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Summary

Dry matter grain yield per plot from three genetically homogeneous single-cross maize hybrids were analysed to
investigate whether environmental variance depends on genotype. Three genotypes were tested at 20 locations in
3 years. The data were analysed using a non-parametric approach and fully parametric Bayesian models. Both
analyses reveal effects of genotype on environmental variation. The Bayesian analyses indicate that genotype by
location–year interactions are the most important effects acting at the level of the mean. The best-fitting
Bayesian model is one postulating genotype by location–year interactions acting on the mean and main effects of
genotype and of location–year on the variance. Despite the detection of genotypic effects acting on the variance,
location–year effects constitute the biggest relative source of variance heterogeneity.

1. Introduction

Phenotypic plasticity, developmental homoeostasis
and canalization are concepts related to environmen-
tal sensitivity and are importantly linked to mechan-
isms of adaptation and evolution. Environmental
sensitivity can be defined either as mean phenotypic
changes of a given genotype in different environments
or as differences in the residual variance of different
genotypes in the same environment (Jinks & Pooni,
1988). The first definition gives rise to genotype by
environment interactions acting at the level of the
mean, a topic that is not the focus of the present work.

The subject of this study is related to the second
definition, which gives rise to genetically structured
heterogeneous variance models. In a given macro-
environment, for a particular genotype a certain
phenotypic value is expected. Typically, the observed
phenotype differs from its expectation, and this devi-
ation, which is the focus of the modelling exercise,
may include a genetic component. This model has
interesting implications in animal and plant im-
provement and in evolutionary biology. From a

breeding point of view, it offers the possibility to de-
crease variation by selection, leading to more homo-
geneous products. Particularly in plant breeding this
model is used to study stability of genotypes (Cotes
et al., 2006). In evolutionary biology, a fundamental
problem is to understand the forces that maintain
phenotypic variation. Most of the models assume that
environmental variance is constant and explain the
observed levels of variation by invoking a balance
between a gain of genetic variance by mutation and a
loss by different forms of selection and drift. Recently,
Zhang & Hill (2005) discussed models where en-
vironmental variance is partly under genetic control
and study conditions for its maintenance under sta-
bilizing selection. Considerable experimental support
for the presence of genetic factors affecting environ-
mental variance has been provided in recent years.
The majority of this evidence stems from analyses of
experimental or field data fitting models of different
levels of complexity that account for genetic variance
in environmental variance. The topic has been com-
prehensibly reviewed by Hill & Mulder (2010).

Genotype by environment interaction and hetero-
geneity of variance are topics that received consider-
able attention in the plant breeding literature (Piepho,
1999; Cotes et al., 2006), partly because yield trials
are conducted in multiple environments and years.
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Recently, Edwards & Jannink (2006) used a Bayesian
hierarchical model to study whether heterogeneity of
residual and genotype by interaction variances could
be assigned to genetic and genotyperenvironment
effects. A similar model was implemented by Sorensen
& Waagepetersen (2003) to investigate genetic hetero-
geneity of environmental variance for litter size in
pigs. Inferences from such highly complex and para-
meterized models can be artefacts of the lack of nor-
mality of the data (Yang et al., 2011).

The objective of the present work is to use relatively
simple statistical models to test whether environmen-
tal variation of dry matter grain yield in maize is
heterogeneous, and whether this heterogeneity can be
specifically attributed to genotypic effects. The focus
is on the general environmental variance (Falconer &
Mackay, 1996) which is referred here simply as en-
vironmental variance. Part of the present data, con-
sisting of replicates of the same genotype over a given
environment, are particularly well suited to investi-
gate this problem. The variance between observations
within a genotype reflects environmental variation,
and a different variance across genotypes indicates
that a genetic component operates at the level of the
environmental variance. This type of evidence can be
compelling under experimentally controlled condi-
tions and the analysis is in principle straightforward:
it requires comparing sample variances across geno-
types. Such an analysis, using abdominal and sterno-
pleural bristle number in Drosophila was reported by
Mackay & Lyman (2005). The present data include
genotypes tested in multiple locations; this also allows
studying the contribution to variance heterogeneity
due to location–years and due to their interaction
with genotype.

The statistical evidence for a dependence of en-
vironmental variance on genotype is produced using
two different types of analysis. The first is based
on a non-parametric approach and the second on a
parametric Bayesian approach. The latter allows, in
principle, a formal analysis accounting for and quan-
tifying all known sources of variation. Flexibility of
inferences comes at the cost of complexity and model
dependence.

2. Data and preliminary calculations

The data consist of dry matter grain yield per plot (in
kg, hereinafter referred to as yield, units omitted in
the rest of the text for simplicity) from trials of a
German Maize Breeding Programme. Plants were
grown in 9 m2 plots (1.5 mr6 m), 2 rows per plot. At
each location, the same number of seeds were planted
per plot producing 100 plants per plot, with very little
variation in this number across plots. Three geneti-
cally homogeneous single-cross maize hybrids (all
individuals from each of the three genotypes were

genetically identical) were tested at 20 locations in 3
years. There were 27 location–year subclasses and 61
genotype–location–year subclasses, with a number of
records (plots) ranging from 21 to 226 and a median
of 64. Genotype 1 was represented in 26 of the 61
subclasses, genotype 2 in 19 and genotype 3 in 16.
Preliminary analyses led to the elimination of extreme
observations that had marked effects on inferences
and after the editing process the number of observa-
tions for genotypes 1, 2 and 3 is 2046, 1595 and 1183,
respectively, resulting in a total of 4824 records. The
20 locations represent a broad range of agroecological
conditions in Germany.

The raw means yi, i=1, 2, 3, for genotypes 1, 2 and
3 are 9.17, 9.92 and 9.85, respectively. The corre-
sponding sample variances S2

i=
1

nix1
gi=ni

j=1 (yijx yi)
2 are

2.36, 2.48 and 2.87, where ni is the number of ob-
servations in genotype i. With values of ni larger than
1000 as in the present data, simple F-tests reveal sig-
nificant differences at a level smaller than 0.01%, and
indicate that the hypothesis of equality of environ-
mental variances across genotypes must be rejected.

This naive analysis is deficient in two ways. Firstly,
the presence of location–years violate the assumption
of common mean among observations of the same
genotype. The second is the assumption of normality
of residuals (discussed further below and illustrated in
Fig. 1). The two approaches implemented here, that
differ in the degree of parameterization and formality,
attempt to overcome these shortcomings.

3. Non-parametric analysis

A first approach is to test for variance heterogeneity
among the 61 genotype–location–year subclasses by
means of Bartlett’s statistic (Bartlett, 1937). Along the
same lines as in Ordas et al. (2008), the sampling dis-
tribution of Bartlett’s statistic under the null hypoth-
esis of variance homogeneity is approximated using
10 000 Monte Carlo replications, where in each, the
indexes for the subclasses labelling the 4824 records
are permuted and the 61 sample variances are ob-
tained from the permuted records.

Repeating the exercise using as input the sample
variances of the three genotypes, or the 27 location–
year subclasses would lead to tests of heterogeneity
associated with genotypes or location–years that are
difficult to interpret, due to the very unbalanced
structure of the data. Instead, heterogeneity due to
genotype was studied using five independent subsets
of the original 4824 yield data. The five subsets cor-
respond to five location–year classes where the sam-
pling variances of the three genotypes are computed
using a minimum of 110 records per genotype
(Table 2). This allows investigating the presence of
genetic variance heterogeneity without the noise con-
tributed by location–year effects.
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4. Parametric Bayesian analysis

The other analysis is based on fitting a fully parametric
Bayesian normal linear model with heterogeneous
variance, to transformed data using the Box–Cox
non-linear transformation (Box & Cox, 1964). The
data consist of the original 4824 yield records, rather
than the 61 sample variances used previously. The
non-linear transformation parameter is first estimated
using maximum likelihood and in a second step, the
Bayesian model is implemented, conditional on this
estimate. The transformation is used because a simple
least squares analysis (using genotype–location–year
location parameters) of the 4824 residuals revealed
that the sample skewness and kurtosis are equal to
x1.16 and 2.92, respectively. This signals the pres-
ence of asymmetry in the data but kurtosis is not de-
tected. Skewness can lead to erroneous inferences,
especially in the present work where the focus of in-
ference is the variance.

(i) Likelihoods

The general form of the six Bayesian models fitted to
the data is (see Table 1 for the detailed description of
the six models)

yjb, (s2
i,M)i=1, ..., n � N(Xb, diag(s2

i,M, i=1, . . . , n)),

(1)

where the vector of fixed effects b contains either
main effects of genotype and of location–year, or
interaction effects of genotype by location–year. The
term si,M

2 is the conditional or residual variance for
the ith observation under the Mth model, and X is an
observed incidence matrix. The residual variance is
interpreted as the environmental variance.

Of the six models, two assume that the residual
variance is homogeneous (Models ME and INT,
with main effects and interaction effects, respectively,
acting on the mean). In this case,

s2
i,M= exp(m*),

where m* is an unknown scalar parameter in the
real line. The term exp(m*) can be interpreted as
an unobserved average environmental variance. The
remaining four models assume heterogeneity of
the residual variance and the general model for this
variance is

s2
i,M= exp(m*+wik b*):

Here wik is the ith row in the observed incidence
matrix W and b* is a parameter vector with the same
classification variables as in b. The data vector y is of
length n=4824. All the models assume normality
of the unobserved conditional distribution of the
observations (1).

ME ME–ME INT–ME INT–INT

Fig. 1. Histograms of Monte Carlo estimates of the distribution of the coefficient of skewness of residuals (discrepancy
measure (4)) for the four chosen models fitted to untransformed (top) and to transformed (bottom) data (see subsection
Likelihoods, for definition of the model labels). A distributional mean of zero indicates absence of skewness.

The genetics of environmental variation 115

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0016672312000304
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:28:11, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0016672312000304
http:/www.cambridge.org/core


The distribution of the fitted residuals from all
the models displayed left skewness, violating the
assumption of normality in (1). Therefore, the six
models were also fitted to transformed data using
the Box–Cox non-linear transformation parameter l.
The general form of the models under the transform-
ation is

y(l)jb, (s2
i,M)i=1, ..., n � N(Xb, diag(s2

i,M, i=1, . . . , n)),

y(l)= y(l)i

n o
(2)

and yi
(l) is defined as (Box & Cox, 1964)

y(l)=
ylx1
l

(ll0),
log y (l=0),

�
(3)

for some unobserved transformation parameter l.
The transformation parameter l is introduced to in-
duce normality of the conditional distribution and
linearity of the conditional expectation, but not to
achieve constant variance.

The Bayesian analyses are based on fitting the
above linear models, and slight variations of them,
conditional on either l=1 (corresponding to an
analysis on the original scale) or on the maximum
likelihood estimate of l (corresponding to an analysis
under the transformed scale). Given l, posterior dis-
tributions have known closed forms for all the models
but due to availability of software we choose a
Markov chain Monte Carlo (McMC) implemen-
tation. This has the advantage of providing a flexible
environment for reporting inferences. Details of the
Bayesian models and their McMC implementation
have been reported in Yang et al. (2011).

(ii) Bayesian measures of model comparison and
model fit

The models are compared using the pseudo log-
marginal probability of the data, which is a com-
monly used quantity to compare the relative overall

fit of a model (Gelfand, 1996). A larger value of the
log-marginal probability indicates a better overall fit.

Departure from normality of the conditional dis-
tribution of the data is studied by means of posterior
predictive model checking (Gelman et al., 2004). A
Monte Carlo estimate of the posterior distribution of
the sample coefficient of skewness is computed under
l=1 or under l=l̂, where l̂ is the maximum likeli-
hood estimate of l. The idea is to check whether
residuals under l=1 or under l=l̂, satisfy the as-
sumption of normality in (1) using the discrepancy
measure

T(z, h(j))=
1
n
gn

i=1z
3
i

1
n
gn

i=1z
2
ix

1
n
gn

i=1zi
� �2� �3=2

, (4)

where

zi=
y(l)i xxik b(j)

exp m*+wik b*
(j)

� �1=2
and h(j)k=(b(j)k, m*(j), b*(j)k) represent draws of the
parameter vectors of a given model at the jth McMC
iteration. Depending on whether the null model or the
transformed model is under scrutiny, l=1 or l is
equal to its maximum likelihood estimate. A graphi-
cal display involves plotting histograms of T(z, h(j))
for both models.

The discrepancy measure T(z, h(j)) represents the jth
draw from the estimate of the posterior distribution
of the sample skewness. The plot constructed using
all the draws, displays the Monte Carlo estimate of
the posterior distribution of the coefficient of skew-
ness of the conditional distribution (1). Under nor-
mality the posterior distribution of the coefficient of
skewness should be centred around a posterior mean
of zero.

5. Results of the non-parametric analyses

The non-parametric analysis of the 61 sampling var-
iances corresponding to the 61 genotype–location–
year interaction subclasses, based on the Monte Carlo
estimate of the sampling distribution of Bartlett’s
statistic, resulted in a p-value of the order of 10x5

which provides strong evidence against the null
hypothesis of variance homogeneity.

To concentrate specifically on the effects of geno-
type on the variance free from the effects of location–
years, the non-parametric analysis of the sampling
variances was also performed within the five location–
years where the three genotypes are represented with a
minimum of 110 records per genotype. This resulted
in p-values equal to 0.001, 0.0003, 0.25, 0.27 and 0.90
(ordered from left to right matching the order of the
five locations in Table 2), revealing significant effects
of genotype in the first two location–years.

Table 1. Description of the six models

Model Effects on mean Effects on log-variance

ME G+LY Homogeneous variance
INT GLY Homogeneous variance
ME–ME G+LY G+LY
ME–INT G+LY GLY
INT–ME GLY G+LY
INT–INT GLY GLY

ME, main effect parameters ; INT, interaction parameters ;
G, main effect of genotypes (3 levels) ; LY, main effects of
location–years (27 levels) ; GLY, interaction of genotype by
location–years (61 levels).
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To give an idea of the size of effects, Table 2 shows
average yield, sample variance and number of records
per genotype, for the five location–year classes,
following the same order as the p-values above. The
differences in sample variance within year–locations
are small, relative to differences between year–
locations (there are many locations with less than 100
records per genotype, with sample variance well over
1.3). The figures do not show association between
mean yield and variance.

6. Results of the Bayesian analysis

(i) The need for transforming the data

Maximum likelihood estimates of the transformation
parameter l for the six models are as follows. Model
ME : 2.5, model INT : 2.5, modelME–ME : 1.8, model
ME–INT : 1.9, model INT–ME : 1.8, model INT–
INT : 1.8. Under variance homogeneity (models ME
and INT) a larger value of l is necessary to induce
normality of residuals.

Four out of the six models were chosen to illustrate
the effect of the transformation on the degree of
skewness of the data (results for models INT andME,
and for models ME–INT and INT–INT, are very
similar). Figure 1, top panel, shows posterior dis-
tributions of the coefficient of skewness (4) from the
four chosen models fitted to untransformed data. The
bottom panel shows the same distributions obtained
from analyses of the transformed data. The first figure
of the top panel indicates very severe left skewness
under the ME model (the distribution of the co-
efficient of skewness has a posterior mean less than
zero), which is only partly accommodated by fitting
either theME–MEmodel (second figure in top panel),
or other heterogeneous variance models. The figures
in the bottom panel show that the Monte Carlo esti-
mate of the posterior distributions of the coefficient
of skewness from analyses of transformed data are
symmetrically distributed around a mean of zero,
indicating absence of skewness. This provides strong
evidence for the need of transforming the data.

(ii) The effect of genotype on environmental variance:
analysis of the complete data

Table 3 shows the measure of global fit of the models
when data are analysed in the original metric or in the

transformed scale. The figures indicate that in all
cases, the quality of fit improves when the analysis is
performed on the transformed scale, and when vari-
ance heterogeneity is accounted for. The best fitting
model is INT–ME followed closely by INT–INT. Two
other models with interaction effects acting on the
mean were also fitted, one with only location–year
effects acting on the variance, and the other with
only genotype effects. The differences in log-marginal
probabilities of the data between these models and
model INT–ME are x32 and x266, respectively (in
favour of the INT–ME model). The model with only
location–year effects acting on the variance produced
a considerably better fit than the one with only geno-
type effects, and both were outperformed by model
INT–ME. This indicates that the effect of genotype
should not be ignored as a source of environmental
variance heterogeneity. However, the major source of
environmental variance heterogeneity in these data is
due to location–year effects.

Posterior means of the ratio of variances of differ-
ent genotypes Gi, i=1, 2, 3 (95% posterior intervals

Table 2. Average yield (Ȳ), sample variance (S2) and number of records (n) per genotype (G, one row per
genotype), for the five year–location classes where the number of records per genotype is greater than 110

G Ȳ S2 n Ȳ S2 n Ȳ S2 n Ȳ S2 n Ȳ S2 n

1 8.6 1.83 226 10.5 0.47 144 9.6 0.57 111 10.1 0.40 132 8.4 0.34 114
2 10.0 1.29 219 11.4 0.37 140 11.0 0.43 112 11.0 0.35 131 10.1 0.34 111
3 9.3 1.18 226 11.5 0.26 144 10.8 0.59 111 10.6 0.46 131 9.8 0.36 113

Table 3. Pseudo log-marginal probability of the data
for the six models using untransformed data (l=1)
and data analysed at l=l̂, the ML of l. The figure
for a particular model is expressed as the log-marginal
probability for model ME under l=1 minus the log-
marginal probability for the particular model (a more
extreme negative value indicates a better overall fit)

ME INT
ME–
ME

ME–
INT

INT–
ME

INT–
INT

l=1 0.0 x125 x865 x859 x1017 x1011
l=l̂ x576 x704 x919 x920 x1072 x1071

Table 4. Ratios of environmental variance involving
the three genotypic classes (95% posterior intervals in
parentheses) under model INT–ME for analyses in the
untransformed (l=1) and transformed (l=l̂) scales

exp(G2xG1) exp(G2xG3) exp(G3xG1)

l=1 0.83 (0.74; 0.91) 0.90 (0.80; 1.00) 0.92 (0.82; 01.02)
l=l̂ 0.93 (0.85; 0.99) 0.94 (0.86; 1.00) 1.00 (0.90; 01.12)
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in parentheses) obtained under the best fitting model,
(INT–ME) are shown in Table 4. The analysis in the
transformed scale provides support for an effect of
genotype on environmental variance (the value of 1 is
at the extreme of the posterior interval in the first two
cases). As an illustration, the table also shows that an
analysis in the original scale (l=1), without correct-
ing for skewness, can lead to different results.

(iii) The effect of genotype on environmental
variance: analysis within location–years

In order to avoid the overwhelming effect of location–
years on variance heterogeneity, five independent
analyses were undertaken within the same five
location–years in which the number of records per
genotype is greater than 110 (see also Table 2). In
agreement with the previous two approaches, no
support for genetic heterogeneity was detected from
the three right-most locations in the table and results
are presented in Table 5 for the first two, labelled
location–year 1 and 2, respectively. The models fitted
are labelled G-HOM, with genotype effects on the
mean and homogeneous environmental variance,
and G-HET with genotype effects on both mean and
variance. For location–year 1, the maximum likeli-
hood estimates of l using both models is equal to 2.6.
For location–year 2, the ML estimate of l is 2.4 under
G-HOM and 1.5 under G-HET. For both models, the
distribution of residuals in the original scale is left-
skewed and symmetry is restored incorporating the
transformation parameter in the analysis (not shown).

Table 5 shows the measure of global fit for data
analysed in the original and transformed scales. For
both location–years, the genetically heterogeneous
variance model G-HET is favoured under both scales.

Table 6 shows posterior means and 95% posterior
intervals of the ratios of variances for the 3 genotypic
classes, for the two location–years, with data analysed
in the transformed scale under model G-HET. There

is a very strong evidence for genetic variance hetero-
geneity in both locations (the value of 1 is excluded
from the 95% posterior interval in two out of three
cases in both locations). The evidence for genetic
variance heterogeneity is stronger in location–year 2,
where relative differences of the order of 50% are re-
ported. In these two locations there is no evidence of
location–year by genotype interaction at the level of
the variance.

7. Discussion

The objective of this work was to provide exper-
imental support for the presence of genetic factors
operating at the level of the environmental variance.
The data available seem at first sight well suited to
study this problem, allowing an analysis free from the
assumptions inherent of complex models. However,
despite the availability of replicated individuals of the
same genotype, the absence of a well-defined homo-
geneous environment created the need to account for
a non-genetic source of variation, that could act at the
level of mean and variance, and could interact with
genotype. This partly interfered with the goal of
simplicity, and was dealt with using a non-parametric
approach and more formally, applying a Bayesian
analysis incorporating a Box–Cox transformation
parameter to induce normality. The latter is particu-
larly important because inferences on variances based
on normality assumptions can be misleading if the
data display skewness, as shown by Yang et al. (2011).

The non-parametric analysis of the 61 genotype–
location–year subclasses led to a rejection of the null
hypothesis of equality of variances. To study hetero-
geneity due to genotypic effects only, analyses were
carried out within the largest five location–year clas-
ses where the number of records per genotype exceed
110. Out of five such subsets of data marked differ-
ences in residual variance between genotypes were
detected in two out of the five location–years. The
same conclusion was reached using the Bayesian
analyses. The latter allowed a proper quantification
of the effect of genotypes on variance, leading to
estimates of differences of the order of 30 and 50%
in environmental variance between genotypes. The

Table 5. Pseudo log-marginal probability of the data
for models G-HOM and G-HET fitted to subsets of
data from location–years 1 and 2, in the original scale
(l=1) and in the transformed scale (l=l̂). The
log-marginal probabilities for each model within each
location–year are expressed as differences from model
G-HOM under l=1 minus the log-marginal
probability for the particular model (comparisons are
valid within location–years and a more extreme
negative value indicates a better overall fit)

Location–
year

G-HOM
(l=1)

G-HOM
(l=l̂)

G-HET
(l=1)

G-HET
(l=l̂)

1 0.0 x8.9 x14.3 x17.3
2 0.0 x2.8 x4.8 x5.0

Table 6. Ratios of environmental variance involving
the three genotypic classes (95% posterior intervals in
parentheses) under model G-HET for analyses in the
transformed (l=l̂) scale. First row: location–year 1;
bottom row: location–year 2

exp(G2xG1) exp(G2xG3) exp(G3xG1)

l=l̂ 1.03 (0.77; 1.30) 1.34 (1.07; 1.70) 0.78 (0.59; 0.98)
l=l̂ 0.90 (0.62; 1.21) 1.51 (1.10; 2.05) 0.60 (0.41; 0.81)
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best-fitting Bayesian model postulates interaction of
genotype by location–year effects on the mean, and
main effects of genotype and of location–year at the
level of the environmental variance. The Bayesian
analysis also allowed establishing that in the current
data, the biggest source of variance heterogeneity is
due to location–year effects.

The analyses of dry matter grain yield in these data
indicate that differences in the effects of genotypes on
environmental variance is location–year dependent.
This result fits well with recent work in yeast, report-
ing that levels of noise in the expression of a gene
varies across environments and genetic background
(Ansel et al., 2008).

Identical number of seeds were planted per plot at
each location and germination rate is known to be
greater than 95%. Therefore, the number of plants
harvested per plot varies little across plots, and this is
expected to have a minor effect on plot yield. Any
variation between plots that may arise due to this
factor contributes to the macro-environmental vari-
ation. If variability in number of plants harvested
per plot within genotypes were to be associated with
genotype-dependent variability in germination rate,
this would contribute positively to differences in
within genotype variance between genotypes. An ap-
proximate idea of the size of this effect can be ob-
tained as follows (Hozo et al., 2005). Chebyshev’s
inequality (Mood et al., 1974) states that for a random
variable X with mean m and variance s2 following an
arbitrary distribution,

Pr xks<Xxm<ksð Þo1x
1

k2
:

Setting k=3 yields 0.89 in the right-hand side.
Therefore, the range R covers approximately 6s and
sBR/6. The average yield per plot is of the order of
10 kg, and with 100 plants per plot, the average con-
tribution to plot yield per plant is 0.1 kg. Assuming
that the minimum and maximum number of plants
per plot is 90 and 100 plants, the range in yield is 1 kg,
which results in a SD from this source equal to 1/6 kg
and a variance of around 0.03 kg2. Using the figures
of sampling variances S2 in Table 2, this only amounts
to between 2 and 6% of within genotype variability.

In conclusion, this work has provided strong ex-
perimental evidence for the presence of genetic effects
operating at the level of the residual variance of dry
matter grain yield in maize. However, for a given
genotype, its effect on the variance is environment (i.e.
location–year) specific. Further, in the present analy-
sis restricted to three genotypes, the biggest con-
tributing source of heterogeneity are location–year
effects. An assessment of the possibility of reducing
residual variance by selecting specific genotypes
would require an analysis involving a larger number
of genotypes.

We are grateful to KWS SAAT AG for providing the maize
data, and to Professor W. G. Hill for comments on an ear-
lier draft of this manuscript.
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