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Abstract 

Rainfall-induced landslides pose a significant risk in many areas of the world. Transient 

heavy rainfall can cause a pore water pressure redistribution within surficial soil layers. 

An increase in the pore water pressure reduces the effective resistance of slopes and thus 

can lead to a loss of slope stability. This is regarded as the main cause of shallow 

landslides that occur during a rainfall event or soon afterwards. Due to the fact that the 

redistribution of pore water pressure is highly time-dependent, the slope stability 

evaluation must be performed in function of time.  

 In this thesis, a time-dependent stochastic model is developed for the study of 

slope stability under heavy rainfall. The model accounts for the uncertain nature of 

rainfall events and the spatial variability of soil permeability. The focus is on the 1!-

infiltration-failure model, which is motivated by the fact that in shallow slope failure 

events, the failure surface is often approximately parallel to the slope surface. The slope 

failure mechanism is modeled by combining a subsurface infiltration model with an 

infinite slope model with layering parallel to the ground surface. Hence, the classical 

equation for infinite slope stability analysis can be utilized for evaluating the time-

dependent behavior of the factor of safety of the slope. The stochastic behavior of the 

rainfall event is considered by the application of self-similar random process theory, 

while the random spatial variability of the saturated hydraulic conductivity is modeled 

with homogeneous non-Gaussian random fields. 

The developed model is employed to assess slope reliability under random rainfall 

events with subset simulation. The latter is an adaptive sampling method that is especially 

efficient for estimating small failure probabilities in problems with a large number of 

random variables, which is typically the case when discrete representations of random 

processes/fields are involved. In addition, Bayesian analysis is applied to learn the 

stochastic model of the saturated hydraulic conductivity with measurement data obtained 

from the on-site investigation. Using the updated stochastic model, one can obtain 

posterior predictions of the slope stability and reliability conditional on the data. 



 

IV 

Numerical examples are presented for studying the influence of the scale of 

fluctuation and the parameters of the stochastic model of the random rainfall event on the 

slope reliability. Additionally, the impact of measurement data on the posterior statistics 

of the factor of safety is investigated. The case studies show that a decrease in the scale of 

fluctuation has a significant influence on the transient behavior of the factor of safety and 

thus the probability of failure. By decreasing the scale of fluctuation, the mean factor of 

safety decreases faster with time elapsed, due to larger pore water pressure build-up at 

shallow depths, which favors shallow slope failure. Moreover, it is shown that more 

uniform rainfall patterns lead to higher infiltration volume and result in higher pore water 

pressure buildup that increases the probability of failure of the infinite slope. 
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Chapter 1 Introduction and literature review 

Landslides are a major natural hazard in many parts of the world and pose serious threats 

to cities and infrastructure, particularly in mountainous areas. Each year, heavy damages 

caused by the run-out of landslides are reported, leading to severe economic losses and 

fatalities (Petley 2012; Papathoma-Köhle et al. 2015). Nevertheless, because of 

population growth and economic development, there is an ever-growing demand on land 

and increasing urbanization in mountainous areas, e.g. in the city developments of Hong 

Kong, Singapore, or Chongqing. In these regions, landslides are inevitable hazards and 

hence mitigation strategies against landslides are necessary (Choi and Cheung 2013).  

Slope failures are typically triggered by external factors in slopes with 

unfavorable geological conditions, such as earthquakes (García-Mayordomo et al. 2009; 

Chen et al. 2012), heavy rainfall (Schuster et al. 2002; Lepore et al. 2012), and human 

activities (Malgot and Baliak 2002; Huang and Chan 2004), among others. This thesis 

focuses on rainfall-induced landslides, which most of them frequently take place in 

tropical regions (e.g. Rahardjo et al. 2005; Sahis et al. 2014). In tropical regions, rainfall 

events can have very high intensities combined with long persistence. This occurs 

particularly in wet seasons. For instance, in South America, catastrophic slope failures 

occur most commonly in the Andes Mountains of the northern and western parts of the 

continent, due to the fact that many parts of the area are subjected to precipitation that 

exceeds 1500mm/yr (Schuster et al. 2002). 

Rainfall has two major effects that change the geomorphology of soil slopes: a 

small portion of rainwater forms runoff along the sloping surface (Crăciun et al. 2009) 

and washes away small particles of the soil mass, causing erosion (Assouline and Ben-

Hur 2006; Defersha et al. 2011). The remaining rainwater penetrates into the soil and 

alters the pore water pressure distribution time-dependently (e.g. Perrens and Watson 

1977; Iverson 2000), and this process is known as “infiltration”. It can lead to excessive 

slope displacements or even cause catastrophic failure, since an increase of pore water 

pressure reduces the effective resistance force of the slope (Fredlund 1995; Rahardjo et 
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al. 2005). This effect is regarded as the dominant failure mechanism of slopes under 

transient intense rainfall events (Lan et al. 2003). In contrast, erosion is usually associated 

with long-term rainfall events and is not considered in this thesis.  

The effect of the increase of the pore water pressure depends on the location of 

the ground water table: in the unsaturated zone, the infiltrated rainwater can reduce the 

matric suction of the soil mass (Fredlund 1995), whereas in the saturated zone, the 

increase is caused by a rise of the ground water table that leads to the pore water pressure 

building up with respect to the water depth (Ray et al. 2010). Either effect makes a 

negative contribution to the slope stability.  

For the transient behavior of the infiltration, failure surfaces most often take place 

within the unsaturated zone, since the surficial soil layers are more likely influenced by 

an intense rainfall event (Crosta and Frattini 2003; Zhang et al. 2005; Enrico and 

Antonello 2012). Therefore, for rainfall-induced landslide prediction, the key is to 

establish an appropriate model for representing this type of failure mechanism. In 

addition, the failure surface within the unsaturated zone is often approximately parallel to 

the sloping surface (Dietrich et al. 2007). In response to the rainwater infiltration, the 

time-dependent behavior of the pore water pressure redistribution should also be taken 

into consideration when modeling rainfall-induced landslide. Consequently, to describe 

the infiltration-failure phenomenon as precisely as possible, the entire model should 

include at least three parts, the rainfall, the infiltration and the slope stability model.  

Hitherto, most relevant studies focused on the latter two parts for studying the 

slope stability in function of time. A series of research studies have been performed in 

recent years, and both analytical and numerical solutions are available (e.g. Borga et al. 

1998; Iverson 2000; Muntohar and Liao 2010; Enrico and Antonello 2012). However, in 

order to analyze the slope stability in real time scale and to enhance real time decision 

making for mitigating losses, the three parts should ideally be integrated into a single 

model. In the literature, only a few studies have combined the three models to describe 

the rainfall-induced landslide as a systematic process (e.g. Cho and Lee 2002; Zhang et al. 

2005; Huang et al. 2013; Cho 2014). 
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According to the limit equilibrium method, slope failure occurs when the driving 

forces exceed the resistance forces. The ratio of resistance forces over driving forces is 

termed factor of safety (!"). Hence, the slope is no longer stable once !" is less than 

unity (e.g. Griffiths 2011). To some extent, the limit equilibrium method regards the soil 

mass as a rigid body until it reaches the ultimate stress and starts to move towards the 

downslope. Therefore, the slope stability analysis with limit equilibrium methods is 

suitable for slopes with nearly no movement before a “sudden” failure. 

It should be pointed out that in reality soils behave as elastic-plastic materials. In 

most cases, slopes usually form large cumulative deformations before a catastrophic 

failure event. This phenomenon has been verified both in the field and in controlled 

experiments (Petley 2004; Orense et al. 2004). However, modeling of progressive slope 

failure is intricate, and the advantage of the limit equilibrium method is its simplicity and 

efficiency. It is often employed for identifying the state of soil slopes regardless of soil 

deformation. As an efficient estimation method, this approach has been found wide 

application in slope stability analysis.  

For slope stability analysis, it is often reasonable to employ an infinite slope 

model with layering parallel to the ground surface to represent subsurface infiltration as 

well as the shallow slope failure mechanism (Iverson 2000; Wu and Abdel-Latif 2000; 

Muntohar and Liao 2010; Santoso et al. 2011! ). Since subsurface infiltration is 

predominately driven by gravitation, the soil slope is often simplified in practice as a 

column subject to one-dimensional flow (Muntohar and Liao 2010; Santoso et al. 2011!; 

Yuan et al. 2013; Yuan et al. 2015!). It can be assumed that the soil slope is governed by 

the vertical infiltration in cases with a relatively small slope angle. In cases with steep 

topography, it is better to assume that infiltration flows perpendicular to the sloping 

surface  (Chen and Young 2006; Enrico and Antonello 2012).  

The type of “sudden” effect failure considered in this study is the one caused by 

the pore water pressure building up during the rainwater infiltration process. In order to 

capture the time-dependent behavior of slopes, it is necessary to simulate the infiltration 

process. One possibility is to apply the Green and Ampt model (1911) for modeling one-
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dimensional saturated flow through the homogeneous coarse soil (Muntohar and Liao 

2010; Dou et al. 2015). However, the classical model needs to be modified for cases with 

heterogeneous soil, such as multi-layered soils. Another approach is to apply the solution 

of Richards equation, which can make more accurate evaluation for either one or two 

dimension infiltration cases (Chen and Young 2006; Enrico and Antonello 2012). The 

latter method can approach both saturated and unsaturated flow within the soil layers. In 

this work, the performance of both models is investigated. 

According to the Green and Ampt model (1911), a well-defined wetting front 

separates the soil column into two parts, the saturated and unsaturated zones. The water 

flow advances like a piston flow through the soil column pulling down by the suction 

head at the wetting front. The infiltration process in the multi-layered soil is modeled by 

assuming that the flow rate remains constant within the wetted zone during the 

infiltration process (Chu and Marino 2005; Liu et al. 2008). The classical model can then 

be extended for application to the case with multi-layered soils. However, the extended 

Green and Ampt model still has some limitations. For instance, this model is only valid 

for the case subjected to non-stop and sufficiently large precipitation. Otherwise, the 

explicit ordinary difference equation (ODE) takes on a more sophisticated form whose 

solution is less straightforward.  

Richards equation (1931) involves two dependent variables, the pressure head and 

the volumetric water content. The relationship is often described by the Van Genuchten 

model (1980). By solving Richards equation, one obtains the complete time-dependent 

behavior of the pore water pressure redistribution throughout the infiltration process. 

Since the governing equation is highly nonlinear, it is difficult to solve it analytically. 

Numerical solutions are available, e.g. by application of the finite difference, finite 

element and finite volume method; and are implemented in open source and commercial 

software, e.g. HYDRUS-1D or Seep/W (Šimůnek et al. 2009). Compared to the Green 

and Ampt model, an advantage of this model is that it can deal with arbitrary 

precipitation boundary conditions other than the assumption of a sufficiently large. 

Moreover, the solution of Richards equation provides more accurate and reliable 

information about the pore water pressure redistribution within the unsaturated zone. In 
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short, the application field of Richards equation (1931) is wider, yet it is computationally 

more costly than the extended Green and Ampt model (Yuan et al. 2013). 

The temporal distribution of rainfall can be idealized by a uniform, triangle or 

other deterministic shape as shown in Figure 1.1 (Zhang et al. 2005; Yeh et al. 2008; 

Huang et al. 2013; Ali et al. 2014). These rainfall models are usually parameterized by 

the rainfall intensity and duration (Menabde and Murugesu 2000). For the extended 

Green and Ampt model, the non-stop rainfall event can be represented by a rainfall event 

with sufficiently large intensity; for Richards equation, the prescribed precipitation can be 

applied at the upper boundary.  

 

Figure 1.1 Two typical idealized rainfall events, in which !! is the rainfall duration and !! is the 

average rainfall intensity 

A time-dependent slope stability model is then established based on the adopted 

models for the slope stability assessment, temporal rainfall distribution and rainwater 

infiltration. The input and output of the entire model are rainfall events and the slope 

stability. The state of soil slopes can be expressed as a temporal function of the factor of 

safety. However, the physical input parameters of the model, such as the properties of the 

soil mass and rainfall patterns, are highly uncertain. For instance, the strength and 

hydrogeological parameters of the soil vary randomly in space (Vogel et al. 2000; Zlotnik 

et al. 2007). Therefore, deterministic parameters are insufficient for analyzing and 

understanding the variability of soil slopes. Many applications based on the deterministic 
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slope stability model merely reflect one possible state of the soil slope and fail to take all 

possible states into account. In proper slope stability assessment, the uncertain nature of 

input parameters is accounted for through performing a slope reliability analysis. 

Thereby, the safety of the slope is assessed through the probability of slope instability, 

known as probability of failure.  

Input uncertainties can be classified into uncertainties in time and space, modeled 

respectively by random processes and random fields. These two types of uncertainties are 

discussed in the following.   

Hydrogeological parameters are highly heterogeneous, even within a lithological 

zone that appears to be homogeneous, due to the inherent variability of the soil formation 

process (Phoon and Kulhawy 1999; Vogel et al. 2000). Such spatially variable quantities 

are commonly modeled by continuous random fields. Recent studies that applied random 

field theory to model the soil permeability have shown that the spatial variability of 

permeability has significant influence on the stochastic behavior of slope stability 

(Santoso et.al. 2011!; Yuan et.al. 2015!). 

In this thesis, the inherent vertical variability of two hydrogeologic parameters is 

included in the analysis with the extended Green and Ampt model: saturated hydraulic 

conductivity and suction head. These two parameters are modeled as one-dimensional, 

stationary, and cross-correlated random fields. Continuous random fields consist of 

infinite number of random variables and their numerical treatment requires their 

discretization into a finite number of random variables. Through discretization of the 

random fields, the soil column is represented by a multi-layered system with uniform 

values in each layer, which are described by correlated random variables (Li and Der 

Kiureghian 1993).  

Temporal uncertainty is associated mainly with precipitation. Deterministic 

approaches to model precipitation work well for simulating short time periods or extreme 

rainfall events, yet do not reflect the stochastic nature of the rainfall patterns. A more 

realistic representation of the effect of rainfall on the reliability can be obtained through a 

random process modeling of rainfall events (Menabde and Murugesu 2000; Onof et al. 
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2000). The parameters of the random process model can be estimated from rainfall data. 

Characteristic rainfall patterns from the region of interest can be obtained through 

simulating the random rainfall process.  

 In the analysis with Richards equation model, we assess the reliability of infinite 

slope subject to random rainfall events and account for the spatial variability of soil. We 

model the rainfall event by a self-similar random process (Menabde et al. 1997; Menabde 

and Murugesu 2000). We also apply a one-dimensional statistically homogeneous random 

field to describe the spatial variability of the saturated hydraulic conductivity (Santoso et 

al. 2011!; Yuan et al. 2015!; Yuan et al. 2015!).  

The failure criterion of the slope is modeled by the factor of safety concept for 

both models, which implies a linear Mohr-Coulomb yield surface. The probability of 

failure is then evaluated with reliability methods, e.g. approximation methods such as the 

first order reliability method (FORM) or simulation techniques based on the Monte Carlo 

method (Ditlevsen and Madsen 1996; Lemaire 2009). For each realization of the rainfall 

pattern and saturated hydraulic conductivity, the pore water pressure with respect to the 

time and depth is obtained by a numerical solution of Richards equation. The stability 

analysis is evaluated by substituting the pore water pressure into the equation of the 

factor of safety for the infinite slope failure model.  

Efficient estimation of the probability of failure in relatively high dimensional 

problems can be achieved by application of Subset Simulation (Au and Beck 2001). 

Subset Simulation is an adaptive Monte Carlo method that estimates probabilities of rare 

events efficiently independent of the number of random variables. This is achieved by 

expressing the rare event as an intersection of more frequent events that are estimated by 

application of Markov chain Monte Carlo (MCMC) sampling (Papaioannou et al. 2015). 

From a practical point of view, the prior hypothesis on the stochastic description 

of uncertain input greatly depends on initial site investigations. This process is often 

constrained by limited information collected from the field and hence it is difficult to 

ensure whether the original description is in accordance with the real distribution of soil 

properties. The stochastic description of the soil properties can be updated with new data 



 

 8 

through application of Bayesian analysis (e.g. Beck and Katafygiotis 1998). Pressure and 

deformation data is often collected by means of remote sensing technology during the last 

decades (Tofani et al. 2013). In Bayesian analysis, data is described by the likelihood 

function. The distribution of the soil properties conditional on the data can be obtained by 

application of Bayes’ rule, which states that the posterior distribution is proportional to 

the product of the prior and the likelihood function.  

Samples from the posterior density can be obtained by application of MCMC 

methods (Beck and Au 2002; Straub and Papaioannou 2014). An alternative approach is 

to transform the Bayesian updating problem to an equivalent reliability problem. This 

approach, termed Bayesian Updating with Structural reliability methods (BUS) allows 

application of methods developed for structural reliability analysis for sampling the 

posterior distribution (Straub and Papaioannou 2015). In this study, the BUS approach 

with Subset Simulation is applied to sample the distribution of the hydrogeological 

properties of the soil slope conditional on pressure data. 

The general framework of this thesis is illustrated in Figure 1.2. The time-

dependent model will be presented in Chapter 2. Modeling uncertainty will be presented 

in Chapter 3. Chapter 4 interprets the basic theory of reliability analysis and Chapter 5 

discusses about the Bayesian updating algorithm. Subsequently, a numerical example will 

be present and results will be discussed in Chapter 6. Finally, the conclusion is reached in 

Chapter 7, together with a discussion and an outlook on future work. 
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Figure 1.2 Flow chat of the approach developed in this thesis, in which !! is the saturated hydraulic 
conductivity; ! is the suction head; !! is the pore water pressure; !" is the factor of safety; !! is the 

probability of failure. 
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Chapter 2 1D-infiltration-failure model 

Infiltration significantly influences the pore water pressure redistribution within surficial 

soil layers (Enrico and Antonello 2012) and hence the stability of soil slopes. The 

infiltration-failure model is widely applied to evaluating the slope stability subjected to 

rainfall events (e.g. Zhan and Ng 2004; Lu and Godt 2008; Chae et al. 2015). This study 

focuses on failure events triggered by 1D flow (Muntohar and Liao 2010; Dou et al. 

2015), since the rainwater flow is predominantly driven by gravity and it mainly forms a 

one dimensional flow in hillsides unless the topography is too steep. Additionally, the 

infiltration process is highly time-dependent. It is therefore of interest to capture its 

influence on the slope stability by establishing the 1D-infiltration-failure model.  

To model the rainwater infiltration through heterogeneous soils, two approaches 

are examined. The first is based on an extension of the classical Green and Ampt model 

(Green and Ampt 1911) for the multi-layers case. The second is based on the numerical 

solution of the Richards equation (Richards 1931; Fred 2011), which is a common 

approach for modeling infiltration in heterogeneous soils (Iverson 2000; Santoso et al. 

2011! ). The accuracy of the former model is examined in Annex B, through a 

comparison with the latter (more accurate) model based on Richards equation.  

Soil failure in this thesis is modeled according to the limit equilibrium method 

(e.g. Zhang et al. 2005; Santoso et al. 2011!). It should be pointed out that, the 

progressive failure event is often triggered by the soil deformation (e.g. Petley et al. 

2005). However, accurate modeling of this phenomenon would require a full mechanical 

analysis of the slope, which is beyond the scope of the 1D model developed in this 

chapter.   

2.1 Failure model based on limit equilibrium method 

According to the limit equilibrium method, a slope failure along a certain slip surface 

occurs if the driving stress exceeds the resistance in this layer. The resistance is 
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determined by application of the Mohr-Coulomb failure criterion, which is widely used 

for estimating the allowable shear stress within soils. The driving stress of slopes is due 

to the weight of overlaying soils. Considering the influence of the pore water pressure, 

the stability of the slope is expressed by the factor of safety (!"), which is defined as the 

effective resistance divided by driving stress.  

2.1.1 Mohr-Coulomb failure criterion 

The Mohr-Coulomb failure criterion describes the linear relationship between shear 

strength of the soil and the effective applied normal stress [see Fig. 2.1(!)]. It reads 

(Terzaghi et. al. 1996): 

 !! = !! + !!! !"#!! (2.1) 

in which !′ is the effective cohesion of soil mass; !′ is the effective friction angle of soil 

mass, !!!  is the effective normal stress, defined as !!! = !! − !!. Here, !! is the normal 

stress and !! is the pore water pressure.  

It is known that the soil strength depends on the shear stress. The limit 

equilibrium method refers to a limit state of soil mass, in which the shear stress ! reaches 

the failure value !! under a given effective normal stress !!!  and which is assumed to 

initiate deformations at the slip surface. The soil mass is regarded as a rigid body until it 

fails. Therefore, the limit equilibrium method provides a straightforward way to identify 

the soil state, namely stable or non-stable, regardless of the strain within the soil mass. 

According to the limit equilibrium method, the failure value of the soil mass !! is 

assumed equal to the peak value !!, i.e. !! = !!. However, laboratory tests have shown 

that this failure condition is not entirely realistic. In fact, the catastrophic failure event 

might occur far away from this peak value !! during the post peak phase before the 

residual shear stress !! is reached, with !! < !! [see Fig. 2.1(!)]. It should be pointed 

out that the ultimate value of shear strength also relies on the strain of soil mass. The 

principle of this progressive failure mode is sophisticated and somewhat non-

conservative, e.g. strain-softening mode (Zhang et al. 2013). Considering the large 
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uncertainties in natural geological condition, it is reasonable to make the conservative 

assumption in engineering design. Due to this reason, the limit equilibrium method is still 

commonly employed for slope stability analysis (Ugai and Leshchinsky 1995). 

 
 

(!) Mohr-Coulomb failure criterion (!) Real stress-strain relationship of the soil 

Figure 2.1 Failure modes of the soil, in which ��represents the pre-peak phase and ��represents the post-

peak phase in figure (!). 

2.1.2 Infinite slope model 

An infinite slope model represents a simplified natural slope bounded by a stress-free 

surface (Iverson and Major 1986). This semi-infinite body is often combined with one-

dimensional or two-dimensional seepage models (e.g. Iverson 2000; Chen and Young 

2006) for analyzing slope stability (e.g. Muntohar and Liao 2010) or movement problems 

(e.g. Conte and Troncone 2012). In general, the depth of soil slope is relatively small in 

comparison with the length of sloping surface (Iverson 2000). Therefore, the infinite 

slope is often applied to represent shallow slope failure mechanism of hillsides in cases 

with gentle inclination angle.   

Each potential slip surface along the depth of the soil profile can be reasonably 

assumed parallel to the ground surface, since this corresponds to the common behaviour 

of real shallow slope failures (Conte and Troncone 2012). The critical slip surface is 

found among all potential slip surfaces as the one whose factor of safety has the 

minimum value. This concept can be further applied to the stability evaluation of slopes 

in multiple soil layers.  
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Rainwater infiltration often has a significant influence on the pore water pressure 

redistribution within surficial soil layers of slopes. Therefore, the critical slip surface is 

most likely to be located at shallow depths (Enrico and Antonello 2012). We thus 

concentrate on the unsaturated zone of soil slopes and ignore the initial ground water 

table prior to rainfall infiltration.  

A slice with unit width can be abstracted from the infinite slope model and used 

to represent the entire semi-infinite sloping body. Typically, there are two fundamental 

ways to obtain the unit slice: the boundary of two sides is either taken in the vertical 

direction (e. g. Griffiths et al. 2011) or perpendicular to the sloping surface (e.g. Chen and 

Young 2006; Conte and Troncone 2012). Figure 2.2(!) illustrates an infinite slope model 

and (!) and !  show the two types of unit slices taken from the infinite slope.  

In the following, the unit slice is taken with vertical boundaries. The forces acting 

on the side boundaries can be ignored, since their values are approximately equal and can 

be eliminated during the computation, i.e. ! = !! [see Fig. 2.2(!) and (!)]. The applied 

normal force ! on the potential slip surface equals the projection of the gravity of the 

unit slice perpendicular to the potential slip surface, i.e. ! = !" cos! [see Fig. 2.2(!)], 
in which ! is the average unit weight of the soil mass above the slip surface and ! is the 

slope  inclination. A potential slip surface can be defined at any depth within the range 

! ∈ [0,!] and !! ∈ [0,!cos!], respectively. It is assumed that the change of unit weight 

of soil mass ! during the rainwater infiltration is negligible. Taking the contribution of 

the pore water pressure during the rainwater infiltration into account, the effective normal 

stress at the potential slip surface at depth !  is obtained as !!! = !" cos! ! − !! . 

Substituting into Eq. (2.1), namely utilizing the linear Mohr-Coulomb failure criterion, 

one can obtain the resistance stress ! [see Fig. 2.2(!) and (!)]: 

 ! = !! cos! ! − !! tan!! + !! (2.2) 

Following Figure 2.2!, the deepest potential slip surface is located at depth ! in 

the vertical direction !. The downslope driving stress is caused by the soil gravity, i.e. the 

projection of the soil gravity along the slip plane: 
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 ! = 
!"!"#!

!
!"#!

 = !!sin!cos! (2.3) 

 

 (!) Infinite slope model: � and ��are two ways to take one unit slice, and the corresponding mechanical 

analysis is presented in (!) and (!), respectively. 

  

(!) One unit slice with vertical boundaries. (!) One unit slice with boundaries perpendicular to 

the ground surface. 

Figure 2.2 Unit slice in an infinite slope. 

The soil shear strength in the slip surface is a function of the effective cohesion !′, 
the effective friction angle !′, and the pore water pressure !!. The factor of safety of a 

homogeneous slope is defined as the ratio between resistance force and driving force (e.g. 

Griffiths et al. 2011): 

 !" = 
!
! = !! !"#

! !!!! !"#!!!!!
!"!"#!!"#!   (2.4) 

Let !′ be the axis perpendicular to the sloping surface (see Fig. 2.2!). It is 

!′ = !cos!. Replacing ! with !!/cos! in Eq. 2.4 , one can obtain the factor of safety 
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for the unit slice whose boundaries are perpendicular to the slope surface (Fig. 2.2c): 

 !" = 
!!! !"#!!!! !"#!!!!!

!!! !"#!  (2.5) 

 The stability of infinite slopes is governed by the critical slip surface, whose 

factor of safety has minimum value among all potential slip surfaces. Thus, when 

performing slope stability analysis it is necessary to search for the location of the critical 

slip surface. 

The slope is considered unstable if !" is smaller than unity. In principle, the limit 

equilibrium method regards the soil mass as a rigid body until it reaches the ultimate 

strength, at which point it is assumed to move very fast towards the downslope. The 

method does not provide any information about the soil deformation. Therefore, the slope 

stability analysis by means of the limit equilibrium method is suitable for cases where 

failure is caused by a “sudden” effect. 

A “sudden” effect in cases of rainfall-induced landslides can occur due to the pore 

water pressure building up. The pore water pressure redistribution throughout the rainfall 

infiltration process causes the effective stress within the soil slope to vary with time, 

which is the reason for the time-dependent behavior of the slope stability during rainfall 

events. This has been addressed in recent studies (Zhang et al. 2005; Muntohar and Liao 

2010).  

2.2 1D infiltration-failure model 

The Green and Ampt model (1911) and Richards equation (1931) are commonly applied 

to simulate water infiltration. In particular, the Green and Ampt model can be used for 

solving one-dimensional problems, whereas Richards equation can model infiltration in 

1D, 2D or 3D (e.g. Iverson 2000; Fred 2011; Wu et al. 2012). The classical Green and 

Ampt model (1911) is only suitable for a homogenous soil stratum, yet Richards equation 

(1931) can be applied to either homogenous or heterogeneous soils. Considering the 

infinite slope model described in Section 2.1.2, the rainwater flow is subjected to the side 
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boundaries of the unit slice, forming the downslope seepage. The inflow and outflow 

through one unit slice due to the downslope seepage is nearly the same and can be 

neglected. That is, it is reasonable to assume the rainwater merely forms one dimension 

flow within infinite soil slopes unless the topography is too steep. Thus, this section will 

focus on the application of the Green and Ampt model and Richards equation for the one 

dimensional flow, particularly for the multi-layer case. 

2.2.1 Extended Green and Ampt model 

The Green and Ampt (1911) assumptions are utilized to simulate the rainwater infiltration 

process. They state that the vertical infiltration of rainwater causes a well-defined wetting 

front (see Fig. 2.3). Above the wetting front, the soil is assumed to be fully saturated 

while below the wetting front it continues to have its initial moisture content !!. Note 

that these assumptions are mostly applicable to highly permeable soils such as gravel or 

sandy soils, subjected to intense rainfall events (Chu and Marino 2005). In this section, 

we first look into the classical Green and Ampt model, which is only valid for 

homogeneous soils. Subsequently, the extended model will be presented based on the 

fundamental assumptions of the classical Green and Ampt model.  

 

Figure 2.3 Classical Green and Ampt model, in which ℎ! is the depth of the ponding water; ! is the depth 

of the wetting front; ! is the suction head; !! is the initial water content; !! is the saturated water content. 

The basic assumption of the Green and Ampt model implies a piston flow within 

the soil column instead of the real wetting front (see Fig. 2.3). The water deficit ∆! is 

defined as an increase from the initial water content !! to a saturated water content !!, i.e. 
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 ∆! = !! − !! (2.6) 

Typically, the water flow is perpendicular to the ground surface. Let ! be the 

cumulative infiltrated volume. Intense and uninterrupted rainfall events provide sufficient 

infiltration volume and hence for the piston flow one could obtain 

 ! = ! ∙ ∆! (2.7) 

in which ! is the depth of the wetting front. Considering the ponding water above the 

ground surface, the hydraulic head at the wetting front can be expressed as: 

 ℎ = ℎ! + ! + ! (2.8) 

in which ℎ! is the depth of ponding water, ! is the suction head at the wetting front. 

Ignoring the depth of ponding water, i.e. setting ℎ! = 0, the vertical hydraulic gradient at 

the wetting front can be written as 

 ! = 
!!
!" = − !!!

!  (2.9) 

The infiltration rate of rainwater is defined as the time derivative of the 

cumulative infiltrated volume. Requiring that the one dimension flow obeys Darcy’s law, 

the governing equation reads: 

 
!"
!"  = ! = −!!! (2.10) 

in which !! is the saturated hydraulic conductivity. 

 Substituting Eq. (2.9)  into Eq. (2.10) , and knowing from Eq. (2.7)  that 

! = !/∆!, the governing equation for one dimension flow yields, 

 !(!) = 
!"
!"  = !! 1 + !∆!

! !  (2.11) 

in which !(!) is the infiltration rate at time !. Taking the integral on both sides, one can 

obtain the cumulative infiltration volume ! as an implicit function of time,  
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 ! ! = !!! + !∆!ln[1+ 
! !
!∆!] (2.12) 

 Therefore, both the infiltration rate ! and the cumulative infiltration volume ! can 

be computed interactively by a numerical procedure in a step-wise manner, for example 

(e.g. Muntohar and Liao 2010), 

 ! ! + ∆!  −  ! ! = !!∆! + !∆!ln[1+ 
! !!∆!  ! ! !
!∆!!! ! ] (2.13) 

in which ∆! is the computational time step. This implicit function is solved iteratively 

through forward difference scheme and it will be applied to the programming. 

 The classical Green and Ampt model has the following three limitations, which 

limit its application to practical situations: (1) Vertical flow is applied to the case with 

the horizontal distributed soil layer (see Fig. 2.3), but it is unclear how to define the flow 

path in an inclined slope. (2) The upper boundary of the infinite slope is subjected to a 

non-stop intense rainfall event. (3) This model is suitable for the homogeneous case, an 

extension is needed for applying it to multi-layered soils. Particularly, addressing the last 

limitation is vital to develop the model in this study. Further assumptions of the Green 

and Ampt model will be presented and discussed in the following section. 

The first issue was addressed by (Muntohar and Liao 2010) who proposed the 

following modified Green and Ampt equation, applicable to inclined ground surfaces: 

 ! ! = !!! + 
!∆!
!"#! ln[1+ 

! ! !"#!
!∆! ] (2.14) 

Consider using the first way to attain the unit slice of infinite slope [cf. Fig. 

2.2(!)], that is, vertical infiltration is assumed, since the rainwater is predominantly 

driven by gravity. The difference between the vertical flow and the water flow normal to 

the ground surface is rather small when topography is not too steep [compare Eq. (2.12) 

and (2.14)]. Therefore, if the inclination angle ! is small, i.e. cos! ≈ 1, Eq. (2.14) is 

approximately the same as Eq. (2.12). 
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The second limitation described above is not critical here, as the developed 

extended Green and Ampt model mainly focuses on non-stop intense rainfall events and 

effective drainage (no ponding above slope surface), during which it is assumed that the 

rainfall intensity is larger than the infiltration capacity and the pore water pressure at the 

slope surface is equal to zero (see Fig. 2.4). It should be pointed out that, this model can 

also be extended to address cases with unsteady (variable) rainfall intensity (Chu and 

Marino 2005; Liu et al. 2008).  

 

Figure 2.4 Infiltration process on the unit slice based on Green and Ampt assumptions, in which ! is 

the slope angle; ! is the suction head; !! is the initial water content; !! is the deficit between saturated 

and the initial water content; !! is the saturated water content. 

Consider the case where a single soil column is discretized to a multi-layered soil 

(see Fig. 2.4). The soil column is divided into a number of equal-thickness layers with 

varying saturated hydraulic conductivities and suction heads. This method will be further 

discussed in Chapter 3. The classical Green and Ampt model cannot handle such a multi-

layer soil. To address this limitation, we assume that the wetting front development takes 

place in a step-wise manner for approaching the multi-layered case, whereby the wetting 

front advances by one layer in each computational time step; i.e. in step ! the wetting 

front is exactly located at the bottom of the !th layer (Fig. 2.4). For simplicity, the initial 

moisture content !! and soil porosity !! are considered to be constants within the unit 

slice (see Fig. 2.3 and 2.4). 
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According to the Green and Ampt assumptions, the wetting front is pulled down 

by the suction head ! (see Fig. 2.4). Based on Eq. 2.9 , the hydraulic gradient ! from the 

ground surface to the wetting front at layer ! in the vertical direction is: 

 !! = ∇ℎ! = − !!
!!
= − !!!!!

!!
  (2.15) 

where !! is the depth of the wetting front at the bottom of the layer !;  !! is the suction 

head at the wetting front. One can then evaluate the infiltration rate !! via Darcy’s law as: 

 !! = −!!"",! ∙ !! (2.16) 

where !!"",!  is the effective vertical saturated hydraulic conductivity, which for a 

heterogeneous field is averaged with the harmonic mean of the vertical saturated 

hydraulic conductivities at the soil layers within the wetted zone (Freeze and Cherry 

1979): 

 !!"",! = 
!

!
!!

!
!!!

 (2.17) 

in which !! is the saturated hydraulic conductivity of the wetted discretization layer !. 
This equation results in an approximation of the infiltration process in cases where the 

permeability increases with depth. The approximation error when modeling multi-layered 

soils with variable permeability is expected to be small if deep soil layers with low 

permeability have similar values of saturated hydraulic conductivity to the effective 

hydraulic conductivity !!""  of the wetted zone. The cumulative infiltration will be 

governed by the infiltration capacity and can be obtained as: 

 !! = !"!!
! = ∆!

!!
!"!!

!  (2.18) 

Eq. (2.18) can be evaluated numerically by substituting the integral with a 

summation over the wetted discretization layers as: 

 !! = ∆! ∙ ∆! ∙ !
!!

!
!!!  (2.19) 
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where ∆!  is the thickness of each layer and !!  is the flow rate at the ! th wetted 

discretization layer. Through Eq. (2.19) one has a direct relationship between time and 

the wetting front development. 

The pore water pressure enters the definition of the factor of safety [see Eqs. (2.4) 

and (2.5)] and therefore the slope stability exhibits time-dependent behavior due to a 

change in pore water pressure during the infiltration process. The following introduces 

the computation strategy for calculating the pore water pressure redistribution. 

 The pore water pressure buildup within the wetted zone varies with time and 

space, depending on the spatial variability of the saturated hydraulic conductivity and 

initial suction head. In this section, an extension of the Green and Ampt model is derived 

that allows for estimation of the pore water pressure distribution in multi-layered soil 

profiles. The model is based on the following assumption, which was also used in (Chu 

and Marino 2005, Liu et. al. 2008, Ma et al. 2010). Due to flow continuity, the effective 

flow rate of the wetted zone ! computed by Eq. (6) is assumed to be equal to the flow 

rate at each wetted layer, i.e. 

 !! = !! = ⋯ = !! = ⋯ = !! (2.20) 

where !! is the flow rate at wetted layer !, computed by 

 !! = −!! ⋅ !! = !! ⋅ 
∆!!
∆!  (2.21) 

Here, !! is the hydraulic gradient of layer ! and Δℎ! represents the change of hydraulic 

head within the !th layer. Rearranging Eq. (2.21), one obtains: 

 ∆ℎ! = 
!!
!!

 ∙ ∆! (2.22) 

At the bottom of the !th wetted layer, the hydraulic head ℎ!  is calculated by 

summing the incremental heads ∆ℎ! over all wetted layers ! ≤ !: 

 ℎ! = ℎ! − ∆ℎ!!
!!!  (2.23) 
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in which ℎ! is the boundary hydraulic head at the top of the wetted zone, which is ℎ! = 0 

as the ponding is neglected (see Fig. 2.4). Since the hydraulic head ℎ! consists of the 

pressure head !! and the elevation !!, the pressure head at the bottom of !th layer is 

evaluated as: 

 !! = ℎ! − !! (2.24) 

The pressure head at the wetting front is equal to the suction head, i.e. it holds 

!! = !!. The pore water pressure at the depth !! can be computed as !!(!!) = !! ⋅ !!, 
where !! is the unit weight of water. Based on these parameter values, the pore water 

pressure distribution within the wetted zone can be computed.  

One of most important advantages of the extended Green and Ampt model is its 

computational efficiency compared to the numerical solution of the Richards equation, 

presented in Section 2.2.2. Moreover, the time-dependent behaviour of soil slopes can be 

described in function of the wetting front development, which bridges time and the slope 

stability. Generally, the wetting front development reflects the influenced region with 

respect to time. Hence, based on the computation results one could visually understand 

the change of the slope stability due to the extension of wetted zone during the infiltration 

process. Nevertheless, the shortcoming of this model is the accuracy for evaluation of the 

pore water pressure redistribution in multilayer slopes, since the assumption of a clear 

wetting front is only valid for coarse soils (see Annex B).  

2.2.2 Richards equation 

The Richards equation (Richards 1931) describes the unsaturated flow through pore 

medium, such as soil layers. The infiltration flux of rainwater through a homogenous soil 

layer obeys Darcy’s law,  

 ! = −! ∙ ∇! (2.25) 

in which ! is the vector of hydraulic head; ∇ is the gradient operator and in the case of 

one dimensional flow ∇! = !!
!!! [we use second strategy to abstract the unit slice, see Fig. 
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2.2(!) and (!)]; ! is the hydraulic conductivity of a given soil type. To simulate the 

unsaturated flow, ! is regarded as a variable during the wetting and drying process even 

within the homogeneous soil column.  

The infiltration rate ! is equivalent to the change of moisture content ! in time 

scale [compare with Eq. (2.10)], that is, 

 ! = 
!!
!! = −∇! (2.26) 

Combining Eqs. (2.25) and (2.26) and considering the spatial variability of the 

hydraulic conductivity ! , the classical three dimensional Richards equation can be 

written as: 

 
!!
!!  = ∇ ∙ (! ∙ ∇!) (2.27) 

in which ! is a vector of hydraulic conductivity, namely ! = !!!. This conservation 

formula indicates that the moisture content !, hydraulic conductivity !, and hydraulic 

head ! have the certain functional relationship with respect to the time and space (e.g. 

Van Genuchten 1980).  

The pore water pressure redistribution within the soil slope is mainly influenced 

by vertical infiltration rather than by horizontal flow (Santoso et al. 2011!). Vertical 

infiltration (direction !!) is modelled in HYDRUS-1D (Šimůnek et al. 2009), which 

applies a one-dimensional flow model. Note that the hydraulic head ℎ can be expressed 

as the sum of the pressure head ! and elevation. In particular, on an inclination plane it is 

ℎ = ! + !!!"#$, in which ! is the inclination angle of the slope [see Fig. 2.2(!)]. The 

governing equation of one-dimension water flow then can be described as a modified 

version of Richards equation (Šimůnek et al. 2009): 

 
!"
!" =

!
!!! [!(  

!"
!!! +cos!)] (2.28) 
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in which ! ∈ !!,!!  is the water content of the soil layer; !! and !! are the water content 

of the soil layer in the very dry and saturated condition, respectively. The input to the 

computation consists of the saturated hydraulic conductivities for each discrete soil layer 

and the rainfall pattern. Consider the entire soil column as unsaturated. The solution of 

HYDRUS-1D provides the pressure head !(!!, !) at each time step ! and at each depth 

!! . Then, the pore water pressure !!(!!, !) is obtained as !!(!!, !) = !!!(!!, !), in 

which !! represents the unit weight of water. 

During the rainwater infiltration process, the pore water pressure !! varies with 

time ! and depth !! within the soil. Because !! = !!!, it follows that ! also varies with 

!! and ! as !(!!, !) = !! !!,!
!!

. 

Since Richards equation is a non-linear partial differential equation, it is often 

difficult to solve it directly, either using analytical or numerical method (e.g. Zhan and 

Ng 2004; Fred 2011). The general idea for solving the Richards equation is to find an 

appropriate model to describe the relationship among the aforementioned three 

parameters. In the following, we discuss how to approach the hydraulic conductivity ! 

by means of Gardner (1958) and Van Genuchten (1980) formulations.  

The hydraulic conductivity at certain depth !! is given by: 

 !(!, !!) = !!(!)!!(!!)                 (2.29)  

in which !!(!!) is the saturated hydraulic conductivity and !! ∈ [0,1] is the relative 

hydraulic conductivity. Notice that, the relative hydraulic conductivity also depends on 

the depth of the soil, yet here we assume the relative hydraulic conductivity merely 

depnds on the hydraulic head, denoted by !!(!). According to the simplified exponential 

model proposed in (Gardner 1958), !!(!) can be expressed as: 

 !!(!) = !!!"                 (2.30)  

in which ! is emprical parameter based on a given soil type. Another more sophisticated 

model was developed in (Van Genuchten 1980) based on the assumption of Brooks and 
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Corey (1964). The so-called Van Genuchten model expresses the relative hydraulic 

conductivity as follows:  

                                    !! ! =
{!! !|!| !!![!!(!|!|)!]!!}!

[!!(!|!|)!]!/! ,       ! ≤ !!
1,       ! > !!

                 (2.31)  

in which !, !, ! are empirical parameters that depend on the soil type (Rawl et. al. 

1982), with ! = 1− 1/!; !! is the air-entry value. Figure 2.5 illustrates the relationship 

between the relative hydraulic conductivity and the pressure head for different values of 

the parameters ! and !. It is assumed that there is no hysteresis during the wetting and 

drying process of the water flow. The sandy soil is represented by values ! = 0.145cm!! 

and ! = 2.68, and the silty soil by values ! = 0.00423cm!! and ! = 2.06. Moreover, 

the air-entry value is assumed zero in this study, i.e. !! = 0. Figure 2.5 represents the 

transition between saturated and unsaturated flow throughout the infiltration process. The 

pressure head is nearly the same for both soils when the saturated flow occurs, i.e. when 

!! = 1. When the relative hydraulic conductivity !! is close to zero, the pressure head 

reaches a minimum value, which corresponds to the dry condition of the soil. 

 

Figure 2.5 Relative hydraulic conductivities in terms of pressure head for silty and sandy soils, the 

parameters are given by ! = 0.00423cm!!, ! = 2.06  and ! = 0.145cm!!, ! = 2.68 , respectively 

(Šimůnek 2009). 
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 Richards equation can be solved analytically (Iverson 2000; Fred 2011) or 

numerically (Zabra et al. 1990; Šimůnek 2009). An analytical solution of Richards 

Equation can only be obtained under certain conditions. To avoid making unrealistic 

assumptions, the numerical solution is more often applied (see Annex A). It should be 

also mentioned that a non-uniform precipitation could be applied as upper boundary in 

the Richard’s equation. The Green and Ampt model can also be applied in case of a non-

uniform rainfall, but one should further modify it and the infiltration rate needs to be 

obtained through application of an iterative procedure, which would increase the 

computational cost. 
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Chapter 3 Modeling uncertainties 

Uncertainties are present in most if not all natural processes. For instance, the soil 

permeability and other soil properties are highly uncertain due to the inherent variability 

of soil (Nilsson et al. 2011; Santoso et al. 2011!) and rainfall events naturally vary 

randomly in time (Menabde et al. 1997). Due to the fact that these uncertainties greatly 

influence the pore water pressure redistribution and hence the slope stability (Yuan et al. 

2015!), it is necessary to account for them in the design and assessment of slopes. 

Uncertainties are typically modeled with the help of probability theory. In particular, 

quantities that vary randomly in space (time) are modeled with random fields (processes). 

This chapter presents the basic theory of random fields and discusses the numerical 

treatment that was adopted in this thesis within the context of slope stability. This chapter 

draws largely upon lecture notes on stochastic finite element method (Papaioannou 

2014). 

3.1 Random variables and random vectors 

3.1.1 Random variables  

As a basic element of the random field theory, a random variable X is defined as a set 

function, i.e. !: ! → ℝ , where !  and ℝ  are the sample and real-valued space, 

respectively. Random variables are often applied to represent uncertain parameters 

subjected to given variations. The space ! and the random variable ! can either be 

discrete or continuous. Discrete random variables can take outcomes from any of a 

specified countable list of values, whereas continuous random variables take 

outcomes from any numerical value in collection of intervals. Define an event 

! = {! ≤ !}, in which ! is the outcome of the experiment. The cumulative distribution 

function (CDF) !!(!)  of the random variable !  is defined as the probability of 

occurrence of the event !. The universal expression for both discrete and continuous 

random variables is: 
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 !! ! = Pr[!] = Pr ! ≤ !  (3.1) 

Eq. (3.1) indicates how the probability of the real event connects to the function 

space. In this thesis we will focus on continuous random variables, because the relevant 

uncertain quantities have continuous sample spaces. The CDF is a non-decreasing 

function and it satisfies that lim
!→!!

!!(!) = 0 and lim
!→!!

!!(!) = 1. In a continuous sample 

space, probabilities of the type Pr[! = !] are zero. Thus, according to Eq. (3.1), the 

probability density function (PDF) of a continuous random variable can be defined as: 

 !!(!) =  lim!"→0
Pr[!<!≤!+!"]

!"  = !!!(!)!"  (3.2) 

Conversely, the CDF can be obtained as:  

 !!(x) = !!(!)!"!
!!  (3.3) 

Since lim
!→!!

!!(!) = 1, the normalization rule reads:  

 !! ! !"!
!! = 1 (3.4) 

Let !(!) be any continuous function of the random variable !. The mathematical 

expectation E[!(!)] is given for a continuous random variable as:  

 E ! ! = ! ! !!(!)!"!
!!  (3.5) 

The mean (expected) value of a random variable can then be defined as:  

 !! = E[!] = !!!(!)!"!
!!  (3.6) 

The ! -th moment !!  and ! -th central moment !!!  of !  are then defined as 

!! = E[!!] and !!! = E[(! − !!)!], respectively. The variance or second order central 

moment, denoted by Var[!], and the standard deviation !! of ! are defined as: 

 Var[!] = E[(! − !!)!] (3.7) 
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 !! = Var[!] (3.8) 

The variance is a measure of the dispersion of a PDF. For random variables with 

non-zero mean value (!! ≠ 0), we can define the dimensionless coefficient of variation 

CV! as: 

 CV! = 
!!
|!!|

 (3.9) 

3.1.2 Random vectors 

A random vector ! is a mapping of the form !: ! → ℝ!, where ! is the dimension of the 

vector. The components of the random vector are random variables, i.e. 

! = [!!,!!,… ,!!]!, where [∙]! denotes the transpose operator. The joint CDF of vector 

X is given by: 

!!(!) = !!!,!!,…,!!(!!, !!,… !!) = !(!! ≤ !! ∩ !! ≤ !!…∩ !! ≤ !!) (3.10) 

In a similar manner as Eq. (3.3), the corresponding joint PDF can be obtained by 

differentiation of the joint CDF as follows: 

 !!(!) = !!!,!!,…,!!(!!, !!,… !!) = 
!!!!!,!!,…,!!(!!,!!,…!!)

!!!!!!…!!!
 (3.11) 

One of the important normalization properties of the joint PDF and CDF is: 

 !!(!)!! = … !!!,!!,…,!!(!!, !!,… !!)!!!!!!…!!! = 1!
!!

!
!!!!  (3.12) 

in which !! = ℝ! and !! = !!!!!!…!!!. The marginal distribution of any random 

variable !!(1 ≤ ! ≤ !) is obtained by integrating the joint PDF over all remaining 

components: 

 !!(!)  =  !!(!)!!!!!"!!  (3.13) 

in which !!!! = ℝ!!! and !!!! = !!!!!!…!!!!!!!!!!…!!!.  
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The conditional distribution of any random variable !! given !! (1 ≤ !, ! ≤ !) 
can be written as: 

 !!!|!! !! !! = 
!!!,!!(!!,!!) 
!!!(!!)

 (3.14) 

We can then express the joint PDF !!(!) by applying a generalized multiplication 

chain rule, if all conditional PDFs are known: 

!! ! =  !!1,!2,…,!! !!, !!,… , !!  

 = !!!|!!,!!,…,!!!!(!!|!!, !!,… , !!!!)…  !!!|!!(!!|!!)!!!(!!) (3.15) 

 Two random variables !! and !! are said to be statistically independent if and 

only if [!!!(!! ≠ 0)]: 

 !!!|!!(!!|!!)  =  !!!(!!) (3.16) 

Eq. (3.16) implies that if !!  and !!  are statistically independent, then 

!!!,!!(!! , !!)  =  !!!(!!)!!!(!!) [see also Eq. (3.14)]. We can then obtain the joint PDF of 

a vector ! of jointly statistically independent random variables as follows: 

 !!(!)  = !!!(!!)!!!(!!)… !!!(!!) = !!!(!!)!
!!!  (3.17) 

Consider a function !(!) of the random vector !. The mathematical expectation 

E[!(!)] is defined in analogy with the definition given in Eq. (3.5) as follows: 

 E[!(!)]  =  !!(!)!!(!)!"!"  (3.18) 

The covariance Cov[!! ,!!]  of the random variables !!  and !!  is defined as 

follows: 

 Cov[!! ,!!]  =  E[(!! − !!!)(!! − !!!)] (3.19) 

The dimensionless correlation coefficient of !! and !! is defined by normalizing 
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the covariance by the standard deviations of the two random variables: 

 !!!,!!  =  !"#[!!,!!] !!!!!!
 ∈ [−1,1] (3.20) 

The covariance and correlation coefficient are measures of the linear dependence 

of two random variables. Two random variables !! and !! are said to be uncorrelated if: 

 Cov[!! ,!!]  =  0 or !!!,!!  =  0 (3.21) 

It can be easily shown that if two random variables are statistically independent, 

then they are also uncorrelated. Notice that the reverse does not necessarily hold. The 

mean value vector !! of a random vector ! is defined as the vector containing the mean 

value of each component random variable, namely !! = [!!! , !!! ,… !!!]!. 

The covariance matrix !!! and the correlation coefficient matrix !!! are square 

symmetric and positive semi-definite matrices, defined as: 

 !!! = {Cov[!! ,!!]}!×! (3.22) 

 !!! = [!!!,!!]!×! (3.23) 

We also define the diagonal matrix !! containing the standard deviation of each 

component random variable, i.e. !! = diag[!!!]!×! . Therefore, the covariance and 

correlation coefficient matrices satisfy the following relation: 

 !!! = !!!!!!! (3.24) 

3.2 Random fields and random processes 

Engineers often use random variables to represent uncertain parameters. Nevertheless, 

random variables are sometimes insufficient to accurately model the stochastic behavior 

of physical parameters. For instance, the spatial variability of permeability within soil 

slopes has significant influence on the rainwater infiltration process with respect to the 

wetting front development. The probabilistic description of such quantities requires the 
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consideration of random fields or random processes (Vanmarcke 1983; Grigoriu 2013). In 

this section, we discuss basic definitions of random processes and random fields and 

introduce strategies for their numerical treatment. It is noted that the fundamental 

definitions for random processes are in analogy to the ones for random fields. They can 

be also in space, e.g. deformation along a cross section. The only difference is that 

random processes represent one-dimensional problems and their time domain of 

definition is [0,∞) (Swain 1984). 

3.2.1 Definitions  

A random field ! !  is applied to modeling spatially variable properties. A random field, 

! !  is defined as collection of random variables indexed by a spatial coordinate 

! ∈ ! ⊂ ℝ! (! = 1,2 or 3), in which ! is the sample domain. For each !! ∈ !, ! !!  is 

a random variable. And for each selection of elements !! , ! = 1, 2,… ,! ∈ !, the vector 

! !! ,! !! ,… ,! !! ! is a random vector.  

Random processes are often applied to capturing the evolution of a collection of 

time-dependent random variables, e.g. temperature, precipitation, moisture, etc. They can 

be understood as a one-dimensional case of random fields, i.e. ! = 1. Thus, in analogy to 

the definition of random fields, the random process ! !  refers to time varying properties, 

in which ! ∈ ! and ! represents a continue set (e.g. Papaioannou 2014).  

The following interpretation focuses on the definition of random field, whereas 

the definition of random processes can be obtained by replacing the random vector ! by 

the scalar !. Notice that, ! can only take non-negative values, namely lower boundary 

starts from zero. Similarly to the definition of random variables, the mean function !!(!) 
of a random field ! !  yields: 

 !!(!) = E[! ! ] = !!!(!)(!, !)!"!
!!         (3.25) 

in which !!(!)(!, !)  is the marginal PDF of !(!) . The mean-square and variance 

functions of a random field !(!) are given by:  
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 E[!! ! ] = !!!!(!)(!, !)!"!
!!         (3.26) 

and 

 Var[! ! ] = !!!(!) = E[!! ! ]− (E[! ! ])!        (3.27) 

in which !!(!) is the standard deviation of !(!). Subsequently, the concept of the second 

moment function or auto-correlation function !!! !!, !!  is defined as the mean of the 

product of two random variables ! !!  and ! !!  for arbitrary !! and  !! ∈ Ω: 

 !!! !!, !! = E[! !! ! !! ]        (3.28) 

 The auto-covariance function !!! !!, !!  is expressed as: 

 !!! !!, !! = !!! !!, !! − !!(!!) !!(!!)        (3.29) 

The auto-correlation coefficient function of !(!) is defined by normalizing the 

auto-covariance function !!! !!, !!  with the standard deviation functions !! and !!, i.e.  

 !!! !!, !! = 
!!! !!,!!

!!(!!)!!(!!)
        (3.30) 

!!! !!, !!  is a symmetric [i.e. !!! !!, !! = !!! !!, !! ], bounded [see Eq. 

(3.20)] and positive semi-definite function, hence −1 ≤ !!! !!, !!  ≤ 1. A random field 

! !  is said to be strictly homogeneous if the random variables [! !! ,! !! ,… ,! !! ] 
and [! !! + ! ,! !! + ! ,… ,! !! + ! ]  have the same joint distribution for any 

!, !!, !!,… , !!  : 

!! !1 ,! !2 ,…,! !! �!!, !!; !!, !!;… ; !!, !!) = 

 !! !!!! ,! !!!! ,…,! !!!! �!!, !! + !; !!, !! + !;… ; !!, !! + !�       (3.31) 

in which ! ∈ ! is an arbitrary quantity. For random processes, this term is only valid for 

the stationary random process. By means of this definition, one could obtain following 

properties of homogeneous random fields or stationary random processes: 
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(1) The mean function !! !  and standard deviation function !! !  are constants; 

(2) The auto-correlation !!! !!, !! , the auto-covariance !!! !!, !!  and the 

auto-correlation coefficient !!! !!, !!  are functions of ! , namely !!! !!, !! →
!!! ! , !!! !!, !! → !!! ! , !!! !!, !! → !!! ! ; 

 (3) The second moment functions R!! !  are symmetric with respect to the 

origin, i.e. R!! ! = R!! −! . 

It should be pointed out that a weakly homogeneous field (weakly stationary 

process) also satisfies the aforementioned conditions, yet the definition of Eq. (3.31) 

holds only for ! ≤ 2.  

3.2.2 One-dimensional correlation model  

Several models have been proposed for the auto-correlation coefficient function of one-

dimensional random fields. These models can be extended to application in higher 

dimensions by adopting the concept of separability (e.g. Papaioannou 2014). One of the 

most commonly used models is the following exponential or Markovian model: 

 ! ! = !−
!
!  (3.32) 

in which ! is the correlation length; ! is the difference between locations, i.e. ! = !! − !!   
where  !!  and !!  are arbitrary locations within the domain of definition of the random 

field. The properties of the auto-correlation coefficient function can be found in the 

previous Section 3.2.1 . A small correlation length indicates fast reduction of the 

correlation coefficient as !  increases and it leads to high variability in the sample 

realizations. In contrast, a large correlation length refers to a strongly correlated field with 

slowly varying sample realizations. A measure of the variability of a random field that is 

independent of the adopted correlation model is the scale of fluctuation ! defined by the 

integral of the autocorrelation coefficient: 

 ! = !!! !! !" (3.33) 
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For the exponential model of Eq. (3.32), the scale of fluctuation can be expressed 

in terms of the correlation length as ! = 2!.  

3.2.3 Gaussian random fields  

A random field ! !  is Gaussian if for any !, !!, !!,… , !!  the random variables 

[! !! ,! !! ,⋯ ,! !! ]  are jointly Gaussian. A Gaussian random field can be 

completely defined by its mean function !! !  and its auto-covariance function !!!, i.e. 

!!! = !!! !! , !! !×!. The marginal PDF of a Gaussian random field is given by: 

 !! !, ! = !
!! ! ∙ !

!!!! !
!! ! = !

!! ! !! ∙ exp − !!!! ! !

!!!! !  (3.34) 

in which ! ∙  is the marginal PDF of the standardized Gaussian random field ! ! , 

defined as: 

 ! ! = 
! ! !!! !

!! !  (3.35) 

The random field ! !  has zero mean and unit standard deviation. The joint PDF 

of the random variables ! !! ,! !! ,⋯ ,! !!  corresponding to any selection of ! 

spatial points is the multinormal PDF given by: 

 !! ! = !
!! !/! !"#!!! !/! ∙ exp − !

! !− !! !!!!!! !− !!  (3.36) 

in which det(∙) is the determinant operator;  !!  is the mean vector of the random 

variables, evaluated as !! = !! !! , !! !! ,… , !! !! ! and !!!  is their covariance 

matrix computed according to Eq. (3.30): 

 !!! = !!! !! , !! !×! = !!! !! , !! !!(!!)!!(!!) !×! (3.37) 

3.2.4 Non-Gaussian random fields and transformation 

Consider a non-Gaussian random field  ! ! . The joint distribution of any random vector 

[! !! ,! !! ,… ,! !! ]! can then be defined by the !-th order CDF of ! ! . Usually 
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an incomplete definition is given by the marginal distribution !! ! !, !! , ! = 1,2,… ,! 

and the covariance matrix !!! = !!! !! , !! !×!. In this case, the joint distribution of 

the random variables can be modeled by the Nataf transformation (Nataf 1962; Liu and 

Der Kiureghian 1986). If the Nataf model is adopted, !(!) can be defined by the 

following transformation: 

 !(!) = !! !
!! [Φ ! ! , !] (3.38) 

where ! !  is a Gaussian random field with zero mean and unit variance and auto-

correlation coefficient function !!! !!, !! . The function !!!(!!, !!) is determined in 

terms of the auto-correlation coefficient function of !(!) !!!(!!, !!) by solving the 

following integral equation iteratively: 

!!!(!!, !!) = ! !! !!! !!
!! !!

! !! !!! !!
!! !!

!! !!,!!,!!! !!, !!!
!!

!
!! !!!!!!(3.39) 

3.2.5 Discretization of random fields 

The discretization of the random field ! !  consists in its approximation by ! ! , where 

! !  is defined by means of a finite set of random variables [!!,!!,… ,!!]. The field 

! !  is expressed as a finite sum of products of the random variables [!!,!!,… ,!!] with 

deterministic functions, i.e.  

 ! ! = !!(!) ∙!
!!! !! (3.40) 

in which !!(!) are the deterministic functions. The choice of !!(!) depends on the 

applied discretization methods. So far, common methods for discretization mainly 

involve three categories: point discretization, average discretization and series expansion 

methods. For instance, midpoint method and Karhunen-Loève expansion belong to point 

discretization and series expansion method, respectively.  

 In point discretization methods, the random field ! !  can be approximated by 

using the random variables [!!,!!,⋯ ,!!]  that correspond to the values 
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[! !! ,! !! ,… ,! !! ] of ! !  at discrete points of the entire domain !. These points 

are based on the selection of a mesh !!, consisting of a finite number of elements !!. 

Subsequently, the relative point-wise variance discretization error is defined as: 

 !"!!!!"# = 
!"#[! ! !!(!)]

!"#[!(!)]  (3.41) 

in which the point-wise variance is given by: 

!""!"# ! = Var ! ! − ! !  

 = !!!(!)+ Var !! ! !!!
!!! − 2Cov !(!), !!(!) ∙!

!!! !!  (3.42) 

In the midpoint method, the locations [!!, !!,… , !!] are chosen at the midpoints 

(centers of gravity) of the elements !!  (Der Kiureghian and Ke 1988). Figure 3.1 

represents one example of a discretization in one dimension by the mid-point method. 

The random field ! !  over each element !! is approximated by its value ! ! = !! =
! !!  at the midpoints !!, i.e. 

 !!(!) = 1,       if ! ∈ !!
0,       else   (3.43) 

 

 
Figure 3.1 Midpoints of the element !!. 
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samples of the correlated Gaussian random variables corresponding to the midpoints of 

the stochastic element mesh. Samples of the non-Gaussian field can then be obtained by 

transforming the samples of the Gaussian field through application of Eq. (3.38) (see 

Section 3.2.3 ). Generating samples of correlated Gaussian random variables 

!~!(!! ,!!!) can be achieved by generating independent standard normal random 

variables !~!(0,1)  and transforming them to samples of !  applying the Cholesky 

decomposition method. For a positive definite covariance matrix !!!, one can perform its 

Cholesky decomposition: 

 !!! = !!! (3.44) 

in which ! is a lower triangular matrix with strictly positive diagonal entries. One can 

show that the following transformation applies: 

 ! = !! + !" (3.45) 

Another strategy of generating correlated Gaussian random variables is to apply 

the spectral decomposition method. This approach can also be employed for decreasing 

the number of random variables of the problem, which is beneficial for several methods 

for probabilistic and reliability assessment (see Chapter 5). The essential idea of applying 

this method is based on the spectral decomposition of the covariance matrix of the 

random variables, which reads 

 !!! = !!!
!!! !!!!! (3.46) 

in which !!  is the ! th non-negative eigenvalue of the covariance matrix; !!  is the 

normalized eigenvector corresponding to the eigenvalue !!. For an arbitrary !×1 vector 

!! and diagonal matrix ! = diag[!!, !!,… , !!], it holds that:   

 !!!!! = !!! (3.47) 

 Then, the random vector can be exactly expressed in terms of ! independent 

standard normal random variables as follows 
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 ! = !! + !!!
!!! !!!!   (3.48) 

The above expression can be used to decrease the number of random variables in the 

problem by arranging the eigenvalues and eigenvectors in decreasing order of magnitude 

of the eigenvalues and truncating the expression after the ! < ! largest eigenterms.  In 

this way, fewer terms can be used in the representation of the random field and hence the 

modeling dimensions can be reduced considerably. Truncation of Eq. (3.48) leads to an 

approximation of the vector !(!), denoted by !(!). This introduces an additional error in 

the random field approximation, which can be quantified by the relative variance error 

given by (e.g. Betz et al. 2014).  

 !"!!!!"# = 
!"#[! ! !!(!)]

!"#[!(!)] = !!!!!!
!!!!!

!!!!!!
!!!

 (3.49) 

 Commonly, the choice of ! is accepted when the error is less than 0.05. 

3.3 Modeling permeability of soil layers as random fields 

In this thesis, the focus is on the pore water pressure, which varies with time and space 

due to rainwater infiltration. Within this study, we assume the infiltration process, which 

affects the pore water pressure !! during the wetting front development, is governed by 

the vertical saturated hydraulic conductivity !! and the suction head ! of the soil. In this 

thesis, we account for the vertical variability of these two parameters in the extended 

Green and Ampt model. When using Richards equation, we only consider the saturated 

hydraulic conductivity !! as a random field. 

Most soil properties, and in particular soil permeability, are highly heterogeneous 

(Vogel et al. 2000). The saturated hydraulic conductivity within soil layers is often 

assumed to follow a lognormal distribution (Gelhar 1986; Skaggs and Barry 1997). Here, 

we model the saturated hydraulic conductivities of the soil column !!(!) in the direction 

perpendicular to the ground surface as a one-dimensional homogeneous lognormal 

random field. Hence, the decimal logarithms of the parameters log!"! and log!"! are 

modeled as homogeneous Gaussian random fields, with the assumption that the 
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autocorrelation coefficient function of the logarithms of both fields is given by the 

following exponential model (Vanmarcke 1983): 

 ! ! = !!
!|!|
!  (3.50) 

where ! is the absolute distance between two locations in the vertical direction. Notice 

that the parameters in this equation are the same as in Eqs. (3.32) and ! = 2!. The scale 

of fluctuation is a measure of the spatial variability of the random field. A scale of 

fluctuation that is much larger than the depth of the soil slice implies a uniform soil 

profile; in such a case, the saturated hydraulic conductivity and suction head can be 

modeled each by a single random variable instead of random field. In the extreme case 

where the scale of fluctuation is close to zero, the values of each random property 

become independent of each other at all locations. Figure 3.2  shows one possible 

realizations of a Gaussian random field representing the decimal logarithm of the 

saturated hydraulic conductivity of a soil column for scales of fluctuation of 0.5m and of 

5m, respectively. One can observe that the spatial variability is higher as the scale of 

fluctuation becomes smaller. The lower bound of scale of fluctuation depends on the 

random field discretization, namely the size of random cells, which is the fundamental 

element of random fields and defined having equal length in this study. 

 

Figure 3.2 Realizations of log!"!! for different scales of fluctuation.  
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The cross-correlation coefficient function, describing the cross-correlation of the 

logarithms of the two random fields at locations separated by ! is given by: 

 !!"#$$ ! = !! ⋅ ! !  (3.51) 

where !!  is the point-wise cross-correlation coefficient between the two fields. The 

saturated hydraulic conductivity and suction head are negatively correlated because the 

suction tends to increase as the soil becomes less permeable, hence typically −1 < !! <
0. 

The continuous random fields are discretized by the midpoint method. The unit 

slice is divided into a number ! layers of equal-thickness. Each randomized property is 

assumed to be constant within each layer, represented by the random variable 

corresponding to the value of the random field at the midpoint of the layer. Hence the two 

random fields are represented by a total of 2! random variables, gathered in a random 

vector X . Assuming statistically homogenous fields, the means !!"#!"!! , !!"#!"!  and 

standard deviations !!"#!"!!, !!"#!"! of the random variables are constant over the entire 

random field. The entries of the 2!×2!  correlation matrix ! of the logarithms of the 

soil properties at each layer are evaluated as follows:  

 ! = !!" !!×!! =
! !!" !×! !!"#$$ !!" !×!

!!"#$$ !!" !×! ! !!" !×! !!×!!
 (3.52) 

where !!" is the distance between the midpoints of two layers ! and !. Simulation from 

the joint Gaussian distribution of random variables corresponding to the discrete layers 

with correlation matrix ! is performed by the Cholesky decomposition method (Horn and 

Johnson 1985). In order to obtain samples from the soil parameters, we take the 10-

power of the samples from the joint Gaussian distribution. The number of layers ! should 

be chosen such that the variability of the random field, described by the auto- and cross-

correlation functions, is adequately represented. Common measures for the representation 

of random fields are the mean-square or variance errors. For the midpoint method and the 

applied exponential correlation model, the relative variance error becomes smaller than 



3.4 Modeling rainfall events as random processes 

 44 

10% for an element size smaller than one tenth of the scale of fluctuation (Li and Der 

Kiureghian 1993).  

3.4 Modeling rainfall events as random processes 

Commonly, uniformly distributed rainfall events are used in precipitation simulations for 

slope stability analysis (Zhang et al. 2005; Huang et al. 2013; Ali et al. 2014). These are 

parameterized by their intensity and duration. To simplify the computation, it is often 

assumed that the precipitation rate is larger than the water capacity of the slope, such that 

infiltration is controlled by the water capacity (Ivenson 2000; Chen and Young 2006). In 

contrast, realistic rainfall patterns are usually characterized by high intermittency 

combined with long-range correlation (Menabde et al. 1997). These phenomena can be 

captured accurately through application of self-similar random process theory.  

The basic idea of self-similarity is that the distribution of a quantity averaged over 

a given time period can be obtained by scaling down the distribution of the same quantity 

averaged over a longer time period. Self-similar random rainfall events can be simulated 

by application of the break down coefficients (BDC) concept (Menabde and Murugesu 

2000). The time period of interest is divided into a number of basic cells. The simulation 

begins first with a uniformly distributed rainfall, whose pattern is described in terms of an 

average intensity and duration. At each simulation step, the rainfall event is scaled down 

into cells with shorter duration. The intensity of rainfall in each cell is then obtained as 

the average rainfall intensity multiplied by the corresponding break down coefficient (see 

Fig. 3.3).  

Dry periods within a single rainfall event are ignored in this study, and therefore 

the random rainfall event is constructed by a series of discretized rainfall cells without 

interruption. It is noted that dry periods can be accounted for through a discrete random 

process model (Menabde and Murugesu 2000). The duration of each basic cell is set to 

!! = 0.1hr. According to the self-similar stochastic behavior of the rainfall event, the 

break down coefficient is defined as: 
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 ! !, ! = 
!! !!
!! !!

  ,   ! < ! (3.53) 

in which !!(!!) and !!(!!) are the accumulated precipitations over the rainfall durations 

!  and !  and centered at !!  and !! , respectively. The coefficient !(!, !)  is a random 

variable, whose distribution depends on the ratio !/!. Here, ! is modeled by a Beta 

distribution, whose two parameters have the same value !, i.e. ! ∽ !(!,!).  

 

Figure 3.3 Random rainfall generation process by means of the break down coefficient concept. At the first 

step, the total rainfall volume is (randomly) distributed into two cells according to Eq. (3.53). The volume 

in each cell is further subdivided into two cells, again following Eq. (3.53). This process is repeated until 

the duration of the cells reaches 0.1hr.  

The parameter ! changes with the timescale parameter ! (Menabde and Murugesu 

2000): 
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 ! ! = !!!!! (3.54) 

in which !! is a dimensionless constant and ! ∈ (0,1) is the so-called Hurst parameter. 

These parameters can be estimated by data regression analysis for a certain region 

(Menabde and Murugesu 2000). 

At each step of the simulation procedure, the rainfall event is divided into two 

cells of equal duration. The break down coefficient of each cell with duration ! is 

obtained by simulating two random variables !!  and !! , which follow the Beta 

distribution with parameter ! !  and satisfy !! + !! = 1. The latter condition ensures 

that the accumulative precipitation of the random rainfall event is unchanged. The 

process is repeated ! times, until the duration of each cell reaches the duration of the 

basic cell !!. The rainfall intensity in each basic cell is obtained as 

 !! = !!!     ! = 1,2,… , 2! (3.54) 

in which ! is the average precipitation intensity over the given duration; the subscript ! 
indicates the basic rainfall cell; ! is the number of downscaling steps. Following this 

procedure, the break down coefficient is:  

 !! = !!,!!
!!!  (3.55) 

in which !!,!  is the Beta random variable associated with the downscaling of the 

breakdown coefficient at the !th scaling down step and corresponding to the !th rainfall 

cell. Notice that a total of 2+ 4+∙∙∙+2! = 2!!! − 2 random variables !!,! are required 

for generating one rainfall event. Figure 3.4 shows a random realization of a rainfall 

event with ! = 5 and duration 2!!! = 3.2hr. The average rainfall intensity is 3cm/hr. 

Eq. (3.53) governs the variability of the precipitation intensity during a rainfall 

event. The parameter ! controls the variance of the Beta distribution that models the 

breakdown coefficient. The variance decreases with increasing !. The parameter !! 

controls the magnitude of !, while ! controls its slope in the log-scale.  
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Figure 3.4 One realization of a random rainfall event with ! = 5 downscaling steps and total duration 

2!!!=3.2hr, in which !! = 12.27, ! = 0.47 (Menabde and Murugesu 2000). 

To demonstrate the influence of the parameters !! and ! on the variability of the 

rainfall patterns, we look at a random realization of a rainfall event for a fixed duration 

with ! = 6 downscaling steps, duration 2!!! = 6.4hr, and varying values of !! and !. 

In Figure 3.5 (!)-(!), realizations obtained for a fixed ! = 0.1 and different values of !! 

are shown, while Figure 3.4 (!)-(ℎ) illustrates the realizations obtained with a fixed 

!! = 10 and different values of !. It is observed from Figure 3.4 (!)-(!) that, the 

variability of the intensity of rainfall cells is reduced as !! increases. In the limit as 

!! → ∞ , the variance of the breakdown coefficient tends to zero and hence the 

corresponding realization tends to a uniformly distributed rainfall event. If ! → 0, the 

time variability of the intensity of rainfall cells will reduce and ! ≈ !! [see Fig. 3.4 (!), 

(!)]. 
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(!) !! = 5, ! = 0.1 (!) !! = 10, ! = 0.2 

  

(!) !! = 10, ! = 0.1 (!) !! = 10, ! = 0.4 

  

(!) !! = 15, ! = 0.1 (!) !! = 10, ! = 0.6 

  

(!) !! = 20, ! = 0.1 (ℎ) !! = 10, ! = 0.8 

Figure 3.5 Random rainfall realizations with different !! and !.  

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]
Ra

inf
all

 in
ten

sit
y [

cm
/hr

]
 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity

0 2 4 60
5

10
15
20
25

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity



 

 49 

Chapter 4 Reliability analysis 

Reliability analysis provides a consistent means to assess the safety of slopes (Ang and 

Tang 1984; Christian et al. 1994). Therein, uncertainties are explicitly accounted for and 

modelled with probability distributions. The probability of failure of the slope is 

evaluated through repeated calculations of the deterministic model for possible outcomes 

of the uncertain variables. A proper reliability assessment can enhance engineering 

design and management, particularly in cases where uncertainties dominate the slope 

stability.  

As presented in Chapter 3, random field and random process models can be 

applied to capture the stochastic nature of hydrogeological and geotechnical properties. 

The probabilistic assessment of a slope is commonly performed with Monte Carlo 

Simulation (Griffiths and Fenton 2004; Leynaud and Sultan 2010; Griffiths et al. 2011). 

In the past, application of the Monte Carlo method was restricted due to limited 

computation capability of the computer. For instance, the engineer might wait a few 

weeks for outcomes with relatively small probability when using Monte Carlo 

Simulation, i.e. when directly embedding the stochastic realizations into numerical 

models. Alternative methods based on either approximations of the geotechnical model or 

sampling at important regions of the probability space have been developed to enhance 

computational efficiency (Ching et al. 2009; Au and Wang 2014; Straub et al. 2016). 

Nowadays, with fast development of computer technology and novel optimal 

methodologies, efficient computation is viable. One of the most effective sampling 

methods is Subset Simulation (Au and Beck 2001), which is an adaptive Monte Carlo 

method that samples adaptively the failure domain in the probability space through 

Markov chain Monte Carlo sampling (Papaioannou et al. 2015). This chapter discusses 

the basic definition of the reliability problem and its solution with the Subset Simulation 

method for the slope-infiltration models presented in Chapter 2. 
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4.1 Basic definition  

This section presents the basic concept of the reliability analysis and its applications on 

slopes. The state of slopes can be evaluated by limit state functions !, such that positive 

values of the limit state function ! > 0 correspond to satisfactory performance, whereas 

negative values correspond to failure, i.e. ! < 0. Commonly, the limit state function can 

be defined in terms of the driving forces ! and the resistance forces ! (see Chapter 2). 

Failure occurs when ! exceeds !, i.e. ! = {! > !} = {! − ! < 0}. It follows that the 

limit state function reads: 

 !(!,!) = ! − ! (4.1) 

The failure event is defined as ! < 0, thereby the probability of the failure is the 

integral of the joint PDF of ! and ! over the failure domain  (see Fig. 4.1): 

 !! = Pr[! !,! < 0] = !!,!(!,!)d!d!!!!!!  (4.2) 

If the two variables are statistically independent, then the joint PDF is expressed 

as: 

 !!,!(!,!) = !!(!)!!(!) (4.3) 

 

 

Figure 4.1 The basic slope reliability problem. 

Driving forces D

Resistance forces R

 d , r

Pr[F] = Pr[R  < D ]

f D  (d ), f R  (r )
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In this case, Eq. (4.2) becomes: 

 !! = !!(!)!"!!!
!!

!
!! !!(!)d! (4.4) 

An alternative equivalent definition of the limit state function ! can be obtained 

by dividing Eq. (4.1) with the driving force !, leading to 

 ! !,! = !
! − 1 = !" − 1 (4.5) 

where !" is the factor of safety of the slope, defined in Chapter 2. In general, the factor 

of safety will depend on multiple input parameters, e.g. strength, hydrogeological and 

loading parameters. The uncertain parameters can be gathered in a vector of random 

variables ! with joint PDF !!(!). The limit state function is then expressed as a function 

of !: 

 ! ! = !" ! − 1 (4.6) 

The probability of failure can be evaluated by integrating !!(!) at the failure 

domain: 

 !! = !!(!)! ! !! !! (4.7) 

Eq. (4.2) can be efficiently solved by the First or Second Order Reliability 

Methods (FORM or SORM) (Hohenbichler and Rackwitz 1983; Hohenbichler and 

Rackwitz 1988; Breitung 2015).  The accuracy of these methods can be limited in 

nonlinear problem, but they can be combined with sampling based methods to improve 

performance in these cases (Rackwitz 2001). Alternatively, direct simulation approaches 

based on the Monte Carlo method can be applied. One advantage of the basic Monte 

Carlo method is that its performance is the same also in higher dimensions. However, the 

efficiency of Monte Carlo Simulation becomes low if the event of interest has a small 

probability of occurrence. A number of advanced simulation methods have been 

developed to overcome this problem (e.g. Au and Beck 2001; Ching et al. 2009; 

Papaioannou et al. 2016; Straub et al. 2016). In particular, the Subset Simulation method 
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is an adaptive Monte Carlo method that performs efficiently for estimating rare events in 

high dimensional problems (Au and Beck 2001). 

4.2 Probabilistic transformation 

For most reliability methods, it is convenient to transform from the original probability 

space of the input random variables ! to an equivalent space of independent standard 

normal random variables !. In this section, the transformation rule used to map from the 

original space ! to !-space is discussed. 

Consider the case of a single random variable. Let random samples ! follow the 

standard normal distribution [i.e. !~!(0,1)]. We seek a one-to-one function ! = ! !  

such that the random variables ! and ! have the same CDF values for every possible 

outcome. Assume that ! has a strictly increasing CDF !!(!). It must hold: 

 !! ! ! = !! ! = Φ(!) (4.8) 

The sought transformation is: 

 !(!) = !!!!(!!(!)) = !!!!(Φ(!)) (4.9) 

in which !!!!(∙) is the inverse operator of the CDF of ! . Therefore, the sampling 

proceeds by generating a sample !! of ! and then computing the corresponding sample 

!!  of !  by !! = !(!!) = !!!!(Φ(!!)) . For example, Figure 4.2  illustrates the 

transformation from the standard normal space to a uniform distribution !(0,1). 

For the case with multiple random variables, consider sampling from a vector of 

jointly normal distributed random variables ! = [!!,!!,… ,!!]!, with mean vector !! 

and covariance matrix !!!. Notice that, the covariance matrix !!! is expressed as: 

 !!! =
!!!! !!!!!!!!!!!

!!!!!!!!!!! !!!!
⋯ !!!!!!!!!!!⋯ !!!!!!!!!!!

⋮ ⋮
!!!!!!!!!!! !!!!!!!!!!!

⋱ ⋮
⋯ !!!!

 (4.10) 
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in which !!!!! (!, ! = 1,2,… ,!) is the correlation coefficient, e.g. estimated by Eq. 

(3.32), and !!!!! = !!!!!; !!! is the standard deviation of !!. 

 

Figure 4.2 Transformation from a standard normal space !(0,1) to a uniform distribution !(0,1). 

The vector ! can be transformed to a vector of independent standard normal 

random variables ! = [!!,!!,… ,!!]!  by the Cholesky decomposition method. The 

covariance matrix !!! can be split up into a diagonal matrix of standard deviations !!, 

i.e. !! = diag(!!! ,!!! ,… ,!!!), and a matrix of correlation coefficients !!!, so that 

!!! = !!!!!!! . One then computes the lower triangle matrix !  by a Choleski 

decomposition of the matrix !!!, so that !!! = !!!. Notice that the decomposition is 

possible when the matrix !!! is positive-definite. Thus, 

 ! = !! + !!(!") (4.11) 

Alternatively, the discrete Karhunen-Loève (KL) expansion can be applied, based 

on the spectral decomposition of !!! = !!!!!!!. The more detailed description can be 

found in Chapter 2. 

 For a general case where the probabilistic description of the random vector ! is 

given in terms of marginal distribution and correlations, the transformation to an 

underlying independent standard normal vector can be achieved through application of 

the Nataf model. This transformation involves applying Eq. (4.9) for every component of 

−4 −2 0 2 40

0.2

0.4

0.6

0.8

1

U ~ N(0,1)

F U
(u

)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

X ~ U(0,1)
F X

(x
)

0.5



4.3 Monte Carlo Simulation 

 54 

!. The resulting vector is assumed to follow the multivariate normal distribution with 

zero mean vector, unit variances and correlation matrix evaluated through the solution of 

an integral equation [see Eq. (3.39)]. This vector is further transformed to a standard 

normal vector with independent components through application of the Cholesky or 

spectral decomposition methods. 
 

4.3 Monte Carlo Simulation 

Monte Carlo Simulation is one of classical approaches for handling probabilistic 

assessment problems. The kernel of this method is to generate random samples according 

to the distribution of the input random vector !. For each sample, the deterministic model 

(e.g. factor of safety) is evaluated and statistical analysis using the obtained samples is 

performed. It is often convenient to generate samples from an equivalent independent 

standard normal space and subsequently map them to samples from the prescribed 

distribution. To this end, the transformation rule presented in Section 4.2 is used.  

 The fundamental steps for the MCS-based reliability analysis are summarized as 

follows: 1) Generate !! random vectors ! from the jointly standard normal distribution 

!!(!); 2) Transform vectors ! to the desired distribution of variables ! according to the 

procedure described above; 3) Evaluate the function ! !! , ! = 1,2, . . . ,!!; 4) Count the 

number of failed vectors !!, namely the vectors for which ! !! < 0; 5) Compute the 

probability of failure by dividing the failed vectors with the total number of vectors.  

Formally, we can write the MCS approximation to the probability of failure as: 

 !! ≈ !!" = !
!!

![! !! < 0]!!
!!! = !!

!!
 (4.12) 

where !!  are samples drawn from the joint distribution of ! and ![∙] is the indicator 

function: 

 ! ! !! < 0 = 1, ! !! < 0
0, else  (4.13) 
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The coefficient of variation of the Monte Carlo estimate is as follows: 

 CV!!" = 
!!!!
!!!!

 (4.14) 

 Notice that CV!!"  does not depend on the dimension of the random variable 

space. However, CV!!" becomes large for small values of !!. Therefore, the Monte Carlo 

method is inefficient for estimating small failure probabilities. 

 
 

Figure 4.3 Monte Carlo Simulation for estimating the probability of failure. 

4.4 Subset Simulation 

The continuous random fields modeling the spatial variability of the permeability 

parameters of the soil are represented by random variables corresponding to the 

midpoints of the discrete soil layers (see Chapter 2). If the random fields have a relatively 

small scale of fluctuation, a large number of random variables will be required in order to 

capture their point-to-point variability (see Li and Der Kiureghian 1993). Efficient 

estimation of the failure probability in high dimensional problems can be achieved by 

application of Subset Simulation (Au and Beck 2001).  

Subset Simulation is an adaptive Monte Carlo method that estimates probabilities 

of rare events efficiently independent of the number of random variables. To utilize fewer 

samples in computations, it is reasonable to express rare events in terms of a series of 
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more frequent events and this is the essence of Subset Simulation. In this regard, a series 

of strictly nested domains can be constructed for connecting a series of intermediate 

events with relatively high frequency of occurrence to the rare event. The probability of 

the rare event is the expressed as a product of the conditional probabilities of the each of 

the intermediate events conditional on the occurrence of the previous event in the 

sequence. Estimation of the conditional probabilities can be achieved by means of 

Markov chain Monte Carlo (MCMC) sampling (Papaioannou et al. 2015). 

 Suppose ! is a rare event. The key idea behind Subset Simulation is to express the 

event ! as the intersection of ! intermediate events: 

 ! = !!!
!!!  (4.15) 

Notice that, the intermediate events are strictly nested, i.e. !! ⊃ !! ⊃ ⋯ ⊃ !! and 

!! = ! . The probability of rare event !  is estimated as a product of conditional 

probabilities:  

 !! = Pr[!] = Pr[ !!!
!!! ] = Pr[!!|!!!!]!

!!!  (4.16) 

where !! is the certain event. As with the Monte Carlo method, estimation can be 

performed in standard normal space ! with joint PDF !!(!). The intermediate events are 

selected such that the conditional probabilities Pr[!!|!!!!] are large. This is achieved by 

sampling each domain !!!!  and selecting the domain !! = ! ! < !!  such that 

Pr[!!|!!!!]  equals a target value !! , where !! > !! > ⋯ > !! = 0 . Typically !!  is 

chosen as !! = 0.1. The probability Pr[!!|!!] is computed by application of crude Monte 

Carlo through simulating independent and identically distribution (i.i.d) samples from 

!!(!). For estimating the probabilities {Pr[!!|!!!!] : ! = 2,… ,!}, one needs to generate 

samples from the conditional PDFs {!!(!|!!!!): ! = 2,… ,!}, where: 

 !! ! !!!! = 
!! ! !!!!!(!)
!" [!!!!]

 (4.17) 

wherein !!!!!(!) is the indicator function of !!!!. This is achieved by application of 
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MCMC sampling. The basic idea of MCMC sampling is to construct a Markov chain 

with stationary distribution equal to the target distribution. Starting from a sample !! that 

lies in !!!!, a sample that follows !! ! !!!!  can be obtained by the following algorithm 

(Papaioannou et al. 2015): 

1. Generate candidate sample ! = (!!,⋯ , !!) from !! ⋅ .  

For each ! = 1,… ,!, generate !! from the normal distribution with mean 

!!!!! and standard deviation 1− !!! 

2.  Accept or reject ! 

!! =
!,       ! ∈ !!
!!,       ! ∉ !! 	 	

The above algorithm is termed conditional sampling Metropolis-Hastings algorithm. The 

parameters !! , ! = 1,2, . . . ,!, model the correlation of each component of ! between two 

subsequent states of the Markov chain. For probabilities in the order 10!!~10!!, the 

choice of !! = 0.8 is reasonable (Papaioannou et al. 2015). Alternatively, this parameter 

can be chose adaptively following (Papaioannou et al. 2015).  

4.5 Time-dependent reliability analysis of infiltration-failure 

model 

In this Section, the reliability analysis of the time-dependent infiltration-failure models 

developed in Chapter 2 is presented. As discussed in Chapter 2, the rainwater infiltration 

influences the surficial pore water pressure redistribution. At a given point in time, the 

critical slope failure plane is likely to be located at shallow depths and, hence, can be 

assumed parallel to the ground surface. The shallow slope failure mechanism is thus often 

sufficiently described by the infinite slope model (Enrico and Antonello 2012).  

4.5.1 Extended Green and Ampt model 

For the extended Green and Ampt model, the factor of safety (!"), associated with the 
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wetting front having reached layer !, is the minimum value among all the layers in the 

wetted zone (see also Fig. 2.4):  

 !"(!; !!)  = min{!!!(!; !!) , ! = 1,… , !} (4.18) 

where !!!(!; !!) is the critical factor of safety for a slip surface at the bottom of layer ! 
with the wetting front at layer !, i.e. located at depth !!. Substituting !!!(!; !!) with Eq. 

(2.4), the complete expression is: 

 !"(!; !!) = min [!!! cos2!−!!(!!,!!)]tan!′+!′
!!!sin!cos!

, ! = 1,… , !  (4.19) 

in which !! is the depth of soil layers. Eq. (4.19) computes the critical factor of safety 

associated with a wetting front located at layer !, neglecting failures in slip surfaces 

below the wetting front. These failures are included by computing the factor of safety 

associated with a “dry” soil (! = 0), which is:  

 !"(!; 0) = min{!!!(!; 0)} = min !"#!!
!"#! +

!!
!!!!"#!!"#!

, ! = 1,2,… ,!! (4.20) 

in which !! is the total number of soil layers.  

It is noted that the initial factor of safety !!! in this study is deterministic as the 

focus here is to study the uncertainty in the infiltration process and not the uncertainty of 

the soil strength parameters. The probability distribution of the factor of safety at each 

time step can be evaluated by Monte Carlo simulation, by sampling a large number of 

discrete sets of the random vector ! describing the random fields. For each realization of 

the random fields, the evolution of the factor of safety with time is computed by the 

combination of Eqs. (4.19), (4.20) and (2.18).  

As discussed in Section 4.1, for the infinite slope model failure occurs when the 

factor of safety (!") is less than unity. Hence, the condition !"(!; !!) < 1 represents 

instantaneous failure for a wetting front located at layer !. Usually, one is interested in 

knowing the probability that failure has occurred at any wetting front location smaller or 
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equal to !, that is, the probability that failure has occurred at any time prior to the time 

needed for the water to reach layer !. This probability of failure at any wetting front ! ≤ ! 
is termed cumulative failure probability and can be expressed as follows: 

 !!! = Pr[!!] = Pr [∃! ∈ {0,… , !}:!"(!; !!) < 1] (4.21) 

The failure condition of the above cumulative failure probability can be expressed 

by the following limit-state function: 

 !!(!) = min{!"(!; !!), ! = 0,… , !}− 1 (4.22) 

Here, !"(!; !!) is the factor of safety associated with wetting front !, which is 

evaluated by application of Eqs. (4.20) and (4.21). Slope failure at any layer smaller or 

equal to ! occurs for any realization ! of ! for which !!(!) < 0. Hence, the cumulative 

probability of failure !!! is given by: 

 !!! = Pr [!!(!) < 0] (4.23) 

Following Eq. (4.21), !! is the failure event corresponding to factor of safety !"! 
being smaller than unity [see Eq. (4.19)] at any wetting front ! ≤ !. It is easy to see that 

!!!!  implies !! , i.e. the former is a subset of the latter: !!!! ⊂  !! . Hence, for the 

sequence of failure events !!,!!,!!,… ,!!, where ! is the number of layers, it holds 

!! ⊂ !! ⊂  !! ⊂ ⋯ ⊂ !!, see also Figure 4.3. In the following we assume that for the 

initial state of the infinite slope, the probability of failure is zero, Pr[!!] = 0; we can 

therefore omit the event !! in the following. Subset Simulation is applied to estimate the 

probability Pr[!!]. To this end, the event !! is further decomposed into a sequence of ! 

nested intermediate failure events !!!,!!!,… ,!!" , with !!! ⊃  !!! ⊃ ⋯ ⊃ !!" . The 

probability Pr[!!] is expressed as a product of the conditional probabilities: 

 !!! = Pr[!!] = Pr[ !!"!
!!! ] = Pr[!!!] Pr[!!"|!!(!!!)]!

!!!  (4.24) 

The intermediate events are defined as !!" = !! ! < !!" , where !!! > !!! >
⋯ > !!" = 0. The values of !!" are chosen adaptively such that the estimates of the 
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conditional probabilities correspond to a chosen value !!, i.e. !! = 0.1. This is achieved 

by simulating samples of ! conditional on each intermediate failure event !!(!!!). For 

each sample, the limit-state function !! !  is evaluated and the samples are ordered in 

increasing order of magnitude of the limit-state function values. The threshold !!" is set 

to the !!-percentile of the ordered samples. The procedure is repeated until the maximum 

level ! is reached, for which !!" = 0. To estimate !!!, unconditional samples of ! are 

obtained by crude Monte Carlo simulation. Samples of ! conditional on the events 

!!" , ! = 1,… ,! − 1, are computed by MCMC sampling using as seeds the samples 

conditional on !!(!!!) for which !! ! < !!". The probability Pr[!!] is then obtained as: 

 Pr[!!] = !!!!!!!" (4.25) 

where !!" is the estimate of Pr[!!"|!!(!!!)] and is given by the ratio of the number of 

samples for which !! ! < 0 over the total number of samples simulated conditional on 

!!(!!!). 

 

Figure 4.4 Propagation of failure domain with progression of the wetting front from step 1 to !. 

At the final level of Subset Simulation for estimating !!, the available samples 

conditional on !!" = !! are used to start a new Subset Simulation run for estimating the 

conditional probability Pr[!!!!|!!]. For these samples conditional on the failure domain 

!!!! ⊂ !! are obtained by sampling ! conditional on a sequence of intermediate failure 
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domains through MCMC and the probability Pr[!!!!|!!] is estimated in a manner 

analogous to Eq. (4.16). The probability Pr[!!!!] is then obtained as: 

 Pr[!!!!] = Pr[!!]Pr[!!!!|!!] (4.26) 

This procedure is repeated for estimation of the remaining probabilities 

Pr[!!] , ! = 1,… ,! − 2. An efficient algorithm for estimating the conditional probabilities 

Pr[!!!!|!!] is provided in (Papaioannou et al. 2015). 

4.5.2 Richards equation 

The factor of safety of the infinite slope along the potential slip plane at depth !!! (see Fig. 

2.2) and the certain time step !! can be written as: 

 !!!(!; !!) = 
!!!!!"#!!!! !!!,!! !"#!!!!!

!!!!!"#!
 (4.27) 

Note that the depth !′ is measured perpendicular to the sliding surface, as opposed 

to the wetting front in Section 4.5.1, which is measured in vertical direction. It is 

assumed that the change of unit weight of soil mass during the rainwater infiltration is 

negligible. 

Through the numerical solution of Eq. ( 2.28 ), one obtains the pressure 

distribution at the soil layers at a number of discrete time steps. At each time !!, the point-

in-time factor of safety is evaluated as the minimum factor of safety from all potential 

slip surfaces, located at the bottom of each discrete layer. The complete expression is:  

!"(!; !!)  = min!!!,…,!! !!!(!, !!) = min [!!!!!"#!!!!(!!!,!!)]!"#!!!!!
!!!!"#!

, ! = 1,… ,!! (4.28) 

where !!! is the bottom depth of soil layer ! and !! is the total number of soil layers. Here, 

we introduce ! to represent the vector of all random variables in the problem, which 

includes the break down coefficients for generating the random rainfall events and the 

saturated hydraulic conductivities at the discrete soil layers. 
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In reliability analysis, failure ! is defined through limit state functions !, so that a 

negative value of ! indicates failure, and a positive value of ! represents the safe state. 

The limit state function defining slope failure is: 

 !!(!) = min{!"(!; !!), ! = 1,… , !}− 1 (4.29) 

in which min{!!(!; !!), ! = 1,… , !} represents the minimum value of the factor of safety 

among all potential slip planes during the time period ! ∈ (0, !], where ! is the duration 

of the rainfall event. The probability of failure of the infinite slope during ! reads: 

 !!! = Pr [!! ! < 0]                (4.30) 

In analogy to the previous case, in this case subsets are defined on a series of 

nested failure events at different time points. Having estimated the probability of failure 

Pr[!!!] for a rainfall scenario with duration !!, we can estimate the failure probability 

Pr[!!!] for a rainfall with the same average intensity but shorter duration !! < !! , 

through starting a new subset simulation run. Because it holds that !!! ⊂ !!! , the 

probability of the event with shorter duration can be expressed as: 

 Pr[!!!] = Pr[!!!|!!!]Pr[!!!] (4.31) 

The conditional probability Pr[!!!|!!!] can be estimated with subset simulation 

starting from the available samples conditional on !!! and defining a set of intermediate 

nested failure events, which are estimated with MCMC sampling. 
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Chapter 5 Bayesian updating 

As presented in Chapter 2, the prediction of the factor of safety !" of the slope can be 

made by means of the infiltration-failure model (see also Fig. 1.2), based on the 

stochastic input. Often the stochastic description of uncertain input (e.g. the hydraulic 

conductivity !!) for initial predictions is based on information from literature, expert 

knowledge and measurements at similar sites. This information is often vague and, hence, 

may lead to flat probability distributions, i.e. distribution with large variance. This can 

lead to unrealistic and often over-conservative probabilistic predictions.  

To refine the probabilistic input, in-situ investigations are usually performed. 

Moreover, in many practical situations, additional measurements or other data may 

become available during an ongoing project. Data can be used to update the distribution 

of uncertain parameters, such as hydrogeological properties, through application of 

Bayesian analysis (e.g. Beck and Katafygiotis 1998). Therein the prior distribution of 

uncertain parameters is updated with data to the posterior distribution. The slope stability 

is then estimated by using the posterior distribution.  

This Section presents the basic theory of Bayesian updating for learning 

probability distributions with measurement data. The solution of the Bayesian updating 

problem with a method termed BUS (Bayesian Updating with Structural reliability 

methods) is then discussed (Straub and Papaioannou 2014). In particular, the BUS 

approach is combined with Subset Simulation, which was discussed in Chapter 4. The 

presented approach will be applied in Chapter 6 to learn the distribution of the hydraulic 

conductivity with measurements of pore water pressure. 

5.1 Bayesian analysis 

5.1.1 Bayes’ theorem 

Consider a failure event !  (or any other event of interest) with probability Pr [!]. 
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Assume that an event ! has occurred. Event ! is termed the observation event. If ! 

represents the failure of a slope, ! could for example represent the event that the slope 

has survived a particular loading condition or measurements of a quantity of interest, e.g. 

the pore water pressure or the slope deformations. The conditional probability of the 

failure event ! given that the observation event ! has occurred is obtained according to 

Bayes’ theorem, as follows: 

 Pr[!|!] =  
!"[!|!]!"[!] 

!"[!]   (5.1) 

in which Pr [!] is termed the prior probability; Pr[!|!] is the posterior probability 

conditional on the information;  Pr[!|!] is the likelihood describing the probability of 

the observation given failure; Pr[!] is the probability of the observation. 

 Notice that, Bayes’ theorem describes how the information !  changes the 

probability of the event ! from Pr[!] to Pr[!|!]. Through application of Eq. (5.2) the 

uncertainty within the event ! reduces in light of the information !. It should be also 

pointed out that, the updating process can be repeated when additional information 

becomes available, through application of Eq. (5.2).  

In many instances, instead of only describing a single event !, it is of interest to 

assess the distribution of a vector of continuous uncertain parameters ! conditional on 

information. Eq. (5.2) then can be expressed for continuous random variables ! in the 

following form: 

 !!!! ! = !!!!!(!)!!!(!) (5.2) 

in which !!!(!)  is the prior probability density function (PDF) before site specific 

measurements become available; !!!!(!) is the posterior PDF, that is, !!!! = !!|! is the 

conditional PDF of ! given the observation !; !(!) is the likelihood function describing 

the information !; !! is referred as the evidence and regarded as a normalising scalar in 

Eq. (5.2): 

 !! = !(!)!!!(!)!!!  (5.3) 
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Here, we use the convention !!! = ⋯ !!!!!!⋯!!!!
!!

!
!! . That is, the 

constant !! ensures that !!!! integrates to one and therefore is a valid PDF.  

In Bayesian analysis, the major task is to estimate the posterior distribution 

through solving Eq. (5.2) and to update model predictions using the obtained estimate. 

Eq. (5.2) can be solved by a variety of existing approaches. The most common 

approaches are asymptotic approximation methods and sampling approaches, e.g. 

Markov chain Monte Carlo (MCMC) sampling or sequential Monte Carlo methods 

(Papaioannou et al. 2016). Here, a method termed BUS is employed to solve Eq. (5.2). In 

the following, the description of measurements in terms of the likelihood function is 

discussed. Afterwards, estimation of the posterior distribution using the BUS approach is 

presented. 

5.1.2 Likelihood function 

The likelihood function is defined as being proportional to the probability of the 

observation ! given a parameter state !, i.e.  

 !(!) ∝ Pr[!|! = !]  (5.4) 

For example, the likelihood of the information that the slope has survived a 

loading condition (e.g. an intense rainfall event) can be expressed as the indicator 

function of an observation domain, i.e. 

 ! ! = !(ℎ ! ≤ 0)  (5.5) 

where the domain {ℎ ! ≤ 0} contains all outcomes for which the slope survives the 

particular loading.  

Assume now that the measurement !! is of a continuous quantity, which is related 

to the uncertain input parameters through a model !! ! . Typically, the measurement is 

associated with an error term !!, which is attributed to measurement and/or model errors. 

If the error is additive, the event describing this measurement is given by 
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 ! = !! = !! ! + !!  (5.6) 

In this case, the likelihood function of this observation !! !  is given as follows: 

 !! ! = !!! !! − !! !  (5.7) 

in which !!! !! − !! !  is the PDF of the error !! . If a total of !  independent 

measurements are available, then the joint likelihood function ! !  describing all 

measurement is evaluated as follows: 

 ! ! = !!(!)!
!!!  (5.8) 

  Assume the likelihood function for each measurement follows the normal 

distribution with a zero mean (e.g. Betz et al. 2014), i.e. !! ! ~!(0,!!!! ), in which !!! is 

the standard deviation of the error. In this case, the likelihood function of Eq. (5.8) takes 

the following form 

 ! ! = exp{− 
[!!!!! ! ]!

!!!!
!

!
!!! } (5.9) 

wherein the proportionality constant is omitted. For computational purposes, it is often 

convenient to evaluate the logarithm of the likelihood function. It reads: 

 ln! ! = − !!!!! ! !

!!!!
!

!
!!!  (5.10) 

5.2 BUS approach 

5.2.1 Basic idea 

The basic idea of the BUS (Bayesian Updating with Structural reliability methods) 

approach is to define an equivalent reliability problem and solve the Bayesian updating 

problem by applying structural reliability methods. To this end, the observation domain 

Ω! is established as: 
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 Ω! = {! ≤ ! ∙ !(!)} (5.11) 

in which ! is a uniformly distributed random variable in [0,1]; ! is a positive constant 

chosen such that  ! ∙ !(!) ≤ 1 is satisfied for all !. It can be shown (e.g. Betz et al. 2016) 

that the posterior distribution can be obtained by censoring the prior distribution of the 

vector !;!  at the observation domain and integrating over !, i.e. 

 !!!! ! ∝ !!!(!,!)!!!(!)
!
! !"  (5.12) 

in which !!!(!) is the indicator function of the observation domain Ω!. Therefore, the 

solution of the updating problem becomes equivalent to solving a structural reliability 

problem in the extended random variable space !;! . The observation domain is then 

described by an equivalent limit state function ℎ(!;!) as: 

 ℎ(!;!) = ! − !" !  (5.13) 

The observation domain is then defined as Ω! = ℎ !,! ≤ 0 . The observation event is 

then ! = ! ∈ Ω! . 

To apply the likelihood function in natural logarithm scale, based on Eqs. (5.11) 

and (5.13) one could employ the following equivalent formulation of the limit state 

function: 

 ℎ !;! = ln(!)− ln(!)− ln[! ! ] (5.14) 

in which ln(∙) denotes the natural logarithm operator.  

By applying transformation to an equivalent standard normal random variable 

space ! = [!!;!!;… ;!!], Eq. (5.14) can be written as: 

 ! ! = lnΦ(!!)− ln ! − ln ![Φ(!!,!!,… ,!!)]  (5.15) 

in which !(∙) is a classical transformation operator used in structural reliability methods 

(see Section 4.2); Φ(∙) is the CDF of the standard normal distribution. 
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 A crucial issue on the implementation of the BUS approach is the choice of the 

constant !. As noted earlier ! needs to satisfy !" ! ≤ 1. Therefore, ! should be chosen 

smaller than the reciprocal of the maximum value of the likelihood function, denoted 

max[!(!)] . If !  is chosen too small then the probability of the observation event 

Pr(!) will become too small and therefore the BUS approach will be inefficient. 

Therefore the optimal choice of ! is: 

 ! = 
!

!"![! ! ] (5.16) 

The simplest approach to solve the BUS problem is by application of the standard 

Monte Carlo method. In this case, the standard normal distribution is sampled and the 

samples that lie in the observation domain will be samples from the posterior distribution. 

These samples could be further used to obtain updated predictions. In many cases, the 

probability that a sample lies in the observation domain Pr(!) will be small. In such 

cases, the Monte Carlo method will be inefficient. Therefore, the BUS approach is 

combined with the Subset Simulation, which is efficient in estimating probabilities of 

rare events in high dimensional input spaces.  

5.2.2 Subset Simulation-based BUS approach 

The probability Pr(!) can be solved by application of the Subset Simulation algorithm. 

As discussed in Section 4.3, Subset Simulation is an adaptive Monte Carlo method and it 

can efficiently handle rare events in cases with high dimensions. Following the strategy 

discussed in Chapter 4, the observation event can be expressed as the intersection of ! 

intermediate events !!, i.e. !! ⊂ !! ⊂ ⋯ ⊂ !! = Ω!, in which !! represents the certain 

event. The domains !! are defined as the sets {! ! ≤ !!}, where !! are threshold levels, 

namely !! = ∞ > !! > ⋯ > !! = 0. According to Eq. (5.14), the intermediate domains 

can be expressed as: 

 !! = ! ≤ ! ∙ ! ! ∙ exp !! , ! = 1,2,… ,! (5.17) 

 Hence, the probability of failure is equivalent to a series of product of conditional 
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probabilities, i.e. 

 !!! = Pr[!!] Pr[!!|!!!!]!
!!!  (5.18) 

For details on the implementation of the standard Subset Simulation algorithm the 

reader can refer to Chapter 4. 

5.2.3 Adaptive Subset Simulation-based BUS approach 

The efficiency of the Subset Simulation method depends linearly on ln [Pr(!)]. As 

discussed in Section 5.2.2, the magnitude of the probability of the observation Pr(!) 
depends on the choice of the constant !. In particular, the optimal value of ! is given by 

the reciprocal of the maximum of the likelihood function, as in Eq. (5.16). Therefore, one 

can enhance the efficiency of the SuS-based BUS approach by choosing ! adaptively, as 

the reciprocal of the maximum of the samples of the likelihood function evaluated at each 

subset level. This is underlying idea behind the adaptive BUS-SuS (BUS with Subset 

Simulation) approach.  

 The formulation of the limit state function of Eq. ( 5.16 ) facilitates the 

implementation of the adaptive BUS-SuS approach, because it can ensure the nestedness 

of the intermediate failure domains (Betz et al. 2016). Assume that at subset level !, 
samples !! , ! = 1,… ,!!  samples are available. The constant !  at subset level !  is 

computed as  

 !! =  
!

!"# !!!!!! , ! !! ,!!!,…,!!
 (5.19) 

where !!!! is the constant evaluated at subset level ! − 1. In order to ensure that the 

intermediate failure events defined by Eq. (5.17) are nested, the threshold level of the 

subset level ! should be adjusted through: 

 !! = !! + ln(  
!!!!
!!!!!!  ) (5.20) 

Apart from these two steps, the subset simulation algorithm remains the same as 
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in Chapter 4. 

5.2.4 Limitation of the Subset Simulation-based BUS approach 

As an inverse analysis method, Subset Simulation-based BUS approach works well for 

many linear or nonlinear models (Straub and Papaioannou 2014). The Subset Simulation 

algorithm embedded in the BUS approach facilitates the process of searching for target 

samples, because of its efficiency for dealing with rare events in cases with high 

dimensions. Furthermore, choosing the constant ! adaptively also reduces the runtime of 

program. Nevertheless, in some situations the MCMC algorithm for sampling the 

intermediate domains is not able to propagate throughout the probability space and gets 

trapped in some small areas or islands. Such cases typically occur when the model is not 

a one-to-one function, which renders the input not uniquely identifiable based on 

measurements of the output. In such cases, the likelihood function has multiple modes, 

which translate to multiple islands in the equivalent observation domain of the BUS 

approach. Therefore, when performing local moves in the MCMC algorithm, the 

probability of leaving an island in the vicinity of a local mode of the likelihood becomes 

extremely small. This leads to most of the resulting samples being concentrated in the 

vicinity of a local mode. Therefore, the resulting posterior estimate is not able to identify 

all the possible states of the posterior distribution and therefore underestimates its actual 

variability.  

 Figure 5.1 illustrates the results from a Bayesian analysis according to the two 

modeling functions !!(!) = sin[!!(!)] and !!(!) = sin[10!!(!)], respectively. Here, 

!! is a lognormal random field. The median of !! is 3.6cm/hr and the standard deviation 

in decimal logarithm scale is 0.2, i.e. !!"#!"!! = 0.2. The scale of fluctuation is chosen as 

5m. The soil column with 5m depth is then discretized into 100 equal thickness layers 

and the resulting random vector is approximated with the discrete KL expansion with 10 

largest terms. In this case, 10 observations are selected at uniformly distributed points 

along the depth of the soil column. The synthetic observations of the models are obtained 

through generating a random realization of the random field and adding a Gaussian noise 

with standard deviation 0.1 to the corresponding model outcome. The likelihood function 
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is then defined according to Eq. (5.9). The model !! has a large period and for the 

considered range of !! the resulting mapping is one-to-one. The period of model !! is 

considerably smaller, which leads to a mapping that is not one-to-one. 

Figure 5.1(!) shows the comparison between the posterior mean of log!"!! and 

the true value of log!"!!  (i.e. the realization of log!"!!  used to generate the 

measurements), together with 95% credible interval for model !!. As seen from this 

figure, the true value is within the credible interval obtained with the posterior samples, 

which manifests to the efficiency of the BUS approach in identifying log!"!!. Figure 

5.1(!) illustrates the posterior distribution and true value for model !!, i.e. the model 

with smaller period. In this case, the 95% credible bounds shrink, which indicates 

reduction of the variability of the posterior samples. Also, it can be seen that the true 

value is not correctly identified. This is because model !! will result in multiple modes of 

the likelihood function. Hence, the MCMC samples in the Subset Simulation-based BUS 

approach get trapped around a local maximum of the likelihood function.  

  

(!) !!(!) = sin[!!(!)]. (!) !!(!) = sin[10!!(!)]. 

Figure 5.1 Two applications of the adaptive BUS-SuS approach. 

To illustrate better this problem, we look at plots of the likelihood function.  

Figure 5.2 shows contour plots of the logarithm of the likelihood function in terms of the 

first two random variables in the KL representation of the random field for the two 

modeling functions, i.e. !!(!) = sin[!!(!)] and !!(!) = sin[10!!(!)]. The remaining 
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random variables in the KL representation are fixed at their mean values. As shown in 

Figure 5.2(!), the likelihood varies smoothly around a single mode for model !! within 

the given range [−2,2]×[−2,2] in standard normal space. On the other hand Figure 

5.2(!) shows that the likelihood of model !! has multiple maxima. Therefore, for this 

model MCMC samples are not able to reach the target domain by crossing between 

regions around the local maximum values.  

  
(!) !!(!) = sin[!!(!)]. (!) !!(!) = sin[10!!(!)]. 

Figure 5.2 Contour plots of the logarithm of the likelihood function. 
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Chapter 6 Numerical investigations 

6.1 Case description 

We consider an infinite slope in a sandy subsoil subjected to rainfall events. The sandy 

layer has 5m depth above a highly permeable layer, represented by a free drainage 

boundary condition. In this study, we are only interested in potential slip surfaces above 

the lower boundary. The slope angle and effective friction angle are ! = 18°  and 

!! = 30°, respectively. The effective cohesion of the sand is assumed to be zero, i.e. 

!! = 0kPa and the unit weight is 20kN/m!. The saturated unit weigh is selected for the 

conservative estimation of the slope stability.  

6.2 Application of extended Green and Ampt model to time-

dependent reliability analysis 

In this section, the reliability analysis of the infinite slope is performed based on the 

extended Green and Ampt model. The direct effects of matric suction on the effective 

stress, and as such the stability of the slope, are neglected. The layers of the infinite sandy 

slope are assumed to have the same water content !! = 0.125 prior to the rainwater 

infiltration. That is, the residual effect of antecedent rainfall events is neglected. The 

saturated vertical hydraulic conductivity !!  and suction head !  are modeled as 

statistically homogeneous lognormal random fields with medians !!! = 2.99 cm/hr and 

!|!| = 6.13 cm, respectively. These values are for loamy sands (Rawls et al. 1983). We 

assume that the point-wise cross-correlation coefficient between !! and |!| is !! = −0.5. 

In a parametric study, the standard deviation and the scale of fluctuation of the decimal 

logarithms of the two random fields are varied. The random fields are discretized with the 

midpoint method using 100 layers, i.e. thickness ∆! = 0.05m [see also Fig. 2.2 (!)]. The 

deterministic parameters of the Green and Ampt model for loamy sand are taken from 

Rawls et al. (1982) and Rawls et al. (1983) as given in Tab. 6.1.  
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Table 6.1 Parameters for Green and Ampt model. 

Parameters Unit Definition Value 

!! cm/hr Saturated hydraulic conductivity !!! = 2.99 

! cm Suction head !|!| = 6.13  
!!"#!"!! log!"(cm/hr) Standard deviation of !!  

in decimal logarithm scale 

[0.1, 0.2, 0.3, 0.4, 0.5] 

!!"#!" |!| log!"(cm) Standard deviation of ! 

in decimal logarithm scale 

[0.1, 0.2, 0.3, 0.4, 0.5] 

θs - Saturated water content 0.437 

θ0 - Initial water content 0.125 

We use the symbol !!"#!"(!!,|!|) to indicate that !!"#!"!! and !!"#!" |!| take the same value. 
 

6.2.1 Wetting front development 

First, the influence of the scale of fluctuation and standard deviation of the two random 

fields on the wetting front development is investigated. Figure 6.1  presents the 

development of the mean depth of the wetting front with time evaluated using 5000 

samples (realizations) of the random fields. The time period of interest is 120 hours 
(5 days) after the start of the rainfall event. 

Figure 6.1 (!) shows the wetting front development for different values of the 

scale of fluctuation of the two random fields. The standard deviation of the decimal 

logarithms for both fields !!"#!"(!!,|!|) is here 0.5. It is shown that in the case of a smaller 

scale of fluctuation, the water infiltrates slower towards the bottom of the soil column. 

This can be explained by the fact that a small scale of fluctuation implies a larger 

variability within the wetted zone and hence more frequent occurrence of lower values of 

!!. The flow within the wetted zone as the wetting front becomes deeper becomes 

dominated by the low values of !!, as the evident from the use of the harmonic mean of 

the saturated hydraulic conductivity in Eq. (2.17). For a rainfall period of more than 80 

hours, the infiltration rates of the larger scale of fluctuation cases (! ≥ 0.5m) are nearly 

identical. It can be inferred that, as the wetting front advances, the difference of the 

effective hydraulic conductivity !!"" within wetted zone in those cases become smaller. 

In the limit case ! = ∞, the hydraulic conductivity is constant in space and hence 
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modeled by a single random variable. 

Figure 6.1(!)  shows the influence of a variation in the standard deviation 

!!"#!"(!!,|!|) of the two random fields. Here, the scale of fluctuation is fixed at 0.5m. As 

!!"#!"(!!,|!|) increases, the wetting front moves slower towards the bottom of the soil 

column. This is due to the fact that a large standard deviation increases the average 

occurrence of low values of the saturated hydraulic conductivity and hence decreases its 

harmonic mean within the wetted zone.  

  

(!) Influence of the scale of fluctuation ! for a 

constant !!"#!"(!!,|!|) = 0.5. 
(!) Influence of the standard deviation !!"#!"(!!,|!|) 

for a constant ! = 0.5m. 

 

(!) Influence of the suction head ! for ! = 1m and !!"#!"(!!,|!|) = 0.5. 

Figure 6.1 The mean wetting front development. 
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Figure 6.1(!) shows the influence of the suction head on the mean wetting front 

development. There is only small difference between the wetting front development for 

the case where the suction head is fixed at its median value and the case where it is 

modelled as a random field when ! = 1m and  !!"#!"!! = 0.5. It is noted that for each 

realization at each time step, only the suction head at the wetting front is used to evaluate 

the hydraulic gradient [see Eq. (2.15)]. 

6.2.2 Pore water pressure buildup 

Throughout the infiltration process, the variable permeability within the sandy soil will 

influence the pore water pressure buildup and further influence the factor of safety of the 

infinite slope. Figure 6.2  shows the pore water pressure distribution for the two 

realizations of the hydraulic conductivity, corresponding to scales of fluctuation of 0.5m 

and 5m, respectively, for two specific depths of the wetting front, i.e. 2.5m and 5m. The 

suction head is kept constant and equal to its median 6.13 cm, as the influence of its 

variability on the wetting front development was shown to be small [cf. Fig. 6.1(!)]. In 

the case with smaller scale of fluctuation (! = 0.5m), the spatial variability of the 

hydraulic conductivity within the wetted zone introduces fast local changes in hydraulic 

head [cf. Eq. (2.22)], which lead to fast changes in the pore water pressure. This can be 

clearly observed in Figure 6.2, where for a small scale of fluctuation (! = 0.5m) the pore 

water pressure presents larger spatial variation along the depth of the soil column, 

whereas for a larger scale of fluctuation (! = 5m), the distribution of pore water pressure 

represented by the dashed line is smoother. The pore water pressure build-up at the areas 

with steep gradient of the hydraulic conductivity is evident when comparing Figures 

6.2(!), (!) and (!). Moreover, the large hydraulic gradients in the highly fluctuating 

case introduce positive pore water pressure at shallow depths of the wetting front [see 

Figure 6.2(!)]. Based on Eq. (2.4), the factor of safety decreases as the pore water 

pressure increases and as the depth of the potential slip surface decreases. Hence, positive 

pore water pressure at a shallow depth of the wetting front will undermine the stability of 

the slope and favor shallow slope failure. 
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(!) Realizations of log!"!! for different scale of fluctuation. 

  

(!) Depth of wetting front !! = 2.5m. (!) Depth of wetting front !! = 5m. 

Figure 6.2 Pore water pressure distributions for the realizations of the hydraulic conductivity. 
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Since the pore water pressure tends to increase as the wetting front progresses, the mean 

factor of safety decreases during the infiltration procedure in all cases. The transient 

behavior of the mean factor of safety is characterized by a fast reduction right after the 

beginning of the rainfall event, followed by a slower decrease as the wetting front moves 

closer towards the bottom of the soil column [cf. Figure 6.1(!)]. The reduction is larger 

in the case where the scale of fluctuation is smaller and hence the spatial variability of the 

permeability parameters is higher. This is because high spatial variability of the hydraulic 

conductivity within the wetted zone introduces large hydraulic gradients, as also 

illustrated in Figure 6.2, and therefore increases the likelihood of high pore water 

pressure at shallow depths of the wetting front, which are critical for the stability of the 

slope. Hence the factor of safety reaches its minimum on average at a smaller depth of 

the wetting front in highly fluctuating soils as compared to more homogeneous soils. 

Moreover, due to the low pore water pressure gradients the minimum factor of safety in 

soils with larger scale of fluctuation is larger than the one in highly fluctuating soils. 

Figure 6.3(!) depicts the influence of !!"#!"(!!,|!|) on the mean factor of safety of 

the slope. The scale of fluctuation is fixed at ! = 0.5m. The resulting mean factor of 

safety has a similar transient behavior in all cases, i.e. its value decreases in the first 1m 

and asymptotically approaches a minimum value. This minimum value decreases with 

increase of !!"#!"(!!,|!|), which is due to the standard deviation increasing and the high 

positive pore water pressures at shallower depths become more likely. 

Next we investigate the change of the location of the critical slip surface within 

the wetted zone with respect to the development of the wetting front. The factor of safety 

of each potential slip plane within the dry zone remains constant during the rainwater 

infiltration and equals !"#!!/!"#$, because positive pore water pressure only exists in 

the wetted zone and pore water pressure is negative in the dry zone due to suction, see 

Eq. (4.20). Here, the critical slip surface corresponds to the plane with minimum factor 

of safety in the wetted zone of the soil column. 
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(!) Influence of the scale of fluctuation ! for a constant !!"#!"(!!,|!|) = 0.5. 

 

(!) Influence of the standard deviation !!"#!"(!!,|!|) for a constant ! = 0.5m. 

Figure 6.3 Mean factor of safety in terms of wetting front development. 
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factor of safety decreases slower. In Figure 6.4(!), we fix the scale of fluctuation at 

! = 0.5m and study the influence of the standard deviation !!"#!"(!!,|!|) on the mean depth 

of critical slip surface. For higher values of !!"#!"(!!,|!|), the critical slip surface moves 

closer to the ground surface. However, the influence of !!"#!"(!!,|!|) is less pronounced 

than the influence of the scale of fluctuation. This agrees with the result of Figure 6.3(!), 
which shows that changes in !!"#!"(!!,|!|)  will not significantly influence the transient 

behavior of the mean factor of safety. It only affects the minimum value of the mean 

factor of safety. 

  

(!) Influence of the scale of fluctuation ! for a 

constant !!"#!"(!!,|!|) = 0.5. 
(!) Influence of the standard deviation !!"#!"(!!,|!|) 

for a constant ! = 0.5m. 

Figure 6.4 Critical slip surface distributions within wetted zone. 
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fluctuation, i.e. for larger variability of the permeability within the soil layer. This agrees 

with Figure 6.3(!) where it is shown that in cases with smaller scales of fluctuation the 

mean factor of safety decreases faster at shallower depths of the wetting front. It can be 

concluded that in soils with high spatial variability the probability of failure of the infinite 

slope is higher at the start of the rainfall event compared to soils with low variability.  

Figure 6.5(!) illustrates the influence of !!"#!"(!!,|!|) on the probability of failure 

of the infinite slope for a fixed (small) scale of fluctuation ! = 0.05m. We see that in all 

cases the probability of failure increases fast to a constant value within 0~1m wetted 

depth. This is because the scale of fluctuation is small and hence failure is more likely to 

occur at shallow depths. Also, as illustrated in Figure 6.4(!), the standard deviation in 

log scale does not have significant influence on the mean position of the critical slip 

surface within the wetted zone. The logarithm of the probability of failure in the case 

with different !!"#!"(!!,|!|) converges to different values as the wetting front advances. 

These values increase exponentially with increase of !!"#!"(!!,|!|), which indicates that 

!!"#!"(!!,|!|) has significant influence on the reliability of the infinite slope. Moreover, it 

is shown that as the standard deviation increases the probability of failure increases faster 

with the wetting front development. This is because, although !!"#!"(!!,|!|)  does not 

influence the mean depth of the critical slip surface, it has an impact on the variance. 

Figure 6.5(!) illustrates how the suction head affects the probability of failure 

when it is taken as constant or modelled as a random field. In this case, ! = 1m and 

!!"#!"!! = 0.5. The probabilities of failure for the two cases are close to each other both 

in the beginning and in the end of the infiltration process. A small difference between the 

two curves can be observed in the interval from ! = 1 to 4m. However, comparing this 

difference with the one between the curves in Figures 6.5(!) and (!), we see that the 

influence of the variability of the suction head is small compared to the one of the 

saturated hydraulic conductivity.  
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(!) Influence of the scale of fluctuation ! for a 

constant !!"#!"(!!,|!|) = 0.5. 
(!) Influence of the standard deviation !!"#!"(!!,|!|) 

for a constant ! = 0.5m. 

 

(!) Influence of the suction head ! for a constant ! = 1m and !!"#!"!! = 0.5. 

Figure 6.5 Probability of failure in terms of wetting front development. 
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the rainwater infiltration. The median of the saturated hydraulic conductivity !!  is 
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0.3. The random field representing the hydraulic conductivity is discretized with the 

midpoint method using 100  equal thickness layers. The remaining permeability 

parameters of the sandy soil are modeled deterministically, and their values are 

summarized in Tab. 6.2. 

Table 6.2 Permeability parameters. 

Parameters ! ! !! !! 

Values 0.145 2.68 0.437 0.02 

Sources Zlotnik et al. 2007 Rawls et al. 1982 
 

The random process modeling the stochastic behavior of the rainfall event and the 

continuous random field modeling the spatial variability of the hydraulic conductivity of 

the soil are represented by a set of correlated random variables, as discussed in Section 

3.3. The number of random variables required for representing the rainfall event is 

2!!! − 2, where ! is the number of downscaling steps. The number of random variables 

for representing the hydraulic conductivity is the same as the number !! of discrete soil 

layers. The total number of random variables for different duration of the rainfall event 

with a fixed !! = 100 are listed in Tab. 6.3: 

Table 6.3 Durations of rainfall events and random variables. 

Parameters Values 

Duration [hr] 3.2 6.4 12.8 25.6 51.2 

! 5 6 7 8 9 

Total random variables 162 226 354 610 1122 
 

6.3.1 Pore water pressure redistribution 

With the onset of a rainfall event, the pore water pressure within the soil slope changes 

with time and depth. Here, we look at the influence of the scale of fluctuation of the 

random field, which describes the saturated hydraulic conductivity of the soil, on the pore 
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water pressure buildup. We consider two realizations of the hydraulic conductivity 

corresponding to two different scales of fluctuation, namely 0.5m and 4m. A random 

rainfall pattern is generated with parameters !! = 12.27  and ! = 0.47 , which are 

obtained by regression analysis based on rainfall data in the Melbourne area (Menabde 

and Murugesu 2000), and duration 25.6hr. The average rainfall intensity is 3cm/hr. 
Figure 6.6  shows the realization of the random rainfall event. Figure 6.7 ! − (!) 
illustrates the saturated hydraulic conductivity distribution in decimal logarithm scale on 

the left side and redistribution of the pore water pressure along the ! direction on the right 

side for the different chosen parameter values. It is shown that the saturated hydraulic 

conductivity varies more frequently in the case of a smaller scale of fluctuation. The 

difference of the pore water pressure redistribution caused by !!"#!"!! is significant [cf. 

Figure 6.7(!) and (!) or Figure 6.7 (!) and (!)].  

 

Figure 6.6 One realization of random event with duration 25.6hr. 

In addition, the wetting front moves faster in the case with smaller !!"#!"!!. It can 

also be observed that occurrence of positive pore water pressure at shallow depths is 

favored in cases with smaller scale of fluctuation and larger !!"#!"!!. Looking at the 

figures for !!"#!"!! = 0.5 [cf. Figure 6.7 (!) and (!)], one can observe that a larger scale 

of fluctuation results in a clearer defined wetting front development from 12.8hr to 

25.6hr, while for a smaller scale of fluctuation the wetting front is less clearly identified. 

Notice that, in all cases there is nearly no change in pore water pressure below the 

0 5 10 15 20 250

10

20

30

40

Time [hr]

Ra
inf

all
 in

ten
sit

y [
cm

/hr
]

 

 

Rainfall realization
Average rainfall intensity
a0 = 12.27, H = 0.47

12.8 hr



Chapter 6 

 85 

wetting front between 12.8hr and 25.6hr. 

  

(!) !!"#!"!! = 0.1, ! = 0.5m. (!) !!"#!"!! = 0.1, ! = 4m. 

  

(!) !!"#!"!! = 0.5, ! = 0.5m. (!) !!"#!"!! = 0.5, ! = 4m. 

Figure 6.7 The pore water redistribution in the soil column with different values of the scale of fluctuation 

! and the standard deviation of saturated hydraulic conductivity in decimal logarithm scale !!"#!"!!. 

Figure 6.8 shows the mean pore water redistribution with time at different depths 

for the considered scale of fluctuations and !!"#!"!!, ! = 0.5m and 4m, and !!"#!"!! =
0.1 and 0.5, respectively Figure 6.8(!) and (!) shows that in the case !!"#!"!! = 0.1, the 

mean pore water pressure at depth 1m  is constant until influenced by rainwater 

infiltration when it gradually increases. The pore water pressures at depths 2m, 3m and 

4m exhibit similar behavior. The influence of the scale of fluctuation in cases with 

!!"#!"!! = 0.1 is insignificant. In the case where !!"#!"!! increases to !!"#!"!! = 0.5, the 

mean pore water pressure is influenced by rainwater infiltration earlier than for 
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!!"#!"!! = 0.1 [cf. Figure 6.8 (!) and (!) or Figure 6.8 (!) and (!)], and it rises slower 

after the flow reaches the corresponding soil layers.  

  

(!) !!"#!"!! = 0.1, ! = 0.5m. (!) !!"#!"!! = 0.1, ! = 4m. 

  

(!) !!"#!"!! = 0.5, ! = 0.5m. (!) !!"#!"!! = 0.5, ! = 4m. 

Figure 6.8 Pore water pressure at depths of 1m, 2m, 3m and 4m of the soil column, for different scales of 

fluctuation and !!"#!"!!, i.e. ! = 0.5m, ! = 4m, !!"#!"!! = 0.1 and !!"#!"!! = 0.5. 

Figure 6.8 (!) illustrates that in the case ! = 0.5m and !!"#!"!! = 0.5, the mean 

pore water pressure at 1m depth increases gradually and continuously with the rainwater 

infiltration process. In Figure 6.8 (!), it is shown that for a larger scale of fluctuation ! = 

4m, the increase of the pore water pressure extends over a longer time period. These 

effects are due to the variability of the saturated hydraulic conductivity, which increases 
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with decrease of scale of fluctuation or increase of the standard deviation in decimal 

logarithm scale !!"#!"!!. A higher scale of fluctuation or a smaller !!"#!"!! produces 

more homogeneous soil layers that absorb more rainwater through infiltration. Therefore, 

in the case of a smaller scale of fluctuation or a larger !!"#!"!!, a large amount of 

rainwater will form runoff at the ground surface due to the presence of lower permeable 

soil layers. In contrast, in the case with larger scale of fluctuation or a smaller !!"#!"!!, 
the shallow soil layers will be influenced by infiltration gradually and continuously. 

Hence it is expected that rainfall infiltration will affect higher soil layers in cases with 

smaller scale of fluctuation or larger !!"#!"!! and deeper soil layers in cases with larger 

scale of fluctuation or smaller !!"#!"!!. 

The point-in-time critical slip surface is the plane with the lowest factor of safety 

value !" among all potential slip surfaces, Eq. (4.28). Figure 6.9 shows the mean depth 

of the critical slip surface with respect to infiltration time for two slopes with different 

scales of fluctuation and !!"#!"!! throughout a rainfall period of 102.4hr with an average 

rainfall intensity of 3cm/hr and parameters !! = 12.27 and ! = 0.47.  

In Figure 6.9(!), !!"#!"!! is 0.1. At the beginning of the rainfall event, the mean 

critical slip surface is located at the bottom of the soil column, since within the 

unsaturated zone, the initial pore water pressure is negative and the factor of safety 

decreases with depth [see Eq. (4.27)]. The mean depth of the critical slip surface 

decreases at the onset of the rainfall event because of the pore water pressure 

redistribution. Between the two considered scales of fluctuation ! , 0.5m  and 4m , 

respectively, the case with smaller ! leads to shallower mean critical slip surfaces. This is 

because in soils with smaller scale of fluctuation the pore water pressure is more likely to 

build up at shallow depths. With the wetting front development, the mean depth of critical 

slip surface then goes deeper in both cases. 

Figure 6.9(!) illustrates the relationship between the mean depth of the critical 

slip surface and rainfall time in the case with larger !!"#!"!!, i.e. !!"#!"!! = 0.5. The 

development of mean depth of the critical slip surface in the first 20hr exhibits a similar 
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behavior as in Figure 6.8(!), although the depth rises much faster in this case. With 

further development of the wetting front, the mean depth of critical slip surface reaches a 

stable value for both considered scales of fluctuation and does not increase again as the 

rainfall progresses. This is because in the case with smaller !!"#!"!!  (i.e. lower 

variability) the rainwater infiltration is more likely to form nearly-saturated-flow within 

the soil column after a long period of the rainfall event, which can cause the depth of the 

critical slip surface to rise close to the bottom of the soil column.  

 
  (!) !!"#!"!! = 0.1m. 

 
(!) !!"#!"!! = 0.5m. 

Figure 6.9 Mean depth of critical slip surface in function of time, for different scales of fluctuation ! 

and !!"#!"!!. 
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 We investigate the influence of the variability in rainfall patterns on the pore 

water pressure redistribution. We consider an average rainfall intensity of 3cm/hr and 

duration of rainfall of 51.2hr. Figure 6.10 illustrates the redistribution of the pore water 

pressure for different random rainfall events using the same realization of saturated 

hydraulic conductivities within the soil slope for ! = 0.5m. The random rainfall events 

are generated with ! = 0.47, and !! = 5 and 20. The pore water pressure is plotted at 

the point in time when the rainfall stops. It is shown that the pore water pressure builds 

up faster for lower !, i.e. when the time variability of rainfall intensity is lower (cf. Fig. 

3.5). This is because a low variability of the rainfall pattern will allow more rainwater to 

infiltrate into the soil slope, which will result in pore water pressure buildup. On the other 

hand, a rainfall pattern with high variability is more likely to produce runoff and hence 

will have a smaller effect on the pore water pressure redistribution.  

 

Figure 6.10 Realizations of pore water redistribution with different random rainfall events. 

6.3.2 Probability of failure 

We vary the number of steps ! in the simulation of the rainfall event as ! = 5, 6, 7, 8, 9 

and evaluate the probability of failure for the corresponding time periods 3.2hr, 6.4hr, 
12.8hr, 25.6hr, 51.2hr. The time step for the evaluation of the point-in-time factor of 

safety is chosen as 0.2hr. The average rainfall intensity is varied as 2cm/hr, 2.5cm/hr, 
3cm/hr, 3.5cm/hr, 4cm/hr. The number of samples per Subset Simulation level is set 
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estimates for the cases considered. Figure 6.11 depicts the probability of slope failure in 

function of the average rainfall intensity and rainfall duration, for two considered scales 

of fluctuation ! = 0.5m and 4m. 

As expected, the probability of failure increases with increasing rainfall duration 

and with increasing average rainfall intensity. The density of the contour lines represents 

the changing rate of the probability of failure. In the case with smaller scale of fluctuation 

(! =  0.5m), rapid changes of the probability occur when the average rainfall intensity 

increases from 2cm/hr to 3cm/hr. On the other hand, in the case with a larger scale of 

fluctuation (! =  4m), the probability of failure increases faster at higher rainfall 

intensities. This indicates that when the spatial variability of the soil is high, fast changes 

in !! at shallow depths are likely to occur at shorter rainfall duration.  

  

(!) ! = 0.5m. (!) ! = 4m. 

Figure 6.11 Comparison of probability of failure in cases with different !. 

  Figure 6.12 illustrates the influence of the scale of fluctuation on the probability 

of failure for a given time period of 12.8hr. For lower rainfall intensity, the probability of 

failure is larger in the case with smaller scale of fluctuation (! = 0.5m). This is because 

soils with high spatial variability will favor the occurrence of low after high permeability 

layers, and hence a larger !! is more likely to build up at shallow depths. Therefore, in 
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implies a simultaneous decrease of !′ and increase of !! in Eq. (4.11), which will result 

in a reduction of the critical factor of safety.  

 

Figure 6.12 Comparison of probability of failure in cases with different !. 

 We investigate the effect of the rainfall characteristics. As discussed in Section 

3.4, larger values of !! lead to a more uniform rainfall event (see Fig. 3.5). Figure 6.13 

shows the influence of the self-similar random process parameter !! on the probability of 

failure. The value of the rainfall parameter ! is 0.47 and the scale of fluctuation ! is 

0.5m. The probability of failure increases as !! increases, i.e. as the rainfall becomes 

more uniform. It indicates that smaller variability of the rainfall process leads to a larger 

probability of failure.  

 

Figure 6.13 Comparison of probability of failure in cases with different !!, ! = 0.47. 
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In these cases, more rainwater becomes infiltration and causes a larger hydraulic 

gradient within the soil slope. This in turn leads to a larger pore water pressure when the 

rainfall intensity is below the water capacity of the slope (see Fig. 6.11). Since the water 

capacity of the slope is larger at the beginning of the rainfall event and decreases with 

infiltration volume accumulation, the excess rainwater will form runoff at the ground 

surface and will not affect pore water pressure buildup and the slope stability. 

6.4 Bayesian updating 

In this section, we apply Bayesian analysis to update the distribution of the saturated 

hydraulic conductivity !! with measurements of the pore water pressure along the depth 

of the soil profile. The lower boundary condition is set as a fixed volumetric water 

content, i.e. ! = !!. We consider the infinite slope in sandy soil presented in Section 6.1. 

In the context of Bayesian analysis, we need to define the prior distribution of the 

hydraulic conductivity. We model the prior distribution of !! with a lognormal random 

field with median 3.6cm/hr. The standard deviation in log-scale, i.e. the standard 

deviation of log!" !!, is 0.5 and the scale of fluctuation is 5m. The random field is 

discretized applying a discrete KL expansion based on 100 equal thickness layers. 

Therefore, Bayesian updating is applied to learn the posterior distribution of the random 

variables in the KL expansion. In the KL representation the 10  random variables 

corresponding to the larger eigenvalues are retained, which decreases considerably the 

dimension of the updating problem. The layers of the infinite sandy slope are assumed to 

have the same water content !! = 0.2 before the rainwater infiltration. The remaining 

permeability parameters of the sandy soil are modeled deterministically, and their values 

are listed as Tab. 5.2.  

 The distribution of !! is updated with synthetic measurements of the pore water 

pressure. We assume the rainfall event with duration of 51.2hr shown in Fig. 6.14 is 

measured in the field. This measurement is generated using the self-similar random 

process model discussed in Section 3.4  for an average intenisity of 8cm/hr  and 

parameters of the random process model !! = 12.27 and ! = 0.47. In order to generate 

synthetic measurements of the pore water pressure, we draw a realization from the prior 
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distribution of !! and evaluate the corresponding pore water pressure distribution by 

application of the infiltration model based on Richards equation. The permeability 

parameters used in this model are the ones shown in Tab. 6.2. 

 

Figure 6.14 A rainfall event with duration of 51.2hr. 

In order to make better use of the measurements, it is of interest to choose 

appropriate time steps and infiltration layers for the pore water pressure data that are used 

in the Bayesian analysis. This is because including a large number of data will render the 

problem overdetermined, which makes it difficult to obtain reliable solutions with the 

Bayesian updating algorithm. Figure 6.15 illustrates the relationship between the relative 

hydraulic conductivity !! and pressure head ℎ within the sandy soil (c.f. Fig. 2.5). In 

Figure 6.15, the pressure head ! here is plotted in logarithm scale. This figure shows that 

when the pressure head varies from −0.1kPa  to −1kPa  the relative hydraulic 

conductivity !! changes rapidly. This part can be named as “rapid-changing area” and is 

meaningful for setting observation points. Moreover, it is known that, the pore water 

pressure significantly increases with respect to the wetting front development. 

Nevertheless, the numerical solution of Richards equation is not stable around the wetting 

front (Phoon et al. 2007). It is not proper to arrange all observation points within the 

location where it has large changes. The rest part of the curve is relatively smooth, yet it 

does not provide adequate information for identifying the permeability of soil layers. 

Thus, the principle of selecting observation points is as follows: 1) Not too many points 

within the rapid-changing area; 2) Not too close to the wetting front. 
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Another issue that is of interest when performing the Bayesian updating with pore 

water pressure data is that for certain cases of spatial distribution of the hydraulic 

conductivity the infiltration model becomes not uniquely identifiable. This is illustrated 

in Figure 6.15. Note that the infiltration model assumes that the wetting and drying 

phases follow the same path (solid blue line). Points !! and !! represent two arbitrary 

states of the sandy soil (see Fig. 6.15). Because of the spatial variability of the hydraulic 

conductivity and the randomness in the rainfall patterns, one could find many trajectories 

from point !! to point !!. For instance, one can find at least two paths, i.e. one direct way 

is to follow the solid line and the other is shown as the dash line. The latter indicates one 

of many possible combinations of the wetting and drying process. Notice that, the initial 

and final states are the same for the two paths, yet their runtime is different. Recalling the 

Richards equation in Eq. (2.28), one could infer that, different paths lead to multiple 

solutions. In addition, the classical analytical solution of Richards equation (1931) 

comprises many periodic terms as it applies Fourier transformation (e.g. Fred 2011). As 

discussed in Section 5.3, periodic models with high frequencies lead to multimodal 

likelihood functions that affect the efficiency of sampling-based Bayesian methods. The 

frequencies of periodic terms in the numerical solution of Richards equation become 

lower in cases where the saturated hydraulic conductivity decreases gradually with depth. 

Such cases are often observed in the field due to the natural soil deposition processes. 

Therefore, in this study we add a bias term to the realization of the hydraulic conductivity 

used to generate the observations that increases linearly with depth. 

The pore water pressure is observed with respect to the time and depth. The 

measurements are obtained as follows: 

 !! = !! !! ,!! + !! , ! = 1,2,… ,! (6.1) 

in which !!  is the observation time; !!  is the observation depth; ! is the number of 

observation points and !! is a Gaussian error term with standard deviation 0.1kPa. The 

likelihood function of the observations can be calculated following Eq. (5.10). Bayesian 

updating is performed with the adaptive version of BUS with Subset Simulation, 

described in Section 5.2.3. The number of samples per level is chosen as 1000 and the 
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intermediate conditional probability is !! = 0.1. 

 

Figure 6.15 Relative hydraulic conductivities in terms of the pressure head for sandy soils, and the 

parameters are given by ! = 0.145cm!!, ! = 2.68 (Šimůnek 2009). 

Two different data sets are chosen. Figure 6.16 illustrates the redistribution of the 

pore water pressure with respect to the time and depth during the rainwater infiltration for 

the realization of the hydraulic conductivity used to generate the data.  

Figure 6.16(!) shows the pore water pressure redistribution at four time points, 

i.e. 10hr, 20.2hr, 30.6hr and 40.8hr. The depths of observation points of the first data 

set are located at 1m, 2m, 3m and 4m, respectively. According to Figure 6.16(!), at 

10hr and 20.2hr the notable wetting front is located around the depth of 0.9m and 1.5m, 

respectively. At 30.6hr and 40.8hr, the wetting front development becomes slower. 

Intuitively, the pore water pressure will be built-up above the wetting front. In contrast, 

below the wetting front, the pore water pressure does not vary significantly during 

infiltration. For the same realization of the hydraulic conductivity, we choose 

measurements of the pore water pressure redistribution at six time points, i.e. 7hr, 14.4hr, 
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The measurements are plotted in Figure 6.16(!). The depths of corresponding 
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−103−102−101−100−10−10

0.2

0.4

0.6

0.8

1

Pressure head ψ  [cm]

Re
lat

ive
 hy

dra
uli

c c
on

du
cti

vit
y K

r

 

 

Drying 

P2 

Rapid-changing area Wetting 

P1 



6.4 Bayesian updating 

 96 

respectively. In analogy to the previous case, the wetting front advances faster at the 

beginning and it slows down after around 21.8hr. The observation points are chosen 

below the wetting front and this is based on the two discussed principles. 

 
(!) Four observation points. 

 

(!) Six observation points. 

Figure 6.16 Pore water pressure redistribution with respect to wetting front development. 

Figure 6.17(!) and (!) illustrate the comparison among the real distribution of the 

saturated hydraulic conductivity, the posterior mean and 95% credible intervals with four 

and six measurement points, respectively. It is shown that, in Figure 6.17(!) the posterior 
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mean of saturated hydraulic conductivities is close to the true values, whereas in Figure 

6.17(!) the posterior mean and true values at some locations do not agree well. This is 

probably due to the fact that, the identification of !!(!′) greatly relies on locations of 

observation points. In the latter case, some points are near the wetting front, where the 

infiltration model is subjected to numerical noise. In the first case, the true value is within 

the credible interval, whereas in the second case the true value exceeds the upper credible 

bound in some regions. 

  

(!) Four observation points. (!) Six observation points. 

Figure 6.17 The posterior distributions of saturated hydraulic conductivities. 

Figure 6.18 compares the mean of the pore water pressure obtained by the prior 

hypothesis and posterior distribution of saturated hydraulic conductivities with the 

measurements. In Figure 6.18(!)  the posterior distribution moves toward the 

measurement at points located at 1m, 2m and 3m, yet the last point does not match well. 

This is probably because the pore water pressure at this point is not influenced by !!(!′) 
throughout the infiltration process. For the same reason, the posterior mean of the last 

three points in Figure 6.18(!) differs from the measurement. However, the differences in 

both cases are minor. This validates the ability of the adaptive BUS-SuS approach to 

identify the measurements. 
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(!) Four observation points. (!) Six observation points. 

Figure 6.18 Pore water pressure obtained by the prior, posterior and measurement. 

Figure 6.19 depicts the comparison between the prior and posterior mean factor 

of safety with four and six measurement points. The posterior mean is evaluated 

considering a random rainfall event with duration 51.2hr, average intensity 2cm/hr and 

parameters of the self-similar random process model !! = 12.27 and ! = 0.47. The 

posterior mean factor of safety nearly overlaps with the prior mean curve at the first few 

hours. The posterior mean becomes smaller than the prior after the first 20hrs. In other 

words, according to the prior knowledge, we will underestimate the average influence of 

the rainfall infiltration on the slope stability. Because of the wetting front development 

(see Fig. 6.16), below about 3m depth for both cases a Bayesian analysis can learn less 

information from the measurements, since !!(!) has little influence on the pore water 

pressure redistribution. The wetting front has not reached 3m for both cases until the 

rainfall stops (see Fig. 6.16), i.e. 51.2hr. Since the most critical slip surface is above the 

wetting front, the rest of soil layers will not affect the stability of soil slope. The 

computation results are reliable within the time domain [0,51.2hr] in consideration of the 

wetting front development. 
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Figure 6.19 Mean factor of safety. 
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Chapter 7 Conclusions 

7.1 Conclusions 

Landslide hazards are present in many places around the world, leading to severe 

damages and fatalities. Proper assessment of the risks due to landslide hazards requires a 

rigorous probabilistic modeling of the input uncertainties in soil parameters and rainfall 

conditions. This thesis focuses on shallow slope failures and presents an approach for 

probabilistic assessment of slope stability of infinite slopes subjected to intense rainfall 

events. Two different physical-based infiltration models are studied. The first is a multi-

layered extension of the Green and Ampt model and assumes a distinct wetting front 

between “wetted” and “dry” zones. The second infiltration model is based on a numerical 

solution of Richards equation. The spatial variability of permeability parameters of the 

soil is represented with random fields. In addition, the randomness in the rainfall patterns 

is modeled with self-similar random process theory. The reliability of the slope is 

evaluated with Subset Simulation, which is an adaptive Monte Carlo method that is 

efficient in estimating failure probabilities in high dimensions. Finally, the updating of 

predictions with field measurements is investigated through application of Bayesian 

analysis. Bayesian updating is performed using an efficient sampling technique, namely 

the BUS approach combined with Subset Simulation. 

In the first case study, the extended Green and Ampt model is applied and the 

spatial variability of saturated hydraulic conductivity and suction head is modelled with 

correlated lognormal random fields. The mean behavior of the wetting front development 

and the factor of safety of the slope are evaluated with Monte Carlo simulation and the 

cumulative probability of failure for different wetting front depths is computed with 

Subset Simulation. In a case study, we investigate the influence of the scale of fluctuation 

and the standard deviation of the logarithm of the hydraulic conductivity and the suction 

head on the wetting front development, the mean factor of safety and the probability of 

failure of the slope. It is shown that decreasing the scale of fluctuation or increasing the 
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standard deviation of saturated hydraulic conductivity will increase the variability of the 

soil layer permeability. This increases the likelihood of occurrence of low permeability 

values, which decreases the effective hydraulic conductivity within the wetting zone, thus 

leading to slower movement of the wetting front. A decrease in the scale of fluctuation 

has a significant influence on the transient behavior of the factor of safety. In particular, it 

is shown that a decrease in the scale of fluctuation leads to faster decrease in the mean 

factor of safety with the wetting front development, due to larger pore pressure build-up 

at shallow depths, which favors shallow slope failure. This leads to large failure 

probabilities at shallow depths of the wetting front. A change in the standard deviation of 

the random fields does not have significant influence on the mean depth of the critical 

slip surface within the wetted zone. The probability of failure increases faster with the 

development of the wetting front at the beginning of the infiltration with increasing 

standard deviation. However, the impact of the latter on the maximum value of the 

probability of failure is shown to be significant. 

The second case study presents the reliability assessment of an infinite slope 

subjected to random rainfall events, employing a numerical solution of Richards equation 

to model the infiltration process. The spatial variability of the saturated hydraulic 

conductivity is again modeled with a lognormal random field. In addition, the random 

rainfall patterns are modeled by application of self-similar random process theory. The 

reliability analysis is performed with Subset Simulation. The probability of slope failure 

is evaluated conditional on different average intensities and durations of the rainfall event 

for different values of the scale of fluctuation of the hydraulic conductivity and the 

parameters of the self-similar random process modeling the rainfall event. This case 

study shows that in short duration rainfall events, the probability of failure increases as 

the scale of fluctuation of the saturated hydraulic conductivity decreases. This is because 

in slopes with small scale of fluctuation, the critical slip surface is likely to be located in 

shallow depths. Moreover, it is shown that more uniform rainfall patterns lead to higher 

infiltration volume and result in higher pore water pressure buildup that increases the 

probability of failure of the infinite slope. However, the influence of water capacity of the 

infinite slope cannot be ignored, because the runoff part of rainwater will not affect the 

slope reliability. This effect is more pronounced in soils with small scale of fluctuation 
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where layers with low hydraulic conductivity that may result in saturated flow are more 

likely to occur. In rainfall events with long duration, the water capacity of slopes with 

large scale of fluctuation remains high throughout the rainfall event, which leads to a 

larger probability of failure as compared to slopes with small scale of fluctuation.  

Finally, the third case study presents an application of Bayesian analysis to learn 

the probability distribution of hydraulic conductivity with measurements of the pore 

water pressure and update the factor of safety of the infinite slope. Here, the infiltration 

model used is again based on the numerical solution of the Richards equation. The 

Bayesian updating is performed with the BUS approach combined with Subset 

Simulation. In order to make better use of the measurements, only the data points above 

the wetting front development are used in the Bayesian analysis, since the effect of the 

rainwater infiltration on the pore water pressure is stronger above the wetting front. 

However, to avoid the oscillatory terms that are present in the numerical solution of the 

infiltration model close to the wetting front, the observation points should not be located 

too close to the wetting front. The results demonstrate how measurements of the pore 

water pressure could potentially influence the posterior statistics of the factor of safety. In 

particular, it is shown that pore water pressure measurements provide little information 

for updating the factor of safety within saturated zones. In order to perform accurate 

updating within saturated zones, it is necessary to include additional sources of 

information, e.g. monitoring data from soil deformation or inclination.   

7.2 Discussion and outlook 

The Green and Ampt model assumes that a well defined wetting front separates the 

wetted and dry zone during rainwater infiltration. This approximation is good for sandy 

soil types, in which the rainwater is driven by gravity with uniform water content (Bear 

1972). For other soil types, such as clayey soil, the water flow will not move like a piston 

and the shape of the wetting front is not as sharp as in sandy soils. Therefore, the 

accuracy of the Green and Ampt model is higher for sandy soils. In addition, the 

proposed extension of the Green and Ampt model for dealing with multiple layers is 

more accurate with decreasing saturated hydraulic conductivities along depth of the soil 
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column. The advantage of the extended Green and Ampt model over the model based on 

Richards equation is its computational efficiency. On the other hand, the model based on 

the numerical solution of the Richards equation is accurate independent of the soil type 

and the spatial distribution of hydraulic conductivity. It should be pointed out that the 

stability of the numerical solution of Richards equation for the pressure head close to the 

wetting front is not guaranteed for all time steps and mesh sizes. Numerical stability is 

not an issue for the extended Green and Ampt model because the suction head concept 

defines the solution at the wetting front. The upper boundary condition in the current 

implementation of the extended Green and Ampt model are uninterrupted intense rainfall 

events, whereas arbitrary rainfall patterns (e.g. generated based on self similar random 

process theory) can be applied to the infinite slope in the model based on Richards 

equation.  

The BUS approach with Subset Simulation, as well as most sampling based 

Bayesian methods, encounters difficulties in problems that are not uniquely identifiable. 

This issue occurs in the infiltration model based on Richards equation, because its 

numerical solution involves periodic terms. This problem appears to be less severe in 

cases where the saturated hydraulic conductivities are gradually decreasing along the 

depth. Such cases are commonly observed in real sites due to the natural soil deposition 

process. In addition, the numerical solution of Richards equation is not stable near the 

wetting front. Therefore, the data points used in the Bayesian updating process should be 

selected based on the following principles: 1) Not too many points within the rapid-

changing area; 2) no points too close to the wetting front. 

Based on the above discussion, the following possible future research topics have 

been identified: 

• Modification of the extended Green and Ampt model in order to deal with 

arbitrary rainfall boundary conditions, such as random rainfall patterns. 

• Consideration of the uncertainty of additional parameters, such as the initial and 

saturated water content. 

• Study of the effect of pore water pressure as well as other types of measurements 
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on the probability of failure of the infinite slope. 

• Combination of the reliability analysis and Bayesian updating method with a 

surrogate model (e.g. based on Neural Networks or Gaussian process models) of 

the infiltration model to enhance computational efficiency and achieve real time 

assessment. 

• Study of the reliability of slope stability for cases where the hydraulic 

conductivity is modeled with a non-stationary random field. As an example, the 

performance of the two infiltration models could be compared for the case where 

the mean value of the hydraulic conductivity decreases with depth. 

• The Green and Ampt model is expected to be more accurate for cases where the 

hydraulic conductivity decreases with depth. Therefore, it becomes interesting to 

study the performance of the Green and Ampt model in Bayesian updating of such 

cases.   

• Ultimately, it would be of interest to extend this study to 2! infiltration models 

combined with 2! finite element analysis for determining the slope stability. This 

would also enable employing measurements of soil deformations to learn the 

distribution of permeability parameters with Bayesian updating. 



 

 106 

 



Annex A 

 107 

Annex A. Numerical solutions for Richards equation  

This Annex discusses a method for the numerical solution of the one dimensional 

Richards equation. Before introducing the numerical solution, two fundamental strategies 

for simplifying Eq. (2.27) are presented here, namely the head-based formulation and the 

saturation-based formulation.  

 Here we only concentrate on the one dimension case, whereby flow is assumed 

along the !′ direction [see Figure 2.1(!)]. The head-based formulation is given as follows  

 ! ℎ  
!!
!!  =  !!!!  (! 

!!
!!! ) (A.1) 

in which ! ℎ  is a function describing the rate of change of saturation with respect to the 

hydraulic head, i.e. ! ℎ = !"
!!.  

The saturation-based formulation is given as,  

 
!!
!!  = !!!!  [!(!) 

!!
!!! ] (A.2) 

in which ! !  is the soil water diffusivity, i.e. ! ! = !(!) ∙ !!!".  

 In the following, an example is given for solving 1! horizontal flow by applying 

saturated-based formulation. Consider the case where the soil water diffusivity !(!) is 

constant throughout the entire soil column, i.e. ! ! = !"#$%&#%. According to Eq. 

(A.2), Richards equation can be further simplified to: 

 
!!
!!  = ! !  

!!!
!!!!  (A.3) 

 Expanding Eq. (A.3) by means of first order finite difference method, it yields, 

 
!!,!!!!!!,!

∆!  = ! !  
!!!!,!!!!!,!!!!!!,!

∆!!   (A.4) 
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in which !!,! is the water content at the !th computational layer and !th time step; ∆! is 

the length of time step; ∆! is the length of the computational layer.  

By rearranging terms, the following form can be obtained: 

 !!,!!! − !!,! =    ! !  
∆!
∆!! (!!!!,! − 2!!,! + !!!!,!)  (A.5) 

By substituting ! = ! ! ∆!
∆!! into Eq. (A.5), we get 

 !!,!!! = λ!!!!,! + (1− 2λ)!!,! + λ!!!!,!   (A.6) 

 Using the backward difference method, i.e. replacing ! + 1 by !, the following 

equation can be obtained 

 !!,! = λ!!!!,!!! + (1− 2λ)!!,!!! + λ!!!!,!!!   (A.7) 

Thus, the water content for a given time ! = !∆!  and location ! = !∆!  is 

expressed as a function of the moisture content at the previous step (! − 1) at the same 

(!) as well as adjacent (! − 1 and ! + 1) locations. Because the initial boundary locations 

are known, !!,! can be computed directly (thus explicitly) at all time and locations by 

repeated application of the above equation starting from ! = 0. 

Notice that the stability of the solution from the explicit scheme is dependent on 

the value of lambda. For 0 ≤ ! ≤ 0.5 the solution remains stable (e.g. Caputo and 

Stepanyants 2008). For values outside this range, stability is not guaranteed. 
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Annex B. Validation of the extended Green and Ampt model  

This Annex discusses the performance of the extended Green and Ampt model with the 

help of a numerical example. We consider an infinite slope in a sandy subsoil subject to 

an intense rainfall event. The soil column is 5m deep with idealized free-draining lower 

boundary. The slope angle is ! = 18°. The unit weight of water is 10kN/m!. The direct 

effects of matric suction on the effective stress, and as such the stability of the slope, are 

neglected in the extended Green and Ampt model. The saturated vertical hydraulic 

conductivity !! is modelled by a statistically homogeneous lognormal random fields with 

median M!! = 3.6 cm/hr. The suction head ! is a constant at ! = 15cm. These values 

are typical for loamy sands (Rawls et al. 1983). The standard deviation and the scale of 

fluctuation of the decimal logarithm of the random field are taken as 0.5 and 5m, 

respectively. The random field is discretized into 100 layers with thickness ∆! = 0.05m. 

The deterministic parameters of the Green and Ampt model for loamy sand are taken 

from Rawls et al. (1982) and Rawls et al. (1983) and are summarized in Tab. 1.  

Table B.1 Parameters for Green and Ampt model. 

Parameters Definition Value 

!! Saturated hydraulic conductivity M!! = 3.6cm/hr 
|!| Suction head 15 cm 

!! Saturated water content 0.437 

θ0 Initial water content 0.125 

Comparing the two models for the particular realization of the random field 

shown in Figure B. 1. As discussed in Chapter 2, the extended Green and Ampt model 

computes the cumulative infiltration time and corresponding pore water pressure 

distribution for each discrete computational layer, whereas Richards equation computes 

the pore water pressure as a function time. To make the two models comparable, we fix 

the location of wetting front and obtain the pore water pressure as well as the infiltration 

time of one realization of the random field through the extended Green and Ampt model 

and subsequently at the corresponding point in time compute the pore water pressure 

redistribution by means of HYDRUS-1D.  



 

 110 

  

(!) The distribution of saturated hydraulic 

conductivities 
(!) The wetting front is located at 1m by using 

5.25hr 

  

(!) The wetting front is located at 2.5m by using 

35.36hr 
(!) The wetting front is located at 4m by using 

84.65hr 

 
Figure B.1 Comparison between extended GA model and Richards equation. 

 Figure B. 1 shows the comparison of the pore water redistribution obtained by two 

models when the wetting front locates at 1, 2.5 and 4m after 5.25, 35.36 and 84.65hr, 
respectively. In this example, the solutions of the pore water pressure redistribution above 

 

−3

−2.5

−2

−1.5

−1

log10KS

log
10
(c
m
/h
r)

0 5 10

0

1

2

3

4

5
Pore water pressure [kPa]

De
pth

 [m
]

5.25 hr

0 5 10

0

1

2

3

4

5
Pore water pressure [kPa]

De
pth

 [m
]

35.36 hr

0 5 10

0

1

2

3

4

5
Pore water pressure [kPa]

De
pth

 [m
]

84.65 hr

 

Extended Green and Ampt model
Richards Equation



Annex B 

 111 

the wetting front by the two models are quite close at three time points. Notice that 

positive pore water pressure can be well predicated by the extended Green and Ampt 

model. This is because the assumptions of the model on the wetting front development as 

well as the pore water pressure are valid when the rainwater flows through the decreasing 

permeability soil layers. Otherwise, the computation results can lead to errors, 

particularly in cases with large variability of permeability. Known from Figure B.1(!) 

that the extended Green and Ampt model is more valid for cases with the permeability 

decreasing with depth, through which the pore water pressure is easy to be built up. 
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Annex C. Commonly used distributions 

This annex presents two commonly used distributions of continuous random variables.  

Normal or Gaussian distribution 

The Gaussian distribution is of great importance in the fields of probability and statistics. 

Moreover, it is one of the most frequently used distributions in engineering problems. A 

Gaussian random variable !~!(!,!) is defined by two parameters, the mean value ! 

and the standard deviation !. Its PDF is as follows: 

  !! ! = !
!!

!!!
! = !

! !! exp [− (!!!)!
!!! ]      ! ∈ (−∞,+∞) (C.1) 

where !(∙) is the standard normal PDF operator associated with the standard normal 

random variable !~!(0,1): 

 ! ! = !
!! exp (− !!

! )      ! ∈ (−∞,+∞) (C.2) 

The CDF of !~!(!,!) is as follows: 

  !! ! = Φ !!!
!  (C.3) 

where Φ(∙) is the standard normal CDF operator: 

 Φ(!) = !
!! exp (− !!

! )!"
!
!!  (C.4) 

Lognormal distribution 

If ! is a random variable with a normal distribution, then ! = exp(!) has a lognormal 

distribution; vice versa, if ! is lognormally distributed, then ! = ln(!) has a normal 

distribution. Assume ! is normal distribution with parameters !! and !!, then the PDF of 

the lognormal distribution reads: 
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 !! ! = 
!
! ∙

!
!! !! ∙ exp [− !

! (
!"!!!!
!!

)!] (C.5) 

On a logarithmic scale, !! and !! can be called the location parameter and the 

scale parameter. Alternatively, the PDF and the CDF of the lognormal distribution can 

also be expressed through the standard Normal PDF and CDF by: 

 !! ! = !! ∙ !(  
!"!!!!
!!

 ) (C.6) 

 !! ! = Φ(  !"!!!!!!
 ) (C.7) 

The corresponding mean, variance and standard deviation of ! can be computed 

as follows: 

 E ! = exp (!! + !!!
! ) (C.8) 

 Var ! = exp 2!! + !!! [exp !!! − 1] (C.9) 

 !! = exp !! + !!!
! exp !!! − 1 (C.10) 

According to Eq. (3.9), the coefficient of variation of a random variable with 

lognormal distribution is: 

 CV! = 
!!
![!] = exp !!! − 1 (C.11) 

The median and mode of the lognormal distribution are given by: 

 !!.! = exp !! (C.12) 

 ! = exp (!! − !!!) (C.13) 

Likewise, parameters !!  and !!  can be obtained if the expected value and 

variance of ! are known: 
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 !! = ln E ! − !
! ln 1+ !"# !

! ! ! = ln E ! − !
! ln 1+ CV!

!  (C.14) 

 !!! = ln 1+ !"# !
! ! ! = ln 1+ CV!!  (C.15) 

For calculation, other parameters can be obtained in the light of the coefficient of 

variation. Moreover, lognormal distribution is usually applied to the description of 

variables that can only take positive values. 
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