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Abstract

K-loops have their origin in the theory of sharply 2-transitive groups. In this

paper a proof is given that K-loops and Bruck loops are the same. For the

proof it is necessary to show that in a (left) Bruck loop the left inner mappings

L(b)L(a)L(ab)−" are automorphisms. This paper generalizes results of Glauberman[3],

Kist[8] and Kreuzer[9].

1. Introduction

In order to describe sharply 2-transitive groups, H. Karzel introduced in [4] the

notion of a neardomain (F,G, [) (cf. [16]). The crucial difficulty of a neardomain is

the additive structure (F,G), which need not be associative and no example of a

proper neardomain is known (cf. [6, 16]). To obtain partial results, W. Kerby and

H. Wefelscheid considered separately the additive structure (F,G) and called such

loops K-loops (see definition in Section 2). Since 1988 the interest in K-loops has

been revived because A. A. Ungar has found a famous physical example.

A. A. Ungar investigated the relativistic addition G of the velocities 2$
c
v

²v `2$ : rvr! c´. He showed that (2$
c
,G) is a non-associative and non-commutative

loop with characteristic automorphisms, which he calls a gyrogroup. Ungar proved

that for any two velocities a, b `2$
c

there is an automorphism δ
a,b

of (2$
c
,G), the

so-called Thomas rotation, satisfying aG (bG x)¯ (aG b)G xδ
a,b

(cf. [14, 15]), i.e.

δ
a,b

is a left inner mapping of the loop. H. Wefelscheid recognized then that (2$
c
,G)

is a K-loop.

At first it was discovered by G. Kist that there is a connection between K-loops

and Bruck loops [8, p. 27]. G. Kist remarks, that already from results of G.

Glauberman [3] one can deduce that every finite Bruck loop of odd order is a K-loop.

As a generalization it is proved in [9, theorem 1] that every Bruck loop with no

element of order 2 is a K-loop.

In this note we prove that K-loops and Bruck loops are the same. For that mainly

we have to show that the left inner mappings of a (left) Bruck loop are automorphisms

of the loop, denoted as axiom (I). (In general the right inner mappings of a left Bruck

loop are not automorphisms, hence Bruck loops are clearly not A-loops in the sense

of Bruck and Paige[2], but left A-loops by definition 1±1±4 of Nagy and

Strambach[11], and in particular homogenous loops.) In Sections 1 and 2, we give

the definitions and some easy results, partly known, which we need in Section 3. The

main results are Theorems 3±1 and 3±3.
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In this paper, unlike other papers on K-loops [5, 9, 10] we use ‘[ ’ instead of ‘ ’

for the binary operation, as is customary for loops.

2. Left inner mappings

Let (K, [) be a loop with the identity element 1, and for x `K let xλ, xρ `K be the

unique elements with xλx¯ xxρ ¯ 1. If xλ ¯ xρ, then x−"¯ xλ ¯ xρ is the inverse of x.

Let Nµ ¯²b `K : a[ bc¯ ab[c for all a, c `K´ denote the middle nucleus. For any fixed

element a `K, the map
L(a) : KUK ; xU xL(a)v a[x (2±1)

is called left translation. The group Mλ v©L(x) : x `Kª of all permutations of K which

is generated by all left translations (and their inverses) is called the left multiplication

group of (K, [).

Let Kv ²L(x) : x `K´ be the subset of all left translations of Mλ.

We recall that the middle nucleus Nµ of a loop is a subgroup (cf. [12, theorem

(I±3±4)]). Clearly, b `Nµ if and only if ab[c¯ cL(ab)¯ a[bc¯ cL(b)L(a), i.e. if and only

if L(ab)¯L(b)L(a) for every a `K. Assume L(b)L(a)¯L(x) `K, then 1L(b)L(a)¯
ab¯ 1L(x)¯ x, i.e. x¯ ab. Hence

b `Nµ if and only if L(b)L(a) `K for every a `K. (2±2)

We call the permutations of Av ²α `Mλ : 1α¯ 1´ the left inner mappings of (K, [).

L 2±1. Mλ ¯AK and Mλ ¯KA are exact decompositions, i.e. for every µ `Mλ there

are unique elements L(a),L(b) `K,α,β `A with µ¯αL(a)¯L(b)β and we have a¯
bρµ#.

Proof. For µ `Mλ let a¯ 1µ, s¯ 1µ−" `K, i.e. sµ¯ 1. Set b¯ sλ, then µ¯
µL(a)−"L(a)¯L(b)L(b)−"µ with α¯µL(a)−",β¯L(b)−"µ `A, since 1µL(a)−"¯
aL(a)−"¯ 1 and sL(sλ)¯ 1, hence 1L(b)−"µ¯ 1L(sλ)−"µ¯ sµ¯ 1. Clearly bρµ#¯
sµµ¯ 1µ−"µµ¯ 1µ¯ a.

Assume µ¯αL(a)¯α«L(a«), then α«−"α¯L(a«)L(a)−" and 1¯ 1L(a«)L(a)−", i.e.

1L(a)¯ a¯ a«¯ 1L(a«) and α«¯α. Hence a `L, α `A and also b `L,β `A are uniquely

determined.

For fixed elements a, b `K let

L(a, b)vL(a)L(b)L(ba)−". (2±3)

In papers on K-loops the notation δ
b,a

is used instead of L(a, b) due to the origin of

K-loops as the additive structure of neardomains. In this paper we prefer to write

L(a, b) rather than δ
b,a

to match up papers on Bol and Bruck loops.

Let A«v©L(x, y) : x, y `Kª be the subgroup of Mλ which is generated by all

permutations L(x, y). By [7, proposition 1] we get (cf. also [1, IV, lemma 1±2] and

[12, I±5±2]) :

L 2±2. A¯©L(x, y) : x, y `Kª.

Clearly definition (2±3) implies for a, b, x `K :

a[bx¯ ab[xL(b, a), (2±4)

L(1, a)¯L(a, 1)¯ id. (2±5)
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L 2±3. In a loop (K, [) the following are equivalent:

(i) L(a, aλ)¯ id,

(ii) L(aλ)¯L(a)−" (left inverse property).

Proof. Obviously L(a, aλ)¯L(a)L(aλ)L(1)−"¯ id if and only if L(aλ)¯L(a)−".

We recall that the left inverse property implies aλ ¯ aρ ¯ a−".

A loop (K, [) is called a left A-loop if (I), a left K-loop if (I), (II) and (III), a left

Bol loop if (B), and a left Bruck loop if (B) and (III) are satisfied:

(I) For all x, y `K,L(x, y) is an automorphism of (K, [).

(II) L(x, y)¯L(xy, y) for all x, y `K.

(III) (Automorphic inverse property) (ab)−"¯ a−"b−" for all a, b `K.

(B) (left Bol identity) a(b[ac)¯ (a[ba) c for all a, b, c `K.

In the following we omit the word ‘ left ’ and refer by the phrase Bol (Bruck, K-) loop

always to left Bol (Bruck, K-) loops.

By (II) and (2±5), L(aλ, a)¯L(aλa, a)¯L(1, a)¯ id, hence by (2±4) a¯ a[aλa¯
aaλ[aL(aλ, a)¯ aaλ[a. We obtain (cf. [10, (2±10)]) aaλ ¯ 1, L(a, aλ)¯L(ααλ, aλ)¯
L(1, aλ)¯ id and id¯L(1, a)¯L(a, a), i.e. by Lemma 2±3, aλ[ax¯ x and a[ax¯
a#[x, properties which are well known for Bol loops (cf. [1, 12, 13]). Hence:

L 2±4. In loops with (II), in K-loops and Bol loops the left inverse property

aλ[ac¯ c, and the left alternative law a[ac¯ a#c is satisfied.

L 2±5. Let (K, [) be a loop. Then the following are equivalent:

(i) (B),

(ii) L(ba, a)¯L(a, b)−" for all a, b `K,

(iii) L(a)KL(a)ZK for all a `K.

Proof. By (2±4) a(b[ac)¯ a(ba[cL(a, b))¯ (a[ba) cL(a, b)L(ba, a), hence a(b[ac)¯
(a[ba) c for every c `K, if and only if L(a, b)L(ba, a)¯ id. Since a(b[ac)¯ cL(a)

L(b) (La) and (a[ba) c¯ cL(a[ba), (B) is equivalent to L(a)L(b)L(a)¯L(a[ba) `K for

every a, b `K. Since 1L(a)L(b)L(a)¯ a[ba,L(a)L(b)L(a) `K implies L(a)L(b)L(a)¯
L(a[ba).

By [9, (1±2)], [10, (2±12)] :

L 2±6. Every K-loop satisfies the Bol identity and is a Bruck loop.

3. Left inner automorphisms

Now we describe properties of the loop (K, [) in the left multiplication group

Mλ ¯KA.

T 3±1. An inner mapping α `A is an automorphism of (K, [) if and only if

α−"KαZK.

Proof. Let x, y `K and α `A. Then (xy)α¯ xα[yα is equivalent to xy¯
(xα[yα)α−", hence

L(x)¯αL(xα)α−", i.e. α−"L(x)α¯L(xα) `K, (3±1)
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if and only if α is an isomorphism. Assume α−"L(x)α¯L(x«) `K for some x« `K,

then 1¯ 1α−" and 1α−"L(x)α¯ xα¯ 1L(x«)¯ x« and (3±1) is satisfied, i.e. α is an

automorphism.

T 3±2. Let (K, [) be a Bol loop and let a, b `K. Then the inner mapping

L(b, a) is an automorphism of (K, [) if and only if

ab[(a−"b−") `Nµ, (3±2)

where Nµ denotes the middle nucleus.

Proof. For L(x) `K let γvL(b, a)L(x)L(b, a)−"¯L(b)L(a)L(ab)−"L(x)L(ab)L(a)−"

L(b)−" `Mλ. By Theorem 3±1, L(b, a) is an automorphism if and only if γ `K, and by

Lemma 2±5 γ `K if and only if L(ab)−"L(a)L(b)γL(b)L(a)L(ab)−" `K or

L(ab)−"L(a)L(b)#L(a)L(ab)−"L(x) `K. (3±3)

For z `K, the Bol identity implies

zL(ab)−"L(a)L(b)#L(a)L(ab)−"¯ (ab)−"[(a²b#[a[(ab)−" z]´)

¯
(B)

(ab)−"[[(a[b#a)[(ab)−" z]¯
(B)

[(ab)−"[(a[b#a) (ab)−"] z

¯ zL((ab)−"[(a[b#a) (ab)−")

and by (2±2) it follows that (3±3) is valid if and only if :

sv (ab)−"[(a[b#a) (ab)−" `Nµ. (3±4)

With (B) and Lemma 2±4, (a[b#a)[a−"b−"¯ a[b#(a[a−"b−")¯ ab. Hence it follows 1¯
(ab)−"[²(a[b#a)[[(ab)−"[(ab) (a−"b−")]´¯ [(ab)−"[(a[b#a) (ab)−"][(ab) (a−"b−"), i.e. s−"¯
ab[(a−"b−"). Because Nµ is a subgroup of K, s `Nµ if and only if s−" `Nµ. We summarize

that L(b, a) is an automorphism if and only if ab[(a−"b−") `Nµ.

Since A¯©L(a, b) : a, b `Kª, Theorem 3±2 implies :

C 3±3. In every Bruck loop (K, [), A is a group of automorphisms of (K, [),

i.e. the axiom (I) is satisfied and (K, [) is a left A-loop.

T 3±4. Bruck loop and K-loops are the same.

Proof. By Lemma 2±6 every K-loop is a Bruck loop. By [10, (2±12)] in a loop with

(I), (III) and the (left) inverse property, (II) and (B) are equivalent, hence in a loop

with (I), (III) and (B), (II) is satisfied, i.e. by Theorem 3±2, every Bruck loop is a

K-loop.

The question whether the axioms (II) and (III) also imply (I) is answered to the

negative by the following:

Example 3±5. Let (R,, [) be an associative and commutative ring with zero

element O, with x[x¯O¯ xx for every x `R and with four elements p, q, r, s

satisfying pqrs1O. (For instance for n `. with n& 4 let Rv: #
n
−"

#
be the vector

space over :
#
with dimension 2n®1. We write the vectors of a basis B in the following

way:

B¯²[k
"
, k

#
,… , k

n
] : k

i
` ²0, 1´ for i ` ²1,… ,n´ and [k

"
,… , k

n
]1 [0,… , 0]´.
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Let O be the zero vector. We define by b[O¯O[b for every b `B and

[k
"
, k

#
,… , k

n
][[l

"
, l

#
,… , l

n
]v (O if k

i
l

i
¯ 2 for some i ` ²1,… ,n´

[k
"
l

"
, k

#
l

#
,… , k

n
l

n
] else

an associative and commutative multiplication on B and extend this multiplication

to a distributive multiplication of R. Then obviously x[x¯O and

[1, 0, 0, 0,… ][[0, 1, 0, 0,… ][[0, 0, 1, 0,… ][[0, 0, 0, 1,… ]¯ [1, 1, 1, 1,… ]1O).

Now we define on KvR¬R the following operation:

G : K¬KUK, (a
"
, a

#
)G (b

"
, b

#
)¯ (a

"
b

"
a

"
a
#
b
"
b
#
, a

#
b

#
). (3±6)

Then for a¯ (a
"
, a

#
), b¯ (b

"
, b

#
) `K, (x

"
, x

#
)¯ (a

"
b

"
a

"
b
"
a
#
b
#
, a

#
b

#
) is the unique

solution of the equation (a
"
, a

#
)G (x

"
, x

#
)¯ (b

"
, b

#
) and (O,O) is the zero element, i.e.

(K,G) is a commutative loop. Every element of Kc²(O,O)´ has order 2, hence (K,G)

satisfies (III). We compute that

(x
"
, x

#
)L(b, a)¯ (x

"
a

"
a
#
(b

"
x
#
b

#
x
"
)(a

"
b
#
a

#
b
"
) x

"
x
#
, x

#
) (3±7)

and L(b, a)¯L(bG a, a), i.e. (II) is satisfied. But for the elements p, q, r, s `R with

pqrs1O we have: (p,O)G ²(q, r)G [(p,O)G (O, s)]´¯ (qpqrs, rs)1 (q, rs)¯
²(p,O)G [(q, r)G (p,O)]´G (O, s), i.e. the Bol identity (B) is not satisfied and by

Lemma 2±6 neither is (I).

Added in proof. The result of Corollary 3±3 can also be found with different proofs

in [17, corollary 3±12±1] and [18, corollary 5±2].
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