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Abstract. We introduce a new simple first-order framework for theories whose objects are well-
orderings (lists). A system ALT (axiomatic list theory) is presented and shown to be equiconsistent
with ZFC (Zermelo Fraenkel Set Theory with the Axiom of Choice). The theory sheds new light on
the power set axiom and on Gödel’s axiom of constructibility. In list theory there are strong arguments
favoring Gödel’s axiom, while a bare analogon of the set theoretic power set axiom looks artificial.
In fact, there is a natural and attractive modification of ALT where every object is constructible and
countable. In order to substantiate our foundational interest in lists, we also compare sets and lists
from the perspective of finite objects, arguing that lists are, from a certain point of view, conceptually
simpler than sets.

§1. Introduction. Sets are the dominant foundational structure of modern mathemat-
ics. In the most successful first-order theory ZFC everything is a set, and all mathematical
concepts can be interpreted as sets. To date there are no other concepts and associated
axiomatic systems who can rival ZFC in interpretative power, conscious or unconscious
usage and acceptance of a vast number of mathematicians, and foundational interest of
logicians and philosophers alike.

The purpose of this paper is to present an alternative to sets, which can claim to have
the same interpretative power as ZFC, and which might be interesting from various foun-
dational points of view, including those of philosophy and computer science.

Any new foundational theory naturally provokes critical reactions. The set theorist
Woodin (2001, p. 690) writes in one of his articles on the Continuum Hypothesis:

“Of course, for the dedicated skeptic there is always the ‘widget pos-
sibility’. This is the future where it is discovered that instead of sets
we should be studying widgets. Further, it is realized that the axioms
for widgets are obvious and, moreover, that these axioms resolve the
Continuum Hypothesis (and everything else). For the eternal skeptic,
these widgets are the integers (and the Continuum Hypothesis is resolved
as being meaningless).”

Our “widgets” are finite or transfinite lists (well-orderings), not finite numbers. But the
most important difference to the sceptic described in this quotation is that we by no means
want to indicate that one should study and conceptually analyze lists “instead of sets.” We
simply argue that lists are worth of study and that set theory might not be the eternal or only
answer. There are interesting and natural worlds of mathematical thought closely related
to set theory where prominent foundational issues look different. We want to enrich the
foundational discussion, without intentions to denigrate set theory. (The author considers
himself to be a set theorist, but one with a pluralistic view of foundations.)

Received: April 4, 2008

c© Association for Symbolic Logic, 2011

186 doi:10.1017/S1755020310000390

of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1755020310000390
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:28:53, subject to the Cambridge Core terms

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1755020310000390
http:/www.cambridge.org/core


AN AXIOMATIC THEORY OF WELL-ORDERINGS 187

Historically, the strong position of axiomatic set theory is the outcome of a complicated
period spanning almost a century. Cantor discovered infinite powers and infinite numbers
in the 1870s. He used and developed these two concepts in his analysis of “sets of reals”
(“lineare Punktmannigfaltigkeiten”) in the early 1880s. Cantor’s initial notion of a set was
neither foundational nor iterative, and it leads to topology, measure theory, and order
theory, but not immediately to logic and axiomatics. Borel, Hausdorff, and Lusin are
Cantor’s heirs here, while Zermelo’s work can be seen as the continuation of Cantor’s
unpublished discoveries of the 1890s, including discussions of inconsistencies and of set
theoretic axioms. (See Cantor, 1991, p. 387ff.) Solving a major open problem of the pure
theory, Zermelo proved the well-ordering theorem in 1904. His axiom system of 1908 was
designed to make his proof work—and that is why the axiom of choice is there while the
replacement scheme is missing; “making his proof work” includes avoiding the Russell
paradox. It then took several decades until Zermelo’s system was completed, formalized,
and understood and widely accepted as a foundational theory for all of mathematics. (See,
e.g., Ebbinghaus, 2007; Ferreirós, 1999; Kanamori, 1996, 2003; Deiser, 2009) for the
development of set theory and some of the initial conceptual difficulties; see, for example,
Blass & Gurevich (2004) for an informal discussion of the foundational role of sets.

The full story behind these remarks reveals how ZFC depends on historical circum-
stances, and it shows us the forge our modern notion of a set went through. The author
thinks that it is very helpful to be aware of the history of set theory in order to avoid over-
hasty and biased reactions to alternative foundational approaches (as well as to ZFC itself
and its modifications and extensions). In particular this concerns questions of acceptance,
intuitiveness, evidence of axioms, ease of use, and teachability. So the reader is asked to
judge our argumentation critically, but to judge at the same time if his objections rely on
views shaped by 100 years of ZFC, or by sets as foundational objects in general. Of course,
the reader who is convinced that ZFC is something like an “absolute truth” or that history
has simply revealed it as the foundational theory par excellence will raise objections to
such a historically minded judgement.

The present theory of lists in fact emerged from studies in the history of set theory, from
an attempt to understand and formalize Cantorian ordinals and cardinals, which are no sets.
Our definition of the transfinite numbers will be in line with Cantor’s views, which on their
part are akin to Euclid’s traditional definition of number as a system of indistinguishable
units. On the other hand there are no Cantorian sets in our theory of lists, and therefore we
do not claim nor do we intend to present a formalized version of Cantor’s mathematical
intuitions.

Given the key role of well-orderings in Cantor’s theory as well as in ZFC, they are
certainly a natural candidate for a comprehensive infinitary concept, and therefore they
do not need an introductory motivation. But after presenting our system we will look at
finitary lists and sets more closely, and this will yield conceptually independent arguments
favoring lists.

A new theory developing everything from scratch comes along with many definitions
and elaborations of the basic consequences of its axioms, and this cannot be done within
the scope of a journal paper like this. (A full exposition of axiomatic list theory can be
found in Deiser, 2006. This treatise moreover develops an axiomatic system for multi-
sets or aggregates.) On the other hand, a passably self-contained outline omitting some
details and proofs but including the discussion of foundational aspects might be a good
way to introduce the theory and to open it for mathematical as well as philosophical
discussion.

of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1755020310000390
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:28:53, subject to the Cambridge Core terms

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1755020310000390
http:/www.cambridge.org/core


188 OLIVER DEISER

The paper is arranged as follows. After a short informal discussion of lists we introduce
our first-order language (Section 2). In this language we develop a theory called ALT for
“axiomatic list theory” (Sections 3–7). The language and the theory are intended to be
simple and intuitive. The reader who knows axiomatic set theory will find most of the
material discussed here easy reading, after he acquainted himself with the basic definitions
and concepts. We consider this to be a strength of our approach. ZFC is a simple theory,
too. The theory ALT is equiconsistent with ZFC, and the proof of this theorem is outlined
in Section 8. In Section 9 we introduce cardinals in order to give an example of how
mathematics can be further developed in a universe of lists. In Section 10 we look at
hierarchies and a list-theoretic analogue of Gödel’s axiom of constructibility.

In the last two sections of the paper we step back and discuss the conceptual foundations
of lists, aiming at a more profound “apology” for list theory and at a “liberation” of ALT
from inadequate set theoretic influences:

In Section 11 we compare (hereditarily) finite lists and sets. We argue that finite lists are
canonical objects and that they are conceptually simpler than finite sets. This perspective is
antipodal to the point of view shaped by set theory, but it is supported by the experiences of
computer science. In a whole, the discussion yields an, in our opinion, important argument
for basing an infinitary theory on the notion of a list. It also shows that the notion of a well-
ordering does not conceptually depend on the notion of a set (while it historically evolved
from Cantor’s study of real numbers and sets of real numbers in the 1870s and 1880s).

In Section 12 we discuss the theory ALT from a purely list-theoretic point of view. This
gives some new perspectives on two pivotal principles: Gödel’s axiom of constructibility
and the analogon of the set theoretical power set axiom. We argue that Gödel’s axiom is
much more convincing in list theory than in set theory, while the analogon of the power
set axiom (which is a member of ALT) looks artificial. These considerations lead to an
attractive modification of ALT, called NEU, where every lists is constructible as well as
countable, and where there are as many reals as ordinals. So finally our point of view
is the following: ALT is a reasonable axiomatic theory for lists as long as we take ZFC
as our guide, and it is a reasonable theory for lists to start with. But if we remove the
set theoretic guideline, then we arrive at a much more intrinsic theory like NEU. The
analogon of the power set axiom is dismissed here, while a list-theoretic version of Gödel’s
axiom of constructibility has a strong axiomatic position—one which it never reached in set
theory.

§2. Lists and the iota-language. Let us start with an informal description of lists. We
also want to introduce some basic notions which will play an important role later.

A finite list x has the form

x = 〈a0, a1, . . . , an−1〉.
The object a0 is the first entry of x , a1 the second entry of x , and so on. The object an−1 is
the last entry of x . Our lists are hereditary, and so the entries of x are again lists, etc.

Every entry of a list has one or more positions in the list. The number 2 appears in the
list 〈3, 2, 1, 2〉 at two different positions.

Two lists are equal if they have the same positions, and if their entries agree at all of their
positions. Thus 〈a〉 �= 〈a, a〉 for all a and 〈a, 〈a, b〉〉 �= 〈a, 〈b, a〉〉 if and only if a �= b.

There are at least two questions arising at this point. Firstly:
What exactly is a position? Or more technically: How can we speak about lists as directly
as possible, without the use of sets and without the use of natural numbers?
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AN AXIOMATIC THEORY OF WELL-ORDERINGS 189

And secondly:
What is the correct notion generalizing finite lists to include infinite ones?

Our answer to the first question is that positions are certain distinguished lists. They are
“neutral,” “unfilled” lists. The second position of any list will be the list 〈〈〉, 〈〉〉 , where 〈〉
denotes the empty list. The reader will see below how this can be formulated axiomatically
in an intuitive and noncircular way. There is indeed a simple, flexible, and powerful first-
order language for the description of lists (and this seems to be one of the achievements of
this work).

Our answer to the second question is that arbitrarily long well-orderings are the canon-
ical objects generalizing finite lists. The most basic and important constructor of lists is
end extension by one element, as can be seen by writing down any list. (This view is also
strongly supported by computer science.) And if we allow infinitely iterated end extensions
by one element, we arrive at the notion of a well-ordering.

We now present the language and the axioms. We work in first-order logic with equality
and one ternary relation symbol ι (iota). Instead of ι(x, y, z) we shall write x ιz y; we call
this the index-notation for a ternary relation symbol.

The objects of the theory are called lists or well-orderings. As everything is a set in ZFC,
everything is a list in our theory.

The intuitive meaning of the iota-relation is:
x ιz y means that x appears in y at position z.
The small Greek ι is for “in.” It was also chosen because it is not overloaded in mathe-

matics as many other symbols are.
We also say that x is an entry of y at position z, if x ιz y holds.
The most important definition of our theory is:

DEFINITION 2.1 (position and position of a list, z < y). A list z is called a position, if
there are x and y such that x ιz y. A position z is a position of y, in symbols z < y, if there
is an x such that x ιz y.

The original German term for position is “Ort” meaning “location, place, position, site,
spot” (as well as “small city”).

The idea is that only special lists can appear in the index of the ι-relation. In the follow-
ing, small Greek letters α, β, γ, . . . will always denote positions. Thus:

∀αφ is the formula ∀α(α is a position → φ), and
∃αφ is the formula ∃α(α is a position ∧ φ).

That Greek letters are the symbols of choice to represent positions will be made clear by
our axioms (see the axiom of positions (O) below).

The most simple object of our theory is the empty list. A list y is called empty if y has
no positions. An empty list is denoted by 〈〉 or 0. It will follow from our axioms that there
is exactly one empty list, but we do not need this to define the notion of an ordinal:

DEFINITION 2.2 (ordinal or order-type). A list x is called an ordinal or (order-) type, if
every entry of x is empty. An ordinal x is called the type of a list y, in symbols x = t ype(y),
if x and y have the same positions.

It will indeed follow from our axioms that the type of a list uniquely exists. The type
results from x by replacing every entry of x by the unit 0, and we will allow arbitrary
replacements of the entries of x .

Since Thales and Euclid natural numbers have been defined as systems of units. Euclid
writes in his Elements (VII.2): “Number is a multitude composed of units” (see also Deiser,
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190 OLIVER DEISER

2010; Gericke, 1970; Heath, 2003). Cantor, following these ancient traditions, understood
order-types of linear orders as ordered systems of units: They emerge from an ordered
structure by abstracting from the nature of its elements while keeping their order. The
act of abstraction transforms the elements of the ordering into units. Cardinals are then
obtained by a second step abstracting from the order, too. The Cantorian ordinals are the
order-types of well-orderings won by this act of abstraction (see, e.g., Cantor, 1890; Cantor,
1897). Cantor never tried to make this traditional and intuitive idea precise, though it was
strongly criticized by Frege (1967, pp. 163–166, 1983, p. 79 f), who regarded the involved
act of abstraction as impossible or at least vague. Frege (1986, sec. III, §29–§54) himself
discussed “unit and one” at length in his “Grundlagen der Arithmetik” of 1884.

The above definition of ordinals, together with the axioms below, is intended to be a
faithful and direct formal realization of the Cantorian ordinals-with the conceptual dif-
ference that zeros play the role of Cantor’s units (“Ones” or “Einsen”). To give a formal
definition of this kind was the primordial motivation for a theory of lists.

We next define:

DEFINITION 2.3 (initial segment, x Θ y). x is an initial segment of y, in symbols x Θ y,
if for all z, α we have: zιαx implies z ια y.

The axioms below will justify the term “initial segment,” instead of “part” or “sublist,”
which would be certainly more appropriate at this stage.

§3. The axioms of extensionality. We start with two axioms of extensionality, which
might be regarded as part of our language. The first one is certainly no surprise:

(Ext 1) First axiom of extensionality
A list is determined by its positions and entries.
∀x, y. x Θ y ∧ y Θ x → x = y.

The second axiom of extensionality postulates that there is never more than one entry at
a position of a list:

(Ext 2) Second axiom of extensionality
An entry at a position of a list is unique.
∀x, y, z, α. x ια z ∧ y ια z → x = y.

By this axiom we can define:

DEFINITION 3.1 (the entry x(α)). If α < x, then we denote the unique entry of x at
position α by x(α).

Thus for all x, y, and α we have: y = x(α) iff y ια x .
As braces “{” and “}” are used in set theory, we use brackets “〈” and “〉” for lists,

following the set theoretic notation for sequences. Thus

x = 〈x(α) | α < x〉,
t ype(x) = 〈0 | α < x〉, etc.

§4. The axioms of positions. The second group of axioms consists of three postulates
clarifying the notion of a position.

The first one is:

(Trans) Transitivity of positions
The positions of the positions of a position are positions of the position.
∀α, β, γ. α < β ∧ β < γ → α < γ.
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AN AXIOMATIC THEORY OF WELL-ORDERINGS 191

The next member of this group is an axiom scheme which expresses that we are describ-
ing well-founded structures:

(Min) Minimality scheme
For every formula φ(x) (with parameters):
∃αφ(α) → ∃α. φ(α) ∧ ∀β < α ¬φ(β).

This axiom provides us with proofs by induction on positions:

THEOREM 4.1 (induction on positions).
(a) Let φ be a formula such that ∀α.∀β < α φ(β) → φ(α). Then φ(α) holds for all
positions α.
(b) Let φ be a formula and α be a position such that ∀β < α.∀γ < β φ(γ ) → φ(β). Then
φ(β) holds for all β < α.

Proof. For (a): Suppose not. Then there exists a ¬φ-minimal position α by (Min). Then
φ(β) holds for all β < α. Using the hypothesis we get that φ(α) holds, contradiction.

For (b): Suppose not. Let ψ(β) = ¬φ(β) ∧ β < α. By (Min) there exists a ψ-minimal
position β. Then ¬φ(β), β < α, and for all γ < β we have:

φ(γ ) or γ is not a position of α.

But every position γ of β is also a position of α by (Trans). Thus φ(γ ) holds for all
γ < β. Thus φ(β) holds by hypothesis, contradiction. �

Finally, the third axiom of this group describes the nature of positions fully, not only
properties of them. We defined ordinals as lists of units, following Cantor’s definition by
abstraction, with the twist that the empty list figures as our unit. Now positions themselves
are certain lists, and intuitively they are “neutral with respect to entries” or “unfilled.” No
position of a list is really unfilled in our language, so the best we can do is to equate
“unfilled” with “filled with the empty list.” This leads to the identification of ordinals and
positions:

(O) Characterization of the positions
The positions are exactly the ordinals. ∀z.∃x, y x ιz y ↔ ∀α < z z(α) = 〈〉.
The “O” here is for “ordinal axiom” (and for “Ortsaxiom” as well as for “Ordinalzahlax-

iom” in German).
Our convention to denote positions with small Greek letters is now just the set theoretic

convention to denote ordinals with such letters.
It follows from (O) that the empty list exists: Let x be arbitrary. If x has no position at

all, then x = 〈〉. Thus let α be a position of x . If α has no position at all, then α = 〈〉. Thus
let β be a position of α. Then α(β) = 〈〉, since α is an ordinal. Thus 〈〉 exists.

A basic consequence of the axioms (Trans), (Min), and (O) is that the positions are
linearly ordered. We give the full proof of this fact in order to illustrate these axioms.

THEOREM 4.2 (linearity theorem). The positions are linearly ordered by <, that is, by
α < β if α is a position of β.

Proof. The relation < is transitive by the axiom (Trans).
Suppose that < is not irreflexive. Then by (Min) there is a minimal α such that α < α.

Then non(β < β) holds for all β < α by minimality of α. But α < α, and therefore
non(α < α), contradiction.

Suppose that < is not linear. Then by (Min) there is a minimal α such that:

∃β. ¬ α < β ∧ α �= β ∧ ¬ β < α.
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192 OLIVER DEISER

We now use (Min) again, with parameter α, to get a minimal β such that:

¬ α < β ∧ α �= β ∧ ¬ β < α.

Then δ < β holds for all δ < α: for if we had non(δ < β) for some δ < α, then
β ≤ δ by minimality of α, and thus β < α would hold by (Trans). In the same way we
have δ < α for all δ < β by minimality of β. Thus α and β have the same positions, and
therefore α = β by axiom (O), which is a contradiction. �

The proof shows that for linearity it is enough to assume the so-called third axiom of
extensionality instead of (O):

“A position is determined by its positions.”

With respect to (Ext1), (Ext2), (Trans), and (Min), the linearity theorem is in fact equiv-
alent to this weakening of the axiom (O).

§5. Richness of the universe. The members of the third group of axioms postulate
that our universe is rich in objects. Two axioms claim that there are many positions, while
the third one claims that we can arbitrarily replace the entries of a list by other entries.

An ordinal λ is a limit, if λ �= 0 and for every α < λ there is a β such that α < β < λ.
We postulate:

(In) Axiom of infinity.
There exists a limit.

The least limit ordinal is denoted by ω. A position α is a natural number if α < ω.
Every metamathematical natural number n also denotes an object of the theory—which
is also denoted by n – via n + 1 = “the least ordinal greater than n.” Thus, for example,
3 = 〈0, 0, 0〉. A list x is a positional list, if all entries of x are positions. We postulate:

(Sup) Axiom of suprema
The entries of a positional list are bounded by a position.

∀x . x is a positional list → ∃γ∀α < x x(α) ≤ γ .

An L-function F(α, x) is a formula φ(α, x, y) such that for every α and every x there
is exactly one y such that φ(α, x, y) holds. We write y = F(α, x) in this case. Thus an
L-function is a “functional class.” Our “L” here is for “language.” The formula may also
contain parameters, which are not displayed.

Now let F(α, x) be an L-function, and let x ,y be lists. The list y is called the F-
replacement of the entries of x , in symbols y = F ◦ x , if t ype(x) = t ype(y) and
y(α) = F(α, x(α)) for all α < x .

Our second scheme of axioms is:

(Rep) Replacement scheme
For every L-function F(α, x): For all x there exists F ◦ x .

An immediate consequence is the existence of types: Let F(α, x) = 0 for all α and x .
Then for every x the list F ◦ x is the type of x .

Another simple consequence of the scheme (Rep) is the existence of the restriction y |
β = 〈y(α) | α < β〉 for all β < y. Here we let F(α, x) be any L-function such that
F(α, 0) = y(α) for all α < y. Then y | β = F ◦ β.

As expected, using the replacement scheme we can prove a recursion theorem for L-
functions:

THEOREM 5.1 (recursion theorem). Let F(x) be a L-function. Then there is exactly one
positional function G(α) such that G(α) = F(G | α) for all α.
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AN AXIOMATIC THEORY OF WELL-ORDERINGS 193

Proof. We prove by induction on α that there is exactly one x such that α = t ype(x)
and x(β) = F(x | β) for all β < α. We call x the α-approximation (w.r.t., F). 〈〉 is the
unique 0-approximation . In the successor step, let x be the unique α-approximation. Then
x + 〈F(x)〉, the end-extension of x by F(x), is the unique (α + 1)-approximation. For the
limit step λ, we let H be a positional function such that:

H(α) = F(“the unique α-approximation”) for all α < λ.

Then x = H | λ is the unique λ-approximation.
We now let G(α) = F(“the unique α-approximation”) for all α. Then G is as desired,

as is shown by induction on α. �
A special case of (Rep) is the following scheme of definability, claiming that we can fill

the “empty” entries of any position with arbitrary objects:

(Def) Definability scheme
For any L-function F(α): For all β there exists y = F |β (= 〈F(α) | α < β〉).
If (T) is the axiom stipulating that every list has a type, then (Rep) is easily seen to be

equivalent to (Def) + (T) with respect to the other axioms.
Already (T) provides us with successor ordinals: If α is ordinal, then α is a position by

(O). So there is an x such that α < x . But then α < t ype(x), and therefore there is a least
ordinal β > α by (Min). As usual β is denoted by α + 1.

If x is a list and p is a positional list with p(α) < x for all α < p, then we let

x ◦ p = 〈x(p(α)) | α < p〉 .

This composition x ◦ p exists by (Rep).
We can now define the important concept of a sieving.

DEFINITION 5.2 (sieving). y is a sieving of x, if there is a positional list p such that:
p(α) < p(β) for all α < β < p and y = x ◦ p.

For applications sievings defined by a formula are often useful. If x is a list and φ(y)
is a formula, then we define sieve(x, φ) to be the list which results by collecting, in order
of their appearance, all entries y of x for which φ(y) is true. This can be made precise,
but we content ourselves with some examples here. For this we let x = 〈1, 2, 3, 2, 5, 4〉.
Then sieve(x, “the entry is even”) is the list 〈2, 2, 4〉, and sieve(x , “the entry appears at
an even position”) is the list 〈1, 3, 5〉, because 0, 2, 4 are the even positions of y and 1, 3, 5
the corresponding entries. For every list x , we define

delrep(x) = sieve(x, “the entry has not appeared so far”).

Then delrep(x) is the list x with all repetitions deleted. For x as above we have delrep
(x) = 〈1, 2, 3, 5, 4〉 . A list x is injective, if x = delrep(x).

In the same way we can sieve L-functions F(α). The result is either a list or else an
L-function G(α). For an example, we let I d(α) = α for every α. Then sieve(I d, “the
entry is 0 or a limit”) is the L-function G(α) such that G(α) = ω × α for all α, granted
that ω × α exists for all α, which is true in our theory.

§6. The axiom of regularity. In list theory, the most natural formulation of regularity
involves the following notion:

DEFINITION 6.1 (downward transitive). y is called downward transitive, if y(α) is a
sieving of y | α for every α < y.
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194 OLIVER DEISER

So a downward transitive list y is “built” according to the following rule: We may only
add z as a new last entry to the list constructed so far, if all entries of z have already been
added to the list in the order in which they appear in z.

We now postulate:

(Reg) Axiom of regularity
For all x there exists a downward transitive y in which x appears.

So every list is backed up by a list which is built according to the above rule. The
motivation and role of this axiom is very similar to that of the axiom of regularity in ZFC.
Indeed it can be shown that (Reg) is equivalent to the following principle, which more
resembles the set-theoretic axiom: “For all x �= 〈〉 there exists an α < x such that: x(β)
does not appear in x(α) for any β < x .”

Using the axiom of regularity, we can justify inductions and recursions on entries. One
theorem here reads:

THEOREM 6.2 (recursion on entries). Let H(x, y) be an L-function. Then there is
exactly one L-function G(x) such that G(x) = H(x, G ◦ x) for all x.

A more general version allows that in order to define G(x) we may assume that G(y)
has already been defined for all y �= x appearing in a downward transitive list with last
entry x . Theorems of this kind are a little harder to prove than the corresponding theorems
in set theory. We omit the proof of Theorem 6.2 here.

There is a canonical L-function T r∗(x) mapping any x to a downward transitive list with
last entry x . This L-function is uniquely defined by the equation:

T r∗(x) = (�T r∗ ◦ x) + 〈x〉,
where z + 〈x〉 again denotes the end-extension of z by one element x and �y denotes

the catenation of all entries of y. Thus, for example,

〈1, 2〉 + 〈1〉 = 〈1, 2, 1〉, and

�〈〈1, 2〉, 〈〉, 〈2, 〈3〉〉〉 = 〈1, 2, 2, 〈3〉〉.
The existence of T r∗ follows from the recursion theorem. But in fact T r∗ or a similar

function is used to prove the above theorem about recursion on entries. But this is a mere
technical point, and the recursive definition expresses T r∗ most clearly.

We finally define an L-function Com by:

Com(x) = t ype(T r∗(x)) for every x .

The L-function Com(x) is called the (natural) complexity of the list x .

§7. The axiom (SL). The following axiom corresponds to the power set axiom of
ZFC. It does not appear to be very natural in the context of lists. We will discuss this in
Section 12 in more detail.

(SL) Listings of all sievings
For every list x there exists a list y such that every sieving of x appears in y.

A nontrivial consequence of (SL) is the following combination of the axiom of choice
and the collection scheme:

(CC) Scheme of collective choice
For every formula φ(β, x) (with parameters): Let α be a position such that for all β < α

there is an x such that φ(β, x). Then there is a list y of type α such that φ(β, y(β)) holds
for all β < α.
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∀α.∀β < α∃xφ(β, x) → ∃y. t ype(y) = α ∧ ∀β < αφ(β, y(β)).

THEOREM 7.1. (CC) is provable from the present axioms.

We sketch a proof of this theorem. One first proves by induction on γ :

PROPOSITION 7.2 (boundedness lemma). Let γ a position. Then there exists a position
η such that every injective list x, in which only lists of complexity < γ appear, is shorter
than η.

The boundedness lemma is now used to prove the following theorem about complexity
lists:

THEOREM 7.3 (existence of complexity lists). Let γ be a position. Then there exists a
complexity list k for γ , that is,

(i) k is injective,
(ii) for all α < k we have Com(k(α)) < γ ,
(iii) for all x such that Com(x) < γ we have: x appears in k.

We can now easily prove the principle of collective choice:

THEOREM 7.4. (CC) holds.

Proof. Let φ(β, x) and α be as in (CC). For all β < α we let

x(β) = “the least complexity of an x such that φ(β, x).”

Let γ be greater than all x(β), β < α, and let k be a complexity list for γ . We now set
for all β < α:

y(β) = k(“the least δ < k such that φ(β, k(δ))”).

Then y is as desired. �
Thus in the presence of (SL) no version of the axiom of choice is needed in list theory.

§8. The theory ALT.

DEFINITION 8.1. The theory ALT consists of the 10 axioms (Ext1), (Ext2), (Trans),
(Min), (O), (In), (Sup), (Rep), (Reg), and (SL).

Here ALT is for axiomatic list theory. The basic result about this theory is:

THEOREM 8.2. The ι-theory ALT and the ∈-theory ZFC are equiconsistent.

We sketch the somewhat lengthy proof of this theorem (see Deiser, 2006, for the full
proof). First we show that the consistency of ZFC implies the consistency of ALT. We
work in ZFC and construct a class model of ALT. We let:

O F = { f | f : α → V, α ∈ On}.
Here OF is for “ordinal functions.” We then let HOF be the class of hereditarily ordinal

functions (with respect to their range) which can be uniquely defined by:

H O F = { f ∈ O F | rng( f ) ⊆ H O F}.
Basic elements of HOF are the functions of the form f : α → {0} for α ∈ On. They

play the role of positions in the model, of course. For all α ∈ On we let:

α∗ = “the function f : α → {0}” (in particular 0∗ = 0 = ∅).

Next we define a three-place relation ι on HOF in index notation. We set, for all x, y, z ∈
H O F :
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196 OLIVER DEISER

x ιz y, if with α = dom(z) we have: z = α∗, α < dom(y), and y(α) = x .
One now shows that all axioms of ALT are true in the proper class model 〈H O F, ι〉. As

usual this proves that the consistency of ZFC implies the consistency of ALT.
The structure of the other direction, that is, that the consistency of ALT implies the

consistency of ZFC, is different, since there is no easy definition of “set” in ALT, unless
further axioms are assumed (we will discuss this later). We will not construct a model, but
we can nevertheless carry out the argument. We first define:

DEFINITION 8.3 (ι-relation, ι-equality). For all x, y we set:
(i) x ι y, if x appears in y (at some position α),
(ii) x ⊆ι y, if for all z ι x we have z ι y.
(iii) x =ι y, if x ⊆ι y and y ⊆ι x.

The relation =ι is an equivalence relation, but not a congruence relation with respect to
the ι-relation: If x1 =ι x2 and x1 ι y, then x2 ι y does not hold in general.

Thus the ι-relation (without an index) is only a first approximation of a set-theoretic ∈-
relation, and =ι is only a first approximation of set theoretic equality. But using recursion
on entries, we can define:

DEFINITION 8.4 (∈-relation, ∈-equality). We recursively define for all x, y:
x ∈ y,if ∃z ι y x =∈ z,
x =∈ y, if ∀z ι x z ∈ y ∧ ∀z ι y z ∈ x.

If x ∈ y holds, then we say: x is an element of y.
If x =∈ y holds, then x and y are called set-theoretically equal or simply ∈-equal.

It is not hard to see that for all x and y we have that x ι y implies x ∈ y, and that x =ι y
implies x =∈ y. Since x =ι x holds, we get that x =∈ x is true for all x . Transitivity
of ∈-equality follows from the following general theorem which establishes the desired
congruence properties.

THEOREM 8.5 (congruence theorem). For all x, y, z we have:
(i) x =∈ y and y =∈ z implies x =∈ z,
(ii) x =∈ y and y ∈ z implies x ∈ z,
(iii) x =∈ y and z ∈ y implies z ∈ x.

Now for every ZFC-formula φ we let φ∗ be the formula of list theory which emerges
from φ by replacing all prime formulae x = y and x ∈ y of φ by the ι-formulae defining
the relations x =∈ y and x ∈ y, respectively. One now shows:

ALT � φ∗ for every axiom φ of ZFC.

Using, for example, Hilbert calculus, we can prove: If d is a formal proof of the set
theoretic formula φ using the axioms of ZFC, then d can be transformed effectively to a
formal proof d∗ of the list theoretic formula φ∗ using the axioms of ALT. It follows that
the consistency of ALT implies the consistency of ZFC.

§9. Cardinals. In order to give some idea how list theory works (and differs in charac-
ter from ZFC), we define some cardinality notions and prove the Cantor–Bernstein theorem
in ALT. (The reader not interested in this can proceed to Section 10.)

Suppose that y and z are injective lists, and let α = t ype(y) and β = t ype(z). We
want to express that there exists a one-one correspondence between the entries of z and y.
This can be done without introducing functions, since we can equivalently talk about an
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injective positional list x of length β in which all γ < α appear. If x is such a list, then
“map z(δ) to y(x(δ)) for all δ < β” is a correspondence between the entries of z and y,
and conversely any such correspondence induces such a list x : Let x(δ) be the position of
the image of z(δ) in y, for all δ < β. We define:

DEFINITION 9.1 (rearrangement, α ≡ β). A positional list x is a β-rearrangement of α,
if: (i) x is injective, (ii) t ype(x) = β, (iii) every γ < α is an entry of x.

We set α ≡ β, if there is a β-rearrangement of α.

It is straightforward to prove that the relation α ≡ β is reflexive, symmetric, and
transitive.

It is now natural to define cardinals as follows:

DEFINITION 9.2 (cardinality of a position, cardinal position). (i) For a position α we let
|α| = “the least β such that α ≡ β.” The position |α| is called the cardinality of α.

(ii) A position α is called a cardinal position or cardinal (number), if α = |α|.
It is easy to see that for all α, β we have α ≡ β iff |α| = |β|. Moreover, |α| is a cardinal

number for all α.
Let α, β be such that |α| < β < α. Then we should have |α| = |β|. Indeed, overlappings

of the form |β| < |α| < β < α as well as inclusions of the form |α| < |β| < β < α are
ruled out by the following observation:

PROPOSITION 9.3 (monotonicity of the cardinality operation). Let α, β be positions
such that α ≤ β. Then |α| ≤ |β|.

Proof. Let κ = |β|, and let x be a κ-rearrangement of β. We set:

y = sieve(x, “the entry is less than α”).

Then t ype(y) ≤ t ype(x), since y is a sieving of x . Moreover, y is a t ype(y)- rearrange-
ment of α. Thus we have:

|α| ≤ t ype(y) ≤ t ype(x) = κ = |β|. �

COROLLARY 9.4. Let α, β be positions such that |α| ≤ β ≤ α. Then |α| = |β|.
Proof. We have ||α|| ≤ |β| and |β| ≤ |α| by monotony. But ||α|| = |α|, and therefore

|α| ≤ |β| ≤ |α|. �
Thus the rearrangement-relation divides the positions into intervals (the Cantorian “num-

ber classes”).

COROLLARY 9.5 (Cantor–Bernstein, inclusion form). Assume that α ≤ β ≤ γ and
α ≡ γ . Then α ≡ β ≡ γ .

Proof. We have |α| ≤ |β| ≤ |γ | by monotony, and |γ | = |α|, since α ≡ γ . Thus
|α| = |β| = |γ |, and therefore α ≡ β ≡ γ . �

§10. Hierarchies and L. A hierarchy is a linguistically defined list in which all lists
appear:

DEFINITION 10.1 (hierarchy). An L-function F(α) is a hierarchy, if:
For all x there is an α such that F(α) = x.
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198 OLIVER DEISER

A natural attempt to define a hierarchy is to close the list 〈0〉 under simple operations,
and we can indeed define a candidate for a hierarchy in this way. We call this candidate
L , since it is an analogon of Gödel’s constructible universe. We start with L(0) = 0. We
now recursively close L|α under two operations. The first one is “end-extension by one
element.” If x and y appear in the list as constructed so far, but x + 〈y〉 does not, then
we extend our list by x + 〈y〉. We repeat this until we have produced a list L|λ which is
closed under end-extension by one element. Technically this can be canonically achieved
by using (the inverse of) Gödel’s pairing function �, which is an easily defined L-function
such that �(α) = 〈β, γ 〉 runs through all positional list of length 2 when α runs through
all positions. The limit positions λ for which L|λ is closed under end-extension by one
element are then exactly the ordinals of the form ωωα

, α ≥ 0, which we call special. At
these special positions we choose a certain definable sieving of the list L|λ, which does
not appear in L|λ; this “certain new sieving” can also be defined in a uniform way, though
the definition is a little more involved. Then we close again under end-extension by one
element until we reach the next special limit, add a new sieving, etc.

Ignoring the interesting details of this construction, we consider the following principle:

(L) Principle of constructibility
The L-function L(α) is a hierarchy.

The construction of the L-function L(α) can be executed using the axioms (Ext1),
(Ext2), (Trans), (Min), (O), (In), (Sup), and (Rep). These axioms are then also true in
L . Moreover, the axioms (Reg), (CC), (L) are true in L , too, and L(α) constructed inside
L is again the L-function L(α). If (SL) is true in the universe, then (SL) holds in L , too.
(Here “φ is true in L” means that the list theoretic formula φL holds, where φL emerges
from φ when we replace all “∀xψ” in φ by “∀x .∃α x = L(α) → ψ” and all “∃xψ” in φ
by “∃x .∃α x = L(α) ∧ ψ .”)

In L—as in any other hierarchy—we can easily define the notion of a set:

DEFINITION 10.2 (sets in L). Let x = L(α) for some α. Then x is a set (in L), if
L(β) �=∈ x for all β < α.

We can then, working in ALT, define the L-function

S = sieve(L , “the entry is a set”).

One can now show S together with the ∈-relation is a model of ZFC.

§11. Finitary lists and sets. Though ZFC and ALT are equiconsistent, we think that
there are important differences going beyond the fact that some concepts and theorems are
little easier to develop and prove in one theory than in the other.

All theories dealing with infinite objects are based on hereditarily finite structures. So
let us compare the “real” lists and sets in this way.

To do this, we consider the language with one binary function symbol f and one con-
stant c. Instead of f (s, t) we write (st), where s and t are terms. Thus the simplest terms
of our language are c, (cc), c(cc), (cc)c, (cc)(cc), and so on.

The following facts are easy to verify:

“Hereditarily finite lists” is the free structure generated by f and c without further laws.

“Hereditarily finite sets” is the free structure generated by f and c with the additional
laws:

(L1) ((xy)z) = ((xz)y) (commutativity),
(L2) ((xy)y) = (xy) (absorption).
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AN AXIOMATIC THEORY OF WELL-ORDERINGS 199

The list theoretical reading of the constant term (ts) is t + 〈s〉,the end-extension of t by
the new last entry s. Thus the constant c represents the empty list 〈〉 = 0, and we have, for
example,

(cc) = 〈0〉,(c(cc)) = 〈〈0〉〉,((cc)c) = 〈0, 0〉,etc.

With this reading the commutativity law describes the identification of lists which can
be recursively obtained from another by changing the order of appearance of entries, and
the absorption law allows us to delete repetitions. If we just allow the law (L1), we obtain
the hereditarily finite multisets.

When one explains the notion of a set to beginners, then one emphasizes precisely the
two “abstractions” (L1) and (L2). One argues:

“The set {c, b, a, b} is equal to the set {a, b, c}, since the order of appearance and
repetitions of the same object does not matter. Moreover, {a, b} is equal to {a, b′}, when
b = {c, d} and b′ = {d, c, d}, since we agreed that b = b′, etc.”

This is precisely the recursive definition of ∈ and =∈ in list theory, and this is not simple,
and it does not give us sets as objects. Every mathematical notion is abstract (numbers
are, and lists are, too), but sets involve an additional abstraction in identifying different
abstract objects. This does not imply that the concept of a set is defective, of course, as
more abstraction can lead to more flexibility. Comparative considerations like this simply
support the development of alternatives which allow to see mathematics (including sets)
from a perspective different than sets.

The free structure analysis shows that from a very natural point of view lists are concep-
tually simpler than multisets, and that multisets are conceptually simpler than sets. This
analysis is a key element in a case for lists. (A typical reaction to the claim that lists are
from a certain natural point of view simpler than sets is that this is nonsense, since well-
orderings obviously carry more structure than sets and are therefore more complicated.
This reaction shows how deeply set theoretic thinking has permeated even our finitary
intuitions.)

A mathematical consequence of the very simple nature of hereditarily finite lists is that
there is an easy and canonical enumeration of length ω of these lists. Let pair be the list of
type ω enumerating, in the usual Cantorian way, all positional lists 〈β, γ 〉 with β, γ < ω.
We now recursively define a list fin of type ω by:

fin(0) = 〈〉,
fin(α + 1) = fin(pair(α)(0)) + 〈fin(pair(α)(1))〉 for all α < ω.

Then fin lists all hereditarily finite lists without repetitions:

THEOREM 11.1. The list fin is injective and all hereditarily finite lists appear in fin.

Proof. We first prove injectivity. Suppose not. It follows immediately from the definition
that the empty appears in fin only at position 0. Thus let α+1 and β+1 be minimal such that
α �= β and fin(α+1) = fin(β +1). But then pair(α)(0) = pair(β)(0) and pair(α)(1) =
pair(β)(1) by induction hypothesis and definition of fin(α + 1) and fin(β + 1).
Therefore

pair(α) = 〈pair(α)(0), pair(α)(1)〉 = 〈pair(β)(0), pair(β)(1)〉 = pair(β).

Thus α = β, since pair is injective, contradiction.
We now show that every hereditarily finite list appears in fin. Suppose not. Le x be of

minimal complexity Com(x) such that non(xι f in). Trivially we have that x �= 〈〉. We
thus write x as: x = y + 〈z〉 (y = 〈〉 is possible here). By minimality of Com(x) we
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200 OLIVER DEISER

have yιfin and zιfin, because Com(y), Com(z) < Com(x). Thus let β, γ < ω such that
y = fin(β) and z = fin(γ ). Further let δ < ω such that pair(δ) = 〈β, γ 〉 . But then
fin(δ + 1) = fin(β) + 〈fin(γ )〉 = y + 〈z〉 = x , contradiction. �

Instead of the Cantorian pairing other pairings like the �-pairing can be used, but other-
wise the enumeration is free of arbitrariness, and we might sum up the situation by saying:
“The finite part of the universe of lists is a list.” This already anticipates arguments in favor
of the principle (L), which will be discussed below.

The picture that lists are simpler than sets, that they are a primitive concept while sets are
not is strongly supported by computer science. Sets are not very popular as a foundational
structure or data-type there. They are cumbersome to implement and slow in performance.
The reasons are exactly the laws (L1) and (L2). Axiomatic list theory might help to give a
foundation of mathematics which is by its very nature more appealing to computer science
than set theory. The same is true for linguistics.

Interestingly, considerations of this sort have been made before the advent of computer
science. When Hausdorff (1914, p. 32) gave the first set theoretic interpretation of the
notion of an ordered pair in 1914, he noted (in my translation):

“The double-indices (i, k) at elements of a determinant, the orthogonal
coordinates (x, y) of points of the plane are ordered pairs of numbers.
Thus this notion is fundamental in mathematics, and psychology would
add that ordered, unsymmetric, selective composition of two things is
even more primal than unordered, symmetric, collective. Thinking, speak-
ing, reading, and writing are bound to chronological order, which is
forced on us before we can abandon it (“absehen können”). The word
is there before the set of its letters, the ordered pair (a, b) before the pair
{a, b}.”

Since lists are a distinguished structure in the finite world, their axiomatic extension into
the infinite is a very natural enterprise, if one is interested at all in “ideal” objects. Now
this extension of finite lists into the infinite seems to be the general concept of a well-
ordering (and not of a mere linear ordering), since the basic constructor in finite list theory
is “end-extension by one element”, that is, counting, and counting through infinity leads to
well-orderings.

The discussion also shows that well-orderings do not conceptually depend on sets. His-
torically, Cantor developed his transfinite numbers when he studied sets of reals. With his
derivation P ′ = {x ∈ R | x is an accumulation point of P} he found an operation which in
general needs to be applied transfinitely often to a closed set P of reals in order to reach
a Q ⊆ P such that Q′ = Q (the perfect kernel of P). Thus transfinite numbers and more
generally well-orderings emerged from studying sets. But now Cantorian ordinals continue
the tradition of Euclid as “systems of units,” and Cantor had no intentions at all to interpret
his ordinals as sets as we understand them. In this way a historically minded argumentation
does not refute, but supports our claim about the conceptual independence of transfinite
lists from sets. That order and in particular ordinals can be interpreted as sets is a great
achievement of later set theory. It was accomplished in the first three decades of the 19th
century, when a greater level of precision was sought for and when sets were recognized
of being able to interpret numbers, ordered pairs, relations, functions, and so on. But these
interpretations do no not suggest that well-orderings are sets, depend on sets, or that sets
are more basic than well-orderings. The same holds for any list theoretic interpretation of
sets, of course.
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If any version of transfinite list theory would have been found without set theory is
a different question. As remarked in the Introduction, our theory emerged from studying
Cantor’s work, and as far the author understands 19th century mathematics, list theory does
not belong there. But the question whether a strong foundational axiomatic theory can be
based on the concept of a list or a multiset has been raised when looking at sets from
computer science (see Blass & Gurevich, 2004), and experiences from computer science
seem to indicate a possible way to discover a theory of lists. The free structures discussed
above can be seen as a theoretical formulation of these experiences.

Philosophically, list theory continues the tradition that “everything is number.” This
“Pythagorean doctrine” is already present in the concept of a list, since in a list we count
and string certain objects (which are again lists). But it is substantiated when we include
Gödel’s axiom of constructibility into our system of axioms. The view that Gödel’s axiom
can be seen as a continuation of the Pythagorean doctrine was put forward in set theory by
Jensen (1995). In list theory this view seems to be even more impressive, since the objects
of the theory are more akin to numbers than sets are. This brings us to the next section.

§12. Gödel’s axiom of constructibility and the power set axiom. Gödel’s axiom of
constructibility is a basic and natural principle in set theory as well as in list theory, but
as a postulated and accepted member of a foundational axiom system it is much more
convincing in list theory than in set theory. As the universe of sets can be seen as a “set
which is too large to be one,” the universe of lists can be seen as a “list which is too long to
be one.” And if the universe of lists is to resemble its objects, then we have to assume the
existence of a hierarchy. And there is, up to fine-structural organization, only one definable
listing of the universe, unless further assumptions are made. To put it differently: The list
theoretic analogon to the trivial set theoretic information V = {x | x = x} is the existence
of a hierarchy F = 〈F(α) | α is a position〉, and this leads inevitably to the axiom of
constructibility. There is also an immediate interest in the fine-structural organization of
this hierarchy. From the very beginning, one is looking for a canonical and convincingly
built list of all lists.

This picture is again supported by the hereditarily finite lists. As we have seen above,
there is a canonical listing of the finite part of the universe of lists. The principle (L) can be
read as the statement that this important property of finite lists—which is a structural, not
a combinatorial one—carries over to the infinite. “As if it were finite” is also a leitmotiv of
axiomatic set theory.

Seen this way, the axiom (L) is an “adequate” or “correct” axiom about lists. This state-
ment is neutral about the question wether (L) should be abandoned when large cardinals
axioms are studied in list theory. If so, then principles (K) saying that the universe is a
certain core model replace (L) but maintain many of the arguments given in favor of (L).

A possible argument against (L) as a basic list theoretic axiom could be that this axiom
is actually very complicated to write down as a sentence in the iota-language. But the
length of this sentence is a mere technical point, the axiom has a clear meaning which
everybody studying the theory can grasp. Of course, the axiom is different than all others,
and it certainly poses a challenge in explaining the theory to nonlogicians.

If we look at set theory and list theory as of equal foundational rank, then we can
see some important analogous principles in a new light: (1) The principle that there is
a definable well-ordering of the universe has, as we argued, axiomatic status in list theory,
while it is an interesting principle in set theory which is for many not convincing as a basic
axiom. It belongs to the world of lists, from where it can be exported to set theory. (2) The
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axiom of choice is a genuinely set theoretical principle which does not need any analogon
in list theory in the presence of a hierarchy, since then the principle (CC) of collective
choice is easily provable. (3) For the power set principle the situation is opposite to the
existence of a definable well-ordering of the universe. This principle belongs to set theory,
and when postulated in a form like (SL) it looks like an interesting foreign body inside list
theory. We shall look at this principle more closely.

The power set axiom of ZFC has been criticized from the very beginning as being
impredicative, but it is nevertheless a natural axiom about sets, though certainly a bold
one with respect to consistency. But the list theoretic principle (SL) as presented above is
not natural at all. The power set of a set is unique, while the list (SL) claims to exists is
not. The principle (SL) shares this indefiniteness with the axiom of choice in set theory,
but indefiniteness has no place in list theory. Moreover: Why should a list of all sievings of
an infinite list exist? This is certainly no “basic truth,” and it does also not seem to be an
adequate principle we formulate as an axiom after we studied lists for a while. The axiom
(SL) has been imported from a different, set theoretic world and its history, where these
questions existed but vanished to a large extent. (Cantor formulated the power set principle
in a letter to Hilbert on October 10, 1898, but already two days later he wrote about doubts
that the power set of a set is a “completed set” or “consistent multitude”; see Cantor, 1991.)
Keeping (SL) as a reasonable axiom is again connected to the existence of a hierarchy. If
we assume (L), then the following axiom (SL∗) is equivalent to (SL):

“For every stage α there is a stage β such that no new sieving of L(α) is constructed
after stage β, i.e., if x is a sieving of L(α), then there is a γ ≤ β such that x = L(γ ).”

If we accept this statement as a richness axiom about the universe of lists, than (SL) is
acceptable as a consequence (SL∗). Without a hierarchy, the principle (SL) is simply out
of place in list theory.

But even in the presence of the axiom of constructibility the axiom (SL∗) has a strong
competitor in list theory. We might look at the axiom (EC) saying that “everything is
countable” or “everything finally collapses to ω”: “for every stage α there is a stage β > α
such that L(β) is a new sieving of 〈n | n < ω〉” or “for every infinite stage α there is a
stage β such that L(β) is an ω-rearrangement of α.” There is no reason why this cannot
be read as a richness claim about the universe, too. It is just a richness claim contradicting
(SL∗) and other richness claims. It continues the argumentation, held by some set theorists,
that “V = L” was not shown to be “wrong” by large cardinal axioms and inner model
theory. The combination (L) + “the reals are unbounded in the L-hierarchy” seems to be
an attractive replacement of (SL) in ALT. This theory is called NEU for “never (for)ever
uncountable.” There is a long tradition in mathematics and philosophy that the continuum
is inexhaustible and not fully mathematically seizable by means of an atomistic theory.
(See Deiser, 2008, p. 129f.) The theory NEU would revive this tradition. Considerations
that the reals might be conceived as “incredible rich” have also been made in connection
with the independence of the Continuum Hypothesis and the arbitrary high value of the
cardinality of R in models constructed by forcing (see Cohen 1966, p. 151). The outermost
interpretation of “incredibly rich” would be that the reals do not form an object of the
theory, because there are too many of them.

Thus in summary my point of view is the following: The first task in developing a
theory of lists is to find a flexible and elegant language which is capable of a list theoretic
interpretation of mathematical concepts. The iota-language with “ordinal-indexing” works
fine here. Then we take a look at ZFC, build an analogous theory with the principal aim
to get an equiconsistency result. The theory ALT is the result here. The next step is to
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look at the axioms of ALT more closely in order to free them from artificial set theoretic
influences. Here the analogon of the power set axiom is the only member of ALT which
seems to have no place in an axiomatic system originating from uninfluenced list theoretic
thinking. On the other hand the axiom of constructibility, which did get much attention in
set theory but did not reach the estimation of a basic axiom, has axiomatic status in list
theory. List theory needs a hierarchy. Thus we adopt (L) as an axiom. Principles like (CC)
have a trivial proof now, we have an easy interpretation of the concept of a set, and most
importantly we have a definable universal list. The list theoretic axiom of constructibility
does not share the restrictive character often felt by set theorists even before large cardinal
axioms contradicting this principle became a focus of interest. Thus ALT - (SL) + (L)
is a fragment of the theory we are looking for. But this fragment does not answer the
question: Are there arbitrary large stages where a new real is constructed? Here our system
branches. On the first branch, we can regain an list theoretic analogon of the power set
axiom by reading it as a richness claim about the universe. On the second branch we look
at another richness axiom which claims that everything is countable, answering the above
question with “yes.” To the author, the second branch—the theory NEU—looks to be the
most interesting foundational theory which tries to interpret mathematical thinking in the
language of lists. (An interesting task would be to analyze large cardinal principles in this
theory. Though everything finally collapses to ω, one can imagine stages of the construction
with large cardinals.)

Whatever branches of list theory may turn out to be fruitful and most convincing, already
the theory ALT shows that the iota-language together with its basic notions and intuitions
is apt for a foundational theory. We do not think that it is favorable that there is just one
dominant foundational theory, since this might support an oversimplified and moreover
pragmatic notion of truth in mathematics. Any discussion about the meaning of “table” as
well as “truth” is limited if it is restricted to one natural language like Chinese, English,
or Greek. The world is better reflected in several languages than in one, because every
language develops its own cultural dynamics and its own perspectives. In list theory we
are forced to be tidy, since we have to arrange everything in a well-ordered way. We have
a sharp view, since we do not identify “real” as well as “ideal” objects under a recursive
equivalence relation. In a whole, list theory might enrich our mathematical intuitions, and
I think it adds some new aspects to the foundational discussion.
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