketch in a parametric CAD application and forms a constraint problem, which can be solved 
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by an implemented geometric constraint solver (GCS) (Fudos and Hoffmann, 1997; Owen, 

1991). The set of parametric constraints that is implemented by all major constraint solvers is 

defined as the standard geometric constraint language by (Schultz et al., 2015). It comprises 

the dimensional constraints for distances and angles as well as the following geometric 

constraints: coincident, collinear, tangential, horizontal, vertical, parallel, perpendicular and 

fixed. 

The core concept of procedural modeling is to store not only the final outcome of a modeling 

process, but instead the sequence of single sketching and modeling operations. Models created 

this way are called procedural models or construction history models. They use the concept of 

parametric modeling to create flexible 2D sketches. These sketches form the basis for the 

procedural operations that generate 3D geometry by extrusions, sweeps, lofts or Boolean 

operations (Borrmann et al., 2012; Mun et al., 2003). 

The presented approach uses parametrical constraints as listed above in combination with the 

procedural modeling of geometry to define dependencies between geometric objects belonging 

to different LoDs as described in (Borrmann et al., 2014a). Thus, the consistency of the model 

across multiple LoDs can be ensured. 

2.3 Graph Rewriting 

The proposed concept for automating the detailing process is based on graph theory and graph 

rewriting methodology (Rozenberg 1997). Graphs and graph rewriting mechanisms are 

employed to enable the representation and the modification of the procedural parametric 

models. An application of graph rewriting to semi-automatically create and alter parametric 

sketches has been presented in Vilgertshofer and Borrmann (2015). 

Graph rewriting operations are used to create a new graph out of an existing graph by altering, 

deleting or replacing parts (subgraphs) of the existing graph. The changes are formalized 

through graph rewrite rules written as L→R. A graph rewrite rule is defined by a pattern graph 

L and a replacement graph R. When a rule is applied to a graph (called the host graph), this 

graph is searched to find a subgraph that matches the graph pattern defined by L. If the matching 

succeeds L is replaced with R under the consideration of a preservation morphism that 

determines how an instance of L in the host graph is replaced or altered by R. There are several 

different approaches to graph rewriting. Two main examples are the Single-Pushout Approach 

(SPO) and the Double-Pushout Approach (DPO) (Heckel, 2006). 

3. Conceptual Approach 

To represent and detail a procedural parametric model, three major challenges are discussed 

after the general design of the graph representing a model is addressed. First, the so called graph 

metamodel is introduced. The metamodel defines a library of the node and edge types that the 

graph may consist of as well as possible attributes they may have. Secondly, to create and alter 

a graph based on this metamodel the requirements on graph rewrite rules are evaluated. These 

rules formally describe detailing steps that an end user can apply instead of manually executing 

the underlying procedural or parametric modeling operations. Last, we discuss the process of 

developing the graph metamodel and rewrite rules. These must meet requirements concerning 

the representation to be unambiguous and translatable into an actual geometric 3D model by 

interpreting the graph-based representation. 
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3.1 Definition of the Graph Metamodel 

To create and detail a multi-scale geometric model by using graph rewrite operations, it is 

necessary to determine the composition of the graph which is used to represent this model. This 

is achieved by the definition of the graph metamodel. The metamodel defines the types of graph 

entities (nodes and edges) that may be used by a graph rewriting system to assemble a graph 

that represents a specific model. Besides the mere types of graph entities, the metamodel 

furthermore defines their attributes as well as conditions that determine which nodes and edges 

may be incident or which node types can be adjacent. 

Formally, we define the graph representing a procedural geometry model as a directed 

multigraph with loops G = {V, E}. V is the set of vertices that represent either procedural 

modeling operations in the context of the procedural graph or geometric objects in the sketch 

graph. E on the other hand is a set of edges that connect these vertices. The edges are used to 

represent the general relations between the procedural operations or specific parametric 

constraints between geometric objects in a sketch graph. Thus, we define VP and EP as vertices 

and edges conceptually belonging to the procedural graph GP. Further VS and ES are defined as 

the vertices and edges conceptually belonging to the sketch graph: The complete graph 

representing a model is described as G = {VP + VS, EP + ES}. The metamodel describes the sets 

of possible objects that V and E may contain. 

The graph metamodel that was successfully used to generate models up to LoD 3 and parts of 

a LoD 4 model of a shield tunnel is described in Section 4. 

3.2 Design of the Graph used for Model Representation 

In a preliminary concept (Vilgertshofer and Borrmann, 2015) two individual types of graphs 

were considered necessary to represent two-dimensional sketches (sketch graph) and the 

procedural operations (procedural graph). While the conceptual separation of these graphs, 

which is caused by the different nature of the relations in parametric sketches and procedural 

operations, persists, the sketch graph needs to be integrated into the procedural graph. This is 

due to the fact that sketches are the basis for procedural operations used to create 3D objects by 

extrusion or sweeping. For this reason, the evaluation of a procedural operation will always 

need a reference to the sketch that this operation is based on. 

To handle this interlinkage of the two graphs, three different possibilities supported by the used 

graph rewriting tool GrGen.NET (Jakumeit et al., 2010) were considered. In the case of an 

Integration by reference, a graph entity representing a sketch would only store a reference to 

an independent graph which represents the actual sketch (described by its geometry and 

constraints). The second possibility is an Integration by using subgraphs, where a sketch graph 

is stored inside a graph entity representing a sketch, without connecting it to the procedural 

graph. Last, an Integration by combination of the graphs was considered. In this case each graph 

that represents a sketch is an actual subgraph of the procedural graph and thereby a part of it. 

While each of these solutions is generally possible, the third option proved to be the most 

advantageous. This is caused by the requirements on the necessary relations between the two 

graphs. The first two possibilities induce a conceptual separation of the sketch graphs from the 

procedural graph. This increases the complexity of rewrite rules that need to transform a sketch 

graph as well as the procedural graph, but does not yield any benefits. 

When using the third option on the other hand, relationships between sketch graphs can be 

modeled much more straight-forward. The combination of the graphs is realized by connecting 

all nodes belonging to a sketch graph with the respective sketch node of the procedural graph, 

thereby turning it into a subgraph of the procedural graph. The application of this concept is 
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shown in Figure 2 exemplarily for a graph representing a LoD 2 tunnel model. Here the edges 

$9 and $A are used to assign the nodes ProjectedPoint and Circle to the Sketch node and thereby 

create an integrated graph. The edge $8:project is introduced for defining the location of the 

ProjectedPoint to be derived from the alignment. This information would otherwise have to be 

kept as an attribute of the ProjectedPoint node. 

 

Figure 2:   Integration of sketch and procedural graph. 

The integration of the graphs is not defined as an actual graph transformation. In fact, it is the 

conceptual basis for the definition of all graph rewrite rules, as they should only create and 

transform an integrated graph. 

Although only the integrated graph is used for the representation of a complete model, the terms 

sketch graph and procedural graph will continue to be used in order to indicate which part of 

the graph is referred to in a particular context. 

3.3 Formalizing Modeling Operations as Graph Rewrite Rules 

Graph rewrite rules are used to create different instances of the graph that represents the product 

model based on the graph entities available from the metamodel. The more abstract task of a 

rewrite rule is to combine a set of modeling operations (procedural or sketch related) that would 

otherwise have to be carried out manually. Thus, to formally define a rule, it needs to be 

determined which model parts are to be used or altered (e.g. the creation of a sketch requires a 

work plane that the sketch is drawn upon). Thereby, the pattern part of the rule is constructed 

out of the nodes and edges that represent the respective model entities. Next, the designated 

result of the represented modeling operation needs to be formalized in the rewrite part of the 

rule by adding, altering or removing new or existing nodes and edges. Additionally, we need to 

ensure that the application of any rule on the graph-based representation of a model will lead 

to another valid representation. This means that the representation is interpretable and can be 

used to successfully create an evaluated model. 

The execution of the rules is to be initiated by the end user. To this end, he can choose among 

a set of predefined rules that are integrated in the graph rewrite system. Currently the definition 

of rewrite rules by the user is not intended. This is caused by the fact that the creation of a rule 

requires deep insight in parametric and procedural modeling as well as in the process of graph 

rewriting and should remain hidden from the end user. He should rather be only concerned with 
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the execution of those rules that lead to the model geometry he requires - which is naturally 

limited by the set of the predefined rewrite rules. 

3.4 Requirements on the Graph to Allow Successful Interpretation 

The main requirement on any graph describing a certain model is its validity, insofar as that the 

interpretation of the graph must be possible (i.e. without conflicts and inconsistencies) and 

result in a usable procedural geometry model. Therefore, the graph must always represent the 

result of a modeling process which could also have been performed manually. Procedural 

modeling applications support this manual process by preventing user actions that would 

destroy the procedural or parametric structure of the model. For example, they do not to allow 

the deletion of a sketch while keeping a dependent extrusion. As this is not a-priori assured by 

automated graph generation, special care has to be taken regarding the consistency of the graph. 

In the context of the procedural graph this means, that every node representing a procedural 

operation has to have all necessary preceding operations (or input parameters) present in the 

graph in form of the respective nodes connected by proper edges. For example, a sketch node 

S always needs a work plane WP node connected by an incoming depend edge d: d=(WP, S). 

Additionally, a subgraph representing the 2D geometry of a sketch must always describe a fully 

constrained sketch. Otherwise the interpretation of the graph would not lead to an unambiguous 

solution. The aspects of sketch graphs in this regard are discussed in detail in Vilgertshofer and 

Borrmann (2015). There, the structure of sketch graphs is defined and the development of and 

requirements on rewrite rules, which always produce an interpretable graph are shown. The 

main tools for achieving an unambiguous representation shown there are the definition of ports 

(definition of the part of a geometric element that a constraint applies to) and the use of 

temporary coordinates to support the GCS. 

 

 

Figure 3:   Pattern (left) and replacement (right) part of a rewrite rule 

that details a model from LoD 1 to LoD 2.  
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4. Prototypical Implementation 

The developed concept of using graph transformation to automatically create consistent multi-

scale product models has been implemented as a case study. For the definition of a graph rewrite 

system consisting of a metamodel and appropriate graph rewrite rules, the graph rewrite 

generator GrGen.NET has been used while the generation of the evaluated sketch is performed 

with the commercial parametric CAD application Autodesk Inventor. 

4.1 A Graph Rewrite System for the Creation of a Shield Tunnel 

GRGEN.NET (Graph Rewrite GENerator) is an open source software development tool that 

provides programming languages optimized for graph structured data. More concretely, it 

provides the possibility to create a graph metamodel and respective graph rewrite rules 

implementing (as default) an SPO-based approach (Blomer et al., 2014).  

As a proof-of-concept we implemented a graph rewrite system with GRGEN.NET. It allows us 

to create the graph based representation of the shield tunnel model stepwise up to LoD 4 without 

any manual modeling operations. We defined rather comprehensive rewrite rules for this first 

evaluation of the approach as our primary focus was to proof that a graph created by these rules 

could actually be used for the creation of an evaluated model. 

An overview of our graph metamodel is given in Table 1. It shows the different types of the 

nodes and edges that we use as well as whether they conceptually belong to a sketch graph or 

to the procedural graph. In Figure 3 an exemplary rewrite rule consisting of the pattern and the 

replacement graph is depicted. A graph representing a LoD 3 model is shown in Figures 4. 

 

 

Figure 4:   Graph representing the depicted LoD 3 model  

(the sketch graphs have been grouped to improve readability) 
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Table 1:   The Metamodel of the Developed Graph Rewriting System 

 sketch graph procedural graph 

n
o

d
es

 

VS: 

 point / projected point 

 line / projected line 

 circle / projected circle 

 arc / projected arc 

projected geometric elements are used to create 

relationships between different sketches 

VP: 

 alignment 

 sketch 

 work plane 

 sweep 

ed
g

es
 

ES: EP: 

 contain 

relates geometric elements to a certain 

sketch node 

 depend 

defines procedural dependencies 

 project 

defines the source geometry of a projected 

element 

dimensional constraints: 

 dimension of one 

element (dc1) 

(e.g. radius, length) 

 dimension between 

two elements (dc2) 

(e.g. distance, offset) 

geometric constraints: 

 concentric 

 equal 

 horizontal 

 vertical 

 parallel 

 perpendicular 

 collinear 

 coincident 

 

4.2 Application of Rewrite Rules and Generation of the Evaluated Model 

While a graph is used for the representation and alteration or detailing of the model, it is not 

particularly useful for engineering purposes. Therefore, an actual three-dimensional model, the 

evaluated model, needs to be generated from the graph-based representation for display and 

further use in a parametrical modeling system. A software tool to enable this generation has 

been prototypically developed. It combines the functionalities to create and transform the graph 

with the predefined metamodel and rewrite rules as well as the evaluation of the graph-based 

representation. Thereby, it generates the geometry and thus the evaluated model in the 

commercial parametrical modeling system Autodesk Inventor. A short overview of the 

functionality follows. 

The developed program uses the API of the graph rewrite tool GrGen.Net to access the 

metamodel and rewrite rules predefined in the syntax of this tool. While the user triggers the 

execution of a rule the actual rewrite operation is performed by GrGen.Net. After the 

consecutive execution of any number of desired rules the current state of the graph is used to 

create the evaluated model. Therefore, the nodes and edges are interpreted and their equivalent 

objects are sequentially created by calling the respective methods of the API of Autodesk 

Inventor. During this process, the connections and relationships defined by the graph are used 

to determine the correct order of the construction operations and the necessary dependencies of 

the objects to be created within Inventor.  

5. Conclusion 

This paper presents a concept for the graph-based representation of product models and their 

automatic detailing by performing graph transformation operations based on formal rules 

defined in a graph rewriting system. It focuses on product models of shield-tunnels as the 
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automated creation of multi-scale versions of such models is the overall purpose of this 

research. 

The main contribution is the description of the development of a graph rewriting system that 

enables the generation of graphs representing those product models. We give an overview of 

the main requirements on the graph in terms of its ability to be evaluated in order to create the 

actual 3D procedural model in a parametric CAD application. We further described how we 

improved our approach by combining the graphs representing 2D sketches and the procedural 

operations by integrating them. Using only one graph to represent the complete procedural 

geometry of the product model allows a much better handling of the graph and makes the 

definition of rewrite rules and the interpretation of the graph much easier. To prove the 

feasibility of our approach, the graph rewriting system has been implemented in the graph 

rewriting tool GRGEN.NET. Additionally, a software prototype was developed that enables to 

automatically create an evaluated model in the parametric modeling system Autodesk Inventor. 

Further research is focusing on creating a larger set of rewrite rules, which enables end users to 

create more diversified models. Additionally, we will further extend the graph to realize the 

affiliation of the created objects to a certain LoD. 
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