Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 333-356.
© Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S08900604 11000205

An interactive, visual approach to developing and applying
parametric three-dimensional spatial grammars

FRANK HOISL anp KRISTINA SHEA

Virtual Product Development Group, Institute of Product Development, Technische Universitit Miinchen, Garching, Germany

(Recervep September 15, 2010; Acceptep February 7, 2011)

Abstract

Spatial grammars are rule based, generative systems for the specification of formal languages. Set and shape grammar for-
mulations of spatial grammars enable the definition of spatial design languages and the creation of alternative designs. Since
the introduction of the underlying formalism, they have been successfully applied to different domains including visual arts,
architecture, and engineering. Although many spatial grammars exist on paper, only a few, limited spatial grammar systems
have been computationally implemented to date; this is especially true for three-dimensional (3-D) systems. Most spatial
grammars are hard-coded, that is, once implemented, the vocabulary and rules cannot be changed without reprogramming.
This article presents a new approach and prototype implementation for a 3-D spatial grammar interpreter that enables inter-
active, visual development and application of grammar rules. The method is based on a set grammar that uses a set of param-
eterized primitives and includes the definition of nonparametric and parametric rules, as well as their automatic applica-
tion. A method for the automatic matching of the left hand side of a rule in a current working shape, including defining
parametric relations, is outlined. A prototype implementation is presented and used to illustrate the approach through three
examples: the “kindergarten grammar,” vehicle wheel rims, and cylinder cooling fins. This approach puts the creation and
use of 3-D spatial grammars on a more general level and supports designers with facilitated definition and application of

their own rules in a familiar computer-aided design environment without requiring programming.

Keywords: Shape Grammars; Spatial Grammar Interpreter; Spatial Grammars; Three-Dimensional Parametric Spatial

Grammars; Visual Rule Development

1. INTRODUCTION

Nearly 40 years ago Stiny and Gips (1972) introduced shape
grammars as a generative approach to shape design. A few
years later, Stiny (1980a) further detailed this concept and
subsequently distinguished set grammars as a simple variant
of shape grammars (Stiny, 1982). Since then, a significant
amount of research has been done on shape or set grammars,
both of which can be classified under the more general term
“spatial grammars” (Krishnamurti & Stouffs, 1993). Origi-
nally presented for paintings and sculptures, this concept
has also been successfully applied in other domains, such
as architecture, industrial design, decorative arts, and engi-
neering. Several authors, for example, Chau et al. (2004)
and Cagan (2001), provide overviews of existing spatial
grammars. However, most of the grammars that have been de-
veloped exist only on paper; just a small minority have been

Reprint requests to: Frank Hoisl, Technische Universitit Miinchen,
Institute of Product Development, Boltzmannstrasse 15, Garching 85748,
Germany. E-mail: frank.hoisl@pe.mw.tum.de

333

computationally implemented. Of those that have been imple-
mented, many are restricted to one specific design domain or
application example. Further, the majority of implemented
examples do not provide for a visual way to edit an existing
grammar or to develop a completely new grammar. Instead,
they usually require coding of grammar rules in textual
form (Chase, 2002), making at least some programming
knowledge necessary. Practicing designers, however, tend
to think spatially. They are used to working in a graphical
environment, for example, using the graphical user interface
of a computer-aided design (CAD) system, or are often not
willing or able to program due to limited programming expe-
rience. Instead, they want to focus on designing.

Recent research activity, especially in the area of two-
dimensional (2-D) grammars, shows a growing interest in
creating more flexible and interactive, spatial grammar sys-
tems. These provide the grammar user with the possibility
to not only apply rules, but also to design and change rules
(e.g., Jowers et al., 2008; Trescak et al., 2009). To date, there
is only one known three-dimensional (3-D) implementation

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

334

that supports a more flexible development of rules from
scratch by visually designing the geometric objects (Li
et al., 2009a, 2009D).

Especially in 3-D space, where spatial thinking is more de-
manding, it is important to have direct visualization of the
rules as they are developed. Without direct visualization,
the designer must first write code, and possibly compile it,
to see whether the intended geometric objects and spatial re-
lations are generated. The definition of a new grammar also
“often tends to be a ‘generate and test’ cycle” (Chase,
2002). As anew grammar is often tested and modified several
times before it describes the intended design language, this
demands proper user support not only for the development
of rules, but also for their application.

The aim of the research presented in this paper is the devel-
opment of a new approach for creating a general 3-D spatial
grammar system. Instead of being exclusively created for a
specific example or domain, the more general system pre-
sented provides a flexible platform supporting designers
with visual, interactive definition and application of their
own grammar rules in a familiar CAD environment without
programming. It supports defining nonparametric and para-
metric rules, matching the left-hand side (LHS) of a rule un-
der translation and rotation transformations in an existing de-
sign and correctly applying the rule.

The paper is written from a mechanical engineering per-
spective, with the aim of providing design support through
the integration of a spatial grammar interpreter into a CAD
system. Therefore, comparisons to CAD are drawn and the
prototype implementation is based on a 3-D solid CAD sys-
tem. This reflects a statement by Gips (1999), who describes
the idea of developing a shape grammar plug-in for a tradi-
tional CAD program that would assist in creating a shape
grammar, which in turn, would help the practicing designer.

In this paper the term visual is used to distinguish from
grammar approaches that require programming for the devel-
opment of new rules. The direct visual manipulation of dis-
played geometric objects with the computer mouse is only
possible to a limited extent, for example, to translate and ro-
tate objects. The extent to which direct visual manipulation is
possible is highly dependent on the CAD system used and
only marginally affects the actual approach. As is common
in mechanical engineering design, the need to define para-
metric relations and exact measurements is realized using
numerical inputs that trigger an immediate update of the ge-
ometry and its visualization.

The paper starts with a background section that introduces
the set and shape grammar formalism, explains the meaning
of interpreters and presents relevant existing implementa-
tions. Next, it discusses the challenges involved in creating
a general, 3-D spatial grammar interpreter. Following, the ap-
proach taken in this paper, starting with the concepts for de-
veloping nonparametric as well as parametric grammar rules,
is presented. The paper then describes the procedure for
matching the LHS of a rule in a current design and replacing
it with the right-hand side (RHS) based on the calculation of

F. Hoisl and K. Shea

the spatial relations between the involved geometric objects.
The main aspects of the prototype implementation are then
presented, followed by three illustrative examples. The paper
ends with a discussion of the benefits and limitations of the
presented approach as well as future work.

2. BACKGROUND

2.1. Terminology and formalism

Spatial grammars is a general term that includes all kinds of
grammars that define languages of shape, for example, string
grammars, set grammars, graph grammars, and shape gram-
mars (Krishnamurti & Stouffs, 1993). This paper focuses
on set and shape grammars because the presented approach
is based on a set grammar formulation, and among the related
existing implementations, there are also several shape gram-
mar systems. The formalisms of set and shape grammars
are similar. Both are generative systems that generate shapes
applying defined rules iteratively starting from an initial set or
shape that exists within a defined vocabulary of shapes. A set
grammar is formally defined as G = (S, L, R, I), where

S is a finite set of shapes,

L is a finite set of labels,

R is a finite set of rules, and

[is the initial set, where [is a subset of (S, L)°.

The set of labeled shapes, including the empty labeled shape,
is (S, L)? and is also called the vocabulary. The rewriting rules
are defined in the form A — B, where A and B are both subsets
of the vocabulary. To apply a rule to a given set of labeled
shapes, called the working shape C, first, A in the LHS of a
rule has to be detected in C. This matching process can
make use of valid Euclidean transformations, ¢, that are ap-
plied to A, to find more possible matches of A in the working
shape C. The transformed subset A is then subtracted from
C and the transformed subset B of the RHS of the rule is
added, thus resulting in a new set of labeled shapes C’' where
C'=C-1tA)+ t(B).

The formalism of shape grammars is basically the same,
where [is the initial shape, A and B are shapes in the vo-
cabulary and rules apply to subshapes of labeled shapes to
produce other labeled shapes. In comparison, set grammar
rules apply to subsets of sets of labeled shapes to produce
other such sets (Stiny, 1982). Therefore, designs generated
by a set grammar consist of shapes in S. Designs defined
by shape grammars, instead, consist of shapes and subshapes
of shapes in S, because the compositional units in designs can
be decomposed and recombined in different ways (Stiny,
1982). Shape grammars work directly on spatial forms
(Krishnamurti & Stouffs, 1993), whereas set grammars treat
designs as symbolic objects with geometric properties, which
makes them more amenable to computer implementation
(Stiny, 1982). Strictly speaking, a shape grammar involves
the use of a maximal line representation, which can be broken

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

down and rerepresented in a large number of ways. For exam-
ple, aline can be broken up into smaller line segments to form
subshapes. This ability for rerepresenting shapes in a number
of ways enables for wider matching of the shape A in the LHS
of a rule to embedded subshapes in the working shape C.

Krishnamurti and Stouffs (1993) point out that certain
kinds of set grammars could be treated as graph grammars.
Based on a set grammar formulation, the approach presented
in this paper also includes a few aspects similar to graph
grammar approaches. For this reason, the more general term
spatial grammar is used throughout this paper.

2.2. Grammar interpreters

Gips (1999) provides a general definition of shape grammar
interpreters, calling them a “program for shape grammar gen-
eration.” According to Chase (2002), “the complete process
of generating a design with a grammar involves two main
stages”: the development of the grammar and its application.
For increased usability, many existing interpreters focus on
the application of rules. However, a generalized interpreter
that provides for facilitated use of grammars without pro-
gramming must support the tasks in both stages (development
and application) in an interactive, visual manner. These tasks
include, for example, the design of the vocabulary and the
rules, the selection of a rule to be applied, the determination
of an object, or set of objects, to apply the rule to, as well as
calculating transformations and the application of the rule.

2.3. Spatial grammar implementations

To date, only a few spatial grammar systems have been com-
putationally implemented. Nearly all of these have been de-
veloped in academia as experimental prototypes or for educa-
tional purposes. An overview of implemented systems up
until 2002 can be found in Chau et al. (2004). During the
last 15 years an increasing interest in implementing more gen-
eral systems, which can provide user support for both the de-
velopment and the application phase, can be seen. To date,
the majority of these systems are 2-D systems. GEdit (Tapia,
1999) allows for the visual development of rules as well as
their interactive application, which includes subshape recog-
nition. New shapes based on straight 2-D lines can be created
in an external drawing program and are converted to a max-
imal line representation once they are imported to GEdit. Sha-
per2D (http://designmasala.com/miri/shaper2d/; McGill &
Knight, 2004) was implemented for educational purposes
and allows for the direct visual manipulation of two shapes
that are either rectangle, square, isosceles triangle, or equilat-
eral triangle by changing size, location or orientation. A max-
imum of two rules are iteratively and fully automatically ap-
plied where the resulting design is shown in real time. Most
recent research makes an effort to extend on interpreters
that can also handle curvilinear 2-D shapes. McCormack
and Cagan (2006) presented an interpreter that is able to
match curve-based shapes, including parametric shape recog-

335

nition. The focus of this system is not on the definition or
modification of grammars, but on the application and, espe-
cially, the matching of the LHS of rules in a current working
shape. Jowers implemented a shape grammar interpreter, QI,
for shapes based on quadric Bézier curves (Jowers & Earl,
2010, 2011). New rules can be visually designed by defin-
ing or manipulating the positions of the curves’ control
points. The system automatically detects the LHS of a rule
under similarity transformations and includes subshape rec-
ognition. The SubShapeDetector (http:/www.engineering.
leeds.ac.uk/dssg/downloads/requestForm.php), also devel-
oped by Jowers et al. (2008), allows for the import of hand-
drawn sketches that act as the basis for the interactive devel-
opment and application of rules. It includes a pixel-based
approach for the detection of subshapes, enabling the use of
curved shape grammars. The second version of this system,
SD2 (http:/www.engineering.leeds.ac.uk/dssg/downloads/
requestForm.php; Jowers et al., 2010), in addition, provides
for the direct computerized drawing of shapes within the soft-
ware and the definition of an arbitrary number of rules. A sys-
tem with a similar range of functionality, but restricted to
straight lines and using maximal line representation for sub-
shape detection, was published by Trescak et al. (2009;
http:/sourceforge.net/projects/sginterpreter/).

Up to now, only a few implementations of 3-D grammars
exist, and the ones that do exist are mainly designed to deal
with specific or restricted problems. Therefore, the rules, or
rule schemata, are preimplemented using programming or
scripting languages. Genesis is currently the only known
commercially used implementation of a spatial grammar sys-
tem and consequently can be considered very mature. It was
implemented at Boeing (see, e.g., Heisserman et al., 2004)
based on the original system that Heisserman developed in
his PhD thesis to generate, for example, alternative Queen
Anne houses, Sierpinski sponges, and fractal-like mountains
(Heisserman, 1994). At Boeing it is used to support the devel-
opment and interactive application of rules for tubing designs
in aircrafts, but generally speaking, it is not restricted to this
application area and could work in different domains. It en-
ables designers to explore solution spaces as well as to evalu-
ate, compare, and merge design alternatives. Rather than as
replacement rules, that is, replacing the match to the LHS
of a rule with the RHS, the design rules are formulated
through logical match conditions and design transformations.
The geometric objects as well as the rules are implemented
upfront for later use by designers. Piazzalunga and Fitzhorn
(1998) used a commercial solid modeling kernel to develop
an interpreter. In this interpreter the rules are defined using
a programming language that makes most of the kernel’s ca-
pabilities accessible. The application of these rules requires
user interaction, where the user chooses a rule and an object
to apply the rule to. Chau et al. (2004) presented an approach
that can handle rectilinear and curvilinear basic elements in
3-D space. The shapes and rules are created and edited in
an external text file and applied to generate wire frame
models.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

336

In addition to the systems described so far, a few 3-D im-
plementations provide limited capabilities to customize rules.
However, they do not allow for new rules to be defined with-
out programming. The rules are realized as preimplemented
rule schemata to which the user can assign specific values.
The sizes of shapes and their spatial relations, as well as the
number of rule applications, can be defined before the appli-
cation of a rule; the rule application itself is executed auto-
matically. Wong and Cho (2004) started from the concept
of Shaper2D (see above) and extended it to simulate 3-D
blocks into a single rule. In the revised version of this system,
Shape Designer V.2 (Wong et al., 2005), the user can choose
from several different predefined rule schemata. A rule is ap-
plied by typing a short command into a text input window.
Commands consist of a short name for the chosen rule schema
and the required values for the parameters. Depending on the
rule schema, these include some or all of the following: num-
ber of iterations, translations, rotations, scale factor, and sizes.
The 3DShaper (Wang & Duarte, 2002) provides a dialog win-
dow for a preimplemented rule schema to define the sizes and
the spatial relationships of two blocks by typing in the re-
quired values. In doing so, one or two additive rules are spe-
cified that are immediately applied and saved in data files. A
visual representation of the rules, as well as of the generated
design, is available after opening the created files in an exter-
nal viewer.

The latest prototype implementation of a grammar system
that provides capabilities for the (re)definition of rules, Gram-
mar Environment (Li et al., 2009a, 2009b), is based on the
system by Chau et al. (2004) but extends it with the capability
to define new shapes and nonparametric rules in a graphical
environment. The application of rules generates wire frames,
like the original system by Chau et al. (2004), however, is re-
stricted to the use of points and straight lines. 2-D shapes and
rules can be directly created in the Grammar Environment
system, but for the design of 3-D shapes an external shape
editor is needed. For this purpose, the commercial CAD sys-
tem AutoCAD is used. The data of the designed geometry can
be imported to the Grammar Environment system to be used
for rule definition and application.

Table 1 presents an overview of the characteristics of the
most recent spatial grammar implementations relevant to
this paper. Their relevance was determined by their 3-D ca-
pabilities and/or the possibility to visually define and modify
rules. The data was gathered from published papers and sys-
tem tutorials, by testing a working copy of the corresponding
implementation or in direct correspondence with the authors.

3. CHALLENGES

Using programming for the development of rules and their
application provides high flexibility for the implementation
of various geometry or vocabulary, especially in expressing
relations between, or constraints on, geometric objects. How-
ever, as described in the introduction, programming in a de-
sign environment has several drawbacks. An interactive vi-

F. Hoisl and K. Shea

sual approach has to provide a set of standard commands
whose functionality works on a higher level than program-
ming, but visually usable via a user interface, therefore mak-
ing it easier to work with. The interplay of the different single
commands needs to provide high flexibility to enable a gen-
eralized design and use of grammars.

In that regard, specific challenges arise, especially in con-
junction with a 3-D approach. Being the basis for the defini-
tion of a grammar, the vocabulary should be as flexible as
possible to allow for the creation of a wide variety of geomet-
ric objects. For the definition of rules, these geometric objects
have to be graphically represented to allow for direct manip-
ulation and positioning in 3-D space. The latter requires the
robust handling of 3-D transformation operations, at least
for translation and rotation. For the application of a rule, the
location and orientation of the objects have to be defined in
away that enables the automatic matching of the LHS. In gen-
eral, computer-based recognition, or matching of 3-D objects
under transformations and parametric relations, is a known
and difficult problem. This is mainly because, to date, a gen-
eral technique to computationally perform the same functions
as the human visual perception system has not been devel-
oped (Iyer et al., 2005).

To allow for a wider variety of possible designs, not only the
definition of nonparametric but also the definition of paramet-
ric rules should be possible along with their automatic applica-
tion. To enable the possibility of better directing the generation
of the solutions, it should not only be possible to automatically,
but also manually or semiautomatically, apply rules. Further,
the number of geometric objects in a rule should not be re-
stricted. The same applies to the number of rules that can be de-
fined and applied because the interaction of several different
rules generally leads to a wider variety of alternative solutions.
Once defined, it should also be possible to modify existing
rules in an easy way, especially because defining a grammar of-
ten requires several “generate and test” cycles. The possibility
to easily edit rules becomes even more important with regard to
the use of a grammar system in mechanical engineering, as the
rules can be seen as chunks of knowledge that continuously
evolve, for example, during the development process, and are
influenced by external requirements stemming from other do-
mains, for example, manufacturing constraints.

In summary, the requirements for an ideal 3-D spatial
grammar system are the following:

e general, that is, not restricted to a specific problem,

an unrestricted vocabulary allowing a wide variety of

complex, 3-D geometric objects,

definition of parametric rules,

an unlimited number of rules,

an unlimited number of objects that can be used in rules,

support for both definition of new rules and editing/

modification of existing rules,

e graphical representation and direct manipulation of ob-
jects in rules,

e robust handling of transformation operations in 3-D,

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

S0Z0001 L#09006805/£ 101 01/B10 10p"Xp//:d1Yy “swa)/2103/610 36pLiquied mmm/:diy

1B 3|qe|IeAR ‘BsN 4O SWI) 840D abpliquied ayl 03 123lgns ‘60: L L:L L 38 91.0Z das 60 Uo ‘A1elqr] ANsIaAun Yaiuniy 4o ANSIBAIUN [ea1uyda] "8.403/6.10 a6pliquieds' mmm/:diy woly papeojumoq

Table 1. Overview of related spatial grammar implementations

Shape Grammar

Name GEdit Shaper2D QI SubShapeDetector Interpreter SD2
Reference Tapia (1999) McGill & Knight Jowers & Earl (2011) Jowers et al. (2008) Trescak et al. (2009) Jowers et al. (2010)
(2004)
Dimension(s) 2-D 2-D 2-D 2-D 2-D 2-D
Shape types Straight lines Rectangle, square, Quadric Bézier curves Arbitrary (pixel Straight (poly-)lines Arbitrary (pixel based)
isosceles/ based)

Max. number of shapes

Max. number of rules
Rule format

Parametric rules
Definition/editing/

manipulation of rules

LHS matching

Transformations for
matching

Application mode

Max. number of
applications

One single, integrated
system

Unique characteristic(s)

Unrestricted

Unrestricted

Additive, subtractive,
replacing

No

Visual, interactive
(restricted to
definition)

Automatic, including
subshapes

Translation, rotation,
scale, reflection

Semiautomatic
No explicit restriction

External system
needed to create
new shapes

Preview of all
possible results
applying a rule

equilateral triangle;
replaceable by
customized
shape(s)

1 (LHS), 2 (RHS)

2 (schema)
Additive

No

Direct visual
manipulation of
shape sizes/
transformation

Rules are always
applied to most
recently added
shape; LHS is
always subset of
RHS of previously
applied rule;
automatic
transformation
detection

Translation, rotation,
reflection

Automatic

25

External file for
customized shape
necessary

Real time design
generation and
display; direct
visual
manipulation of
shapes

Unrestricted

Unrestricted

Additive, subtractive,
replacing

No

Visual, interactive

Automatic, including
subshapes

Translation, rotation,
scale, reflection

Semiautomatic
No explicit restriction

Yes
Based on parametric

curves; curvilinear
subshape detection

Unrestricted (no
explicit single
shapes)

Unrestricted (one
loaded at a time)

Additive, subtractive,
replacing

No

Visual, interactive
(restricted to copy
& paste of (sub-)
shapes)

Automatic, including
subshapes

Translation, vertical
reflection

Semiautomatic
No explicit restriction

Import of sketched
shape(s) needed

Pixel-based,
curvilinear
subshape detection

Unrestricted

Unrestricted

Additive, subtractive,
replacing

No

Visual, interactive

Automatic, including
subshapes

Translation, rotation,
scale, reflection

(Semi-)automatic
100

Yes

Generation chain preview;

generates all possible
next steps

Unrestricted (no explicit
single shapes)

Unrestricted

Additive, subtractive,
replacing

No

Visual, interactive

Automatic, including
subshapes

Translation, rotation, scale
(manual specification
of factor), vertical
reflection

Semiautomatic

No explicit restriction

Yes

Pixel-based, curvilinear
subshape detection;
preview of possible
replacements

supunup.8 uvds (q-¢ orgauvand PnsIp

LEE

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

S0Z0001 L#09006805/£ 101 01/B10 10p"Xp//:d1Yy “swa)/2103/610 36pLiquied mmm/:diy

1B 3|qe|IeAR ‘BsN 4O SWI) 840D abpliquied ayl 03 123lgns ‘60: L L:L L 38 91.0Z das 60 Uo ‘A1elqr] ANsIaAun Yaiuniy 4o ANSIBAIUN [ea1uyda] "8.403/6.10 a6pliquieds' mmm/:diy woly papeojumoq

Table 1 (cont.)

3-D Grammar Grammar
Name Genesis Interpreter 3DShaper SGS Shape Designer Shape Designer V.2 Environment
Reference Heisserman et al. Piazzalunga & Wang & Duarte Chau et al. (2004) Wong & Cho (2004) Wong et al. (2005) Li et al. (2009)
(2004) Fitzhorn (1998) (2002)
Dimension(s) 3-D 3-D 3-D 3-D 2-D or 3-D (2-D methods 2-D or 3-D 3-D

Shape types

Max. number of shapes

Max. number of rules

Rule format

Parametric rules

Definition/editing/
manipulation of rules

3-D polyhedral and
3-D swept solids

Unrestricted (rules
can operate on
other represen-
tations than shapes
as well)

Unrestricted

Described in terms of
logical match
conditions and
design
transformations
(additive,
subtractive or
replacing/
modifying)

Yes

Hard coding (high-
level language)

Blocks

1 (LHS), 5 (RHS, in
the given
examples,
theoretically
expandable)

Theoretically
unrestricted (new
ones could be
coded)

Additive, replacing

Hard coding

Blocks (cube, oblong,
pillar, square);
possibly
substitutable by a
customized shape

1 (LHS), 2 (RHS)

2 (schema)

Additive

System represents a
rule schema: pre-
implemented
shapes and their
spatial relations are
parametric

Numerical input form
for the assignment
of concrete values
to the given
parameters for the
derivation of a rule
instance

Straight lines and
circular arcs

Unrestricted

Unrestricted

Additive, subtractive,
replacing

Text file editing

simulating 3-D objects)
Triangle, rectangle,

square, block (2-D

simulating 3-D)

1 (LHS), 2 (RHS)

2 (schema)

Additive

Manipulation of a shape’s
location, translation or
scaling using sliders;
immediate update of
the displayed geometry

Straight lines, triangle,
rectangle, pentagon,
block, triangular
pyramid; in 3-D only
one single type used at
a time for a rule schema

1 (LHS), 20 (RHS, in the
given schemata,
theoretically
expandable)

3 (2-D) and 1 (3-D) in the
given schemata

Additive, replacing

Rule schemata: depending
on a particular schema,
the spatial relations and
scaling factor or some
of the sizes are
parametric

Command line input for
the assignment of
concrete values to the
parameters of a loaded
schema for the
derivation of a rule
instance; definition of
new schemata
programming Prolog
scripts theoretically
possible

Straight lines

Unrestricted

Unrestricted

Additive, subtractive,
replacing

Visual, interactive
(within a restricted
design space)

8¢¢

Day§ "y puv]S10H

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

S0Z0001 L#09006805/£ 101 01/B10 10p"Xp//:d1Yy “swa)/2103/610 36pLiquied mmm/:diy

1B 3|qe|IeAR ‘BsN 4O SWI) 840D abpliquied ayl 03 123lgns ‘60: L L:L L 38 91.0Z das 60 Uo ‘A1elqr] ANsIaAun Yaiuniy 4o ANSIBAIUN [ea1uyda] "8.403/6.10 a6pliquieds' mmm/:diy woly papeojumoq

LHS matching

Transformations for
matching

Application mode

Max. number of
applications

One single, integrated
system

Unique characteristic(s)

Design rules encode
the logical match
conditions for
applying the design
transformations

(Rules can transform
shapes using)
affine
transformations,
multiple
transformations

Semiautomatic
(interactive) or
automatic

No explicit restriction

Yes (import of
surrounding
geometry from
external CAD
systems possible)

Only known
commercially used
implementation

Manual (sub-)shape
selection

Calculated based on
the manual (sub-)
shape selection;
considering
translation,
rotation, scale,
reflection

Semiautomatic

No explicit restriction

Yes (several different
windows/views for
coding and
graphical output)

Based on a
commercial solid
modeling kernel

No explicit matching;
transformation for
each new shape is
separately
calculated
including the
transformations of
all previously
added shapes and
regarding the label
position

Cf. “LHS matching”

Automatic

No explicit restriction

External viewer
needed to display
the actual rules and
the resulting
design; external
file for customized
shape necessary

Automatic (sub-)
shape recognition
based on user-
specified
transformation (cf.
“transformations
for matching”)

Manually specified by
the user selecting a
set of point triples
in LHS and CWS;
can realize
translation,
rotation, scale,
reflection

Semiautomatic

No explicit restriction

Text file editor
needed

Using circular arcs in
3-D space

Based on the Shaper2D Not clear:
approach - 2-D: mainly based on
the Shaper2D approach
- 3-D: similar to
3DShaper including

scaling; rule is
recursively applied to
all existing blocks

Cf. “LHS matching” Cf. “LHS matching”

Automatic Automatic

14 No explicit restriction

Yes Yes (including an internal
editor for editing rule
schemata)

Real time design
generation and display
as in Shaper2D

Automatic, including
subshapes

Based on the SGS
approach;
extension to
automatic detection
of all relevant pairs
of point triples

Semiautomatic

No explicit restriction

External CAD applet
needed for the
creation of 3-D
shapes

Preview of all
possible results
applying one or all
rules

Note: 2-D, two-dimensional; LHS, left-hand side; 3-D, three-dimensional; RHS, right-hand side; CWS, current working shape; CAD, computer-aided design; Reference, one of the latest publications about the
implementation; Dimension(s), dimension of the space in which the shapes/rules are used; Shape types, types of shapes that are used in the given rules or that are provided in the implementation for the definition of
rules, for example, some systems provide straight lines to define other, more complex shapes and others are restricted to a given set of predefined shapes; Max. number of shapes, maximum number of shapes that
can be used in the definition of a rule or that are given in a rule schema; Max. number of rules, maximum number of rules that can be defined in a grammar, where some systems are preimplemented rule schemata
that are restricted to a certain number of rules; Rule format, the types of rules the implementation supports/provides, which can be “additive” if only part of the RHS equals the LHS, “subtractive” if the RHS equals
only part of the LHS, or “replacing” if the complete LHS is substituted by the RHS; Parametric rules, depicts whether the implementation uses or allows for the definition of parametric rules as described in Stiny
(1980a); Definition/editing/manipulation of rules, depicts the means of user interaction for the definition of new rules, editing existing rules, or the manipulation of rule schemata; LHS matching, characterization of
how the LHS (shapes and transformations) of a rule is matched in the CWS; Transformations for matching, the kinds of transformations that can be used to find matches of the LHS in the CWS; Application mode,
the level of human intervention required or allowed in application steps, for example, the selection of a rule or an object to which a rule is applied; Max. number of applications, some implementations are restricted
to a certain number of rule applications (or iterations); One single, integrated system, some implementations require external systems, for example, for the definition of new shapes or to view generated designs;

Unique characteristic(s), characteristics that can only be found in the corresponding implementation.

supunup.8 uvds (q-¢ orgauvand PnsIp

6£¢

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

340

e automatic matching of the LHS of rules under transfor-
mations and considering parametric relations,

e interactive application of rules (automatic, semiauto-
matic, manual), and

e an intuitive user interface requiring little to no program-
ming.

4. APPROACH

As stated in Section 2, the approach described in this paper is
based on a set grammar formulation of spatial grammars. The
vocabulary consists of a set of parameterized 3-D primitives,
namely, box, torus, cone, cylinder, sphere, and ellipsoid. De-
fining more than one primitive in a grammar rule, as well as
variations of the defined parameters, allows for the description
of a wide range of fairly complex geometry. In addition, the use
of parameterized primitives enables the definition of paramet-
ric rules, including parametric relations, as the parameters
are explicitly defined for each object. Figure 1 shows a base
version (left) and a version with alternative parameter values
(right) for each primitive used, including the parameterization.

Using these primitives as a basis, the approach will be pre-
sented in this section, which is, according to Chase’s defini-

heigpy

DN\

boxes

spheres

radius2

) angle

Fig. 1. Primitives used illustrated by two different instances.

tori

F. Hoisl and K. Shea

tion (Chase, 2002), subdivided in two main sections: the de-
velopment and the application of a spatial grammar.

4.1. Development of grammar rules

To define rules in the form A — B (cf. Section 2.1), one needs
to define the geometric object(s) in A and B as well as their
spatial and possibly parametric relations. The fundamental
aspects for the visual definition of spatial grammar rules are
the creation and the positioning of geometric objects in 3-D
space. This section presents two types of rule definitions,
namely, nonparametric and parametric rules.

4.1.1. Development of nonparametric rules

The basis for the definition of geometric objects is the
given set of parameterized 3-D primitives shown in Figure 1.
An object is created by choosing one of these primitives and
by assigning values to its parameters. As is usually the case in
the design of solids in mechanical engineering CAD, the in-
put is realized numerically so that exact values can be as-
signed to the parameters. The parameters describe the size
as well as the location and orientation of the objects. In
the process of designing a rule, the assigned values can be

'

cylinders

radius1

=
E=J
o
=
cones
radius2
angle2
angle1 radius1

angle3

ellipsoids

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

modified until the intended rule is achieved. The final parameter
values defined remain static in the later application of the rule.

Every primitive geometric object that is created has its own
local coordinate system. This coordinate system and, therefore,
the attached object itself, can be translated and rotated in relation
to the global coordinate system labeled x, y, z in Figure 2 (left).

Through this coordinate system, the location and orienta-
tion of the object is defined or changed in 3-D space. The in-
formation about the position is kept in a transformation ma-
trix. As is common in 3-D applications, this is a 4 x 4
matrix containing homogeneous coordinates (Fig. 2, right).
It enables the calculation of different kinds of transformations
in one single matrix. Several transformations can be easily
concatenated by multiplying the corresponding matrices.
This is especially useful for the application of spatial gram-
mar rules, as they require the replacement of the transformed
LHS of a rule, #(A), by the transformed RHS, #(B).

For simplicity in defining the spatial relations of objects
and easy access to the transformation information, a rule is de-
signed such that there is one reference object, Ly, in the LHS.
The reference object is located in the global origin and must
not be rotated. It is the basis for the detection of the spatially
related objects in the rule’s LHS (cf. Section 4.2.1). The trans-
formation matrix of the reference object, 77, always equals
the identity matrix /. Any further geometric objects in the
LHS are then positioned in relation to this reference object
and, therefore, in relation to the global origin. Thus, the rela-
tive spatial relations of the single objects are implicitly de-
fined via the reference object. For an arbitrary number, m,
of objects in the LHS, the transformation matrices of addition-
ally added objects are denoted 77; forj=1,...,m — 1. The
objects in the RHS of a rule are also positioned in relation to
the global origin and, as a result, are implicitly positioned in
relation to the reference object in the LHS. There is no need
for a reference object in the RHS, that is, any object can be ar-
bitrarily located and rotated. The transformation matrices of
an arbitrary number, n, of objects, R;, in the RHS of a rule
are denoted Tg; fori =0, ..., n — 1. Figure 3 shows an ex-
ample for a rule consisting of several objects including the ref-
erence object, L, located at the global origin in the LHS.

4.1.2. Development of parametric rules: Relations
between parameters

In the previous section, the used parameterized primitives
are assumed to be fully defined, that is, specific values are as-

Fig. 2. Global coordinate system and object with local coordinate system
(left) and general transformation matrix (right). [A color version of this
figure can be viewed online at journals.cambridge.org/aie]

341

z =2
’ L

Fig. 3. Example for a nonparametric rule. [A color version of this figure can
be viewed online at journals.cambridge.org/aie]

signed to all parameters. The outcome is rules that are based
on fixed, fully determined objects. Stiny (1977, 1980a)
describes parametric shape grammars where the rules are
based on parameterized shapes and some or all of the pa-
rameter values are not predefined in the rule. Thus, a rule
schema is defined that describes many different but related
rules in one generalized rule. This allows for a wider variety
of possible designs to be generated by fewer rules.

On paper, defining parametric rules is straightforward.
Parametric relations and constraints are often implied using
additional descriptive text (e.g., Stiny, 1977). However, a
general computational implementation cannot be as easily
created. One of the crucial points is to automatically match
a general parameterized shape in the LHS of a rule to an ex-
isting design. Partially adapted from Stiny’s original defini-
tion, in the following aspects for the development of paramet-
ric rules are elaborated on.

As described in the previous section, parametric rules re-
quire all the basics needed for the development of nonpara-
metric rules. Even though the intention is to define a paramet-
ric rule, initially the geometric objects have to be fully
determined, that is, specific values have to be assigned to
all parameters. This is because a visual grammar system, in
comparison to a grammar on paper or a hard-coded grammar,
would not be able to create and display objects that initially
have one or more unspecified parameters. Once the initial,
nonparametric state of an object is designed, one or more of
its parameters can be “unlocked,” denoted as “free parame-
ters,” to make it parametric. Parameters that can be unlocked
are not only the ones that define geometric dimensions, called
“size” parameters, like width, length, radius, and so forth, but
also those that determine the position of an object in 3-D
space, called “location” and “orientation” parameters. Loca-
tion parameters determine the translation of an object in the
X, y, and z directions; orientation parameters determine the ro-
tation defined as “yaw, pitch, and roll.”

If a parameter is unlocked, by default it is completely un-
restricted, that is, any real value can be assigned to it. How-
ever, there are two ways to constrain free parameters:

1. The values that are allowed to be assigned to a free pa-
rameter can be restricted to a certain range. An example
rule with restricted ranges of possible values for the
width w of a box and its rotation angle 6 around the x
axis is shown in Figure 4.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

342

X

Fig. 4. Parametric rule with free parameters that are restricted to certain
ranges. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

2. Parametric relations can be defined between free param-
eters. To make a free parameter dependent on one or
more other free parameters, mathematical equations
can be defined. These equations consist of different op-
erators and mathematical functions used with either free
parameters as operands and/or numeric operands. For
example, in Figure 5 the radius r of the cylinder is de-
pendent on the height using the equation r = 1/4 * h?
— a1, whereas £ is restricted to a certain range.

This is similar to the approach taken in many commercial
mechanical CAD systems for the definition of parametric re-
lations in or between geometric models. In a CAD system,
this is primarily used to lower the effort needed for the mod-
ification of a model. Changing the value of just one parameter
subsequently triggers the change of one or more other param-
eters in the same model. The concept for grammar rules used
here is basically the same; however, the main purpose is not
the easier adaptation or modification of the geometry, but the
definition of size or spatial relations within one or between
different objects.

The examples given so far have considered only objects in
the RHS of a rule, but the described specification of free pa-
rameters can also be used for geometric objects in the LHS.
The impact of parametric objects in a rule is slightly different
depending on the side of the rule in which they are defined. In
the RHS a parametric object provides for the generation of a
wider variety of differently sized and transformed objects (see
Section 4.2.2). In the LHS a parametric object allows for
matching a wider range of objects (see Section 4.2.1), so
that the same rule can be applied in more cases. Taking a com-
pletely unrestricted parameter as an example, this means that
all objects of the same primitive type with any arbitrary value

X

Fig. 5. Rule with parametric relation in the right-hand side (RHS). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

F. Hoisl and K. Shea

for this free parameter can be detected as a match for the LHS.
Figure 6 shows an example in which the parameter wy, of the
box in the LHS is defined as being completely unrestricted,
whereas a parametric relation between the width wg, in the
RHS and wy,, is defined.

For the special case in which all size parameters of an ob-
ject in the LHS are “unlocked” and completely unrestricted,
all objects of the same primitive class can be found, for exam-
ple, all boxes, no matter what length, width, or height. This is
the most general definition of a parametric rule’s LHS.

For more restricted matching in the application of a rule, a
range of allowed values can be assigned to free parameters in
the LHS, as well as parametric relations, as described above,
to establish dependencies between free parameters in the
LHS. For example, a parametric relation between length
and width of a box can be defined as I = 3 =« w, so that the
matching is restricted to objects with a ratio of three between
these two parameters. This concept can be further used for de-
tecting scaled versions of an object. For example, if the length
of abox is completely unrestricted but its width and height are
restricted by the parametric relations width = length and
height = length, the matching will detect all cubes, no matter
which size.

For the definition of parametric relations it is for now as-
sumed that the user sets them in the correct order, that is, in
such a way that they can be evaluated correctly once the
rule is applied. There is currently no mechanism for validat-
ing rules and checking for cyclic relations between free pa-
rameters, for example, width = length, length = height and
height = width.

4.2. Application of spatial grammar rules

The application of grammar rules can be subdivided into dif-
ferent steps, which are, according to Chase (2002):

e the determination of a rule to apply,

e the determination of an object to which the rule is ap-
plied, and

e the determination of a matching condition.

The latter two steps concern the matching of the LHS of a rule
(cf. Section 4.2.1) in the current design, which is denoted as
the current working shape (CWS). Once a match is found, a
further step is needed. According to the grammar formalism,
the match has to be subtracted from the CWS and then be
replaced by the RHS of the rule under the matching transfor-
mation and taking the evaluation of possibly defined free pa-
rameters into account (cf. Section 4.2.2).

The steps above can be performed manually, semiauto-
matically, or automatically. In the approach presented here,
the selection of rules to apply, as well as the number of rule
applications, is assumed to be done either manually by the
user or randomly by the system. The remaining steps are sup-
ported automatically. The semiautomatic application of rules
in this approach is restricted to the scenario of “manually

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

Fig. 6. Rule with completely unrestricted parameter in the left-hand side
(LHS) and parametric relation in the right-hand side (RHS). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

selecting a rule and automatically detecting all objects to
which it can be applied.” The alternative scenario of “manu-
ally selecting an object and automatically finding all rules that
can be applied to it” is not included here.

4.2.1. Matching: Detection of the LHS of a rule
in the CWS

Once arule is selected, according to the equation C' = C —
1(A) + t(B) (cf. formalism in Section 2.1), the first step is to
detect the LHS of the rule under a certain transformation,
1(A), in the CWS. Generally, the automatic matching of the
LHS of a rule in a current design is a difficult problem, espe-
cially in 3-D systems. Existing 3-D grammar systems require,
for example, manual matching by the user (e.g., Piazzalunga
& Fitzhorn, 1998) or they circumvent the problem due to the
nature of the provided rules and the way the transformation
for every single shape is calculated (e.g., Wang & Duarte,
2002).

The aim of the approach presented in this paper is to auto-
matically match the LHS of a rule in the CWS. As the ap-
proach is based on basic primitives, it can benefit from the
fact that for any primitive it is explicitly known which class
itis derived from, that is, the “type of primitive,” for example,
box and cylinder.

Several conditions have to be fulfilled so that a LHS with
an arbitrary number of objects and defined parametric rela-
tions can be detected in a CWS. The procedure consists of
four main steps, which are illustrated in Figure 7 and ex-
plained below.

Before the detailed detection is performed, a rough pre-
check (step 0) is useful to examine whether matching is pos-
sible, in general, illustrating an advantage of a set grammar
approach. First, the geometric objects in the LHS of the
rule are counted and the result is compared to the total number
of objects in the CWS. If the latter is smaller than the number
of objects in the LHS, a match is not possible. The second
part of the precheck treats the LHS objects as isolated, single
objects. It determines the primitive type of every object in the
LHS and checks whether an object with the same type exists
in the CWS. If there are more objects of a primitive type in the
LHS than in the CWS, matching is also not possible. For ex-
ample, if there are two boxes and one cylinder in the CWS but
three boxes in the LHS, the rule cannot be matched. These

343

(©) pre-checks:

compare total number of objects
and occurrences of object
types in the CWS and LHS

|

() find match of the
reference object L,
in the CWS objects C,

|

) find matches of the remai-
ning objects in the LHS, L;,
in the CWS objects C,

!

@) check the equality of the relative
transformations defined in the rule’'s LHS
and between the objects in the CWS
TLj = Tcp;-1 . Tc

M

continue detection of further
sets of matching objects

q

h 4

return set of matching objects,
if all matching conditions
are fulfilled

Fig. 7. General steps for matching a left-hand side (LHS) with an arbitrary
number of objects in a current working shape (CWS).

simple prechecks can help save considerable computational
time.

The approach for the detailed matching finds all possible
matches of the LHS of a rule in the CWS. Beforehand, one
reference object, Ly, in the LHS is identified, as it is theoreti-
cally possible that there is more than one object located in the
global origin without any rotation.

Step 1. The first step is to find matches of Ly within all the
CWS objects, Cy, fork=0,...,p — 1, where p is the total
number of objects in the CWS. This consists of a comparison
of the objects’ primitive types with the primitive type of Ly
and an equality check of the size parameters. The latter either
compares the exact parameter values for a nonparametric L
or evaluates the free parameters in the case of a parametric
Ly, which can include the check of values for parameter
ranges or the mathematical evaluation of given parametric
equations.

Step 2. For every match of the reference object, Ly, the
remaining objects in the LHS, L; forj=1,...,m — 1, are
checked for matching in the CWS. Every L, is therefore com-
pared to the CWS objects, Cy, starting with ¢ = 0 and incre-
menting ¢ until a match is found or ¢ = p — 1, excluding the
case where C, is represented by the same object as the consid-
ered match of the reference object. The procedure is the same as
in Step 1, except that L; is checked instead of Lo.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

344

Step 3. If a certain object, L; matches a CWS object, C;,
the spatial relation between L; and Lo has to additionally be
equal to the spatial relation between C, and the considered
Cy. This is checked by comparing the relative transformation
matrices of the two pairs of objects. The condition that has to
be fulfilled is: T, = T, o Tk,

If all matching conditions are fulfilled for all objects in the
LHS of a rule, the set of matched objects is returned. The out-
come of the complete matching procedure is the set of all
matches of the LHS in the CWS, whereas every single match
itself is a set of objects or at least one object.

An illustrative example of the procedure is given in Figure 8.
All size parameters of boxes in the LHS as well as in the CWS
that are not explicitly shown are 10 mm. The upper part of the
figure shows a rule with two free parameters defined in the
LHS. The width of object L; is restricted to a range between
7 and 12 mm and the height is parametrically dependent on
the width. The precheck for matching the LHS in the CWS
(lower part of Fig. 8) is successful, as the number of objects,
or boxes, in the LHS of the rule (two) is lower than the number
of objects (five) or boxes (four) in the CWS. Object Ly is loca-
ted in the global origin without any rotation and is, therefore,
the reference object of the LHS. It is checked for matches to
all objects of the CWS. The first object, Cy, does not match,
as it is of a different primitive type (cylinder). Object Cy, in-
stead, is of the same type and can be further checked for match-
ing of the parameters. No free parameters are defined for L, so

h, =

1

F. Hoisl and K. Shea

that the parameter values must be directly compared to those of
object C;. Width, length, and height of both the objects equal
10 mm and, therefore, C; is the first match of the reference ob-
ject Ly. Based on this, the remaining objects of the LHS, in this
case only L;, have to be checked for possible matches in the
CWS. Object Cy, again, does not match because of the different
primitive type. Object C; is the match for the reference object,
Ly, and must not be checked again. Object C, has the same
primitive type as L;. For the detailed check, the free parame-
ters defined for L; have to be taken into consideration. The
width of C,, which is 10 mm, is within the required range.
The parametric relation of the height to the width, h;, =
wy,, is also fulfilled, as the height equals 10 mm. Further,
the nonparametric length of 10 mm is also equal for both
the objects. The last condition that has to be fulfilled is the
equality of the relative transformation between the object pairs
(Lo, Ly) and (Cy, C3). The equation 77, = TC_]l e T¢, istrue in
this case, because L; is translated by 5/10/10 mm in x—y-z di-
rection (not explicitly shown in Fig. 8) in relation to Ly and so
is C; in relation to C. Therefore, the first set of matching ob-
jects is (Cy, Cy).

The matching procedure continues identifying the refer-
ence object’s next match, Ly, in the CWS. The next object
in the CWS that fulfills all conditions is C,. Candidates for
matching the second object in the LHS are the boxes Cj,
C4, and C3, whose width and height are slightly shorter be-
cause they match the size parameters of L;. However, taking
a look at the spatial relations between the objects in all

hRD: 1.5I'W|_1

Fig. 8. Example for the matching procedure: rule above, current working shape (CWS) below. [A color version of this figure can be viewed

online at journals.cambridge.org/aie]

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

possible pairs, (Cy, Cy), (C, Cy4), and (C,, C3), shows that
none of the relative transformations are identical to that of
(Lo, Ly) in the LHS of the rule. In the case of the pair (C5,
C)), the absolute values in the relative transformation matrix
are the same, but in comparison to the pair (C;, C) the trans-
lation values in the matrix are negative and, therefore, no
match is detected.

The check of the remaining objects for matching the reference
object, Ly, is negative for C5 because the values of the nonpara-
metric width and height do not match, but positive for C4. The
objects that fulfill the conditions for matching the size parame-
ters of L, are Cy, C,, and C3, whereas only the spatial relation of
(Cy, C3)is the same to that of (L, L;). In summary, the set of all
matches of the LHS in the CWS that are given in the example
shown in Figure 8 consist of ([Cy, Cz], [Cy, C3]).

4.2.2. Calculation of dimensions and transformations
of the RHS objects

Following the equation C' = C —#(A) + #(B) (cf. formalism
in Section 2.1), all of the rules are realized as replacement
rules, that is, the matched LHS is always fully subtracted
from the CWS and replaced by the transformed RHS. Al-
though this is not always computationally efficient, it is the
most general way to create a spatial grammar interpreter.

The starting point for the replacement is the set of all pos-
sible LHS matches detected (Section 4.2.1). In a parallel
grammar approach, the rule would be applied to all these
matches simultaneously (Gips, 1975). However, as is the
case with most existing grammars, the approach described
here is based on a serial application of rules. Therefore, a
rule is always applied to only one match out of all found
matches. This match can either be determined automatically
by a randomized selection or manually chosen by the user.

The RHS objects that will be inserted into the CWS to re-
place the detected LHS objects are denoted C; fori =0, ...,
n —1, where n is the number of objects in the RHS, as intro-
duced in Section 4.1.1. The transformation information, 7¢,,
of the object that was matched to the LHS reference object is
explicitly available, as are the transformation matrices Tg; of
the objects in the RHS of the rule (cf. Section 4.1.1). The new
position of every object, C';, is determined in two steps: add
the object to the CWS under the transformation T%;, as de-
fined in the RHS of the rule and, in order to fulfill the equa-
tion in the grammar formalism, apply the transformation un-
der which the LHS was detected “#(A)” to the RHS object
“t(B).” This means that the transformation of R; is addition-
ally multiplied with the transformation of the object C.
Eventually, for all objects in the RHS, this results in the equa-
tionTC;=TCk o Tp fori=0,...,n— 1.

If the RHS of a rule is parametric, the free parameter values
also need to be considered. First, arbitrary values, possibly
within the given ranges, are assigned to all free parameters
that are independent of any other parameters. This can be
done either manually by the user or randomly in an automatic
mode. Note that the values assigned to completely unre-
stricted parameters can be dependent on implicit restrictions

345

to generate valid geometry, for example, length, width, and
height have to be positive. The remaining dependent param-
eters are then calculated. To adapt the geometry of the objects
in the RHS according to the defined parametric relations, the
given equations are evaluated in the same way as during the
LHS detection (cf. Section 4.2.1). The order of the equations
for the evaluation is based on the order in which they are de-
fined in the rule.

After all transformations are calculated and the parameter
values are determined, the objects of the selected match can
be subtracted from the CWS and replaced by the RHS objects
under the calculated transformations.

Coming back to the illustrative example in Figure 8, the de-
picted replacement procedure is as follows: out of the set of all
found matches, the match (C;, C,) is chosen. In this case, C is
identified as the match of the LHS reference object. The RHS
of the rule consists of only one object, Ry. It will be the new
object C in the CWS after the replacement and its position
is calculated according to the equation: T¢, = T¢, ® Tg,. In
addition, the parametric relation defined for R is evaluated.
This results in a height of 15 mm for the cone, as the width
of the object C; that matched the object L; is 10 mm. Last,
C| and C, are subtracted.

5. IMPLEMENTATION

A prototype software system of the approach described in this
paper has been implemented and published as open source
software (http:/sourceforge.net/projects/spapper/). It is based
on an open source 3-D mechanical engineering CAD system
(http:/sourceforge.net/apps/mediawiki/free-cad/) that in turn,
is built using an open source geometric modeling kernel
(http:/www.opencascade.org/). By using the existing user in-
terface and the functionalities for geometry generation and
manipulation provided by the kernel and the CAD system, re-
spectively, the coding effort was kept within reasonable lim-
its. The approach for the interpreter is realized as a Python
(http:/www.python.org/) module that is integrated at the
startup of the system. It adds an additional workbench to
the CAD system, including two special toolbars for the devel-
opment and application of spatial grammars. For the develop-
ment of a new rule, two windows are opened for the design of
the geometric objects and their relations in the LHS and RHS
(Fig. 9).

The functionality of the existing ‘“Part”-workbench of the
CAD system is used to insert and position geometric objects.
Direct visual manipulation with the computer mouse is pos-
sible to translate and rotate objects. The definition of further
values to, for example, set the measurements of an object, is
realized using numerical inputs. The visualization of the ge-
ometry is immediately updated according to these inputs.
Once fully defined, rules can be saved and later opened and
edited. A rule is saved as an archive file that internally con-
sists of an XML-file for the free parameters and two CAD
files containing the geometry of the LHS and RHS as bound-
ary representation (B-rep) data. For the definition of free

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

S0Z0001 L#09006805/£ 101 01/B10 10p"Xp//:d1Yy “swa)/2103/610 36pLiquied mmm/:diy

1B 3|qe|IeAR ‘BsN 4O SWI) 840D abpliquied ayl 03 123lgns ‘60: L L:L L 38 91.0Z das 60 Uo ‘A1elqr] ANsIaAun Yaiuniy 4o ANSIBAIUN [ea1uyda] "8.403/6.10 a6pliquieds' mmm/:diy woly papeojumoq

! FreeCAD

File Edit View Tools [

s E 4 50

TABEDE LR
R b !
Labels & Attributes

Application

« [B LHS
4+) CoSy
& GlobalOrigin =

Height 15,00 mm
Length 55.00 mm
Width 20.00 mm

o] e s 2 WO OHD AO D

B & 5

5‘ LHS: 14

[s 1% | i res i |

Report view

Active view is RHS : 1[*]

Sel : Clear selection
Hide main window
Show main window

Active document is Unnamed (at 107CB6AB)

(at 1EE1BE&48)

Active document is RHS (at 107CAROS)

B output Python console

Preselected: RHS.Box Face6 (19.569757,27.932812,15.000000)

Fig. 9. Screenshot of the prototype software system. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

or¢e

Day§ "y puv]S10H

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

parameters, a geometric object can be selected and a dialog
window is opened that lists all the size, location, and orienta-
tion parameters of the object, as well as all relevant free pa-
rameters that have already been defined through other objects
in a rule (Fig. 10).

As described in Section 4.1.2, a free parameter can be com-
pletely unrestricted, restricted by a certain range, or defined
by a parametric relation. In the latter case, an equation string
is defined by dragging and dropping parameters from the free
parameters list to the input field and extending it by typing in
additional operators and operands or mathematical functions
(cf. upper RHS in Fig. 10).

In addition, to ease the development of rules, the system
provides the following functionality:

1. the possibility to copy objects from one rule side to the
other, which is especially helpful for defining additive
or subtractive rules,

2. display the LHS of a rule in the RHS window, so that it
is easier to recognize and adapt the spatial relations of
the objects,

3. show the local coordinate systems of selected objects to
identify their orientation more easily, and

4. recalculate the position of a selected object to the global
origin and relatively transform the remaining objects of
the corresponding rule side.

After opening a current working shape, which can be de-
signed and saved using the standard functionality of the
CAD system, saved rules can then be loaded and applied.
The chosen rules are displayed in a resortable list that repre-
sents the application sequence of the rules. It is part of a
dock window that further provides settings to specify the
manual, semiautomatic or automatic application (Fig. 11).
This includes the number of rule applications, the number
of solutions to generate, the application sequence (list order
or random), the selection of one of the LHS matches (random
or manual) or the mode of assigning values to free parameters
(random or manual). In addition, loaded rules can be acti-
vated or deactivated to explore the impact of rules on the de-
rived solutions.

6. EXAMPLES

To evaluate the approach, several spatial grammars were de-
signed using the prototype system described above.

6.1. Kindergarten grammars

The first example that was developed is based on the rules of
the “kindergarten grammar.” Stiny (1980b) describes rules
using Froebel building blocks from the kindergarten method
as an approach for the definition of design languages. For the
majority of the rules the vocabulary consists of simple blocks
that are orthogonally combined in many different ways.
While Stiny drew the rules and created designs “by hand”

347

on paper, Wang and Duarte (2002) implemented a computa-
tional system that covers, but is not limited to, several of the
kindergarten grammar rules in one rule schema, which is
based on parameterized sizes and spatial relations of blocks.
Deriving an instance from this schema by assigning specific
values to all parameters defines a specific, nonparametric
rule. This paper shows new extensions to this example
through the definition of parametric rules.

One of the very basic rules defined by Stiny adds one
block on top of another turned by 90 degrees. This is de-
scribed easily using the prototype system, as only the sizes
and the location and orientation of the objects have to be de-
termined. Figure 12 shows the rule as originally defined
(Fig. 12a), the rule defined using the prototype system
(Fig. 12b), the initial set (Fig. 12¢), and the result after ap-
plying the rule seven times (Fig. 12d). In the same way that
Stiny defined it in his original example, the rule is only ap-
plied to the most recently added object. The automatic LHS
matching procedure always finds all existing blocks as
matches because they are all the exact same size. To force
the rule application to the most recently added object, the
system is used in a semiautomatic mode, where, out of all
the matches, the user manually selects the one match that
contains the previous added object.

In the original version of the rule (Fig. 12a), a label is used
to realize the application only on the most recently added ob-
ject. This label further determines the spatial relation between
the two blocks. In this, as well as in the following examples
(see below), no explicit labels are used. Instead, the local co-
ordinate systems can be seen as implicit labels as they carry
the information about the location and orientation of each ob-
ject. Note that the local, as well as the global, coordinate sys-
tems are not shown in all of the resulting designs presented in
this paper for better clarity.

To make use of more general rotations, the rule above is
edited in the prototype system so that the block on top is ro-
tated by only 40 degrees (Fig. 13a). Using the same initial set
as above, 15 applications of the new rule results in the spiral-
like design shown in Figure 13b. This design could also have
been generated using the 3DShaper (Wang & Duarte, 2002).
To go beyond the capabilities of this system, the rule is further
modified in a way that emphasizes the importance of the LHS
matching for the rule application. The aim is to decrease the
height of the block on top by 10% in comparison to the most
recently added block and create a spiral with decreasing block
height. Therefore, a parametric relation is defined that makes
the height of block R dependant on the height of Ly using the
equation hg, = hy, ® 0.9. The prerequisite for this is that the
parameter /;,, is unlocked (Fig. 13c). Otherwise, the equation
would always return the same result and the rule would im-
plicitly be nonparametric. Furthermore, the rule could only be
applied once to the most recently added object because the
LHS matching could no longer detect the block with the de-
creased height.

The design generated using the parametric rule (Fig. 13d)
is not very different from the one in Figure 13b, only the

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

5020001 L¥09006805/£ 101 01/B10 10p"Xp//:d1Yy “swia)/2103/610 36pLIquied mmm/:diiy

1B 3|qe|IeAR ‘BsN 4O SWI) 840D abpliquied ayl 03 123lgns ‘60: L L:L L 38 91.0Z das 60 Uo ‘A1elqr] ANsIaAun Yaiuniy 4o ANSIBAIUN [ea1uyda] "8.403/6.10 a6pliquieds' mmm/:diy woly papeojumoq

— —
RE-‘ Free Parameter Configuration for RHS.Box1 L h
Geometry Parameters | Unlock | unrestr. | Range min max [Equation © | Free Parameters
Height: © |[® [Elf E|]|@ pow(Hs.BoxHeight,2)*0.9 || el
—_ = — = = RHS.Box.Height
Letotic we |@ (O (L B HO | | | Ris.BoxLHeight
Width: 2000 | (@) ® 1 BH)h BH® | |

Placement Parameters | Unlock | unrestr. | Range min [Equation ©

TranslateX:

TranslateY:

TranslateZ:

Yaw:
Pitch:

t

©
©
®©

lf_\ Y ()

) () (

(

N

i

©
©
©

A

€

QO

|
l
|
I
|
I

OO0O0O00O0

Fig. 10. Dialog window for the definition of free parameters. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

8Y¢

Dayg Y puv [s10H A

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

349

Loaded Rules and Application Settings:

Number of Applications: 1 ;_:f Application Sequence: |List Order ~ | Number of Solutions: 1

| [clear Rule List

Loaded Rules

L I

Eﬂ delete_fin.rule .

vy

@ add_fin_rotated_90.rule

[] add_reinforcing_fin.rule

Matches Selection

»

Free Parameters

Range Unrestricted
[Random vl [Random v”Random v] E] E =
Random ~ '\Random v E] E] B
[Random v] [Random v] [Random v] E] E]

Fig. 11. Dock window with list of loaded rules and application settings. [A color version of this figure can be viewed online at journals.

cambridge.org/aie]

very last block is thinner than the others. The LHS matching
and the evaluation of the equation are correctly performed,
but the block Ry is not considered in the parametric definition
of the rule. Thus, it is inserted with its original size every time
the rule is applied, replacing the previously inserted thinner
block. To prevent this, an additional equation, hg, = hy,, is
introduced that creates a dependency between the height of
Ry with the height of Ly and, therefore, to the object that is
matched with the LHS during the application of the rule
(Fig. 13e). The resulting design in Figure 13f shows that
the height of the objects now correctly decreases with every
step, but the single blocks are not positioned on top of each
other anymore. To achieve the desired design (Fig. 13h) the
translation in z direction of the second block in the RHS

(d)

(©)

Fig. 12. Basic kindergarten grammar rule as originally (a) defined by Stiny,
defined in the (b) prototype system, (c) initial set, and (d) generated design.
[A color version of this figure can be viewed online at journals.cambridge.
org/aie]

has to additionally be dependent on the height of Ly, achieved
by the equation zz, = hy (Fig. 13g). For the development of
nonparametric and, even more so, for parametric rules, it is
important that the system supports the user with the possibil-
ity to easily modify already defined rules. This is especially
the case because several “generate and test” cycles are often
needed to reach the intended result, as seen in the example
above.

An extended version of the design generated in Figure 13h
illustrating the possibility of applying a rule to more than just
the most recently added object, is shown in Figure 14. After
15 applications of the rule in Figure 13g a modified version of
that rule, which does not turn the second block by 40 degrees
but instead by 20 degrees in the opposite direction, is applied
to several blocks.

6.2. Vehicle wheel rims

The generation of vehicle wheel rims was chosen as a me-
chanical engineering design example because single piece
rims combine mechanical issues, for example, strength,
with the need to be aesthetically pleasing. The rim rules are
all nonparametric. The four rules for the generation of the
spokes are shown in Figure 15. Rule (a) inserts the first spoke
in relation to the hub; rule (b) adds a second spoke translated
in the x direction in relation to an existing spoke; rule (c) re-
places an existing spoke by two new spokes that are rotated by
45 and —45 degrees, respectively; and rule (d) adds a new
spoke rotated 90 degrees in relation to an existing one.

The rules above allow the single objects to overlap, which
can help to generate more unexpected designs. In fact, inter-
penetration can be a valuable technique in design and design-
ers often conceive of designs in terms of interpenetrating
masses or volumes (Stiny, 19800).

The starting design for the grammar, consisting of the
felly and the hub of the rim (Fig. 15e), is designed manually

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

350

-
-

&

]

F. Hoisl and K. Shea

uhe, = hy *0.9

’

hl_‘J unrestr.
X

V‘w

(h)

Fig. 13. Evolution of a “kindergarten grammar” rule including parametric relations. [A color version of this figure can be viewed online at

journals.cambridge.org/aie]

in this case using the standard functionality of the underly-
ing CAD system. To generate acceptable design solutions,
the rules are applied in a semiautomatic mode where the
user decides how many rules to apply and in each applica-
tion step manually chooses one of the found LHS matches.
A selection of different generated solutions is shown in
Figure 16. While some of the results were predictable,
others were unexpected, for example, the two on the right
side.

The creation of engineering designs is always influenced by
many constraints not only in the designs themselves, but also
stemming from other domains like customer requirements,
manufacturing, costs, and laws and standards. Production cap-

abilities have an especially large influence on the geometry of a
design. The spokes of customized rims, like the ones generated
with the grammar above, are sometimes manufactured on mill-
ing machines due to the high flexibility and the low volumes
produced (see, e.g., http:/ead-europe.com/services.htm or
http:/www.speedtrix 1.com/products/wheels.html). The spokes
of the designs shown in Figure 16 are all in one plane. The ne-
cessity to have the spokes on one plane could be required due to
restrictions of the available production capabilities. Extending
these capabilities to more complex manufacturable 3-D geom-
etry directly influences the range of valid rules that can be de-
fined and, therefore, the resulting solutions. Generally speak-
ing, it is possible to modify rules systematically to define

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

351

Fig. 14. Modified rule and extended version of the design generated in Figure 13h. [A color version of this figure can be viewed online at

journals.cambridge.org/aie]

new design languages that reflect changing circumstances
(Stiny, 1980b).

As an example, rules (a) and (d) in Figure 15 are loaded into
the grammar system and edited. In the first case, the spoke is
additionally rotated 10 degrees around the y axis and translated
slightly in z direction (Fig. 17a). In the second case, both
spokes are rotated 10 degrees around their y axes. In a subse-
quent step, object Ry is set back to the global origin and, ac-
cordingly, the position of R is transformed so that the RHS
of the rule is in the correct spatial relation to the reference object

8- @=

P

in the LHS (Fig. 17b). Figure 17¢ shows three examples for rim
solutions generated using the modified set of rules.

This example for spatial grammars was previously pre-
sented by the authors (Hoisl & Shea, 2009). However, in pre-
vious work the rules were implemented directly as Python
scripts, or hard coded, and restricted to 2.5-D geometry. In
comparison to using the interactive, visual approach pre-
sented here, defining the rules by writing the scripts was
rather tedious, as it often did not become obvious whether
the intended rules were coded until their later application.

N > = ||

(b

N —> =l

(d)

(e)

Fig. 15. Rules for the generation of rim spokes (a)—(d) and the initial set (e). [A color version of this figure can be viewed online at journals.
cambridge.org/aie]

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

352 F. Hoisl and K. Shea

Fig. 16. Generated rim solutions.

This necessitated many time-consuming test and modifica- motorcycle engines, is considered. In comparison to vehicle
tion cycles. wheel rims, cooling fins do not have to be aesthetically pleas-
ing but have to fulfill requirements concerning, primarily, the
avoidance of overheating, manufacturability and fitting into
the available space.

As a second mechanical engineering design example, the The rules were derived by analyzing the cooling fins of
generation of cooling fins for the cylinder of, for example, the cylinder of a certain type of motorcycle (see http:/www.

6.3. Cylinder cooling fins

()

Fig. 17. Adapted rules and newly generated rim solutions. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

(e)

20" £ yaWgy £ 20

E @'

353

(h)

Fig. 18. Rules for the generation of cooling fins. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

kreidlerflorett.de/Zylinder.htm) and are shown in Figure 18.
Rule (a) inserts the first two fins, translated in the x and y direc-
tion in relation to the cylinder; applying rule (b), two new fins
are added to an existing one at a distance of 15 mm from each
other; rule (c) matches an existing fin of arbitrary length and
adds another fin, which is rotated 90 degrees around the z
axis, translated in x direction by 80% of the length of the
matched fin and is assigned a length within the range of 30
to 80 mm; rule (d) finds an existing fin of arbitrary length
and adds a new fin whose length is 80% of the length of the
matched fin; rule (e) is similar to rule (d) but instead of decreas-
ing the length of the new fin, it increases it by 20%; rule (f)
matches an existing fin of arbitrary length and deletes it; rule
(g) matches an existing fin of arbitrary length and rotates it
around the z axis by a value within the range of —20 to 20 de-
grees; and rule (h) tries to find three fins that are at least 60 mm
long and adds a reinforcing fin, which is realized using a cylin-
der primitive segment rotated 90 degrees around the y axis and
translated along the x axis by 80% of the average length of the
three matched fins. The last rule (h) is intended to help prevent

fins from excessive vibrations if they are too long. In rules (c),
(d), (e), and (g), the length of the object R in the RHS is set to
the same length as the object that is matched to L. This para-
metric relation is not explicitly shown in the rule figures.

The initial set was designed manually. It consists of the
cylinder, without the bore hole, and four attached smaller
cylinders, which provide the material needed to fix the cylin-
der head with screws (Fig. 19).

Figure 20 shows several examples of solutions generated
using the rules above. The cylinder bore hole is inserted in
a manual step using a Boolean operation after the application
of rules is finished.

7. DISCUSSION

For increased use and acceptance of spatial grammar systems,
the development of interactive, visual grammar interpreters
that are designer friendly is crucial. In an intuitive way,
they allow designers to define their own rules and apply
them interactively to generate different design alternatives.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

354

W

Fig. 19. Initial set for the cooling fin grammar.

This is important as the design of spatial grammars is most
often an iterative process where the language and full impact
of the rules is often not known until they are applied. Further,
integration of spatial grammars into CAD systems, including
all of their functionality, is important to help encourage de-
signers to utilize and benefit from grammatical design
methods.

The approach for a spatial grammar interpreter presented in
this paper comprises different aspects of the interactive, vi-
sual development, and application of 3-D spatial grammar
rules. Integrated into one single system, it has several advan-
tages over existing 3-D implementations:

60 w7 N
A

F. Hoisl and K. Shea

1. the possibility to visually, that is, without programming,
define and modify 3-D rules of
. arbitrary rule format, which can be
. based on a range of different solid primitives, and
. both nonparametric and parametric;
. an unrestricted number of rules, shapes in rules, and ap-
plications of rules;
. automatic matching of the LHS of a rule in a CWS, in-
cluding checking parametric relations; and,
7. the interactive application of rules (automatic, semiau-
tomatic, manual) in combination with adhering to para-
metric relations.

[I SIS I \S)

@)}

Further, with regard to engineering design, this work is a step
toward supporting engineers in formalizing their knowledge
about design while they work in a familiar software environ-
ment, that is, a CAD tool. Although the approach is currently
limited to the use of a set grammar formulation of spatial
grammars that is based on geometric primitives, a wide range
of designs can be rapidly generated yielding some creative
and unexpected outcomes.

Several improvements to the method and implementation
presented are currently under investigation.

1. As mentioned in Section 4.2.1, parametric relations
have to be defined by the user in the right order so
that they can be evaluated correctly during the rule ap-
plication process. Thus far there is also no rule valida-
tion that can be used to avoid cyclic parameter depen-
dencies. This can be problematic if spatial relations
are redefined, for example, in the modification of a
rule.

Fig. 20. Several designs generated by applying the cooling fin grammar rules (Fig. 18).

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

Visual, parametric 3-D spatial grammars

2. When defining a rule, free parameters can be defined
not only for sizes but also for location and orientation
parameters (cf. Section 4.1.2). However, if an LHS con-
tains more than one object, then free location and orien-
tation parameters cannot be defined.

3. The comparison of the relative transformation matrices
can suffer from rounding errors if rotations are used in
the definition or matching of objects. Currently, the
rounding is statically set in the source code of the sys-
tem, but it could also be considered to allow the user
to manually define a tolerance.

4. After a match for the reference object is detected, the
other objects in the LHS are checked for matching
(cf. Section 4.1.2). If a match is found in the CWS,
the remaining objects in the CWS are not checked,
even if it is theoretically possible, because overlapping
objects are allowed, that another object is in the exact
same position and also fulfills the size requirements
for matching.

5. The definition of free parameters are not directly visible
in the graphical representation of a rule, but can only be
seen by opening the dialog window for the free pa-
rameter definition. This should be added to the inter-
face.

Once the issues stated above are addressed and the proto-
type system is more mature, it will be tested with CAD de-
signers to evaluate its acceptance and to what extent it helps
to effectively use spatial grammars in mechanical design.
Several extensions to the approach to enhance the expressive-
ness of the definable rules and, thus, the number of potential
applications, are also under investigation.

1. Enabling the use of Boolean operations in combination
with parameterized primitives would allow for the def-
inition of more complex geometry in rules. Beyond that,
the expressiveness of the geometry could be enhanced
using sweeping operations, which are standard in to-
day’s mechanical engineering CAD systems, to gener-
ate complex extruded or revolved objects on the basis
of, for example, 2-D plane primitives. With some exten-
sions, the same principles for rule definition and appli-
cation presented in this paper can be used to include
geometric objects based on Boolean or sweeping opera-
tions. This is generally feasible with regard to the pro-
totype implementation, as the underlying modeling ker-
nel internally represents the geometric objects using a
boundary representation (B-rep). However, dealing
with curved geometry (for a 2-D approach, e.g., see
Jowers et al., 2008), for example, to define trajectories
or even freeform surfaces, remains an open issue.

2. Functionality making the use of labels available needs
to be added because many existing grammars include
them, for example, to guide the generation process or
deal with symmetries in shapes (e.g., Wang & Duarte,
2002). Labels can further be used to circumvent diffi-

355

culties with the LHS matching, if a LHS is defined
such that it consists only of a label without any further
geometry.

3. Unlike the original formalism, the current approach
does not consider scaling and reflection transformations
for matching the LHS of a rule. The use of scaling trans-
formations can be problematic in combination with
parametric rules. This is especially the case when para-
metric relations between objects are defined that include
mathematical operators and static values. Apart from
that, parametric rules as described in this paper can
also be used to detect scaled versions of an object
(see Section 4.1.2). This allows the user to explicitly de-
cide whether scaled versions should be matched or not.
As there are difficulties in handling reflection transfor-
mations, especially with regard to the local coordinate
systems and, therefore, the calculation of the relative
transformation in cases where there are several objects
in the LHS of a rule, the use of reflection transforma-
tions should be investigated in detail. In the broader
context, this is related to the issue of symmetries of ob-
jects, the automatic detection of symmetry or reflection
planes, as well as the question of how to deal with rota-
tionally symmetric objects, as they can match under an
infinite number of reflection or rotation transforma-
tions.

Taking a longer term perspective, more general extensions
include automatic derivation of a script from the visual defi-
nition of a grammar rule using a scripting language, such as
Python, to allow for the potential editing of the code by de-
signers for enhanced rule definition and customization. Fi-
nally, as the main goal of this research is to provide a spatial
grammar interpreter for mechanical engineering design prob-
lems, it is important to provide an interface to simulation in
order to evaluate generated designs according to engineering
requirements, for example, stresses in the vehicle wheel rims
or cooling performance of the cooling fin designs. This also
provides the necessary evaluation for incorporation of optimi-
zation and search methods to generate optimally directed de-
signs using a generative grammar (see, e.g., Starling & Shea,
2005).

8. CONCLUSION

Spatial grammars have been successfully applied in different
domains to describe languages of shapes and generate alter-
native designs. This paper presents a new approach for a 3-
D spatial grammar interpreter based on a set of parameterized
primitives. It includes the interactive, visual development of
3-D spatial grammar rules as well as their automatic applica-
tion. For the rule development phase, this includes the crea-
tion and positioning of geometric objects in 3-D space and
the definition of nonparametric and parametric rules. For
the rule application phase, automatic matching of the LHS
of a rule in a current working shape is carried out along

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

356

with the calculation of the positions and sizes of the objects in
the RHS, in accordance with the defined parametric relations.
Such flexibility to visually define spatial grammar rules,
without programming or creating text files, supports both
the cyclic development of a spatial grammar as well as its ap-
plication to explore the design space. The approach is a step
toward achieving a more general software implementation
of 3-D spatial grammars within a CAD environment. Future
work includes the use of Boolean and sweeping operations
to create more complex geometry in rules, introduction of la-
bels, improving the automatic rule matching and rule applica-
tion method, as well as linking the system with simulation and
optimization software.

ACKNOWLEDGMENTS

This research is supported by the Deutsche Forschungsgemein-
schaft (DFG) through the SFB 768 “Zyklenmanagement von Inno-
vationsprozessen.” The authors gratefully acknowledge the support
of the Technische Universitit Miinchen Graduate School’s The-
matic Graduate Center SFB 768 at Technische Universitit
Miinchen, Germany. We thank all authors who gave us feedback
to improve the characterization of their grammar implementations
(see Table 1).

REFERENCES

Cagan, J. (2001). Engineering shape grammars: where we have been and
where we are going. In Formal Engineering Design Synthesis (Antons-
son, E.K., & Cagan, J., Eds.), pp. 65-91. Cambridge: Cambridge Univer-
sity Press.

Chase, S.C. (2002). A model for user interaction in grammar-based design
systems. Automation in Construction 11, 161-172.

Chau, H.H., Chen, X.J., McKay, A., & de Pennington, A. (2004). Evaluation
of a 3D shape grammar implementation. In Design Computing and Cog-
nition 04 (Gero, 1.S., Ed.), pp. 357-376. Cambridge, MA.: Kluwer Aca-
demic.

Gips, J. (1975). Shape Grammars and Their Uses: Artificial Perception,
Shape Generation and Computer Aesthetics. Basel: Birkhduser.

Gips, J. (1999). Computer implementation of shape grammars. Proc. NSF/
MIT Workshop on Shape Computation, Cambridge, MA.

Heisserman, J. (1994). Generative geometric design. Computer Graphics and
Applications 14(2), 37-45.

Heisserman, J., Mattikalli, R., & Callahan, S. (2004). A grammatical ap-
proach to design generation and its application to aircraft systems.
Proc. Generative CAD Systems Symp. ‘04, Pittsburgh, PA.

Hoisl, F., & Shea, K. (2009). Exploring the integration of spatial grammars
and open-source CAD systems. Proc. 17th Int. Conf. Engineering Design
(ICED’09), Vol. 6, pp. 427-438. Stanford CA: Stanford University De-
sign Society.

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., & Ramani, K. (2005). Three-
dimensional shape searching: state-of-the-art review and future trends.
Computer-Aided Design 37, 22.

Jowers, 1., & Earl, C. (2010). The construction of curved shapes. Environ-
ment and Planning B: Planning and Design 37(1), 42-58.

Jowers, 1., & Earl, C. (2011). The implementation of curved shape grammars.
Environment and Planning B: Planning and Design 38(4), 616-635.
Jowers, 1., Hogg, D., McKay, A., Chau, H., & de Pennington, A. (2010).
Shape detection with vision: implementing shape grammars in concep-

tual design. Research in Engineering Design 21(4), 235-247.

Jowers, L., Prats, M., Lim, S., McKay, A., Garner, S., & Chase, S. (2008).
Supporting reinterpretation in computer-aided conceptual design. EURO-
GRAPHICS Workshop on Sketch-Based Interfaces and Modeling, pp.
151-158, Annecy, France.

F. Hoisl and K. Shea

Krishnamurti, R., & Stouffs, R. (1993). Spatial grammars: motivation, com-
parison, and new results. Proc. 5th Int. Conf. Computer-Aided Architec-
tural Design Futures, pp. 57-74. Amsterdam: North-Holland.

Li, A.L.-k., Chau, H.H., Chen, L., & Wang, Y. (2009a). A prototype for de-
veloping two- and three-dimensional shape grammars. CAADRIA 2009:
Proc. 14th Int. Conf. Computer-Aided Architecture Design Research in
Asia, pp. 717726, Touliu, Taiwan.

Li, A.L-k., Chen, L., Wang, Y., & Chau, H.H. (2009b). Editing shapes in a
prototype two- and three-dimensional shape grammar environment.
Computation: The New Realm of Architectural Design. Proc. 27th
Conf. Education and Research in Computer Aided Architecural Design
(eCAADe 2009), pp. 243-249, Istanbul.

McCormack, J.P., & Cagan, J. (2006). Curve-based shape matching: support-
ing designers’ hierarchies through parametric shape recognition of arbi-
trary geometry. Environment and Planning B: Planning and Design
33(4), 523-540.

McGill, M., & Knight, T. (2004). Designing design-mediating software: the
development of Shaper2D. Proc. eCAADe 2004, pp. 119—-127, Copenha-
gen, Denmark.

Piazzalunga, U., & Fitzhorn, P. (1998). Note on a three-dimensional shape
grammar interpreter. Environment and Planning B: Planning and Design
25, 11-30.

Starling, A., & Shea, K. (2005). A parallel grammar for simulation-driven
mechanical design synthesis. Proc. ASME IDETC/CIE Conf. Long
Beach, CA: ASME.

Stiny, G. (1977). Ice-ray: a note on the generation of Chinese lattice
designs. Environment and Planning B: Planning and Design 4(1),
89-98.

Stiny, G. (1980a). Introduction to shape and shape grammars. Environment
and Planning B: Planning and Design 7(3), 343-351.

Stiny, G. (1980b). Kindergarten grammars: designing with Froebel’s build-
ing gifts. Environment and Planning B: Planning and Design 7(4),
409-462.

Stiny, G. (1982). Spatial relations and grammars. Environment and Planning
B: Planning and Design 9, 313-314.

Stiny, G., & Gips, J. (1972). Shape grammars and the generative specification
of painting and sculpture. Proc. Information Processing 71, pp. 1460—
1465. Amsterdam: North-Holland.

Tapia, M. (1999). A visual implementation of a shape grammar system. Envi-
ronment and Planning B: Planning and Design 26(1), 59-73.

Trescak, T., Esteva, M., & Rodriguez, I. (2009). General shape grammar in-
terpreter for intelligent designs generations. Computer Graphics, Imag-
ing and Visualization, CGIV’09, Vol. 6, pp. 235-240. Tianjin, China:
IEEE Computer Society.

Wang, Y., & Duarte, J. (2002). Automatic generation and fabrication of de-
signs. Automation in Construction 11(3), 291-302.

Wong, W.-K., & Cho, C.T. (2004). A computational environment for learn-
ing basic shape grammars. Proc. Int. Conf. Computers in Education
2004, pp. 287-292, Melbourne, Australia.

Wong, W.-K., Wang, W.-Y., Chen, B.-Y., & Yin, S.-K. (2005). Designing
2D and 3D shape grammars with logic programming. Proc. 10th Conf.
Artificial Intelligence and Applications, Kaohsiung, Taiwan.

Frank Hoisl is a doctoral student in the Virtual Product De-
velopment Group, Institute of Product Development, Tech-
nische Universitidt Miinchen, where he also graduated with
a degree in mechanical engineering in 2006.

Kristina Shea has been a Professor for virtual product devel-
opment at Technische Universitidt Miinchen since 2005. She
studied mechanical engineering at Carnegie Mellon Univer-
sity where she completed her BS with university honors in
1993, her MS in 1995, and her PhD in 1997. Dr. Shea then
worked as a Postdoctoral Researcher at EPFL in Switzerland,
and in 1999 she became a University Lecturer at Cambridge
University, where she led the Design Synthesis Group in the
Engineering Design Center.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 09 Sep 2016 at 11:11:09, subject to the Cambridge Core terms of use, available at
http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50890060411000205

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0890060411000205
http:/www.cambridge.org/core

