
Math. Struct. in Comp. Science (2002), vol. 12, pp. 149–175. c© 2002 Cambridge University Press

DOI: 10.1017/S0960129501003486 Printed in the United Kingdom

Hypergraph construction and its application to the

static analysis of concurrent systems†

B A R B A R A K Ö N I G

Fakultät für Informatik, Technische Universität München

Received 7 July 2000; revised 6 December 2000

We define a construction operation on hypergraphs based on a colimit and show that its

expressiveness is equal to the graph expressions of Bauderon and Courcelle. We also

demonstrate that by closing a set of rewrite rules under graph construction we obtain a

notion of rewriting equivalent to the double-pushout approach of Ehrig. The usefulness of

our approach for the compositional modelling of concurrent systems is then demonstrated

by giving a semantics of process graphs (corresponding to a process calculus with mobility)

and of Petri nets. We introduce on the basis if a hypergraph construction, a method for the

static analysis of process graphs, related to type systems.

1. Introduction

Graph rewriting is one adequate approach for modelling the dynamics of concurrent

systems: multi-dimensional structures describing interconnected computers or other com-

ponents can be described naturally by graphs. While in ‘string-based’ notations connec-

tions between components are normally described implicitly (by having common channel

names), they can be described explicitly (by connecting them with an edge) in a graphical

representation.

When trying to model semantic frameworks for concurrency (such as process algebras)

with graph rewriting, we encounter problems since it is hard to represent the compo-

sitionality and modularity inherent in these formalisms in the world of graphs. The

double-pushout approach (Ehrig 1979), which is a standard method of defining graph

rewriting, does not define the notion of a rewriting step in an inductive way. Process

algebras, however, rely on compositionality in the definition of their syntax and their se-

mantics, and in almost all proofs. Reduction semantics (or labelled transition semantics) is

always defined inductively on the structure of processes, and the same is true for types of

processes (Pierce and Sangiorgi 1993; Turner 1995). Furthermore, the notion of composi-

tionality is important for the definition of behavioural equivalences (such as bisimulation),

since these behavioural equivalences are expected to be preserved by composition, that is,

they should be congruences.

Compositionality is easy to achieve in a ‘string-based’ syntax: systems are constructed

† Research supported by SFB 342 (subproject A3) of the DFG.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 150

out of smaller systems by concatenating their descriptions, and connections are established

by having common channel names. We propose an analogue to concatenation in the world

of hypergraphs: hypergraphs have so-called ‘external nodes’, with their interface to the

outside, and in order to attach two or more hypergraphs, information is needed on how

these external nodes should be merged. In our case, this information or ‘construction

plan’ is given in the form of graph morphisms, which are part of a colimit, and the result

of the construction is obtained by completing the colimit.

The aim of this paper is to introduce this construction operator, to investigate its

properties and then to apply the theory to concurrent systems such as process calculi and

Petri nets. Although we model concurrent systems, no truly concurrent rewriting steps

are considered: we concentrate on interleaving semantics and it is one of our central

aims to provide methods of static analysis, allowing us to check invariant properties of

the structure of concurrent systems. This idea will be demonstrated by introducing type

systems for process graphs.

Existing approaches to the inductive definition of graphs are given in Bauderon and

Courcelle (1987), Gadducci and Heckel (1997), and Engelfriet and Vereijken (1997), and

are mainly based on a fixed set of operators on graphs, which can be used to construct

graph terms, and an equational theory defining isomorphism on graph terms. In Bauderon

and Courcelle (1987) the operators are disjoint sum, fusion and redefinition of external

nodes and it will later (see Section 3.1) be shown how these operators can be obtained

with the graph construction operation presented in this paper. In the latter two papers

graphs have variable nodes and root nodes, and there is, among others, a concatenation

operation merging the root nodes of the first graph with the variable nodes of the second

graph. This specific operation is less general than ours since we can, for example, also

express reordering of external nodes.

Our construction operation is closer to the double-pushout approach since it involves

colimits, and we can therefore exploit their universal properties. Under certain conditions

we can automatically infer the existence of graph morphisms (such as the embeddings of

the subgraphs into the constructed graph) without the need to construct them explicitly.

Furthermore, we can rely on the fact that the composition of colimits again yields a

colimit, which can be a great help in many proofs. Since there is only one operation of

hypergraph construction, we only need to consider one case in structural induction on

graphs.

The notion of inductive definition of graphs naturally extends to the notion of a

rewriting step: if a graph can be disassembled into several parts, one of which is a

left-hand side, we simply replace the left-hand side by the corresponding right-hand side

and reassemble the graph as before. The expressive power of graph rewriting in our

approach is the same as for graph expressions (Bauderon and Courcelle 1987) and for the

double-pushout approach.

Additionally, we integrate into our setting a method for the annotation of hypergraphs

with an algebraic structure (in our case, a commutative monoid). This is motivated

by the observation that pure graph structure is sometimes not sufficient to adequately

model concurrent systems. For example, in the case of Petri nets (where hyperedges

represent transitions and nodes represent places), it is convenient to annotate nodes by

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 151

natural numbers, indicating the number of tokens present at each node. It is, furthermore,

necessary to define the notion of graph construction for annotated hypergraphs (if, in

the Petri net example, two nodes are merged, their annotations should be added) and,

also, the notion of graph morphism must be modified to take annotations into account.

Another application for annotations is the new notion of generic type systems introduced

in Section 6.2, where types can be regarded as abstractions of the future behaviour of

a process. In this case, annotations can be considered as constraints on the behaviour.

Formally, potential annotations for a graph are given by a functor from the category of

hypergraphs (with graph morphisms) into the category of commutative monoids (with

monoid morphisms).

In the rest of this paper, we will first define some basic notions such as hypergraphs and

hypergraph morphisms, then a graph construction operator will be defined. Afterwards,

this construction operator will be compared to existing approaches, more specifically it will

be shown that the expressiveness of our construction operator is equivalent to the operators

introduced in Bauderon and Courcelle (1987) and that the closure of rewriting rules under

graph construction gives a notion of graph transformation equivalent to the double-

pushout approach (Ehrig 1979). We will investigate the properties of the construction

operator and then present a first application by modelling process graphs, which are

strongly related to the polyadic π-calculus (Milner 1993). In π-calculus there is a concept

of type systems, which can be employed to avoid runtime errors produced by mismatching

arities. An equivalent type check can be conducted for process graphs, the correctness

proof of which exploits many properties of hypergraph construction established in the

previous sections. We then introduce our method of annotating hypergraphs and use it

to model Petri nets and to extend the type check in order to obtain so-called generic

type systems, which can be instantiated to check specific properties such as input/output-

behaviour or secrecy violations.

2. Hypergraphs and hypergraph construction

We first define some basic notions, namely hypergraph, hypergraph morphism, and

isomorphism (see also Habel (1992)). In the following, the term ‘graph’ is also intended

to denote a hypergraph. Hypergraphs are a generalisation of directed graphs where an

arbitrarily long sequence of nodes is assigned to every edge. Intuitively, we construct

hypergraphs by drawing edges (with nodes) and then merging the nodes, rather than by

drawing nodes and then connecting them by edges. This intuition will also guide our

choice of a hypergraph construction operator.

Definition 1. (Hypergraph, hypergraph morphism, isomorphism) Let L be a fixed set of

labels. A hypergraph H is a tuple H = (VH, EH, sH , lH , χH) where VH is a set of nodes, EH
is a set of edges, sH : EH → V ∗H maps each edge to a string of source nodes, lH : EH → L

assigns a label to each edge, and χH ∈ V ∗H is a string of external nodes .

Let H,H ′ be two hypergraphs. A hypergraph morphism φ : H → H ′ consists of two

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 152

(a)
(1) (m)... (b)

...

l

(1) (n)

Fig. 1. A discrete hypergraph and a hypergraph with a single edge.

mappings φV : VH → VH ′ , φE : EH → EH ′ satisfying† φV (sH (e)) = sH ′ (φE(e)) and lH (e) =

lH ′ (φE(e)) for all e ∈ EH . If, furthermore, φV (χH) = χH ′ , we call φ a strong hypergraph

morphism and denote it by φ : H � H ′. The hypergraphs H and H ′ are called isomorphic

(H ∼= H ′) if there exists a bijective strong morphism from one hypergraph into the other.

A hypergraph morphisms η : H → H ′ is called an embedding if it is injective on EH
and on all non-external nodes of H and if, furthermore, if there is an e′ ∈ EH ′ such that

sH ′ (e
′) contains a node that is the image under η of a non-external node of H , then e′ is

in the range of η. It must also be the case that if η(v) is external for a node v ∈ VH , then

v must also be external.

As usual, we omit the index in φV and φE if it can be derived from the context. The

arity of a hypergraph H is defined as ar(H) = |χH | (where |̃s| denotes the length of a

string s̃) while the arity of an edge e of H is ar(e) = |sH (e)|. We can regard hypergraphs

and hypergraph morphisms as the objects and arrows, respectively, of a category HGraph,

which has a subcategory SHGraph containing only the strong hypergraph morphisms. If

we say that two hypergraphs are isomorphic, we usually refer to isomorphism in SHGraph

(see Definition 1).

Notation: We call a hypergraph discrete, if its edge set is empty. The symbol m denotes a

discrete graph of arity m ∈ lN with m nodes where every node is external (see Figure 1(a)

where external nodes are labelled (1), (2), . . . in their respective order). We will also call

a graph morphism discrete if both its source and target graph are discrete.

Furthermore, H = [l]n is the hypergraph with exactly one edge e labelled l where

sH (e) = χH , |χH | = n, χH contains no duplicates and VH = Set(χH) where Set(̃s) is the set

of all elements of a string s̃ (see Figure 1(b) where the nodes of an edge are ordered from

left to right).

We now present the ‘concatenation operation’ discussed in the introduction. The con-

struction plan, telling us how this concatenation is supposed to happen, is represented by

hypergraph morphisms ζi mapping discrete graphs of the form depicted in Figure 1(a)

to arbitrary discrete graphs. This construction plan is independent of the specific graphs

to be concatenated (apart from their arity) and is applied to hypergraphs H1, . . . , Hn by

taking their disjoint sum and fusing their external nodes as specified by the morphisms ζi.

The following definitions use concepts from category theory, namely categories and

colimits. For an introduction to these concepts see Crole (1993) and Mac Lane (1971).

† The application of morphisms to sequences of nodes is conducted pointwise.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 153

i

ii

m

H

ζ

H

η

D

φ ii

φ

Fig. 2. Hypergraph construction as a colimit.

i i

ψ

ψ
i

’

H

η η

H H’

H’i i

Fig. 3.

Definition 2. (Hypergraph construction) Let H1, . . . , Hn be hypergraphs and let ζi : mi →
D, i ∈ [n] (where [n] stands for the set {1, . . . , n}) be morphisms where ar(Hi) = mi ∈ lN

and D is a discrete graph. There is always a unique strong morphism φi : mi � Hi for

every i ∈ [n].

Now we let H (with morphisms φ : D � H , ηi : Hi → H) be the colimit of

ζ1, . . . , ζn, φ1, . . . , φn in HGraph such that φ is a strong morphism (see Figure 2). We

define:
⊗n

i=1(Hi, ζi) = H . (Alternatively, we write (H1, ζ1) ⊗ . . . ⊗ (Hn, ζn), or ⊗(H1, ζ1) if

n = 1, instead of
⊗n

i=1(Hi, ζi).)

The colimit defined above always exists (see Proposition 1), but is unique only up to

isomorphism in HGraph. Therefore we demand above that the morphism φ from D into

the colimit is a strong morphism, thereby determining the string of external nodes of the

result and getting a graph that is unique up to isomorphism in SHGraph. We can also

think of the diagram as a colimit where the horizontal arrows are from SHGraph and the

vertical arrows are from HGraph.

Furthermore, the morphisms ηi generated by the colimit are always embeddings.

If we now partition the category of strong hypergraph morphisms into categories

SHGraphm, each of which contains exactly the hypergraphs of a fixed arity m ∈ lN,

we can regard
⊗n

i=1(i, ζi) with ζi : mi → D as a functor from the cartesian product

SHGraphm1
× . . .× SHGraphmn into the category SHGraphar(D). Each tuple (ψ1, . . . , ψn) of

strong morphisms with ψi : Hi � H ′i and ar(Hi) = mi yields a strong morphism

ψ =

n⊗
i=1

(ψi, ζi) :

n⊗
i=1

(Hi, ζi)︸ ︷︷ ︸
H

�
n⊗
i=1

(H ′i , ζi)︸ ︷︷ ︸
H ′

where ψ is generated by the colimit in Figure 3 and the ηi : Hi → H and η′i : H ′i → H are

the embeddings generated by the graph construction.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 154

Although the characterisation of hypergraph construction is more elegant in the cate-

gorical setting, we can also describe it without category theory in a constructive way. In

this way we also show that the colimit actually exists.

Proposition 1. Let H1, . . . , Hn be hypergraphs with mi = ar(Hi) and let ζi : mi → D,

i ∈ [n] be discrete morphisms such that the node and edge sets of H1, . . . , Hn and D are

pairwise disjoint. Furthermore, let ≈ be the smallest equivalence on the union of their

nodes satisfying ζi(v) ≈ φi(v) if i ∈ [n], v ∈ Vmi
. The nodes of the constructed graph are

the equivalence classes of ≈. Thus
⊗n

i=1(Hi, ζi) is isomorphic to

H = ((VD ∪
n⋃
i=1

VHi
)/≈,

n⋃
i=1

EHi
, sH , lH , χH)

where sH (e) = [v1]≈ . . . [vk]≈ if e ∈ EHi
and sHi

(e) = v1 . . . vk . Furthermore, lH (e) = lHi
(e) if

e ∈ EHi
, so we define χH = [v1]≈ . . . [vk]≈ if χD = v1 . . . vk .

Additionally, the morphisms φ : D � H and ηi : Hi → H generated by the colimit can

be constructed as follows: φ(v) = [v]≈ if v ∈ VD . Furthermore, ηi(v) = [v]≈ if v ∈ VHi
and

ηi(e) = e if e ∈ EHi
.

In other words, we unite disjointly all graphs D,H1, . . . , Hn and fuse two nodes whenever

they are the image of one and the same node in one of the mi. The equivalence classes of

the nodes of χD form the new sequence of external nodes.

Proof. In order to show that our constructive definition is indeed correct, we have

to prove that whenever there are morphisms η′i : Hi → H ′ and a strong morphism

φ′ : D � H ′, there exists a unique morphism ψ : H → H ′ such that ψ ◦ ηi = η′i and

ψ ◦ φ = φ′. The only way to get such a ψ is to define ψ([e]≈) = η′i(e) whenever e ∈ EHi
,

and ψ([v]≈) = η′i(v) whenever v ∈ VHi
, and ψ([v]≈) = φ′(v) whenever v ∈ VD . It can be

shown straightforwardly that ψ is a well-defined graph morphism satisfying the necessary

conditions.

Example (1): We want to construct a graph H consisting of a hyperedge representing

a message (labelled M) and two hyperedges representing processes (labelled P , Q). (In

Section 5 we will show how the reception of a message by a process can be modelled with

graph rewriting.)

The hypergraph H consists of two subgraphs H1 (containing the process labelled P and

a message) and H2 (containing a process labelled Q) that are concatenated according to

the ‘construction plan’ given by the discrete morphisms ζ1, ζ2 (see Figure 4). For example,

the third external node of H1 is fused with the third external node of D, which, in turn,

is fused with the first external node of H2. Isolated nodes in H are generated by nodes in

D that are not in the range of either of the ζi.

Example (2): Another example is an operator that takes two hypergraphs of the same arity

and attaches them at their external nodes, that is, the nodes are merged in their respective

order. Let m be a fixed natural number and let ζ : m � m be a strong morphism. For

H1, H2 satisfying ar(H1) = ar(H2) = m, we define H12H2 = (H1, ζ)⊗ (H2, ζ) . This operator

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 155

(1) (2)

m1
φ

1 m2 H2

φ
2

(1) (2) (3) (4) (1) (2)(2)(1) (3) (4)

(1) (3)(2)

P M

(2) (3)(1)

Q

H1

ζ ζ
η η

φ

2

1

1

2

D

H

P M Q

Fig. 4. Example of a graph construction operation.

is similar to the duplicator defined in Gadducci and Heckel (1997), and will be used later

in this paper.

3. Comparison with graph expressions and the double-pushout approach

3.1. Graph expressions

Graph expressions were introduced in Bauderon and Courcelle (1987) as an algebraic

structure for graph construction. They introduced three operators (explained below) and a

complete set of equations relating hypergraphs if and only if they are isomorphic. We will

now introduce the three operators and give their corresponding version in our framework

in terms of the discrete morphisms ζi.

Disjoint sum: Given two hypergraphs H1, H2, we have H1⊕H2 is the hypergraph resulting

from the disjoint union of the node and edge sets, and of the source and labelling

functions of H1 and H2. Furthermore, χH1
and χH2

are concatenated to form the

sequence of external nodes of H1 ⊕ H2. We then have H1 ⊕ H2
∼= ⊗2

i=1(Hi, ζi) where

ζ1, ζ2 are defined as in Figure 5(a) (m = ar(H1), n = ar(H2)).

Redefinition of external nodes: Let α : [p] → [m] and m = ar(H). Then σα(H) is the

hypergraph resulting from the redefinition of the external nodes of H according to

α, that is, χH is replaced by† bχHcα(1) . . . bχHcα(p). The rest of the hypergraph stays

unchanged.

We exploit the fact that α can always be decomposed into α = α1 ◦ . . . ◦ αk where

each αi is either a permutation, or it hides the last external node, or it duplicates

the last external node (see below). According to Bauderon and Courcelle (1987),

σα(H) ∼= σαk (. . . σα1
(H) . . .). Thus we only have to consider the following three cases,

in each of which we have σα(H) ∼= ⊗(H, ζ) with the appropriate discrete morphisms

shown in Figure 5.

† If s̃ = a1 . . . an is a string of elements a1, . . . , an, then bs̃ci1 ...in denotes the string ai1 . . . ain .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 156

...
(1) (m)

ζ1

ζ2

iff αχ jχ i) = (ζ m m (j)=i

...(1) (n)

...(1) (m) ...(m+1)

(b)

(m+n)

...
(1) (m)

...
(1) (m)

ζ

[Disjoint Sum]

[Permutation of External Nodes]

[Hiding an External Node]
(d)

...
(1) (m)

...
(1) (m,m+1)

ζ

[Fusing External Nodes]

(e)
...

(1)
...

(1) (m-1,m)(m-1) (m)
ζ

[Duplicating an External Node]

(a) (c)

...
(1) (m) (m+1)

...
(1) (m)

ζ

Fig. 5. Converting a graph expression into the corresponding colimit construction.

Permutation of external nodes: Let α : [m] → [m] be a bijection. In this case ζ is

defined as in Figure 5(b).

Hiding an external node: Let α : [m]→ [m+ 1] where α(i) = i. Then ζ is defined as in

Figure 5(c).

Duplicating an external node: Let α : [m + 1] → [m] where α(i) = i if i ∈ [m] and

α(m+ 1) = m. Then ζ is defined as in Figure 5(d).

Fusing external nodes: Let δ be an equivalence relation on [m] where m = ar(H), θδ(H) is

obtained by fusing all external nodes that are related by δ. The arity of the hypergraph

is not changed.

According to Bauderon and Courcelle (1987), θδ(H) ∼= θδk (. . . θδ1
(H) . . .) where each δl

is an equivalence generated by a single pair (i, j) with i, j ∈ [m]. With the permutation

operation defined above, it suffices to define a colimit construction fusing the last

two nodes of a hypergraph. Let δ′ be the equivalence on [m] generated by the pair

(m− 1, m). Then θδ′(H) ∼= ⊗(H, ζ) where ζ is defined as in Figure 5(e).

We have shown how to emulate all three operators by colimits. It is still left to show

how the subsequent application of colimits can be converted into one single colimit

construction. We will delay this until Section 4.

If, on the other hand, we are given discrete morphisms ζi : mi → D, i ∈ [n], we can

construct a corresponding graph expression g(X1, . . . , Xn) as follows:

g(X1, . . . , Xn) = σα(θδ(X1 ⊕ . . .⊕Xn ⊕ k))

where VD = {v1, . . . , vk}, Ni =
∑i

j=1 ar(Hi), δ is the equivalence generated by the set of

pairs {(Ni−1 + j, Nn + l) | ζi(bχmi
cj) = vl} and α : [ar(D)]→ [Nn + k] with α(i) = Nn + j if

bχDci = vj .

By comparing the expression above to the alternative constructive definition of hy-

pergraph construction given in Proposition 1, it can be shown that for all hypergraphs

H1, . . . , Hn with ar(Hi) = mi we have g(H1, . . . , Hn) ∼= ⊗n
i=1(Hi, ζi).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 157

3.2. The double-pushout approach

The double-pushout approach to graph rewriting was first introduced by Ehrig (Ehrig

1979), while the double-pushout approach to hypergraph rewriting was presented in

Habel (1992). A rewriting rule consists of two hypergraph morphisms φL : M → L and

φR : M → R (where L, R are called the left- and right-hand sides, respectively, and M

is called the interface). A morphism η : L → G is called an occurrence of L in G. The

hypergraph G can be rewritten to G′ if and only if we can find a hypergraph K and

morphisms such that the diagram in Figure 6(d) consists of two pushouts.

Our colimit construction is closely related to this approach. We will now make this

connection precise. First, we define the notion of a rewriting step in our setting: let

r = (L, R) be a rewriting rule, where L, R are hypergraphs with ar(L) = ar(R). Then
r

=⇒
is the smallest relation that is generated by the following two rules and is closed under

isomorphism.

L
r

=⇒ R

H1
r

=⇒ H ′1

(H1, ζ1)⊗ (H2, ζ2)
r

=⇒ (H ′1, ζ1)⊗ (H2, ζ2)

if mi = ar(Hi), ζi : mi → D, i ∈ [2]

In Ehrig et al. (1973) it was shown that every double-pushout can be converted into a

double-pushout where the interface M in the production span is discrete, without changing

the transition relation. In terms of the set of productions this ordinarily means replacing

every rule by a (finite) set of rules, in order to handle morphisms η that are non-injective

on the edges. We can also assume that all the nodes of M are external, that it is, therefore,

isomorphic to m, and that there are strong morphisms φL : m � L and φR : m � R,

which may involve changing the the sequences of external nodes of L and R.

Note that the double-pushout approaches with a discrete interface and with an arbitrary

interface are only equivalent in an interleaving semantics. Whenever a truly concurrent

semantics is considered, the corresponding rules with the discrete interface in general

allow strictly fewer concurrent rewrites.

Proposition 2. Let G, G′ be hypergraphs of arity 0 and let r = (L, R) be a rewriting rule.

Then G
r

=⇒ G′ if and only if G can be transformed into G′ by r in the double-pushout

approach (with a production span L� m� R where m = ar(L) = ar(R)).

Proof. It has already been shown in Bauderon and Courcelle (1987) that the expressive

power of rewriting in terms of graph expressions is equal to the expressive power of the

double-pushout approach. The proposition follows from the fact that graph expressions

are equivalent to our form of graph construction (see Section 3.1).

We now show the proposition in a more direct way and explain how the double-pushout

approach is related to our approach:

— First, it can be shown by using the universal property of colimits that if H is a colimit

of ζ1, ζ2, φ1, φ2 in Figure 6(a), and 6(b) consists of two pushouts (1) and (2), then

H ∼= H ′. This is also known as the butterfly lemma.

Diagrams 6(a) and 6(b) can always be completed to form colimits, since we can

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 158

H2

m2

m1H1

ηD

ζ 2

ζ
1

φ
2

η ’
2

η
1
’

φ1

ηK

η’

D

KH’

(b)

(2)

(1)

K K’

ψ D n+m

ζ

ξ

G

L mφ
L

(2)
(1)

(c)

φ
2φ1

(a)

(d)
φ φ

L R

ψ
L

G K

RM

η

ζ ζ η η
φ

mm1 2 H H

1 2 1 2

21

D H

G’

Fig. 6. Converting hypergraph construction into a pushout.

always explicitly construct the colimit as in Proposition 1. In particular, the pushouts

in Figure 6(b) exist.

— We now assume that G
(L,R)
=⇒ G′. Because of Proposition 3, which will be shown

in Section 4 (without referring back to this proposition), we can assume that each

of the two rules generating
(L,R)
=⇒ is used exactly once. Thus we can conclude that

G ∼= (L, ζ1) ⊗ (J, ζ2) and G′ ∼= (R, ζ1) ⊗ (J, ζ2) for some hypergraph J and suitable

discrete morphisms ζ1, ζ2.

We set K = ⊗(J, ζ2) (as in pushout (1) in Diagram 6(b)). Then, according to the

facts we have shown previously, G is the pushout of ηD ◦ ζ1 and φ1 (the canonical

strong morphism) in Diagram 6(b). (We assume that H1 = L, H2 = J and H ′ = G.)

In the same way, we can describe G′ as a pushout of ηD ◦ ζ1 and the canonical strong

morphism from m1 into R.

— Now assume we can transform G into G′ by applying the production span L� m� R

in the double-pushout approach. A double-pushout has the form shown in Figure 6(d),

where the embedding of L into G may also be non-injective on the external nodes of

L. We can assume that M = m for some natural number m and that both φL and φR
are strong.

We assume that K ′ is the same hypergraph as K with a different sequence of external

nodes. We obtain K ′ by replacing the sequence of external nodes of K by the

concatenation of χK and ψ(χm). Let ξ : n + m → D (where n = ar(K)) be a discrete

morphism such that K ∼= ⊗(K ′, ξ) (see pushout (1) in Figure 6(c)), that is, ξ hides

the last m nodes of K ′ (compare with Section 3.1). Now let ζ : m → D be a

discrete morphism such that ζ(χm) = ξ(bχn+mcn+1...n+m), and, therefore, η′(ζ(χm)) =

η′(ξ(bχn+mcn+1...n+m)) = ψ(χm), and thus η′ ◦ ζ = ψ (η′ is generated by pushout (1) in

Figure (c)).

This implies that G ∼= (L, ζ) ⊗ (K ′, ξ). In the same way, we can show that G′ ∼=
(R, ζ)⊗ (K ′, ξ). It thus follows that G

(L,R)
=⇒ H .

In this section we have only considered the case where rewriting is closed under binary

graph construction. However, this is equivalent to the general case (see also Proposition 3).

We have not yet treated the problem of discovering a left-hand side L in a graph H ,

that is, under what conditions do there exist discrete morphisms ζ1, ζ2 and a graph K

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 159

(b)

(c)(a)

m H

D H

ζ

ξ

m

D’ HD

ζ

ij ij

i i

ij

i

i
φ

i

i

Fig. 7. Collapsing levels of hypergraph construction.

such that H ∼= (L, ζ1) ⊗ (K, ζ2)? Since our approach coincides with the double-pushout

approach, ζ1, ζ2 and K exist whenever there is a morphism η : L → H satisfying the

dangling edge condition and the identification condition of the double-pushout approach,

in other words: η must be an embedding (see Definition 1).

4. Some properties of hypergraph construction

As promised in the previous section, we now introduce a mechanism for combining several

construction operations into one by collapsing hierarchies of graph constructions. In the

world of strings this has a rough analogue in the associativity of concatenation, which

does not hold for graph construction.

Proposition 3. In the following, let i range over [n] and j range over [ni]. Let ζij : mij → Di
and ζi : mi → D be morphisms with mi = ar(Di). Let φi : mi � Di be the unique strong

morphisms and let the ξi be the morphisms generated by colimit (a) in Figure 7. Then we

have for arbitrary hypergraphs Hij with mij = ar(Hij) that

n⊗
i=1

(

ni⊗
j=1

(Hij , ζij), ζi) ∼=
⊗
i,j

(Hij , ξi ◦ ζij). (1)

Proof. The proof of the proposition is shown in Figure 7. The left-hand side of

Equation (1) is formed by applying first colimits (b) to the Hij , and then colimit (a)+(c).

If (a)+(c) is a colimit and (a) is a colimit, then it follows from the standard properties

of colimits that (c) is also a colimit, which implies that (b)+(c), which corresponds to the

right-hand side of Equation (1), is also a colimit.

Example: We will translate a sequence of redefinitions of external nodes (see Section 3.1)

into graph constructions and collapse them into one single application of a colimit. Assume

we want to compute σα(H) where ar(H) = 3, α : [3]→ [3] and α(1) = 2, α(2) = α(3) = 1.

As mentioned in Section 3.1, we can decompose α into α = α1 ◦ α2 ◦ α3 with α1 : [2]→ [3]

(hiding the last external node), α2 : [2] → [2] (permutation, exchanging the first and the

second node) and α3 : [3]→ [2] (duplicating the last external node).

We can now construct the respective discrete morphisms ζ1, ζ2 and ζ3 according to

Figure 5, and we have σα1◦α2◦α3
(H) ∼= ⊗(⊗(⊗(H, ζ1), ζ2), ζ3). If we combine them according

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 160

(1) (2)

(1) (2)

1ζ

1ξ

ξ 2

ξ 3

ξ 3 ξ 2 1ζ
ζ

(1) (2)

3

2

ζ

(a)

(b) (c)

(1) (2,3) (1) (2,3)

(1) (2)

(1) (2)

(1) (2,3)

(1) (2) (3) (1) (2) (3)

(1) (2,3)

ζ =

Fig. 8. Collapsing levels of hypergraph construction (example).

to Proposition 3, we obtain the result ζ, shown in Figure 8 where the squares marked (a),

(b), (c) are colimits. That is, σα(H) ∼= ⊗(H, ζ) for every hypergraph H of arity 3.

Hyperedges are the basic units of graph construction. Just as every element of a vector

space can be decomposed into base vectors or every natural number can be factored

into primes in a unique way, there is a unique decomposition of every hypergraph into

hyperedges, where isolated nodes are created by nodes of the discrete hypergraph D that

are not in the range of any of the ζi.

Proposition 4. (Unique factorisation) Let H be a hypergraph. Then there exists a natural

number n, labels li and morphisms ζi : mi → D (where i ∈ [n] and D is a discrete

hypergraph) such that H ∼= ⊗n
i=1([li]mi , ζi). This factorisation is unique up to isomorphism

and index permutation.

More specifically, if there are other discrete morphisms ζ ′i : m′i → D′, i ∈ [n′] and

labels l′1, . . . , l′n′ such that H ∼= ⊗n′
i=1([l′i]m′i , ζ

′
i), then n = n′, and there are a permutation

α : [n] → [n′] and an isomorphism ψ : D′ � D such that li = l′α(i), mi = m′α(i) and

ζi = ψ ◦ ζ ′α(i).

Proof. By the results of Section 3.1, (Bauderon and Courcelle 1987) and Proposition 3,

it is straightforward to see that such a factorisation of a hypergraph H is always possible

(isolated nodes in H are generated by nodes of the discrete graph D that are not in the

range of any of the ζi).

We will now show that the factorisation is unique. Let H ∼= ⊗n
i=1([li]mi , ζi) and H ∼=⊗n′

i=1([l′i]m′i , ζ
′
i) where ζi : mi → D, i ∈ [n] and ζ ′i : m′i → D′, i ∈ [n′], respectively.

Furthermore, let φi : mi � [li]mi and φ′i : m′i � [l′i]m′i be the canonical strong morphisms.

Let the morphisms generated by the colimits be ηi : [li]mi → H , i ∈ [n] and φ : D � H ,

and η′i : [l′i]m′i → H , i ∈ [n′] and φ′ : D′ � H , respectively.

Since n and n′, respectively, denote the number of edges of H , it follows that n = n′.
The ηi and η′i , respectively, cover all the edges of H and a morphism with a source graph

of the form [l]m is already fully determined if the image of the only edge in [l]m is fixed.

Therefore, the two sets {ηi | i ∈ [n]} and {η′i | i ∈ [n′]} are equal, and it follows that there

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 161

is a permutation α : [n] → [n] such that ηi = η′α(i), which implies that mi = m′α(i), li = l′α(i)
and φi = φα(i).

It is left to show that ζi and ζ ′α(i) are equal up to isomorphism, that is, that there is an

isomorphism ψ : D′ � D such that ζi = ψ ◦ ζ ′α(i). We first prove that φV is a bijection

(the same holds for φ′V with the same arguments): from Proposition 1 it follows that a

hypergraph isomorphic to H can be constructed by taking the union of D and the edges

[li]mi and fusing the nodes according to the equivalence ≈. Because of the special nature

of the hypergraphs that are concatenated (the [li]mi have no duplicates in their sequences

of external nodes and no internal nodes), it follows that every node of an edge [li]mi is

related to some node in D and that no two distinct nodes of D are related. That is, the

equivalence classes are exactly the nodes of D. Since φV is isomorphic to a function that

maps every node of D to its equivalence class, it follows that φV : VD → VH is a bijection

and, furthermore,

(ζi)V = φ−1
V ◦ (ηi)V ◦ (φi)V = φ−1

V ◦ (η′α(i))V ◦ (φ′α(i))V = φ−1
V ◦ φ′V ◦ (ζ ′α(i))V .

The function φ−1
V ◦ φ′V : VD′ → VD is a bijection and since ζi, ζ

′
α(i) are defined only on

discrete graphs, they are the same up to isomorphism.

As with vector spaces, we can define linear mappings on hypergraphs.

Definition 3. (Linear mapping) A linear mapping L maps every hypergraph to a hyper-

graph of the same arity and satisfies L(
⊗n

i=1(Hi, ζi)) ∼= ⊗n
i=1(L(Hi), ζi).

Proposition 5. (Unique linear mapping) For each mapping of hyperedges [l]m to hyper-

graphs of arity m, there is exactly one linear mapping (up to isomorphism) that is an

extension of the original mapping.

Proof. Let L′ map every hyperedge to a hypergraph of the same arity.

— We first show that there is at most one linear mapping L that extends L′: let H

be an arbitrary hypergraph and let H ∼= ⊗n
i=1([li]mi , ζi) be the unique factorisation

of H according to Proposition 4. Any linear mapping L extending L′ must satisfy

L(H) ∼= ⊗n
i=1(L′([li]mi), ζi), and L(H) is fixed up to isomorphism.

— We now show that there is at least one linear mapping L. We define L as follows:

L(

n⊗
i=1

([li]mi , ζi)) =

n⊗
i=1

(L′([li]mi), ζi).

This is well-defined since the factorisation of every hypergraph is unique. It is left to

show that L is a linear mapping: let H ∼= ⊗n
i=1(Hi, ζi). According to Proposition 4,

Hi
∼= ⊗ni

j=1([lij]mij , ζij) for suitable lij , mij , ζij . It follows that

L(H) ∼= L(

n⊗
i=1

(

ni⊗
j=1

([lij]mij , ζij), ζi)).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 162

From Proposition 3, we have the existence of morphisms ξi such that

L(H) ∼= L(
⊗
i,j

([lij]mij , ξi ◦ ζij)) =
⊗
i,j

(L′([lij]mij), ξi ◦ ζij)

∼=
n⊗
i=1

(

ni⊗
j=1

(L′([lij]mij), ζij), ζi) ∼=
n⊗
i=1

(L(Hi), ζi).

One can view the application of a linear mapping as a synchronous rewriting step,

replacing every hyperedge at the same time.

Examples: We define a mapping that duplicates every edge in a hypergraph. If H =

(V , E, s, l, χ) is a hypergraph, Dupl (H) is defined by (V , E ∪ Ē, s ∪ s̄, l ∪ l̄, χ) where Ē =

{ē | e ∈ E}, s̄ : Ē → V ∗ with s̄(ē) = s(e) and l̄ : Ē → L with l̄(ē) = l(e). The function

Dupl is a linear mapping and can be generated by fixing the images of single hyperedges:

Dupl ([l]m) = [l]m2[l]m (where 2 is the operator defined in Example (2) at the end of

Section 2). Note that a mapping that duplicates all nodes is not linear.

Another simple example is a mapping that deletes all edges, that is, produces a discrete

graph. We define Discrete(H) = (V ,6,6,6, χ). It is linear and can be generated by

defining Discrete([l]m) = m for all hyperedges.

The usefulness of linear mappings will become clear in the following section where we

will use a linear mapping in order to analyse mobile processes. Another important use of

linear mappings is to annotate hypergraphs. In order to do this we will slightly extend

the notion of a linear mapping in Section 6.

5. Typing process graphs

We show how to model a process calculus, which is closely related to the asynchronous

polyadic π-calculus (Milner 1993), using so-called process graphs. There is an encoding

from the π-calculus into process graphs and vice versa (König 2000). On the other hand,

there is a straightforward encoding of process graphs into closed action calculi (Gardner

1998) and a close relation of our process graphs to the ones in Yoshida (1994).

As a second step we will then show how to associate process graphs with abstract

behaviour descriptions, which are closely related to type systems in process calculi.

Definition 4. (Process graph) A process graph P is inductively defined as follows: P is

a hypergraph where each edge e is either labelled with (n)Q where Q is again a process

graph and 1 6 n 6 ar(Q) (e is a process waiting for a message with n ports arriving at its

first node), with !Q (e is a process that can replicate, creating arbitrarily many instances

of Q) or with the constant M (e is a message sent to its last node). The reduction relation

involving the reception of a message and its nodes by a process, that is, communication,

and replication is generated by the rewrite rules in Figure 9 and is closed under graph

construction. (The operator 2 is defined in Example (2) at the end of Section 2.)

The rewrite rules in Figure 9 are not always defined, since there might be arity

mismatches between the left-hand and right-hand side. They may fail if ar(Q) 6= m + n′

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 163

(Communication) (Replication)

(m) (1) (m) (1) (m)(1) (m+1) (m+n’)

Q!Q !Q

...

M(n)Q Q

...

Fig. 9. Communication and replication of process graphs.

(1) ... (n+1)(n)

...
(m+n)(m+1)(m)(1)

ζ
...

... ...
(m)(1)

...ξ

(a)

(1) ... (n’)

(1) ... (n+1)(n) ζ2

ζ1

ζ3

(n’+1)

...
(m+n)(m+1)(m)(1)

...

...(m+1) (m+n’)

... ...
(m)(1)

D

... ...

...

(b)

Fig. 10. Some morphisms needed in Definition 5 and for the proof of Proposition 6.

(∗1) in the communication rule or ar(Q) 6= m (∗2) in the replication rule. Furthermore, we

want to avoid the occurrence of n 6= n′ (∗3) in the communication rule, that is we want

to ensure that the expected number of nodes is received. We say that a process graph P

contains a runtime error if it contains the left-hand side of the communication rule and

either (∗1) or (∗3) hold, or if it contains the left-hand side of the replication rule and (∗2)

holds.

We use morphisms, graph construction and a linear mapping in order to define a

condition that is sufficient for avoiding these runtime errors and can be checked statically.

Definition 5. (Type graph) Let L be a linear mapping that is defined on the hyperedges

as follows:

L([M]n) = [t]n (t is a new edge label)

L([!Q]m) = L(Q) if m = ar(Q) (undefined otherwise)

L([(n)Q]m) = (L(Q), ζ)⊗ ([t]n+1, ξ) if n+ m = ar(Q) (undefined otherwise).

The morphisms ζ, ξ are given in Figure 10(a).

Now let P be a process graph. If there exists a strong morphism ψ : L(P)� T into a

hypergraph T that satisfies

∀ e1, e2 ∈ ET : (bsT (e1)car(e1) = bsT (e2)car(e2) ⇒ e1 = e2) (2)

(that is, all edges that share the last node are already the same), then T is called the type

graph of P .

The aim is to show that every process graph that can be typed does not produce runtime

errors of the form described above. The linear mapping L extracts pure communication

structure from a process graph, that is, an edge of the form [t]n indicates that its nodes

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 164

(except the last) might be sent or received via its last node. Condition (2) makes sure

that the arity of the arriving message matches the expected arity, and that nodes that

might get fused during reduction are already fused in T . It thus guarantees the absence

of undefined rewrites for the entire reduction.

We can easily unfold T into well-known type trees of π-calculus processes (Pierce and

Sangiorgi 1993; Turner 1995). Therefore we decided to call T a type graph of P , although

this term clashes with a different form of type graph used in typed graph grammars

(Corradini et al. 1996).

Proposition 6. If a process graph P has a type graph, it will never encounter a runtime

error, that is, if P =⇒∗ P ′, then P ′ does not contain a runtime error.

Proof. Let P be a process graph with ψ : L(P)� T where T satisfies Condition (2).

We now show that P does not encounter a runtime error in its next reduction step,

along with the fact that the subject reduction property is satisfied. The subject reduction

property says that if P =⇒ P ′, there is also a strong morphism ψ′ : L(P ′) � T . These

two properties together ensure the absence of runtime errors for the entire reduction.

We proceed by induction on the reduction rules:

— Let P be the left-hand side of the communication rule in Figure 9 and P =⇒ Q. From

Proposition 3 it follows that L(P) ∼= (L(Q), ζ1)⊗ ([t]n+1, ζ2)⊗ ([t]n′+1, ζ3) where ζ1, ζ2, ζ3

are defined in Figure 10(b).

The condition in the definition of L tells us that m+ n = ar(Q), and since we will later

show that n = n′, we have thus eliminated runtime error (∗1).

Now let η1 : L(Q) → L(P), η2 : [t]n+1 → L(P), η3 : [t]n′+1 → L(P) be the embeddings

into L(P) generated by the colimit. Furthermore, we know that there exists a strong

morphism ψ : L(P) � T . Our aim is to show that ψ ◦ η1 : L(Q) → T is the strong

morphism we are looking for. We proceed in two steps:

– We first show that ψ(η1(bχL(Q)c1...m)) = bχT c1...m:

ψ(η1(bχL(Q)c1...m)) = ψ(η1(φ1(bχm+nc1...m)))

= ψ(φ(ζ1(bχm+nc1...m)))

= ψ(φ(bχDc1...m))

= ψ(bχL(P)c1...m)

= bχT c1...m
where φ1 is the canonical strong morphism from m + n into L(Q) and φ : D � L(P)

is the strong morphism generated by the colimit. We then have by construction

that ζ1(bχm+nc1...m) = bχDc1...m.

– In the next step we show that ψ(η1(bχL(Q)cm+1...m+n)) = bχT cm+1...m+n′ , and thus

n = n′, which avoids runtime error (∗3).

Let e be the only edge in [t]n+1 = U and let e′ be the only edge in [t]n′+1 = U ′. It

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 165

follows that

bsT (ψ(η2(e)))car(e) = bψ(η2(sU(e)))cn+1

= bψ(η2(χU))cn+1

= bψ(η2(φ2(χn+1)))cn+1

= ψ(φ(ζ2(bχn+1cn+1)))

= ψ(φ(ζ3(bχn′+1cn′+1)))

= bψ(η3(φ3(χn′+1)))cn′+1

= bψ(η3(χU ′))cn′+1

= bψ(η3(sU ′ (e
′)))cn′+1

= bsT (ψ(η3(e′)))car(e′)

where φ2 and φ3, respectively, are the canonical strong morphisms from n + 1 into

[t]n+1 and from n′ + 1 into [t]n′+1, respectively. We again have by construction that

ζ2(bχn+1cn+1) = ζ3(bχn′+1cn′+1).

Condition (2) implies that ψ(η2(e)) = ψ(η3(e′)). It follows that

n+ 1 = ar(e) = ar(ψ(η2(e))) = ar(ψ(η3(e′))) = ar(e′) = n′ + 1

and thus n = n′. Now

ψ(η1(bχL(Q)cm+1...m+n)) = ψ(η1(φ1(bχm+ncm+1...m+n)))

= ψ(φ(ζ1(bχm+ncm+1...m+n)))

= ψ(φ(ζ2(bχn+1c1...n)))
= ψ(η2(φ2(bχn+1c1...n)))
= ψ(η2(bsU(e)c1...n))
= bsT (ψ(η2(e)))c1...n
= bsT (ψ(η3(e′)))c1...n
= ψ(η3(bsU ′ (e′)c1...n))
= ψ(η3(φ3(bχn′+1c1...n)))
= ψ(φ(ζ3(bχn′+1c1...n)))
= ψ(φ(bχDcm+1...m+n′))

= bχT cm+1...m+n′ .

Taking these together, we conclude that ψ(η1(χL(Q))) = χT , and ψ ◦ η1 is thus a strong

morphism.

— Let P = [!Q]m be the left-hand side of the replication rule in Figure 9, P =⇒ P ′
and P ′ = Q2[!Q]m. Furthermore, we have L(P) = L(Q) and L(P ′) = L(Q)2L(Q).

Since L(P) = L(Q) is defined, it follows that ar(Q) = m, and therefore runtime error

(∗2) is eliminated and L(P ′) is defined. We have to show that there exists a strong

morphism ψ : L(Q)2L(Q) � L(Q). (Recall that L(Q)2L(Q) = (L(Q), ζ) ⊗ (L(Q), ζ)

where ζ : m� m.)

First there is the identity morphism id : L(Q)� L(Q) (see Figure 11(a)). Furthermore,

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 166

φ’

’ ’

’
ψ ’

(a) (b)

m

D L(P’)

i

T

η ψζ
i

i
i

’ ’

L(P’i)
φ ’

i

ψ

L(Q) L(Q)

L(Q)

ψ

id

id

φ

L(Q) L(Q)

ζ ζ

m m

m
φ

φ φ

φ

Fig. 11. Diagrams for the proof of Proposition 6.

there is a unique strong morphism φ′ : m� L(Q), and we have φ′ ◦ ζ = id ◦ φ′, since

ζ is strong. Now let φ : m � L(Q)2L(Q) be the morphism generated by the colimit.

The properties of a colimit imply the existence of a morphism ψ : L(Q)2L(Q)→ L(Q)

such that ψ ◦φ = φ′. Since φ and φ′ are both strong, it follows that ψ is also a strong

morphism.

— Let P1 =⇒ P ′1, P2
∼= P ′2 and

P = (P1, ζ1)⊗ (P2, ζ2) =⇒ (P ′1, ζ1)⊗ (P ′2, ζ2) = P ′ where ζi : mi → D, i ∈ [2].

We know that L(P) ∼= (L(P1), ζ1)⊗(L(P2), ζ2). Let ηi : L(Pi)→ L(P) be the embeddings

and let φ : D � L(P) be the strong morphism generated by the colimit. It follows

that†

ψ ◦ ηi : L(Pi)� T 〈ψ(ηi(χL(Pi)))〉.
The induction hypothesis implies that there is a strong morphism ψ′1 : L(P ′1) �
T 〈ψ(η1(χL(P1)))〉. Furthermore, we set ψ′2 = ψ ◦ η2.

Now let φ′i : mi � L(P ′i) be the canonical strong morphisms, and let η′i : L(P ′i)→ L(P ′)
and φ′ : D � L(P ′) be the morphisms generated by the colimit L(P ′) ∼= (L(P ′1), ζ1)⊗
(L(P ′2), ζ2) (see Figure 11(b)).

We know that ψ′i : L(P ′i) → T and ψ ◦ φ : D → T . If we can show that ψ′i ◦ φ′i =

(ψ ◦ φ) ◦ ζi, the properties of the colimit guarantee the existence of a morphism

ψ′ : L(P ′)→ T . And since ψ′ ◦ φ′ = ψ ◦ φ and ψ, φ, φ′ are strong, it follows that ψ′ is

also strong.

So it is left to show that ψ′i ◦ φ′i = (ψ ◦ φ) ◦ ζi (see Figure 11(b)):

ψ′i(φ′i(χmi
)) = ψ′i(χL(P ′i)) = ψ(ηi(χL(Pi))) = ψ(φ(ζi(χmi

))).

A process graph may have several type graphs, so the question arises whether one of

them is ‘minimal’ in a certain sense. Let F be the inclusion functor from the category of

hypergraphs (with strong hypergraph morphisms) satisfying Condition (2) in Definition 5

into SHGraph, mapping every hypergraph and every morphism to itself. It can be shown

that if P has a type graph, then the comma category (L(P) ↓ F) (containing all strong

morphisms of the form L(P)� F(T ′)) contains an initial element ψ : L(P)� F(T). This

† By H〈χ′〉, we denote the hypergraph we obtain from a hypergraph H by replacing χH with χ′.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 167

(1) (2)

(1)

(1) (2)

(1) (2) (3)

M

(3)

(1) (3)

(2)

M

M

!

(1)

Fig. 12. Example of a process graph.

(2)(1) (3)

t t t

Fig. 13. Type graph.

hypergraph T can be considered as the minimal or principal type of P , and there is an

algorithm computing T for a given type P .

As an example, consider the process graph in Figure 12. There is a server (the process

on the left) that receives messages on its first port (before the server can receive a message

it must replicate itself) and sends back its second port to the address that was attached

to the message. At this address another process (the process on the right) is waiting, it

receives the message with the second port of the server and sends its own message there.

We use the following syntactic sugar: the last node of a message (that is, the node or

port to which the message is sent) is connected to the message by a dashed line. Nodes of

a hypergraph in an inner level that will be merged with nodes attached to a message are

shaded grey.

If we represent the three external ports by a, b, c, respectively, and denote the internal

node by d, the process graph above corresponds to the following process in the polyadic

π-calculus (Milner 1993):

!a(x).x̄〈b〉 | ā〈c〉 | (νd)(c(y).ȳ〈c, d〉).
Typing the process graph above intuitively means flattening the hypergraph until it

consists of only one hierarchy level. Hyperedges representing replicating processes are

discarded, messages and processes waiting for a message are appropriately replaced by

edges labelled t. After folding the hypergraph (that is, merging the hyperedges according

to Condition (2)), we obtain the minimal type graph T depicted in Figure 13.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 168

6. Annotated hypergraphs and their applications

6.1. Annotating hypergraphs

Often a pure hypergraph structure (even with the complex hyperedge labels used for

process graphs) is not enough to model certain properties. Node labels or extra annotations

forming an algebraic structure can be useful.

We will define a method for annotating hypergraphs and specify how these annotations

behave under graph morphisms and graph construction. In the following, we present

two applications for the concept of annotated hypergraphs: an extended type system for

process graphs and the modelling of Petri nets.

We first define a functor A that assigns to every hypergraph a commutative monoid

from which an annotation can be picked. The concept of annotations is deliberately kept

very general and we do not specify whether we want to annotate nodes, edges, tuples of

nodes or even assign only a single annotation to the entire hypergraph. Furthermore, A
defines how annotations behave under morphisms by mapping every graph morphism to a

monoid morphism. This form of graph annotation was introduced in König (1999), where

it is used for the definition of generic type systems for process graphs (see Section 6.2).

Annotated hypergraphs are loosely related to attributed graphs (Löwe et al. 1993), but

are more general in some respects, since we are able to annotate structures different from

single nodes or edges, and more restricted in others, since we restrict ourselves to monoids

and do not consider other algebraic structures.

Definition 6. (Annotated hypergraphs) Let A be a functor from the category of hyper-

graphs with hypergraph morphisms into the category of commutative monoids with

monoid morphisms (functions respecting the monoid operation and the unit 0).

That is, A assigns a commutative monoid A(H) = (Mon,+) to every hypergraph and

a function Aφ :A(H)→A(H ′) to every graph morphism φ : H → H ′ satisfying

Aφ ◦Aψ =Aφ◦ψ AidH = idA(H) Aφ(a+ b) =Aφ(a) +Aφ(b) Aφ(0) = 0

where a, b are two elements of the monoid A(H).

If a ∈ A(H), then H[a] is called an annotated hypergraph. Furthermore, H[a] and

H ′[a′] are called isomorphic (with respect to A) if there is a strong bijective morphism φ

with Aφ(a) = a′ between them.

We introduce two annotation functors, which will both be used later in the examples.

Example (1): In our first example we want to annotate a hypergraph by fixing a subset

of all pairs of nodes. For a given hypergraph H , the commutative monoid is A(H) =

(P(V 2
H),∪), that is, the power set of V 2

H where the monoid operation is simply set union

with the empty set as the unit.

Furthermore, for a given monoid element a ∈ A(H) and a graph morphism φ : H → H ′,
we define Aφ(a) = {(φ(v1), φ(v2)) | (v1, v2) ∈ a}.
Example (2): Every node is annotated with an element of a fixed commutative monoid

Mon, that is, B(H) = ({a : VH → Mon},+) where + is the point-wise application of the

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 169

monoid operation. And if a : VH → lN, φ : H → H ′ and v′ is a node of H ′, we set

Bφ(a)(v′) =
∑

φ(v)=v′ a(v).

Now the question arises as to whether we can define a category of annotated hyper-

graphs in which graph construction is a colimit, analogously to Definition 2. For general

commutative monoids it is not obvious how this should be done, so we first give an

alternative characterisation. If we restrict ourselves to lattices with the join operation, we

can again characterise graph construction by a colimit and the result corresponds to the

one in the alternative characterisation.

Definition 7. (Hypergraph construction with annotations) Let Hi[ai], i ∈ [n] be hypergraphs

annotated with respect to an annotation functor A. We define

n⊗
i=1

(Hi[ai], ζi) =

n⊗
i=1

(Hi, ζi)[

n∑
i=1

Aηi(ai)]

where the ηi are the embeddings of the Hi into the constructed graph as defined in

Definition 2.

As mentioned before, in the case of lattices, a hypergraph construction can again be

characterised by a colimit construction.

Proposition 7. Let A be an annotation mapping where for every hypergraph H , we have

A(H) = (I,∨) is a lattice with a bottom element ⊥ (the unit), the partial order 6 and the

join operation ∨.

We call φ : H[a] →A H ′[a′] an A-morphism if φ : H → H ′ is a morphism and

Fφ(a) 6 a′. Annotated hypergraphs together with A-morphisms form a category.

Furthermore, if ζi : mi → D and φi : mi � Hi, i ∈ [n], then
⊗n

i=1(Hi[ai], ζi) is the colimit

of ζi : mi[⊥]→A D[⊥] and φi : mi[⊥]�A Hi[ai] in this category.

Proof. The proof is straightforward.

Of the two annotation functors given above, A in Example (1) maps hypergraphs to

lattices and so graph construction can be characterised by a colimit. The same is true for

the functor B if (Mon,+) in Example (2) is a lattice.

We can extend the notion of a linear mapping to annotated hypergraphs: a linear

mapping L is now a function mapping hypergraphs without annotations to annotated

hypergraphs satisfying, again, the linearity condition of Definition 3. A linear mapping is

again uniquely defined, provided it is defined on the hyperedges.

6.2. Type graphs with annotations

We now show how to exploit the concept of annotated hypergraphs in order to ob-

tain a refined type system. This time we aim not only to avoid runtime errors but

also to check other properties that are related to the graph structure and are invari-

ant under reduction, such as the input/output-behaviour of external nodes or secrecy

properties.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 170

In order to achieve this result, we define a linear mapping L as in Definition 5, but

every occurrence of a message or a process contributes annotations that are added to the

type graph.

If the annotation somehow reflects the property X to be checked, we can infer X for a

process graph P if the annotations of L(P) satisfy certain constraints. If these constraints

are, furthermore, invariant under inverse graph morphisms and they hold for the type

graph T [a], then we know that they hold for all successors of P . A property is invariant

under inverse graph morphisms if from the fact that it holds for the target graph of a

graph morphism, we can always infer that it also holds for the source graph.

Definition 8. (Annotated type graph) Let A be an annotation functor that assigns a

lattice to every hypergraph. Furthermore, let aMn and aPn ∈ A(n) be annotations associated

with messages and processes, respectively, of arity n ∈ lN. We define a linear mapping L

assigning annotated hypergraphs to hypergraphs as follows:

L([M]n) = [t]n[⊥] 2 n[aMn]

L([!Q]m) = L(Q) if m = ar(Q) (undefined otherwise)

L([(n)Q]m) = ((L(Q), ζ)⊗ ([t]n+1[⊥], ξ)) 2 m[aPm]

if n+ m = ar(Q) (undefined otherwise).

(The morphisms ζ, ξ are defined in Figure 10(a).)

Now let P be a process graph. If there exists a strong A-morphism ψ : L(P)�A T [a]

into an annotated hypergraph T [a] that satisfies Condition (2) of Definition 5, then T [a]

is called an annotated type graph of P (with respect to A, aMn , aPn).

Proposition 8. Let A be an annotation functor and let aMn , a
P
n for n ∈ lN be given as

in Definition 8. Let X be a predicate on process graphs and let Y be a predicate on

annotated hypergraphs satisfying

(φ : H[a]�A H ′[a′] ∧ Y (H ′[a′])) ⇒ Y (H[a]) for all A-morphisms φ

Y (L(P))⇒ X(P) for all process graphs P .

If a process graph P has an annotated type graph T [a] (with respect to A, aMn , aPn) and

Y (T [a]) holds, then X(P ′) holds for every P ′ such that P =⇒∗ P ′.
Proof. Since graph construction is a colimit for hypergraphs annotated with lattice

elements, we can show the subject reduction property by adapting the proof of Proposi-

tion 6, that is, by showing that if L(P) �A T [a], T [a] satisfies (2) and P =⇒ P ′, then

L(P ′)�A T [a].

Furthermore, if Y (T [a]) holds, it follows that Y (L(P ′)) is satisfied, which implies that

X holds for P ′.

This form of type system can be considered as a generic type system, since it can be

instantiated by choosing an appropriate annotation functor A, annotations aMn and aPn
and predicates X,Y . The notion of generic type system is new in the area of process

calculi and it seems to be easier to define for graphs, since in the case of graphs it is

straightforward to add an extra layer of annotation.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 171

(2)(1) (2)(1)(3)

t t t

(b)

(3)

t t t

{i,o}{o}{i,o} (a)

Fig. 14. Type graphs with annotations.

It is an object of further study to determine which properties X are amenable to a

static analysis of this kind, and if and how we can automatically derive Y ,A, aPn , aMn ,

given a property X. Related to this work are properties of hypergraphs compatible with

context-free derivations studied in Habel (1992).

We give two examples by deriving useful type systems with different annotation functors.

Input/output capabilities: The aim here is to check which external nodes are used for

input, for output or for both. We use the annotation functor B from Example (2) after

Definition 6, where we take (P({i, o}),∪) (the power set of {i, o} with set union) as the

commutative monoid Mon. We define

aMn (bχncj) =

{
6 if j 6= n

{o} if j = n
aPn (bχncj) =

{ {i} if j = 1

6 if j 6= 1.

Furthermore, we choose the following predicate X: X(P) holds if P does not contain

a process that expects a message on the second external node of P . The corresponding

predicate Y on annotated hypergraphs is Y (T [a]) = (a(bχT c2) ⊆ {o}).
It is not hard to check that the components of the type system satisfy the conditions

imposed in Proposition 8. Furthermore, it is straightforward to compute the minimal

type graph of the example process graph P from Figure 12. The annotated type graph

is depicted in Figure 14(a) – it has the same graph structure as the type graph without

annotations (see Figure 13).

Since the type graph satisfies predicate Y , it follows that no process will ever expect a

message on the second external node during the reduction of P .

Secrecy: We partition the set of external nodes of a process into two sets, secret and

public nodes. We demand that no message with a secret node attached to it is ever sent

to a public node, that is, if we assume that Sec is the set containing the numbers of secret

ports, X can be formalised as follows:

X(P) = ∀ e ∈ EP : ∀ 1 6 i < ar(P) : ∀ 1 6 j, k 6 ar(P) : (lP (e) = M ∧
bsP (e)ci = bχP cj ∧ bsP (e)car(e) = bχP ck ∧ j ∈ Sec ⇒ k ∈ Sec).

We use type functor A from Example (1) after Definition 6. Furthermore, we set aPn =6
for every n and aMn = {(bχnci, bχncn) | i ∈ [n− 1]}. We define

Y (T [a]) = ∀ j, k : ((bχT ck, bχT cj) ∈ a ∧ k ∈ Sec ⇒ j ∈ Sec).

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 172

Again we can show that Y (L(P)) implies X(P) and that all other conditions imposed

by Proposition 8 are satisfied.

Typing our running example P from Figure 12, we obtain the annotated type graph

T [a] depicted in Figure 14(b). We draw an arrow from node v1 to node v2 if and only

if (v1, v2) is an element of a. Furthermore, we assume that Sec = {1}, that is, the first

external node is secret and all others are public. Since there is no arrow originating in

the first external node, T [a] satisfies Y , and therefore no secrecy violations will ever take

place.

6.3. Modelling Petri nets

We will now show another application for annotated hypergraphs by modelling Petri nets.

A Petri net can easily be represented by a hypergraph H (compare with Kreowski (1980)

and Löwe et al. (1993)): nodes are places and edges are transitions. We first give a

semantics for high-level-like nets, where every place is labelled with a monoid element,

where the monoid Mon could, for example, be the set of all multi-sets over certain

elements. By using the natural numbers as a monoid, we obtain standard P/T-nets.

Since we do not distinguish source and target nodes a priori, we partition the nodes of

an edge into sources and targets with the labelling function. If e is a transition (edge),

l(e) = (s, t, a1 . . . an) ∈ lN× lN×Mons+t with s+ t = ar(e) where s is the number of sources

(the first s nodes) and t (the last t nodes) is the number of targets. The tuple (a1, . . . , an) of

monoid elements indicates which tokens are removed from the sources and which tokens

are placed into the targets.

The placement of tokens is given by annotating a hypergraph H with the annotation

functor B defined in Example (2) after Definition 6, that is, the set of nodes is mapped

to a commutative monoid Mon. We demand that Mon is cancellative (∀ a, b, c ∈ Mon :

(a + b = a + c ⇒ b = c)), since it seems natural that if tokens are added and taken

away afterwards, this should result in the original number of tokens being present at a

place.

Inductive Definition of Petri Nets: A Petri net N is either of the form

[(s, t, a1 . . . an)]s+t[z] where (a1, . . . , an) ∈ Mons+t and z ∈ B([(s, t, a1 . . . an)]s+t) or⊗n
i=1(Ni, ζi) with adequate discrete morphisms ζi, where the Ni are again Petri nets.

Semantics of Petri Nets: A single transition fires if all its source nodes are labelled with

appropriate tokens. And if one transition fires, the entire net is changed accordingly. So

the reduction relation =⇒ is closed under graph construction and generated by the rule

T [z] =⇒ T [z′] where T = [(s, t, a1 . . . an)]s+t is a transition, z(χT) + z′(χT) = (a1, . . . , an),

z(bχT ci) = 0 if s+ 1 6 i 6 s+ t and z′(bχT ci) = 0 if 1 6 i 6 s.
If we use the natural numbers as monoid and set (a1, . . . , an) = (1, . . . , 1) for every

transition, we obtain exactly the standard P/T-nets. Note that all cases where the places

of a firing transition contain more than one token are obtained by the closure under

graph construction. We can always add extra tokens by concatenating the transition with

a discrete graph whose nodes are labelled by positive integers.

Although we also use monoids to describe Petri nets, they play an entirely different

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 173

role from that in Meseguer and Montanari (1990). There, entire Petri nets are given

a monoid structure, whereas in our case, monoids are just used to represent sets of

tokens.

7. Conclusion

We have presented a method for inductively constructing hypergraphs out of smaller

components. The basic units are single edges. Together with a concept for the inductive

annotation of hypergraphs, this can be used to define and reason about concurrent

systems, whose operational semantics can often be specified by graph transformations in

a natural way.

In Section 3.1 we compared our approach to graph expressions (Bauderon and Courcelle

1987), which are also a method for the inductive definition of hypergraphs. Since we need

to define morphisms between graphs, and since in the proofs we depend on the universal

property provided by a colimit, we have chosen to base our construction operator on

colimits rather than on an equational theory.

So this approach is closely connected to the double-pushout approach, which we

demonstrated in Section 3.2. We compared hypergraph construction to a double-pushout

with a production span L ← K → R where K is discrete. While a single reduction step

can always be simulated by production spans with a discrete K , this is not the case if a

truly concurrent semantics is considered. In this paper, we have only treated interleaving

semantics, which is common in many process calculi.

Another approach concerning the inductive representation of graphs was introduced in

Gadducci and Heckel (1997), with a different categorical model, and where hypergraphs

are the arrows of a category (a so-called dgs-monoidal category).

In this paper we have re-established the fact that the category of graphs can be generated

by finite colimits, starting with a single node and a single edge (Heckel 1998). In our

case this colimit takes on a specific, and, therefore, unique form, where first the discrete

hypergraphs are generated by coproducts, and then the graph construction operation is

applied as a final step.

In graph rewriting there already exists a concept of typed graph grammars (Corradini

et al. 1996), related to the type systems introduced in Sections 5 and 6.2, but nevertheless

different. In the case of typed graph grammars, a type graph is fixed a priori and there is

only one type graph for every set of productions. Graphs are considered valid only if they

can be mapped into the type graph by a graph morphism (this is similar to our proposal).

In our case, different graphs may have different type graphs, which is a good thing since

they also might have different properties. So we compute the type graphs a posteriori, and

it is a crucial point in the design of every type system to distinguish as many graphs as

possible by assigning different type graphs to them.

Future work will consist of designing further techniques for the analysis of concurrent

systems with a semantics based on graph transformation. First, a closer comparison to

existing type systems for process calculi is planned, especially type systems for the π-

calculus contain interesting concepts for typing processes (such as co- and contravariance

in subtyping) which could be transferred into the graph-based setting. Second, it would

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

B. König 174

be interesting to generalise the ideas concerning typing and static analysis presented in

this paper to arbitrary graph rewriting systems.

Acknowledgements

I would like to thank my colleagues – especially Astrid Kiehn for proofreading – and my

former advisor Jürgen Eickel. Many thanks are also due to Reiko Heckel and Wolfram

Kahl for their helpful suggestions. Finally, I would like to express my gratitude to the

anonymous referees for their valuable comments.

References

Bauderon, M. and Courcelle, B. (1987) Graph expressions and graph rewritings. Mathematical

Systems Theory 20 83–127.

Corradini, A., Montanari, U. and Rossi, F. (1996) Graph processes. Fundamenta Informaticae 26

(3/4) 241–265.

Crole, R. L. (1993) Categories for Types, Cambridge University Press.

Ehrig, H. (1979) Introduction to the algebraic theory of graphs. In: Proc. 1st International Workshop

on Graph Grammars. Springer-Verlag Lecture Notes in Computer Science 73 1–69.

Ehrig, H., Pfender, M. and Schneider, H. (1973) Graph grammars: An algebraic approach. In:

Proc. 14th IEEE Symp. on Switching and Automata Theory 167–180.

Engelfriet, J. and Vereijken, J. J. (1997) Context-free graph grammars and concatenation of graphs.

Acta Informatica 34 773–803.

Gadducci, F. and Heckel, R. (1997) An inductive view of graph transformation. In: Recent Trends

in Algebraic Development Techniques, 12th International Workshop, WADT ’97. Springer-Verlag

Lecture Notes in Computer Science 1376 223–237.

Gardner, P. (1998) Closed action calculi. Theoretical Computer Science (in association with the

conference on Mathematical Foundations in Programming Semantics).

Habel, A. (1992) Hyperedge Replacement: Grammars and Languages. Springer-Verlag Lecture

Notes in Computer Science 643.

Heckel, R. (1998) Open Graph Transformation Systems, Ph. D. thesis, Technische Universität Berlin.

König, B. (1999) Generating type systems for process graphs. In: Proc. of CONCUR ’99. Springer-

Verlag Lecture Notes in Computer Science 1664 352–367.

König, B. (2000) A graph rewriting semantics for the polyadic pi-calculus. In: Workshop on Graph

Transformation and Visual Modeling Techniques (Geneva, Switzerland), ICALP Workshops ’00,

Carleton Scientific 451–458.

Kreowski, H.-J. (1980) A comparison between Petri-nets and graph grammars. In: Noltemeier, H.

(ed.) Graphtheoretic Concepts in Computer Science. Springer-Verlag Lecture Notes in Computer

Science 100 306–317.

Löwe, M., Korff, M. and Wagner, A. (1993) An algebraic framework for the transformation of

attributed graphs. In: Sleep, M., Plasmeijer, M. and van Eekelen, M. (eds.) Term Graph Rewriting,

Wiley, Chapter 14 185–199.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer-Verlag.

Meseguer, J. and Montanari, U. (1990) Petri nets are monoids. Information and Computation 88 (2)

105–155.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

Hypergraph construction and the static analysis of concurrent systems 175

Milner, R. (1993) The polyadic π-calculus: a tutorial. In: Hamer, F. L., Brauer, W. and Schwicht-

enberg, H. (eds.) Logic and Algebra of Specification, Springer-Verlag.

Pierce, B. and Sangiorgi, D. (1993) Typing and subtyping for mobile processes. In: Proc. of LICS

‘93 376–385.

Turner, D. (1995) The Polymorphic Pi-Calculus: Theory and Implementation, Ph. D. thesis, University

of Edinburgh. (ECS-LFCS-96-345.)

Yoshida, N. (1994) Graph notation for concurrent combinators. In: Proc. of TPPP ’94. Springer-

Verlag Lecture Notes in Computer Science 907.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0960129501003486
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:38:21, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0960129501003486
http:/www.cambridge.org/core

