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a b s t r a c t

Although basic investigations on wood chip material properties haven been carried out, only few studies
deal with transport of wood chips, despite the fact that significant problems are commonly observed
when feeding biomass in industrial applications. Within the work presented, basic bulk material prop-
erties were measured and experiments carried out with a system consisting of a hopper, agitator and a
screw conveyor. The aim of this study was to investigate how three different wood chip grades and two
blends of wood chips influence typical design parameters, such as mass flow and driving torque, of a
biomass feeding system. The measured basic bulk properties are in good overall agreement with the
literature. However, discrepancies were discovered between two standardized methods for determina-
tion of the bulk density. The results for the driving torque, mass flow and mass-related energy con-
sumption showed that different grades of wood chips can alter these values considerably. Between two
wood chip grades, a twice as high torque was recorded, while a third grade could not be fed due to
jamming. One of the major findings of this study is that mixing a rather small amount of a high-fine
content grade with the non-feedable grade of wood chips resulted in a blend which inhibited jam-
ming during the screw feeding process.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Basic investigations on wood chip material properties were
carried out in the past [1e5]. Over the past years, wood chips were
increasingly investigated, focusing on different areas of application,
such as rotary kilns, fixed-beds or bridging behavior (e. g. Refs.
[6e8]). A recent study by Stasiak et al. [9] is one of the more
comprehensive ones, which also provides a good overview on
published wood chip-related research. Only few studies deal with
transport of wood chips or biomass respectively, even though “(t)he
probability of significant problems is 80% for biomass feeding sys-
tems according to industrial experience” [10].

Screw conveyors are amongst the most used materials handling
equipment in biomass feeding. They are generally widely applied in
bulk materials handling, but there exist relatively few information
on design aspects in standards [11,12]. Apart from the development
of theoretical models for screw feeding loads [13,14], discrete
element simulations are applied to predict driving torque and
critical flow states, such as blocking, for a wide range of bulk solids
Ltd. This is an open access article u
(e. g. Refs. [15e17]). Nonetheless, experiments are vital for valida-
tion of all of these models, because even similar bulk solids can
exhibit considerably different flow behavior and the influence of
the respective handling equipment is significant.

Dai et al. [10] listed 18 energy-related biomass projects, of which
most featured systemswith hoppers and screw conveyors, and nine
in particular used bottom-feeding screw feeders. Research on
biomass screw feeding is rarely available [18e20] and as of August
2015 the authors of this work are not aware of any published
content of significant interest on screw feeding of wood chip
blends.

Bulk material handling equipment for wood chips is mainly
designed based on experience, as the flow behavior of wood chips is
intricate, due to effects, including catching of particles and particle
deformation [10]. There are few experimental studies onwood chip
feeding with complex bulk material handling equipment in exis-
tence [20,21] and the examined particle sizes of the wood chips
were relatively small (fines to 15 mm).

The aim of this work was to study the influence of three
different grades of wood chips as well as two blends for typical
screw conveyor feeding-related parameters. Thesewere the driving
torque, mass flow, hopper discharge pattern and mass-related
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Sample descriptions; blends are based on mass fraction (%).

Sample Blend Consists of

S1 no
S2 no
S3 no
B1 yes S1: 30%, S3: 70%
B2 yes S1: 70%, S3: 30%
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energy consumption of a wedge-shaped hopper with horizontal
agitator and bottom-feeding screw feeder.

2. Materials and methods

Three different wood chip grades, chosen by visual inspection,
were subject to several bulk material property measurements and
further experimental investigation, involving a hopper/agitator/
screw conveyor system.

2.1. Wood chip samples

The tested wood chips were supplied by a local company and
consisted of spruce for the largest part. A more detailed description
cannot be given here, since the supplier does not keep track of
provenance, species and cultivar processed. The chain of custody is
unknown to the authors, who believe that the samples used in this
study exemplify the characteristic handling properties of softwood
chips.

Sample 1 (S1, Fig. 1a) and sample 2 (S2, Fig. 1b) were good
quality wood chips (stem wood), with just a small percentage of
bark. Sample 3 (S3, Fig. 1c) however consisted of a considerable
amount of spruce needles and fines (forest wood chips). The blends
B1 and B2 were created by manually mixing wood chips from S1
and S3 according to Table 1. Mixing was carried out by separating
the materials to mix into two heaps and alternately tossing them
onto each other with shovels, forming a third heap. Subsequently,
the third heap was divided into two heaps again and the process
repeated approximately five times, until a homogeneous mixture
was obtained.

2.2. Basic bulk material properties characterization methods

Five basic bulk material properties of the sample materials were
measured using the following methods.

2.2.1. Particle size distribution
The particle size distribution was determined according to [22].

It was measured for the three basic samples S1, S2 and S3, using
sieves of the sizes 1, 3.15, 4, 8 and 16 mm, which allowed for clas-
sification< 1 of the following particle size fractions, 1e3.15, 3.15e4,
4e8, 8e16 as well as> 16 mm.

2.2.2. Moisture content
The moisture content of the wood chip samples was measured

conforming to [23]; determination of the weight loss during drying
at 105+ C until a constant weight is reached. It is reported as the
water mass fraction of the materials as received.
Fig. 1. Photographs of the three base wood
2.2.3. Bulk density
Bulk density was determined using an open-bottom cylindrical

steel container with a diameter of 56.5 cm (custom container).
Placed on concrete floor, it was filled with sample material up to a
height of 58 cm (equals 145.42 dm3). Using this method, the bulk
density was measured three times for each sample (N¼ 3). In
addition, poured and tapped bulk density was measured according
to a European and a German standard [24,25].

2.2.4. Angle of repose
The angle of repose was determined by using the custom

container and filling height as described in subsubsection 2.2.3.
After filling with the respective sample, it was lifted vertically at a
speed of 0.40 ms�1. From the generated heap of material, the angle
of repose was determined, following the instructions for measuring
in Ref. [26] and the overall process was repeated five times for each
sample (N¼ 5).

2.2.5. Angle of slip
The angle of slip measurement was carried out on mild steel

sheet metal and repeated ten times (N¼ 10) for each of the base
samples. The surface roughness of the cold-rolled sheet metal was
Rz 100, according to [27].

2.3. Screw feeder experiments

The screw feeder experiments described in this subsectionwere
carried out at room temperature. Since wood chips tend to form
bridges over openings [4,8], a horizontal agitator constantly stirred
the wood chips inside the hopper.

2.3.1. Test setup and procedure
The feeding experiments were carried out with a screw feeder,

which was mounted underneath a wedge-shaped hopper with a
horizontal agitator, as shown in Fig. 2. The base screw auger pa-
rameters are listed in Table 2. It consists of two sections with
different pitches (p(L1)¼160mm, p(L2)¼140mm). Fig. 3 depicts the
side view from the left of Fig. 2 and shows the hopper dimensions
in addition to the rotational directions of the screw conveyor and
chip samples S1 (a), S2 (b) and S3 (c).



Fig. 2. Screw feeder consisting of a hopper with horizontal agitator (upper left) and screw conveyor (bottom). The auger pitch is divided into two sections with different pitches
(p(L1)¼160mm and p(L2)¼140mm).

Table 2
Base screw auger properties.

Property Specification

flight diameter 120 mm
shaft diameter 50 mm
clearance to trough 11 mm
pitch p1

a 160 mm
pitch p2

a 140 mm

a See Fig. 2.

Fig. 3. Side view from the left of Fig. 2, showing the projected area covered by the
agitator (A) as well as the location of the screw flights within the through (B).
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agitator. The revolution speed of the screw conveyor and the
agitator were constant at nscrew¼ 12.8 rpm and nagi¼ 8.8 rpm,
respectively. All major components had been manufactured from
mild steel. The agitator rods are inclined at an angle of 45+, tending
to transport the wood chips within the hopper towards the left in
Fig. 2.

The overall setup is shown in Fig. 4 and consisted of the screw
feeder and hopper plus agitator, a 750Wmotor (230 V, 50 Hz AC), a
Watt meter ([28], accuracy: ±2.5% of reading), a torque sensor ([29],
capacity: ±500 Nm, accuracy: �1% of full scale) and digital scales
([30], capacity: 150 kg, accuracy: 0.02 kg). The agitator shaft and
screw shaft were connected by a chain gear, so the torquemeasured
was the overall driving torque for both; effective power was
measured by the Watt meter.

Prior to each run, leftover material from the previous run was
removed and the hopper was filled with wood chips, which were
flattened out at 5 cm below its upper edge. Table 3 shows the filling
mass for each sample tested. The test procedurewas repeated eight
times for each wood chip sample (N¼ 8) and the discharge pattern
recorded with a high-definition video camera.
2.3.2. Evaluation of the screw feeder measurements
All data were recorded and stored on a personal computer. The

torque was measured at 10 Hz, while effective power and mass of
the fed sample material were taken at 2 Hz and 1 Hz respectively;
both of the latter measurement devices did not support higher data
acquisition rates.

The courses of massm(t) and effective power consumption Pel.,eff
over time were corrected for starting point offset and averaged
before creating diagrams. Torque data T(t) was smoothed, using the
Matlab [31] smooth function (rloess option, span ¼ 50) and aver-
aged prior to plotting. All time-related data were interpolated in
order to obtain function values for the same points in time. These
values were then used to compute the standard deviation or 95%
confidence interval boundaries for each of the respective points in
time.

Other specific values for bulk material handling were computed
from the direct measurements for fed mass m(t) and torque T(t)
over time. The mass flow m_(t) can be calculated as shown in
Equation (1).

_mðtÞ ¼ d
dt

mðtÞ��t (1)

The mechanical power Pmech required to drive the screw feeder
and agitator was computed from the measured torque and angular
velocity of the screw shaft, according to Equations (2) and (3).

PmechðtÞ ¼ TðtÞ,uscrew (2)



Fig. 4. Schematic setup of the screw feeder experiment setup, consisting of the hopper with agitator, screw conveyor, watt meter, electric motor (M), torque sensor and digital
scales. The chain gear connected the screw conveyor shaft with the agitator.

Table 3
Mean mass used to fill the hopper up to 5 cm below its upper edge,
including standard deviation.

Sample Screw feeding sample mass (kg)

S1 28.46± 0.14b

S2 34.85± 0.50
S3 46.37± 0.79
B1 41.66± 0.74
B2 34.19± 1.35

b N¼ 2.
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where uscrew ¼ 2,p,nscrew (3)

Preliminary tests had shown the hopper discharge behavior as
depicted in Fig. 5, which was similar for all runs. The points in time,
t0 through t5 were identified, using the measurement results and
video files from the experiment runs.

After the initial state (t¼ 0 s), the hopper fill level first decreased
at the transport direction side. It took about 50 s for the screw
feeder trough to be filled and first wood chips to fall on the digital
scales (t0). t1 was identified when the mass flow became quasi-
Fig. 5. Discharge pattern during the experimental runs. The figure shows
static. t2 was reached, when more than half of the length of the
agitator had lost contact with the wood chips inside the hopper.
This moment was identified by using the video data. At t3, the
torque and power consumption dropped sharply, followed by the
mass flow at t4. tend marked the end of the measurement, when the
hopper and trough were empty in addition, besides from non-
feedable material in corners or in the gaps between screw flights
and trough (Fig. 5, aef). The interval between t1 and t2 was
considered the main feeding period (MFP), with the screw feeder
and agitator engaged with the wood chips.

Further evaluation involved the energy consumption per
transported mass, E0mech and E0eff [19], which was computed for the
main feeding period. In Equation (4) and Equation (5), Pmech is the
mechanical power, whereas Pel.,eff is the effective power con-
sumption as measured by the Watt meter.

E0mech ¼

Z t2

t1
PmechðtÞdt

Z t2

t1
_mðtÞdt

(4)
a cross section trough the axes of the agitator and screw conveyor.



Fig. 6. Mass percentages of the different particle size fractions for the base samples S1,
S2 and S3.
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E0eff ¼

Z t2

t1
Pel:;eff ðtÞdt

Z t2

t1
_mðtÞdt

(5)

3. Results

The presentation of results is divided into a section on the bulk
material properties of the wood chip samples on the one hand, and
a section on the screw feeding experiments on the other hand.

3.1. Basic wood chip sample properties

The samples' bulk densities, angles of repose, angles of slip,
moisture contents and particle size distribution are shown in
Table 4 and Fig. 6, respectively.

The particle size distribution shows that S1 contained a enor-
mous share of 62% of particles larger than 16 mm, whereas S2 and
S3 consisted primarily of wood chip particles sized between 1 and
16 mm S2 contained a higher fraction of particles sized
4 mme16 mm than S3, while S3 features a higher percentage of
wood chips measuring 1 mme4 mm. During handling the wood
chip samples between tests, it was noticeable that S2 and S3 could
be managed more easily, since the particles of S1 tended to get
tangled with each other.

Bulk densities increase from S1 to S3 (with decreasing mean
particle size), when measured according to the DIN standard [24]
and with the custom container. This is in agreement with ex-
pected decreased voidage (at constant material density) and results
by Littlefield et al. [32], obtained for pecan shells. Nevertheless,
considerable differences exist between the absolute results of the
three distinct measurement methods. For S1, the bulk density
measured according to the European standard [25] was 58% higher
than the one resulting from the DIN standard [24]. These discrep-
ancies clearly relate to the different measuring methods, but the
results demonstrate that mentioning the exact measuring method
is crucial, when reporting values for bulk density.

The bulk densities of the blends B1 and B2 lie between the
values for S1 and S3 and closer to the more prevalent base sample,
as one would expect. The overall bulk density values determined
within this study are in good agreement with literature [2e5], yet
somewhat lower than those reported by Stasiak et al. [9].

The mean angle of repose for all samples is around 31+ and does
not seem to depend on the wood chip grade, which is supported by
literature [2,3]. Nevertheless, the method of measuring the angle of
repose used in this work yields smaller values than known from
literature, e. g. 31+ in this study, compared to 37+ … 46+ (also [4,5]).

Measured values for the angle of slip onmild steel are consistent
with existing results for mild and stainless steel [2,4]. It appears
that there is no significant difference between the angle of slip
being measured on mild or stainless steel, for wood chips.
Table 4
Bulk material properties as means, where ± indicates standard deviation.

Sample Bulk densities (kgm�3)

DIN [24] EN [25] Custom container

S1 145 229 175± 5
S2 198 226 200± 9
S3 229 274 254± 2
B1 e e 238± 5
B2 e e 191± 4
3.2. Screw feeder experiments

The torque measurements for S1 exceeded the maximum ad-
missible torque of the torque sensor by a factor of two. In addition
to that, the trough cover deformed near the choke section due to
jamming wood chips. In order to protect the overall system from
damage, S1 screw feeder experiments were canceled after two at-
tempts, the torque sensor was sent for recalibration and the hutch
cover repaired; respective results for S1 were not considered in this
work.
3.2.1. General findings
Mass flow, driving torque and effective as well as mechanical

power measurement results and respective 95% confidence interval
boundaries for S2 (Fig. 7) S3 (Fig. 8), B1 (Fig. 9) and B2 (Fig. 10) are
displayed in the corresponding figures.

The results for each of the four samples show similar behavior.
The hopper fill level decreased on the right side (Fig. 2) first, which
indicates the agitator transported wood chips within the hopper,
due to its inclined stirring rods. As soon as the first wood chips fall
out of the trough (t0), the mass flow rises sharply and becomes
quasi-static for the most time of the measurement period. It only
drops at the end (t4), since the system is emptied. The driving
torque increases as the trough is filled with sample material and
peaks shortly after the mass flow is fully established (t1). For the
remainder of the measurement, the torque requirement constantly
decreases. It is evident that this results from the hopper fill level
lowering over time and hence, the agitator to stir less wood chips.
Once the fill level becomes so low that most of the agitator loses
contact with the wood chips (t2), the driving torque stays at a
constant level (t2< t< t3), and gradually decreases as soon as no
Angle of repose (+) Angle of slip (+) Moisture (mass-%)

33± 1 27± 2 8.5
29± 2 26± 1 14.8
31± 1 27± 1 11.8
31± 2 e e

29± 1 e e



Fig. 7. Screw feeder experiment results for S2 with 95% confidence interval band.

Fig. 8. Screw feeder experiment results for S3 with 95% confidence interval band.
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material is left inside the hopper and the trough is emptied. This
effect is most evident in S3 results.

Interpretation of the torque data would have been impossible if
no averaging and smoothing had been applied to the raw data,
since many peaks were recorded. These peaks result from effects,
such as the granular nature of wood chips as a bulk material and
particle breakage.
The mechanical power was calculated from the driving torque
and revolution speed of the screw shaft and its course perfectly
corresponds with the effective power measured. From preliminary
measurement, the motor's mean idle power consumption and
standard deviation were determined and are (394± 2) W.

At the end of the measurement periods, there is a rapid growth
of the 95% confidence interval. This is due to the different durations



Fig. 9. Screw feeder experiment results for B1 with 95% confidence interval band.

Fig. 10. Screw feeder experiment results for B2 with 95% confidence interval band.
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it took for the system to be emptied. It is most obvious in the results
for blend B2. Differences in the durations it took to empty the
hopper may be for different reasons. Two of them are minor dif-
ferences in the bulk density or single over-sized particles among
the wood chips, blocking flow for a short while. For further com-
parison of the samples, only the main feeding period (MFP)
between t1 and t2 is considered.

3.2.2. Screw feeder results comparison
The mass flow during the main feeding period (MFP, Fig. 11)

between t1 and t2 corresponds well with the bulk densities of the
samples. Not as a surprise, the mass flow generally increases with
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the respective bulk density of the sample.
Boxplots of the driving torques during the MFP are displayed in

Fig. 12. Clearly visible from Fig. 12, the driving torque was highest
when feeding S2. When comparing S2 to S3 and recalling that S1
could not be fed due to exceeding the torque sensor's maximum
torque, it becomes obvious the required driving torque strongly
depends on themean particle size of thewood chips. Themedian of
S2 is more than twice as high as the one for S3- a striking differ-
ence! These results consolidate the findings from Gil et al. [33],
which state that larger mean particle size leads to worse flow.

Even though B2 consisted of 70% of the non-feedable sample S1,
its median torque is lower than that of S2. A possible explanation
for this observation is that fines within S3 act as a solid lubricant for
the larger S1 particles, stopping them from getting tangled with
each other and preventing jams by lowering S1's effective inter-
particle friction. Concordant to this, Zulfiqar et al. [34] reported
that mixing coal with wood chips can significantly affect the flow
behavior of the resulting blend and Guo et al. [35] found that
needle-shaped biomass reduced adherence and transitioned flow
pattern to coal.

Interestingly enough, the torque for B1 is slightly lower than the
one from S3. However, this might be due to statistical effects. The
authors believe there is a tendency, according to which the flow-
ability of the blends increases with the percentage of S3.

Effective power consumption measurements and calculated
mechanical power are in agreement with these findings, as shown
in Fig. 13. Furthermore, it is obvious the motor used for the ex-
periments only provides limited efficiency, as its idle power con-
sumption is already around 400 W (cf. subsubsection 3.2.1).

The mass-related energy consumption, as calculated according
to Equation (4) and Equation (5), is depicted in Fig.14. Net values for
the specific energy consumption for augering biomass were re-
ported by Miao et al. [19]. They range from approximately
0.2 kJ kg�1 for corn to about 16 kJ kg�1 for switchgrass. The values
from this study are between 1.09 and 5.06 kJ kg�1 for the me-
chanical power and 4.14e10.6 kJ kg�1 when taking the effective
power consumption into account. Even though the mass-related
mechanical power in this study and those from Miao et al. [19]
for screw conveyors are in the same range, it shall not be left un-
mentioned that experimental setups were different and the values
from Miao et al. [19] were given with respect to the dry mass.

Similar to the driving torque, the values for the mass-related
energy consumption of B1 and B2 are considerably lower than
from S2. Fig. 14 shows a tendency, where the mass-related energy
decreases with increasing percentage of S3.
Fig. 11. Mass flow and corresponding standard deviation during the main feeding
period (MFP).
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4. Outlook

Even though the findings from this work showed how to achieve
significant improvements in feedability, they require further
consolidationwith respect to other wood chip feeding applications.
In addition, mixing blends from different wood chip grades almost
certainly changes the (net) calorific value of the transported bulk
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material. It is of vital importance to investigate to which extent this
value is altered, since the described hopper/agitator/screw
conveyor system is typically applied as a device for transporting
wood chips to a furnace, and the subsequent combustion process
can be affected.

5. Conclusions

The target of this study was to investigate the influence of three
different wood chip grades and two blends on typical parameters
for screw conveyor materials handling. As a side result, three
different methods of measuring the bulk density of wood chips
were compared and it was revealed there can be differences of up
to 58%. Also taking into account the systematic differences from the
angle of repose results, the findings from this study underline how
important it is to report the measuring method as precisely as
possible, whenever values for the angle of repose and the bulk
density are reported.

Wood chips can be a bulk material which is hard to feed with
screw conveyors. Sample S1, which mostly consisted of wood chip
particles larger than 16 mm, caused problems when augered with
the screw conveyor used in this study. It was shown that mass flow,
driving torque and therefore the mass-related transport energy
vary significantly between different wood chip grades and
respective blends. The mechanical mass-related energy to feed
wood chips was reported to be in between approximately 1 and
5 kJ kg�1. The mean particle size of the wood chips has a strong
influence on the driving torque, as larger particles may get tangled
with each other or equipment parts and cause increased driving
power demand or even blockage.

One of the main findings is that considerate blending of two
wood chip grades can resolve the problems of excessive driving
torque and thus significantly lower the energy demand for the
screw conveyor/agitator. Mixing a blend from a 70% share of hard-
to-feed wood chip grade with 30% of a high-fines, bark and needle
content, grade significantly influenced the feeding behavior and
mass-related energy consumption, while only slightly altering the
bulk density and expected mass flow.

The results also indicate that improving or deteriorating flow-
ability of blends made from wood chips and other bulk materials
might not just depend the amount of wood chips, but also on the
mean particle size, which the wood chips consist of.
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