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ON A SEMILINEAR VARIATIONAL PROBLEM

Bernd Schmidt1

Abstract. We provide a detailed analysis of the minimizers of the functional u �→ ∫
Rn |∇u|2 +

D
∫

Rn |u|γ , γ ∈ (0, 2), subject to the constraint ‖u‖L2 = 1. This problem, e.g., describes the long-
time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear
Schrödinger equation. While existence can be proved with standard methods, we show that the usual
uniqueness results obtained with PDE-methods can be considerably simplified by additional variational
arguments. In addition, we investigate qualitative properties of the minimizers and also study their
behavior near the critical exponent 2.
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1. Introduction and statement of the main results

Consider the variational problems

I(u) = Iγ,D(u) :=
∫

Rn

|∇u|2 + D

∫
Rn

|u|γ → min (1.1)

for 0 < γ < 2, D > 0 and u in the class of admissible functions

A := {u ∈ H1(Rn) : ‖u‖L2 = 1}.

Due to the constraint ‖u‖L2 = 1, even for γ ≥ 1 this is a non-convex minimization problem. We will study the
existence, uniqueness and qualitative aspects of minimizers of (1.1).

Our main motivation for this investigation comes from the long-time behavior of the parabolic Anderson
model {

∂
∂tv(z, t) = Δnv(z, t) + ξ(z)v(z, t), t ∈ (0,∞), z ∈ Z

n,
v(z, 0) = δ0(z), z ∈ Z

n.

Here (ξ(z))z∈Zn is a family of i.i.d. random variables bounded from above and Δn denotes the discrete Laplacian
Δnv(z) =

∑
x∈Zn:|x−z|=1(f(x) − f(z)). We refer to [8] for more background information on the parabolic

Anderson model. In [2] a variational formula is derived for the long-time asymptotics of the total mass in
this system in terms of the minimal value of I. Here the constants γ and D describe the limiting behavior
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of the density of the distribution of ξ(z) near its essential supremum. The minimizers – if they exist – can be
interpreted as the shape of suitably rescaled solutions on certain regions which contribute in an optimal way to
the total mass within the system (see [2,9] for more details). It is therefore interesting to also investigate the
minimizers rather than only the minimal values of this functional2.

As a perhaps more prominent example where problems of this type occur we also mention the theory of
nonlinear Schrödinger equations (cf. e.g. [1]). If I as in (1.1) describes a nonlinear quantum Hamiltonian, one
seeks for ground states of the system, that is for minimizers of I.

A lot of information can be obtained by studying the associated Euler-Lagrange equation of (1.1). In fact,
there exists an abundant literature on semilinear Dirichlet problems of the form

Δu + f(u) = 0 (1.2)

and there are existence, uniqueness and symmetry results under various assumptions on the nonlinearity f for
positive solutions of (1.2) decaying to 0 at infinity. We do not give a complete account on the literature here
but just refer to [6,7,12] and the references therein, which will be of particular interest to our situation.

Note, however, that in both examples discussed above, u in addition is a minimizer of I. One of our main
goals is to show that this additional feature greatly facilitates the arguments needed to analyze solutions of (1.2),
even if one restricts to considering only radially symmetric and non-negative functions u. Also note that only
for the variational problem solutions will in fact be radially symmetric (up to translations).

An outline of the paper is as follows. In Section 2 we will show that minimizers of I exist and I attains its
minimal value at a radially symmetric and radially decreasing function. We mention that variational techniques
of the type we will encounter here have been used before to establish existence of solutions of (1.2). On
bounded domains, i.e. for the functionals Iρ restricted to functions supported on a ball of radius ρ, existence
readily follows by standard methods. To obtain existence on R

n we will give a proof here that very naturally
links the functionals Iρ to the limiting functional I by Γ-convergence. A mild equicoercivity estimate then yields
the desired result. (Note that this provides, e.g., an alternative proof for the existence statement in [6], which
only uses elementary convexity arguments.)

In the following Section 3 we examine the Euler-Lagrange equation associated with I. A standard argument
will imply that minimizers of I are compactly supported and (possibly after switching sign and a translation)
are radially symmetric and radially decreasing. (This shows that in fact minimizers of I are also minimizers
of Iρ for ρ sufficiently large.) Also note that the symmetry result is a variational effect that cannot follow
from the PDE alone, for if u is any minimizer and R sufficiently large, also u + u(· + R) is a solution of the
Euler-Lagrange equation. We finally investigate the regularity properties of minimizers u. It easily follows that
u is C∞-smooth away from the sphere ∂ supp u, where u becomes 0. We also study the behavior of u in the
vicinity of this singular set in detail.

The greatest advantage of keeping a variational point of view is in the proof of uniqueness (up to translation
and sign-changes) of minimizers, which will be given in Section 4. Having noted that all minimizers satisfy
the same Euler-Lagrange equation, one could refer to uniqueness results as proved in [6,7,12]. However, an
additional variational convexity argument will greatly simplify these approaches. As it turns out, the – due to
the singularity – seemingly harder case γ ≤ 1 becomes in fact much easier. The case γ > 1, on the contrary,
yields a convex non-linearity and is more difficult.

We summarize the main results of these sections in the following Theorem, whose proof directly follows from
Corollary 2.6, Proposition 3.3, Lemma 3.2, Lemmas 4.1, 3.1 and Proposition 4.2.

Theorem 1.1. Suppose I is given as in (1.1) with D > 0, 0 < γ < 2.
(i) There exist minimizers of I.
(ii) After a suitable translation and, possibly, a change of sign, every minimizer is non-negative, rotationally

symmetric about the origin, decreasing in the radial variable and compactly supported.
(iii) The non-negative radially symmetric minimizer is unique.

2More precisely, the functional considered in [2] is infρ>0 Iρ, where Iρ = Iρ,γ,D are the restrictions to Aρ := {u ∈ A : supp(u) ∈
Qρ} and the Qρ can be taken as balls Bρ of radius ρ. This is in fact equivalent to our original problem.
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The precise statement about the regularity of minimizers is given in Proposition 3.5.
Finally, in Section 5 we first discuss two cases where explicit formulae for the minimizers can be given.

This is possible in one dimension for every γ (as has been noted already by Biskup and König, unpublished
notes) and in any dimension if the Euler-Lagrange equation becomes linear. Interestingly, there is also an
explicit asymptotic formula for the minimizers when γ approaches the critical exponent 2: if γ → 2, then the
corresponding minimizers uγ – suitably rescaled – converge to a Gaussian function with covariance matrix 1

D Id:

(2 − γ)
n
4 uγ

(
x√

2 − γ

)
→
(

D

2π

)n
2

e−
D|x|2

2 .

See Propositions 5.1, 5.2 and Theorem 5.3 for the precise statement of these results.
For the sake of clarity we confine our analysis to the functional introduced in (1.1), but we believe that

the variational point of view advocated here might be useful in more general situations. In fact, some of the
arguments developed here are easily seen to apply in more general situations. (E.g., a straightforward adaption
of the method showing existence gives an alternative proof of the existence theorem in [6]. Also, the particular
form of the nonlinearity in the uniqueness proof is not relevant to our analysis.)

2. Existence and Γ-convergence

Our first aim is to obtain the existence of minimizers of I. We will do this by reducing to the functionals
Iρ = Iρ,γ,D, the restriction of I to Aρ = {u ∈ A : supp u ⊂ Bρ}, Bρ the ball of radius ρ about the origin.

A standard application of the direct method gives the following

Lemma 2.1. Minimizers of Iρ, 0 < ρ < ∞, exist.

Proof. Choose a minimizing sequence (uk) such that uk ⇀ u in H1(Bρ). Since uk → u ∈ A in L2 and |u|γ → |u|γ
in L

2
γ , by lower semicontinuity of the gradient term we find Iρ(u) ≤ lim inf Iρ(uk) = inf Iρ. �

The next task is to show that minimizers can be chosen to be radially decreasing, i.e, to only depend on the
radial variable r = |x| ∈ [0,∞) and to be decreasing in r. If a function f : R

n → R decays to 0 at infinity
in the sense that |{x : |f(x)| > t}| < ∞ for all t > 0, its symmetrically decreasing rearrangement (or Schwarz
symmetrization) is defined by

f∗(x) := sup{t : |{|f | > t}| > ωn|x|n},
where ωn denotes the volume of the n-dimensional unit ball. (See, e.g., [11] for basic properties of symmetric
rearrangements.) For easy reference we give the following lemma from [4]:

Lemma 2.2. Suppose f : R
n → R decays to 0 at infinity. Then, for any α > 0,∫

|f |α(x) dx =
∫

(f∗)α(x) dx,

whenever one of these terms is finite. If f ∈ H1(Rn), then also f∗ ∈ H1(Rn) and
∫

|∇f∗(x)|2 dx ≤
∫

|∇f(x)|2 dx. (2.1)

Equality can occur in (2.1) only if |f | = f∗(· − a) for a suitable translation vector a under the assumption
that |{∇f∗ = 0} ∩ (f∗)−1(0, ess sup f∗)| = 0, or, equivalently, d

dr f̃∗(r) �= 0 for almost all r such that f̃∗(r) ∈
(0, ess sup f∗), where f̃∗ is defined by f∗(x) = f̃∗(|x|).

Note that in the sequel we will not distinguish in our notation between f and f̃ with f̃(|x|) = f(x) for a
radially symmetric function f .
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Lemma 2.3. There are radially decreasing minimizers of Iρ.

Proof. Clear by Lemmas 2.2 and 2.1. �
We now turn to the problem of finding minimizers of I. More generally, we establish the following connection

between Iρ and I. (See, e.g., [3] for a general introduction to the theory of Γ-convergence.)

Proposition 2.4. The functionals Iρ (extended by +∞ outside Aρ to all of A) Γ-converge to I with respect to
the strong L2-topology on A.

Proof. Let u ∈ A. By multiplication with suitable cut-off functions θρ : R
n → [0, 1] such that θρ ≡ 1 on Bρ−1,

θρ ≡ 0 on R
n \ Bρ and |∇θρ| ≤ C, we find vρ = θρu, supported on Bρ, such that |vρ| ≤ |u| and vρ → u in H1.

Then uρ := vρ

‖vρ‖L2
∈ A is a recovery sequence for u:

lim sup
ρ→∞

Iρ(uρ) = lim
ρ→∞

1
2
‖vρ‖−2

L2

∫
Rn

|∇vρ|2 + lim sup
ρ→∞

D‖vρ‖−γ
L2

∫
Rn

|vρ|γ ≤ I(u).

To prove the Γ-lim inf inequality, let uρ → u and without loss of generality assume that the sequence (Iρ(uρ))
is bounded, whence uρ ⇀ u in H1. On every ball BR of radius R > 0, as in the proof of Lemma 2.1, we see that

lim inf
ρ→∞ Iρ(uρ) ≥ lim inf

ρ→∞

(
1
2

∫
BR

|∇uρ|2 + D

∫
BR

|uρ|γ
)

≥ 1
2

∫
BR

|∇u|2 + D

∫
BR

|u|γ .

Now sending R → ∞ we obtain that indeed lim infρ→∞ Iρ(uρ) ≥ I(u) by monotone convergence. �

We now prove equi-mild coercivity for the functionals Iρ as ρ → ∞.

Lemma 2.5. Let ρk → ∞ and (uk) be a sequence of radially decreasing minimizers of Iρk
. Then for a

subsequence (not relabeled) uk → u in L2 for some u ∈ A.

Proof. Since the sequence (Iρk
(uk)) is bounded, by passing if necessary to a suitable subsequence we may

assume that uk ⇀ u in H1(Rn) for some u ∈ H1(Rn). It only remains to prove that ‖u‖L2 ≥ 1.
Assume that ‖u‖L2 < 1 − ε for some ε > 0. Then for each ball BR there is k0(R) such that

‖ukχRn\BR
‖L2 ≥ ε for k ≥ k0,

because otherwise 1 − ε ≤ lim supk→∞ ‖ukχBR‖L2 = ‖uχBR‖L2 ≤ ‖u‖L2 since uk → u in L2 on the bounded
set BR. (Here χM denotes the characteristic function of the set M ⊂ R

n.) Now let δ > 0 and set vk := u2
kχRn\BR

for R = (ωnδ2)−
1
n . Since the uk are radially decreasing, we find that 0 ≤ vk ≤ δ2 for all k ∈ N and ‖vk‖L1 ≥ ε2

for k ≥ k0(R). Clearly, Iρk
(uk) ≥ D

∫
Rn v

γ/2
k .

Now note that the variational problem∫
Rn

v
γ
2 → min, subject to 0 ≤ v ≤ δ2 and ‖v‖L1 = c (fixed)

can be solved noting that x �→ xγ/2 is concave: An optimal choice is v = δ2χM for a set M of measure cδ−2 with
value

∫
Rn v

γ
2 = cδγ−2. It follows that lim infk→∞ Iρk

(uk) ≥ ε2δγ−2 for all δ > 0 contradicting the boundedness
of (Iρk

(uk)). �

A standard argument in the theory of Γ-convergence now implies the existence of minimizers of I:

Corollary 2.6. There exist radially decreasing minimizers of I.
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Proof. By Lemma 2.5 there exists a sequence (uk) of radially decreasing minimizers of Iρk
such that uk → u

in L2, whence also u is radially decreasing. Then Proposition 2.4 shows that I(u) = inf I: If v ∈ A, choosing a
recovery sequence for v we see that I(v) = limk Iρk

(vk) ≥ lim infk→∞ Iρk
(uk) ≥ I(u). �

This, in particular, proves Theorem 1.1(i).

3. Qualitative properties of minimizers

In this section we study the qualitative aspects of minimizers of I. We first derive the Euler-Lagrange
equation and show that minimizers have compact support. Next we investigate the regularity and symmetry
properties of minimizers.

Suppose u is a radially decreasing minimizer of I (or Iρ for ρ < ∞). By BR = BR(u) we denote the open ball
BR = {u > 0} of radius R ∈ (0,∞], so that u ∈ H1

0 (BR) ∩ C(BR).
Note that if γ ≤ 1, then I is not differentiable at u in directions that do not vanish on {u = 0}, so we first

consider variations concentrated on {u > 0}. Since inf u > 0 on every compact subset of BR, by standard
methods we find that ∫

BR

∇u · ∇v + Dγ

∫
BR

|u|γ−1v − λ

∫
BR

uv = 0 (3.1)

for all v ∈ C∞
c (BR) and some Lagrange-multiplier λ = λ(u) ∈ R (due to the side-condition

∫
u2 = 1), so

u ∈ H1
0 (BR) is a distributional solution of

Δu + λu − Dγ|u|γ−1 = 0 in BR.

Note that in fact (3.1) holds for all v ∈ H1
0 (BR). If v has compact support in BR this follows from a standard

approximation argument. If v ≥ 0, it can be seen by using approximations θkv → v in H1
0 (BR) with smooth

cut-off function θk, k ∈ N, where θk ↗ 1 on BR, and monotone convergence. For general v one then splits v
into v = v+ − v−.

By elliptic regularity, we have in fact u ∈ C∞(BR). Notice also that, as u is radially symmetric, |x| =: r �→
u(r) solves ⎧⎨

⎩
u′′ + n−1

r u′ + λu − Dγ|u|γ−1 = 0 for 0 < r < R,
u(r) = 0 for r = R,
u′(r) = 0 for r = 0.

(3.2)

Finally observe that u′ < 0 on (0, R), for if there were some r1 ∈ (0, R) with u′(r1) = 0, then also u′′(r1) = 0

since u decreases and so λu(r1) − Dγuγ−1(r1) = 0 and u ≡
(

Dγ
λ

) 1
2−γ

by unique continuation.
The next lemma shows that both integrals in the definition of I(u) and the Lagrange multiplier λ(u) in fact

only depend on the value I(u). This will be particularly useful in the next section on uniqueness.

Lemma 3.1. Suppose u is a radially decreasing minimizer of I. Then

1
2

∫
Rn

|∇u|2 =
(2 − γ)n

4 + (2 − γ)n
I(u), D

∫
Rn

|u|γ =
4

4 + (2 − γ)n
I(u)

and λ = λ(u) =
2(2 − γ)n + 4γ

4 + (2 − γ)n
I(u).

Proof. Let uμ(x) = μn/2u(μx). Clearly, ‖uμ‖2
L2 = ‖u‖2

L2 = 1. Since

I(uμ) =
μ2

2

∫
Rn

|∇u|2 + Dμ
(γ−2)n

2

∫
Rn

|u|γ ,
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it follows from ∂μI(uμ)|μ=1 = 0 that ∫
Rn

|∇u|2 + D
(γ − 2)n

2

∫
Rn

|u|γ = 0.

On the other hand,
1
2

∫
Rn

|∇u|2 + D

∫
Rn

|u|γ = I(u).

Since γ − 2 < 0, we can solve for 1
2

∫
Rn |∇u|2 and D

∫
Rn |u|γ in terms of I(u) to obtain the values as claimed.

Noting that u solves the Euler-Lagrange equation (3.1), we can derive another equation by testing (3.1)
with u itself to get ∫

|∇u|2 + Dγ

∫
|u|γ − λ = 0,

and the the identity for λ follows by inserting the values found for 1
2

∫
Rn |∇u|2 and D

∫
Rn |u|γ . �

We will now prove that decreasing solutions of (3.2) are compactly supported. This is a well-known fact for
ground states of (3.2), which holds true under even more general non-linearities (see, e.g., [12]). We will give a
short self-contained proof here.

Lemma 3.2. There is no solution u : (0,∞) → R of

u′′ +
n − 1

r
u′ + λu − Dγ|u|γ−1 = 0 (3.3)

with u > 0 decreasing and u(r) → 0 as r → ∞.

Proof. Suppose such a u exists. Since u(r) → 0 as r → ∞, there is r0 such that uγ−2(r) > 2|λ|
Dγ and so

Dγuγ−1(r) − λu(r) > Dγ
2 uγ−1(r) for all r ≥ r0. As u decreases, we obtain

u′′ >
Dγ

2
uγ−1 for r ≥ r0.

Note that, in particular, this shows that u is convex on [r0,∞). Multiplying this inequality with u′ ≤ 0 and
integrating over [s, t] with r0 ≤ s ≤ t we obtain

(u′)2(s) − (u′)2(t) ≥ D (uγ(s) − uγ(t)) .

Since u(t) → 0 and, by convexity, also u′(t) → 0 as t → ∞, we then get u′(s) ≤ −√
Du

γ
2 (s), i.e, u−γ

2 (s)u′(s) ≤
−√

D. Integration over [r0, r], r > r0 yields

2
2 − γ

(
u

2−γ
2 (r) − u

2−γ
2 (r0)

)
≤ −

√
D(r − r0).

Now letting r tend to ∞ gives a contradiction. �
An immediate consequence of the strict monotonicity of radially decreasing minimizers and the results in the

previous section is that – up to translations and a change of sign – every minimizer is radially decreasing:

Proposition 3.3. Let u be a minimizer of I. Then there exists an a ∈ R
n such that u = u∗(· − a) or

u = −u∗(· − a) a.e.

Proof. By Lemma 2.2, if u is a minimizer, then u∗ is a minimizer, too, and thus a solution of (3.2). Since
(u∗)′ < 0 on (0, R = R(u∗)), again by Lemma 2.2 it follows that |u| = u+ + u− = u∗(· − a) a.e. for some
a ∈ R

n. But then u = u∗(· − a) or u = −u∗(· − a) a.e. for also u+ + u−(· + 4R) is a minimizer, and so
u+ + u−(· + 4R) = (u+ + u−(· + 4R))∗(· − b) = u∗(· − b) for some b ∈ R

n, whence u+ = 0 or u− = 0 a.e. �



92 B. SCHMIDT

Theorem 1.1(ii) now follows immediately from Lemma 3.2 and Proposition 3.3.
As mentioned, u is smooth on [0, R) and, trivially, on (R,∞). So for regularity considerations we concentrate

on r = R. As a first step we examine u′(R):

Lemma 3.4. Let u be a radially decreasing minimizer of I. Then u′(R(u)) = 0.

(For γ > 1 this follows of course from the Euler-Lagrange equation on R
n.)

Proof. Note that u′(R) := limr↗R u′(r) exists in (−∞, 0] because u is convex near R. Set F (u) := λ
2 u2 − Duγ .

Multiplying (3.2) by rnu′ and integrating from 0 to s < R, after integration by parts we find

0 =
sn

2
u′(s) − n

2

∫ s

0

rn−1(u′)2 dr + (n − 1)
∫ s

0

rn−1(u′)2 dr

+ sn

(
λ

2
u2(s) − Duγ(s)

)
− n

∫ s

0

rn−1

(
λ

2
u2 − Duγ

)
dr.

Sending s → R and changing to n-dimensional integrals gives

nωnRn

2
u′(R) = −n − 2

2

∫
BR

|∇u|2 dx + n

∫
BR

λ

2
u2 − Duγ dx

=
−(n − 2)(2 − γ)n + ((2 − γ)n + 2γ)n − 4n

4 + (2 − γ)n
I(u) = 0

by Lemma 3.1. �

Proposition 3.5. Let u be a radially decreasing minimizer of I, β := 2
2−γ . Then, for all k ∈ N, u(k)

(R−r)β−k ∈
C([0, R]). In particular, u ∈ C1 for all γ and

lim
r↗R

u(r)

(R − r)
2

2−γ

=

(√
D(2 − γ)√

2

) 2
2−γ

and

lim
r↗R

u′(r)

(R − r)
γ

2−γ

= −
√

2D

(√
D(2 − γ)√

2

) γ
2−γ

.

Note that this shows that u ∈ W 	β
+1,p(Rn) for all p < 1
	β
+1−β if β /∈ N, u ∈ W β,∞(Rn) if β ∈ N. As a

consequence, u ∈ W 2,1(Rn) is a distributional solution of Δu+λu−Dγuγ−1 = 0 on all of R
n for every γ ∈ (0, 2).

Proof. Since by Lemma 3.4, monotone convergence and by (3.2)

1
2
(u′)2(r) = −

∫ R

r

u′′u′ dt =
∫ R

r

n − 1
t

(u′)2dt − λ

2
u2(r) + Duγ(r),

and since
∫ R

r
n−1

t (u′)2dt ≤ (R − r)n−1
r (u′)2(r) � (u′)2(r) and u2(r) � uγ(r) as r → R, it follows that

limr↗R u−γ(r)(u′)2(r) = 2D and thus

lim
r↗R

u−γ
2 (r)u′(r) = −

√
2D. (3.4)

Now L’Hospital’s rule implies that

lim
r↗R

u
2−γ
2 (r)

R − r
= lim

r↗R
−2 − γ

2
u−γ

2 (r)u′(r) =
2 − γ

2

√
2D.

This, together with (3.4), yields the asymptotic behavior of u and u′.
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Now note that for each k ∈ N there are polynomials ϕk,i in 1
r and numbers ak,i, bk,i, i ∈ {1, . . . , mk}, such

that

u(k) =
mk∑
i=1

ϕk,iu
ak,i(u′)bk,i

with βak,i + (β − 1)bk,i ≥ β − k, where β := 2
2−γ . (This clear for k = 0, 1 and follows easily by induction for

general k from (3.2).) The claim now follows from the asymptotic behavior of u and u′ near r = R. �

4. Uniqueness of minimizers

We will now prove that minimizers are (up to translations and a change of sign) unique. By Proposition 3.3
it suffices to prove uniqueness in the class of radially symmetric and decreasing functions. We split the proof
into several lemmas. Note that Lemma 3.1 has two important consequences. Firstly, a variational argument
implies that the difference of two minimizers has to change sign at least twice (see Lem. 4.1). Secondly, we
may study the common Euler-Lagrange equation to show by PDE-methods (mainly Green’s formula) that the
difference of two minimizers cannot change sign more than once, see Proposition 4.2. (In what follows we will
repeatedly use that, if u1, u2 are two different solutions of (3.2), then u1(r) = u2(r) implies u′

1(r) �= u′
2(r) for

each r ∈ (0, min{R(u1), R(u2)}) by unique continuation. Also we will view radially symmetric functions in n
variables x = (x1, . . . , xn) as functions of the radial variable r = |x| ≥ 0 and vice versa whenever convenient.)

The case n = 1, which can be solved explicitly, will be treated separately in the next section. So assume for
now that n ≥ 2.

Lemma 4.1. Suppose u1 and u2 are radially decreasing minimizers of I, u1 �≡ u2. Then u1 − u2 has to change
sign at least twice, i.e., u1 − u2 has at least two zeros in (0, R), R := min{R(u1), R(u2)}.
Proof. u1 − u2 has to change sign at least once, for otherwise

∫
Rn |u1|2 and

∫
Rn |u2|2 cannot both be equal to 1.

Suppose u1 − u2 changes sign only once, without loss of generality say u1(r) > u2(r) on (0, r1) and u1(r) <

u2(r) on (r1, R2), R2 = R(u2). Let ϕ := u2
1 − u2

2. By strict concavity of (0,∞) � t �→ t
γ
2 and since (0, R2) �

r �→ uγ−2
2 (r) is strictly increasing, we find

uγ
1(r) =

(
u2

2(r) + ϕ(r)
) γ

2 ≤ uγ
2 (r) +

γ

2
uγ−2

2 (r)ϕ(r) ≤ uγ
2(r) +

γ

2
uγ−2

2 (r1)ϕ(r),

where the inequalities are strict for r �= r1. Integrating over the ball of radius R2 centered at the origin we
arrive at

∫
Rn |u1|γ <

∫
Rn |u2|γ since

∫
Rn ϕ = 0. But this contradicts the assertion of Lemma 3.1. �

For the sake of notational convenience we note that, by the results of the previous section, for every symmet-
rically decreasing minimizer u of I the function (Dγ

λ )−
1

2−γ u( ·√
λ
) (with λ as in Lem. 3.1) is a decreasing classical

solution of

Δu + f(u) = 0 on (0, R), u(R) = 0 (4.1)

with f(u) = u − uα, α := γ − 1 and R = R(u) such that u > 0 on [0, R) and u′ is bounded. In case γ > 1 it
even solves

Δu + f(u) = 0 on (0,∞), u = 0 on [R,∞). (4.2)

Proposition 4.2. Let u1 ∈ C2([0, R(u1))), u2 ∈ C2([0, R(u2))) be two different functions such that
(i) −1 < α ≤ 0 and u1, u2 are solutions of (4.1), or
(ii) 0 < α < 1 and u1, u2 are solutions of (4.2),

then their graphs cannot intersect twice above 0.
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We split the proof into several lemmas.

Lemma 4.3. Suppose u1, u2 are decreasing solutions solutions of (4.1) with u1 �≡ u2. Then the graphs of u1

and u2 cannot intersect twice in [0,∞) × (0, 1].

Proof. Suppose there were r1 < r2 such that 1 ≥ u1(r1) = u2(r1) > u1(r2) = u2(r2) > 0. Without loss of
generality assume u2 > u1 on (r1, r2). Since u1 and u2 are strictly decreasing on [r1, r2], their respective inverses
v1, v2 : [u1(r2), u1(r1)] → [r1, r2] exist. Choose ū ∈ [u1(r2), u1(r1)] such that v2(u)

v1(u) is maximal at u = ū with
value, say, μ > 1. Then v2 ≤ μv1 with equality at ū and strict inequality at u1(r1) and u1(r2).

By u(μ) denote the inverse function of μv1 : [u1(r1), u1(r2)] → [μr1, μr2], i.e., u(μ)(r) = u1( r
μ). Then

v2(ū) ∈ (μr1, r2) and u(μ) ≥ u2 on [μr1, r2] with equality at r = v2(ū) and strict inequality on {μr1, r2}, whence
we can also find an η > 0 such that μ(r1 + η) < v2(ū) < r2 and u(μ) > u2 on {μ(r1 + η), r2}. Then for any
δ > 0 we may choose an open interval Vδ ⊂ (μ(r1 + η), r2) containing v2(ū) such that 0 ≤ u(μ) − u2 < δ on Vδ

and u(μ) − u2 > 0 on ∂Vδ.
This finally leads to a contradiction if δ is chosen so small that f(u2)−f(u(μ)) < a :=

(
1 − 1

μ2

)
min{−f(u1(r1+

η)),−f(u1( r2
μ ))} on Vδ, for then

Δ(u(μ) − u2)(r) =
1
μ2

(Δu1)
(

r

μ

)
− Δu2(r) = f(u2(r)) − 1

μ2
f(u(μ)(r))

<

(
1 − 1

μ2

)
f(u(μ)(r)) + a ≤ 0,

since f(u(μ)) ≤ max{f(u1(r1 + η)), f(u1( r2
μ ))} on [μ(r1 + η), r2] (by convexity of f if α ∈ (0, 1) and by mono-

tonicity of f if α ∈ (−1, 0]). This, however, cannot be true because u(μ) − u2 does not attain its minimum
over Vδ on the boundary ∂Vδ. �

Proof of Proposition 4.2(i). Suppose the graphs of u1 and u2 intersect twice above 0. By Lemma 4.3 there
exists r1 such that u1(r1) = u2(r1) > 1. Without loss of generality we may assume that u1 > u2 on (r1 − ε, r1)
for ε > 0 sufficiently small. Let r0 = inf{r > 0 : u1 > u2 on (r, r1)}. Since u′

1(r1) < u′
2(r1), u1(r1) = u2(r1) > 1

and either r0 = 0 (in which case the first term on the right hand side of the following formula vanishes) or else
r0 > 0 and hence u1(r0) = u2(r0) > u2(r1) > 1 with u′

1(r0) > u′
2(r0), we obtain for vi = ui − 1

0 > rn−1
0 (−v2(r0)v′1(r0) + v1(r0)v′2(r0)) + rn−1

1 (v2(r1)v′1(r1) − v1(r1)v′2(r1)),

which by Green’s formula implies

0 >

∫ r1

r0

rn−1(v2Δv1 − v1Δv2) dr =
∫ r1

r0

rn−1v1v2

(
f(v2 + 1)

v2
− f(v1 + 1)

v1

)
dr.

But this cannot be true as v1 > v2 > 0 on (r0, r1) and the function v �→ f(v+1)
v is decreasing on (0,∞): its

derivative is given by
v �→ v−2

(
(v + 1)α + α(v + 1)α−1(−v) − 1

)
which is non-positive by the convexity of v �→ vα for α ≤ 0. �

We now turn to the case γ > 1. Here we will need the following monotonicity lemma from [5] (going back
to [10]). We will include the proof – following [6] – for the sake of completeness.

Lemma 4.4. Let R > 0 and suppose u ∈ C2([0, R)) is a decreasing solution of (4.1). Then ru′
u is strictly

decreasing on (0, R).
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Proof. On (0, R) we have

−rn−1u2

(
ru′

u

)′
= rn−1 ((ru′)u′ − (ru′)′u) . (4.3)

Since Δ(ru′) = −ru′f ′(u) − 2f(u), Green’s formula yields

rn−1 ((ru′)u′ − (ru′)′u) =
∫ r

0

(tu′Δu − uΔ(tu′)) tn−1 dt

=
∫ r

0

(−u′f(u) + uu′f ′(u)) tn dt +
∫ r

0

2uf(u)tn−1 dt

=
∫ r

0

(1 − α)uαu′tn dt +
∫ r

0

2uf(u)tn−1 dt

=
1 − α

1 + α
u1+α(r)rn +

∫ r

0

(
2u2 −

(
2 +

(1 − α)n
1 + α

)
u1+α

)
tn−1 dt (4.4)

for r < R. Now note (0,∞) � u �→ 2u2−
(
2 + (1−α)n

1+α

)
u1+α has a unique zero ū, say. Then if u(r) ≥ ū, the last

integral in (4.4) is non-negative. If on the other hand u(r) < ū, then this integral can be bounded from below
by the integral up to R as the integrand is negative on (r, R):

∫ r

0

(
2u2 −

(
2 +

(1 − α)n
1 + α

)
u1+α

)
tn−1 dt ≥

∫ R

0

(
2u2 −

(
2 +

(1 − α)n
1 + α

)
u1+α

)
tn−1 dt = 0,

where the last equality followed from (4.4) with r sent to R (note that (ru′)′u = (2 − n)u′u − ruf(u)), or
alternatively from an explicit evaluation with the help of Lemma 3.1. So also in this case the last integral
in (4.4) is non-negative. Since u1+α > 0 on (0, R) the claim then follows from (4.3) and (4.4). �

Proof of Proposition 4.2(ii). Suppose u1 and u2 intersect at least twice above 0. Then by Lemma 4.3 we may
assume that there exist 0 < r1 < r2 such that u1(r1) = u2(r1) > 1, u1(r2) = u2(r2) > 0 and u2 > u1 on (r1, r2).
Let r0 := inf{r > 0 : u1 > u2 on (r, r1)} and r3 := sup{r > r2 : u1 > u2 on (r2, r)}. Set w := u1 − u2 and note
that, by convexity of f ,

Δw + f ′(u1)w = f(u2) − f(u1) − f ′(u1)(u2 − u1) ≥ 0 (4.5)

on (0, R1), R1 = R(u1).

Let v := ru′
1 + βu1 and β := 2(u1−α

1 (r1)−1)
1−α > 0. An elementary calculation shows that

Δv + f ′(u1)v = Φ(u1) := uα
1

(
(1 − α)β − 2(u1−α

1 − 1)
)
, (4.6)

in particular that Φ(u1) < 0 on (0, r1) and Φ(u1) > 0 on (r1, R1). Note also that v < 0 on (r1, R1): if this were
not the case, then v > 0 on (0, r1) since by Lemma 4.4 v can change sign at most once on (0, R1). But then
using (4.5) and (4.6) we would find

vΔw − wΔv > 0 on (r0, r1)
and, by Green’s formula, obtain that

−rn−1
0 v(r0)w′(r0) + rn−1

1 v(r1)w′(r1) + rn−1
0 w(r0)v′(r0) − rn−1

1 w(r1)v′(r1) > 0.

Since v(r0), v(r1) ≥ 0, w′(r1) < 0 ≤ rn−1
0 w′(r0) and rn−1

0 w(r0) = rn−1
1 w(r1) = 0, this leads to a contradiction.
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As a consequence we get from (4.5) and (4.6) that

wΔv − vΔw > 0 on (r2, r3).

Again by Green’s formula we obtain

rn−1
2 v(r2)w′(r2) − rn−1

3 v(r3)w′(r3) > 0.

But this contradicts v(r2) < 0, w′(r2) > 0, v(r3) ≤ 0, w′(r3) ≤ 0. �
Theorem 1.1(iii) now immediately follows from Lemmas 4.1, 3.1 and Proposition 4.2.

5. Explicitly solvable cases

In this last section we examine special cases where the minimizers can be determined explicitly. In particular,
this is possible in one dimension (as has been noted before by Biskup and König, unpublished notes) and when
the Euler-Lagrange equation is linear. Interestingly, it turns out that also the limit for γ close to the critical
exponent 2 yields an explicit asymptotic expression for the minimizers.

5.1. The one-dimensional case

Proposition 5.1. Let n = 1. There exists a unique radially decreasing minimizer u of I, which is given by

u(r) =

⎧⎨
⎩
(

2D
λ

) 1
2−γ cos

2
2−γ

(√
λ(2−γ)r

2

)
for 0 ≤ r ≤ π√

λ(2−γ)
,

0 for r ≥ π√
λ(2−γ)

,
(5.1)

where λ = (2D)
4

6−γ

(√
πΓ( 6−γ

4−2γ )

Γ( 2
2−γ )

) 4−2γ
6−γ

. Furthermore, I(u) = 6−γ
4+2γ λ.

Proof. Suppose u is a radially decreasing minimizer of I in one dimension, so that

u′′ + λu − Dγuγ−1 = 0, u′(0) = 0, u(R(u)) = u′(R(u)) = 0 (5.2)

by (3.2) and Lemmas 3.2 and 3.4. This equation can be solved explicitly, e.g., by first multiplying with 2u′ and
integrating over (r, R) to obtain

u′(r) = −
√
−λu2(r) + 2Duγ(r).

This is a first order autonomous equation and it easily follows that the unique solution of (5.2) that strictly
decreases on (0, R(u)) is given by (5.1). The value of λ follows from

1 = ‖u‖2
L2 = 2

(
2D

λ

) 2
2−γ

∫ π√
λ(2−γ)

0

cos
4

2−γ

(√
λ(2 − γ)

2
r

)
dr = (2D)

2
2−γ

√
πΓ( 6−γ

4−2γ )

Γ( 2
2−γ )

λ− 6−γ
4−2γ ,

and Lemma 3.1 implies I(u) = 6−γ
4+2γ λ. �

5.2. Linear Euler-Lagrange equations

For the sake of completeness we also briefly discuss Iγ for the special values γ = 0, 1 that lead to explicitly
solvable Euler-Lagrange equations. Here, for γ = 0, the functional Iγ is interpreted as

I0(u) =
1
2

∫
Rn

|∇u(x)|2 dx + D

∫
Rn

g(u) dx
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with g(u) = 1 if u �= 0 and g(0) = 0. (By the classical Rayleigh-Faber-Krahn inequality, the minimizers of this
functional are of course well known.)

Let U(r) = r
2−n

2 Jn−2
2

(r), Jn−2
2

the Bessel function of the first kind with parameter n−2
2 , so that x �→ U(|x|)

is an eigenfunction of the Laplacian with eigenvalue 1.

Proposition 5.2. The minimizers of I0, respectively I1, are – up to translations or a change of sign – given by

u0(x) =

{
μ0U(

√
λ0|x|) for |x| ≤ r0√

λ0
,

0 for |x| > r0√
λ0

,
(5.3)

where r0 is the first zero of U , respectively

u1(x) =

{
Dγ
λ1

(
U(

√
λ1|x|)

|U(r1)| + 1
)

for |x| ≤ r1√
λ1

,

0 for |x| > r1√
λ1

,
(5.4)

where r1 is the point at which U assumes its first minimum, for suitable μ0, λ0, λ1 > 0. The values of μ0, λ0

and λ1 can be computed explicitly.

Proof. As in the previous sections we see that minimizers of I0 are radially decreasing up to translations or
a change of sign and we easily infer from Δu0 + λ0u0 = 0 on BR that u0 is of the form (5.3). The condition
‖u0‖L2 = 1 leads to μ0 = ‖U‖−1

L2(Rn)λ
n
4
0 . But then

I0(u) =
1
2
‖∇U‖2

L2(Rn)‖U‖−2
L2(Rn)λ0 + ‖U‖−γ

L2(Rn)D

∫
Br1

Uγ dxλ
(γ−2)n

4
0

and minimizing with respect to λ0 concludes the proof for γ = 0.
If γ = 1, noting that Δ(u1 − Dγ

λ1
) = λ1(u1 − Dγ

λ1
), we readily infer that u1 is indeed of the form (5.4). λ1 can

then then be determined from ‖u1‖L2 = 1. �

5.3. Behavior near the critical exponent

We now investigate the behavior of the minimizers of I = Iγ when γ is close to 2. Note that infA I2 = D, but
the minimum is not attained. In fact, as γ approaches 2, the minimizers of Iγ are more and more smeared out
over R

n, and so we introduce the rescaling w(x) = (2−γ)−
n
4 u( x√

2−γ
). Alternatively, one can rescale D in order

to obtain a non-trivial limit of Iγ, D
2−γ

. In [9] König gives a formal argument that in this regime the minimizers
may be expected to approach a Gaussian function. We will make this precise by proving the following result:

Theorem 5.3. Let uγ,D be the unique radially decreasing minimizer of Iγ,D. If wγ,D are the rescaled functions
wγ,D = (2 − γ)−

n
4 uγ,D( ·√

2−γ
), then as γ → 2,

lim
γ↗2

wγ,D = lim
γ↗2

uγ, D
2−γ

= w, where w(x) =
(

D

π

)n
2

e−D|x|2,

strongly in H1 and

lim
γ↗2

Iγ,D(uγ,D) − D(2 − γ)−
(2−γ)n

4

2 − γ
= lim

γ↗2
Iγ, D

2−γ
(uγ, D

2−γ
) − D

2 − γ

=
Dn

2

(
1 +

log π − log D

2

)
·
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As in Corollary 2.6 we will use a Γ-convergence argument to prove this by considering the functionals

Jγ(w) :=
1
2

∫
Rn

|∇w|2 + Dcγ

∫
Rn

|w|γ − |w|2
2 − γ

, cγ := (2 − γ)−
(2−γ)n

4 ,

on A. It is not hard to see that uγ is a minimizer of Iγ if and only if its rescaling wγ = (2 − γ)−
n
4 u( ·√

2−γ
) is a

minimizer of Jγ .
Before we state the relevant result, we recall the logarithmic Sobolev inequality (see, e.g., [11]): For any

f ∈ H1(Rn) with ‖f‖L2 = 1 and any number a > 0 it holds

a2

∫
Rn

|∇f |2 −
∫

Rn

|f |2 log(|f |2) ≥ n

(
1 +

log π

2
+ log a

)
(5.5)

with equality if and only if f(x) = ±(2πa2)−
n
2 e−

x2

2a2 after a suitable translation of f .

Proposition 5.4. The functionals Jγ Γ-converge to the functional

J(w) :=
1
2

∫
Rn

|∇w|2 − D

∫
Rn

|w|2 log |w|

on A as γ → 2 with respect to the strong L2- and the weak H1-topology. Moreover, every recovery sequence
converges strongly in H1.

Proof. Note first that clearly cγ → 1 as 2 → γ and that by Taylor-expansion we have

|w|γ − |w|2
2 − γ

= −|w|ξ log |w| = −|w|2 log |w| + 2 − γ

2
|w|ζ(log |w|)2 (5.6)

for some ξ = ξ(|w|), ζ = ζ(|w|) ∈ (γ, 2).
To construct recovery sequences (wγ) we assume first that w ∈ A has compact support. Then indeed wγ := w

for all γ satisfies

Jγ(wγ) − J(w) = (cγ − 1)D
∫

Rn

|w|γ − |w|2
2 − γ

+ D
2 − γ

2

∫
Rn

|w|ζ(log |w|)2. (5.7)

Since | |w|γ−|w|2
2−γ | = |w|ξ| log |w|| ≤ C(|w| + |w|2∗

) and |w|ζ(log |w|)2| ≤ C(|w| + |w|2∗
) we obtain from Sobolev’s

embedding theorem that both of the integrals in (5.7) are bounded by C‖w‖H1 , whence Jγ(wγ)− J(w) → 0 as
γ → 2.

The existence of a recovery sequence for general w ∈ A follows from a general argument in the theory
of Γ-convergence if one notices that w can be approximated by wR ∈ A with compact support such that
J(wR) → J(w) as R → ∞: Choose vR, supported on BR, with |vR| ↗ |w| a.e. and vR → w in H1 as R → ∞
and set wR = vR

‖vR‖L2
(cf. the proof of Prop. 2.4). Then

∫ |∇wR|2 → ∫ |∇w|2 and

∫
Rn

|wR|2 log |wR| = − log ‖vR‖L2 +
1

‖vR‖2
L2

∫
{|w|≤ 1√

e
}
|vR|2 log |vR|

+
1

‖vR‖2
L2

∫
{|w|> 1√

e
}
|vR|2 log |vR|.

By monotone convergence, the first integral converges to
∫
{|w|≤ 1√

e
} w2 log |w| as R → ∞. For the second

integral note that |v|R being bounded in H1, it is also bounded in L2∗
and thus |v2

R log |vR|| equiintegrable
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on the set {|w| > 1√
e
}. So from dominated convergence we obtain that this term converges to

∫
{w< 1√

e
} w2 log |w|

as R → ∞.

We now prove the lim inf-inequality: Suppose wγ ⇀ w ∈ A in L2 and without loss of generality assume that
Jγ(wγ) ≤ C for some constant C. So wγ ∈ A for all γ, whence ‖wγ‖L2 ≡ 1 = ‖w‖L2 and thus wγ → w in L2.
By (5.6) and (5.5)

C ≥ Jγ(wγ) ≥ 1
2

∫
Rn

|∇wγ |2 − cγD

∫
Rn

|wγ |2 log |wγ |

≥ 1
4

∫
Rn

|∇wγ |2 +
cγD

2
n

(
1 +

log π

2
− log(2cγD)

2

)
,

and so (wγ) is bounded in H1 and ∇wγ ⇀ ∇w in L2.
For fixed ε > 0 let gε(t) := min{max{− 1

ε t2, t2 log t}, 1
ε}. Since (wγ) is bounded in L2∗

, χ{|wγ |≥1}|wγ |2| log |wγ ||
is bounded in Lη for some η > 1 and we obtain

lim inf
γ→2

Jγ(wγ) ≥ 1
2

∫
Rn

|∇w|2 − D lim sup
γ→2

∫
Rn

|wγ |2 log |wγ |

≥ 1
2

∫
Rn

|∇w|2 − D lim sup
γ→2

∫
Rn

gε(|wγ |) − ρ(ε)

=
1
2

∫
Rn

|∇w|2 − D

∫
Rn

gε(|w|) − ρ(ε) (5.8)

for some ρ(ε) → 0 as ε → 0. Now by the monotone convergence theorem, applied on {|w| ≥ 1} and {|w| < 1}
separately, sending ε → 0 we see that indeed lim infγ→2 Jγ(wγ) ≥ J(w).

In order to prove the last statement of the proposition, suppose (wγ) is an arbitrary recovery sequence. Then
similarly as in (5.8) we find

1
2

∫
Rn

|∇w|2 − D

∫
Rn

|w|2 log |w| = lim sup
γ→2

Jγ(wγ)

≥ lim sup
γ→2

1
2

∫
Rn

|∇wγ |2 − D lim sup
γ→2

∫
Rn

w2
γ log wγ

≥ lim sup
γ→2

1
2

∫
Rn

|∇wγ |2 − D

∫
Rn

|w|2 log |w|,

and so ‖∇wγ‖L2 → ‖∇w‖L2 . But then ∇wγ → ∇w in L2 since ∇wγ ⇀ ∇w, and the claim follows. �

As noted before, the minimizers of Jγ are the rescaled minimizers of Iγ , so there is a (unique) radially
decreasing minimizer wγ of Jγ . We need the following mild equicoercivity result.

Proposition 5.5. Let γk → 2 and (wγk
) be a sequence of radially decreasing minimizers of Jγ . Then there is

a subsequence (not relabeled) of (wγk
) that converges to some w ∈ A strongly in L2 and weakly in H1.

Proof. We follow the strategy of the proof of Lemma 2.5. Let γk → 2. As seen in the proof of Proposition 5.4,
‖wγk

‖H1 can be estimated in terms of Jγk
(wγk

), so we may assume that wk := wγk
⇀ w for some w ∈ H1. It

remains to show that ‖w‖L2 ≥ 1.
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Assuming this were not the case, similarly as in the proof of Lemma 2.5 we find some fixed ε > 0 such that
for each δ > 0 there exists R > 0 and a cut-off function θ : R

n → [0, 1] with θ ≡ 1 on BR−1, θ ≡ 0 on R
n \ BR,

|∇θ| bounded independently of R and

‖χRn\BR
wk‖L2 ≥ ε for all k ≥ k0(δ), |wk| ≤ δ on R

n \ BR−1.

Now if δ ≤ 1√
e
, then −w2

k log wk ≥ −(θwk)2 log(θwk) on BR \ BR−1. Also note that |∇(θwk)|2 ≤ 2|∇wk|2 +
Cw2

k. So

1
2

∫
BR

|∇wk|2 − Dcγk

∫
BR

w2
k log |wk| ≥ 1

4

∫
BR

|∇(θwk)|2 − Dcγk

∫
BR

(θwk)2 log |θwk| − C

and thus by (5.6) and the logarithmic Sobolev inequality (applied to θwk

‖θwk‖L2
)

Jγk
(wk) ≥ 1

2

∫
BR

|∇wk|2 − Dcγk

∫
BR

w2
k log |wk| + Dcγk

∫
Rn\BR

wγk

k − w2
k

2 − γk

≥ −C + cγk

∫
Rn\BR

wγk

k − w2
k

2 − γk
·

Now as in the proof of Lemma 2.5 by minimizing
∫

vγ for fixed
∫

v2 under the constraint 0 ≤ v ≤ δ, we find
that this implies

Jγk
(wγk

) ≥ Dcγk

δγk−2 − 1
2 − γk

‖χRn\BR
wk‖2

L2 − C ≥ Dcγk

δγk−2 − 1
2 − γk

ε2 − C

for all k ≥ k0. Taking the lim supk→∞, we obtain C ≥ −ε2 log δ. This leads to a contradiction when δ → 0. �

Proof of Theorem 5.3. Using Propositions 5.4 and 5.5, as in Corollary 2.6 we see that every sequence (wγk
) has

a subsequence converging strongly in L2 and weakly in H1 to a radially decreasing minimizer of J . Since this
minimizer is uniquely given by

w(x) =
(

D

2π

)n
2

e−
Dx2

2

by the logarithmic Sobolev inequality (5.5), the whole sequence (wγ) converges to w. But then (wγ) is a recovery
sequence for w and wγ → w in H1 by Proposition 5.4. Furthermore,

Iγ,D(uγ,D) − Dcγ

2 − γ
= Jγ(wγ) → J(w) =

Dn

2

(
1 +

log π − log D

2

)
·

The proof of the remaining part of the theorem on the limiting behavior of uγ, D
2−γ

follows exactly along the
same lines, when cγ in the definition of Jγ is replaced by 1. �
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