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Abstract

Imaging and visualization of anatomy and physiology are the very foundation
of Computer Assisted Surgery, and crucially contribute to the success of inter-
ventions. The goal of the research presented in this thesis is the introduction of
novel image registration techniques as means of transferring pre-operative imag-
ing and planning to the surgical scenario, and intra-operative image acquisition
to obtain images just in time and within the surgical site.

The contribution to image registration include the prediction of deforma-
tion, by generating a patient-specific anatomical biomechanical model for which
spatial and temporal varying physiological properties are estimated based on
observations from 4D Computed Tomography (CT) volumes.

Another contribution to image registration are similarity measures for multi-
modal image registration are proposed and evaluated. Linear Correlation for
Linear Combinations (LC2) are used to enable the alignment of images from
modalities that measure di↵erent physical properties. This allows the combina-
tion of imaging data containing complementing information, but the alignment
fails when the initial alignment is poor.

The second part of this thesis focuses on the interventional imaging, which
is of special importance when large deformations render pre-operative data of
little use, real-time imaging is required for image-guided interventions, or when
imaging is used to simplify surgeries. One of the contributions is the intro-
duction of minimally invasive robotic Single-Photon Emission Computed To-
mography (SPECT) imaging for robot-assisted surgery, for which vision based
tracking of a miniaturized gamma probe enables the SPECT reconstruction
using Maximum Likelihood Expectation Maximization (MLEM).

Finally, this thesis concludes with the presentation of augmented reality
application for to interventional imaging during orthopedic surgeries. The tech-
nical contributions aim at fusing Cone-Beam Computed Tomography (CBCT)
volumes and live 3D color images. The usability of this novel concept is evalu-
ated in a multi-user study using objective and subjective measures.
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Zusammenfassung

Medizinische Bildgebung und Visualisierung von Anatomie und Physiologie
sind die wesentlichen Fundamente der computerassistierten Chirurgie, und
stellen einen unabdinglichen Beitrag zum Erfolg der Intervention dar. Das
Forschungsziel dieser Doktoratarbeit ist die Verbesserung der Registrierung von
medizinischen Bildern um präoperativen Bildinformationen während einer In-
tervention zur Verfügung zu stellen und die intraoperative Aufzeichung von
Echtzeitbildinformationen zur Darstellung in Relation zum operativen Feld.

Die wissenschaftlichen Beiträge zur Bildregistrierung beinhalten unter an-
derem die Vorhersage der Gewebsdeformation mittels einem patientenspezi-
fischen, anatomischen, biomechanischen Modell, welches die räumliche und
zeitliche Veränderung der physiologischen Eigenschaften durch Beobachtungen
von 4D-Computertomographie (CT) approximiert.

Ein weiterer Beitrag zur Bildregistrierung sind Ähnlichkeitsmaße für multi-
modale Bildregistrierung. In erster Line wird die Lineare Korrelation von Lin-
earkombinationen verwendet, um den Abgleich von Bildern unterschiedlicher
Modalitäten, welche verschiedene physikalische Eigenschaften messen, zu
ermöglichen. Dies ermöglicht die Kombination von Bilddaten, die ergänzende
Informationen beinhalten.

Der zweite Teil dieser Doktorarbeit beschäftigt sich mit interventioneller
Bildgebung, welche von spezieller Bedeutung ist, wenn die Deformierung
von Gewebe die Brauchbarkeit der prä-operativen Bildgebung einschränkt,
Echtzeitbildgebung notwendig ist, oder wenn interventionelle Bildgebung den
medizinischen Eingri↵ vereinfachen kann. Erstmalig wird minimal invasive,
robotergestützte Einzelphotonen-Emissionscomputertomographie (en: SPECT)
Bildgebung fuer robotergestützte Chirurgie präsentiert. Basierend auf optischen
Bildern wird ein miniaturisierter Gammadetektor verfolgt, was eine SPECT
Rekonstruktion ermöglicht.

Diese Doktorarbeit schließt ab mit der Präsentation von Erweit-
erter Realität für interventionelle Bildgebung für orthopädische Ein-
gri↵e. Die technischen Beiträge umfassen unter anderem die Fusion von
Primärstrahlenkegelcomputertomografie und Echtzeit-3D Farbbildern. Die Um-
setzbarkeit dieser neuartigen Technologie ist durch eine Nutzerstudie anhand
objektiv quantifizierbaren und subjektiven Merkmalen evaluiert.
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Outline and Publications

In the following, a brief outline of the main chapters in this dissertation is
presented.

Chapter 1: Introduction. The crucial importance of medical imaging for sur-
gical treatment, and the techniques to provide image-guidance are presented.
First, concepts and terminology are defined, followed by an overview of com-
monly used imaging techniques. Finally, this chapter concludes with the intro-
duction to medical image registration and outlines the need of interventional
imaging.

Chapter 2: Medical Image Registration. In this chapter, medical image
registration and the components will be discussed. The contributions to defor-
mation estimation will be discussed in the context of registration problems, as
well as the contributions to similarity measures, such as Linear Correlation for
Linear Combinations (LC2).

Chapter 3: Image-Guided Surgery and Intra-Operative Imaging. In
some surgical scenarios, the use of diagnostic imaging is not feasible, either due
to limited imaging capabilities or the need of real-time imaging. In this chapter,
the contributions towards robotic Single-Photon Emission Computed Tomogra-
phy (SPECT) during robot-assisted surgery, and intra-operative imaging are
presented and discussed.
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Introduction

CHAPTER 1

A Brief History Throughout history, medical knowledge and expertise have
improved parallel to the development of knowledge about the human body.
The earliest known medical literature dates back to the 17th century BC [28],
and it is assumed that medical illustrations were implemented since the very
beginning of medical treatments [9]. One of the most well known volumes on
human anatomy are the seven books written by Andreas Vesalius in 1543 AD,
entitled the De humani corporis fabrica, which included more than 600 printed
images. However, knowledge was limited to macroscopically observable anatomy
and physiology, and access to medical education remained di�cult.

In the early 19th century, modern medicine started to be established based on
nosological systems of diseases, reasoning based on sound pathology and physi-
ology, and the acceptance of modern technology as a meaningful tool. Since this
time, technology and medical imaging have truly revolutionized the capabilities
of treating injuries and diseases, and have changed the understanding of the
normal or deviant functions of the human body.

In the very late 19th century, X-rays were discovered and showed that the vi-
sualization of interior parts of a human body was possible by transmitting radia-
tion. This was ground breaking and motivated several important developments
during the 20th century, such as medical ultrasound imaging in 1949, X-ray
based Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)
in 1973. Based on these and other imaging systems which evolved in the 20th
century, understanding of human anatomy and physiology was significantly im-
proved.

In general, e↵ective treatment depends on the correct diagnosis, which is the
task of identifying the disease, illness or injury based on objectively quantifiable
signs and symptoms. Nowadays, medical imaging is a vita tool for diagnosing.
The use of imaging technology is paramount in confirming diagnoses, assisting
and validating treatments, and monitoring and documenting the courses and
possible recurrence of diseases. Due to the varying imaging properties, the
choice of the imaging technology is highly dependent on the medical application,
and also on the anatomy and physiology that needs to be observed. Section 1.1
outlines the most commonly used and most relevant imaging modalities.

Future Vision and Mission With confidence we can assume that future
developments will lead to an increase of early disease detection and improved
treatment e�ciency in terms of duration of the surgery, surgical task load, pa-
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tient outcome, and reduction of side e↵ects. Imaging and interventional assis-
tance systems will evolve to observe and predict the surgeon’s actions to most
e�ciently provide the required information or tool at just the right moment
during surgery. This will be closely followed by taking over simplistic tasks. To
achieve the long term vision of a smart, multi-modal operating room compan-
ion, our goal is to take meaningful steps on this path to enable the use of new
technology in tomorrow’s interventions.

Contributions The main contributions presented in this thesis aim at (i)
transferring information from pre-operative imaging to the interventional sce-
nario (Chapter 2), and (ii) performing intra-operative imaging (Chapter 3):

(i) The prediction of tissue deformation, and the registration of pre- and
intra-operative images are presented in Chapter 2. More specifically, the
prediction of tissue deformation is based on biomechanical simulations
of the anatomy and physiology, and the personalization based on Four-
Dimensional Computed Tomography (4D CT) images. Next, contribu-
tions to the registration of MRI and ultrasound images are presented.
As these modalities inherently display di↵erent tissue properties, the suc-
cessful alignment of these images represents a significant achievement.
Finally, the chapter on medical image registration concludes with an out-
line of the impact of monotonic similarity measures on the registration
process.

(ii) Novel intra-operative imaging concepts are presented, such as the robotic
SPECT imaging during robot-assisted surgery, robot-assisted ultrasound
acquisition, and the fusion of medical and optical imaging to achieve in-
tuitive visualization during orthopedic and trauma surgeries. These novel
concepts and technologies are designed and developed to assist surgeons
during interventions, smooth workflow, and increase patient safety. Chap-
ter 3 presents the background and contributions in this field.

In the following sections, the basics for medical imaging modalities (Sec. 1.1)
and image-guided intervention (Sec. 1.2) are outlined, which represents the sci-
entific and technical background of the contributions presented later in this
thesis.

1.1 Medical Imaging Basics

Starting in the past century the use of medical images has become increasingly
frequent and has spread from health care to biomedical research. In 1895, the
first application of X-ray imaging for diagnostic purposes was reported. Since
then the dramatic development of technology has lead to impressive imaging
quality, improved use and benefit of imaging modalities. Nowadays, X-ray CT,
MRI, medical Ultrasound (US), multi-spectral or fluorescence imaging, SPECT,
Positron Emission Tomography (PET), microscopic imaging, and optical coher-
ence tomography are commonly used for diagnosis and guidance of treatment.

Early medical imaging systems, such as X-ray imaging, were able to visualize
the anatomy of the patient, but not the underlying physiological processes.
Following the categories of observable information, medical imaging modalities
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Fig. 1.1: Typical interventional X-ray images acquired using a C-arm. These
images show the placement of a guide wire (k-wire) into the pubic
ramus bone. First, the surgeon needs to determine the entry point
through the muscle, see a), followed by drilling the wire through the
bone as seen in b). Note that the surgeon requires a vast amount
of X-ray images from various points of view to determine the precise
three-dimensional trajectory relative to the bone.

are generally classified in either anatomical/structural or functional imaging.
However, for some modern imaging modalities and their variants, such as MRI
and functional MRI, this classification may not be absolute.

In this thesis the main focus is on the registration of MRI and US images,
reconstruction of SPECT volumes, and use of Cone-Beam Computed Tomogra-
phy (CBCT) as interventional imaging. Therefore, the following section presents
the fundamental properties and concepts of each of these modalities, starting
with anatomical/structural imaging, followed by functional imaging.

1.1.1 Anatomical/Structural Imaging

X-Ray Imaging Using a low dose of ionizing radiation, a projection image
of a patient or object can be recorded. The radiation is generated using an
X-ray tube, directed towards the subject and partially absorbed or scattered
by tissue. Finally, the remaining radiation is recorded using a photostimulable
phosphor plate, image intensifier or flat panel detector. As photoelectric absorp-
tion, Compton and Rayleigh scattering predominantly depend on the material
properties of the tissue and X-ray photon energy, the projection image observed
directly reflects the densities and material composition of the tissue. Modern
imaging systems include stationary imaging systems specialized for static imag-
ing, or mobile systems which may also provide live X-ray imaging (fluoroscopy).
Typical interventional X-ray images acquired during a pelvic fracture reduction
are shown in Fig. 1.1. Due to their shape factor, mobile X-ray machines are
often referred to as C-arm, where one end of the C-shape holds the detector,
and the X-ray source is mounted on the opposite end. Reconstruction of three-
dimensional images is possible using a motorized or robotic system which can
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rotate around the patient and acquire 50 or more X-ray images (see Computed
Tomography below).

X-Ray Computed Tomography (CT) By combining X-ray images taken
from di↵erent angles, cross-sectional images and three-dimensional volumes of
the subject can be reconstructed. In general, the reconstruction algorithms to
compute the three-dimensional volume can be categorized in analytic or alge-
braic techniques. Most clinical CT scanners use a (proprietary) variation of the
analytic method referred to as Filtered Back-Projection (FBP), which will be
explained in the context of the more complex CBCT reconstruction (see below).

While the basic CT scanner comprises of an X-ray source and a detector,
modern devices may incorporate multiple sources or detectors to enable simul-
taneous imaging using photons of di↵erent energy levels. The detectors are
composed of up to 320 detector lines (Toshiba Aquilion One), but no published
study can be identified whether diagnostics based on a 320 slice system yields a
significant di↵erence to commonly used 64 slice systems. By injecting contrast
agents with higher X-ray attenuation, the vasculature and perfusion can be vi-
sualized. For instace, fast multi-slice detector CT scanners are used to image
cardiac perfusion. Imaging of vascularture is frequently referred to as Computed
Tomography Angiography (CTa).

Cone-Beam Computed Tomography (CBCT) In contrast to conven-
tional X-ray CT, the CBCT uses a source and detector similar to static X-ray
imaging where the X-rays diverge and form a cone. CBCT enables intraop-
erative 3D imaging for various applications, for instance orthopedics [2], den-
tistry [52], or radiation therapy [4]. The reconstruction of the volume of interest
is performed using the projection data form di↵erent angles. First, we will ex-
plore the problem statement and solution of the line detectors, and then expand
the problem to the cone-beam shape. When an X-ray beam leaves the detector
with an intensity I0 it travels along a line j and is attenuated by an object
following Beer’s law for photon intensities:

I
j

= I0 ⇤ exp

0

@�
Z

line j

µ(~r)dl

1

A ,

where µ(~r) is the attenuation coe�cient of the material along the line j at the
position ~r. The projection data p can now be expressed as:

p
j

= � ln
I
j

I0
=

Z

line j

µ(~r)dl

The attenuation coe�cient is the desired material property, which can be re-
constructed by solving a set of integral equations for the attenuation coe�cients
µ based on the projection data p:

p = Aµ, (1.1)

whereA is the system characterizing operator. This problem can be solved using
analytical or algebraic methods. The algebraic method is mainly used when the
acquisition geometry prohibits a uniform backprojection or the observed data
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can not be represented as projection data and will be presented in context of
SPECT. The analytical solution is typically used to perform CT reconstructions
and is based on the concept of a filtered backprojection:

µ̃(x) =

Z
d�

Z
du0k(u0)p(�, u� u0),

where d� is the spatial component of the backprojection, du0k(u0) the spatially
varying filter and p remains the projection data. Taking the rotation of the
source and detector around the patient along the trajectory � into account, the
cone-beam transform is defined as:

Dµ(~↵(t), ~�) =

1Z

0

µ
⇣
~↵(t) + s~�

⌘
ds, (~↵, ~�) 2 �⇥ S2,

where ~↵(t) is the source position along trajectory �, and ~� is the unit vector
pointing along a particular X-ray beam. For conventional CT reconstruction,
the Radon transformation can be directly applied based on the 2D parallel-
beam geometry. However, for CBCT, the projection data is linked to the three-
dimensional Radon transformation, which describes the mapping of a function
µ(~r) onto its plane integrals:

<µ(⇢, ~✓) =
Z

d3r�(~r · ~✓ � ⇢) · µ(~r),

where ~✓ is the normal vector on the plane for which the plane integral is com-
puted, and ⇢ is the distance between origin and plane. The link back to the
projection data is not trivial, and is performed through filtering and the 3D
Fourier transformation, leading to the result of the derivations of the analytical
solution:

µ(~r) = � 1

8⇡2

Z
d~✓

�2

�⇢2
<µ(⇢, ~✓)|

⇢=~r·~✓,

where d~✓ represents the backprojection, <µ(⇢, ~✓) the plane integral of the ob-

ject, and �

2

�⇢

2 is the inversion that - unlike the two-dimensional case - acts locally
in the three-dimensional Radon space. However, this naive application of the
three-dimensional Radon inversion formula is prohibited due to the long ob-
ject problem (limiting the scanning region to the region of interest due to an
increasing parallax e↵ect) and the computational expense. Therefore, CBCT
reconstruction algorithm resorts to simplifications to end up in an e�cient and
numerically stable shift-invariant one-dimensional filtered backprojection. The
Feldkamp-Davis-Kress (FDK) algorithm, a generalization of the fan beam in-
version formula to the cone-beam geometry, is a possible solution [13], as is the
Z-smart approach [11].

Finally, the attenuation coe�cients are normalized based on the attenua-
tion coe�cient of water, resulting in the CT number or Hounsfield units (HU).
Comparing identical materials scanned using CBCT and CT, it can be observed
that the HU are not identical. The short-scan FDK, especially limited angles,
simplifications and filtering during reconstruction, may result in di↵erent HU
compared to CT [39, and therein]. Therefore, the ability to asses tissue proper-
ties is limited.
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However, the e↵ectiveness of CBCT in orthopedic surgeries is bound by its
limited field of view, resulting in small volumes. Intraoperative surgical planning
and verification could benefit from an extended field of view. Long bone fracture
surgeries could be facilitated by using three-dimensional absolute measurements
and multi-axis alignment in the presence of large volumes, assisting the surgeon’s
mental alignment.

Magnetic Resonance Imaging (MRI) In contrast to X-ray based imaging,
MRI does not use ionizing radiation and is therefore non-invasive. The informa-
tion acquisition relies on the principle that spinning charged particles (protons)
align their spins with a strong magnetic field. When the strong magnetic field
changes, the spins follow and emit a weak field.

More specifically, medical MRI systems align spins of hydrogen atoms (only
one electron and proton) using a strong, constant magnetic field (B0), which
is called longitudinal magnetization. At this stage, the hydrogen nuclei in the
patient’s body align parallel or antiparallel to the field direction, but a slightly
greater proportion aligns parallel. The precession of the hydrogen nuclei around
the long axis of the magnetic field depends on the atom and the strength of the
field. The precession rate is referred to as the Larmor frequency, where a set of
protons can either precess together (in phase) or separately (out phase). Within
the bore of the primary magnet there are three gradient coils, which are arranged
in opposition to each other to create poles in order to enable the alteration of
the primary magnetic field. By combining the three gradient magnetic fields,
the strength and orientation of the magnetic field can be changed locally, which
allows for spatial encoding and localization. Finally, RF coils are used near the
patient’s body to emit a second magnetic field (B1) with the same precession
frequency, which makes some low energy parallel protons flip to be antiparallel,
and protons become synchronized and precess in phase.

After the RF pulse is applied, the change of the net magnetic vector, which
is the sum of longitudinal (T1) and transverse (T2) magnetization, is observed.
The protons flip back to their original spin direction (relaxation) by giving o↵
the energy to the environment at their local Larmor frequency. The temporal
increase of magnetization due to the relaxation is contingent on the tissue com-
position, and is known as T1 relaxation. The transverse magnetization depends
on the synchronization of the spins, and reduces over time. Based on the tissue
composition, the time that the spins need to go from in phase to out phase
spins (T2 relaxation) varies. The change of the net magnetic moment of the net
magnetic vector results in free induction decay and induces an electrical signal
in the RF coils. The reconstruction of the spatial image is performed using a
Fourier transform.

In summary, the image intensities depend on the composition of tissue that
contains significant amounts of hydrogen atoms. Therefore, MRI is well suited
to visualize soft tissue compositions, but yields poor imaging quality for tissue
such as bones. Imaging of patients with magnetic implants is not possible. Per-
forming interventions under live MRI-guidance is challenging due to the limited
accessibility (bore size) and the required non-metallic medical instruments.

Ultrasound Imaging (US) Unlike MRI and CT systems, ultrasound imag-
ing systems are mobile devices that allow interactive and real-time imaging.
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Rather than performing tomographic reconstruction, ultrasound images repre-
sent the changes in acoustic properties of tissue. Today, the basic mode of
operation provides a two-dimensional slice (B-mode image) of the patient where
the intensities are correlated to the amount of ultrasonic reflections.

Imaging artifacts are common and may be inherent to the ultrasound beam
characteristics, caused by multiple echo paths or changes in acoustic velocities
within the tissue, or be based on attenuation errors. Random speckle (noise),
comet tails, multiple echoes, mirror images and shadow regions are commonly
found in the images.

To enable imaging, the transducer needs to be in direct contact with the
patient’s skin, using gel to achieve acoustic coupling and avoid air between
transducer and tissue. In general, the sound pulses, at frequencies around 1
to 15 MHz, propagate through the tissue and are reflected at interfaces where
the acoustic properties change, which usually represents a change in tissue,
layers or organs. These reflections are recorded by the same transducer, and
the image intensities are then correlated to the origins and intensities of the
acoustic echoes. Naturally, the type, dimension and resolution depends on the
ultrasound transducer itself.

Transducers generate the ultrasound beam through mechanical vibrations
using piezoelectric elements of capacitive micro-machined ultrasonic transduc-
ers. The most common transducer models are categorized based on the arrange-
ment of the emitting and receiving elements. For instance, linear array trans-
ducers have a flat interface (referred to as aperture) and the beam is shaped
to be parallel. Consequently, the image is rectangular and represents the nar-
row stripe from aperture into the body. For certain clinical applications, this
is su�cient and allows the imaging at a constant resolution, but the limited
field of view motivates other beam shaping designs. Similar to the linear array
transducer, the phased array transducer also has a flat aperture, but the beams
are steered in an angulated fashion. This allows the imaging of a wider field of
view, but due to limited space in the transducer, the number of elements can
not be increased. To better fit more elements and the interface to the patient,
the curvilinear transducers have a curved interface. These transducers are fre-
quently used for abdominal examinations, where both the field of view, as well
as the spatial resolution are of importance.

To acquire three-dimensional images, wobblers are used which usually en-
capsulate a curvilinear transducer within a casing and automatically swivel it
inside. This allows the coverage of a three-dimensional volume without the user
moving the transducer, but requires the mechanical motion inside the trans-
ducer. Modern phased array transducers can also shape the ultrasound beam
to scan larger, three-dimensional areas. Both techniques allow for acquisition
of a three-dimensional area over some time. The area is limited to the pose of
the transducer held by the user. Other approaches to acquire a larger three-
dimensional volume are based on the movement of the transducer along the
surface of the patient. To later compound the individual two-dimensional slices
to a large three-dimensional volume, tracking techniques are required. For in-
stance, infrared optical, inertial or electromagnetic tracking have been used in
commercial systems. Registration-based approaches try to assemble the volume
by registering the images. This is partially successful when acquiring several
three-dimensional volumes because the overlap is su�cient. However, systems
require the user to move the transducer, which usually results in varying degrees
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of pressure applied to the surface throughout the scan. This causes registration
based mosaicing to fail, and introduces step artifact in images compounded
based on tracking.

A common issue concerning current ultrasound imaging is strong user depen-
dence, due to the hand held nature of the device and di�culty of recognizing
patterns, structures and certain tissue in ultrasound images. This motivates
the use of advanced robotics to enable a precise scan of large areas, and the
application of a continuous pressure profile over the entire scan. Thus, the
ultrasound volumes acquired can be larger and without step artifacts. This
enables the automatic registration with diagnostic imaging and therefore the
automatic targeting of regions of interest based on pre-operative planning using
diagnostic images.

1.1.2 Functional Imaging

In contrast to structural imaging, the goal of functional imaging is to reveal the
physiological activities within tissue or organs. The modalities frequently re-
quire tracers, which are chemically similar to fluids in the body and are therefore
dynamically distributed throughout the body. Nuclear imaging - an important
group of functional imaging modalities - require the tracer to be radioactive,
by either binding an isotope to a molecule, or dissolving it in a fluid. Common
representatives of nuclear imaging are SPECT and PET. Other commonly uti-
lized modalities are based on similar physical concepts like structural imaging,
such as dynamic angiography/perfusion CT or functional MRI. As the scientific
contributions are useful for gamma and SPECT-like imaging, the following will
focus on these two modalities.

Gamma Detection and Imaging Gamma detectors are hand-held devices
capable of detecting radiation and reporting the activity observed as counts.
Tissue with no or little concentrations of tracer have low counts, while areas
with higher uptakes of radioactive tracers yield higher counts. The primary use
of gamma detectors is sentinel lymph node mapping, parathyroid surgery, and
radioactive seed localization. Surgeons use gamma detectors by moving them
over the tissue in a grid-like fashion until they localize areas causing higher
counts. In 1998, a first patent on a mini gamma camera was filed [41], showing
an array of detectors in a grid-like arrangement. This enables surgeons to obtain
a simple, low-pixel image of the distribution of radioactivity, and subsequently
decreases the scanning duration [71, and references therein].

Single-Photon Emission Computed Tomography SPECT imaging pro-
vides true three-dimensional volumes, where the image intensities are correlated
with the activity of a radioactive tracer. This is helpful for, but not limited
to tumor imaging, leukocyte imaging, thyroid monitoring, perfusion imaging,
functional imaging, etc. The system provides an array of gamma detectors - a
gamma camera - which rotates around the patient. The projection images are
recorded and used to perform a tomographic reconstruction.

This nuclear imaging technique is frequently combined with anatomical
imaging modalities, such as CT. The basic principle is based on the direct
measurement of radioactivity by using an array of gamma detectors. However,
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rather than just recording a two-dimensional projection, one or more detector
plates rotate around the patient in order to record multiple views. Simulta-
neously, CT volumes are acquired to correct attenuation by di↵erently dense
tissue. To reconstruct the three-dimensional SPECT volume, the problem is
stated as a system of linear equations as in equ. 1.1, and an iterative solver
is used to solve it. The elements a

ij

of the system characterizing operator A
are defined by the probability distribution that one voxel j contributed to the
observed radioactivity on the detector pixel i. This is dependent on the camera
response function (usually look-up tables are empirically recorded or simulated)
to the known radioactive tracer, and the absorption/attenuation, scattering, and
di↵raction of surrounding tissue, where attenuation is corrected through the CT
volume simultaneously acquired. The voxel values reflect the concentration of
the radioactive tracer.

Using the Algebraic Reconstruction Technique (ART), the volume of interest
µ is iteratively reconstructed:

µ(n+1) = µ(n) �
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,

where µ(n) is the volume at iteration n, a
ji

are the elements of the system
matrix A, and p

j

are the projections. The system matrix A also models the
response function of the detector or camera, which is usually implemented as
a look-up table. Similarly, Maximum Likelihood Expectation Maximization
(MLEM) can be used to solve equ. 1.1 for SPECT reconstruction, where the
update step is multiplicative rather than additive. This also allows for the
incorporation of relaxation factors, which may represent attenuation, camera
response properties, etc.

1.2 Image-Guided Interventions

The information on the anatomy and physiology of the patient that medical
images provide, can enable guidance during the intervention itself. However,
in many cases the surgeon needs to translate the information provided to the
surgical site, plan and execute the actions. For example, during orthopedic in-
terventions, the surgeon may look at X-ray images showing bones and fractures.
He then needs to mentally align the anatomy seen in the images with the po-
sition of the patient, perform the incision and repair. In general, this mental
alignment of medical images, patient, and medical tools proof to be di�cult,
especially when dealing with complex three-dimensional structures, tumor mar-
gins, close proximity to crucial structures (e.g. in spine or brain), etc.

Assistance systems support the surgeon by a) providing additional context to
the images, b) providing the trajectory and deviation of it towards a pre-defined
target, or (c) executing components of the surgery autonomously. Typical func-
tions of surgical image-guided navigation systems are (a) and (b). Similarly,
scientific contributions (see Chapters 2 and 3) of this thesis also focus on pro-
viding context or visualization of the target. Additionally, robotic ultrasound
contributes to the path of executing some of the tasks autonomously.

Image-guided navigation reduces the uncertainty of the association of struc-
tures and therefore contributes as a tool to improve accuracy. When establish-
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ing a precise spatial relationship between images and the surgical site, specific
points in the image are matched with the corresponding real-world position.
This is usually achieved by means of registration. In the course of this thesis,
this registration of the pre-operative images and intra-operative information is
performed by means of image registration, where intra-operative images are ac-
quired in such a fashion that the relation between real-world positions and image
coordinates is known. Therefore, the registration of pre-operative images and
intra-operative images allows for the translation of pre-operative information to
the real-world surgical site.

In general, the transformation mapping between images or coordinate frames
requires at least three point correspondences, assuming the relation between two
images or coordinate frames can be represented without deformations. Once this
relationship is established, the surgeon can target a point in the patient using
a tool with tracking targets, and the corresponding position will be visualized
within the medical image. Additionally, the trajectory towards a pre-defined
target and deviation from a ideal trajectory can also be visualized.

While current navigation systems add time to the overall occupancy of the
operating room, they may improve patient outcome. However, a recent pub-
lication indicated that even this advantage may not be true for some applica-
tions [34]. Most navigation systems comprise of a tracking system, tracking
targets on tools, devices and patient, and a cart containing the computer and
monitors. These devices need to be introduced to the operating room, where
they reduce the free space which is already very limited. Additionally, the de-
vices require cleaning and storage, which adds overhead in terms of cost and
time. Once the systems are set up, and the tools and devices calibrated, the
surgery can begin. This additional setup time increases the overall duration of
the surgery, and therefore limits the availability of the operating room.

During the actual procedure, optical tracking systems require line of sight
between the tracking targets on the patient, tools and devices, and the tracking
system. This limits the surgeon and sta↵ in their moving space and access to the
surgical site. Electromagnetic (EM) tracking systems are used infrequently, as
metal in the tools, surgical table, and devices may reduce the tracking quality.
Additionally, the distance between EM tracking system and targets is limited,
rendering the tracking in a realistic OR setup impractical.

In the following chapters, image guided interventions are enabled by means of
registration of pre- and intra-operative imaging (Chapter 2), and intra-operative
imaging acquisition and fusion of camera views and medical images (Chapter 3).
In contrast to the classic approach of image guided navigation, this concept of
medical augmented reality provides an intuitive understanding of the relation-
ship of patient anatomy, medical instruments and surgeon’s hands, as all of
these are visualized in the same view. Therefore, tracking of tools and tracking
systems are not required as the establishment of the association of real-world
positions and points in the image can be done with any tool, finger or object
that is visible in the camera view. Furthermore, guidance along the trajectory
and the deviation from the ideal path are implicitly shown as the current tool
position is virtually overlaid on the current medical image.
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CHAPTER 2

In a clinical scenario, complementary medical images are acquired showing the
relationship of anatomy and physiology as well as abnormalities. The clinician’s
task is to mentally align these images and combine the information from these
sources to come to a meaningful conclusion. This is made more di�cult when
images are acquired using di↵erent imaging devices with dissimilar imaging ca-
pabilities. However, this complementary representation is of great relevance
to a vast range of clinical applications, and the fusion of interrelated informa-
tion provides a great benefit for improving diagnosis, treatment planning, image
guidance during interventions, and post-operative validation.

For instance, MRI provides excellent information on soft tissue and tu-
mor boundaries, but is extremely di�cult to acquire intra-operatively. On the
other hand, Medical US provides real-time images which can be acquired intra-
operatively, but lacks the field of view or image quality of MRI. The fusion of
both modalities enables the transfer of information present in MRI images to a
common coordinate frame defined by the acquired ultrasound image. However,
this registration presents a di�cult and complex problem, as the representation
of the same object is very di↵erent, which is largely based on the varying phys-
ical properties that are observed by the modalities. MRI intensities correlate to
the relaxation times of the 1H nuclei, while US images indicate the changes in
acoustic impedance.

In addition to the di↵erent nature of images, dynamic or real-time imaging
is often used during diagnosis or treatment, resulting in vast amounts of medical
images. Therefore, an automatic image fusion is desired, which also aids the
clinician in avoiding false alignments.

2.1 Definition of Registration and Image

In this context, image registration is defined as the automatic process of align-
ing, deforming or scaling two or more images in a common coordinate space,
which results in the establishment of correspondences between the information
contained in the di↵erent images. Medical image registration can be categorized
based on the modalities (Sec. 1.1), registration components (Sec. 2.2), images,
or observed subject(s).

17



Medical Image Registration

Definition of Image For the process of image registration, the images must
be available in a digital form, for which the information is discretized and dig-
italized. In most cases, the images are represented using an array of elements.
The data acquired by commonly used imaging modalities can easily be repre-
sented using one-, two-, or three-dimensional arrays of tuples, usually singles or
triples. In some cases temporal sequences of these images are obtained, increas-
ing the dimensionality of the array. A tuple of the array is commonly referred
to as picture element (pixel) or volume element (voxel), which have been used
synonymously in various publications. In summary, we define an image to be a
function f which operates from a sampled subset X of its domain to a subset
Y of the codomain:

f [X] = {y 2 Y |y = f(x)8x 2 X}. (2.1)

Note that this generalized definition does not limit the definition of an image to
the aforementioned sampling of data as an array with tuples. For instance, X
can be a set of three-dimensional points with Y being a unit set or representing
color information.

Examples of Images CT and MRI images are usually represented as three-
dimensional arrays with gray scale values. Additional information is provided
by the imaging devices, such as a rigid transformation from a known point in
the real world to the origin of the image, and the element spacing. US images
are mostly two-dimensional arrays of gray scale values. Based on the transducer
used (e.g. curved), the image may contain large areas with no information. Most
US systems do not provide a relationship between the real world and the origin
of the image. The pixel spacing often needs to be computed based on the user-
defined depth setting. Three- or four-dimensional images may be acquired by
moving a two-dimensional transducer. Alternatively, an oscillating or a phased
array transducer can be deployed.

Registration In general, the image registration process is modeled in an al-
gorithm that finds a mapping H from one image to another one. The majority
of clinically relevant cases, two images are registered, which is also referred to
as pair-wise registration. Registering more than two images can be achieved by
performing multiple pair-wise registrations, or using one image and multiple ref-
erences during a group-wise registration [40]. For most purposes we can reduce
our registration process to a pair-wise registration, which could be expressed as
maximization of the similarity between two images:

H0 = argmax
H

S(I,H(J)), (2.2)

whereH0 is the optimal mapping from the first image I (reference or fixed image)
to the transformed image H(J) (template or moving image). The similarity
computed by the measure/function S expresses how well the images are aligned.
In Section 2.2, the components of the registration process, such as S and H, are
presented in detail.
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Fig. 2.1: The four major components of the image registration process are the
similarity measure, optimizer, interpolator, and transformation.

2.2 Registration Process and Components

The registration process can be broken down into four major components, as
outlined in Fig. 2.1. First, a Transformation is a mapping between two or more
images. It describes how features in images relate to the common coordinate
frame. Secondly, the Interpolator is used to apply the transformation to obtain
a representation of the image in the common coordinate frame. Thirdly, the
quality of the image alignment is to be quantified and expressed through an
ordinal variable. We will refer to this component as Similarity Measure. Finally,
to obtain the optimal alignment, the Optimizer changes the transformation
based on the similarity measure until convergence has been reached.

2.2.1 Transformation

Transformations are a set of unknown variables, and are required or estimated
when calibrating di↵erent sensors or medical imaging devices, navigating a tool
or a medical device, monitoring or controlling a robot, augmenting a camera
view, or registering di↵erent image data. The di↵erences observed from one
image to the next are based on three-dimensional changes of structure and
physiology over time. Therefore, the transformation should be modeled as a
four-dimensional function. However, based on the sampling and discretization
of the images, we can approximate and simplify the transformation to be rep-
resented by a mapping of fewer dimensions.

In general, a transformation is a mapping, composed of a linear map and a
translation, and is defined by its action on point coordinates. As a rule, trans-
formations are classified based on the dimensionality of the underlying data,
quantities or properties that are invariant, or on the consistency over the func-
tion domain. For instance, the registration of two undistorted two-dimensional
images may only require a two-dimensional, rigid, linear transformation, while
the registration of three-dimensional CT images of the thorax acquired at dif-
ferent phases during the respiratory cycle may require a three-dimensional, de-
formable, spatially varying transformation.

To achieve a matrix-vector product for all types of transformations homo-
geneous coordinates will be used for all points. This notation allows the rep-
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resentation of points and lines at infinity using finite coordinates by adding an
additional dimension w to points. For projective transformations, this new di-
mension scales the coordinates. Otherwise it allows for the simple matrix-vector
product to perform the transformation. The space with an additional dimension
is now referred to as projective space. When w = 1, then it has no e↵ect on
the coordinates. For 0 < w < 1 and w > 1, the object represented by points is
scaled and appears smaller or larger respectively. However, if w = 0, then the
coordinates represent a point at infinity.

In the following paragraphs the hierarchy of transformations in terms of the
quantities or properties that are invariant will be laid out, as described in [21].

Rigid Transformation Transformations that preserve the Euclidean dis-
tance are referred to as rigid or Euclidean Transformations or Isometries. The
Euclidean transformation can be written in block form as:

x0 = T
e

x =


R t
0> 1

�
x,

where R is an orthogonal rotation matrix, t is a translation vector, and 0 is a
null vector. They are dependent on the dimensionality of the transformation.
For instance for two-dimensional transformations (superscript (2)) the transfor-
mation is defined as:

T(2)
e

=


R(2) t(2)

0(2)> 1

�
=

2

4
✏ cos ✓ � sin ✓ t

x

✏ sin ✓ cos ✓ t
y

0 0 1

3

5 ,

where ✓ is the angle of rotation, t
x,y

is the translation along the x- and y-axis
respectively, and ✏ 2 {�1,+1} reverses the orientation. Note that the rotation
matrix R(2) only allows the rotation around one axis. To expand this concept
for a three-dimensional transformation, the rotation matrix R(3) needs to be
composed by the clockwise (right hand rule) rotations around all three axes:

R(3) = R
z

(�)R
y

(�)R
x

(↵) =

=

2

4
cos � � sin � 0
sin � cos � 0
0 0 1

3

5

2

4
cos� 0 sin�
0 1 0

� sin� 0 cos�

3

5

2

4
1 0 0
0 cos↵ � sin↵
0 sin↵ cos↵

3

5 ,

where ↵, � and � are the rotations (Euler angles) about the x, y and z axes re-
spectively. The expansion of the translation vector is straightforward by adding
the translation along the z-axis.

During image registration unknown parameters are estimated, and the com-
putational e↵ort of the registration process correlates directly with the degrees of
freedom. Rigid transformations exhibit the least degrees of freedom compared to
a�ne, projective or deformable transformations. Two-dimensional rigid trans-
formations have one degree of freedom for rotation, and two for translation,
resulting in a total of three. Three-dimensional rigid transformations have six
degrees of freedom (three rotation, three translation).

Applying a two-dimensional rigid transformation, lengths, areas and angles
remain unchanged, and are therefore the invariants. Volume and angles are
invariants to the three-dimensional rigid transformation.
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Similarity Transformations An isotropic scaling factor is introduced, re-
sulting in a similarity transformation. The transformation matrix is composed
by multiplying the rotation matrix by the scaling factor. The degrees of free-
dom of a two-dimensional and three-dimensional similarity transformation is
four (one rotation, two translation and one isotropic scaling), and seven (three
rotation, three translation and one isotropic scaling), respectively. In two di-
mensions, angles, rations of lengths along a line and parallel lines are not af-
fected by this transformation. For three-dimensional transformations, angles
are invariant.

A�ne Transformations Non-isotropic scaling and sheering can be repre-
sented with an a�ne transformation. In practice, sheering is often not applied
to medical images, while non-isotropic scaling can compensate for nearly uni-
formly applied pressure (e.g. brain shift or ultrasound transducer). In the block
form, the non-singular a�nity matrix A replaces the rotation matrix:

x0 = T
a

x =


A t
0> 1

�
x,

where A is a 3⇥ 3 matrix with nine degrees of freedom for a three-dimensional
transformation T

a

. A can be composed by a rotation matrix, a diagonal matrix
with the non-isotropic scaling factors along the diagonal and a final rotation
matrix[21]. To represent the geometrical operations defined through an a�ne
transformation, we compose A using a separate scaling T

scale

, shearing T
shear

,
rotation and translation (Euclidean) matrix T

e

:

A0 = T
e

T
shear

T
scale

=


R t
0> 1

�
2

664

1 sh
xy

sh
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0
0 1 sh

yz

0
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3
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where sh
xy,xz,yz

represent shearing on the x � y, x � z and y � z plane, and
s
x,y,z

represent the non-isotropic scaling along x, y and z axes. Note that the
order of T

scale

, T
shear

, and T
e

are chosen arbitrarily, but it will remain in this
order throughout the thesis.

Parallel lines, rations of areas and the line at infinity are invariant to the
two-dimensional a�ne transformation. Parallel planes, ratios of volumes and the
plane at infinity are not a↵ected by the three-dimensional a�ne transformation.

There are six degrees of freedom (two translation, four entries of A) and
twelve (three translation, nine entries ofA or three for each translation, rotation,
scaling and shearing) for two- and three-dimensional transformations. Note
that it is common to reduce the degrees of freedom in the three-dimensional
case to nine (three translation, three rotation, three scaling) for medical image
registration.

Projective Transformations The projective transformation generalizes the
a�ne transformation, and is represented as a non-singular linear transformation
of homogeneous coordinates. Using the block form, the projective transforma-
tion can be written as:

x0 = T
p

x =


A t
v> v

�
x,
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where the vector v allows points at infinity to become finite points or the other
way around. In the two-dimensional case we can not distinguish between orien-
tation preserving and orientation inverting projections. The three-dimensional
protective transformation has 15 degrees of freedom defined by 16 matrix entries
up to scale.

Regarding projective transformations, the remaining invariants are intersec-
tions and tangency of surfaces in contact. Also, in the two-dimensional case,
the order of contact and of ratio of lengths remain invariant.

Deformable Transformations If the motion of tissue is spatially varying
within the image, a global Euclidean, a�ne or projective transformation may
not be appropriate, reacquiring a deformable (non-rigid) transformation. Three
of the most important applications of deformable image registration are i) multi-
modal image registration, ii) longitudinal studies, and iii) inter-patient regis-
tration [61].

For the first group of applications, when image data is acquired using dif-
ferent imaging modalities, deformations often occur due to changes in patient
positioning. Additionally, some image modalities, e.g. mammography and ul-
trasound imaging, require some external force to be applied to the patient’s
surface causing internal deformations. Multi-modal image registration may be
the basis of diagnosis, treatment planning, or interventional surgical guidance.
The latter may also require the deformation model to deal with deformations
caused by the intervention itself, for instance resections, brain shift, etc.

For each part of the anatomy the deformation may be comprised of motion,
change of size, or change of appearance and visibility. Furthermore, the interac-
tion between di↵erent parts of anatomy is highly specialized, for instance bones
are connected in joints with limited degrees of freedom, while lungs slide within
the pleural cavity. The complexity of anatomical deformations is therefore very
high, and this granularity may require the model to have a vast amount of pa-
rameters (degrees of freedom). However, finding the ideal alignment in terms of
deformable registration requires finding the ideal set of these parameters under
consideration of the similarity measure. Depending on the deformation model,
the number of parameters can range from a mere 10 to millions, which shows
the importance of the choice of deformation model.

The geometric transformations for non-rigid registration can be categorized
into either (i) physically based models described by partial di↵erential equations
of mechanics, or (ii) a basis function expansion derived from interpolation [25].
While physical models may be able to estimate a realistic deformation, some
simplifications (e.g. linear vs piece-wise linear, viso-elastic, or non-linear elas-
ticity) cause the model to be only accurate for small deformations. On the
other hand, increasing the complexity of the model yields a significantly higher
computational e↵ort. Future research may result in improved biomechanical
models and a better understanding of continuum biomechanics. In contrast to
physical models, the basis function expansions do not model the anatomy or
physiology, but instead are a set of functions to interpolate or approximate the
motion based on image data.
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2.2.2 Interpolator

After the transformation is applied to the template image, an interpolation
should be performed to estimate the pixel values of the template image at a co-
ordinate determined by the reference image. This process is referred to as either
interpolation or re-sampling. Depending on application, similarity measure, or
transformation, it may be of benefit to interpolate the value of the reference
image at given coordinates in the template image, especially when a deformable
transformation causes sparsely populated areas in the template image. The
most commonly used interpolation methods are nearest-neighbor, linear, and
cubic convolution for two-dimensional images. In the following the interpola-
tion techniques will be described for two-dimensional images. The expansion to
three-dimensions is straight-forward using analogous concepts.

Nearest-Neighbor Assuming pixel coordinates are integer values, the value
for a given floating-point coordinate can be found by rounding the x- and y-
coordinates. This is a fast and computational inexpensive process. All values
obtained through nearest-neighbor interpolation are part of the original image.
In other words, this interpolation technique preserves the pixel values. However,
for some transformations aliasing e↵ects are caused. For instance, a horizontal
line will exhibit clear step artifacts after being rotated by several degrees, as no
blurring or smoothing will be performed.

Linear Interpolation Rather than choosing the value of the nearest neigh-
bor, the linear interpolation approximates the value at a given floating-point
coordinate from the weighted sum of intensities closest to the given coordinate.
The four weights depend on the area of the rectangle defined by the closest
image coordinates and the given floating-point coordinate. This technique elim-
inates most of the aliasing artifacts by introducing approximated pixel values,
which have not been present in the original image. This technique presents a
good balance between image quality and computational e↵ort [30], and is also
implemented on modern Graphical Processing Units (GPUs), which makes this
interpolation very e�cient.

Cubic Convolution This interpolation technique considers a grid (4 ⇥ 4)
of neighboring pixels, and combines the row and column-wise one-dimensional
interpolations. The interpolated image is visually similar to the image gen-
erated using bi-linear interpolation. After several interpolations, the image
noise generated is significantly lower, at the cost of a significantly increased
computational e↵ort due to several intensity queries. Note that the theoretical
computational complexity remains O(n) for an image with n pixels - the same
as for nearest-neighbor and bi-linear interpolation.

Other interpolation techniques include cubic basis splines and compactly
supported radial functions. However, due to their computational e↵ort and
complexity they are infrequently used for image registration purposes. Espe-
cially for medical imaging applications, the balance between fast and clinically
relevant imaging quality is of importance [30]. Furthermore, it may be vital
to perform a simple interpolation in order to avoid the inadvertent creation of
new pixel values or even structures. In the following, only nearest-neighbor and
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(bi/quadri)linear interpolations are considered as they are fully supported by
modern GPUs, enabling a very fast and e�cient computation of interpolated
images.

2.2.3 Similarity Measure

In general, the similarity measure is a function that compares the reference and
template image. After transformation and interpolation, pixels of the images
are aligned at the same image coordinate, meaning that we can assume that
the first pixel in image I and in image H(J) attempt to represent the same
physical coordinate. The similarity measure is used to evaluate the quality of
this alignment by comparing the two images, either based on the intensities or
features. In some cases a preprocessing step is used to emphasize or remove
certain properties of the images (e.g. gradient images or edge detection), or
generate complementing data (e.g. confidence maps).

Desired properties of similarity measures are di↵erentiability, continuity, ro-
bustness with respect to noise, and monotonicity towards one extrema which is
reached at the ideal alignment. The similarity measure does not have to be an
actual metric, nor does it actually need to fulfill the desired properties. In a real
scenario, the images may show the same structure under di↵erent deformations,
or based on di↵erent physical properties. Therefore, the similarity measure is
usually specific to the application, and often exhibits multiple local extrema and
noise.

Basics: Sum of Absolute Di↵erences (SAD), Sum of Squared Di↵er-
ences (SSD), and Normalizied Cross-Correlation (NCC) A simple way
of comparing images is to compute the absolute di↵erences between each pixel
in the reference and template image, and compute the sum of these di↵erence,
which is referred to as Sum of Absolute Di↵erences (SAD). This works when
images are very similar in contrast, brightness, and actual content. For larger
images, this measure is increasingly robust towards outliers. Mathematically, it
is not di↵erentiable at zero (ideal alignment of equal images), which makes an
analytical expression di�cult.

Similarly to SAD this similarity measure computes the di↵erence between
the individual pixels, squares the values, and computes the sum, which is re-
ferred to as Sum of Squared Di↵erences (SSD). For mono-modal images of
similar brightness and contrast, the similarity value will be minimal at the cor-
rect alignment of the images. However, this measure assumes that the image
intensities are identical, which cannot be fulfilled if a structure is images in one
but not the other image. Therefore, the robustness towards outliers and noise
is low.

Under the assumption that two images are random variables, Mutual In-
formation (MI) can be used to determine the dependence between the images.
The idea is that the correct alignment minimizes the quantity of information
in a fused image. This measure was introduced for two-dimensional and three-
dimensional image registration [67, 38], and assumes no prior functional relation-
ship between images. The measure is based on the assumption of a statistical
relationship that can be analyzed using the images’ joint entropy:
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MI(I, J) =
X
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where p
IJ

is the joint probability distribution of pixels associated with images
I and J , and p

I

is the probability distribution of one image I. The entropy is
highest when the alignment is poor. Consequently, this measure needs to be
minimized in order to find the best alignment.

Normalized Cross-Correlation (NCC) allows to determine the similarity of
two signals using a sliding dot product, where the result indicates the lag of one
signal relative to another. If the signals are identical, then the cross-correlation
is zero. For images of di↵erent brightness, this measure can be used by de-
meaning and dividing by the standard deviations:

NCC(I, J) =
1
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X

x,y

(I(x, y)� I)(J(x, y)� J)

�
I

�
J

,

where n is the number of pixels, I(x, y) and J(x, y) are the pixel values, I and J
are the averages, and �

I

and �
J

the standard deviations of I and J respectively.
NCC is frequently used for mono-modal image registration of images with dif-
ferent brigthness, but the same underlying image features and properties. For
instance, the registration of Digitally Reconstructed Radiographs (DRRs) and
real X-ray images can be performed using NCC [26].

From Correlation Ratio (CR) to Linear Correlation of Linear Combi-
nation (LC2) Multi-modal image registration presents a very di↵erent chal-
lenge, as the pixel values do not originate from the same physical properties,
but the images may contain complementing information. In the following we
will focus on registration of US with MRI, as this remains a di�cult problem
to solve.

Some approaches try to reduce the complexity by processing of both images
to achieve a common representation of information [68], or by simulating one
modality based on images from another modality. For instance, US/CT registra-
tion can be performed with ultrasound images simulated from CT images [69].
This is possible as there is a physical correspondence between acoustic properties
and attenuation coe�cients. However, there is little or no physical correlation
between the concentration and compound of hydrogen and the acoustic proper-
ties. Therefore, simulations of ultrasound from MRI images would require the
identification of tissue and the correct assignment of acoustic properties, which
is currently not possible. Finally, the aforementioned two approaches to perform
registration with ultrasound have a major drawback as ultrasound images are
specific to the orientation of the ultrasound transducer, which requires the com-
putationally expensive pre-processing step to be performed for each iteration
during the registration process.

Although the structure, gray values, and boundaries of the anatomy are
represented di↵erently, the underlying anatomy remains the same. We can
therefore assume that the MRI and ultrasound images exhibit some correlation,
and under careful observation a relationship between structures in ultrasound
images, MRI image gradients, and MRI image intensities can be identified for
some regions of the image. This was first utilized by Roche et al. [58], by fitting
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a combination of MRI image intensities and image values to the ultrasound
image intensities. This global fit allows for the computation of correlation of
the MRI and ultrasound image, and defines the similarity measure Correlation
Ratio (CR):

⌘2(T ) = 1�min
f

P
x,y

w(T )
x,y

[I(x, y)� f(J(T (x, y)))]2

n(T )�2(I(T ))
, (2.3)

where w(T )
x,y

are linear interpolation weights for the neighborhood of the coor-
dinates (x, y), n(T ) is the number of pixels in this neighborhood, and �2(I(T ))
is the variance in this neighborhood, and f is the intensity mapping function.
Therefore, this similarity measure correlates the image I with the transformed
image T (J) using an intensity mapping, local weighting, and a local constraint
that the variance of I be large. The intensity mapping f is in the form of a
linear combination of image intensities and image gradients with the reference
image intensities. It is fitted for the entire image, and therefore does not con-
sider locally varying changes in brightness or correlation. The neighborhood
size is defined by the interpolation scheme used to determine the weights.

The similarity measure LC2 follows a similar concept as CR, but generalizes
the linear combination to allow for di↵erent overall brightness and areas where
no fit is possible, and enables the locally varying fitting of this relationship
function. This allows for dynamic compensation of changes in correlation of
ultrasound and MRI images, for instance at tissue boundaries visible in both
images, gray areas with di↵erent intensities, or shadow regions in ultrasound
images. The overall cost function is then determined by computing a weighted
average of the locally estimated correlations [17], see Appendix B.

2.2.4 Optimizer

The optimizer is the component performing the mathematical optimization,
which is the determination of the best parameter values given a function. Our
optimization parameters are the input values of the transformation, which then
- given an interpolation technique - allow the computation of a cost value using
the similairty measure. Based on pre-defined convergence criteria, the optimiza-
tion process will yield and determine the best transformation parameters under
consideration of the similarity value.

Most optimizers are either finitely terminating algorithms, converging iter-
ative methods, or heuristics that approximate the ideal solution. For medical
image registration, either optimizers or a combination of several techniques can
be used. The most commonly deployed optimizers are gradient decent algorithm
(slowly converging iterative method), conjugate gradient method (converging
iterative method), Nelder-Mead method with calling gradients (also down-
hill simplex) method (finitely terminating or heuristic), Levenberg-Marquardt
algorithm (converging iterative method) [46], BOBYQA (heuristic, iterative
method) [54], NEWOA (heuristic, iterative method) [55], and many more. For
multi-parameter optimization during image registration using a similarity mea-
sure resembling a quadratic function without the possibility of analytically com-
puting the gradients, BOBYQA yields a good trade-o↵ between the number of
evaluations, speed, and accuracy [17].
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2.3 Biomechanical Simulations for Deformation
Estimation

Respiration remains a major source for imaging artifacts, as well as for compli-
cated treatments, such as radiation therapy. As it is a crucial and involuntary
motion, pausing respiration during imaging or treatment is often not a viable
option. Compensating and predicting the motion, yields the potential to over-
come these issues. The respiratory motion is especially complex, as it combines
change of volume, pose of organs, nearly friction free lateral adjustments (sliding
motion), and even inter-cycle variations.

2.3.1 Related Work

Image-based approaches attempt to cope with this di�cult set of changes by
introducing a set of regularization terms, which model normal and tangential
motion [60]. Alternatively, piecewise-di↵eomorphic registration techniques cor-
rect for the sliding interface [56]. However, it remains di�cult to model the
intra-cycle and inter-cycle changes of the motion by introducing regularizations
for image-based predictions. Biomechanical models can be initialized based on
patient-specific sequences of images, and constructed to mimic the physiology
on a detailed level [43, 42]. Therefore, biomechanical modes can be generative,
and enable the computation of non-observed motion and changes in breathing
patterns. However, in previous work, the deformation was constrained by a
fixed boundary condition and the physiology was not correctly modeled.

2.3.2 Contribution: Patient-Specific Biomechanical
Model for the Prediction of Lung Motion From 4-D
CT Images (IEEE TMI 2015)

By introducing a personalized and pressure driven biomechanical model, we
have enabled the prediction of lung motion (see Appendix A). The overall goal
of this work is to allow for predictions of any internal lung deformations based
on simple surrogate signals, such as lung volume or readings from a thorax
pressure belt. The model is no longer being bound to multiple image data and
does not rely on a limiting geometry.

A patient-specific biomechanical model is presented, which enables the pre-
diction of respiratory motion. For each patient, the lungs, mediastinum, and di-
aphragm are automatically segmented for each CT volume during a respiratory
cycle, resulting in a set of binary masks representing the lungs, thorax, medi-
astinum, and the area below the diaphragm. The anatomical model is created,
based on the segmentations at the end of expiration. This model is a discretized
representation of the volume, and is comprised of nearly unilateral tetrahedrons.
The personalization of the spatially varying force field is performed using seg-
mentations from images at the end of inspiration. The force field is defined by
automatically clustering regions on the lungs and diaphragm in patches. The
force amplitudes are estimated through a multivariate optimization, which im-
plicitly accounts for patient-specific and spatially-varying material properties.
Additionally, the surface patches on the lung and diaphragm are used to later
enable the nearly friction free sliding motion. The personalized force field and
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behavior properties are referred to as physiological model. Finally, the Finite
Element Method simulation is run, and estimates the prediction based on a
surrogate signal, such as the respiratory lung volume. Appendix A outlines the
entire framework to predict the lung deformation during respiration. Results in-
dicate that the accuracy is comparable to an intensity-based image registration
approach, while at the same time remaining generative and allowing to simulate
deformations which were not observed during the CT scan.

2.4 Multi-Modal Image Similarity Measure

Image registration is especially complex when either di↵erent information is
contained in each image, or the same information is represented di↵erently.
However, the fusion of di↵erent imaging modalities may yield a significant ad-
vantage for diagnosis or treatment. For instance, soft tissue or perfusion can be
imaged using MRI, while good contrast for bony structures is achieved using
CT. Another example is the use of pre- and intra-operative imaging. MRI and
CT imaging provide good pre-operative imaging quality and rich contrast for
certain anatomical or pathological structures. Due to logistical and technical
reasons, these modalities are infrequently deployed during interventions. How-
ever, large deformations caused by patient positioning, changes in anatomy, or
the intervention itself may render the pre-interventional images partially use-
less. Interventional X-ray or US imaging may lack the detail and quality needed,
which motivates the fusion of pre- and intra-operative images.

Fusion of CT and US images has been widely investigated recently (for in-
stance in [69, 27]). Most approaches map the Houndsfield units to backscatter,
attenuation and characteristic acoustic impedance. This allows for the simula-
tion of directional dependent ultrasound images from CT volumes. Therefore,
the complex registration of these modalities can be reduced to registration of
simulated and real ultrasound images.

On the other hand, the registration of MRI and US imaging remains a chal-
lenge, due to the fact that the observed material properties vary strongly. To
generate the MRI image, the response and relaxation times of hydrogen atoms
after a magnetic excitation are measured. This is fairly uncorrelated with the
relative changes of acoustic impedance measured for US imaging. For instance,
the free hydrogen concentration in bony tissue is low, resulting in nearly un-
imaged (black) areas in MRI volumes, while the surface of bones are usually
represented by high image intensities in ultrasound images. In general, some
soft tissue may be represented similar in both modalities, while in other regions
the ultrasound image yields a closer resemblance to the gradient magnitudes of
the MRI volume. Additionally, some regions do not seem to correlate at all.
Fig. 2.2 illustrates the di↵erent tissue representations in MRI and US images.
In contrast to CT/US registration, a simulation of US from MRI may therefore
not be possible.

2.4.1 Related Work

The nature and origin of the intensity values in MRI and US images are very
di↵erent, and some structures may only be visible in one or the other image.
Additionally, details in MRI may lay in shadow regions in US images, and
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(a) Trans-dural US of brain (b) Corresponding slice of MRI

Fig. 2.2: Both images show the same 3D slice of the brain, where a prominent
tumor is visible in the top center and the mid brain in the bottom
center region. Some representations of tissue regions are represented
similarly in the US image and MRI slice (red circles), while in other
regions the MRI gradient magnitudes seem to correlate with the US
image intensities (yellow circle). Other regional representations, such
as the tumor, seem to relate, but not correlate linearly.

certain materials, such as in calcifications, are not visible in MRI imaging, but
are clearly visible in US imaging. This causes registrations using similarity
measures based on sum of squared distances, NCC, MI and normalized Mutual
Information (nMI) to tend to fail [27]. Therefore, the focus is on similarity
measures specific to MRI and US registration, but at the same time not organ-
specific. Additionally, no significant e↵ort should be introduced during pre-
processing. For instance, US/MRIregistration has been proposed using higher-
dimensional Mutual Information [57, 24]. Although it works theoretically, it is
not practical in terms of implementation e↵ort or computation time. The use
of high confidence gradient and their alignment was presented in [10]. It is an
interesting approach as anatomical structures are mostly characterized by their
boundaries both in MRI and US images. However, the gradients in the US
image are strongly dependent on the orientation of the transducer. Therefore,
the lack of the use of intensity values suggests that this method requires a close
initialization.

Another set of similarity measures attempts to utilize the neighborhood re-
lationships. For instance, the modality independent neighborhood descriptor
(MIND) [22] and its extension self-similarity context (SSC) [23, 6] utilize pre-
defined neighborhood descriptors. Self-similarity as a similarity measure was
first presented in [1], and does not rely on the assumption of a global intensity
relation. Modality specific artifacts are not considered and the neighborhood
descriptors tend to abstract the image, which may yield a lower overall registra-
tion accuracy. Furthermore, the computational e↵ort for pre-processing is high
due to the generation of voxel-wise neighborhood descriptors.
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2.4.2 Contribution: Automatic Ultrasound-MRI Regis-
tration for Neurosugery using the 2D and 3D LC2

Metric (MedIA 2014)

Considering the modality specific image properties, the most promising general
strategy for robust US-MRI registration is to compare US to both the MRI inten-
sity and its gradient, which does not require application-specific pre-processing
or segmentation. The global fitting of a polynome to model the relationship be-
tween image intensities and image gradients has been initially presented in [58],
referred to as CR. In [69], the similarity measure LC2 is introduced for US/CT
registration, which allows the local fitting of the polynomial and exhibits local
invariance. This motivates a new way of comparing US and MRI images: Cor-
relating a combination of MRI image intensities and MRI image gradients to
the US image.

The main contribution is the presentation of a novel similarity measure to
compare US and MRI data and enable intensity-based registration. The con-
struction of the similarity measure LC2, to align either freehand US slices or
US volumes with MRI images is thoroughly explained, and applied to 2D and
3D data sets. The main scientific contribution is the novel pre-processing of
the images, and the locally normalized LC2 measure for images I and J , the
transformation T , the neighborhood position x and neighborhood size s:

LC2
l

(I, J, T,x, s) = 1�
P

y2⌦(x,s) (I(y)� f(J(T (y))))2

|⌦(x, s))|V ar(I(y |y 2 ⌦(x, s)))
,

where the relationship function f provides an optimal fit of the linear combina-
tion of MRI image intensities and image gradients with the ultrasound image,
and the neighborhood ⌦(x, s) is either a 2D or 3D neighborhood function. To
compute the overall similarity measure, a weighted averaged of the locally nor-
malized similairty measure is computed using the neighborhood local standard
deviation within image I.

Both the registration of 2D sets of US images with MRI volumes, and the
registration of 3D US volumes with MRI volumes, allow an automatic and robust
registration, while the three dimensional method yields a significantly improved
percentage of optimally aligned registrations. The extensive evaluation com-
prises a convergence study and a validation of accuracy. First, the influence of
the ultrasound slice spacing is analyzed, resulting in a convergence in terms of
correct alignments for spacing in the same range of the MRI volume spacing,
and is further reduced for deformable registration to avoid missing anatomical
details. Next, the influence of neighborhood size in 2D and 3D registration is
analyzed in terms of accuracy and capture range (Lipschitz continuity), provid-
ing a good estimate of an appropriate neighborhood size. Finally, the influence
of the pre-processing of the MRI image is analyzed and gradient magnitudes
and directed gradients are compared. Interestingly the use of gradient magni-
tudes results in a larger capture range, which can be explained by the increased
robustness of the method compared to the directed gradients.

Based on the convergence studies, we have performed a detailed registra-
tion study by simulating 2800 randomly initialized registrations. The use of the
3D similarity measure statistically significantly outperforms the use of the 2D
similarity measure. Using real patient data, this methodology can achieve an
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Surgery

accuracy of 2.51mm, precision of 0.85mm and capture range (Lipschitz conti-
nuity) of 15mm (>95% convergence).

The registration of 2D ultrasound images with the MRI volume using the
2D LC2 measure does not require the generation of a volume, which allows the
registration to start during the scanning motion. However, the generation of
a 3D ultrasound volume allows for an increase capture range when registering
with the MRI volume. In general, the computation of these similarity measure
requires the GPU to support double floating-point precision. The optimized use
of the GPU allows for 100-500 similarity evaluations per second.

Appendix B presents the details on the implementation and results.

2.5 Tissue Displacement Compensation for
SPECT-guided Surgery

For melanoma [72], breast cancer [37, 33] and vulvar cancer [64, 66] Sentinel
Lymph Node Biopsy (SLNB) is the standard of care. The involvement of
lymph nodes is one of the most important prognostic factors for survival of
the patient. Fortunately, many patients do not exhibit lymph node involve-
ment, which can only be determined after the biopsy. To locate the Sentinel
Lymph Node (SLN), a radioactive tracer (usually a 99mTc nanocolloid) is in-
jected near the tumor site, which then drains through the lymphatic system
towards the SLN. Under guidance of a gamma detector, gamma imaging, or
freehand SPECT imaging, the surgeon then performs the resection or biopsy.
Freehand SPECT imaging is an interventional imaging technique, which can be
used to generate three-dimensional SPECT images by acquiring several thou-
sand gamma activity recordings over a region of interest with a spatially tracked
detector [70, 48].

2.5.1 Related Work

To compensate for motion, the current clinical approach is to either revert to
a hand-held one-dimensional gamma probe, perform mental mapping and lose
the benefits of image-guided surgery; or to re-acquire the entire SPECT volume,
which leads to a significant delay. An alternative approach was presented in [65],
where a one-dimensional probe was used to perform a 1D/3D registration. This,
however, requires a precise model of the detector and several hundred tracked
gamma activity readings. It was shown that the position of a 1 cm radiopositive
node could be updated with an accuracy of 8 mm, which may prove insu�cient.

2.5.2 Contribution: Radiopositive Tissue Displacement
Compenstation for SPECT-Guided Surgery (MIC-
CAI 2015)

The use of augmented reality freehand SPECT imaging is shown in Fig. 2.3a),
while the representation of radioactive sources using a gamma camera is illus-
trated in Fig. 2.3b). The SPECT imaging provides clear advantages, such as
an understanding of depth and three-dimensional structure, the images may be
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(a) Augmented Reality (AR) SPECT view (b) Two sources seen by gamma camera

Fig. 2.3: (a) SPECT system showing several SLNs via Augmented Reality.
Courtesy SurgicEye GmbH. (b) Interpolated gamma camera output
for two sources, showing the auto-marked centers.

outdated once the surgery begins and the lymph nodes are displaced. To al-
low for compensation of lymph node motion, a registration-based approach is
presented in [53], see Appendix C. During resection of SLNs, the radiopositive
tissue is displaced through the intervention itself. For the first time, this paper
presents a methodology to update pre- or intra-operative SPECT volumes using
a 2D gamma camera. The algorithm utilizes tracking of the gamma camera and
the known response function to dynamically estimate tissue displacement.

After an initial SPECT volume acquisition using a gamma camera, the vol-
ume reconstruction is performed. Next, the individual hotspots are automat-
ically segmented using thresholding. The changes in the 2D gamma camera
image allows for the estimation of the 3D motion of the lymph nodes, which
is comprised of motion parallel to the detector plane (intensities do not vary),
and motions towards of away from the detector. The changes in intensities can
be mapped to distances using the gamma camera response function or look-up
table. After the estimation of the transformation of the individual nodes, the
SPECT volume can be updated by adjusting the positions of the individual
lymph nodes.

The methodology has been evaluated using Cobalt point sources that emit
similar radiation as lymph nodes, but are save to handle. In-plane and out-
plane motion can be accurately estimated. The achieved accuracy of < 1 mm
yields su�cient information to perform image-guided surgery. A possible clinical
system is demonstrated in Fig. 2.4. Contributions are outlined in Appendix C.
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Surgery

Fig. 2.4: Gamma camera mounted on a KUKA iiwa industrial lightweight
robot, allows for automatic tracking of the displacement of radiopos-
itive lymph nodes. In this setup, the KUKA iiwa will move the
gamma camera so that it follows the movement performed by the
da Vinci® surgical system while maintaining a perpendicular view of
the radioactive sources.
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Image-Guided Surgery and Intra-
Operative Imaging

CHAPTER 3

3.1 Introduction and Definition

The use of imaging to support localization and targeting of regions of interest,
and monitoring and controlling the treatment is frequently referred to as Image-
Guided Therapy (IGT), and primarily applies to Image-Guided Surgery (IGS)
and radiation therapy. The original concept utilized diagnostic imaging to in-
form the surgeon about the patient’s anatomy. First computer aided systems
combined diagnostic imaging, planning and intra-operative tracking techniques
to guide the surgeon during the interventions. The goal is to use imaging to
complement or replace the direct view of the surgical site to increase under-
standing of anatomy, increase accuracy, be less invasive, and lead to a better
outcome. From the original static scenario, IGT has evolved over time and
gained complexity. It now integrates a large variety of technology and image
sources, and is centered around the pre-operative planning, monitoring of the
procedure and the dynamic adaptation of the plan during the intervention itself.
Intra-operative imaging does not only allow for this dynamic update of the plan,
but also yields several other obvious advantages, including the visualization of
deformations caused by patient positioning or the surgical intervention.

Image-Guided Surgery (IGS) In this thesis, the focus is on image-guided
surgery, which is the subcategory of image-guided therapy dealing with guid-
ance during surgery. One could furthermore distinguish between image-guided
surgery and image-guided interventions, where the latter should emphasize that
the interventions are performed without the traditional surgical access [7]. How-
ever, this di↵erentiation is di�cult in the context of surgical procedures, and in
the following image-guided surgery and interventions are used interchangeably.
Image-guided interventions can be categorized by the assistance provided by
technology:

(i) Pre-operative or diagnostic imaging allows the observation of the state
before the intervention. No context to the current surgical site is
provided.

(ii) Intra-operative imaging enables images to be acquired during the in-
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Fig. 3.1: A typical surgical navigation system uses pre-operative images, a track-
ing system (top left: stereo camera), a method to register the images
with the surgical site, and tracked tools to guide the surgeon. While the
accuracy improves for specific applications, common drawbacks include
the additional hardware introduced to the operating room, limitations
of registration and tracking, and increased duration. Image showing
Brainlab Curve, courtesy of Brainlab AG.

terventions and presented to the surgeon. The placement of references
or tools within the image provides some context and assists with the
mental alignment of images and patient.

(iii) Surgical navigation systems use medical images, a tracking system,
and methods to register the pre-operative images with the surgical
site. These systems frequently rely on pre-operative images which are
outdated once deformations are caused by the intervention. The rela-
tionship between tools and medical images provided by these systems
may yield an increased surgical accuracy. Fig. 3.1 shows a typical
surgical navigation system.

(iv) Augmented reality for surgery allows the surgeon to intuitively estab-
lish a relationship between medical images, patient’s surface, medial
images, surgical tools, and the surgeon’s hands.

Surgical Navigation Systems Surgical navigation systems are commer-
cially available and have been deployed in surgeries for approximately 20 years.
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Today the use of navigation is standard of care for specific surgeries, such as
neurosurgical interventions. In these specific applications, it can be shown to
increase accuracy, or enable interventions which were previously not possible.
However, in other applications, such as pedicle screw placement, the advantages
may not be present [34].

Commonly reported drawbacks of surgical navigation systems are the in-
creased setup time, which adds to the overall occupancy of the operating room.
Furthermore, additional hardware in the operating room reduces the free moving
space of the personnel, especially considering that most systems rely on optical
tracking system that require a non-occluded line of sight between the cameras
and the surgical site. Tracking targets on the patient and tools furthermore
limit the access, and may require specially calibrated tools.

A typical system relies on pre-operative images, tracked surgical instruments,
and a procedure to register the pre-operative images to the surgical site (e.g.
tracking target, tracked stylus, image registration, etc.), see Fig. 3.1 [7]. Finally,
the surgical navigation system can visualize the medical image data and render
the tools, targets or references in the same view. This allows the surgeon to
access a wide variety of views from di↵erent or complementing points of view.

Surgical Robotics The current generation of IGT integrates the use of robots
to assist and support the surgeon. The focus of robot-assisted surgical systems
are applications in which the introduction of complex mechanical systems poses
a significant benefit to the surgeon and patient. In general, the applications
of robots range from mimicking the surgeon’s movements to performing tasks
which would not otherwise be possible. The most prominent examples are the
da Vinci® surgical system (Intuitive Surgical) and the Artis zeego (Siemens
Healthcare). The first system is a teleoperator which helps the surgeon to per-
form an intervention by increasing the dexterity in areas that would not be
accessible using traditional tools. For instance, transoral robotic surgeries allow
the resection of areas of the tongue base or lingual tonsils through a minimally
invasive procedure in contrast to the traditional approach which requires split-
ting the jaw. In contrast to these delicate interventions, the Artis zeego enables
the dynamic movement of an entire C-arm around the surgical table. This per-
mits imaging and reconstruction of arbitrary regions of the patient, adaptation
of the imaging trajectory to reduce artifacts caused by metallic tools or im-
plants, and the accurate repositioning of the C-arm to monitor the progression
of an intervention.

The following sections will focus on novel approaches to intra-operative imag-
ing during surgeries. First, the robotic SPECT will be addressed to guide robot
assisted sentinel lymph node resections (Sec. 3.2. Next, in Sec. 3.3 contributions
to robotic ultrasound for generic medical applications will be presented. Finally,
this chapter will conclude with the fusion of color, depth, and X-ray imaging in
combination with digitally rendered radiographs from CBCT volumes (Sec. 3.4,
which is a representative of medical augmented reality systems.
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3.2 Robotic Single-Photon Emission Computed
Tomography for Robot-Assisted Interven-
tions

The number of cases of cervical cancer has been increasing over the past decade.
Modern technology, especially robotic assistants, enables minimally invasive re-
section of the tumor, which then leads to faster and better recovery. However,
the involvement of lymph nodes in patients with early stage cervical cancer is
one of the most important factors of survival. Fortunately, in up to 70% of the
women surgically treated for this cancer, no involvements of the lymph nodes are
present, which can only be determined after the resection of the lymph nodes.
The currently performed radical removal of all lymph nodes is associated with
a substantial treatment-related morbidity. Rather than removing all nodes, the
resection can safely be limited to nodes in the direct drainage path, which re-
ferred to as SLNs. Finding these SLNs is di�cult, but can be e�ciently assisted
using a nuclear imaging technique known as SPECT.

3.2.1 Related Work

3.2.2 Contribution: First Robotic SPECT for Minimally
Invasive Sentinel Lymph Node Mapping (IEEE TMI
2016)

Sentinel lymph node biopsy of deeply seated or di�cult to access is increas-
ingly performed using tele-operated robot-assisted surgical systems. A typical
operating room is shown in Fig. 3.2. In contrast to semi or fully autonomous
robotic systems, tele-operated devices are fully controlled by the surgeon who
sits at a console. The surgeon observes the surgical site via a laparoscope or
endoscope (depending on the application), and his motions are replicated by the
patient-side manipulators. The most commonly available robot-assisted system
is the da Vinci® (Intuitive Surgical).

For the very first time, robotic SPECT for minimally invasive SLN mapping
is presented, which now allows intra-operative SPECT reconstruction in the
surgical site, taking advantage of the robot-assisted surgical systems for flexible
in-patient data acquisition. The system integrates the novel miniaturized drop-
in gamma detector, which can be picked up using a surgical robot da Vinci® .
A novel combination of mechanical tracking using the robot’s kinematics and
vision-based tracking allows for a robust pose estimated. When combining the
tracking information, a simple model of response function of the gamma probe,
and the activity counts the volume can be reconstructed based on a MLEM. As
the relationship between camera and reconstructed volume is already known,
the image data can be thresholded and overlaid onto the optical camera view of
the surgeon to guide the surgeon towards the important sentinel lymph nodes,
as illustrated in Fig. 3.3. In conclusion, the surgeon can now use the system,
scan the inside of the patient, and see the lymph nodes that may contain tumor
cells. This is a cutting-edge and ground breaking novel approach which has been
a featured article in the journal IEEE Transactions on Medical Imaging [18], see
Appendix D for details.
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Fig. 3.2: In an operating room with a robot-assisted surgical system, the sur-
geon’s console is usually set up in a corner, the patient-side manipu-
lators are mobile and moved towards the patient once the trocars are
placed. In many interventions, a surgical assistant sits at the surgi-
cal table to support the primary surgeon using rigid laparoscopic tools
or exchanging the robotic tools. The surgery can be observed by ev-
ery surgical team member via large screens showing the same views as
through the surgeon’s console.

Fig. 3.3: The robotic SPECT reconstruction results can be directly overlaid on
the surgeon’s view of the surgical site, creating an immerse augmented
reality visualization, and an intuitive surgical image-guidance.
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This distinct combination of in-patient SPECT image acquisition and robotic
surgery is a major contribution towards simplifying surgery, and improving pa-
tient care and safety. In conclusion, this approach improves patient care, patient
safety, and the diagnosis of lymph node involvement, while simultaneously dra-
matically reducing the side e↵ects of the intervention itself.

40



3.3. Robotic Ultrasound Acquisition

3.3 Robotic Ultrasound Acquisition

Ultrasound has become one of the standard medical imaging techniques and
is widely used within diagnostic and interventional applications, especially be-
cause of its low cost, lack of ionizing radiation and ease of use in interventional
settings. As described in Sec. 1.1, ultrasound systems usually comprise a hand-
held transducer, and the processing and visualization machine. The acquired
2D images are referred to as B-mode images, and represent a single plane. The
pixel intensities correlate with the acoustic impedance, changes in impedance,
and are overlaid with significant speckle patterns and other artifacts. Ultra-
sound imaging provides real-time information is is therefore especially suited to
guide interventions.

Using native 3D transducers (phased array transducer) or tracking and com-
pounding 2D images, 3D US images can be obtained [19]. Although they contain
valuable information, the visualization of 3D ultrasound volumes is problematic
resulting in mostly visualizing single slices of the volume. In clinical practice,
3D probes are not yet widely available. Using modern image registration tech-
niques, the ultrasound images can be overlaid onto pre-operative diagnostic
images, allowing the planning to be transferred to the surgical site.

US imaging also contains major drawbacks, for example, imaging quality is
dependent on pressure, acoustic coupling, tissue density, angle and many other
properties controlled by the user. Therefore, it requires expertise and adds a
significant task load during surgery. This leads to a recently established field of
research focusing on the simplification and automation of the ultrasound image
acquisition.

Observing US imaging performed by physicians, the following requirements
for an automated robotic ultrasound acquisition can be identified:

1. Determining the region of interest: Finding the patient’s surface
and region of interest, and planning the acquisition are complex tasks.
This requires the identification and tracking of the patient’s surface, the
knowledge of the relation between the region of interest and the patient’s
surface, and the methodology to plan the transducer trajectory to cover
the volume of interest. Tele-operated robotic ultrasound imaging requires
the user to perform these tasks. Regarding the contributions, solutions
proposed include acquisition of the patient’s surface using depth sensors,
image registration to align diagnostic imaging and current observations,
and trajectory planning to attempt to acquire information of the entire
volume of interest and its neighborhoods.

2. Establishing acoustic coupling: The key components consist of ultra-
sound gel, probe angle, and su�cient pressure. Some medical applications
may limit the angle or not require the application of pressure, for instance
transrectal ultrasound [44]. For other applications, the robotic system
needs to be equipped with force/torque sensors to automatically apply
the pressure required. Semi-automatic systems may allow the user to po-
sition the transducer, and simply use the robot as a mount. Most robotic
systems still require a manual application of ultrasound gel.

3. Acquiring the ultrasound volume: After planning the trajectory and
establishing the acoustic coupling, the image acquisition is performed.
The first critical task is to compensation patient motion, which can be
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performed using advanced robotic systems and a force controller. The
second important task includes the continuous monitoring of the imaging
quality, which is significantly more di�cult to perform. First, ultrasound
image quality is not well defined, nor is the relationship between good
image quality and acquisition formally described. Second, using measures,
such as confidence maps [29], the acquisition process must be updated in
real-time.

4. Repositioning to monitor progress: Finally, the acquired images will
be used to perform the intervention, which requires the repositioning of
the robot. This task depends strongly on the application, and may include
the positioning of a needle guide, following the surgical tool, or moving
safely away from the surgical site. This task is frequently not addressed
in published articles.

Current literature provides several attempts towards the robotic ultrasound ac-
quisition. First approaches were published in the late 1990s, and focused on
tele-operating ultrasound acquisition to provide a more comprehensive avail-
ability of expert controlled ultrasound imaging [59]. The goal was to examine
of carotid arteries, for which a six degree of freedom robot was used. Using
stepper motors, the transducer can be moved in a controlled fashion [14], but
this approach does not solve the problem of acoustic coupling or controlled
pressure application. The imaging volume is limited by the kinematics of the
stepper motor. Utilizing an advanced robotic system with torque sensors, a
tele-operated system with haptic feedback was presented in [8]. This system
utilized the KUKA lightweight robot which has an additional degree of free-
dom of the kinematics and can estimate the applied forces using sensors in
every joint. Beyond these approaches of generalizing the robotic ultrasound
acquisition, several application dependent solutions are available, such as for
transrectal ultrasound [44].

While freehand ultrasound scanning facilitates a fast and dynamic scanning
and screening of several anatomies, modern compact and lightweight robotic
arms can support the physician, i.e. by maneuvering a second probe or tool to
the same position as the doctor does in real-time. By doing so, they can provide
additional advantages, such as pressure compensation, hand tremor filtering, or
automatic servoing and data acquisition based on a registration to tomographic
imaging data.

To enable real-time guidance electromagnetic or optical tracking of the hand-
held US transducer has been proposed. This allows the establishment of the
spatial relationship of individual images, reconstruction of the US volume, and
the registration with pre-interventional images. This has been presented for
example in [45, 5, 62, 73]. The established registration enables the image-based
guidance using US images by transferring features from pre-interventional imag-
ing. Through this approach the physician is required to manually ensure good
image quality during the intervention. The main limitations are lower imaging
quality, small field of view, and di�cult image interpretation [74]. Furthermore,
the manual navigation and coordination with the medical device (e.g. biopsy
needle) is cumbersome and requires designated training [51].

In contrast to hand-held US, robotic US image acquisition can incorporate
vision-based servoing and potentially ensure good image quality, coverage of the
entire volume of interest, and automatic re-positioning for guidance during the
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intervention. Such autonomous acquisitions could also facilitate clinical accep-
tance by simplifying the procedure as well as by reducing scanning time and
the necessary amount of manual work. A prerequisite for automatic servoing
is, however, a prior planning of a target point or area of interest. In a clinical
setup, such a planning should always be performed based on anatomical data,
as provided by MRI and CT, which results in the necessity of incorporating that
imaging information directly into the planning procedure. While the planning
can then be done in a minimum amount of time, time-consuming acquisitions of
(several) 3D-ultrasound datasets can be done autonomously without requiring
the presence of medical sta↵. Although there have been some general attempts
to incorporate tomographic image information into robotic systems to improve
the visualization of ultrasound image information to physicians, to our knowl-
edge an integration of the data to enable an automatic planning and acquisitions
of 3D-ultrasound has not considered so far.

Autonomous Robotic Ultrasound Acquisition: Volume Coverage A
crucial component of the autonomous ultrasound acquisition is the estimation of
the trajectory the robot needs to follow in order to cover the volume of interest.
A possible solution is the modeling of the ultrasound image and the definition
of a trajectory function with very few parameter [20]. This allows a fast and
e�cient optimization of the volume of coverage. To achieve this, the target
volume is selected in pre-operative images, the patient’s surface is extracted from
the medical images and matched to the view of a three-dimensional camera. The
algorithm further fits a parameterizable function to the surface and performs
an optimization to ensure coverage of the volume.

Autonomous Robotic Ultrasound, Servoing and Manual Needle In-
sertion In [75], the focus is on manual needle injections into the lumbar
spine [3].The proposed system comprises a motorized three-dimensional US
transducer, and a force-controlled robotic arm. A novel visual servoing tech-
nique that combines three-dimensional image registration and real-time robotic
servoing is introduced. To enable the transfer of the pre-operative plan, the
system allows for image registration using the similarity measure LC2 [17]. The
needle trajectory plan can then be updated by performing fast incremental regis-
tration updates. Under realistic conditions a sub-millimeter targeting accuracy
can be achieved.

Dual Robot Intervention: Ultrasound and Needle Insertion The in-
troduction of a second robot to perform the image-guided needle insertion was
presented in [31]. The contribution closes the gap between imaging, servoing,
planning and action. While one robot performs US imaging in such a manner
that the needle and target are always visible, the second robot introduces the
needle and updates the trajectory to guarantee accurate targeting. One of the
main contributions in [31] is the novel needle tracking technique. Due to tempo-
ral filtering of possible needle candidates in the US image, a robust and reliable
needle tracking can be performed even in realistic materials.
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Fig. 3.4: The Camera-Augmented Mobile C-arm (CAMC) allows the overlay of
X-ray images on live video images [50]. To achieve this the radiation
source is unconventionally placed on top of the patient, enabling the
optical centers of camera and X-ray to be virtually aligned through a
mirror. The system allows the user to intuitively establish a relation-
ship between hands and X-ray image.

3.4 RGBDX: Multi-Modal Imaging

One of the most di�cult procedures during trauma surgeries is the placement
of screws to reduce complex fractures. Using a vast amount of X-ray images
(in some cases up to 246 images) the surgeon needs to drill a guide wire (k-
wire) through the bone fragments, which later guides the screw to the correct
placement. Rather than performing this placement in an open surgery, the wire
is placed percutaneously through the muscle and other tissue into the bone (e.g.
for pelvis). This placement of medical instruments deep inside soft tissue is a
common, crucial and di�cult task during orthopedic surgeries. Often the K-wire
needs to be inserted through skin and muscle, and reach a bone at a pre-defined
entry point and in a specific orientation. Once the K-wire is placed, screws are
inserted following the guide wires and the operation can be completed.

In a typical scenario, the screw placement is first planned using CT images.
The placement of the K-wire deep inside soft tissue is then performed using X-
ray images which guide the surgeon to avoid damaging important structures such
as spinal nerves, trunci and fasciculi, vegetative nerve system plexus, ureter,
canalis inguinalis, and vena/arteria illiaca interna and externa which are located
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Fig. 3.5: The three-dimensional view of patient’s surface can be combined with
the three-dimensional CBCT volume. This allows for a dynamic view-
ing of the patient’s surface and anatomy.

Fig. 3.6: The platform for augmented reality for orthopedic and trauma inter-
ventions allows the surgeon to simultaneously see the patient’s surface
and anatomy (from CBCT) together with a live representation of tools
and hands. Additionally, the surgeon can choose as many di↵erent
views as desired. This image shows the simultaneous anterior-posterior
(AP) and lateral view of the same scene.
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Fig. 3.7: The correct placement of guide wires in the pelvis is one of the most
di�cult steps during minimally invasive interventional fracture reduc-
tion. The placement is currently performed under X-ray guidance, see
one image in a). To achieve the correct trajectory, several attempts
may be required to determine the correct entry point, as one can see
in b) where multiple failed attempts are visible.

46



3.4. RGBDX: Multi-Modal Imaging

in the pelvic cavity. Because of the challenging three-dimensional placement
of surgical tools using two-dimensional imaging such as fluoroscopy, the C-arm
needs to be moved several times to allow the acquisition of images from di↵erent
points of view. Therefore, patients in these surgical cases are often exposed to
high radiation doses as surgeons may require many shots to correctly align and
insert K-wires and screws. In conclusion, the issues of cumulative radiation dose,
accuracy of inserted surgical materials, the operating time, and linked risk of
infection are a risk to the patient’s safety. Repeated exposure to radiation,
long operating hours, and frustrating surgical work flow constitute a burden to
surgical sta↵. Fig. 3.7 illustrates the challenges associated with placing K-wires
during orthopedic surgeries.

3.4.1 Standard of Care and Related Work

The role of image guidance for K-wire placement in orthopedic surgeries has
been vastly appreciated as crucial component of the standard of care. Never-
theless, the challenge of mental alignment together with hand-eye coordination
is the primary cause of the need for continuous image validation. This does not
only result in high X-ray exposure, but also longer surgical durations, more e↵ort
and frustration for the surgeon and the technical sta↵, longer operation room
occupancy, and time consuming training requirement for surgical residents.

During computer-assisted interventions, surgical navigation systems are uti-
lized in order to support the surgeon’s mental alignment and guide him during
surgery. Most current systems use pre-operative X-ray and CT volumes, in-
frared optical tracking systems, and tracking targets on tools and the patient,
to provide a visualization of the tool relative to the patient’s anatomy. Some
systems include the use of a C-arm and enable tracking of tools relative to intra-
operatively acquired X-ray images [32]. After the guided procedure, the valida-
tion of the placement is performed using conventional X-ray imaging. Beyond
additional cost, time consumption, spatial requirements, and work flow inter-
ruptions, traditional navigation systems do not provide an intuitive relation to
reality as only pre-interventional images and tools are visualized. Imagine driv-
ing your car using only a navigation system with precomputed maps, without
looking outside, but with the constraint to follow the map down to the inch.
When using surgical navigation systems, the surgeons are expected to accept
systems without further enhancement through X-ray imaging onto the dynamic
patient’s anatomy. Navigation systems provide excellent accuracy, but they
are not systematically developed to complement pre- and intra-operative data.
Therefore, a large portion of orthopedic surgeries are still performed without
computer-assisted navigation systems, and the surgeons rely on acquiring many
intraoperative images to observe every minute change and to ensure accuracy.

Alternatively, an intuitive guidance can be achieved using a mirror and video
camera mounted onto the C-arm [50, 47]. This establishes an augmented reality
view of the surgical site, and is illustrated in Fig. 3.4. After a single calibration
procedure, the video image can be warped to fit the X-ray geometry. Subse-
quently, the video view can be augmented with the X-ray images, which provides
an intuitive optical feedback to the surgeon. Cadaver studies show a reduction
of radiation dose and duration, while the accuracy improves [36, 63]. Similar
improvements can be observed during orthopedic and trauma procedures [49,
12]. A major drawback it the system’s limitation to two-dimensional video views
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Direction of motion between frame k and k+1
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Tracking result

Fig. 3.8: The displacement of the patient can be estimated based on color im-
ages. After co-registration of camera and X-ray origin, this information
can be used to align multiple CBCT volumes. This figure blends two
frames and shows feature correspondences to estimate the movement of
the patient. From both frames, the positioning-laser (red) and natural
surface features are extracted. The tracking results are illustrated as
yellow lines.

and the significantly reduced free moving space of the surgeon due to the mirror
construction.

3.4.2 Contribution: Vision-based Intra-Operative Cone-
Beam CT Stitching for Non-overlapping Volumes
(MICCAI 2015)

The combination of a mobile X-ray C-arm and color camera also allows for
intra-operative alignment of CBCT volumes. In contrast to state of art, the
novel method is applicable to non-overlapping volumes and does not require
additional markers or references. Interventional X-ray imaging is widely in use,
and stitching techniques for 2D images have been presented in the past decade.
In this paper, we present a system and methodology to align two or more Cone-
Beam CT (CBCT) volumes, by only utilizing an optical camera which is rigidly
mounted to the C-arm. First, a one-time calibration needs to be performed to
recover the transformation between camera origin and positioning laser mounted
in the C-arm base. Placing a checkerboard pattern in such a manner that the
laser plane intersects the checkerboard origin allows to obtain points on the laser
plane in camera coordinates. Using Random Sample Consensus (RANSAC), a
plane can be fitted to the set of points observed. This allows for an accurate
calibration of C-arm base to camera.

While moving the C-arm from one position to the next, the algorithm is
designed to track features on the patient surface, and recover the scale by iden-
tifying the positioning laser which are built in the X-ray machine. First, the
two-dimensional features are detected. As the features on the skin are natural
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shapes and resemble blob-like structures, Speeded Up Robust Features (SURF)
are used. Outliers are rejected by estimating the fundamental matrix F. Fea-
ture correspondences and the laser line are shown in Fig. 3.8. Next, the three-
dimensional coordinates are recovered by estimating the scale based the laser
line observed on the surface. This can be done after the three-dimensional coor-
dinates of the dilated laser line are recovered by projecting them back using the
Moore-Penrose pseudo-inverse of the camera projecting matrix and intersecting
the points up to scale with the virtual laser plane. Finally, the three-dimensional
transformation is estimated based on the three-dimensional feature points and
a plausibility test is performed by matching the laser lines observed in both
images.

Experimental validation using a bone and fiducial phantom confirms the
validity of the methodology and shows sub-millimeter accuracy in the experi-
ments performed. This is novel concept allows the alignment of CBCT volumes
without the introduction of patient-side reference markers, while the traditional
surgical workflow remains intact. Further details can be found in Appendix E
and E.

3.4.3 Contribution: Calibration of RGBD Camera and
Cone-Beam CT for 3D Intraoperative Mixed Reality
Visualization (IJCARS 2016)

Interventional three-dimensional augmented reality is the future of intraoper-
ative visualization and the path to simplifying surgery. It provides intuitive
visualization of human tissue, bones, and muscles extracted from CBCT data
to be overlaid on real views of surgical site (see Fig. 3.5 and 3.6). We have
developed a prototype for augmented reality tool placement inside bone. To
achieve the calibration, the surface data is recorded using a three-dimensional
color camera while the C-arm automatically rotates around the patient to ob-
tain the projection images. An example of a calibration phantom can be seen
in Fig. 3.9a).

Our technology consists of a software platform that registers Fast Point Fea-
ture Histogram (FPFH) descriptors from point clouds and patient data charac-
teristics extracted from CBCT volumes utilizing the SAmple Consensus Initial
Alignment (SAC-IA). However, this process requires extensive pre-processing
of both data sources in order to obtain artifact-free surfaces. For the three-
dimensional data recorded using the camera, the a model of the calibration
phantom is fit to the data and outliers are removed. Alternatively, the out-
liers can be removed by filtering the point clouds. Processing of the CBCT
volume includes simple thresholding and detection of the most outer surface of
the phantom. The calibration is then obtained after an Iterative Closest Point
(ICP) refinement [35].

The methodology is evaluated using di↵erent three-dimensional color cam-
eras as well as di↵erent distances between the camera and the calibration phan-
tom. For each configuration the target registration error (TRE) is computed. It
can be shown that the quality of depth information has an significant impact on
the overall calibration accuracy, which ranges between 2.58 mm to 7.42 mm de-
pending on which camera is used. Furthermore, di↵erent calibration phantoms
and their impact on calibration is evaluated. The results indicate that smooth,
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a)

b)

c)

d)

Hands

Guide wire in 
RGBD view

Guide wire 
in DRR

Fig. 3.9: The calibration phantom (a) can be an arbitrary object, such as this
spine model. The calibration allows the overlay of simulated X-ray
images and the real phantom surfaces, as shown in (b). In (c) and (d)
the three-dimensional surface reconstruction, simulated X-ray images
and the live three-dimensional information showing the user’s hand are
shown.

round objects with a matte finish allow for better depth images, which directly
influences the calibration accuracy.

Finally, the mixed reality perception is achieved by dynamically adjusting
the opacities and blending the DRRs, patient’s surface, surgeon’s hand and
tools; as illustrated in Fig. 3.9c) and d). All algorithms are implemented on
GPU, allowing real-time performance. The contribution towards novel calibra-
tion of RGBD and CBCT imaging is presented in [35], and in Appendix G.

3.4.4 Contribution: Pre-Clinical Usability Study of Mul-
tiple Augmented Reality Concepts for K-Wire
Placement (IJCARS 2016)

The technology proposed reduces the time required for complex surgical proce-
dures and the highly risky trial and error approach for tool placement. Most
crucially, it improves patient safety by reducing the possibility of complications
(such as nerve and muscle damage, injury of the intestine, vascular damage,
clotting and bleeding) and lessening the number of attempts to place a guide
wire. In contrast to the current systems, with our technology, the surgeon sees
the intraoperatively acquired X-ray or CBCT images, the patient’s surface, and
the surgeon’s hands and tools in real-time (Fig. 3.6). In short, we provide the
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surgeon with a unique and intuitive view of the patient’s anatomy in relation to
the surgeon’s hands and necessary tools, improving targeting and adjustment
of trajectories. This immediate direct feedback results in reduced time under
anesthesia, exposure to radiation, and time in the operating room for both sur-
geon and patient [15, 16]. The simulated procedure for K-wire placement was
performed by 7 trained surgeons utilizing superior pubic ramus phantoms, show-
ing significantly reduced duration, radiation dose, and number of X-ray images,
which is illustrated in Fig. 3.10 [15, 16].

Fig. 3.10: The three-dimensional Augmented Reality visualization enables sur-
geons to perform K-wire placements faster (Time), with less X-ray
images (# X-rays), and an overall lower dose (Dose). Additionally,
the surgical task load index (Task Load) was reduced, while the ac-
curacy remained nearly constant.

Our system comprises a traditional X-ray machine (C-arm), a three-
dimensional camera mounted on this X-ray machine, and generally available
CT images to guide the surgeon. Rather than seeing simple 2D Xray images,
our system shows the surgeon a three-dimensional view of the bones, the drill,
the patient surface and even the surgeon’s hands in realtime. This Superman
view, referred to interventional three-dimensional augmented reality, has shown
to reduce duration, radiation dose, number of X-ray images, and complications
in our pre-clinical experiments. In summary, our system increases patient safety
and represents the future of interventional X-ray imaging. The various contri-
butions are presented in [15, 16], and in Appendix F.
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Jaume Ordi, Pilar Paredes, and Francesca Pons. “Sentinel node in gy-
naecological cancers. Our experience”. In: Revista Española de Medicina
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Contributions A generative biomechanical model of the respiratory system
is proposed. In contrast to previous approaches, the model is driven by op-
timized patient-specific thoracic and diaphragmatic spatially varying pressure,
and the motion is not constrained by any fixed boundary condition. The model
generation and personalization, and motion prediction are shown using 4D CT
data sets.
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Patient-Specific Biomechanical Model for the Prediction of Lung
Motion from 4D CT Images (IEEE TMI 2014)

Abstract This article presents an approach to predict the deformation of the
lungs and surrounding organs during respiration. The framework incorporates a
computational model of the respiratory system, which comprises an anatomical
model extracted from Computed Tomography (CT) images at end-expiration
(EE), and a biomechanical model of the respiratory physiology, including the
material behavior and interactions between organs. A personalization step is
performed to automatically estimate patient-specific thoracic pressure, which
drives the biomechanical model. The zone-wise pressure values are obtained by
using a trust-region optimizer, where the estimated motion is compared to CT
images at end-inspiration (EI). A detailed convergence analysis in terms of mesh
resolution, time stepping and number of pressure zones on the surface of the
thoracic cavity is carried out. The method is then tested on five public datasets.
Results show that the model is able to predict the respiratory motion with an
average landmark error of 3.40± 1.0 mm over the entire respiratory cycle. The
estimated 3D lung motion may constitute as an advanced 3D surrogate for more
accurate medical image reconstruction and patient respiratory analysis.

A.1 Introduction

A.1.1 Clinical Motivation: Thoracic Imaging and Radio-
therapy

Thoracic imaging and radiotherapy su↵er from complications caused by the
complex respiratory motion, which is a source of artifacts in images and makes
it di�cult to determine critical information for radiotherapy, such as a lung
tumor’s shape, size, position and surrounding tissue [6]. Therefore, there is
a need for methods to predict the 3D lung deformation during regular and
irregular breathing cycles. The accurate estimation of the 3D lung deformation
is di�cult and currently approximated by one- or multi-dimensional signals
from devices such as spirometers, abdominal pressure belts, external markers, or
image modalities [7, 31, 22]. These signals are referred to as surrogates and only
part-wise reflect the complexity of lung deformation during a respiratory cycle.
For instance, during thoracic image acquisition, a 4D computed tomography
(CT) data set is compounded by image segments sorted and combined (binning)
either based on the amplitude or the phase-angle of a respiratory surrogate [16].
Because the signal is assumed to be periodic, di�culties arise when the breathing
pattern changes [37], resulting in imaging artifacts due to the combination of
di↵erent breathing states. In a second approach, images are acquired at a
specific instance of the respiratory cycle by triggering the imaging modality
according to the surrogate signal [33, 39]. This is referred to as gating and is
commonly used for nuclear imaging, such as PET [24]. In radiotherapy gating
is used to apply the ionizing radiation during pre-defined respiratory states
only [6]. Both approaches have drawbacks, such as the increase of radiation dose
to achieve oversampling, or increase of treatment or imaging time. Furthermore,
for image reconstruction, interpolation due to the lack of information between
phases can cause step artifacts. For this purpose, motion models have been
proposed to estimate or predict the deformation of lungs, liver or other organs
during breathing.
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Fig. A.1: CT image showing the respiratory system of a patient. The diaphragm
and intercostal muscles expand the thoracic cavity to inflate the lung.
The pleura (not visible in CT slice) keeps the lung in close proximity
to the thoracic cavity surface. Both lung and diaphragm can slide
along the rib cage during respiration.

A.1.2 Physiology of the Respiratory System

The respiratory motion is complex, as the lungs do not just compress and de-
form, but also slide along the thoracic cavity thanks to the pleura (see anatomy
and explanations in Fig. A.1), which is filled with a serous fluid and does not
change its volume during respiration. The anatomical properties of the pleura
allow nearly friction free sliding of the lungs and diaphragm along the thoracic
cavity. The motion is caused by two major groups of muscles: the diaphragm
and the intercostal muscles [11, 15]. Their contraction enlarges the thoracic cav-
ity creating a negative pressure causing air to flow into the lungs. Respiratory
motion may vary from cycle to cycle, as the contributions of the muscle groups
di↵er. The patient’s orientation and the breathing pattern (shallow, deep, ab-
dominal or thoracic) can have major influence on the lung deformation. Three
types of lung motion variations can be identified [23]: i) Intra-cycle variations
describe changes within one cycle, and are mostly caused by di↵erent paths
during inhale and exhale. In [16, 13, 12, 14, 30] models of intra-cycle variations
have been proposed. However, these approaches cannot deal with ii) inter-cycle
variations, which are often caused by changes in breathing patterns. Models,
such as those presented in [22] and [18], compensate for such variations, but
the authors are interested in reducing artifacts during imaging, rather than in
modeling the physiological correct motion. A generative model was not required
and their model was based on observations and free-form deformable registra-
tion. To deal with iii) inter-patients variations, atlas-based methods have been
used to identify motion patterns varying between patients [8]. However, these
methods can only describe motion which has been observed and are therefore
not generative. By creating a patient-specific biomechanical motion model, our
technique attempts to compensate all three motion variations.
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Fig. A.2: Pipeline of the proposed motion model. The initial input are CT
images at end-expiration (EE) and end-inspiration (EI), the segmen-
tations and the definition of the anatomical models are perfomed au-
tomatically. Furthermore, the thoracic and diaphragmatic pressure
values are estimated automatically, allowing the prediction of the res-
piratory motion.

A.1.3 Image-Based Approaches for Motion Estimation

Image-based models describe the respiratory motion using dense deformation
fields. This is achieved by registering the images at di↵erent respiratory phases
to a phase of reference. Optical flow techniques have been proposed [7, 5], in
which the cost function incorporates the temporal di↵erence between the images
and the spatial image gradient. However, the regularization process of optical
flow techniques is not suited for the sliding motion of the lung, causing wrong
deformations close to the thorax/lung interface. To cope with this limitation,
new regularization terms have been introduced that distinguish between normal
and tangential motion [30].

More sophisticated di↵eomorphic image registration approaches have been
proposed [29, 28] in particular piecewise-di↵eomorphic registration tech-
niques [28], to correctly capture the sliding interface. This approach smooths
the deformation field in regions without sliding motion, and allows non-smooth
deformation between lung and thorax. Though yielding good results, it is not
versatile enough to fully model the sliding of the diaphragm along the rib cage,
as the piecewise regularization is only applied on the lung surface, not the
boundary between diaphragm and thorax. Therefore, gaps between diaphragm
and thorax remain during exhale.

To model inter-patient variations, mean motion models have been presented
in [8]. Intuitively, an anatomical atlas is first estimated by averaging the tho-
racic images acquired at a specified time of the respiratory cycle. Then, for each
patient of the database, the respiratory motion is computed using image regis-
tration and encoded in terms of deformation fields. These deformation fields are
finally transferred to the atlas and averaged to obtain the mean motion model.
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When a new case needs to be processed, the mean motion model is transferred
to its coordinate system and applied for lung motion prediction. However, this
approach is not totally generative as it can capture only what is observed in the
database. In particular, sudden respiratory changes or disease lung motion are
more complex to capture.

A.1.4 Biomechanical-Based Methods for Motion Estima-
tion

Image-based approaches cannot fully take into account the variability of the res-
piratory motion, as they rely on observations and are therefore not generative.
To overcome these limitations due to variations in respiratory motion and allow
the patient-specific prediction of respiratory motion, biomechanical models have
been proposed [21, 34, 12, 13]. Biomechanical models for the lung have been
initially presented by West et al. [35], which showed the simulation of a half
thorax and the deformation of the lung under its own weight. Current compu-
tational models create an anatomical model from patient images and simulate
the physiological deformations during respiration cycles [21, 34].

A standard strategy relies on image data, and directly deforms the model by
projecting the triangulated surface nodes of the inhale lungs onto the surface of
the exhale phase. The deformation is constrained by a fixed boundary condition
and is not driven by pressure forces generated by the thorax [20, 21].

Another approach is to define a negative pressure on the lung surfaces
and constrain the inflation by lung surfaces extracted from another respiratory
phase [32]. Hence, these and similar approaches are still not fully predictive
since they rely on a boundary condition defined by a secondary geometry and
do not model the physiology to compute the motion.

A first step towards more accurate biomechanical modeling has been pre-
sented in [27], where the authors propose a method to automatically estimate
the inhomogeneous material properties in patients. While the hyper-elastic ma-
terial properties of lung have been identified early [35, 15, 38], it is nowadays
not clear whether using non-linear elastic material properties would give signif-
icant improvements in terms of motion prediction [21, 20] compared to linear
elasticity [34] due to their higher number of parameters to estimate and model
complexity.

A.1.5 Proposed Solution

To cope with the above-mentioned limitations, we propose in this manuscript
a generative biomechanical model of the respiratory system, which, contrary to
previous approaches, is driven by patient-specific thoracic and diaphragmatic
pressure force fields (Sec. A.2.2). The motion is not constrained by any fixed
boundary condition. The pressure force reflects the muscular forces generated
by the thoracic cavity and is transferred to the lung surface through a novel
thorax/diaphragm/lung interaction model.

Fig. A.2 illustrates the various steps of our method. First, a comprehensive
anatomical model of the respiratory system is computed from an image at end-
exhale (EE) (Sec. A.2.1). Using the anatomical model, a biomechanical model
is employed to simulate the lung deformation during respiration (Sec. A.2.2)
based on the thoracic and diaphragmatic pressure. These pressure values can
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not be measured. Therefore, we estimate the values automatically using a trust
region optimizer. During this personalization step the pressure values are itera-
tively improved with respect to the di↵erences between simulated lung and the
end-inspiration (EI) image (Sec. A.2.3). In contrast to our previous work on the
estimation of the respiratory motion using a direct parameter estimation [13],
this manuscript introduces a novel patch-wise coarse-to-fine optimization strat-
egy during personalization.

In contrast to other approaches, the lung at EI is never used as a boundary
condition. The anatomical model at EE, and the personalized thoracic and
diaphragmatic pressure are the only components used to predict the respiratory
cycle. Varying the amplitude of the personalized pressure can potentially enable
the simulation of respiratory motion which was not observed during imaging,
which is not possible when using a fixed boundary condition such as in [21, 20,
32].

Furthermore, a convergence analysis in terms of spatial and temporal reso-
lution is presented. The model predictions are evaluated by predicting exhale
deformations in five DIR-Lab datasets (Sec. A.3). We show that modeling
the diaphragmatic and thoracic movement decoupled enables the estimation to
achieve an average error of 3.40±1.0 mm in predicted landmark positions during
a respiratory cycle. Sec. A.4 concludes the manuscript.

A.2 Methods

A.2.1 Anatomical Model Generation

Our detailed anatomical model of the respiratory system comprises the lungs,
thorax, and a sub-diaphragm region grouping abdominal organs including the
diaphragm. This allows the individual sliding of lungs and diaphragm along
the thorax. The anatomical model is generated from the end of exhale phase
of a thoracic 4D CT through three steps herein described: segmentation, mesh
generation, and mesh post-processing.

Segmentation

3D CT images are segmented using an automatic multi-organ technique based
on a machine learning approach with a level-set optimization [19] (Fig. A.3a).
While the lung meshes are directly generated from the segmentation, the thorax
is based on the skin and lung segmentations. In some patients, the strong
diaphragm curvature and deep belly breathing causes a sliding movement of the
diaphragm along the rib cage, which can be observed in a 4D CT image set.
To allow this movement, the diaphragm must be segmented independently from
the rib cage. The sub-diaphragm area is synthetically generated by casting the
lung downwards (Fig. A.3b). Due to the non-convex nature of the lung, a simple
downward projection of the lung will cause outliers and sub-diaphragm wedges
between lung and thorax, as depicted in Fig. A.4. To address this di�culty,
we first compute the height map of the lower third of the inferior surface (z-
axis) of the lung. Then, a modified closing operation is applied: erosion and
dilation are only performed on voxels in the height map if more than 60% (set
experimentally) of the neighboring voxels have a lower or equal height value.
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Therefore, anatomically incorrect ridges will be removed in case the height map
has a pot-like shape, while preserving the borders and height if diaphragm is
represented correctly.

Mesh Generation

The volumetric meshes are generated through a 3D-triangulation1 based on a
feature preserving Delaunay refinement. The algorithm explicitly samples cor-
ners and edges from the input image, which is a 3D binary volume representing
the segmentation and constraining the refinement to preserve these features [3].
After Delaunay refinement, a mesh optimization phase is performed to remove
slivers and achieve a good mesh quality, resulting in three tetrahedral meshes for
thorax, lung and sub-diaphragm (Fig. A.3b showing lung and sub-diaphragm).
The Computational Geometry Algorithms Library (CGAL) provides an imple-
mentation.

Muscular Contact Zones

To capture the heterogeneous muscle forces, thoracic and diaphragmatic pres-
sures are estimated regionally according to pressure zones. For the thorax,
the pressure zones are defined automatically by sub-dividing the inner sur-
face in evenly spaced horizontal rings, which are themselves further subdivided
into patches based on the relative angular position of each surface triangle
(Fig. A.3c). The angle is defined to be 0o along the negative x-axis (dexter),
and 90o along the negative y-axis (anterior). For the sub-diaphragm, its supe-
rior surface (namely the diaphragm interface) is split into zones, based on the
relative position of each triangle on the antero-posterior (y) and dextro-sinister
(x) axis.

A.2.2 Computational Motion Model

The computational model deforms the anatomical model (Sec. A.2.1) by com-
puting the deformation under a set of pressure forces applied on the pressure
zones (Sec. A.2.1).

Biomechanical Model

To solve the dynamics equation of motion of a structure [36], the finite element
method is applied, which incorporates the mechanical parameters, the respira-
tory forces, and a specialized collision model. We define the internal stress and
strain (deformation) of the lungs, diaphragm, and thorax to be equal to the sum
of interaction forces and applied pressure force. Therefore, the deformations are
computed by simultaneously solving the dynamics equations (Eq. (A.1)) for the
lungs (l), thorax (t), and sub-diaphragm region (d). Superscripts (l, t, or d) are
omitted if not necessary.
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13D-triangulation refers to the partition of a volume into tetrahedra
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Fig. A.4: E↵ect on the anatomical model of the modified closing operation per-
formed on the height map, which is used to generate the sub-diaphragm
area.

where the acceleration, velocities and positions of the free nodes of each part
are gathered in the vectors Ü, U̇, and U. The lumped mass matrix M is
computed according to the mass density ⇢l = 1.05 g/mL and ⇢{t,d} = 1.50
g/mL. The sti↵ness matrix K describes the internal elastic forces. The damping
matrix C represents the Rayleigh damping with coe�cients of 0.1 for mass
and sti↵ness. The right-hand side terms of (A.1) represent the forces of which
the lungs, thorax and sub-diaphragm are subject to. The pressure forces F

p

represent the physiological forces driving the respiratory motion (Sec. A.2.2),
while the interaction forces F

c

model the sliding interaction between the organs
(Sec. A.2.2). An implicit Euler scheme is used to integrate Eq. (A.1) in time
since it allows larger time steps.

Tissue Model

In this work, the non linear, heterogeneous material properties [32, 27] of lung,
thorax and muscles are simplified and represented by a linear elastic model like
in [21]. A co-rotational formulation is used to cope with large deformations
and rotations [25]. The Young’s modulus Y and the Poisson’s ratio ⌫ define
tissue sti↵ness and compressibility respectively. The sub-diaphragm and thorax
tissue is assumed to be equal and fairly sti↵ with Y {t,d} = 7800 Pa, while the
lung is softer with Y l = 900 Pa [34]. The thorax and sub-diaphragm are more
incompressible (⌫{t,d} = 0.43) than the lungs (⌫l = 0.4) [21].

Respiratory Forces

The lungs are deformed passively by the surrounding thoracic muscles
(see A.1.2). Our model represents this behavior by applying pressures on the
automatically pre-defined thoracic pressure zones. For every zone zi, the pres-
sure pi is applied as force f i

p

= pi n dS, where n is the unit normal of the surface
element dS.
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Collision and Sliding Interaction

A collision model of pleural behavior is proposed to transfer the thoracic pres-
sure force field to the lungs. The collision model attempts to keep the distance
d between thorax and lung greater than the contact distance d

c

= 1 mm, as the
typical pleural thickness is reported to be 1� 2 mm [17]. When the distance is
smaller than the alarm distance d

a

= 5 mm, a collision is detected and the con-
tact force Fm

1

!m

2

c

is applied from mesh m1 to mesh m2. To avoid decoupling or
interpenetration, the force is defined to keep the meshes at an optimal distance
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where u is the vector between the vertex v, which belongs to the triangle T m

2

on mesh m2, and the corresponding collision point on mesh m1 (see Fig. A.3d),
and is used to compute the current distance d = ku(v)k. Furthermore, nm

2 is
the normal of the triangle T m

2 and k
s

is the penalty force sti↵ness coe�cient,
set to 0.1 N/m in this study. The interactions F

c

between all three objects are
defined in a similar way.

Three Stopping Criteria

When forces are applied, the biomechanical model converges towards an equilib-
rium where the dynamics equations (Eq. (A.1)) are balanced (steady state). For
the optimization process (see Sec. A.2.3), the steady state needs to be detected
automatically in order to compute the cost function. This is achieved by testing
three criteria at every iteration of the computational model. The first crite-
rion is met when the user-defined maximum simulation time (e.g. T

max

= 1
s) is reached, T

max

in normalized time. The second and third criterion are
based on the velocities and computed at every time step i. The second crite-
rion is met when the simulation becomes unstable: if the velocity of any node
in the lung becomes physiological impossible, the simulation is aborted. The
test is performed by comparing each magnitude of the velocity vector to in-
finity (> 1010 m/s). However, we could not obverse speeds beyond 1 m/s in
stable cases. The third criterion is met when the sliding average (window size
of n = 50 time steps) of the mean velocity of all nodes in the lung falls below
a given threshold ✏ = 2.5 · 10�1 mm/s (set experimentally) for robustness with
respect to potentially slight numerical instabilities. The values in the sliding
window are initialized with zeros and the test is enabled after i > n.

A.2.3 Model Personalization

The pressure necessary to load the lung from EE to EI is estimated by mini-
mizing a multi-variate cost function using Powell’s NEWUOA algorithm [26], a
trust-region method that does not explicitly calculate cost function gradients.
Three di↵erent cost functions are investigated, defined as

c1 = d
S

, c2 = d
LM

, and c3 = d
S

+ d
LM

, (A.2)

where d
S

is the mean Hausdor↵ surface-to-surface distance between the de-
formed EE lung surface at system equilibrium and the segmented lung surface
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at EI, and d
LM

is the average Euclidian distance between internal landmarks
at EI and their corresponding EE landmarks moved according to the internal
deformation provided by the biomechanical models. Note that during person-
alization only landmarks at EI are compared to the simulated landmarks, while
for the evaluation of the respiratory motion, the landmarks between EI and EE
are used. To minimize risks of local minima, the following coarse-to-fine strategy
is employed. First, the personalization is performed with each one zone on the
sub-diaphragm and the thorax with an initial value of 0. Then, the thorax zones
are split horizontally and vertically into four equal zones, the pressure values
are set to the previously obtained values, and the personalization is restarted.
This is repeated until the desired number of pressure zones is reached.

A.2.4 Implementation

The anatomical modeling pipeline is implemented in C++ and includes the au-
tomatic segmentation, detection of the anatomical model, and meshing based on
CGAL. The biomechanical model and the collision algorithm are implemented
within the Simulation Open Framework Architecture (SOFA) framework [1] us-
ing CUDA. Finally, the optimization framework, incorporating NEWUOA, calls
SOFA as cost function to estimate the pressure distribution.

A.3 Experiments and Results

A.3.1 Patient Data

Our framework was evaluated using 4D CT data sets from DIR-Lab [4], where
the entire thorax was visible (cases 6 to 10), image resolution of 0.97 ⇥ 0.97 ⇥
2.50 mm, average image dimension of 512⇥ 512⇥ 128, an average of 414 land-
marks was available, but no respiratory trace was provided. For evaluation the
lung volume at each phase needs to be computed in order to allow the synchro-
nization of the predicted lung with observations. The segmentation of the lungs
and skin was performed automatically for the CT phases 0 to 5 (end-inspiration
to end-expiration), and our pre-processing pipeline automatically defined the
lung, thorax and sub-diaphragm regions. When applying the modified clos-
ing operation, parts of the mediastinum were merged to the thorax instead of
connected to the sub-diaphragm, as illustrated on case 6 in Fig. A.4.

A.3.2 Computation of Landmark and Surface Errors

The landmark error is the euclidean distance between the landmark’s simu-
lated position and the position at the target phase. To compute the simulated
position, first the surrounding tetrahedra and the corresponding barycentric co-
ordinates were computed during initialization. The simulated position is then
computed with respect to the deformed tetrahedra using barycentric mapping.
The surface error is the average distance between two triangle meshes. We use
the symmetric Hausdor↵ distance defined as the average bi-directional point to
triangle distance.
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Table A.1: Mean errors between simulation and ground truth with di↵erent spa-
tial resolutions for the lung, suggesting a system convergence at mesh
resolutions of 2.6k elements.

Number of Tetrahedra Elements 0.8k 1.4k 2.6k 5.7k
EI surface error (mm) 2.81 2.19 2.18 2.00
EI landmark error (mm) 3.50 3.40 3.52 3.52
Standard deviation (mm) 1.92 1.85 1.97 1.95
90%-tile landmark error (mm) 6.93 5.06 5.57 5.74
Average computation time (s) 122 132 184 281

A.3.3 Numerical Analysis

All convergence analyses were performed using the same patient data (DIR-Lab
data set case 6, see A.3.1) and the cost function c3 (Eq. (A.2)), with, if not
otherwise specified, four pressure zones on the diaphragm and 16 pressure zones
along the thoracic cavity. Four di↵erent mesh configurations were generated
with 0.8k, 1.4k, 2.6k and 5.7k tetrahedra elements for the lung (Fig. A.5a). The
number of elements in the thorax and sub-diaphragm were kept constant with
6.8k and 0.9k respectively.

Convergence analysis in terms of spatial resolution

In virtue of the spatial discretization, the accuracy of predicted landmark po-
sition and quality of the surface representation may be directly related to the
number of tetrahedra elements. However, the number of elements also a↵ects
collision accuracy and computation time.

Therefore, we perform the convergence analysis to assess the number of ele-
ments necessary to reach the convergence of the system. As metric, we use the
landmark distance with respect to the ground truth. As depicted in Fig. A.5a)
and Tab. A.1, the observed landmark and surface errors do not change signif-
icantly once the mesh yields 2.6k or more elements. At this point, the errors
are no longer influenced by the resolution, but other components of the method
(i.e. temporal resolution or coarse-to-fine personalization strategy). It should
be noted that we are interested in finding the number of elements for which
the system converges, which may not be the optimal one in terms of landmark
error.

Convergence analysis in terms of temporal resolution

Similarly, we analyzed the e↵ect of the time step on the prediction accuracy,
as illustrated in Fig. A.5b). Results suggested that time steps lower than 1 ms
did not improve the results, while a higher time step significantly worsened the
results, mainly because of poor collisions (the time resolution is not su�cient
to detect collisions). Therefore, the time step was set to 1 ms for all subsequent
experiments as a compromise between accuracy and computation time.
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Patient-Specific Biomechanical Model for the Prediction of Lung
Motion from 4D CT Images (IEEE TMI 2014)

Evaluation of the coarse-to-fine personalization strategy

The proposed hierarchical personalization strategy aims at automatically finding
the optimal trade-o↵ between number of surface zones, accuracy and computa-
tional e�ciency. Fig. A.6a) shows a comparison between a direct strategy and
the coarse-to-fine strategy as presented in Sec. A.2.3. Three configurations of
pressure zones were used:

• Low: 1 zone on the sub-diaphragm. 1 zone on the thorax.

• Medium: 2 zones on the sub-diaphragm. 2 rings and 2 zones per ring on
the thorax. The coarse-to-fine strategy used the result of the low opti-
mization as starting point.

• High: 4 zones on the sub-diaphragm. 4 rings and 4 zones per ring on
the thorax. The coarse-to-fine strategy used the result of the medium
optimization as starting point.

As one can see, stability and more accurate solutions were gained when there
were 4 zones on the diaphragm and 16 on the thoracic surface. Furthermore,
the NEWUOA software converged as fast using the coarse-to-fine strategy (295
iterations in total including low, medium and high), as compared to the direct
personalization (high configuration, 292 iterations), while getting more robust
and accurate solutions using the coarse-to-fine strategy. Furthermore, estimated
pressure fields were more spatially consistent when using the coarse-to-fine strat-
egy, as illustrated in Fig. A.6b). For the following experiments, the optimal pro-
file (high), as well as the coarse-to-fine strategy were employed. To conclude,
we used the following settings for the patient experiments:

• 2.6k tetrahedra elements for the lung.

• a time step of 1 ms.

• a coarse-to-fine strategy.

• 4 and 16 pressure zones on the sub-diaphragm and thoracic cavity respec-
tively.

A.3.4 Validation of Motion Prediction on Patient Data

Generation of Anatomical Model

Using the patient data described in Sec. A.3.1, the meshing resulted in an aver-
age over all patients of 3.4k, 18.6k and 2.3k tetrahedra for the lung, thorax and
sub-diaphragm respectively. In the following sections we present the results for
the left lung only. It should be stressed though that our approach is generic and
can handle both lungs irrespectively.

Biomechanical Model Personalization

For each proposed cost function (Eq. (A.2)), the personalization automatically
estimated pressure values per muscular contact zone, which enabled the defor-
mation of the lung from end-expiration (EE) to end-inspiration (EI) (Tab. A.2,
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A.3. Experiments and Results
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Fig. A.8: Average landmark error during exhale prediction for three experi-
ments: personalization with 20 pressure zones using c1, c2 and c3 as
cost function.

blue rows indicate the surface and landmark distances after personalization).
Depending on the number of pressure zones, the optimization algorithm con-
verged after an average over all patients of 24, 55, 198 and 277 iterations for low,
medium, high and total number of zones respectively while using the coarse-to-
fine strategy. Each optimized iteration ran a full simulation of a lung motion
based on a set of pressure values, where the average computation time2 is 2
min. The quality of each personalization was then evaluated by predicting the
exhale (EI to EE), without any image information.

Evaluation of Motion Model Prediction

A full cycle was simulated to evaluate the quality of the prediction, based on
the three cost functions (Eq. (A.2)). The simulation of inhale was driven by
the personalized pressure values, while exhale was simulated by setting the
pressure values to zero. The surface and landmark errors were computed for all
corresponding phases during exhale, where the synchronization was performed
by means of the lung volume and therefore represented a real-world scenario
(binning and gating is already performed on basis of lung volume). The quality
of the exhale prediction was evaluated by comparing the landmarks for every
intermediate phase, which are shown in Fig. A.7. As Tab. A.2 and Fig. A.8 show,
the model based on cost function c3 performed best, and despite simplifications,
a mean landmark error over all landmarks and phases of 3.40 ± 1.0 mm was
obtained.

A.4 Discussion and Future Works

This manuscript presented a framework to predict respiratory motion in patients
based on a personalized biomechanical model. To the best of our knowledge,
our pipeline is the first to segment the lungs, generate the anatomical models,
personalize the model to reflect the patient-specific physiology, and predict the
deformation without being explicitly driven by image forces. The personalized
model allowed the generative prediction of the motion, where the obtained re-
sults were of the same order of magnitude as state-of-the-art respiratory motion

2Configuration: single-threaded simulation with CUDA based collision detection, Intel
Xeon 3.07GHz, 3.5GB RAM and NVIDIA Quadro 2000
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Table A.2: Results indicate that the personalization based on the surface and
landmark errors allows a better prediction of the internal lung de-
formation. surface and average landmark errors after personaliza-
tion (blue); average over all landmarks in all available 4DCT phases
(white)

Case 6 7 8 9 10 Mean
Experiment 1: c1 = d

S

EI surface error (mm) 1.75 2.03 2.09 2.16 1.36 1.88± 0.52
EI landmark error (mm) 4.20 5.84 9.24 3.58 4.36 5.44± 3.80
Mean landmark error
during prediction (mm)

3.63 3.55 5.35 3.27 2.82 3.72± 1.63

Experiment 2: c2 = d
LM

EI surface error (mm) 2.35 3.46 2.93 2.44 2.32 2.70± 0.76
EI landmark error (mm) 3.55 3.13 5.17 3.14 1.95 3.38± 1.78
Mean landmark error
during prediction (mm)

3.27 3.43 4.33 3.40 2.83 3.45± 0.88

Experiment 3: c3 = d
S

+ d
LM

EI surface error (mm) 2.09 2.78 3.28 2.21 2.05 2.48± 0.80
EI landmark error (mm) 3.67 3.49 4.53 3.23 2.03 3.39± 1.36
Mean landmark error
during prediction (mm)

3.34 3.38 4.40 2.97 2.91 3.40± 1.00

models [21, 34, 10], but in contrast to our method, previous techniques rely on
a fixed boundary condition, are not generative, and do not model the physically
correct pressure and interactions between lungs and thorax. Furthermore, the
method outperformed our previously presented biomechanical models for full
cycle prediction [13, 12]. We have only presented results on the left lung, but
the extension to both lungs is straightforward, as for the anatomical model,
personalization, and prediction of motion, and the lungs can be treated indi-
vidually for each lung. However, as the real motion of the lungs is coupled, the
modeling of constraints defining the coupling should be investigated.

As tissue model linear-elastic material properties were chosen. Previous
publications (e.g. [21]) indicate that hyper-elastic material properties may yield
better simulation results. However, a closer look at the experiments in [21]
shows that the change of errors between models using linear and hyper-elastic
properties is far less significant compared to models that allow nearly friction-
free sliding motion. This coincides with our observations that the linear-elastic
properties in combination with nearly friction-free sliding are su�cient to simu-
late the respiratory motion, and the proposed model is still predictive in terms of
internal landmark position, as demonstrated in five cases. However, our e↵orts
to improve the model and make it more realistic will include further investiga-
tions into the possible benefits and potential di�culties of using hyper-elastic
material properties. Note that the tissue properties are especially complex, as
the real properties of lung and thorax depend strongly on the patient’s health,
age, gender, and physical condition. Therefore, several approaches would need
to be combined, such as the hyper-elastic material properties and the auto-
matic estimation of spatially varying tissue properties such as presented in [27].
Currently, the simplifications in terms of linear material properties were partly

86



A.4. Discussion and Future Works

compensated for by the personalized and spatially varying thoracic pressure val-
ues. These pressures, indeed, may not correspond to the actual forces exercised
in the patient, but rather a ”lump” force to cope with model simplifications. We
have observed that the applied pressures directly correspond to the linear-elastic
material properties (e.g. higher sti↵ness leads to increased pressure estimation).
Therefore, personalization of pressures partially compensates for the rough ap-
proximation of the Young’s modulus of lung, thorax and sub-diaphragm.

In summary, the personalization is based on three di↵erent cost functions.
We have shown that in most patients the direct surface distance between simu-
lated and observed EE phase is not su�cient to predict the pressure distribution.
On the contrary, in this manuscript we have shown that a model which has been
personalized based on landmark and surface distance (c3) yields a better predic-
tion of the internal deformation of the lung during the respiratory cycle. The
improved behavior of the model is caused by the personalization considering
the sum of surface and landmark errors, instead of relying on one or the other
separately. This results in a better approximation of the physiological correct
pressure values, which in turn provides an improved model. These findings make
it necessary to provide landmarks together with the segmentations. Therefore,
automatic detection of landmarks in the lung, such as in [2, 9], would need to
be added to the framework. We have not investigated the influence of tumors
and have considered these to behave as the surrounding lung. This simplifica-
tion will be removed in future. While our previous papers [13, 12] relied on a
direct estimation of each pressure value, the novel coarse-to-fine personalization
strategy during personalization results in a smoother and physically plausible
pressure distribution. Due to the lack of a respiratory trace for the patient
data, the model and the observations were synchronized based on the lung vol-
ume, which was computed from the images through automatic segmentation
of all 4D phases. This actually represents a real-world scenario, as the trace
during imaging is often not available, or due to inter-cycle variations, hard to
acquire. However, once available, a possible extension of the framework would
be to introduce time-varying pressure values and improve the personalization
process by considering the intermediate respiratory phases as well. While this is
an interesting approach, the amount of unknown parameters to estimate would
significantly increase. We therefore propose to further investigate the correlation
between the 1D trace and the pressure values.

Our anatomical model represents the lung, thorax, and sub-diaphragm area.
The separation into these three parts allows the sliding of the diaphragm and
lung along the thoracic cavity, which was a major problem in the method pre-
sented in previous work [12] and for image based methods, even for most recent
methods such as [28]. The mechanical decoupling of thorax and diaphragm is
therefore not only a major contribution of this manuscript, but indicates possi-
ble extensions to other image based and non-image based methods. Indeed, the
real anatomy is more complex than currently represented. Enhancing the model
to include further details such as the tethering of the lungs by the airways, or
the definition of a spatially varying tissue model to represent inhomogeneity
for regions such as bones, muscles, tumors and organs may constitute potential
areas for future research. In conclusion, our method may provide novel, 4D
surrogate information for thoracic image reconstruction and analysis.

87



Patient-Specific Biomechanical Model for the Prediction of Lung
Motion from 4D CT Images (IEEE TMI 2014)

Acknowledgment

This work was performed with partial support from NIH grant U01-CA140206.

88



References

References
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“SOFA an Open Source Framework for Medical Simulation”. In:Medicine
Meets Virtual Reality. Long Beach, USA, Feb. 2007.

[2] Margrit Betke, Harrison Hong, Deborah Thomas, Chekema Prince, and
Jane P Ko. “Landmark detection in the chest and registration of lung
surfaces with an application to nodule registration”. In: Medical Image
Analysis 7.3 (2003), pp. 265–281.

[3] Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. “Mesh
generation from 3D multi-material images”. In: Medical Image Computing
and Computer-Assisted Intervention. Springer, 2009, pp. 283–290.

[4] Edward Castillo, Richard Castillo, Josue Martinez, Maithili Shenoy, and
Thomas Guerrero. “Four-dimensional deformable image registration using
trajectory modeling”. In: Physics in Medicine and Biology 55.1 (2010),
pp. 305–313.

[5] M. Dawood, F. Buther, X. Jiang, and K.P. Schafers. “Respiratory motion
correction in 3-D PET data with advanced optical flow algorithms”. In:
IEEE Transactions on Medical Imaging 27.8 (2008), pp. 1164–1175.

[6] L.A. Dawson and D.A. Ja↵ray. “Advances in image-guided radiation ther-
apy”. In: Journal of Clinical Oncology 25.8 (2007), pp. 938–946.
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Contribution The main contribution is the presentation of a novel similarity
measure to compare ultrasound and MRI data and therefore enable intensity-
based registration. The construction of the similarity measure is thoroughly
explained, and applied to 2D and 3D data sets. The extensive evaluation com-
prises a convergence study and a validation of accuracy.

Abstract To enable image guided neurosurgery, the alignment of pre-
interventional magnetic resonance imaging (MRI) and intra-operative ultra-
sound (US) is commonly required. We present two automatic image regis-
tration algorithms using the similarity measure Linear Correlation of Linear
Combination (LC2) to align either freehand US slices or US volumes with MRI
images. Both approaches allow an automatic and robust registration, while the
three dimensional method yields a significantly improved percentage of opti-
mally aligned registrations for randomly chosen clinically relevant initializations.
This study presents a detailed description of the methodology and an extensive
evaluation showing an accuracy of 2.51 mm, precision of 0.85 mm and capture
range of 15 mm (>95% convergence) using 14 clinical neurosurgical cases.
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B.1 Introduction

Medical image registration is the process of spatially aligning images in a com-
mon coordinate space and aligning related features which exist in all images.
It has been a widely investigated area in the past few decades, however re-
mains challenging in particular for multi-modal registration. Often, di↵erent
modalities complement each other well, which is relevant to a vast range of
clinical applications for improving diagnosis, treatment planning, interventions,
procedure follow-up, and screening. In a neurosurgical scenario which mainly
motivates this work, MRI provides a good visualization of the anatomy and
tumors, while US is inexpensive and allows for intra-operative use to detect and
correct for brain shift after opening the skull. However, registering US and MRI
images is a complex and di�cult process, largely because represented informa-
tion originates from very di↵erent physical properties. MRI intensities correlate
with the relaxation times of the 1H nuclei, while the US intensity values repre-
sent the changes in acoustic impedance, overlaid by a significant speckle noise
and various direction-dependent artifacts.

In this article, we present a new powerful set of methods based on the pre-
viously proposed LC2 similarity measure [20], which allows for globally con-
vergent, automatic registration of MRI and US data with clinically acceptable
computation times.

B.2 Related Work

During MRI and US registration a transformation is searched for which the
alignment of the images is optimal. This requires a measure to evaluate the
current alignment of the images, which is referred to as cost functions or sim-
ilarity measure. Ideally, this function exhibits one distinctive extremum when
the images are aligned optimally, and a nearly monotonous shape to provide op-
timal support in finding this extremum. In this section we will discuss several
similarity measures which have been utilized for MR and US registration.

The MRI and US registration approaches using similarity measures based on
sum of squared distances, Normalized Cross-Correlation (NCC), Mutual Infor-
mation (MI) and normalized Mutual Information (nMI) tend to fail [8]. This is
caused by the very di↵erent nature of the intensity values and by structures that
are not visible in one or the other imaging modality. For instance, details in MRI
may lay in US shadow regions or certain materials can not be visualized by MRI
(e.g. calcifications, air). Therefore, we focus on similarity measures specific to
the application during MRI and US registration, which are not organ-specific
and do not introduce a significant e↵ort due to pre-processing, such as for liver
vasculature presented by [14].

Higher-dimensional Mutual Information (↵-MI) is theoretically suited to as-
sess US-MRI alignment based on both intensity and gradient information (in
fact, an arbitrary number of features may be used). However, current ap-
proaches are neither practical in terms of implementation e↵ort nor computation
time [16, 7].

[5] presented an interesting approach utilizing the alignment of high confi-
dence gradient orientations. Anatomical boundaries characterized by the gra-
dient orientations from the MRI and US images are used, while small regions
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with a high confidence for identifying anatomical boundaries were only selected
from one image. However, the lack of the use of intensity values suggests that
this method requires either nearly optimal data or a close initialization. Also
the appearance of dominant gradients in one but not the other image, such as
the skull in MRI but not in US, may lead to a poor alignment.

A di↵erent powerful method is the modality independent neighborhood de-
scriptor (MIND) [6] and its extension self-similarity context (SSC) [7, 2], which
utilize the di↵erences of pre-defined neighborhood descriptors. They are based
on a self similarity measure initially presented by [1], and do not rely on the as-
sumption of a global intensity relation. However, modality specific artifacts can
not be considered and the computational e↵ort for pre-processing is high due to
the generation of voxel-wise neighborhood descriptors. Also, such self-similarity
approaches tend to strongly abstract the image data, which might impact its
accuracy as opposed to methods using the original image information.

Instead of comparing images from di↵erent modalities, pseudo-US images
may be generated using segmented structures from MRI [3, 4, 10, 11]. In light of
the modality-specific considerations, the most promising general strategy for ro-
bust US-MRI registration, without relying on application-specific pre-processing
or segmentation, is to compare US to both the MRI intensity and its gradient,
as pioneered by [17], where a global polynomial intensity relationship is fit-
ted during registration. The alternating optimization of the rigid pose and the
polynomial coe�cients, as well as the fact that it is a global mapping, limit the
convergence range though (the requirement for a local intensity mapping is ex-
plained in detail in [20] section 2.2.4). Powerful tools for image registration are
similarity measures which are invariant to local changes, such as local normalized
cross-correlation (invariant wrt. local brightness and contrast). [20] introduced
the similarity measure Linear Correlation of Linear Combination (LC2), which
exhibits local invariance to how much two channels of information contribute to
an ultrasound image. The entire method has been specially designed for US-CT
registration, where a strong correlation between X-ray attenuation coe�cients
and acoustic impedance is known, which allows a simulation of ultrasound ef-
fects from CT. These incorporate estimates of the acoustic attenuation, multiple
reflections, and shadowing, which can not directly be estimated from MRI.

In this work, we adapt the LC2 formulation to the case of MRI-US reg-
istration in neurosurgery, and evaluate it on a publicly available database of
14 patients. We had presented initial results of this method in [22]. Here, we
provide a more thorough description and evaluation, and also add two novel
alternative implementations of the LC2 similarity, namely a 2D GPU version
and a novel natively three-dimensional approach.

B.3 Method

B.3.1 Similarity Measure

The similarity measure Linear Correlation of Linear Combination (LC2) is used
to search for a transformation T which aligns two images I and J . Due to
the di↵erent nature of the images, a relationship function f is required to al-
low a mapping of the intensity values. As a first step towards LC2 a general
cost function is defined, which applies the relationship function f to one of the
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images:

min
T

X

x2�

⇣
I(x)� f(J(T (x)))

⌘2
, (B.1)

where x is a pixel or voxel position in the image domain �. If f is the identity
function it can be seen that (B.1) represents sum of squared di↵erences (SSD).
In case of LC2, the relationship function f is defined to be a linear combination
such as f(J(y)) =

P
i=1...n cigi(J(y)), where c

i

are coe�cients, and y an arbi-
trary position in image J . The functions g

i

describe an arbitrary pre-processing
of the transformed image J , for instance the computation of gradients or sim-
ulation of pseudo-ultrasound images. The choice of relationship function and
pre-processing strongly depends on the nature of the underlying images. For
mono-modal image registration, one could assume that a simple linear function,
such as f(J(y)) = ↵J(y) + �, would be su�cient, which basically represents a
windowing function.

In case of a multi-modal image registration the relationship is more com-
plex. As shown by [20], the relationship between X-ray computed tomography
(CT) and ultrasound images can be motivated from a physics standpoint, which
results in f being a linear combination of ultrasound reflection and ultrasound
echogeneity simulated from CT. However, in case of MRI and US registration
such a simulation can not be obtained as the physical properties that are respon-
sible for the intensity values have little in common. Therefore, the relationship
function f is based on plausible observations. We assume that the US inten-
sity value u

i

for pixel/voxel i is either correlated with the MRI intensity value
p
i

= J(T (xi)) or with the MRI image gradient magnitude g
i

= |rp
i

|. The re-
sulting relationship function is therefore f(J(x)) = ↵p

i

+�g
i

+�. This caters to
the fact that ultrasound intensity values on one hand may depict di↵erent soft
tissue properties (due to the varying tissue inhomogeneities and echogeneity),
and on the other hand represent tissue interfaces or gradients, as illustrated
in figure B.1. Of course LC2 is not limited to linear combinations of only two
components, but for MRI/US registration we currently do not see the need for
additional components.

The coe�cients c = {↵,�, �} of the linear combination in the relationship
function are computed during every similarity measure evaluation, as shown by
[21, 20]. Under the assumption that the relationship function f(J(Tx)) shall
be an optimal fit to the image I(x), its coe�cients can be implicitly estimated
based on an ordinary least squares formulation:

ĉ = (MTM)�1MTU,

where M =

0

B@
p1 g1 1
...

...
...

p
m

g
m

1

1

CA , U =

0

B@
u1
...

u
m

1

CA ,
(B.2)

where m is the number of pixels/voxels in the domain, for instance m = |�|.
It is now possible to compute a residual between the US and MRI images,

but this proves to be problematic in regions in which the images do not overlap
or in which the ultrasound image does not contain any structural information
(e.g. shadow regions). Therefore, the cost function (B.1) is modified to penalize
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Fig. B.1: The intensity values of the US image need to be expressed by a lo-
cally varying relationship function. This is indicated by the red circle,
which depicts a high correspondence between US intensity values as
MRI intensity values (a and b), and the yellow ellipse, which marks
regions of high correspondance between the US image and the MRI
gradient magnitudes (a and c). The locally estimated coe�cients (for
neighboorhood ⌦(x, s)) of the linear combination in the relationship
function are visualized in (d).

such regions by introducing the variance of the ultrasound image, as done by
[18, 19, 17], and is formulated as a similarity measure:

LC

2(I, J, T ) = 1�
P

x2� (I(x)� f(J(T (x))))2

|�|V ar(I)
. (B.3)

When plugging simple relationship functions in (B.3), it can be shown that
other cost functions, such as correlation ratio (⌘) or normalized cross-correlation
(NCC), can be derived.

Locally normalized LC 2 The similarity measure (B.3) implies an image-
wide constant relationship between US and MRI intensity values and MRI image
gradient magnitudes. This, however, is not true in most cases, as visualized in
Fig. B.1. Therefore, we compute (B.3) for every pixel position x 2 � using a
neighborhood ⌦(x, s) ⇢ � of size s, and consequently replace the domain on
which the coe�cients ŷ are estimated (Eq. B.2) with ⌦(x, s). The size s of the
neighborhood around an image position x defines a patch of (2s+1)2 pixels or a
volume (2s+1)3 voxels in 2D or 3D respectively. This results in local similarity
measures
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LC

2

l

(I, J, T,x, s) = 1 �
P

y 2⌦(x,s)

(I(y) � f(J(T (y))))
2

|⌦(x, s))|V ar(I(y |y 2 ⌦(x, s)))
, (B.4)

where the weighted average is computed in order to obtain the image similarity
measure. The weights are the local standard deviation of the image I in the
neighborhood (� =

p
V ar(I(y|y 2 ⌦(x, s)))).

B.3.2 Similarity Measure Computation

Two-dimensional LC 2 This approach is computed on the original tracked
freehand ultrasound slices, for which a 3D transformation is given. The extrac-
tion of the corresponding MRI intensity values and MRI gradient magnitudes
from the given 3D volume is e�ciently performed on the GPU using its hardware
tri-linear interpolation capability. The accumulation of all the neighborhood in-
tensities required for equation B.4 is performed using a sliding-window approach
on the CPU, parallelized over rows and columns of the images on all threads of
the multi-core processor. The computation time is therefore independent of the
chosen LC2 neighborhood size. While this method has been initially used in
[22], we have investigated an alternative full GPU implementation, where each
shader accumulates the neighborhood information independently. The latter ap-
proach results in a computation dependency with respect to the neighborhood
size of O(s2), and therefore o↵ers superior performance for small neighborhood
sizes.

Three dimensional LC 2 In order to investigate advantages of slice versus
volume-based LC2 computation, we have also implemented the similarity mea-
sure with three-dimensional neighborhood blocks on the GPU. Here, the inten-
sity accumulation is implemented in a separable fashion for every dimension,
such that the computation time scales linearly O(s) with the neighborhood size
s. Before the registration, the 3D freehand ultrasound data is reconstructed into
a volume grid in a similar fashion as in [9], using a quadrilateral interpolation
for a good trade-o↵ of performance and image quality.

B.3.3 Optimization of Rigid Transformation

An analytic derivation of LC2 is di�cult due to the least-squares fitting in (B.2)
which is computed for every position in the US image. Therefore we use Bound
Optimization BY Quadratic Approximation (BOBYQA) [15], which internally
creates own derivative approximations. This results in fewer evaluations than
most other search methods, and is therefore used throughout this paper. How-
ever, clinical requirements on capture range may ask for other techniques. In
particular, global optimization techniques may be useful to perform a more
excessive search within the specified bounds.

Deformable registation After rigid registration, a free-from deformation
(FFD) model using cubic splines can be fitted, where the deformation is applied
on the MRI data J within the same GPU kernel which extracts MRI intensity
and gradient magnitude. For that purpose, we place a configuration of 2⇥2⇥4
control points within the bounding box of the registered ultrasound sweep. Then
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the same BOBYQA algorithm is used to optimize the displacement vectors for
all control points.

B.4 Experiments

B.4.1 Clinical Data and Experimental Setup

To evaluate our method and compare the results to other publications, we used
a publicly available database containing Brain Images with Tumors for Evalua-
tion from Montreal Neurological Institute [12], with pre-operative T1-weighted
MRI and pre-resection 3D freehand US from 14 patients. The pre-resection
ultrasound has been acquired before opening the dura, and therefore only little
deformation has occurred. Initial transformations and corresponding landmarks
for each US-MRI pair are included (Tab. B.1, lines 1 and 2). Therefore, we can
provide ground truth evaluations, and denote the average Euclidean distance of
the landmarks as Fiducial Registration Error (FRE).

Two dimensional LC 2 The MRI volumes were used as provided, while the
higher-resolution US images were down-sampled such that their pixel sizes is
smaller than twice the size of an MRI voxel. This guarantees that information
provided by MRI voxels is never discarded when the tri-linear interpolation is
used. Furthermore, US slices were skipped to avoid overlapping planes, resulting
in an average distance between the slices of < 1.5 mm or less due to slower
scanning in the areas of interest.

Three dimensional LC 2 For the 3D experiments the freehand ultrasound
data was first reconstructed into a cartesian volume grid with an isometric
resolution of 0.3 mm, and afterwards further re-sampled as needed. We found
that down-sampling the US volumes by the factor of three provides a good
trade-o↵ between fast computation times, a total load of <2GB memory on
GPU, a high capture range and good accuracy. In addition, speckle noise is
removed due to the smoothing e↵ect. The used US volumes yield an isometric
resolution of 0.9 mm. The MRI volumes were used as provided.

System specifications All registration attempts were performed utilizing
the parallel processing capabilities of the Graphics Processing Unit (GPU) of
a workstation with an Intel i7-3770 CPU with 8 threads and a Nvidia GeForce
GTX Titan GPU with 2688 cores and 6GB memory.

B.4.2 Numerical Analysis of LC 2 Configuration

All convergence analyses were performed by carrying out 100 randomly ini-
tialized transformations (±10 mm/� in all 6 parameters) for each choice of a
parameter.

Convergence analysis in terms of US slice spacing Consistently good
results are obtained when performing a registration using the 2D approach with
an slice spacing of < 5 mm, where slice spacing refers to the average euclidean
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distance between the centers of tracked ultrasound slices. For deformable reg-
istration, we chose < 1.5 mm to make sure we are not missing even smallest
structures.

Convergence analysis in terms of neighborhood size The sensitivity of
the 2D method has been investigated using both CPU and GPU implementation
of the similarity measure. For neighborhood sizes 2 to 24 the accuracy is similar,
while the percentage of successful registration attempts peak around 8 and 9,
as depicted in Fig B.2 (a) and (b). Furthermore, it can be seen that the two
implementations yield nearly the same results. Therefore, we used neighborhood
s = 9 (hencem = (2·9+1)2 = 361 pixels) as a fair trade-o↵ between convergence
and accuracy for all further experiments. Reported results are computed using
the CPU implementation.

The 3D method requires an independent convergence analysis, as the neigh-
borhood size describes a volume rather than a 2D patch. The accuracy is nearly
constant for neighborhood sizes 2 to 7, which also exhibits the highest percent-
age of successful registrations (Fig. B.2c). To balance computation time, which
scales linearly with the neighborhood size, and the performance, a neighborhood
size s = 3 (hence m = (2 · 3 + 1)3 = 343 voxels) is used for all further exper-
iments. Overly large patches result in a global mapping of MRI intensity and
gradient, removing the main advantage of LC2 over other methods (robustness
wrt. local changes of intensity-gradient relationship).

Gradient magnitudes vs. directed gradients Finally, we have investi-
gated the e↵ect of using the dot product of the MRI gradient g with the US
beam direction, instead of g directly. This reduces the influence of vertical gra-
dients, similar to the US simulation presented by [20]. Interestingly, this results
in 10 � 25% more outliers (the cost function becomes more non-linear due to
the added directional dependance).

B.4.3 Registration Results

The resulting errors for all 14 patient data sets are nearly the same for registra-
tions using gradient orientation alignment [5], 2D LC2, or 3D LC2, as depicted
in Tab. B.1, lines 4, 6, 12 respectively. [16] report slightly higher errors when
applying a costly deformable registration which requires several hours (line 5).
The increased FRE coincides with our findings when using the faster 2D LC2

during deformable registrations (line 10). This indicates that performing de-
formable registration does not provide any significant benefit when applied to
mostly rigid data sets. However, we are convinced that the change of landmark
errors induced by deformable registration or the di↵erence between the 2D and
3D approach of LC2 lay within the range of the fiducial localization error (FLE)
of the data. Examples of initially aligned and registered images are shown in
Fig. B.3.

B.4.4 Accuracy, Precision and Capture Range

Some initial alignments yield significant errors (e.g. patients 2, 3, 9, 13), which
are reduced by all algorithms listed in Tab. B.1. Therefore, an analysis of
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the capability of our algorithm to reach the optimum under all conditions is
necessary.

Trials with each 100 randomly initialized transformations (±10mm/� in all
6 parameters) were performed for all 14 patients using the 2D and 3D LC2 ap-
proach, resulting in a total of 2800 registration attempts. Comparing the LC2

similarity measure with the final FRE shows in all cases that the best trans-
formation corresponds to the highest similarity and that the misalignments are
cleary separated yielding a significantly lower similarity. This demonstrates that
both LC2 algorithms allow for global registration in a realistic clinical setup.
Fig. B.4 shows the results, including the percentages of the converged optimiza-
tions. The average errors (accuracy) and standard deviation (SD; precision) are
listed in Tab. B.1.

The capture range describes the range of initial FRE values for which > 95%
of the registration approaches are successful. When using the 2D approach, it
can be observed that 95% of the experiments converge within an initial FRE of
9 mm. This capture range is significantly increased to 15 mm when using the 3D
approach. Both sets of experiments are based on the aforementioned randomly
initialized studies using BOBYQA. Figure B.5 (a) and (b) depict the capture
range for selected patients, while (c) shows the total percentage of outliers vs.
initial FRE for both algorithms.

Since the gradient orientation alignment (GOA) method [5] yields similar
FRE values, we implemented it to the best of our knowledge and re-ran the
aforementioned randomized trials with it. We obtain > 90% outliers and fur-
ther investigation into the cost function properties revealed that only a minor
local optimum is present. A possible explanation is, that without further heuris-
tics the GOA method would line up strong gradients from e.g. dura mater or
skull; besides, using only gradients larger than a threshold limits the image
content considered. While we believe these to be general issues, it has to be
acknowledged that better results would probably be obtained by the original
authors, e.g. by changing implementation details such as resolution, smoothing
and interpolation. Precision and capture range were not reported in their work
though, as unfortunately too often the case.

The randomized experiments with the 2D and 3D LC2 versions have been
compared using the Mann-Whitney U-test. Generally, a p-value of  0.01 is
considered very significant [13]. In fact, the 3D approach shows such a very
significant increased convergence in all but one patients (patient 12 unchanged
at 94%). With the exception for patient 12, all computed p-values are below
6 · 10�3, indicating that the chance of the improvement being coincidentally
observed is less than 0.6%.

B.4.5 Computation Time

To compare the performance of the 2D CPU, 2D GPU and 3D GPU approaches,
we have measured the average computation times. All randomly initialized
registrations have been run on the same hardware. The reported times do not
include the file loading, ultrasound volume reconstruction and down-sampling.

The first, original 2D implementation uses the GPU merely to perform the
MRI slice extraction, while the similarity is computed using a sliding-window
approach on the CPU. The average run time is 11.6 sec. In the second 2D im-
plementation we have performed the similarity evaluation using a GPU based
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filtering strategy, which reduces the average run time by only 5%, with quadratic
dependency on the LC2 neighborhood size. Here, the similarity measure com-
putation does not utilize the full capabilities of the GPU yet, since only a par-
allelization within the (small) ultrasound frames is used.

Finally, we measured the average registration time for the GPU based 3D
approach. Due to the implementation as separable filter, the performance scales
linearly with the neighborhood size. Using a neighborhood size s = 3 an average
run time of 2.32± 0.59 sec can be observed.

B.5 Discussion and Conclusion

B.5.1 Choice of Method

The LC2 computation on the original freehand ultrasound 2D images yields a
number of advantages. First, an o✏ine volume reconstruction step is avoided,
which might reduce the quality of the original ultrasound image information.
Considering the limited voxel resolution of the MRI data this, however, does
not pose a problem since we need to further down-sample the ultrasound data
anyway. More importantly, a slice-based approach may immediately start look-
ing for the correct alignment in real-time once the first frames are obtained.
Besides, an optimization of the calibration transformation or compensation of
tracking errors may be computed on-the-fly, which would otherwise require re-
computation of the 3D ultrasound volume.

The 3D volume-based approach yields a superior capture range, which can
be explained by the fact that the LC2 neighborhood stretches into the third
dimension, therefore allowing even more consistent local matching of the rela-
tionship function f . This comes with the trade-o↵ of higher computing resource
requirements. While our implementation as fully parallelized separable filters
in every dimension on the GPU ensures e�cient computation, it requires a sig-
nificant memory footprint (< 2 GB for US voxel size 0.9 mm, 2� 3 GB for US
voxel size 0.6 mm).

Finally, a comparison of the same 2D approach on CPU and GPU depends
very much on the actual implementation. In our case, the CPU method is
completely independent of the neighborhood size s, whereas the GPU version
has a squared dependence. The latter has room for improvement in terms of
both a separable computation and parallelization over the US frames. It is
also important to note that numerically equally stable behavior on the GPU is
only obtained when the actual computation of equation (B.2) is performed with
double floating-point precision. This in turn mandates a certain choice (and
cost) of GPU hardware.

B.5.2 Performance

As opposed to other proposed methods such as [5, 7], the LC2 method uses
the full amount of available image information from both modalities, by locally
matching ultrasound intensities to both MRI intensity and gradient magnitude.
A direct comparison is unfortunately not possible, since other studies lack an
evaluation of precision and capture range (which is crucial for developing an
automatic registration in a given clinical context). The accuracy in terms of
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the point-based registration error is consistent with other studies, and is always
< 1 mm higher than the best possible rigid fit of the point correspondences them-
selves. Deformable registration does neither significantly increase or decrease
the errors, however the visual alignment generally improves (see Fig. B.3).

The computation time of the 2D and 3D GPU implementations allow for
100�500 cost function evaluations per second. Hence global registration within
a clinically realistic bounding box of the pose parameters is possible. To our
knowledge, this has not been shown in related work to date.

The LC2 similarity measure has a single parameter, namely the neighbor-
hood size s. We have shown that both the 2D and 3D variants work well within
a fairly large range of s. However, as common in image registration scenarios,
further tunable parameters arise in the pre-processing (e.g. down-sampling, vol-
ume reconstruction) of the image data, as well as the choice and configuration
of a non-linear optimization algorithm.

B.5.3 Future Work

While our approach adequately solves the problem of image-based MRI-US reg-
istration for correcting brain shift, some further work is required to address
resection follow-up. Missing anatomical correspondence in the area of a tumour
resection site might result in unstable registration results of our straight-forward
free-form deformation model, when looking at the registration of pre- and post-
resection ultrasound data. In order to provide a clinically meaningful solution
in this context, however, a detailed discussion with physicians will be required
in the first place, to establish how such data before and after the procedure shall
be transformed and compared.
In other clinical application areas, such as oncological diagnosis in the abdomen,
it would be desirable to look into extensions of our deformation model to in-
corporate physical constraints of the complex deformations due to respiratory
motion and patient positioning. The same holds true for potential applications
in the case of prostate MRI-US fusion [23]. The incorporation of bio-mechanical
deformation models might be particularly suited to address such di�cult non-
linear registration problems.
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Contribution During resection of Sentinel Lymph Nodes (SLN), the ra-
diopositive tissue is displaced through the intervention itself. For the first time,
this paper presents a methodology to update pre- or intra-operative SPECT
volumes using a 2D gamma camera. The algorithm utilizes tracking of the
gamma camera and the known response function to dynamically estimate tissue
displacement.

Abstract We present a new technique to overcome a major disadvantage of
SPECT-guided surgery, where a 3D image of the distribution of a radiotracer
augments the live view of the surgical situs in order to identify radiopositive
tissue for resection and subsequent histological analysis. In current systems,
the reconstructed SPECT volume is outdated as soon as the situs is modified
by further surgical actions, due to tissue displacement. Our technique intraop-
eratively estimates the displacement of radiopositive tissue, which enables the
update of the SPECT image augmentation. After the initial SPECT reconstruc-
tion is complete, we deploy a 2D �-camera along with a technique to optimize its
placement. We automatically establish a correspondence between regions of in-
terest in the reconstructed volume and the near real-time 2D � images. The 3D
displacement of the radiopositive nodules is then continuously estimated based
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on the processing of the aforementioned �-camera’s output. Initial results show
that we can estimate displacements with ±1 mm accuracy.

C.1 Introduction

(a) SPECT system showing
several SLNs via Augmented
Reality. Courtesy SurgicEye

GmbH.

(b) Interpolated �-camera
output for two sources,

showing the auto-marked
centers.

(c) �-camera mounted on a
KUKA iiwa industrial
lightweight robot. An

o↵-screen PC collects data.

Fig. C.1: �-detectors and respective outputs.

The Sentinel Lymph Node Biopsy (SLNB) is part of the standard of care for
the treatment of melanoma [15], breast cancers [6, 5] and vulvar cancers [10, 13].
It further has demonstrated clinical value in the staging of head and neck [3],
gastric [8], prostate [11], and cervical [4] cancers. In an SLNB, a radioactive
tracer (usually a 99mTc nanocolloid) or a colored dye is injected close to a tu-
mor, under the assumption that it primarily drains to the sentinel lymph nodes.
Lymph nodes identified that way are resected and sent for subsequent histo-
logical analysis. In this paper, we focus on radioguided SLNB, which relies on
either pre-interventional whole-body Single Photon Emission Computerized To-
mography (SPECT) imaging or the use of a �-detector for the live intraoperative
identification of radiopositive tissue. Types of �-detectors are 1D �-probes and
2D �-cameras that provide the surgeon with a planar view of the radioactivity
distribution in the area (see Fig. C.1b). Brouwer et al. combine SPECT/CT
with the intraoperative use of a laparoscopic �-probe and �-camera in their dual
detector approach, improving SLN detection by 20% as compared to the sole
use of pre-interventional information [2].

The intraoperative acquisition of several thousand �-activity recordings over
a region of interest with a spatially tracked detector allows for the 3D recon-
struction of the nuclear information and its display via Augmented Reality (AR)
overlays, a technique called freehand SPECT [14, 9]. The latter is applied in
open and laparoscopic surgeries, such as SLNB for head and neck [7] or breast
[1] cancer.

The AR visualization of SPECT information becomes outdated as soon as
the tissue is manipulated, such as during any incision, when the radioactively
marked tissue gets displaced. The acquisition of a new intraoperative SPECT
volume to replace the previously augmented one is problematic as it requires
prolonged handling of a �-detector, delaying the procedure. Another solution is
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the use of a 1D or a 2D detector to acquire additional information about the �
distribution, losing the benefit of AR and disrupting the workflow. An alternate
solution proposed in [12] is the registration of a pre-acquired 3D SPECT volume
to an intraoperative 1D �-probe signal, which requires a �-probe, a model of
its behavior (sensitivity, collimator aperture, etc.) and several hundred tracked
�-activity recordings. In a clinical scenario where lymph nodes can have a
diameter of less than 1 cm, their demonstrated accuracy of 8 mm may prove
insu�cient.

Proposed Solution: Displacement Compensation. We propose a new
method for continuous SLN displacement compensation. We utilize a 2D �-
camera rather than a 1D detector, and focus on minimally invasive SLN biop-
sies. The solution provides an update of the intraoperative SPECT image, by
placing the �-camera relative to the SLNs and estimating their displacement.
Results are presented based on displacements in ex-vivo experiments and show
an average accuracy of under 1 mm.

C.2 Materials & Methods

The proposed displacement compensation technique requires a SPECT volume,
acquired by preoperative SPECT/CT [2] or intraoperative freehand SPECT [14],
and a tracked �-camera.

C.2.1 SPECT Imaging & Technical Background

The system we propose is based on a two step intraoperative workflow (see
Fig. C.2). The first step is the acquisition of a SPECT volume. In the case of
preoperative SPECT/CT, the volume has to be registered to the patient e.g. by
using fiducials. In the case of freehand SPECT, registration is unnecessary as
the reconstruction is done relative to an optically tracked reference target fixed
to the patient’s body. The SPECT volume is then visualized intraoperatively
using an AR overlay, as in Fig. C.1a. To display the SPECT AR overlay and its
continuous updates, we employ the commercially available declipse®SPECT
(SurgicEye GmbH, Munich, Bavaria, Germany). The second step is to use the
tracked �-camera to calculate the displacement of each of the segmented lymph
nodes.

C.2.2 2D �-camera

The CrystalCam (Crystal Photonics GmbH, Berlin, Germany) is a handheld,
miniaturized �-camera capable of producing images with a resolution of 16⇥16
pixels. The selected collimator, the Tungsten-based LEHS (Crystal Photonics
GmbH, Berlin, Germany), has dimensions of 44⇥44⇥11.5 mm, with each square
pixel having 2.16 mm long sides. This is a parallel collimator; The produced
images can be compared to a parallel projection of the radioactivity in the
observed area. Based on a single image, a 0.925 MBq (25 Ci) 57Co source is
identifiable within distances up to 15 cm.

We use an infrared tracking system (henceforth designated as IR) to track
the �-camera and patient. The system we chose, due to the convenience of
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SPECT
Volume

Updating
SPECT Volume +

AR View

Estimation of 
Displacement

Positioning of 
γ-Camera

2D/3D Hotspot 
Mapping

Fig. C.2: The workflow of the proposed solution

it being perfectly integrated into the declipse®SPECT system, is the Polaris
Vicra (Northern Digital Inc., Waterloo, Ontario, Canada).

C.2.3 Displacement Compensation

Positioning of �-camera: With the �-cameraTpatient transformation com-
puted as in (C.1), and given that the SPECT volume is reconstructed relative
to the IR patient target (in the case of freehand SPECT) or registered to the
patient (in the case of preoperative SPECT/CT), we can keep the �-camera
focused on the global centroid of the lymph nodes. A possible robotic-assisted
solution to the �-camera positioning problem is described in Sec. C.4.

�-cameraTpatient = �-cameraTIR · IRTpatient (C.1)

2D/3D Hotspot Mapping: We segment the 3D image, via thresholding,
into several ’hotspots’ each corresponding to a di↵erent lymph node. The end
objective is to translate these hotspots according to their displacement and
update the AR overlay. The tissue displacement has translational and rotation
components. However, since each nodule is well approximated as an anatomical
structure with spherical geometry, we are interested in its 3D position. Our
2D sensor can estimate well its movement parallel to the sensor plate. We also
estimate the motion orthogonal to the sensor using �-camera’s Lookup Tables.
As described within the discussion section, we also propose to guide the motion
of the �-camera based on the tracked motion of the surgical tool as the tissue
displacement mostly occurs due to the tool tissue interaction. In this way, we
propose a system which intelligently positions the sensor in order to dynamically
optimize the estimation of radiopositive tissue displacement taking the surgical
action into account.

We post process the 2D image produced by the �-camera (see Fig. C.1b
for an example) by first segmenting regions of interest where the reported ra-
dioactivity is both a local and one of few global maxima. The distribution of
radioactivity in the hotspot can be approximated using a Gaussian distribution.
Therefore, we employ Gaussian fitting, which provides us with an estimated cen-
ter for the resulting 2D blob.

Knowing both the �-camera’s pose and the location of each lymph node
computed before, we can compare the 3D SPECT hotspot centroids and 2D
blob centers. This can be done by backprojecting the 3D hotspots onto the
�-camera’s collimator view plane. The same Gaussian fitting method can be

114



C.3. Experiments & Results

applied to the backprojection and we can then establish a 3D hotspot to 2D
blob mapping by comparing the distance between centers.

Estimation of Displacement: With continuous �-camera acquisitions, we
update the SPECT volume accordingly, albeit with translations solely parallel
to the �-camera’s collimator view plane. Z-direction translations are recovered
with a lesser degree of accuracy by referring to the �-camera’s Lookup Ta-
bles (LUT), which allows the user to estimate relative, but not absolute, depth
changes.

Updating SPECT Volume: After quantification of displacement is achieved
as explained above, we feed back the corrections into the SPECT system, where
the AR overlay (see Fig. C.1a) is duly adjusted to reflect the SLNs’ translations.
These are applied independently of the underlying SPECT volume’s voxel grid,
thereby allowing for translations of virtually arbitrary magnitude.

C.3 Experiments & Results

Experimental Setup: To validate our workflow and algorithm, we perform
freehand SPECT reconstruction of a pair of sealed point-like 0.925 MBq 57Co
sources, which were chosen due to their similarity to 99mTc, the radioactive
element usually present in the injectable nanocolloid for SPECT. 57Co’s longer
half-life and safer handling makes it more suitable for laboratory use. The
sources are placed on a specially designed mount so that we know their relative
position with high certainty. After the reconstruction is complete, we translate
the sources by several defined amounts and calculate the displacement as de-
scribed in Sec. C.2.3. We estimate the translations applied to each lymph node
and compare them to the ground truth.

Evaluation: For our first ex-vivo experiment (Table C.1), the �-camera was
kept static and placed so that the collimator’s plane was parallel to the direction
of source movement. The source was moved to 5 di↵erent points (p{0 � 4}),
which are colinear and 5 mm apart from each neighbor.

Table C.1: Results for displacement estimation when p{0 � 4} interdistance is
5 mm.

� p1 = 5 mm p2 = 10 mm p3 = 15 mm p4 = 20 mm
p0 5.44 mm 10.92 mm 16.31 mm 21.54 mm
p1 5.49 mm 10.87 mm 16.11 mm
p2 5.39 mm 10.62 mm
p3 5.24 mm

✏̄ u 0.79 mm, � u 0.43 mm

Our second ex-vivo experiment (Table C.2) was done under the same cir-
cumstances, with the sole di↵erence being that the �-camera was angled at 45o

relative to the direction of source motion.
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Table C.2: Results for displacement estimation when p{0 � 4} interdistance is
5 mm ⇤ sin(45o) u 3.54 mm.

� p1 = 3.54 mm p2 = 7.07 mm p3 = 10.61 mm p4 = 14.14 mm
p0 3.40 mm 7.06 mm 11.25 mm 14.46 mm
p1 3.66 mm 7.85 mm 11.07 mm
p2 4.19 mm 7.41 mm
p3 3.21 mm

✏̄ u 0.38 mm, � u 0.25 mm

Multiple sources in view are accurately handled, as in Fig. C.1b.

Performance: The algorithm operates at a frequency of 2 Hz. �-camera out-
put is computed using compound exposures on a sliding-window basis. The
window’s width is configurable and varies, but is usually between 1 to 5 sec-
onds. Assuming 2 seconds of exposure, the end result is that displacements
are presented to the user with a 2.5 second delay in the worst case, which is
acceptable for an intraoperative scenario.

C.4 Discussion & Conclusion

Stable 2D-3D Matching: In our 2D-3D matching algorithm described in
Sec. C.2.3, we focus on deriving a 2D blob to 3D hotspot correspondence. This
correspondence is not guaranteed to be stable in practice, i.e., a 2D blob may
not always correspond to the same 3D hotspot. One example of this behavior
occurring is if the lymph nodes move into close proximity with each other, and
then apart again. However, this does not represent a major clinical problem
as all radiopositive lymph nodes are treated as equivalent and the end result is
their resection.

Robotic Platform for Automated Tool Tracking: Our ideal operating
room setup is composed of one of the scenarios described in Sec. C.2 and an
additional lightweight industrial robot such as the KUKA LBR iiwa (KUKA
Roboter GmbH, Augsburg, Bavaria, Germany) that would be programmed to
automatically track either the tip of a Minimally Invasive Surgery (MIS) robot’s
tool (as displacement is most likely to occur in its vicinity) or the centroid of
the SPECT-identified lymph nodes, depending on the scenario. An example of
the proposed setup is depicted in Fig. C.1c.

Wide Field-of-View �-cameras: One of the upper bounds for the quality of
displacement estimation presented in this paper is the area covered by our cur-
rent �-camera. Wide field-of-view collimators would allow for improved results
requiring smaller displacement of the �-camera. Alternatively, the robotically
controlled �-camera could follow displacement of SLNs, resulting in radioguided
visual servoing.

116



C.4. Discussion & Conclusion

Conclusion: In this paper, we introduced a novel technique for radiopositive
tissue displacement compensation. Our initial ex-vivo experiments show that
estimation accuracy is in the sub-millimeter range, which motivates full integra-
tion of our approach into existing intra-operative freehand SPECT acquisition
systems system and further feasibility studies.

Acknowledgements The authors would like to thank Anton Deguet for
robotics hardware support; and Intuitive Surgical Inc. for loaning the
da Vinci® surgical system used for testing.
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Contribution For the very first time, robotic Single-Photon Emission Com-
puted Tomography (SPECT) imaging is presented for minimally invasive robot-
assisted surgery. The key technical contributions are the development of a fused
optical and kinematic tracking algorithm and the successful reconstruction of
radioactive sources using a miniaturized gamma detector. Additionally, this
paper presents the path towards an Augmented Reality (AR) visualization for
SPECT-guided robot-assisted interventions.

Abstract In this paper we present the usage of a drop-in gamma probe for
intra-operative Single-Photon Emission Computed Tomography (SPECT) imag-
ing in the scope of minimally invasive robot-assisted interventions. The probe is
designed to be inserted and reside inside the abdominal cavity during the inter-
vention. It is grasped during the procedure using a robotic laparoscopic gripper
enabling full six degrees of freedom handling by the surgeon. We demonstrate
the first deployment of the tracked probe for intra-operative in-patient robotic
SPECT enabling augmented-reality image guidance. The hybrid mechanical-
and image-based in-patient probe tracking is shown to have an accuracy of
0.2 mm. The overall system performance is evaluated and tested with a phantom
for gynecological sentinel lymph node interventions and compared to ground-
truth data yielding a mean reconstruction accuracy of 0.67 mm.

Keywords SPECT, Image-guided treatment, Surgical guidance/navigation,
Endoscopy/Laparoscopy.

D.1 Introduction

D.1.1 Clinical Background and Motivation

The most important prognostic factor for survival in women with early stage
cervical cancer is the involvement of the lymph nodes [10]. In an attempt to
evaluate the presence of lymph node metastasis, a lymphadenectomy is per-
formed during which all regional lymph nodes are dissected. However, most of
these patients (up to 70%) will not have metastases in lymph nodes [39, 21, 14,
28]. Furthermore, the pelvic lymphadenectomy is associated with a substantial
treatment-related morbidity [15, 32].

This has motivated comprehensive research into the validity and e↵ectiveness
of the dissection of the lymph nodes most likely reached first by metastasizing
tumor cells. This concept is known as Sentinel Lymph Node (SLN) biopsy and
has become the standard of care for some cancer types, for instance breast can-
cer [23] and melanoma [43]. It is an accepted and safe procedure for several other
cancer types, such as gastric [29], prostate [38, 28, 14], penile [20], vulvar [44,
39] and cervical cancers [15, 32]. In contrast to performing a radical, morbidity
loaded and complicated regional lymphadenectomy, SLN biopsy makes it possi-
ble to determine the regional lymph node status by excision of the first lymph
nodes receiving direct drainage from the primary tumor site and subsequent
histopathological examination. In cervical cancer, several studies have shown
that a (bilateral) negative SLN biopsy accurately predicts the absence of lymph
node metastasis [15, 32].
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Fig. D.1: Lymph node locations in the pelvic area. Determination of the lymph
node(s) to which possible tumor spread has occurred (e.g. identifica-
tion of the sentinel lymph node(s)), can improve staging of e.g. cervical
cancer.

The identification and dissection of SLNs requires the technique of SLN
Mapping (SLNM), which is incorporated in individually tailored surgery for
cases of cervical cancer [32]. Even though the general drainage pathways for
lymph nodes in the pelvic area are well documented (see Fig. D.1, [35]), there is
still the possibility of inter-patient variance in what pertains to e.g. unexpected
drainage pathways [2] which makes SLNM a necessity. Pelvic lymph nodes
are often deeply seated [35] and therefore di�cult to locate interventionally,
requiring pre-operative imaging.

D.1.2 Preoperative Imaging of Sentinel Lymph
Nodes

In order to perform preoperative SLNM, a radiotracer has to be injected close
to the tumor. The tracer is designed to be only transported by the lymphatic
system to the regional lymph nodes. The injection is often done with the pa-
tient being awake and can be considered very painful and therefore di�cult to
perform [32]. Following tracer injection, nuclear imaging is performed to depict
the lymph node(s) to which the tracer drains.

Lymphoscintigraphy is a two-dimensional nuclear imaging technique that
depicts the lymph nodes that have taken up tracer and sometimes the lymphatic
vessels in a two-dimensional lymphoscintigram. Lymphoscintigraphy fails to
provide anatomical information.

When dealing with SLNM for cervical cancer, lymphoscintigraphy has only

123



First Robotic SPECT for Minimally Invasive Sentinel Lymph Node
Mapping (IEEE TMI 2015)

little clinical value, which is also reflected in its poor correspondence between
preoperative and interventional mapping results [9]. This motivates the use of
other nuclear imaging techniques.

Single-Photon Emission Computed Tomography (SPECT) is a nuclear imag-
ing technique and frequently combined with X-ray Computed Tomography (CT).
Together, SPECT/CT provides three dimensional images representing both the
lymphatic system (SPECT) and anatomical information (CT). This fused imag-
ing method is promising and SLN detection rates of more than 95% have been
reported [15, and references therein]. Compared to planar lymphoscintigra-
phy, SPECT/CT does not only lead to improved SLN detection rates, but also
provides better anatomical correlation, and thus enhances the validity and ef-
fectiveness of SLN biopsies [19].

The transfer of information visualized on the diagnostic images to the real
patient is done by the surgeon, which is a di�cult and error prone task due to
tissue deformation and varying patient positioning.

It is of relevance to mention that imaging the metastases themselves using
functional imaging like Positron Emission Tomography (PET) in combination
with CT, Magnetic Resonance Imaging (MRI), or multiparametric MRI is not
a real option. This is mainly due to the fact that clinically relevant lymph node
metastases may be smaller than 7 mm in patients with early cervical cancer [19,
7]. In the case of PET, the metastases do not necessarily present with an
uptake of the tracer which is high enough relative to the background such that
the partial volume e↵ect cannot be ignored.

In contrast to diagnostic imaging, current interventional SLNM is not limited
by the size of the lymph node nor the a�nity of the tracer to the tumor as the
contrast to the background is theoretically infinite. Also, tissue deformation due
to patient positioning does not need to be taken into account when performing
interventional SLNM.

D.1.3 Interventional Sentinel Lymph Node Mapping

The interventional mapping techniques can be categorized based on the contrast
agent, namely either colorimetric or radioisotope. The first group of mapping
techniques requires the injection of color dyes (mostly isosulfan blue, methylene
blue or similar substances) into either the cervix or near the tumor location (di-
rect injection into the tumor reduces the detection rate of SLN). The dyes are
taken up by the lymphatic vessels and transported to the sentinel lymph nodes
within 5 to 10 minutes. During the intervention, the SLN and corresponding
vessels are visually colored and are identified by visual inspection [2]. However,
due to the coloring, the tissue di↵erentiation is more di�cult, which may com-
plicate the R0 resection of the main tumor and the delimitation of the SLN.
Furthermore, using dyes requires a direct line of sight to the tissue of interest,
which makes SLNM with dye inferior to a radioisotope or combined radioisotope
and dye technique in terms of sensitivity and detection rate [32].

The typical radioisotope (also referred to as radionuclide) used for SLN de-
tection in cervical cancer is the metastable technetium-99m (99mTc), which
mainly emits its radiation as � radiation at 0.141 MeV and has a half-life time
of approximately 6 hours. Typical doses are in the range of 74 to 148 MBq (2
to 4 mCi) and 7.4 to 37 MBq (0.2 to 1 mCi) for preoperative and interventional
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mapping respectively1 [32]. The typical uptake by the SLNs is 0.1� 5%, excep-
tionally up to 10%, of the injected dose [42]. The image acquisition is typically
performed after 15 to 20 minutes [15]. Currently, a laparoscopic or hand-held
�-probe is used to detect SLN that exhibit three- to ten-times more radioactiv-
ity than the baseline activity [30]. The di�culty in distinguishing a radioactive-
positive SLN from background radioactivity with such one-dimensional probes
leads to the use of interventional two- and three-dimensional nuclear imaging,
e.g. freehand SPECT. This concept has first been demonstrated for arbitrary
radioactive distributions and allows the reconstruction of SPECT images using
a tracked �-probe [41, 12]. The freehand SPECT system is used to image SLN
for breast cancer [42, 4], and head and neck cancers [13].

A recently presented clinical case showed that laparoscopic freehand SPECT
may be used to generate images of radioactive SLNs located near the injection
site (small dots vs. the large signal present in the augmented reality overlay) [3].
At the same time the image in Fig. D.2, [3] illustrates the physical complexity
of performing laparoscopic freehand SPECT during robot-assisted surgery: The
movements of the laparoscopic �-probe, needed to acquire the 3D scan, are
limited by the robotic arms present in the scanning area. In fact, one robotic
arm had to be disconnected from the patient to allow for the generation of
this particular image. Optical tracking of the four fiducials on the laparoscopic
�-probe is hindered by the robotic arms (and their sterile draping), but also by
the positioning of the optical tracking device in the layout of the operating room.
The latter means that the person performing the freehand SPECT acquisition is
continuously blocking the optical tracking process. By using a drop-in �-probe
in combination with an alternative mode of tracking, these major limitations
can be overcome. This in turn will significantly increase the translational nature
of laparoscopic freehand SPECT in a robotic setting.

The interventional use of a mini �-camera has been demonstrated, for in-
stance, for SLNM in urological cancers [37]. The �-cameras typically only pro-
vide two dimensional views of the radioactivity, and do not provide depth infor-
mation. Research towards clinical use of SPECT imaging by means of a mini
�-cameras is promising for several, well-accessible operation sites [27, 26].

D.1.4 Robot-Assisted Lymphadenectomy

Minimally invasive lymphadenectomies for gynecological cancers have been in-
creasingly performed robotically in recent years [24]. On one hand, robot-
assisted surgeries exhibit a significantly increased cost and an overall longer
duration. Challenges arise in handling, which are partially caused by the bulk-
iness and complexity of the equipment, combined with the lack of haptic feed-
back and di�culty of combining preoperative imaging with the interventional
view. On the other hand, the outcome of an intervention may benefit from such
robot-assisted systems in terms of cosmetic results, postoperative pain and in-
traoperative blood loss. Additionally, a recent cohort study suggested that the
overall recurrence and survival rates are comparable to non-robotic laparoscopic
interventions [17], indicating that the use is equivalent with respect to patient
outcome. The feasibility of robotic SLN dissection has been demonstrated using
several SLNM techniques [11, 40, 34, 36]. When using preoperative imaging for

1Units: 1 mCi = 1⇥ 10�3 Curie = 37 MBq = 37⇥ 106 Becquerels
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Fig. D.2: Laparoscopic freehand SPECT imaging has been performed during
robot-assisted surgery, yielding clinically valuable images. This fig-
ure shows the acquisition procedure in which a freehand SPECT vol-
ume is obtained using the declipse®SPECT imaging system (Surgic-
Eye GmbH, Munich, Germany) in combination with a laparoscopic
�-probe. To enable freehand SPECT acquisition and navigation, one
robotic arm had to be removed, significantly modifying the work-flow.
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SLNM (e.g. SPECT/CT), the duration of the intraoperative SLN dissection
can significantly be reduced [16].

However, the aforementioned limitations of preoperative imaging may reduce
the usefulness during interventions [7]. Therefore, we propose to combine the
benefits of both: interventional imaging and robot-assisted lymphadenectomy.

D.1.5 Objective: Minimally Invasive SPECT Imag-
ing

A major gap in the state of art of SLNM appears to be the translation or acqui-
sition of three-dimensional nuclear imaging techniques to these minimally inva-
sive, robot-assisted interventions [5]. To the best of our knowledge, we present
the first robot-assisted minimally invasive three-dimensional nuclear imaging
concept, designed for sentinel lymph node dissection in the pelvic area. In
contrast to existing solutions for intraoperative imaging [41], we use a novel
�-detector designed to be dropped in through a trocar and picked up during a
minimally invasive robotic interventions.

D.2 Materials and Methods

D.2.1 System Overview

The proposed interventional SPECT imaging system requires a minimally in-
vasive surgical system, which provides natural dexterity during laparoscopic
interventions, a miniaturized �-probe inserted through the trocar and grabbed
using the laparoscopic tool, and a tracking technique to precisely compute the
position and pose of the �-probe within the patient. After the acquisition,
the reconstruction of the SPECT image is performed (Sec. D.2.6). Finally, the
SPECT image is visualized in the surgeon’s console to enable image guided
interventions.

To present this novel imaging concept, we utilize a da Vinci® S minimally
invasive robotic surgical system (Intuitive Surgical Inc., Sunnyvale, CA, USA;
Sec. D.2.3), a drop-in �-probe (Eurorad, Eckbolsheim, France; Sec. D.2.2), a
computer oscilloscope that captures the electrical signal from the �-probe, and
a computer with significant computational power due to a graphics proces-
sor unit. The latter two components are part of the commercially available
declipse®SPECT imaging system (SurgicEye GmbH, Munich, Germany). Ad-
ditionally, an infrared tracking system (Polaris Vicra, Northern Digital Inc,
Canada) is used to track patient and endoscope movements. The concept of
robotic SPECT for minimally invasive SLNM is not restricted to the use of the
components mentioned. However, several sections of the presented methodology
focus on the combination and use of these components.

D.2.2 Drop-In Gamma Probe

A �-probe consists in a scintillating crystal that converts the energy of imping-
ing � photons emitted by a radiation source into light photons, a process called
radioluminescence. A photodiode that is optically coupled to the crystal con-
verts the light emitted by the scintillator into an electrical signal which is then
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amplified and processed. Shielding around the probe and a collimator in front of
the crystal at the probe tip limit the field of view of the probe, thus introducing
directional information to the � count rate.

The design of the drop-in �-probe is based on an existing �-probe. The
modifications allow the insertion of the probe through a trocar, and repeatable
handling of the probe for the use of a laparoscopic tool with natural dexterity
and six degrees of freedom. The probe has a total diameter of 12 mm, and only
30 mm remain rigid while the rest of the device is placed outside the patient.
The distal element is comprised of a Tungsten collimator, and a CsI crystal
of 5 mm diameter and 10 mm length, which is coupled to a 25 mm2 silicon
photodiode. The collimator and crystal allow for a 47� field of view. The probe
is shown in Fig. D.3a).

The detector is designed to be operated using a standard control unit.
In order to be able to be picked-up, a mount was designed such that the
ProGrasp™ Forceps of a da Vinci® robot can reproducibly pick it up and keep it
fixated. The interlocking mechanism has previously been presented for pick-up
ultrasound [33], and is visible on the end of our probe in Fig. D.6. The analog
signal of the silicon diode is read after pre-amplification and digitized using an
oscilloscope (PicoScope 3204A, Pico Technology, UK) with an adjustable asyn-
chronous trigger. The integral of each pulse is proportional to the energy of the
detected photon.

D.2.3 Robotic Surgical System

The da Vinci® S surgical system consists of a surgeon’s console, a patient side
cart and a vision cart. The system enables a surgeon to perform robot-assisted
minimally-invasive (laparoscopic) surgeries by translating the surgeon’s manip-
ulator movements to the robotic laparoscopic tools. This allows for precise tool
manipulation with six degree of freedom interaction. The system additionally
enables the surgeon to perceive a three-dimensional view via the console’s stereo
viewer, which displays the video stream from the stereo endoscope.

D.2.4 Probe Tracking

Currently, freehand SPECT relies on an infrared tracking system with reflective
markers [41]. This tracking technology requires a direct line of sight from the
stereo infrared camera system to the markers mounted on the probe and is
therefore not applicable for in-patient SPECT acquisition. Work on tracked
ultrasound devices has reported the usage of electro magnetic tracking [1, 8].
However, this tracking method is prone to fail when significant amounts of metal
are present in the operation site, which is the case in robot-assisted surgery.

The da Vinci® system allows mechanical tracking via computation of the
forward kinematics from the reported joint angles and the system’s Denavit-
Hartenberg parameters. Data retrieval from the system is performed via the
research application programming interface (API) which provides the position
and orientation of a gripper (e.g. the ProGrasp™ Forceps). Due to the 3.6 m
long, 13 degrees-of-freedom kinematic chains, the reported tool tip pose is highly
erroneous [31]. This global o↵set can be coped with using a calibration proce-
dure for relative movements within a small space (less than a 20 mm) around
the position of calibration [22]. However, for larger movements, as required for
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the in-patient SPECT acquisitions, significantly larger errors are expected. Fur-
thermore, a temporal drift of the reported coordinate system (mostly the remote
center point) inhibit tracking solely based on the da Vinci® ’s kinematics [31].

Therefore, we perform tracking by combining relative displacement informa-
tion provided by the robotic platform (mechanical tracking) and vision-based
tracking using the stereo laparoscopic views. It comprises of following modules:

A The segmentation module labels all pixels in the image as either probe or
background based on the color appearance. This includes outlier removal
and results in a binary mask for the probe.

B Based on the best fit of several simple polygons, the primary contours are
extracted. These contours describe the probe outline and markings along
the primary axis.

C By combining the probe outline in the two-dimensional images, the cross-
ratio of the markings along the primary axis, the known probe geometry,
and the camera intrinsics, the three-dimensional pose is computed.

D A federated Kalman filter is used to compensate possible noise of the
vision-based and mechanical tracking, and fuse both tracking streams.

This fused tracking approach enables the surgeon to move the �-probe freely
inside the patient to obtain an optimal nuclear data acquisition. In addition,
we integrated the information from the infrared tracking system to validate the
endoscope and patient movements.

D.2.5 Robotic In-Patient SPECT Acquisition

The in-patient SPECT acquisitions is performed in a similar manner to that
of open surgery freehand SPECT described in [41]. In brief, first the surgeon
picks up the �-probe using the ProGrasp™ Forceps. Then a scanning motion is
performed, during which the � event count rates A (counts per second) and the
corresponding probe positions and orientations relative to the da Vinci® base
(probeTbase) are recorded.

To enable augmentation of the surgeon’s view with the reconstructed vol-
ume, it is vital to also obtain the patient-to-probe transformation probeTpatient

as illustrated in Fig. D.4. This transformation can then be used to compen-
sate for endoscope or patient movements. In order to retrieve the desired
patient-to-probe transformation probeTpatient, the forceps-to-probe tip transfor-
mation probeTforceps, and infrared tracking-to-base transformation baseTIR are
calibrated before the SPECT acquisition. During the intervention, this transfor-
mation is updated by means of an infrared rigid body attached to the endoscope.
While the forceps-to-probe tip is based on the probe and tool design, the in-
frared tracking-to-base is computed using a camera calibration board with an
infrared marker. The base-to-probe tip transformation is then computed as:

probeTpatient =
probe Tforceps · forceps Tbase · base TIR · IR Tpatient (D.1)

where the patient-to-infrared tracking and infrared tracking-to-base transfor-
mations can be omitted in phantom experiments without movements.
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D.2.6 SPECT Reconstruction

The volume of interest is determined interactively with the surgeon. The origin
is fixed based the pose of the �-probe when the recording of poses and probe
readings is started. The SPECT reconstruction problem is modeled by defining
the vector of measured values y to be a system operator S applied to a vector
containing the radioactivity x and noise:

y = S(x) + noise.

To approximate x, we model the system operator S using the system matrix
A. The system matrix element A

ij

consequently represent the probability that
an emission of voxel x

i

results in an detection in the detector y
j

. Note that
the index i is used for voxels, while the index j is used for measurements. The
number of voxels and therefore the resolution is selected by the user. The
problem can now be formulated as:

y = Ax or y
j

=
MX

j=1

A
ij

x
i

, (D.2)

In case of SPECT, y
j

is known, and the inverse problem x = A�1y needs
to be solved. Usually A can not be inverted. Therefore, we use Maximum
Likelihood Expectation Maximization (MLEM) to iteratively solve this problem,
which is also used in commercial freehand SPECT systems [5, 42]. To determine
the system matrix a physical forward model of the radiation propagation and
detection process is developed. The model accounts for probe specific properties
such as geometry (collimation, field of view), material properties and sensitivity
and further for the stochastic nature of radiation and background noise [41].

The model of the � detection physics of the probe represents the spatial
correspondence of a radioactive source’s position relative to the probe and the
measured count rate. In this work, a look up table that stores the influence
coe�cients, which is described to be an even equivalent to measuring the phys-
ical model in a positioning table experiment [12], is created from an analytical
model. The model accounts for the medium attenuation, the solid angle and
collimator and detector geometry and dimensions which are extracted from the
manufacturer’s technical drawings. As the probe’s round geometry is axis sym-
metric around the z-axis a two-dimensional model is su�cient to represent its
three-dimensional response.

D.2.7 Augmented Reality Visualization for Surgical
Navigation

The stereo endoscopic video is captured from the da Vinci® ’s vision cart us-
ing a Serial Digital Interface (SDI) splitter and SDI frame grabber (DeckLink
Duo, Blackmagic Design Pty. Ltd.) to allow the primary video source of the
da Vinci® to remain original and lag free while computing the image overlay.
Due to the transformation between endoscope pose and reconstructed volume
being known, the augmentation is straightforward and only requires the camera
projection matrix P of the endoscope. The calibration of the projection matrix
P is performed using a checkerboard pattern. Once the robot-assisted SPECT
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is acquired, the surgeon manually selects a threshold which is used to augment
the laparoscopic camera view. The augmented stereo video is displayed in the
surgeon’s console on the split screen (TilePro™) in parallel to the original stereo
video.

D.3 Experiments and Results

D.3.1 Experimental Setup

We performed a set of experiments using weak 57Co sources at 0.296 and 0.925
MBq (8 and 25 µCi) representing an SLN and the injection site. In two di↵erent
setups, they are either positioned at a distance of 30 or 44.7 mm using a specially
designed source holder. This mounts were additively manufactured (3D printed)
with an accuracy of ±0.15 mm and are shown in Figures D.3b), D.6 and D.7b).

The endoscope is positioned to center the sources in the image, while the
patient-side manipulator is placed to allow the activity measurements with the
�-probe from at least two sides. The drop-in �-probe was picked up using the
da Vinci® ProGrasp™ Forceps, which was usually successful within 5 seconds.
The infrared tracking system is set up to observe the camera motion relative to
the patient table, theoretically allowing movements of the patient and camera
during the acquisition and augmented reality view.

For reference, SPECT imaging by means of a mini �-camera by Crystal
Photonics, Germany is used. The detector is comprised of a 4⇥ 4 cm2 CdZnTe
crystal which has 16 ⇥ 16 pixels. The image acquisition and reconstruction is
performed as described in [27], which provides su�cient accuracy for interven-
tional application [6, 25], as mentioned in second last paragraph of Sec. D.1.3.

D.3.2 Data Acquisition

The total duration of the data acquisition is approximately 180 seconds, in which
nearly 3000 individual measurements of probe pose and � activity are recorded.
During the acquisition the probe is slowly moved along at least two sides of the
volume of interest. Furthermore, varying the orientation of the probe improves
the likelihood of a good reconstruction outcome. In general, the reconstruction
framework allows the independent acquisition of probe pose and activity, and
automatically performs an interpolation of the pose to match the data streams
based on a known and constant hardware delay.

D.3.3 Evaluation of Tracking Accuracy

Validation of the fused tracking (mechanical and vision-based) was done for both
translational and rotational accuracy. For translational accuracy validation, the
probe was mounted at several known points on a specially designed phantom
while recording its pose. By comparing the recorded poses with the ground
truth, we computed an approximate error of 0.2 mm.

For rotational accuracy validation, the probe was once more placed on an
adjustable mount and its pose recorded at 5� adjustment intervals. The ground
truth was compared to the actual angles dialed in the mount and the computed
error was 0.7� up to 45�. Beyond 45�, the observed area of the probe becomes
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too small for accurate tracking and the error is in excess of 2�. In a surgical
scenario, the surgeon is notified to move the endoscope to provide for a better
observation.

D.3.4 SPECT Reconstruction Results

The iterative reconstruction using the drop-in �-probe held by the
ProGrasp™ Forceps is compared to the reconstruction using a mini �-camera [27,
26], for which it has been shown that the imaging quality is su�cient to support
SLNM [6, 25]. The reconstruction algorithm is identical to the one used for the
drop-in �-probe; only the forward models di↵er.

The reconstruction of the volume based on the �-probe measurements con-
verges after an average of 20 iterations. Due to the highly optimized and paral-
lelized implementation, the computation is usually performed within 2 seconds.
The volumes are then normalized and after manual thresholding, the radioactive
sources can clearly be resolved.

The initial lower threshold is set to 10%, which removes artifacts. The sec-
ond threshold is initially set to 100% and is used to adjust the contrast. As
in clinical practice, the threshold is set by medical experts based on the ex-
pected radioactivity distribution as seen on preoperative images. Furthermore,
the threshold is varied to allow to distinguish between background noise and
radioactive tissue or sources. Typical absolute threshold values are not applica-
ble as the reconstructed volume does not represent actual radioactivity counts,
but rather the likelihood that a voxel containing radioactive isotopes emitting
radioactivity may contribute to the observations.

In general, the comparison of image qualities by a medical expert indicated
that the reconstruction based on the scan using the drop-in probe were to sup-
port SLNM. Slices through the reconstructed and thresholded volumes are il-
lustrated in Figure D.5. The centroids were computed to allow the evaluation
based on the distances between the sources. The deviation between the ob-
served distances and the ground truth obtained by construction are on average
1 mm (3.4%) and 1.1 mm (3.6%) for the reconstruction based on the �-camera
and drop-in probe respectively. Therefore, the localization of a SLN is possible
using either techniques.

We evaluated the reconstruction accuracy using the drop-in �-probe by
scanning three sources at known positions. The three-dimensional planar slice
through the centroids, and the augmented reality view are shown in Fig. D.7a)
and (b) respectively. When comparing the measurements of the distances be-
tween the centroids in the reconstructed volume to the known real distances,
the average error is 0.67 mm.

The limited access to the sources from only two sides, and tracking inaccu-
racies beyond 45�, the reconstruction using the drop-in probe tends to exhibit
artifacts in sub-volumes which are poorly scanned. This may motivate further
research to improve the collimation and tracking algorithm.

D.3.5 Augmented Reality Visualization

After camera calibration using a checkerboard, the norm of the reprojection er-
ror in an image with a resolution of 1920 by 1080 pixels is 2.04 pixels. Assuming
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a realistic average depth, this corresponds to 0.16 mm error. After manual win-
dowing of the reconstructed volume, the live endoscopic video can be augmented
with the radioactive sources. Figure D.6 and D.7b) show the semi-transparent
overlay of the rendered activity distribution onto the endoscopic view as it is
shown to the surgeon.

D.4 Discussion and Conclusion

We introduced a novel concept for robotic SPECT acquisition for minimally in-
vasive robot-assisted interventions, and demonstrated the feasibility and imag-
ing quality using a phantom setup. The technique shows promising per-
formance in the experimental setup. It allows for easy pick up using the
ProGrasp™ Forceps and intuitive handling and scanning motion due to its
aligned orientation with the gripper tip.

Although current experiments are ex vivo, we are positive that the system
will operate as expected in a clinical environment. A recently presented clinical
study using a laparoscopic probe for freehand SPECT (see section D.1.3) shows
that the reconstruction algorithm produces clinically useful images even in the
presence of background radiation or an injection site [3]. In contrast to the
laparoscopic freehand SPECT, our approach reduces the limitations on the poses
of the detector, which may increase the imaging quality. The use of an external
�-camera for SPECT imaging during a robot-assisted intervention would yield
di�culties in terms of accessibility to the patient. Additionally, the typical
distance between the �-camera and the region of interest is less than 15 cm [27],
and when exceeding this distance the sensitivity is too low to enable image
acquisition.

The current drop-in �-probe performed well, but only has one pixel and a
wide collimation. A theoretical, multiple-pixel revision of the detector would
reduce the angle of view (therefore improving the reconstruction accuracy) and
consequently reduce the duration of the scan.

Currently, the tracking of the probe requires a direct line of sight. This
clearly works well in phantom experiments, but may be di�cult in a real scenario
in which blood and smoke are added while the field of view is limited.Further
research towards the correction of the o↵set of the mechanical tracking may
reduce the strong dependency on the vision-based tracking. However, the weight
of the probe (50 g) causes a bending of the tool, which can currently only
be corrected using vision-based tracking. Combining probe and forceps to an
optimized tool may hold the opportunity to solve this problem.

Once the resection starts, preoperatively acquired SPECT images do not
reflect the deformations made to the tissue anymore. This common problem
is shared by all intra-operative SPECT techniques, including the minimally
invasive robotic SPECT. However, the probe could remain in the body cavity
during the resection. This would allow easy confirmation of SLN removal and
rescanning the volume.

The next steps include the integration of the presented system directly into
the surgeon’s stereo view in order to adapt the system for increased e↵ectiveness
in clinical use. Adding intra-operative imaging and navigation to robotic laparo-
scopic SLNM may reduce the false negative rate (i.e. the rate of missed metas-
tases by the technique that result in a false staging of the patient) and increase
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sensitivity of intra-operative detection of the SLN. Moreover, a high resolution
three-dimensional intra-operative imaging system could make the preoperative
injection of the radioactive tracer redundant, as the otherwise needed imaging
is moved into the operating room and both the injection and the surgery can be
done sequentially during one single anesthesia [18]. The image guidance and the
availability of depth information will further enable a fast and intuitive roll-up
of the procedure even for less experienced physicians.
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Fig. D.4: The probe tip is tracked in using a federated Kalman filter that
combines the vision-based (yellow: probeTbase) and mechanical track-
ing (forcepsTbase) streams. The movements of the patient and
da Vinci® base are compensated for using an infrared tracking sys-
tem.
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Augmented reality overlay of 
reconstructed radioactivity (blue) 

Augmentation to indicate 
probe orientation (yellow)

57Co source holder (white)

Drop-in gamma probe with pattern 
for vision based tracking

ProGraspTM Forceps

Fig. D.6: This augmented reality view is shown to the surgeon in parallel to the
original endoscopic view. It allows the surgeon to see the reconstructed
radioactivity distribution (manually windowed SPECT image is visual-
ized in blue) semi-transparently overlaid on the endoscopic view. The
stripe pattern on the probe is used for vision-based tracking, which al-
lows for the augmentation of the probe field of view (yellow). During
the acquisition, the � source disks are mounted on a holder (white, 3D
printed) to ensure that the ground truth is known. The background
is designed to represent the interior of a patient, which contributes to
a realistic, ex situ setup.
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Contribution Interventional X-ray imaging is widely in use, and stitching
techniques for 2D images have been presented in the past decade. In this paper,
we present a system and methodology to align two or more Cone-Beam CT
(CBCT) volumes, by only utilizing an optical camera which is rigidly mounted
to the C-arm. While moving the C-arm from one position to the next, the algo-
rithm is designed to track features on the patient surface, and recover the scale
by identifying the positioning laser which are built in the X-ray machine. This
is novel concept allows the alignment of CBCT volumes without the introduc-
tion of patient-side reference markers, while the traditional surgical workflow
remains intact.

Abstract Cone-Beam Computed Tomography (CBCT) is one of the primary
imaging modalities in radiation therapy, dentistry, and orthopedic interven-
tions. While providing crucial intraoperative imaging, CBCT is bounded by
its limited imaging volume, motivating the use of image stitching techniques.
Current methods rely on overlapping volumes, leading to an excessive amount
of radiation exposure, or on external tracking hardware, which may increase
the setup complexity. We attach an optical camera to a CBCT enabled C-arm,
and co-register the video and X-ray views. Our novel algorithm recovers the
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spatial alignment of non-overlapping CBCT volumes based on the observed op-
tical views, as well as the laser projection provided by the X-ray system. First,
we estimate the transformation between two volumes by automatic detection
and matching of natural surface features during the patient motion. Then, we
recover 3D information by reconstructing the projection of the positioning-laser
onto an unknown curved surface, which enables the estimation of the unknown
scales. We present a full evaluation of the methodology, by comparing vision-
and registration-based stitching.

E.1 Introduction

Cone-Beam Computed Tomography (CBCT) enables intraoperative 3D imaging
for various applications, for instance orthopedics [3], dentistry [13] or radiation
therapy[4]. Consequently, CBCT is aimed at improving localization, structure
identification, visualization, and patient positioning. However, the e↵ectiveness
of CBCT in orthopedic surgeries is bounded by its limited field of view, resulting
in small volumes. Intraoperative surgical planning and verification could benefit
from an extended field of view. Long bone fracture surgeries could be facilitated
by 3D absolute measurements and multi-axis alignment in the presence of large
volumes, assisting the surgeon’s mental alignment.

The value of stitched fluoroscopy images for orthopedic surgery was investi-
gated in [8]. Radio-opaque referencing markers attached to the tool were used
to perform the stitching. Trajectory visualization and total length measurement
were the most frequent features used by the surgeons in the stitched view. The
outcome was overall promising for future development, and the usability was
counted as good. Similarly, [10, 5] employed X-ray translucent references po-
sitioned under the bone for 2D X-ray mosaicing. In [15, 16], optical features
acquired from an adjacent camera were used to recover the transformation. The
aforementioned methods all benefit from external features for 2D mosaicing,
thus do not require large overlaps. However, it remains a challenge to generalize
these approaches to perform 3D volume stitching, as illustrated in Fig. E.1.

A validation study on using 3D rotational X-ray over conventional 2D X-rays
was conducted for intra-articular fractures of the foot, wrist, elbow, and shoul-
der [3]. The outcome reported a reduction of indications for revision surgery.
A panoramic CBCT is proposed in [4] by stitching overlapping X-rays acquired
from all the views around the interest organ. Reconstruction quality is en-
sured by introducing a su�cient amount of overlapping regions, which in return
increases the X-ray dose. Moreover, the reconstructed volume is vulnerable
to artifacts introduced by image stitching. An automatic 3D image stitching
technique is proposed in [6]. Under the assumption that the orientational mis-
alignment is negligible, and sub-volumes are only translated, the stitching is
performed using phase correlation as a global similarity measure, and normal-
ized cross correlation as the local cost. Su�cient overlaps are required to support
this method. To reduce the X-ray exposure, [9, 7] incorporate prior knowledge
from statistical shape models to perform a 3D reconstruction.

Previous approaches are either limited to the overlap size or the existing
prior shape models. Providing large overlaps will significantly increase the ex-
posure. On the other hand, the bone fractures cause large deformation, hence
preoperative and postoperative structures of the region of interest are signifi-
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X-ray field of 
view

Unknown femur 
alignment and length

Relative 
displacement

Fig. E.1: The 3D misalignment of bones (red lines) may be di�cult to quantify
using 2D images. CBCT contributes as a valuable tool for interven-
tions in which the 3D alignment is of importance, for instance in acute
fracture treatment or joint replacement. Background image courtesy
of BodyParts3D, Center for Life Science, Japan.

cantly di↵erent, and one cannot benefit from prior scans for alignment. Lastly,
incorporating external trackers leads to an increase in surgical complexity and
line of sight problem. In this work, we propose a novel stitching approach, using
a co-registered X-ray source with an optical camera attached to the C-arm [11,
12], and a patient positioning-laser to recover the depth scale. Therefore, the
system is mobile, self-contained and independent of the OR, and the workflow
remains intact. It could be deployed after a single factory calibration. The
alignment transformation of volumes is computed based on the video frames,
and prior models are not required. We target cases with large gaps between
the volumes and focus our approach on spatial alignment of separated regions
of interest. Image quality will remain intact, and the radiation dose will be
linearly proportional to the size of the individual non-overlapping sub-volumes
of interest.

E.2 Materials and Methods

E.2.1 System setup and calibration

The CBCT-enabled motorized C-arm is positioned relative to the patient by
utilizing the positioning-lasers, which are built into the image intensifier and C-
arm base. To enable the stitching of multiple sub-volumes, the transformation
of the patient relative to the C-arm center must be recovered. In contrast to
existing techniques we do not require additional hardware setup around the C-
arm, but we attach a camera to the C-arm in such manner that it does not
obstruct the surgeon’s access to the patient. By using one mirror, the camera
and the X-ray source centers are optically identical. The system setup is outlined
in Fig. E.2.
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Positioning-laser 
spanning horizontal 
laser plane

Field of 
optical view 

Field of 
X-ray view

Patient

Mirror

Camera

X-ray 
source

Positioning-laser
on patient surface

CBCT volume

Estimated 3D
natural feature

Natural feature
on patient surface 

Fig. E.2: A mobile C-arm, the positioning-laser (red), and an optical camera
(blue) are illustrated. The mirror (purple) aligns the optical camera
and X-ray source centers. The patient motion relative to the C-arm is
estimated by observing both the positioning-laser and natural features
(green) on the patient’s surface. The 3D positions of the features
are estimated using the depth of the nearest positioning-laser on the
patient (black dotted line intersecting green line), of which the depth
is based on calibration.

Our system is composed of a mobile C-arm, ARCADIS Orbic 3D, from
Siemens Medical Solutions and an optical video camera, Manta G-125C, from
Allied Vision Technologies. The C-arm and the camera are both connected via
ethernet to the computer with custom software to store the CBCT volumes and
video. The X-ray and optical images are calibrated in an o✏ine phase [11, 12].

The positioning-laser in the base of the C-arm spans a plane, which intersects
with the unknown patient surface, and can be observed as a curve in the cam-
era image. To determine the exact position of the laser relative to the camera,
we perform a camera-to-plane calibration. Multiple checkerboard poses (n) are
recorded for which the projection of the positioning-laser intersects with the ori-
gin of the checkerboard. Once the camera intrinsics are estimated, the camera-
centric 3D checkerboard poses are computed. Under the assumption that the 3D
homogeneous checkerboard origins, x(3) = {x

i

| x
i

= [x, y, z, 1]>}n
i=0 (see foot-

note 1 for notation), lay on the laser plane, the plane coe�cients A = [a, b, c, d]
are determined by performing RANdom SAmple Consensus (RANSAC) based
plane fitting to the observed checkerboard origins, which attempts to satisfy:

argmin
A

X

x

j

2⌦

|Ax

j

|, (E.1)

where ⌦ is subset of checkerboard origins, which are inliers to the plane fitting.

1Superscripts (2) and (3) denote 2D and 3D points; (s) denotes points up to a scale.
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Direction of motion between frame k and k+1

Features at 
frame k

Features at 
frame k+1

Positioning-laser at 
frame k

Positioning-laser at 
frame k+1

Femur head at 
frame k+1

Femur head at 
frame k

Tracking result

Fig. E.3: The figure shows the overlay of two frames to illustrate the feature
correspondences to estimate the movement of the patient. From both
frames, the positioning-laser (red) and natural surface features are ex-
tracted. The tracking results of the matched features in frame k (+)
and frame k + 1 (�) are illustrated as yellow lines.

E.2.2 CBCT Volume and Video Acquisition

To acquire a CBCT volume, the patient is positioned under guidance of the
lasers. Then, the motorized C-arm orbits 190� around the center visualized by
the laser lines, and automatically acquires a total of 100 2D X-ray images. The
reconstruction is performed using the Feldkamp method, which utilizes filtered
back-projection, resulting in a cubic volume with a 256 voxels along each axis
and an isometric resolution of 0.5 mm. During the re-arrangement of C-arm and
patient for the next CBCT acquisition, the positioning-laser is projected at the
patient, and each video frame is recorded. For simplicity, we will assume that in
the following the C-arm is static, while the patient is moving. However, as only
the relative movement of patient to C-arm is recorded, there are no limitations
on allowed motions.

E.2.3 Two-Dimensional Feature Detection and
Matching

The transformation describing the relative patient motion observed between two
video frames is estimated by detecting and matching a set of natural surface
features and the recovery of their scale. For each frame, we automatically detect
Speeded Up Robust Features (SURF) as described in [2], which are well suited
to track natural shapes and blob-like structures. To match the features in frame
k to the features in frame k + 1, we find the nearest neighbor by exhaustively
comparing the features, and removing weak or ambiguous matches. Outliers
are removed by estimating the Fundamental Matrix, F

k

, using a least trimmed
squares formulation and rejecting up to 50% of the features, resulting in a set

of n
k

features f(2)
k

= {f
k,j

| f
k,j

= [x, y, 1]>}nk

j=1 in frame k (see Fig. E.3). To
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estimate the 3D transformation, the 3D coordinates of this set of features need
to be estimated.

E.2.4 Recovering Three-Dimensional Coordinates

In each frame k, the laser is automatically detected. First the color channel
corresponding to the laser’s color is thresholded and noise is removed by ana-

lyzing connected components. To find the m
k

2D points, p(2)
k

= {p
k,i

| p
k,i

=

[x, y, 1]>}mk

i=1, which are most likely on the plane, the resulting binary image is

thinned [17]. Each 2D laser point p(2)
k,i

is projected back to a point up to a scale

p(s)
k,i

= [x(s)
k,i

, y(s)
k,i

, 1, 1]> using the Moore-Penrose pseudo-inverse of the camera
projection matrix, P:

p
(3)
k,i

= s

k,i

p
(s)
k,i

= s

k,i

P

+p
(2)
k,i

, (E.2)

where the scale s
k,i

is recovered by intersecting the point up to a scale p(s)
k,i

with
the plane:

s

k,i

=
�d

ax

(s)
k,i

+ by

(s)
k,i

+ c

. (E.3)

Once the 3D laser points are recovered, the scale for each feature, f(s)
k,j

=

s
k,j

P+f(2)
k,j

, can be estimated by interpolating the scales of the closest points

p(3)
k,i

.

E.2.5 Estimating 3D Transformation and CBCT Vol-
ume Stitching

After the estimation of the 3D coordinates of the matched features, the trans-
formation for the frames k and k + 1 is computed by solving the least squares
fitting for two sets of 3D points [1], obtaining the transformation matrix T

k

.
Note that, only features in a small neighborhood of the laser line, < 1 cm, are
used. Hence, features on other body parts, e.g. the opposite leg, are discarded.
To verify the estimated transformation, the Iterative Closest Point (ICP) al-
gorithm is used to perform a redundancy test using the laser points. In other

words, ICP is applied after transforming the laser points p(3)
i

from frame k to
the next k + 1 only for verification. Consequently, for long bones, translation
along the laser line is not lost. This results in a transformation T̂

k

. If T̂
k

is not
nearly identity, the frame k+1 is rejected and the frames k and k+2 are used to
compute T̂

k

. To obtain the overall transformation TCBCT, all transformations
T

k

2 � are accumulated, where � is the domain of all valid transformations:

TCBCT =CBCT
Tcamera

Y

T

k

2�

T

k

, (E.4)

where CBCTTcamera is the transformation from camera coordinate system to the
CBCT coordinate system obtained during calibration.

E.3 Experiments and Results

The novel laser-guided stitching method is evaluated in two di↵erent, but re-
alistic scenarios. For each phantom, we performed vision-based stitching and
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Table E.1: Errors are computed by comparing the vision-based stitched CBCT
to the real objects. The final row presents the di↵erence to the
intensity-based stitching.

Error X Y Z Norm
Long Bone (Femur) Phantom

Alignment error (mm) 0.75 0.83 0.37 1.18
Absolute distance error (%) 1.30 1.11 0.10 n/a

Fiducial Phantom
Alignment error (mm) 0.08 0.10 0.26 0.29

Absolute distance error (%) 0.52 2.00 2.60 n/a

Vision- vs. intensity-based (mm) 0.11 0.08 0.18 0.23

evaluated the quality by measuring 3D distances in the stitched volumes and real
object. In addition, the stitching quality was compared to intensity-based mo-
saicing using overlapping CBCT volumes, indicating the accuracy of the overall
3D transformation TCBCT.

The result of vision-based stitching is illustrated in Fig. E.4 (a) on the long
bone phantom in the absence of overlaps, and in Fig. E.4 (c) on the fiducial
phantom with overlaps. The absolute distances are compared to real world
measurements which are illustrated in Fig. E.4 (b) and (d). Detailed results
are reported in table E.1, which shows the di↵erences of measurements of the
vision-based stitched CBCT volumes and real objects. The errors are appor-
tioned according to the coordinate frames illustrated in Fig. E.4, while the norm
reflects the overall error. In addition, the absolute distance error reports the per-
centage of error with respect to the absolute distances measured. Average errors
are in the range of 0.65±0.28 mm and 0.15±0.11 mm for long bone and fiducial
phantom stitching, respectively. Lastly, for overlapping volumes, we have com-
pared the vision- and intensity-based stitching by performing rigid registration
using normalized cross correlation as similarity measure. The intensity-based
stitching deviated from the vision-based stitching by 0.23 mm, indicating an
overall good alignment.

E.4 Discussion and Conclusion

The proposed technique is an overlap-independent, low dose, and accurate
stitching method for CBCT sub-volumes with intact workflow complexity. We
attached an optical camera to a mobile C-arm, and used the positioning-laser
to recover the 3D depth scales, and consequently aligned the sub-volumes. As
a result of this method, the stitching is performed with low dose radiation, lin-
early proportional to the size of non-overlapping sub-volumes. We expect this
to be applicable to intraoperative planning and validation for long bone frac-
ture or joint replacement interventions, where multi-axis alignment and absolute
distances are di�cult to visualize and measure from the 2D X-ray views.

Our approach does not limit the working space, nor does it require any ad-
ditional hardware besides a simple camera. The C-arm remains mobile and
independent of the OR. One requirement is that the C-arm does not move dur-
ing the CBCT acquisition, but we believe that the use of external markers could
solve this problem and may yield a higher accuracy. However, in our scenario
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we intentionally did not rely on markers, as they would increase complexity and
alter the surgical workflow. Our approach uses frame-to-frame tracking, which
can cause drift. In fact, the ICP verification helps us to detect such drifts as it
is based on points which were not used for motion estimation. Therefore, if the
estimated motion from ICP increases over time, we can detect the drift and use
ICP to correct if necessary. Alternatively, the transformations could be refined
using bundle adjustments [14]. Further studies on the e↵ectiveness during in-
terventions are underway. Also, the reconstruction of the patient surface during
the CBCT acquisition may assist during the tracking of the patient motion.
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Contribution This manuscript presents the methods, results and conclusions
of a pre-clinical usability study. The technical components are in regard to the
system calibration and setup (see Appendix G), and the execution and statis-
tical analysis of the usability study, while the key scientific contributions are
the identification of potential benefits of the 2D/2D and 3D/3D augmented
reality systems. The manuscript present a clear indication that the 3D/3D sys-
tem provides superior support during guide wire placements in bone phantoms.
Therefore, further research should investigate the potential impact on other
medical applications using C-arm imaging, and complete the system in order to
move towards clinical studies.
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Abstract Purpose: In many orthopedic surgeries there is a demand
for correctly placing medical instruments (e.g. K-wire or drill) to perform
bone fracture repairs. The main challenge is the mental alignment of X-ray
images acquired using a C-arm, the medical instruments and the patient,
which dramatically increases in complexity during pelvic surgeries. Current
solutions include the continuous acquisition of many intra-operative X-ray
images from various views, which will result in high radiation exposure, long
surgical durations, and significant e↵ort and frustration for the surgical sta↵.
This work conducts a pre-clinical usability study to test and evaluate mixed
reality visualization techniques using intra-operative X-ray, optical, and RGBD
imaging to augment the surgeon’s view to assist accurate placement of tools.
Method: We design and perform a usability study to compare the performance
of surgeons and their task load using three di↵erent mixed reality systems
during K-wire placements. The three systems are interventional X-ray imaging,
X-ray augmentation on 2D video, and 3D surface reconstruction augmented by
digitally reconstructed radiographs and live tool visualization.
Results: The evaluation criteria include duration, number of X-ray images
acquired, placement accuracy and the surgical task load, which are observed
during 21 clinically relevant interventions performed by surgeons on phantoms.
Finally, we test for statistically significant improvements, and show that the
mixed reality visualization leads to a significantly improved e�ciency.
Conclusion: The 3D visualization of patient, tool and DRR shows clear
advantages over the conventional X-ray imaging and provides intuitive feedback
to place the medical tools correctly and e�ciently.

Keywords Interventional Imaging, Usability Study, Orthopaedic and Trauma
Surgery

F.1 Introduction

A continuous and rapid evolution of technology has changed the face of trauma
and orthopaedic surgeries in the past decades. Especially, minimally invasive
techniques are widely accepted for treatment of bone fractures in spine and
pelvis, thanks to the development of modern imaging technology and computer
aided navigation systems. The benefits of minimally invasive orthopeadic surg-
eries are the reduction of blood loss, collateral tissue damage and overall op-
erating duration [5]. However, these techniques usually yield a higher X-ray
exposure for both patient and clinical sta↵, and may increase fatigue and frus-
tration due to the di�culty in continuous re-positioning of the mobile X-ray
machine (C-arm) [1, 32].

The main challenge during percutaneous K-wire placement and screw fix-
ation is the mental alignment of patient, medical instruments and the intra-
operative X-ray images [27, 30], which also requires the frequent re-positioning
of the C-arm [31]. For instance, in pelvic acetabulum fractures, the surgeon
needs to find the correct trajectory of the K-wire through a small bony struc-
ture, namely the superior pubic ramus. The misplacement of the K-wire could
cause severe damage to the external iliac artery and vein, obturator nerve, or
to structures such as the inguinal canal and intra-articular hip joint [8]. It
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Multiple failed entry points 
for placing the K-wire (a)

Superior Pubic Ramus
K-wire

Acetabulum

Femur

(b)

Fig. F.1: a) Lateral view of the hip in pelvic surgery: several skin punctures
demonstrate the number of failed attempts to place the K-wire. b)
Anteroposterior X-ray image of hip region in pelvic surgery. The nar-
row superior pubic ramus requires a precise placement of the K-wire,
especially considering that a misplacement could cause severe damage
to external iliac artery or vein.

is not unusual that a single K-wire placement for one screw takes up to ten
minutes [29].

The standard treatment procedure for undisplaced superior pubic ramus
fractures requires several K-wire placements and subsequent screw insertions.
For each K-wire, the surgeon first locates the entry point location and performs a
skin incision at the lateral side of the hip, which requires several intra-operative
X-ray images from various perspectives to confirm the exact tool orientation. It
is common to correct the K-wire placement, as displayed in Fig. F.1a). While ad-
vancing the K-wire through soft tissue and into the bone, X-ray images from var-
ious perspectives are acquired to constantly validate the trajectory. Fig. F.1b)
shows the narrow path through the superior pubic ramus. After the K-wire is
placed, the procedure concludes by drilling and placing a cannulated screw.

Computer aided surgical navigation systems have been introduced to as-
sist the placement of K-wires and screws. Current solutions use pre-operative
Computed Tomography (CT) volumes, external optical tracking systems, and
tracked markers as reference on medical instruments, the patient and the C-arm.
Navigation systems then provide intra-operative information on the spatial re-
lation of surgical instruments and medical images. The validation of the K-wire
placement is performed using conventional X-ray imaging.

The benefits of navigation systems are controversial. Some publications
indicate a reduction of the radiation dose and an increase in accuracy [7, 6],
while a more recent study shows no clear advantage of using navigation systems
in some procedures [14]. A major drawback of navigation systems is the high
cost, which limits the availability of such systems to major hospitals and research
facilities [12, 7]. The cost is driven by external hardware, which constitutes a
logistical problem due to the bulkiness and consumption of space in the OR.
Beyond hardware requirements, the systems also impose a change of the surgical
workflow [31]. In summary, after two decades of surgical navigation systems,
expert surgeons are starting to realize that these systems have failed to provide
the advantages promised. They do not reduce the required OR time, show
no systematic, significant influence on the patient outcome and do not reduce
the frustration of the surgeon and sta↵. The additional e↵orts required to
use modern surgical navigation systems often outweigh the benefits in many
scenarios. Therefore, interventions are frequently performed without surgical
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navigation systems even though navigation would be available and theoretically
present a benefit [13], which has been especially researched for spine surgery [11].

An alternative solution, which is comparatively inexpensive, contained in
existing equipment and intuitive, has been proposed in [18]. This solution adds
a mirror and video camera to a C-arm, such that the X-ray and optical views
align. After a single calibration and warping step, the video view can be aug-
mented with the X-ray images, which provides an intuitive optical feedback to
the surgeon. In cadaver studies, this system leads to reduced radiation dose
and increase in surgical e�ciency in terms of duration and accuracy [16, 33].
During orthopaedic and trauma procedures, the use of a camera augmented
intra-operative X-ray system resulted in improved incisions, reduced radiation
exposure of the surgeon, and simplified instrument tool alignment [19, 3].

However, the mirror construction reduces the free moving space of the
surgeon, which can be overcome in mounting the camera next to the X-ray
source [22]. That setup will only be able to augment the video view with warped
X-ray images, which are clinically less relevant. Both approaches require the
X-ray source to be positioned on the top rather than below the surgical table,
which is an unusual setup and may increase the exposure of the surgeon to
scatter radiation.

In continuation to [18], in [9] an RGBD (Red Green Blue Depth) camera was
mounted to a C-arm instead of a video camera. Similarly to an RGB camera,
an RGBD camera provides a 2D color image, and additionally provides a depth
value for every pixel which represents the distance between the observed object
and the camera origin. This allows to reconstruct the 3D surfaces of an object.
The system using the RGBD camera rather than the RGB camera, enables an
o✏ine 3D/2D mixed reality visualization of X-ray on the reconstructed patient
surface. The main limitation of this work is due to 2D projective nature of
the X-ray image. As soon as the display viewpoint of the surface is di↵erent
than the X-ray source optical axis, the visualization is physically wrong. Using
CBCT may allow to overcome this issue, since a new simulated X-ray (DRR)
corresponding to the viewpoint can be generated dynamically. In [10], two
RGBD sensors were mounted on a mobile C-arm in order to synthesize the
video as seen from the X-ray source viewpoint without the need of a mirror
construction.

The integration of a stereo camera near the X-ray detector enables tool
tracking within the working space of the C-arm. If CT images are transferred
to the inter-operative setup, a Digitally Reconstructed Radiograph (DRR) can
be computed and augmented onto the one camera view [25]. This system has
been presented as a good combination of augmented reality visualization and
surgical navigation systems, but requires markers on the patient and tools. The
change of the augmented view requires the movement of the entire system, and
may introduce errors of the alignment of CT and optical view in case the patient
marker is occluded.

Systems with augmented video may benefit of the use of RGBD cameras,
which allows the positioning of the virtual cameras and renderings of the pa-
tient surface from arbitrary perspectives [9]. RGBD information can also be
used to improve the understanding of the environment and enhance the aug-
mentation [24].

In this paper, we present a pre-clinical usability study to provide a more
comprehensive understanding whether enhanced C-arm systems provide a clini-
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cally relevant benefit. We will compare K-wire placement using (i) conventional
X-ray imaging, (ii) 2D RGB video augmented with X-ray images, and (iii) a
novel 3D RGBD video augmented with DRRs generated from Cone-Beam CT
(CBCT). The later system allows the surgeon virtually rotate the entire scene
(DRR, patient surface and tools) and simultaneously view the scene from di↵er-
ent perspectives. A total of 21 K-wire placements are performed by 7 surgeons,
ranging from residents to attending physicians. We compare the system usabil-
ities in terms of surgical e�ciency, which is defined by the number of X-ray
images, duration, accuracy and surgical task load.

F.2 Method

In this section we first describe the imaging systems to be compared. These
include conventional intra-operative X-ray imaging, X-ray image augmented 2D
video, and a novel 3D RGBD view augmented with DRR. Finally, we present
the questionnaires and statistical methods to perform the usability study.

F.2.1 Imaging Systems

To evaluate the usability of mixed-reality visualization techniques, we acquire
a baseline using conventional intraoperative X-ray imaging. Examples of the
three visualizations are illustrated in Fig. F.2.

Conventional intra-operative X-ray Imaging This imaging method using
a standard C-arm provides the baseline performance as it is the most commonly
used system to perform image-guided K-wire placement. The images are ob-
tained in the Digital Radiography (DR) mode. This allows for a single, brief
exposure at higher than normal mA to capture a higher quality single image.
For reasons of comparability between subjects, we limit the functionality of the
C-arm to this mode.

2D RGB Video and X-Ray Visualization To achieve a fused RGB and
X-ray visualization we attached a camera near the X-ray source. Using a mirror
construction, the X-ray source and optical camera centers are virtually aligned
as described in [18]. To be able to observe the surgical site using the RGB
camera, the X-ray source and camera are positioned above the patient.

The X-ray images are obtained using the standard C-arm in DR mode. After
camera calibration [34], the alignment registration of optical and X-ray images
is performed using a single plane phantom with radiopaque markers that are
also visible in the optical view [20].

Finally, this first augmented reality system allows the simultaneous display
of live RGB video overlaid with DR images obtained at the user’s discretion.
Additionally, we provide the user with the option to control the alpha blending
to change the transparency to be able to focus on the X-ray image or video
background.

3D RGBD and DRR via CBCT Visualization The previous system re-
quires the re-positioning of the C-arm in order to change the optical and X-ray
view. To overcome this limitation we introduce a novel system using an RGBD
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Fig. F.2: The same stage in the K-wire placement has been recreated using the
di↵erent image-guidance systems. In a), the K-wire is placed under
conventional C-arm guidance, which requires frequent imaging and
may result in a higher radiation dose for the surgeon. b) The X-
ray image is augmented onto a live video stream, and the surgeon can
update the X-ray image at his discretion. c) The use of an RGBD
camera and DRR computed from a CBCT allows for the simultane-
ous visualization of the patient from di↵erent views. The surgeon can
choose which views should be displayed, which will be updated using
live RGBD information.
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camera and Cone-Beam CT (CBCT) volumes, which allows the simultaneous
visualization of the patient and medical data from multiple arbitrary views. As
the RGBD camera is rigidly mounted to the X-ray detector, the X-ray source
can be positioned under the surgical table as done during conventional image-
guided surgery.

To calibrate the RGBD information and the CBCT volume, we simultane-
ously acquire the CBCT and the surface information using the RGBD camera
of an arbitrary object. We extract the surface from the CBCT by simple thresh-
olding, and reconstruct the surface observed by the RGBD camera as described
in [21], resulting in a smooth and precise surface mesh. The calibration is ob-
tained by means of surface matching [15].

After the calibration is obtained, the CBCT and patient’s surface scan are
acquired. This data is fused into a mixed reality scene, in which the patient’s
surface, DRR from CBCT, and live RGBD data (e.g. hand or tool) are visual-
ized. The surgeon can now define multiple arbitrary views of the fused DRR and
RGBD data. The system allows perspectives that are usually not possible using
conventional X-ray imaging, as the free moving space is limited by the patient,
surgical table or OR setup. The live RGBD data provides an intuitive under-
standing of the relation of CBCT volume, patient’s surface, surgeon’s hand, and
medical tools.

F.2.2 Evaluation Method

During the usability study, we evaluate the performance achieved using each
system. Our hypothesis states that the mixed reality visualizations improve the
surgical e�ciency. Our data cannot be assumed to be of normal distribution,
but are ordinal. Using Friedman’s ANOVA [4], we test if the di↵erences in
observations are coincidental or statistically significant. Additionally, we need
to test whether the individual systems yield a significant di↵erence in term of
the surgical e�ciency. As a normal distribution of our data cannot be assumed,
these post-hoc tests are performed using the Wilcoxon signed-rank tests with
Bonferroni correction [35].

Surgical E�ciency Measure Together with our clinical partners we iden-
tified following measures to express the surgical e�ciency. First, the duration
of each K-wire placement is of importance. During hip surgeries, this process
is often the most time consuming and is followed by a relatively quick drilling
step and screw placement. Surgical navigation systems often do not yield the
advantage of reducing the overall OR time. Next, the number or X-ray images
and cumulative area dose product is of importance both to the patient and sur-
geon. During conventional C-arm guided placement, a large number of X-ray
images is acquired during the planning and propagation of the K-wire. One
of our systems will acquire a pre-incision CBCT, for which we will include the
dose into our statistics. Finally, the error is defined by the medical need of the
K-wire remaining in the superior pubic ramus. We will compute the average
distance between the ideal path, which is the center line of bone phantom, and
the placement of it. However, as all study participants are trained surgeons, we
do not expect that any significant improvement will be possible.
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Surgical Task Load The workload is measured using a standardized ques-
tionnaire, namely the Surgical Task Load Index (SURG-TLX) [36]. This test
is designed to evaluate the mental demands, physical demands, temporal de-
mands, task complexity, situational stress, and distractions during surgical in-
terventions. It is specifically designed and validated to analyze implications for
categorizing the di�culty of certain procedures, and the implementation of new
technology in the operating room.

F.3 Experiments

The K-wire placement through the superior pubic ramus (acetabulum arc) is
a complex and cumbersome procedure, which is performed frequently and in
case of an undislocated fracture usually minimally invasive [17]. In our experi-
ments we mimicked this scenario by designing adequate radiopaque phantoms.
The surgeons each performed three K-wire placements using the image-guidance
systems in a randomized order.

Phantom Design The superior pubic ramus is a thin tubular bone with
an diameter around 10 mm. In case of an undislocated fracture, a 2.8 mm
thin K-wire needs to be placed through a narrow safe zone [26, 2]. Later, a
7.3 mm cannulated screw is inserted [28]. Our phantom was created out of
methylene bisphenyl diisocyanate (MDI) foam, which is sti↵, lightweight and
not radiopaque. The bone phantom was created out of an thin aluminium mesh
filled with MDI. The begin and end of the bone were marked with a rubber
radiopaque ring. Therefore, the bone phantom is very similar to the superior
pubic ramus in terms of haptic feedback during K-wire placement, as the K-wire
will easily exit the bone without significant resistance. The orientation of the
bone within the phantom was randomized and phantoms were not reused for
other experiments.

Experimental Setup and Design In all our experiments, we use a CBCT
enabled C-arm, SIEMENS ARCADIS Orbic 3D from Siemens Healthcare
GmbH, which automatically computes the cumulative area dose for the patient
for each imaging session. The second and third system use an optical video
camera, Manta G-125C, from Allied Vision Technologies, or an RGBD camera,
Intel RealSense Camera (F200), Intel Corporation, respectively.

Each surgeon was asked to perform three independent K-wire placements
using the di↵erent imaging modalities. The order of the modalities was ran-
domized, but for simplicity we will refer to the first (S1), second (S2) and third
system (S3) in the order presented in Sec. F.2.1. Fig. F.3 shows the experimen-
tal setup for the 3D RGB and DRR visualization system (S3). Using a 2.8 mm
K-wire, the surgeons identified the entry point on the phantom’s surface, drilled
towards the begin of the bone phantom, and passed through the tubular bone
structure. When finished, the K-wire was removed from the drill and a CBCT
was acquired to measure the error of the K-wire placement post-operatively.
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Surgeon CBCT enabled 
C-arm 

Phantom with 
bone model 

3D RGBD and 
DRR views 

RGBD camera 

Drill and 
K-wire 

X-ray source 
Mirror and RGB 

camera 
Fig. F.3: During the experiments the surgeons drilled a K-wire into a phantom.

This figure shows the experimental setup during a procedure guided
by the 3D RGBD and DRR visualization (S3). The RGBD camera is
mounted on the C-arm X-ray detector, and the surgeon is watching
the live 3D RGBD and DRR views on the monitor while drilling into
the phantom containing the bone model.
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Table F.1: This table presents all observed values for each study participant
and system used. For the RGBD and DRR visualization a CBCT
was acquired, which is included in the dose measurement, but not in
the number of X-ray images acquired.

Participants
1 2 3 4 5 6 7
System 1: Conventional C-Arm

Time (sec) 937 686 617 464 636 388 432
X-ray images 80 47 44 33 32 21 29
Dose (cGycm2) 7.68 1.73 3.54 4.38 5.62 2.69 5.38
Error (mm) 3.08 7.88 11.43 3.01 1.87 2.27 2.72
Task Load 76 25.67 41.67 17.67 53.33 19.33 70.67

System 2: RGB and X-Ray Visualization

Time (sec) 360 431 521 295 436 691 768
X-ray images 19 13 20 13 18 20 30
Dose (cGycm2) 3.07 1.3 1.57 1.92 1.42 2.38 5.56
Error (mm) 7.92 2.69 3.85 4.23 4.88 3.44 1.74
Task Load 60.33 10 20 21.67 26 22.33 62.33

System 3: RGBD and DRR Visualization

Time (sec) 182 180 380 181 190 254 339
X-ray images 1 2 2 2 2 3 3
Dose (cGycm2) 1.76 1.9 1.48 1.44 1.55 1.47 1.59
Error (mm) 7.38 6.39 8.45 6.53 1.39 2.31 3.48
Task Load 20.33 5 24.33 23 11.33 8.67 30.33

F.4 Results

We observed a total of 21 minimally invasive K-wire placements using di↵erent
image-guidance systems. Table F.1 present the observed time in seconds, num-
ber of acquired X-ray images, cumulative area dose product (dose) in cGycm2,
error relative to the ideal path in mm, and surgical task load index for each
participant and system used. Note that the task load is a accumulative scale,
for which the score of 5 and 100 represents the lowest and highest possible load,
respectively.

The aggregated observations are presented in table F.2. When comparing
the use of a conventional C-arm to the use of a mixed reality system, a clear
tendency towards a decreased operation time, lower number of X-ray images
acquired, reduced dose and reduced task load can be observed, as illustrated in
Fig. F.4. The measure of the dose includes the acquisition of the CBCT volume
required for the RGBD and DRR visualization (system 3). The accuracy does
not improve, as it is already in an acceptable range.
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Fig. F.4: This plot illustrates duration of the intervention, number of X-ray im-
ages taken, radiation dose, K-wire placement error and surgical task
load, where each bar shows the accumulated values using one of the sys-
tems (conventional X-ray, RGB/X-ray fusion, or RBGD/DRR). Each
measure is normalized relative to the maximum value observed. The
? symbols indicate significant di↵erences.

Table F.2: The accumulated values and standard deviations for the observations
(table F.1) are presented in this table.

S1: C-Arm S2: RGB/X-ray S3: RGBD/DRR
Time (sec) 594 ±188 500 ±172 243 ±84
X-ray images 40.86 ±19.38 19.00 ±5.72 2.14 ±0.69
Dose
(cGycm2)

4.43 ±2.00 2.46 ±1.50 1.60 ±0.17

Error (mm) 4.61 ±3.62 4.11 ±1.97 5.13 ±2.72
Task Load 43.48 ±24.03 31.81 ±20.76 17.57 ±9.33

167



Pre-Clinical Usability Study of Multiple Augmented Reality
Concepts for K-Wire Placement (IJCARS 2016)

F.4.1 Statistical Evaluation

Statistical tests were performed to study the changes of the surgical e�ciency
measures. Significance is achieved for p-values lower than 0.05, indicating that
the chance of the change being coincidentally observed is less than 5% [23]. A
Friedman test was calculated to compare each measure as a normal distribution
of the data could not be assumed. We found a significant di↵erence in time
(�2(3) = 11.14, p < 0.01), number of X-ray images (�2(3) = 12.29, p < 0.01),
and radiation dose (�2(3) = 6.00, p < 0.05) depending on the kind of assistance
that was provided to the subjects. The post-hoc tests were computed using the
Wilcoxon signed-rank tests with Bonferroni correction.

Time: The tests show significant di↵erences between the first system (S1:
Conventional C-Arm) and the third system (S3: RGBD and DRR Visualization)
(Z = �2.366, p < 0.05), and significant di↵erences between second system (S2:
RGB and X-ray Visualization) and S3 (Z = �2.366, p < 0.05). This indicates
that the 3D placement of the K-wire is best supported with a multi-view 3D
visualization.

X-ray Images: All combinations of S1, S2 and S3 show a significant reduc-
tion of the number of X-ray images acquired: S1 to S2 (Z = �2.117, p < 0.05),
S2 to S3 (Z = �2.375, p < 0.05), and S1 to S3 (Z = �2.366, p < 0.05).

Radiation Dose: Although we have included the dose caused by the CBCT
in S3, the tests show that the intervention using the conventional C-arm causes
a significantly higher cumulative area dose product: S1 to S2 (Z = �2.197,
p < 0.05), S1 to S3 (Z = �2.197, p < 0.05). However, the dose di↵erence
between S2 and S3 is not significant.

Error: No significant di↵erence in error between based on the use of di↵erent
systems can be observed. Therefore, the reported changes in accuracies are most
likely coincidental.

Surgical Task Load Index: Similarly to the changes of the duration of
the intervention, the reduction of task load evaluated using the SURG-TLX is
only significant between S1 and S3 (Z = �2.197, p < 0.05).

In conclusion, S3 yields better results in terms of all observed surgical e�-
ciency measures except for the accuracy, for which the di↵erence is not statisti-
cally significant. Even though S3 is not a fully developed product, our usability
study indicates that there are clear advantages over the conventional C-arm
system when guiding K-wire placement.

F.5 Discussion and Conclusion

In this paper we presented a usability study using three di↵erent mixed reality
visualization systems to perform K-wire placement into the superior pubic ra-
mus. This procedure was chosen because of the high clinical relevance, frequent
prevalence, and the especially challenging minimal invasive surgical technique.

Our attention was focused on the usability and clinical impact of the three
di↵erent visualization systems. For that reason we were not only interested
in the quality of a procedure (e.g. accuracy), but also in the workload and
frustration that the surgeons experienced while using the di↵erent systems. We
observed the 21 interventions performed by 7 surgeons, and used the Surgical
TLX to evaluate the task load.
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Our results show that the 3D visualization yields the most benefit in terms
of surgical duration, number of X-ray images taken, overall radiation dose and
surgical workload. This is despite the fact, that the mixed reality visualizations
currently do not provide an augmentation of a tracked tool. The conventional
C-arm constitute the system yielding the poorest results, indicating a high po-
tential for improvements to the currently used image-guidance systems. In all
scenarios, the surgeons placed the K-wire within clinically relevant tolerance.
The change in accuracy of the placed K-wire is not significant, which shows that
all three systems provide su�cient support in terms of placement quality.

This study also showed the clear necessity to continue research and devel-
opment of the mixed reality systems. For instance, movement of the C-arm or
surgical table may lead to loss of tracking, which results in an outdated mixed
reality visualization. However, in a clinical scenario, the failure of the mixed
reality system is immediately visible and the surgeon can continue using the
conventional X-ray imaging capabilities.

In our evaluation we have not take the learning curve under consideration
as we frequently observed that surgeons unfamiliar to the mixed reality system
adopted very quickly. Perhaps an initial training phase would further emphasize
the advantages of the augmentations.

Future studies will include other complex K-wire placement procedures, such
as performed in case of an ilio-sacral fracture, or pedicle screw placement. We
will attempt to include even more surgeons during the next studies, which will
allow for a more detailed statistically analysis. Additionally, we will investigate
the usability for other procedures, such as Jamshidi needle placement or general
needle biopsies.

Our usability study showed that mixed reality systems have great potential
to increase surgical e�ciency, and should be in the focus of research on computer
assisted interventions. The integration of better visualization techniques, or tool
tracking and identification may yield more opportunities in assisting surgeons
to conduct interventions more e�ciently and reduce the task load.
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Contribution The calibration of Cone-Beam CT (CBCT) volumes and 3D
optical imaging (RGBD) is the key prerequisite to enable interventional Aug-
mented Reality (AR) for medical applications. This paper presents a clear
methodology to perform the calibration, namely the extraction of surface in-
formation from both modalities, the initialization of the calibration using Fast
Point Feature Histograms (FPFH), and the refinement of the data alignment
using the Iterative Closest Point (ICP) algorithm. Finally, we present the cali-
bration accuracy, show the repeatability, and provide application examples. A
usability study using a fully calibrated system is presented in Appendix F.
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Abstract Purpose: This work proposes a novel algorithm to register
Cone-Beam Computed Tomography (CBCT) volumes and 3D optical (RGBD)
camera views. The co-registered real-time RGBD camera and CBCT imaging
enable a novel augmented reality solution for orthopedic surgeries, which allows
arbitrary views using Digitally Reconstructed Radiagraphs (DRRs) overlaid on
the reconstructed patient’s surface without the need to move the C-arm.
Methods: An RGBD camera is rigidly mounted on the C-arm near the detector.
We introduce a calibration method based on the simultaneous reconstruction
of the surface and the CBCT scan of an object. The transformation between
the two coordinate spaces is recovered using Fast Point Feature Histograms
(FPFH) descriptors and the Iterative Closest Point (ICP) algorithm.
Results: Several experiments are performed to assess the robustness and
the accuracy of this method. Target Registration Error (TRE) is measured
on multiple visual and radio-opaque landmarks to evaluate the accuracy of
the registration. Mixed reality visualizations from arbitrary angles are also
presented for simulated orthopedic surgeries.
Conclusion: To the best of our knowledge, this is the first calibration method
which uses only tomographic and RGBD reconstructions. This means that the
method does not impose a particular shape of the phantom. We demonstrate
a marker-less calibration of CBCT volumes and 3D depth cameras, achieving
reasonable registration accuracy. This design requires a one-time factory
calibration, is self-contained, and could be integrated into existing mobile
C-arms to provide real-time augmented reality views from arbitrary angles.

Keywords Augmented Reality, Cone-beam CT, C-arm, Intra-operative imag-
ing, 3D-3D Calibration

G.1 Introduction

X-ray imaging is an important tool for percutaneous ilio-sacral and pedicle screw
placements in spine surgeries. To avoid potential damages to soft tissues and
the nervous system near the vertebra, and reduce muscle retraction, significant
amount of fluoroscopic/X-ray images are acquired from multiple views during
these interventions. Foreign body removal surgeries also require a high num-
ber of X-ray image acquisitions, as there are significant risks of inadequately
performing the wound debridement [15]. Multiple attempts to remove them
could lead to larger incisions, additional trauma, delay in healing, and worsened
outcomes.

To place or remove a rigid object during minimally invasive image-guided
orthopedic operations, the surgeon first locates the point of entry on the skin
by acquiring multiple X-ray images from di↵erent views while having a tool for
reference in the scene. The reference tool (e.g. needle, K-wire, drill, etc.) is
used during the intervention to assist the surgeons with the mental alignment.
An example of the entry point localization is illustrated in Fig. G.1.

An exemplary workflow involves the collection of a set of anteroposterior
X-ray images in which the target anatomy and the drill are visible. Next, the
direction of the medical instrument is corrected in corresponding lateral and
oblique views, which may introduce small displacements in the anteroposterior
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a) b)

Fig. G.1: The first step during a minimally invasive orthopedic surgery is the en-
try point localization. The surgical site, containing patient and tools,
is shown in (a). Panel (b) shows an X-ray image during entry point
localization.

side. To ensure the accurate placement of the medical instrument, this procedure
is repeated several times, and during each iteration the drill is traversed further
through the tissue until the target is reached. Lastly, verification images are
acquired, and depending on the performed placement the procedure may need
to be repeated.

Delicate operations of these types have long surgical durations as they require
the acquisition of many intra-operative images which implies frequent C-arm
repositionings. This leads to a high surgical e↵ort and major frustration for the
surgical sta↵, long procedures, and high radiation exposure. This is in contrast
to the need of shortening anesthesia durations for elderly patients due to post-
operative complications. Thus, it is a challenge for the surgeon to operate
accurately in a limited time and minimizing collateral damage to surrounding
tissue.

External surgical navigation systems are used to provide the spatial relation
among the anatomy in medical images, the patient’s body in the operation room
(OR), and the surgical tool. This information is used to avoid potential damage
to surrounding tissue. Alternatively, additional sensors such as cameras are
directly attached to the C-arm to perform tracking of the surgical tools, or aim
at providing intuitive visualizations of the patient surface and the medical data.

Optical-based image-guided navigation systems were used to recover the spa-
tial transformation between surgical tools and a 3D rotational X-ray enabled
C-arm with sub-millimeter accuracy [8]. Significant reduction in radiation ex-
posure was achieved by navigating the surgical tool together with a tracked
C-arm with markers attached to the detector plane [9]. Navigation-assisted flu-
oroscopy in minimally invasive spine surgery with optical tracker for placing
pedicle screws was evaluated in [10, 7]. Both publications reported a reduc-
tion in radiation exposure. However, no statistically significant changes in the
time of surgery was found. There are two main problems associated with these
systems: First, they increase the complexity of the surgery, require additional
hardware, occupy significant amount of space and require line-of-sight between
patient and hardware. Second, the surgeon performs the surgery by only ob-
serving a display, which does not provide visual feedback of actual patient and
current deformation of tissue. Good outcomes highly depend on the surgeon’s
experience, confidence, and surgical skills.

Alternative systems are fully integrated within the absolutely necessary C-
arm and range from systems with video cameras [11] to solutions with inte-
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grated tracking devices [16]. A video camera attached to a mobile C-arm was
co-registered with the X-ray source in [11] to provide real-time augmentation
of the surgical site. X-ray and optical centers are virtually aligned using an
X-ray transparent mirror construction and calibrated by utilizing X-ray and
optically visible markers. Next, a homography is estimated to warp the optical
images to enable the augmentation with the undistorted X-ray image. This
system was used in over 40 orthopedics and trauma procedures [12, 2], and the
results indicated improvements in terms of optimal incision, avoidance of direct
radiation exposure, and instrument axis alignment. The evaluation through as-
sisted interlocking procedures showed that as long as depth information is not
required, the system can assist the surgeon in accurately placing the tools inside
the patient.

Similarly, [14] incorporated a video camera and performed an online calibra-
tion by placing a metal rod with known shape close to patient’s bone. Cadaver
studies for screw placement and femoral fractures on real patients reported 26-
30% decrease in radiation exposure, but no statistically significant change in
the procedure time were reported. In contrast to [11, 14], a color and depth
camera was mounted on the mobile C-arm to replace the video camera in [5].
The 3D/2D mixed reality visualization is demonstrated using a X-ray image
augmented on a patient surface o✏ine. The main limitation of this work is
due to 2D projective nature of the X-ray image, resulting in a physically wrong
visualization as soon as the viewpoint is di↵erent from the X-ray source. In [6],
the optical view from the viewpoint of the X-ray source has been synthesized
using two RGBD cameras, enabling a system like [11], but without mirror con-
struction.

A vision-based tracking system using natural features observed in the view
of an optical camera attached to a mobile C-arm was suggested to enable the
extension of the field of view of CBCT volumes with minimum radiation expo-
sure [4]. Frame-to-frame registration results acquired from the optical camera
were applied to CBCT sub-volumes by calibrating CBCT volumes with the
optical camera in advance.

An intuitive visualization based on Digitally Reconstructed Radiographs
(DRR) was proposed in [16], and addresses the limitations of conventional nav-
igation systems by providing an augmented reality view of DRR, video and
tracked tools. A vision-based navigation is performed by mounting stereo cam-
eras on the C-arm near the detector. Patient and C-arm are then registered
using a mixed set of visual and radio-opaque markers on a single calibration
phantom. This system reached sub-millimeter tracking accuracy, and has the
benefit of not using any external tracking system, thus remaining self-contained.
The main complexity arises when visualization from di↵erent angles during aug-
mentation requires moving and rotating the C-arm. To put this into perspective,
even though the number of X-rays is decreased and the line-of-sight issue is min-
imized, the additional work load of re-positioning the C-arm is not eliminated.

The main problem associated with RGB cameras is the unknown depth in
arbitrary scenes. RGBD cameras are sensing systems capable of acquiring RGB
images and co-registered depth information, thus providing the means to a 3D
visualization or marker-less tracking. A calibration of an RGBD camera to
2D X-ray images of C-arm was proposed in [20]. Registration is performed by
computing the projection matrix between a 3D point cloud and corresponding
2D points on the X-ray image plane using a visual and radio-opaque planar
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Patient and C-arm 
positioning

CBCT acquisition and 
surface reconstruction
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Locating the point of entry 
and drilling

Intra-operative procedure

X-ray acquisition for 
verification

RGBD camera 
calibration 

CBCT acquisition and 
surface reconstruction

Point cloud extraction 
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Fig. G.2: The o✏ine calibration of RGBD camera to CBCT origin is performed
by introducing an arbitrary object into the common views of both
devices. Before an intervention begins, CBCT and surface scans of
the patient are acquired simultaneously. During the intervention, the
fused visualization of patient’s surface, surgeon’s hands and tools, to-
gether with simulated X-ray images (DRR) are displayed to assist the
surgeon.

phantom. This method reached a calibration error of 0.54 mm (RMS).
This work introduces a calibration technique for CBCT volumes and RGBD

camera, and enables an intuitive 3D visualization which overlays both physical
and anatomical information from arbitrary views. In contrast to the aforemen-
tioned technique in [16], where a 2D video is augmented with 2D DRRs, this
technique takes the next step by proposing a full 3D-3D registration and enables
the augmentation of a 3D optical view and simulated X-ray images from any
arbitrary view. This system is capable of providing views which may be impos-
sible to capture due to a limited free moving space of the C-arm, for instance,
intra-operative transversal images. The proposed marker-less vision-based tech-
nique requires a one-time factory calibration as the depth camera and the X-ray
source are rigidly mounted together, and achieves a calibration accuracy of 2.58
mm.

G.2 Method

The proposed technique uses an RGBD camera mounted on a mobile C-arm, and
recovers a 3D rigid-body transformation from the RGBD surface point clouds
to CBCT. The transformation is recovered using Iterative Closest Point (ICP)
with a Fast Point Feature Histogram (FPFH) [18] for initialization. The gen-
eral workflow is illustrated in Fig. G.2 and is comprised of an o✏ine calibration,
patient data acquisition and processing, and intra-operative 3D augmented re-
ality visualization. The following sections describe the system setup (Sec. 2.1),
calibration phantom characteristics (Sec. 2.2), transformation estimation (Sec.
2.3), and the augmented reality overlay (Sec. 2.4).

G.2.1 System setup

The system comprises a mobile C-arm, the SIEMENS ARCADIS Orbic 3D from
Siemens Healthcare GmbH, and a close-range structured-light Intel RealSense
F200 RGBD camera from Intel Corporation which better minimizes the light-
power interference and ensures accuracy in shorter ranges compared to time-
of-flight or stereo cameras. A structured-light RGBD camera provides reliable
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PC	

PCBCT	

CBCT	

Camera	on	detector	

CTCBCT	

X-ray		
source	

Fig. G.3: System setup: A depth camera is rigidly mounted on the detector, so
that the field of view, and depth of view cover the CBCT volume. The
transformation cT

CBCT

is recovered by registering the point clouds
Pc and PCBCT of the calibration phantom.

depth information by projecting patterned infrared lights onto the surface, and
computes the depth information based on the pattern deformations. A typical
time-of-flight camera, such as the Microsoft Kinect One (v2), requires additional
warm up time of up to 20 minutes and depth distortion correction. In addition,
the depth values highly depend on the color and shininess of the scene objects.
On the other hand, conventional stereo cameras require textured surfaces for
reliable triangulation, which are not suitable in this application [3].

The C-arm is connected via Ethernet to the computer for CBCT data trans-
fer, and the RGBD camera is connected via powered USB 3.0 for real-time
frame capturing. The RGBD camera is mounted rigidly near the detector, and
its spatial position remains fixed with respect to CBCT’s origin. After a one-
time calibration, the patient is positioned on the surgical table under the C-arm
guidance using the laser aiming guide attached to the C-arm. Thereafter, CBCT
is acquired, and the surface is scanned using the RGBD camera simultaneously.
The system setup is outlined in Fig. G.3.

G.2.2 Calibration phantom design, point cloud ex-
traction and pre-processing

A planar checkerboard pattern is used to recover intrinsic parameters of the
RGB and depth camera, and their spatial relation [21]. Depth camera intrinsics
are used to reconstruct the surface in depth camera coordinates, and the intrin-
sics of the RGB camera together with their spatial transformation are used for
reprojecting the color information onto the surface. For simplicity, we will refer
to the calibrated RGB and depth camera as the RGBD camera.

A calibration phantom shown in Fig. G.4-a is introduced into the common
view of the CBCT and the RGBD camera. Surface point clouds are then com-
puted from both imaging modalities, and are used to estimate a 3D-3D rigid
body transformation. The phantom is composed of three pipes and a cylindrical
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a) b) c)

Fig. G.4: (a) The calibration phantom comprised 3 pipes in di↵erent heights,
lengths, and orientations which represent an unambiguous 3D object.
(b) Raw surface point cloud reconstruction from RGBD data, and (c)
filtered surface points after the cylinder fitting.

foam base. Each pipe has a di↵erent length, and is positioned at diverse height
and orientation to provide a unique rigid 3D-3D mapping between two coordi-
nate spaces. Furthermore, the pipes have higher radiation absorption than the
foam base, which allows a simple thresholding for point cloud segmentation. In
contrast to shape angles or corners, the round surface of the phantom provides
a more stable depth information with lower corner reflection e↵ect.

After positioning the calibration phantom at the center of the C-arm, CBCT
data is acquired. While the C-arm is rotating, KinectFusion [13] is used to
compute the surface reconstruction in RGBD camera space1. Raw point clouds
Pcr in Fig. G.4-b are subjected to least square cylinder fitting for the tubes ↵, �,
and � with known radius r = {r

↵

, r
�

, r
�

} and height h = {h
↵

, h
�

, h
�

}. Cylinder
fitting is performed by minimizing the model function F (.) using M-estimator
SAmple and Consensus (MSAC) [19]:

E(c,u) = min
c,u2R3

X

i2S

j

|u·(pcr

i

�c)|h/2

F (pcr

i

, c,u)2 (G.1)

where c 2 R3 is the center, u 2 R3 is the orientation of the principle axis of the
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Next, the pre-processed surface points are computed as the inliers to the
parametric model E(c,u) with respect to a distance threshold d:

Pc = {Pcr(µ) : kPcr(µ)� E(c,u)k < d} (G.3)

The filtered surface points are shown in Fig. G.4-c.
Filtering the CBCT data is performed in 4 steps. First, due to di↵erent

absorption coe�cients of the foam base and the pipes, the intensities are thresh-
olded manually in CBCT data to filter out the foam (Fig. G.5-a). The remaining
points are transformed into mesh grids (Fig. G.5-b) using fast greedy triangu-
lation algorithm [1], and an ambient occlusion value is assigned to each vertex

1open source code available at https://github.com/Nerei/kinfu_remake
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c) d)b)a)

Fig. G.5: The steps to acquire the smooth surface point cloud from CBCT for
calibration start with the CBCT volume acquisition (a). The CBCT
surface segmentation is performed by thresholding (b). The ambient
quality of CBCT points is assigned to each point (c), where white is a
higher score (outer surface), and red is a lower scores (inner surface).
Based on the ambient score, the outer CBCT surface is defined (d).

(Fig. G.5-c). This score defines the amount which each point in the scene is
exposed to the ambient light. Higher values are assigned to outer surfaces, and
lower values are assigned to interior of the tubes. Lastly, the outer surface is
segmented by thresholding the scores of the vertices (Fig. G.5-d). The two point
clouds Pc and PCBCT are used in Sec. 2.3 for calibration of CBCT and RGBD
data.

G.2.3 Calibration of C-arm and the RGBD camera

The RGBD camera is mounted rigidly on the detector of the C-arm as shown
in Fig. G.3, therefore the transformation between them remains fixed and could
be modeled as a rigid transformation cT

CBCT

2 SE(3), where SE(3) is the
special Euclidean group.

To register Pc and PCBCT , ICP is used with an initial guess acquired from
a SAmple Consensus Initial Alignment (SAC-IA) with FPFH [18]. FPFH pro-
vides a fast and reliable initialization for the two point clouds. To compute
the feature histograms (implemented in the Point Cloud Library [17]), the nor-
mal nS

i

is estimated for each point in the CBCT and camera space PS , where
S 2 {CBCT, c}. Next, for each point, a neighborhood ⌦

i

is defined with re-
spect to a given radius. For every point pair {pS

j

,pS

k

} inside ⌦
i

, a point feature
histogram (PFH) is computed as following:

PFHS

i

= H
�
{�S

jk

}
�

(G.4)

where �S

jk

is the set of angular variations and H(.) is the histogram of these
features in ⌦

i

[18]. FPFH is then computed as a weighted PFH in ⌦
i

, where
w

j

is the Euclidean distance between point pairs {pS

i

,pS

j

}:

FPFHS

i

= PFHS

i

+
1

k

X

j2⌦
i

1

w
j

PFHS

j

(G.5)

The acquired feature histograms FPFHS = {FPFHS

i

}nS

i=1 are used in SAC-IA
to register the two point clouds iteratively. The transformation T(i

0

) acquired
from registration is used as an automatic initialization, and ICP is used to
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a) b) c) d)

Fig. G.6: The surface reconstruction (a) and the DRR rendering of the cali-
bration phantom (b) are overlaid using the opacities 0.4 and 0.7 in
(c) and (d), respectively. This fused view may assist surgeons during
orthopedic interventions.

further refine the registration by minimizing the following cost function:

cT
CBCT

= min
T

X

i,j

kpc

i

�TpCBCT

j

k22 (G.6)

G.2.4 Mixed reality visualization of DRRs overlaid
on the patient’s surface

Using the calibration results from Sec. 2.3, an augmented reality overlay com-
prised of DRRs rendered from CBCT volumes and the patient’s surface is pro-
vided. Moreover, by changing the virtual camera pose after the augmentation,
the system provides arbitrary perspectives. Finally, background subtraction
in the RGBD view enables a real-time visualization of moving point clouds
(surgeon’s hands and tools). The output is a mixed reality visualization of
anatomical data, patient’s surface, and surgeon’s hands and tools that are use-
ful for orthopedic interventions. The surface reconstruction of the calibration
phantom, DRR, and overlays with di↵erent opacities are shown in Fig. G.6.

G.3 Experimental Validation and Results

The robustness of the technique is first assessed by repeatedly performing the
calibration using the phantom in Fig. G.6. For each test, the calibration phan-
tom is placed di↵erently such that all pipes are visible in the RGBD view to
ensure a full surface reconstruction. The surface reconstruction using an Intel
RealSense RGBD camera on the detector is compared with a Microsoft Kinect
360 (v1) camera mounted on the gantry (due to the depth range limitation,
the Kinect camera needs to be placed at least 80 cm away from the object).
The standard deviation (SD) of the calibration results in x, y, z directions,
and rotation Euler angles ↵, �, � are shown in table G.1. Results show low
deviations, and no statistically significant di↵erence was found between the two
cameras. Arbitrary objects such as a stone or the spine phantom in Fig. G.8-a
are also used directly as the calibration phantom, and the estimated transforma-
tion parameters varied between 0.7% to 2% compared to the original calibration
phantom.

Point clouds acquired from the RGBD camera and CBCT are subjected to
downsampling using voxel grid filter with di↵erent grid sizes. The SD values
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Table G.1: The results of the repeated calibration (5 tests) in term of SD of
Euler angles ↵, �, � of cR

CBCT

, the x, y, z components of ct
CBCT

and kct
CBCT

k2, where cR
CBCT

and ct
CBCT

are the rotational and
translational components of the estimated transformation cT

CBCT

.

Error
↵

(rad)
�

(rad)
�

(rad)
x

(mm)
y

(mm)
z

(mm)

kct
CBCT

k2

F200 0.0045 0.0059 0.016 0.89 0.29 0.81 0.84
Kinect 0.0047 0.0027 0.0079 0.31 0.74 0.35 0.46

Table G.2: The original data acquired from the RGBD camera and CBCT con-
tains 25226 and 94547 points, respectively. The Euclidean distances
of the transformation parameters estimated from the downsampled
and original data are compared. Grid size defines the size of the
voxel grid for downsampling the point clouds.

Grid
Size
(mm)

# of
pts

(CBCT)

# of
pts

(Depth)

↵
(rad)

�
(rad)

�
(rad)

x
(mm)

y
(mm)

z
(mm)

0.5 51831 21014 0.020
0.0025

0.014 0.22 0.23 0.56

1.0 18684 16221
0.0079 0.0018 0.0027

0.47 0.55 0.29

1.5 9016 8536
0.0018 0.0015 0.0041

0.33 0.25 0.57

2.0 5238 5183
0.0014 0.0025 0.0038

0.48 0.18 0.16

for the transformation parameters are reported in Table G.2. Larger number of
points representing the data results in better initialization from the FPFH. The
ICP estimation shows small variations in transformation parameters using the
downsampled data.

Bilateral filtering is used to remove the noise during the surface reconstruc-
tion. Moreover, FPFH and ICP are both tolerant to outliers, thus small amount
of noise are discarded during the transformation estimation. Due to the signif-
icant di↵erence of the attenuation coe�cient of the calibration phantom and
the background noise, thresholding the CBCT data eliminates the background
noise. Therefore, the calibration method is robust to small of amount of noise
and outliers.

To evaluate the accuracy of the calibration, the Target Registration Er-
ror (TRE) is computed using the phantom shown in Fig. G.7-a. The phantom
contains visual and radio-opaque landmarks and each landmark is selected man-
ually. TRE is computed as the euclidean distance between a visual landmark
after applying the transformation and the corresponding radio-opaque land-
mark. Since the landmarks are not co-linear nor co-planar, small orientational
errors are also reflected in TRE. The accuracy test is repeated three times us-
ing eight landmarks. The resulting errors are shown in Table G.3. The main
misalignment arises from the error in the direction perpendicular to the RGBD
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d)c)b)a)

Fig. G.7: The calibration accuracy is evaluated using a phantom (a) with ra-
diopaque markers which are visible in the RGBD view. (b) Test phan-
tom in CBCT (DRR rendering), (c) point clouds of the phantom ob-
tained using the Intel RealSense F200 camera, and (d) point clouds of
the phantom from the Kinect camera.

Table G.3: The results of the repeated accuracy tests are shown as TRE, where
�x, �y, �z, and k�k2 are the Euclidean distances. Values are reported
as mean ± SD.

TRE 1 �x �y �z k�k2
F200 1.26 ± 0.73 1.94 ± 1.50 0.98 ± 0.95 2.91 ± 1.10
Kinect 0.58 ± 0.56 2.87 ± 1.97 5.61 ± 1.72 6.54 ± 2.04

TRE 2 �x �y �z k�k2
F200 0.72 ± 0.78 2.46 ± 1.12 1.12 ± 0.87 2.91 ± 1.37
Kinect 1.09 ± 0.49 3.19 ± 0.83 7.30 ± 1.19 8.11 ± 1.02

TRE 3 �x �y �z k�k2
F200 0.83 ± 0.57 0.72 ± 0.52 1.40 ± 1.00 1.92 ± 0.98
Kinect 1.40 ± 0.65 1.97 ± 1.33 7.11 ± 1.33 7.60 ± 1.55

camera (due to poor depth quality). In each test the phantom is placed at a
di↵erent pose by 90 degrees rotation. Di↵erent accuracy among the three tests
are mainly due to changes of the overall distance of the landmarks to the camera
resulting from their non-uniform distribution.

The Intel RealSense camera achieves an average TRE of 2.58 mm, where
the Microsoft Kinect 360 (v1) achieves 7.42 mm. Due to poor depth quality,
the errors along the z axis are more significant than the other two directions in
both cameras.

G.3.1 Mixed reality visualization

An example for inserting a guide wire into a spine phantom is shown in Fig. G.8.
This system could also be used for fast foreign body (shrapnel) removal. The
simulated scenario for this application is shown in Fig. G.9.

G.4 Discussion and Conclusion

This paper proposes a novel methodology to calibrate an RGBD camera rigidly
mounted on a C-arm and a CBCT volume. This combination enables intuitive
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a)

b)

c)

d)

Hands

Guide wire in 
RGBD view

Guide wire 
in DRR

Fig. G.8: (a) The spine phantom for visualization experiment, (b) the overlay
of DRR and phantom surface, (c) the overlay with a point cloud of
a hand, and (d) the overlay from a di↵erent view. Depending on the
structure of interest, the user can change the windowing (level and
width of intensity range) and transparency of the DRR dynamically.
This is demonstrated by the di↵erent renderings in (b) and (d).

a)	 b)	 c)	 Shrapnel	

Shrapnel	 Hand	and	tool	

Fig. G.9: A shrapnel phantom (a) is designed to perform foreign body removal
under mixed reality visualization, shown in (b) and (c).

186



G.4. Discussion and Conclusion

intra-operative augmented reality visualization. The accuracy and robustness of
the algorithm is evaluated using several tests. Although the spatial resolution of
the RGBD cameras in depth is poor (approximately ±5% of the depth), a rea-
sonable registration accuracy of 2.58 mm is achieved. This paper has presented
two applications with high clinical impact. First, image-guided drilling for can-
nulated sacral screw placement was demonstrated. Finally, the experiments are
concluded with a simulated foreign body removal using shrapnel models.

To achieve the fused RGBD and DRR view, multiple steps are required.
First, the CBCT and the patient’s surface scans are acquired. The FPFH match-
ing for fast initialization of ICP yields a robust and e�cient calibration of data
extracted from CBCT and RGBD. This enables the data overlay, resulting in
an augmented reality scene. The calibration accuracy is strongly dependent on
the quality of the depth information acquired from the RGBD camera.

In contrast to other calibration techniques, this method does not require
a pre-defined marker or known 3D structure. Theoretically, the calibration
technique functions with any arbitrary object for which the surface is visible in
the CBCT volume and yields enough structural features. In a clinical scenario,
a system constructed as our design would require a one-time calibration or at
the discretion of the user.

The fusion of CBCT and RGBD into one common coordinate space enables
several new concepts. First, any arbitrary view can be visualized as the spatial
restrictions in terms of C-arm placement no longer apply. For instance, a view
along the spine can be visualized while placing a Jamshidi needle. Secondly, the
augmented reality scene can be viewed from di↵erent view point simultaneously.
This enables surgeons to align tools in all dimensions at the same time, possibly
saving significant OR time.

Currently, the changes in the environment is not tracked. For instance, mov-
ing the surgical table or RGBD camera may result in the loss of proper image
alignment, which motivates further development of the CBCT and RGBD sys-
tem. Beyond the aforementioned possibilities, the fusion of RGBD and CBCT
could facilitate intra-operative surgical navigation as the RGBD camera could
be used for tool or activity tracking. Understanding the activity would enable
the automatic adjustment of the view in order to provide the most optimal view
during interventions.

The proposed technique contributes to a novel calibration for RGBD and
CBCT data and achieves an accuracy of 2.58 mm. By acquiring more reliable
depth information, this system could be later used for image-guided interven-
tions to assist surgeons to perform more e�cient procedures. The mixed reality
visualization could enable an entire new field of novel applications for computer
aided orthopedic interventions.
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